WO2021012561A1 - 基于超声设备获得动脉硬化指标的测量方法及系统 - Google Patents

基于超声设备获得动脉硬化指标的测量方法及系统 Download PDF

Info

Publication number
WO2021012561A1
WO2021012561A1 PCT/CN2019/121367 CN2019121367W WO2021012561A1 WO 2021012561 A1 WO2021012561 A1 WO 2021012561A1 CN 2019121367 W CN2019121367 W CN 2019121367W WO 2021012561 A1 WO2021012561 A1 WO 2021012561A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
point
waveform
difference
peak
Prior art date
Application number
PCT/CN2019/121367
Other languages
English (en)
French (fr)
Inventor
赵一鸣
张红斌
曹泽旭
郭冬梅
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Priority to EP19938298.7A priority Critical patent/EP4000530A4/en
Publication of WO2021012561A1 publication Critical patent/WO2021012561A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the invention belongs to the technical field of medical ultrasound, and mainly relates to a measurement method and system for obtaining arteriosclerosis indexes based on ultrasound equipment.
  • Cardiovascular disease is a major disease that seriously endangers human health.
  • Arteriosclerosis is the common pathophysiological basis of most cardiovascular diseases.
  • Arteriosclerosis of any body part may cause ischemic function in the corresponding area, such as coronary heart disease, Moderate stroke. Therefore, knowing the degree of arterial stiffness is the key to the prevention and treatment of cardiovascular diseases.
  • Invasive detection equipment mainly uses arteriography to detect the degree of arteriosclerosis.
  • detection equipment based on arteriography is an invasive operation. It has the characteristics of complicated detection, high price and low sensitivity.
  • Non-invasive testing equipment will use methods such as vascular compliance testing based on ultrasound imaging, which also have problems such as high cost, complex operation, need for professional guidance, and not conducive to portable monitoring.
  • the purpose of the present invention is to provide a measurement method and system for obtaining arteriosclerosis indicators based on ultrasound equipment.
  • an embodiment of the present invention provides a measurement method for obtaining arteriosclerosis indicators based on ultrasound equipment.
  • the method includes: arbitrarily acquiring two measurement points P1 and P2 at different measurement positions, and recording two The extended distance L between the measurement points P1 and P2; the R peak of the ECG signal is used as the time synchronization signal to obtain the measurement time difference ⁇ T between the two measurement points;
  • "using the R peak of the ECG signal as a time synchronization signal to obtain the measurement time difference ⁇ T between two measurement points" specifically includes:
  • ⁇ T is obtained from the time difference between the obtained multiple characteristic points and the R peak of the ECG signal.
  • the method specifically includes:
  • the method further includes: judging each ⁇ X and Whether the absolute value of the difference is greater than the first preset threshold, if yes, determine that the current ⁇ X is invalid, and recalculate after excluding the invalid ⁇ X And after confirming each ⁇ X and recalculating When the absolute value of the difference is not greater than the first preset threshold, the calculation ends;
  • "selecting at least one characteristic point in the waveform diagram corresponding to each measurement point" specifically includes:
  • an embodiment of the present invention provides a measurement system for obtaining arteriosclerosis indicators based on ultrasound equipment.
  • the system includes: a first measurement module for arbitrarily obtaining two measurement points P1 at different measurement positions And P2, and record the extended distance L between the two measuring points P1 and P2;
  • the second measurement module is configured to use the R peak of the ECG signal as a time synchronization signal to obtain the measurement time difference ⁇ T between two measurement points;
  • the second measurement module is specifically configured to: obtain a waveform diagram at each measurement point, and select at least one characteristic point in the waveform diagram corresponding to each measurement point;
  • ⁇ T is obtained from the time difference between the obtained multiple characteristic points and the R peak of the ECG signal.
  • the second measurement module is specifically configured to: mark the waveform diagram corresponding to the measurement point P1 as the first waveform diagram, and mark the waveform diagram corresponding to the measurement point P2 as the second waveform diagram;
  • the system further includes: a screening module, the screening module is used to: determine each ⁇ X and Whether the absolute value of the difference is greater than the first preset threshold, if so, determine that the current ⁇ X is invalid, and after excluding the invalid ⁇ X, recalculate through the second measurement module And after confirming each ⁇ X and recalculating When the absolute value of the difference is not greater than the first preset threshold, the calculation ends;
  • the second measurement module when used to select at least one characteristic point in the waveform diagram corresponding to each measurement point, specifically includes:
  • the beneficial effect of the present invention is that the measurement method and system for obtaining arteriosclerosis indicators based on ultrasound equipment of the present invention uses the R peak of the ECG signal as a time synchronization signal to calculate the difference between two measurement points. The time difference is measured, and the arteriosclerosis index is obtained. Without introducing other equipment, the calculation accuracy is improved and the measurement cost is reduced.
  • FIG. 1 is a schematic flowchart of a method for obtaining arteriosclerosis indicators based on ultrasound equipment according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of the corresponding relationship between the ECG signal and the waveform diagram of a specific example of the present invention
  • FIG. 3 and 4 are schematic diagrams of waveform diagrams involved in different examples of the present invention.
  • Fig. 5 is a schematic diagram showing the combination of different blood vessel waveforms and ECG signals in a specific example of the present invention
  • Fig. 6 is a schematic diagram of modules of a measurement system for obtaining arteriosclerosis indicators based on ultrasound equipment according to an embodiment of the present invention.
  • an embodiment of the present invention provides a measurement method for obtaining arteriosclerosis indicators based on an ultrasound device.
  • the method includes: S1, arbitrarily acquiring two measurement points P1 and P2 at different measurement positions, and recording two measurements
  • the extension distance between points P1 and P2 is L1; the R peak of the ECG signal is used as the time synchronization signal to obtain the measurement time difference ⁇ T between the two measurement points;
  • different measurement positions are usually to two blood vessel positions far apart.
  • the two blood vessel positions can be selected as the carotid artery and the femoral artery respectively, and the two measurement points P1 and P2 are respectively the neck Any point on the artery and femoral artery.
  • the extension distance between the two measurement points can be obtained in a variety of ways.
  • the method for obtaining the extension distance L is the prior art, which will not be further described here. It should be noted that the extension distance L is the physical extension distance formed by the blood flow path from one measurement point to another measurement point.
  • ECG signal is the abbreviation of electrocardiogram.
  • the Chinese meaning is ECG signal.
  • the ECG signal is fixed. In this way, using the R peak of the ECG signal as the time synchronization signal can ensure that the time difference ⁇ T obtained is more accurate, and there is no need
  • the introduction of other instruments to obtain other reference variables can achieve the purpose of obtaining the measurement time difference ⁇ T.
  • step S1 "using the R peak of the ECG signal as a time synchronization signal to obtain the measurement time difference ⁇ T between two measurement points” specifically includes: S11, obtaining a waveform diagram at each measurement point, and Select at least one feature point in the waveform diagram corresponding to the two measurement points; S12, obtain the time difference between each feature point and the R peak of the ECG signal; S13, according to the time difference between the obtained multiple feature points and the R peak of the ECG signal Obtain ⁇ T.
  • the time difference between an R peak of the ECG signal and the selected characteristic point in the waveform corresponding to one of the measurement points is represented by t.
  • the method specifically includes: marking the waveform corresponding to the measurement point P1 as the first waveform, and marking the waveform corresponding to the measurement point P2 as the second waveform;
  • the selected feature points in the waveform graph are identified by feature point X
  • the feature points selected in the second waveform graph are identified by feature point Y
  • the difference between each feature point X and the R peak of the ECG signal selected according to the same rule The value is marked by ⁇ X
  • the difference between each characteristic point Y and the R peak of the ECG signal selected according to the same rule is marked by ⁇ Y
  • the The method also includes: judging each ⁇ X and Whether the absolute value of the difference is greater than the first preset threshold, if yes, determine that the current ⁇ X is invalid, and recalculate after excluding the invalid ⁇ X And after confirming each ⁇ X and recalculating When the absolute value of the difference is not greater than the first preset threshold, the calculation ends; it is judged that each ⁇ Y and Whether the absolute value of the difference is greater than the first preset threshold, if so, determine that the current ⁇ Y is invalid, and recalculate after excluding the invalid ⁇ Y And after confirming each ⁇ Y and recalculating When the absolute value of the difference is not greater than the second preset threshold, the calculation ends.
  • the first preset threshold and the second preset threshold are both a set known parameter value, the magnitude of which is related to the heart rate signal, for example, 0.1s, which will not be further described here.
  • the derivative threshold method is used to obtain the characteristic points in each waveform; as shown in FIG. 3, in this embodiment, the method specifically includes: searching for at least one largest first-order in the current waveform Derivative M, starting from the end of diastole of the current first derivative M, look forward to the first point P3 where the first derivative is greater than k1*M, starting from P3, look backwards to the first point P4 where the first derivative is greater than k2*M, Select P4 as the characteristic point of the current waveform; among them, 0 ⁇ k2 ⁇ k1 ⁇ 1; for example, the value range of k2 is 10% to 20%, and the value of k1 is 50%.
  • the tangent crossing method is used to obtain the characteristic points in each waveform; as shown in FIG. 4, in this embodiment, the method specifically includes: searching for at least one with the largest first order in the current waveform Point P5 of the derivative, make a tangent line at point P5, and mark it as systolic tangent; find the lowest point P6 in diastole in the period corresponding to point P5, make a tangent line at point P6, mark it as diastolic tangent; calculate systolic tangent and diastolic The intersection point P7 of the period tangent lines, select P7 as the characteristic point of the current waveform.
  • the trackball in the user's PWV function interface, roll the trackball to move the active cursor to the target ultrasound image, as shown in FIG. 5, after selecting the target, receive the R peak time data of the ECG signal in the current image and (Carotid/femoral) arterial blood flow acceleration point time data, the (carotid/femoral) arterial blood flow acceleration point is the characteristic points X and Y selected in the two waveform diagrams described in the above content; further, press The above calculation shows that there are invalid feature points in the selected feature points X and Y. After filtering them, multiple valid cardiac cycles are obtained. It should be noted that in this example, the adjacent heart rate signals The interval between R peaks is called a cardiac cycle.
  • the effective cardiac cycles and invalid cardiac cycles can be marked with different colors and/or different marking lines in the waveform chart, which is convenient for users to observe; further, when the screening is completed, invalid cardiac cycles can be marked
  • the heartbeat cycle is deleted and restored, so I won’t go into further details here.
  • an embodiment of the present invention provides a measurement system for obtaining arteriosclerosis indicators based on ultrasound equipment.
  • the measurement system includes: a first measurement module 101, a second measurement module 103, a processing module 200, and a screening module 300 .
  • Different measurement positions are usually to two distant blood vessel positions.
  • the two blood vessel positions can be selected as the carotid artery and the femoral artery, and the two measurement points P1 and P2 are the carotid artery and the femoral artery. Any point on the blood vessel.
  • the extension distance between the two measurement points can be obtained in a variety of ways.
  • the method for obtaining the extension distance L is the prior art, and will not be further described here. It should be noted that the extension distance L is the physical extension distance formed by the blood flow path from one measurement point to another measurement point.
  • the second measurement module 103 is specifically configured to: obtain the waveform diagram at each measurement point, and select at least one characteristic point in the waveform diagram corresponding to each measurement point; obtain the difference between each characteristic point and the R peak of the ECG signal Time difference: ⁇ T is obtained according to the time difference between the obtained multiple feature points and the R peak of the ECG signal.
  • the time difference between an R peak of the ECG signal and the selected characteristic point in the waveform corresponding to one of the measurement points is represented by t.
  • the second measurement module 103 identifies the waveform diagram corresponding to the measurement point P1 as the first waveform diagram, and the waveform diagram corresponding to the measurement point P2 as the second waveform diagram;
  • the selected feature points in the figure are identified by feature point X
  • the feature points selected in the second waveform graph are identified by feature point Y;
  • the difference between each feature point X and the R peak of the ECG signal selected according to the same rule Marked by ⁇ X, the difference between each characteristic point Y and the R peak of the ECG signal selected according to the same rule is marked by ⁇ Y; calculate the mean value of ⁇ X And the mean of ⁇ Y then
  • abnormal parameters may exist in the multiple feature points; in the preferred embodiment of the present invention, in order to ensure the accuracy of calculation, the filter module 300 is used to judge each ⁇ X and If the absolute value of the difference is greater than the first preset threshold, if it is, it is determined that the current ⁇ X is invalid, and after excluding the invalid ⁇ X, it is recalculated by the second measurement module 103 And after confirming each ⁇ X and recalculating When the absolute value of the difference is not greater than the first preset threshold, the calculation ends; it is judged that each ⁇ Y and Whether the absolute value of the difference is greater than the first preset threshold, if so, it is determined that the current ⁇ Y is invalid, and after excluding the invalid ⁇ Y, it is recalculated by the second measurement module 103 And after confirming each ⁇ Y and recalculating When the absolute value of the difference is not greater than the second preset threshold, the calculation ends.
  • the first preset threshold and the second preset threshold are both a set known parameter value, the magnitude of which is related to the heart rate signal, for example, 0.1s, which will not be further described here.
  • the derivative threshold method is used to obtain the characteristic points in each waveform; as shown in FIG. 3, in this embodiment, the second measurement module 103 is used to find at least one largest one in the current waveform.
  • the first derivative M starting from the end of diastole of the current first derivative M, look forward to the first point P3 where the first derivative is greater than k1*M, and start from P3 backward to find the first point P4 where the first derivative is greater than k2*M , Select P4 as the characteristic point of the current waveform; among them, 0 ⁇ k2 ⁇ k1 ⁇ 1; for example, the value range of k2 is 10% to 20%, and the value of k1 is 50%.
  • the tangent crossing method is used to obtain the characteristic points in each waveform; as shown in FIG. 4, in this embodiment, the second measurement module 103 is used to find at least one with the largest one in the current waveform. For the point P5 of the order derivative, make a tangent at P5 and mark it as the systolic tangent; find the lowest diastolic point P6 in the period corresponding to P5, and make a tangent at P6 to mark the diastolic tangent; calculate the systolic tangent and The intersection point P7 of the diastolic tangent lines, select P7 as the characteristic point of the current waveform.
  • the measurement method and system for obtaining arteriosclerosis index based on ultrasound equipment of the present invention uses the R peak of the ECG signal as a time synchronization signal to calculate the measurement time difference between two measurement points to obtain arteriosclerosis index. Without introducing other equipment, the calculation accuracy is improved and the measurement cost is reduced.
  • the disclosed measurement system, system, and method can be implemented in other ways.
  • the implementation of the measurement system described above is only illustrative.
  • the division of the modules is only a logical function division.
  • there may be other division methods for example, multiple modules or components can be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, systems or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of this embodiment.
  • the functional modules in the various embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • the above-mentioned integrated modules implemented in the form of software function modules may be stored in a computer readable storage medium.
  • the above-mentioned software function module is stored in a storage medium, and includes several instructions to make a computer system (which may be a personal computer, a server, or a network system, etc.) or a processor execute the methods described in the various embodiments of this application. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only register (Read-Only Memory, ROM), random access register (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种基于超声设备获得动脉硬化指标的测量方法包括:任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L1,以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT (S1);根据延展距离L1和测量时间差ΔT获取脉搏波传播速度PWV,其中PWV=L/ΔT (S2);根据脉搏波传播速度PWV获取动脉硬化指数D,其中D=(3.57/PWV) 2(S3)。还同时公开了相应的配套系统。该测量方法及系统,将ECG信号的R峰作为时间同步信号,以计算两个测量点之间的测量时间差,进而获得动脉硬化指数,在不引入其他设备的情况下,提升计算精度,降低测量成本。

Description

基于超声设备获得动脉硬化指标的测量方法及系统 技术领域
本发明属于医疗超声技术领域,主要涉及一种基于超声设备获得动脉硬化指标的测量方法及系统。
背景技术
心血管疾病是严重危害人类健康的重大疾病,而动脉硬化病变是大多数心血管疾病共同的病理生理基础,任何身体部位的动脉硬化病变都可能导致相应区域的缺血性功能,例如冠心病、脑卒中等。因此,获知动脉的硬化程度是心血管疾病防治水平的关键。
现如今的动脉硬化检测设备主要分为有创检测和无创检测两类,有创检测设备主要采用动脉造影术的方式对动脉硬化程度进行检测,然而基于动脉造影的检测设备属于有创性操作,具有检测复杂、价格昂贵、灵敏度低等特点。无创检测设备会应用基于超声成像的血管顺应性检测等方法,同样具有造价高、操作复杂、需要专业指导、不利于便携式监测等问题。
发明内容
为解决上述技术问题,本发明的目的在于提供一种基于超声设备获得动脉硬化指标的测量方法及系统。
为了实现上述发明目的之一,本发明一实施方式提供一种基于超声设备获得动脉硬化指标的测量方法,所述方法包括:任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L;以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;
根据延展距离L和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;
根据脉搏波传播速度PWV获取动脉硬化指数D,D=(3.57/PWV) 2
作为本发明一实施方式的进一步改进,“以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT”具体包括:
获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;
获取每一个特征点与ECG信号的R峰之间的时间差;
根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
作为本发明一实施方式的进一步改进,所述方法具体包括:
将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;
将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;
将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;
计算ΔX的均值
Figure PCTCN2019121367-appb-000001
以及ΔY的均值
Figure PCTCN2019121367-appb-000002
Figure PCTCN2019121367-appb-000003
作为本发明一实施方式的进一步改进,所述方法还包括:判断每一ΔX与
Figure PCTCN2019121367-appb-000004
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,重新计算
Figure PCTCN2019121367-appb-000005
并在确认每一ΔX与重新计算获得的
Figure PCTCN2019121367-appb-000006
差值绝对值均不大于第一预设阈值时,结束计算;
判断每一ΔY与
Figure PCTCN2019121367-appb-000007
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,重新计算
Figure PCTCN2019121367-appb-000008
并在确认每一ΔY与重新计算获得的
Figure PCTCN2019121367-appb-000009
差值绝对值均不大于第二预设阈值时,结束计算。
作为本发明一实施方式的进一步改进,“在每个测量点所对应的波形图中选取至少一个特征点”具体包括:
在当前波形图中查找至少一个最大的一阶导数M,自当前一阶导数M的舒 张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点,其中,0<k2<k1<1;
或,
在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
为了实现上述发明目的之一,本发明一实施方式提供一种基于超声设备获得动脉硬化指标的测量系统,所述系统包括:第一测量模块,用于任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L;
第二测量模块,用于以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;
数据处理模块,用于根据延展距离L和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;根据脉搏波传播速度PWV获取动脉硬化指数D,D=(3.57/PWV) 2
作为本发明一实施方式的进一步改进,第二测量模块具体用于:获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;
获取每一个特征点与ECG信号的R峰之间的时间差;
根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
作为本发明一实施方式的进一步改进,第二测量模块具体用于:将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;
将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;
将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;
计算ΔX的均值
Figure PCTCN2019121367-appb-000010
以及ΔY的均值
Figure PCTCN2019121367-appb-000011
Figure PCTCN2019121367-appb-000012
作为本发明一实施方式的进一步改进,所述系统还包括:筛选模块,所述筛选模块用于:判断每一ΔX与
Figure PCTCN2019121367-appb-000013
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,通过第二测量模块重新计算
Figure PCTCN2019121367-appb-000014
并在确认每一ΔX与重新计算获得的
Figure PCTCN2019121367-appb-000015
差值绝对值均不大于第一预设阈值时,结束计算;
判断每一ΔY与
Figure PCTCN2019121367-appb-000016
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,通过第二测量模块重新计算
Figure PCTCN2019121367-appb-000017
并在确认每一ΔY与重新计算获得的
Figure PCTCN2019121367-appb-000018
差值绝对值均不大于第二预设阈值时,结束计算。
作为本发明一实施方式的进一步改进,第二测量模块用于在每个测量点所对应的波形图中选取至少一个特征点时具体包括:
在当前波形图中查找至少一个最大的一阶导数M,自当前一阶导数M的舒张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点,其中,0<k2<k1<1;
或,
在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
与现有技术相比,本发明的有益效果是:本发明的基于超声设备获得动脉硬化指标的测量方法及系统,将ECG信号的R峰作为时间同步信号,以计算 两个测量点之间的测量时间差,进而获得动脉硬化指数,在不引入其他设备的情况下,提升计算精度,降低测量成本。
附图说明
图1是本发明一实施方式提供的基于超声设备获得动脉硬化指标的测量方法的流程示意图;
图2是本发明一具体示例的ECG信号与波形图的对应关系结构示意图;
图3、图4分别为本发明不同示例中涉及的波形图的示意图;
图5是本发明一具体示例中不同血管波形图与ECG信号结合的示意图;
图6是本发明一实施方式提供的基于超声设备获得动脉硬化指标的测量系统的模块示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
如图1所示,本发明一实施方式提供的基于超声设备获得动脉硬化指标的测量方法,所述方法包括:S1、任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L1;以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;S2、根据延展距离L1和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;S3:根据脉搏波传播速度PWV获取动脉硬化指数D,D=(3.57/PWV) 2
对于步骤S1,不同测量位置通常至相距较远的两处血管位置,本发明具体实施方式中,两处血管位置可分别选定为颈动脉和股动脉,两个测量点P1和P2分别为颈动脉和股动脉血管上的任意一个点。
当两个测量点位置选定后,该两个测量点之间的延展距离可通过多种方式 获得,该延展距离L的获得方式为现有技术,在此不做进一步的赘述。需要说明的是,该延展距离L为血流自一个测量点至另一个测量点流通路径所形成的物理延展距离。
ECG信号为是electrocardiogram的缩写,中文含义为心电信号,对于同一用户,其ECG信号固定,如此,采用该ECG信号的R峰作为时间同步信号,可确保获得的时间差ΔT更为精准,且无需引入其他仪器以获得其他参考变量,即可以达到获得测量时间差ΔT的目的。
本发明可实施方式中,步骤S1“以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT”具体包括:S11、获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;S12、获取每一个特征点与ECG信号的R峰之间的时间差;S13、根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
结合图2所示,在该示例中,ECG信号的一个R峰和在其中一个测量点对应波形图中选取的特征点之间的时间差以t表示。
相应的,在该可实施方式中,所述方法具体包括:将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;计算ΔX的均值
Figure PCTCN2019121367-appb-000019
以及ΔY的均值
Figure PCTCN2019121367-appb-000020
Figure PCTCN2019121367-appb-000021
需要说明的是,若在第一波形图和第二波形图中选取的特征标识分别为1个,则无需计算
Figure PCTCN2019121367-appb-000022
Figure PCTCN2019121367-appb-000023
直接以每个特征点对应的ΔX和ΔY即可以获得ΔT,即在两个波形图中选择的特征标识均为1个时,ΔT=|ΔX-ΔY|。
本发明较佳实施方式中,当在每一波形图中选取多个特征点时,多个特征点中可能会存在异常参数;本发明较佳实施方式中,为了保证计算的精准度, 所述方法还包括:判断每一ΔX与
Figure PCTCN2019121367-appb-000024
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,重新计算
Figure PCTCN2019121367-appb-000025
并在确认每一ΔX与重新计算获得的
Figure PCTCN2019121367-appb-000026
差值绝对值均不大于第一预设阈值时,结束计算;判断每一ΔY与
Figure PCTCN2019121367-appb-000027
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,重新计算
Figure PCTCN2019121367-appb-000028
并在确认每一ΔY与重新计算获得的
Figure PCTCN2019121367-appb-000029
差值绝对值均不大于第二预设阈值时,结束计算。
所述第一预设阈值和第二预设阈值均为一设定的已知参数值,其大小与心率信号相关,例如:0.1s,在此不做进一步的赘述。
本发明可实现方式中,所述特征点的选取具有两种方式。
第一种实施方式中,采用导数阈值法获得每个波形图中的特征点;结合图3所示,该实施方式中,所述方法具体包括:在当前波形图中查找至少一个最大的一阶导数M,自当前一阶导数M的舒张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点;其中,0<k2<k1<1;例如:k2取值范围10%至20%,k1取值为50%。
第二种实施方式中,采用切线交叉法获得每个波形图中的特征点;结合图4所示,该实施方式中,所述方法具体包括:在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
本发明一具体示例中,在用户的PWV功能界面,滚动轨迹球将活动光标移至目标超声图像,结合图5所示,在选定目标后,接收当前图像中ECG信号的R峰时间数据以及(颈/股)动脉血流加速点时间数据,该(颈/股)动脉血流加速点即为上述内容描述的在两个波形图中分别选定的特征点X和Y;进一步的,按上述内容计算可知:在选定的特征点X和Y中存在无效的特征点,将其进行筛选后,获得多个有效的心动周期,需要说明的是,在该示例中,相邻 心率信号的R峰之间的间隔称之为一个心动周期。在筛选有效心动周期过程中,可以在波形图中将有效心动周期和无效心动周期以不同颜色和/或不同的标识线进行标识,便于用户观察;进一步的,当筛选完成后,还可以对无效的心动周期进行删除、恢复等操作,在此不做进一步的赘述。最后,通过系统获知的两个测量点之间的距离L,以及上述过程获得的测量时间差ΔT获得脉搏波传播速度PWV,并最终通过D=(3.57/PWV) 2获得动脉硬化指数D。
结合图6所示,本发明一实施方式提供一种基于超声设备获得动脉硬化指标的测量系统,所述测量系统包括:第一测量模块101,第二测量模块103,处理模块200以及筛选模块300。
第一测量模块101用于任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L1;第二测量模块103用于以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;处理模块200用于根据延展距离L1和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;以及根据脉搏波传播速度PWV获取动脉硬化指数D,D=(3.57/PWV) 2
不同测量位置通常至相距较远的两处血管位置,本发明具体实施方式中,两处血管位置可分别选定为颈动脉和股动脉,两个测量点P1和P2分别为颈动脉和股动脉血管上的任意一个点。
当两个测量点位置选定后,该两个测量点之间的延展距离可通过多种方式获得,该延展距离L的获得方式为现有技术,在此不做进一步的赘述。需要说明的是,该延展距离L为血流自一个测量点至另一个测量点流通路径所形成的物理延展距离。
第二测量模块103具体用于:获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;获取每一个特征点与ECG信号的R峰之间的时间差;根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
结合图2所示,在该示例中,ECG信号的一个R峰和在其中一个测量点对应波形图中选取的特征点之间的时间差以t表示。
相应的,在该可实施方式中,第二测量模块103将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;计算ΔX的均值
Figure PCTCN2019121367-appb-000030
以及ΔY的均值
Figure PCTCN2019121367-appb-000031
Figure PCTCN2019121367-appb-000032
需要说明的是,若在第一波形图和第二波形图中选取的特征标识分别为1个,则无需计算
Figure PCTCN2019121367-appb-000033
Figure PCTCN2019121367-appb-000034
直接以每个特征点对应的ΔX和ΔY即可以获得ΔT,即在两个波形图中选择的特征标识均为1个时,ΔT=|ΔX-ΔY|。
本发明较佳实施方式中,当在每一波形图中选取多个特征点时,多个特征点中可能会存在异常参数;本发明较佳实施方式中,为了保证计算的精准度,筛选模块300用于判断每一ΔX与
Figure PCTCN2019121367-appb-000035
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,通过第二测量模块103重新计算
Figure PCTCN2019121367-appb-000036
并在确认每一ΔX与重新计算获得的
Figure PCTCN2019121367-appb-000037
差值绝对值均不大于第一预设阈值时,结束计算;判断每一ΔY与
Figure PCTCN2019121367-appb-000038
的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,通过第二测量模块103重新计算
Figure PCTCN2019121367-appb-000039
并在确认每一ΔY与重新计算获得的
Figure PCTCN2019121367-appb-000040
差值绝对值均不大于第二预设阈值时,结束计算。
所述第一预设阈值和第二预设阈值均为一设定的已知参数值,其大小与心率信号相关,例如:0.1s,在此不做进一步的赘述。
本发明可实现方式中,所述特征点的选取具有两种方式。
第一种实施方式中,采用导数阈值法获得每个波形图中的特征点;结合图3所示,该实施方式中,第二测量模块103用于在当前波形图中查找至少一个 最大的一阶导数M,自当前一阶导数M的舒张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点;其中,0<k2<k1<1;例如:k2取值范围10%至20%,k1取值为50%。
第二种实施方式中,采用切线交叉法获得每个波形图中的特征点;结合图4所示,该实施方式中,第二测量模块103用于在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的测量系统的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
综上所述,本发明的基于超声设备获得动脉硬化指标的测量方法及系统,将ECG信号的R峰作为时间同步信号,以计算两个测量点之间的测量时间差,进而获得动脉硬化指数,在不引入其他设备的情况下,提升计算精度,降低测量成本。
在本申请所提供的几个实施方式中,应该理解到,所揭露的测量系统,系统和方法,可以通过其它的方式实现。例如,以上所描述的测量系统实施方式仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,系统或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部 模块来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以2个或2个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机系统(可以是个人计算机,服务器,或者网络系统等)或处理器(processor)执行本申请各个实施方式所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读寄存器(Read-Only Memory,ROM)、随机存取寄存器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。

Claims (10)

  1. 种基于超声设备获得动脉硬化指标的测量方法,其特征在于,所述方法包括以下步骤:
    任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L;以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;
    根据延展距离L和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;
    根据脉搏波传播速度PWV获取动脉硬化指数D,D=(3.57/PWV) 2
  2. 根据权利要求1所述的基于超声设备获得动脉硬化指标的测量方法,其特征在于,“以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT”具体包括:
    获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;
    获取每一个特征点与ECG信号的R峰之间的时间差;
    根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
  3. 根据权利要求2所述的基于超声设备获得动脉硬化指标的测量方法,其特征在于,所述方法具体包括:
    将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;
    将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;
    将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;
    计算ΔX的均值
    Figure PCTCN2019121367-appb-100001
    以及ΔY的均值
    Figure PCTCN2019121367-appb-100002
    Figure PCTCN2019121367-appb-100003
  4. 根据权利要求3所述的基于超声设备获得动脉硬化指标的测量方法,其特征在于,所述方法还包括:判断每一ΔX与
    Figure PCTCN2019121367-appb-100004
    的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,重新计算
    Figure PCTCN2019121367-appb-100005
    并在确认每一ΔX与重新计算获得的
    Figure PCTCN2019121367-appb-100006
    差值绝对值均不大于第一预设阈值时,结束计算;
    判断每一ΔY与
    Figure PCTCN2019121367-appb-100007
    的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,重新计算
    Figure PCTCN2019121367-appb-100008
    并在确认每一ΔY与重新计算获得的
    Figure PCTCN2019121367-appb-100009
    差值绝对值均不大于第二预设阈值时,结束计算。
  5. 根据权利要求2所述的基于超声设备获得动脉硬化指标的测量方法,其特征在于,“在每个测量点所对应的波形图中选取至少一个特征点”具体包括:
    在当前波形图中查找至少一个最大的一阶导数M,自当前一阶导数M的舒张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点,其中,0<k2<k1<1;
    或,
    在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
  6. 一种基于超声设备获得动脉硬化指标的测量系统,其特征在于,所述系统包括:
    第一测量模块,用于任意获取不同测量位置的两个测量点P1和P2,并记录两个测量点P1和P2之间的延展距离L;
    第二测量模块,用于以ECG信号的R峰作为时间同步信号获取两个测量点之间的测量时间差ΔT;
    数据处理模块,用于根据延展距离L和测量时间差ΔT获取脉搏波传播速度PWV;PWV=L/ΔT;根据脉搏波传播速度PWV获取动脉硬化指数D, D=(3.57/PWV) 2
  7. 根据权利要求6所述的基于超声设备获得动脉硬化指标的测量系统,其特征在于,第二测量模块具体用于:获取每个测量点处的波形图,并在每个测量点所对应的波形图中选取至少一个特征点;
    获取每一个特征点与ECG信号的R峰之间的时间差;
    根据获得的多个特征点与ECG信号的R峰之间的时间差获得ΔT。
  8. 根据权利要求7所述的基于超声设备获得动脉硬化指标的测量系统,其特征在于,第二测量模块具体用于:将测量点P1对应的波形图标识为第一波形图,将测量点P2对应的波形图标识为第二波形图;
    将在第一波形图中选择的特征点以特征点X标识,将在第二波形图中选择的特征点以特征点Y标识;
    将每一特征点X与其对应按照相同规则选取的ECG信号的R峰的差值以ΔX标识,将每一特征点Y与其对应按照相同规则选取的ECG信号的R峰的差值以ΔY标识;
    计算ΔX的均值
    Figure PCTCN2019121367-appb-100010
    以及ΔY的均值
    Figure PCTCN2019121367-appb-100011
    Figure PCTCN2019121367-appb-100012
  9. 根据权利要求8所述的基于超声设备获得动脉硬化指标的测量系统,其特征在于,所述系统还包括:筛选模块,所述筛选模块用于:判断每一ΔX与
    Figure PCTCN2019121367-appb-100013
    的差值绝对值是否大于第一预设阈值,若是,确定当前ΔX无效,排除无效的ΔX后,通过第二测量模块重新计算
    Figure PCTCN2019121367-appb-100014
    并在确认每一ΔX与重新计算获得的
    Figure PCTCN2019121367-appb-100015
    差值绝对值均不大于第一预设阈值时,结束计算;
    判断每一ΔY与
    Figure PCTCN2019121367-appb-100016
    的差值绝对值是否大于第一预设阈值,若是,确定当前ΔY无效,排除无效的ΔY后,通过第二测量模块重新计算
    Figure PCTCN2019121367-appb-100017
    并在确认每一ΔY与重新计算获得的
    Figure PCTCN2019121367-appb-100018
    差值绝对值均不大于第二预设阈值时,结束计算。
  10. 根据权利要求7所述的基于超声设备获得动脉硬化指标的测量系统,其特征在于,第二测量模块用于在每个测量点所对应的波形图中选取至少一个特 征点时具体包括:
    在当前波形图中查找至少一个最大的一阶导数M,自当前一阶导数M的舒张末期开始向前查找第一个一阶导数大于k1*M的点P3,自P3开始向后查找第一个一阶导数大于k2*M的点P4,选定P4为当前波形的特征点,其中,0<k2<k1<1;
    或,
    在当前波形图中查找至少一个具有最大一阶导数的点P5,在P5点做切线,标识为收缩期切线;在P5点对应的周期中查找舒张期最低的点P6,在P6点做切线,标识为舒张期切线;计算收缩期切线和舒张期切线的交点P7,选定P7为当前波形的特征点。
PCT/CN2019/121367 2019-07-19 2019-11-27 基于超声设备获得动脉硬化指标的测量方法及系统 WO2021012561A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19938298.7A EP4000530A4 (en) 2019-07-19 2019-11-27 METHOD AND MEASUREMENT SYSTEM FOR OBTAINING AN ARTERIOSCLEROSIS INDEX BASED ON AN ULTRASOUND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910654940.5 2019-07-19
CN201910654940 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021012561A1 true WO2021012561A1 (zh) 2021-01-28

Family

ID=69040790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121367 WO2021012561A1 (zh) 2019-07-19 2019-11-27 基于超声设备获得动脉硬化指标的测量方法及系统

Country Status (3)

Country Link
EP (1) EP4000530A4 (zh)
CN (1) CN110652318B (zh)
WO (1) WO2021012561A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110652318B (zh) * 2019-07-19 2022-09-13 飞依诺科技股份有限公司 基于超声设备获得动脉硬化指标的测量方法及系统
CN114494100A (zh) * 2020-10-26 2022-05-13 无锡祥生医疗科技股份有限公司 脉搏波速度的测量方法及超声设备
CN113297943B (zh) * 2021-05-18 2022-12-02 北京远舢智能科技有限公司 基于混合现实的设备辅助控制技术
CN114027847B (zh) * 2021-11-17 2023-05-05 湖南万脉医疗科技有限公司 一种基于时频分析的心电信号分析方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091328A1 (en) * 1999-05-06 2002-07-11 Colin Corporation Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood- pressure-index measuring apparatus
US20070016083A1 (en) * 2005-07-11 2007-01-18 Motoharu Hasegawa Arterial stiffness evaluation apparatus, and arterial stiffness index calculating program
CN102170821A (zh) * 2008-10-01 2011-08-31 株式会社Irumedi 心血管分析装置
CN103140165A (zh) * 2010-09-28 2013-06-05 欧姆龙健康医疗事业株式会社 血压信息测定装置及用该装置的动脉硬化度指标计算方法
CN103989462A (zh) * 2014-04-04 2014-08-20 辛勤 一种脉搏波形第一特征点和第二特征点的提取方法
CN106798547A (zh) * 2016-12-29 2017-06-06 乐普(北京)医疗器械股份有限公司 一种基于统计的臂踝脉搏波延时的计算方法
CN110652318A (zh) * 2019-07-19 2020-01-07 飞依诺科技(苏州)有限公司 基于超声设备获得动脉硬化指标的测量方法及系统
CN110881967A (zh) * 2018-09-10 2020-03-17 深圳市迈迪优科技有限公司 一种无创多节段外周动脉血管弹性功能检测方法及其仪器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261899A (ja) * 1993-03-12 1994-09-20 Hitachi Ltd 超音波装置
JPH10305018A (ja) * 1997-05-06 1998-11-17 Nippon Colin Co Ltd 脈波伝播速度情報測定装置
CN101247757A (zh) * 2005-08-26 2008-08-20 皇家飞利浦电子股份有限公司 脉搏波传导速度的测量
RU2511059C1 (ru) * 2012-12-25 2014-04-10 Федеральное государственное бюджетное учреждение "Российский кардиологический научно-производственный комплекс" Министерства здравоохранения Российской Федерации (ФГБУ "РКНПК" Минздрава России) Способ выявления повышенной жесткости аорты у пациентов с кардиопатологиями
CN104173030A (zh) * 2014-09-09 2014-12-03 北京航空航天大学 一种抗波形变化干扰的脉搏波起始点实时检测方法及其应用
JP6582199B2 (ja) * 2015-05-25 2019-10-02 セイコーエプソン株式会社 血圧計測装置及び血圧計測方法
TWI535416B (zh) * 2015-06-02 2016-06-01 國立中央大學 非侵入且非加壓式血壓波量測裝置及方法
CN105147269B (zh) * 2015-06-16 2017-10-13 江苏斯坦德利医疗科技有限公司 一种无创连续血压测量方法
JP6854612B2 (ja) * 2015-10-06 2021-04-07 三星電子株式会社Samsung Electronics Co.,Ltd. 生体情報測定装置及び生体情報測定方法並びにコンピュータ読み取り可能な記録媒体
US20190059752A1 (en) * 2017-08-28 2019-02-28 Planexta, Inc. Method and apparatus for cuff less blood pressure monitoring based on simultaneously measured ECG and PPG signals designed in wristband form for continuous wearing
CN109730723B (zh) * 2019-03-11 2021-01-26 京东方科技集团股份有限公司 确定脉搏传输时间的方法、动脉硬化检测设备及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091328A1 (en) * 1999-05-06 2002-07-11 Colin Corporation Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood- pressure-index measuring apparatus
US20070016083A1 (en) * 2005-07-11 2007-01-18 Motoharu Hasegawa Arterial stiffness evaluation apparatus, and arterial stiffness index calculating program
CN102170821A (zh) * 2008-10-01 2011-08-31 株式会社Irumedi 心血管分析装置
CN103140165A (zh) * 2010-09-28 2013-06-05 欧姆龙健康医疗事业株式会社 血压信息测定装置及用该装置的动脉硬化度指标计算方法
CN103989462A (zh) * 2014-04-04 2014-08-20 辛勤 一种脉搏波形第一特征点和第二特征点的提取方法
CN106798547A (zh) * 2016-12-29 2017-06-06 乐普(北京)医疗器械股份有限公司 一种基于统计的臂踝脉搏波延时的计算方法
CN110881967A (zh) * 2018-09-10 2020-03-17 深圳市迈迪优科技有限公司 一种无创多节段外周动脉血管弹性功能检测方法及其仪器
CN110652318A (zh) * 2019-07-19 2020-01-07 飞依诺科技(苏州)有限公司 基于超声设备获得动脉硬化指标的测量方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4000530A4 *

Also Published As

Publication number Publication date
CN110652318B (zh) 2022-09-13
EP4000530A1 (en) 2022-05-25
EP4000530A4 (en) 2023-08-02
CN110652318A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2021012561A1 (zh) 基于超声设备获得动脉硬化指标的测量方法及系统
JP7196273B2 (ja) 最小の遠位側圧力/動脈圧(pd/pa)比を決定することによって心臓系を評価するためのシステム及び方法
JP6293714B2 (ja) 患者の心臓の電気解剖学的画像を提供するためのシステムおよびその作動方法
US8771197B2 (en) Detection of parameters in cardiac output related waveforms
Vardoulis et al. Validation of a novel and existing algorithms for the estimation of pulse transit time: advancing the accuracy in pulse wave velocity measurement
WO2019127623A1 (zh) 动脉血管年龄估算模型构建方法和装置
Amoore Oscillometric sphygmomanometers: a critical appraisal of current technology
WO2022237161A1 (zh) 脑动脉波强度和波功率的测量方法、终端设备及存储介质
Chen et al. Assessment of algorithms for oscillometric blood pressure measurement
TW201711628A (zh) 心率檢測方法以及心率檢測裝置
Gotzmann et al. The impact of calibration approaches on the accuracy of oscillometric central aortic blood pressure measurement
WO2021031355A1 (zh) 测量无波形期压力、比率方法、装置、系统及存储介质
US20070004982A1 (en) Apparatus and method for early detection of cardiovascular disease using vascular imaging
CN113539522A (zh) 一种基于单路心冲击信号的连续血压监测方法
KR20080030189A (ko) 혈관의 건강 상태를 감시하는 방법 및 장치
Almeida et al. Hemodynamic features extraction from a new arterial pressure waveform probe
Ng Review of measurement methods and clinical validation studies of noninvasive blood pressure monitors: accuracy requirements and protocol considerations for devices that require patient-specific calibration by a secondary method or device before use
WO2022110019A1 (zh) 主动脉压力波形图像的生成方法及存储介质
US20230000363A1 (en) Cardiovascular detection system and method
CN106725400A (zh) 一种融合心电信号和脉冲波形态定量评估的新型血压计
WO2021103067A1 (zh) 根据有创血压获取舒张压、收缩压极值点的方法及系统
Poliński et al. Pulse Transit Time-Fiducial Points Accuracy Determination as Examined by Means of Synthetic Signals
WO2023086936A1 (en) Systems and methods for estimating cardiac events
Hahn ESTIMATION OF CARDIAC OUTPUT AND PERIPH RAL RESISTANCE USING SQUARE-WAVE-APPROXIMATED AORTIC FLOW SIGNAL
Číž et al. Measurement of biosignals and subsequent processing for more accurate determination of cardiovascular system parameters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938298

Country of ref document: EP

Effective date: 20220221