WO2021012321A1 - 电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质 - Google Patents

电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质 Download PDF

Info

Publication number
WO2021012321A1
WO2021012321A1 PCT/CN2019/099873 CN2019099873W WO2021012321A1 WO 2021012321 A1 WO2021012321 A1 WO 2021012321A1 CN 2019099873 W CN2019099873 W CN 2019099873W WO 2021012321 A1 WO2021012321 A1 WO 2021012321A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
charging
real
threshold
power load
Prior art date
Application number
PCT/CN2019/099873
Other languages
English (en)
French (fr)
Inventor
徐敏
於磊
Original Assignee
恒大智慧充电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910666036.6A external-priority patent/CN110518652B/zh
Priority claimed from CN201910665768.3A external-priority patent/CN110190636B/zh
Priority claimed from CN201910665767.9A external-priority patent/CN110190657B/zh
Priority claimed from CN201910666015.4A external-priority patent/CN110549895B/zh
Application filed by 恒大智慧充电科技有限公司 filed Critical 恒大智慧充电科技有限公司
Publication of WO2021012321A1 publication Critical patent/WO2021012321A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to the field of smart charging, and in particular, it mainly relates to a power control system, a charging management method, a charging control system, a charging method, a computer device and a storage medium that regulate and control according to the real-time power load conditions of the community.
  • the current community generally distributes the power on the power line to different charging devices in the form of transformers, loops, and phase lines to charge users' vehicles.
  • the power of some charging equipment may increase unrestrictedly, resulting in an excessively high power load on the phase wires, loops and even the transformer, resulting in damage to the transformer occur. Therefore, how to regulate and control charging according to the power situation of the community will become an important issue for the construction of charging facilities in smart communities.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a power control system and a charging management method to perform power control according to the real-time power load conditions of the community; the present invention further provides a charging control system and a charging method, according to the real-time power load The situation controls the charging of newly connected charging equipment.
  • the present invention provides a power control system, including:
  • the power acquisition unit is used to acquire real-time power load
  • the real-time electric load includes at least two of a first real-time electric load, a second real-time electric load, and a third real-time electric load;
  • the comparing unit is configured to compare the first real-time electric load, the second real-time electric load and the first aspect, at least two of the third real-time electric load and the corresponding current drop threshold, and/or compare the At least two of the first real-time electric load, the second real-time electric load, and the third real-time electric load are adjusted to a corresponding current rise threshold, and a comparison result is obtained;
  • a processing unit configured to calculate a reduced current or a raised current according to the comparison result
  • the adjusting unit is configured to reduce the charging current of the charging device according to the reduced current or increase the charging current of the charging device according to the increased current.
  • the current step-down threshold includes at least two of a first current step-down threshold, a second current step-down threshold, and a third current step-down threshold
  • the current step-up threshold includes a first current step-up threshold.
  • At least two of the second current ramp-up threshold and the third current ramp-up threshold the first real-time power load corresponds to the first current ramp-up threshold and the first current ramp-up threshold
  • the first Two real-time electrical loads correspond to the second current drop threshold and the second current increase threshold
  • the third real-time electrical load corresponds to the third current drop threshold and the third current increase threshold .
  • the comparison unit is configured to obtain a comparison result of current underload when any one of the real-time electric loads is less than the corresponding current increase threshold, and/or in the real-time electric load When any one of is greater than the corresponding current ramp-up threshold, the current overload comparison result is obtained, and/or any one of the real-time power loads is not less than the corresponding current ramp-up threshold and not greater than the corresponding When the current decreases the threshold value, a comparison result that the current is normal is obtained.
  • the processing unit is configured to calculate the reduced current according to the real-time power load and the current reduction threshold when the comparison result is current overload, and/or,
  • the comparison result is that when the current is under load, the boost current is calculated according to the real-time power load and the current boost threshold.
  • the charging devices in the first set are charging devices connected to the same phase line
  • the charging devices in the second set are charging devices connected to the same circuit
  • the charging devices in the third set It is a charging device connected to the same transformer.
  • the reduced current includes at least two of a first reduced current, a second reduced current, and a third reduced current
  • the comparing unit is configured to: when the comparison result is current overload, according to Obtaining a first reduced current from the first real-time power load and the first current reduction threshold value, and a second reduction current according to the second real-time power load and the second current reduction threshold value;
  • the first reduced current is (I 1 -I A )/N 1
  • the second reduced current is (I 2 -I B )*I 1 /(I 2 *N 1 )
  • the third reduction current is (I 3 -I C )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time power load, I A is the first current reduction threshold, and N 1 is For the number of charging devices in the first set, I 2 is the second real-time power load, I B is the second current reduction threshold, I 3 is the third real-time power load, and I C is the third current reduction threshold.
  • control unit is configured to: when there is a current overload on the phase line and the loop and the transformer does not have a current overload, according to the first reduction current and the second reduction current The larger current value reduces the charging current of all charging devices on the circuit with current overload.
  • control unit is configured to adjust the current according to the first step-down current and the third step-down current when there is current overload in the phase line and the transformer, and there is no current overload in the loop.
  • the larger current value reduces the charging current of all charging devices on the transformer with current overload.
  • control unit is configured to adjust the current according to the second reduction current and the third reduction current when there is current overload in the loop and the transformer and there is no current overload in the phase line
  • the larger current value reduces the charging current of all charging devices on the transformer with current overload.
  • control unit is configured to, when current overload exists on the phase line, the loop, and the transformer, according to the first reduced current, the second reduced current and the In the third reduction current, the larger current value reduces the charging current of all charging devices on the transformer with current overload.
  • the step-up current includes at least two of a first step-up current, a second step-up current, and a third step-up current
  • the comparison unit is used for when the comparison result is current underload, Deriving a first boost current according to the first real-time power load and the first current boost threshold value, and derive a second boost current according to the second real-time power load and the second current boost threshold value;
  • a third increasing current is obtained.
  • the first ramp-up current is (I a -I 1 )/N 1
  • the second ramp-up current is (I b -I 2 )*I 1 /(I 2 *N 1 )
  • the third boost current is (I c -I 3 )*I 1 /(I 3 *N 1 )
  • I 1 is the first real-time power load
  • I a is the first current boost Threshold
  • N 1 is the number of charging devices in the first set
  • I 2 is the second real-time power load
  • I b is the second current-up threshold
  • I 3 is the third real-time power load
  • I c is the third current-up Threshold.
  • control unit is configured to, when there is a current underload in the phase line and the loop, and there is no current underload in the transformer, follow the first step-up current and the second step-up current.
  • the one with the smaller current value in the current increases the charging current of the charging equipment on the phase line with current underload.
  • control unit is configured to: when there is a current underload on the phase line and the transformer and there is no current underload on the loop, follow the first step-up current and the third step-up current The one with the smaller current value in the current increases the charging current of all charging devices on the phase line with current underload.
  • control unit is configured to: when there is a current underload in the loop and the transformer and there is no current underload in the phase line, according to the second boost current and the third boost The one with the smaller current value in the current increases the charging current of all charging devices on the loop with current underload.
  • control unit is configured to, when there is a current underload in the phase line, the loop, and the transformer, according to the first step-up current, the second step-up current and the In the third boosting current, the one with the smaller current value boosts the charging current of all charging devices on the phase line with current underload.
  • the regulation unit is configured to immediately reduce the charging current of the charging device when the real-time electric load exceeds the current reduction threshold, and/or when the real-time electric load does not exceed the current regulation After the state of raising the threshold value continues for a preset time, the charging current of the charging device is increased.
  • the present invention provides a charging management method, including:
  • the real-time power load includes at least two of a first real-time power load, a second real-time power load, and a third real-time power load;
  • the charging current of the charging device is decreased according to the decreased current or the charging current of the charging device is increased according to the increased current.
  • the current step-down threshold includes at least two of a first current step-down threshold, a second current step-down threshold, and a third current step-down threshold
  • the current step-up threshold includes a first current step-up threshold.
  • At least two of the second current ramp-up threshold and the third current ramp-up threshold the first real-time power load corresponds to the first current ramp-up threshold and the first current ramp-up threshold
  • the first Two real-time electrical loads correspond to the second current drop threshold and the second current increase threshold
  • the third real-time electrical load corresponds to the third current drop threshold and the third current increase threshold .
  • a comparison result of current underload is obtained, and/or any one of the real-time electrical loads is greater than the corresponding current
  • the comparison result of current overload is obtained when the threshold is lowered, and/or when any one of the real-time electrical loads is not less than the corresponding current increase threshold and not greater than the corresponding current decrease threshold Comparison result with normal current.
  • calculating the reduced current or increased current according to the comparison result includes:
  • the comparison result is that when the current is under load, the boost current is calculated according to the real-time power load and the current boost threshold.
  • the first real-time power load is the sum of real-time power loads of the charging devices in the first set
  • the second real-time power load is the sum of real-time power loads of the charging devices in the second set
  • the third real-time electrical load is the sum of the real-time electrical loads of the charging devices in the third set
  • the second set includes at least one of the first set
  • the third set includes at least one of the second set.
  • the charging devices in the first set are charging devices connected to the same phase line
  • the charging devices in the second set are charging devices connected to the same circuit
  • the charging devices in the third set It is a charging device connected to the same transformer.
  • compare at least two of the first real-time electrical load, the second real-time electrical load, and the third real-time electrical load with corresponding current drop thresholds, and/or compare the first At least two of the real-time electric load, the second real-time electric load, and the third real-time electric load and the corresponding current increase threshold are adjusted to obtain a comparison result, including:
  • the reduced current includes at least two of a first reduced current, a second reduced current, and a third reduced current;
  • the first reduced current is obtained according to the first real-time power load and the first current reduction threshold value, and the second real-time power load is reduced according to the second current reduction threshold.
  • the threshold value gives the second reduced current
  • a third reduction current is obtained.
  • the first reduced current is (I 1 -I A )/N 1
  • the second reduced current is (I 2 -I B )*I 1 /(I 2 *N 1 )
  • the third reduction current is (I 3 -I C )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time power load, I A is the first current reduction threshold, and N 1 is For the number of charging devices in the first set, I 2 is the second real-time power load, I B is the second current reduction threshold, I 3 is the third real-time power load, and I C is the third current reduction threshold.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • reducing the charging current of the charging device according to the reduced current or increasing the charging current of the charging device according to the increased current includes: the loop and the transformer have current overload and the phase When there is no current overload on the line, the charging current of all charging devices on the transformer with the current overload is reduced according to the larger current value of the second reduced current and the third reduced current.
  • reducing the charging current of the charging device according to the reduced current or increasing the charging current of the charging device according to the increased current includes: the phase line, the loop, and the transformer are all When there is a current overload, adjust the charging of all charging devices on the transformer with current overload according to the larger current value of the first reduced current, the second reduced current, and the third reduced current Current.
  • compare at least two of the first real-time electrical load, the second real-time electrical load, and the third real-time electrical load with corresponding current drop thresholds, and/or compare the first At least two of the real-time electric load, the second real-time electric load, and the third real-time electric load and the corresponding current increase threshold are adjusted to obtain a comparison result, including:
  • the step-up current includes at least two of a first step-up current, a second step-up current, and a third step-up current;
  • the first boost current is obtained according to the first real-time power load and the first current boost threshold value, and the second real-time power load is compared with the second current boost.
  • the raising threshold value gives the second raising current
  • a first boosting current is obtained and according to the second real-time power load and the second current-raising threshold value a second boosting current and A third boost current is obtained according to the third real-time power load and the third current boost threshold.
  • the first ramp-up current is (I a -I 1 )/N 1
  • the second ramp-up current is (I b -I 2 )*I 1 /(I 2 *N 1 )
  • the third boost current is (I c -I 3 )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time power load, I a is the first current boost threshold, and N 1 is For the number of charging devices in the first set, I 2 is the second real-time power load, I b is the second current ramp-up threshold, I 3 is the third real-time power load, and I c is the third current ramp-up threshold.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • the current is increased according to the smaller current value of the first step-up current and the second step-up current The charging current of the charging equipment on the underloaded phase line.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • the current is increased according to the smaller current value of the first step-up current and the third step-up current The charging current of all charging equipment on the underloaded phase line.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • the current is increased according to the smaller current value of the second step-up current and the third step-up current The charging current of all charging devices on the underloaded circuit.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • the current value of the first step-up current, the second step-up current, and the third step-up current is smaller Increase the charging current of all charging devices on the phase line with current underload.
  • decreasing the charging current of the charging device according to the decreasing current or increasing the charging current of the charging device according to the increasing current includes:
  • the comparison result is that the charging current of the charging device is immediately reduced when the current is overloaded, and/or the charging current of the charging device is increased after the comparison result is that the current is overloaded and the current overload state continues for a preset time .
  • the present invention provides a computer device including a memory and a processor, the memory is used to store a computer program, and the processor runs the computer program to make the computer device execute the The charging management method described in the second aspect.
  • the present invention provides a storage medium for storing a computer program, which, when executed, implements the charging management method described in the second aspect of the present invention.
  • the present invention provides a charging control system, including:
  • the charging demand acquisition unit is used to acquire the charging demand of the equipment to be charged connected in the phase line;
  • An analysis unit configured to receive the charging demand and calculate an idle current and/or available current, and obtain a pseudo charging current according to the idle current and/or the available current;
  • the idle current is the difference between the first current reduction threshold of the phase line and the first real-time power load
  • the available current is the sum of the idle current and the current adjustment value
  • the current adjustment value is the The sum of the adjustable current values of all the charging devices in the phase line and the adjustable current value are the difference between the charging current of the charging device and the current start value
  • the control unit is used to activate or deactivate the charging function of the intended charging device according to the intended charging current.
  • the analysis unit is configured to obtain that the pseudo-charging current is zero when the available current is less than the current start value.
  • control unit is configured to turn off the charging function of the device to be charged when the current to be charged is zero.
  • the analysis unit is configured to obtain that the pseudo-charging current is the first current reduction when the available current is not less than the current start value and the idle current is less than the current start value
  • the ratio of the threshold to the total number of charging devices which is the sum of the number of all charging devices in the phase line and the number of the intended charging devices.
  • control unit is configured to activate the charging function of the intended charging device and control the charging function of the intended charging device when the intended charging current is the ratio of the first current reduction threshold to the total number of charging devices All charging devices in the phase line and the intended charging device are charged according to the intended charging current.
  • the analysis unit is configured to obtain the pseudo-charging current as the current start value when the idle current is not less than the current start value and less than the current upper limit value.
  • control unit is configured to activate the charging function of the intended charging device and control the phase when the intended charging current is the ratio of the first current reduction threshold to the total number of charging devices. All charging devices in the line and the intended charging device are charged according to the intended charging current or the current upper limit.
  • control unit is configured to control all charging equipment in the phase line and the intended charging equipment to charge according to the current upper limit value when the proposed charging current is greater than the current upper limit value.
  • control unit is configured to control all charging devices in the phase line and the intended charging device to charge according to the intended charging current when the intended charging current is not greater than the current upper limit value.
  • the analysis unit is configured to obtain that the pseudo charging current is the current upper limit value when the idle current is not less than the current upper limit value.
  • control unit is configured to activate the charging function of the intended charging device and control the intended charging device to charge according to the current upper limit value when the intended charging current is the current upper limit value .
  • the present invention provides a charging method, including:
  • the idle current is the first current reduction threshold of the phase line and the first real-time power load
  • the available current is the sum of the idle current and the current adjustment value
  • the current adjustment value is the sum of the adjustable current values of all the charging devices in the phase line
  • the adjustable current is the difference between the charging current of the charging device and the current start value
  • the charging function of the intended charging device is activated or deactivated according to the intended charging current.
  • calculating the idle current and/or the available current, and obtaining the pseudo-charging current according to the idle current and/or the available current including: when the available current is less than the current start value, obtaining the The intended charging current is zero.
  • starting or deactivating the charging function of the intended charging device according to the intended charging current includes: turning off the charging function of the intended charging device when the intended charging current is zero.
  • calculating the idle current and/or the available current, and obtaining the pseudo-charging current according to the idle current and/or the available current includes: the available current is not less than the current start value and the idle current When it is less than the current start value, the pseudo-charging current is obtained from the available current and the idle current as the ratio of the first current reduction threshold to the total number of charging devices, and the total number of charging devices is the phase The sum of the number of all charging devices in the line and the number of said charging devices.
  • starting or deactivating the charging function of the intended charging device according to the intended charging current includes: when the intended charging current is a ratio of a first current reduction threshold to the total number of charging devices, starting the The charging function of the intended charging device and controlling all the charging devices in the phase line and the intended charging device to charge according to the intended charging current or the current upper limit.
  • all charging devices and the pseudo-charging devices in the phase line are controlled to charge according to the current upper limit value.
  • the pseudo-charging current is not greater than the current upper limit value
  • all the charging devices and the pseudo-charging devices in the phase line are controlled to charge according to the pseudo-charging current.
  • calculating the idle current and/or available current, and obtaining the pseudo charging current according to the idle current and/or the available current including: the idle current is not less than the current start value and less than the current upper limit Value, the pseudo-charging current is obtained as the current starting value.
  • starting or shutting down the charging function of the intended charging device according to the intended charging current includes: when the intended charging current is the current start value, activating the charging function of the intended charging device and controlling the The device to be charged is charged according to the current start value.
  • calculating the idle current and/or the available current, and obtaining the pseudo-charging current according to the idle current and/or the available current including: when the idle current is not less than the current upper limit value, obtaining The pseudo charging current is the current upper limit value.
  • starting or shutting down the charging function of the intended charging device according to the intended charging current includes: when the intended charging current is the current upper limit value, starting the charging function of the intended charging device and controlling all The charging device is charged according to the upper limit of current.
  • the present invention provides a computer device that includes a memory and a processor, the memory is used to store a computer program, and the processor runs the computer program to make the computer device execute the The charging method described in the six aspects.
  • the present invention provides a computer-readable storage medium for storing a computer program that, when executed, implements the charging method according to the sixth aspect of the present invention.
  • the power control system and charging management method provided by the present invention can obtain real-time power load conditions, compare the real-time power load conditions and the relationship between the current drop threshold and the current ramp up threshold, and calculate the current drop or charge based on the comparison relationship. Increase the current, thereby increasing the charging current of the charging device or decreasing the charging current of the charging device.
  • the charging control system and charging method provided by the present invention can calculate the intended charging current according to the idle current and/or available current in the phase line, and control the opening or closing of the intended charging device according to the intended charging current, ensuring The safety of electricity in the community is realized, and the intelligent charging control of the community is realized.
  • Fig. 1 is a structural block diagram of a power control system according to a first embodiment of the present invention
  • Figure 2 is a topological diagram of the power network architecture of the first embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a charging management method according to a second embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a charging control system according to a third embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a charging method according to a fourth embodiment of the present invention.
  • the terms “including” or “may include” that can be used in various embodiments of the present invention indicate the existence of the disclosed function, operation, or element, and do not limit the existence of one or more functions, operations, or elements. increase.
  • the terms “including”, “having” and their cognates are only intended to indicate specific features, numbers, steps, operations, elements, components, or combinations of the foregoing, And should not be understood as first excluding the existence of one or more other features, numbers, steps, operations, elements, components or combinations of the foregoing items or adding one or more features, numbers, steps, operations, elements, components Or the possibility of a combination of the foregoing.
  • the expression “A or/and B” includes any combination or all combinations of the words listed at the same time, for example, may include A, may include B, or may include both A and B.
  • Expressions used in various embodiments of the present invention can modify various constituent elements in the various embodiments, but may not limit the corresponding constituent elements.
  • the above expression does not limit the order and/or importance of the elements.
  • the above description is only used for the purpose of distinguishing one element from other elements.
  • the first user device and the second user device indicate different user devices, although both are user devices.
  • the first element may be referred to as the second element, and similarly, the second element may also be referred to as the first element.
  • FIG. 1 shows a structural block diagram of a power control system according to a first embodiment of the present invention.
  • a charging device in the community, in order to facilitate charging by residents, a charging device is provided near the community parking space so that the user can use the charging device to charge after parking the vehicle in the parking space. Further, the charging devices are all connected to the power control system 100 to receive control instructions from the power control system 100 to perform charging control.
  • the power control system 100 includes a power acquisition unit 10, a comparison unit 20, a processing unit 30, and a control unit 40.
  • the power acquisition unit 10 is used to acquire the real-time power load of the community charging equipment and transmit it to the comparison unit 20.
  • the comparison unit 20 is electrically connected to the power acquisition unit 10, and is configured to receive the real-time power load, and compare according to the pre-stored current down threshold and/or current up threshold to obtain a comparison result.
  • the processing unit 30 is electrically connected to the comparison unit 20, and is configured to receive the comparison result of the comparison unit 20 and calculate the current up or down.
  • the adjustment unit 40 is electrically connected to the processing unit 30 to increase the charging current of the charging device according to the increase current or decrease the charging current of the charging device according to the decrease current.
  • the power obtaining unit 10 is arranged on the power line of the community, and can obtain the real-time power load of all charging devices in the community, that is, the charging current. Further, please refer to FIG. 2 in combination.
  • the charging device is connected to the community power network to obtain power and charge the vehicle.
  • the power network includes a transformer, a loop and a phase line, and the charging device is connected to Into the phase line, and access the loop through the phase line, the loop is then connected to the transformer, and the transformer is connected with a power transmission cable to obtain power and transmit it to the charging device.
  • the power network includes at least one transformer, one transformer includes at least one loop, one loop includes at least one phase wire, and one phase wire includes at least one ⁇ Charging equipment.
  • the real-time power load includes a first real-time power load, a second real-time power load, and a third real-time power load
  • the first real-time power load is the power of the charging device in the first set.
  • the sum of real-time power loads, the second real-time power load is the sum of real-time power loads of charging devices in the second set
  • the third real-time power load is the sum of real-time power loads of charging devices in the third set.
  • the second set includes at least one of the first set
  • the third set includes at least one of the second set.
  • the first real-time power load is a real-time power load on a phase line
  • the second real-time power load is a real-time power load on a loop
  • the third real-time power load is a transformer Real-time power load
  • the real-time power load since the real-time power load is used to monitor the current overload or current under load on the phase line, the loop, and the transformer, if the phase line, the loop or the If the power capacity on the transformer is large enough that no current overload will occur, there is no need to monitor the power overload condition; similarly, if the phase line, the loop or the charging equipment on the transformer does not need to be adjusted The charging power does not need to monitor the power under-load situation. Therefore, the real-time power load only needs to include the real-time power load of the phase line, loop or transformer that needs to be charged and regulated, and other real-time power loads that do not need to be regulated can be omitted. That is, the real-time power load includes at least one or at least two of the first real-time power load, the second real-time power load, and the third real-time power load.
  • the charging equipment in the first set is the charging equipment connected to the same phase line, so the real-time power load on the phase line is The sum of the real-time power loads of the charging equipment on the phase line; similarly, the real-time power load of the loop is the sum of the real-time power loads of the phase wires connected to the loop; the same, the The real-time power load of the transformer is the sum of the real-time power load of the loop connected to the transformer.
  • the power obtaining unit 10 obtains the real-time power load of the charging device, it can calculate the real-time power of all phase wires in the power grid according to the affiliation relationship between the charging device and the phase lines, loops, and transformers.
  • Load namely the first real-time power load, real-time power load of all circuits, namely the second real-time power load, real-time power load of all transformers, namely the third real-time power load, and combine the first real-time power load and the first
  • the related information of the second real-time electric load and the third real-time electric load is transmitted to the comparison unit 20.
  • the power acquisition unit 10 acquires the real-time power load of the charging device, it can simultaneously acquire the number information of the charging device, and identify which phase line and which phase the charging device is connected to. Circuit and which charging equipment, so as to add the real-time power load of the charging equipment connected to the same phase line to obtain the first real-time power load of the phase line, and the charging equipment that will be connected to the same circuit
  • the real-time power load of the equipment is added to obtain the second real-time power load of the loop, and the real-time power load of the charging equipment connected to the same transformer is added to obtain the third real-time power load of the transformer.
  • the comparison unit 20 stores a current reduction threshold and a current increase threshold for comparing the real-time power load with the current reduction threshold and the current increase threshold respectively to obtain Comparing results.
  • the current reduction threshold is the upper limit warning value of the charging current of the phase line, the loop, and the transformer, that is, if the current reduction threshold is exceeded, the phase line, And/or the charging current of the loop and/or the transformer is too high, and charging adjustment is required to prevent the phase line, and/or the loop, and/or the transformer from tripping or being damaged.
  • the current reduction threshold includes a first current reduction threshold, a second current reduction threshold, and a third current reduction threshold
  • the first current reduction threshold is the upper limit warning value of the charging current of the phase line
  • the second current reduction threshold is the upper limit warning value of the charging current of the loop
  • the third current reduction threshold is the upper limit warning value of the charging current of the transformer.
  • the current ramp-up threshold is the lower limit warning value of the charging current of the phase line, the loop, and the transformer, that is, if the current ramp-up threshold is not exceeded, the phase line , And/or the charging current of the loop and/or the transformer is too low, and charging regulation is required to prevent the phase line, and/or the loop, and/or the charging equipment in the transformer Too low charging current leads to lower charging efficiency of the vehicle.
  • the current ramp-up threshold includes a first current ramp-up threshold, a second current ramp-up threshold, and a third current ramp-up threshold
  • the first current ramp-up threshold is a lower limit warning value of the charging current of the phase line
  • the second current increase threshold is the lower limit warning value of the charging current of the loop
  • the third current increase threshold is the lower limit warning value of the charging current of the transformer.
  • the first current ramp-down threshold and the first current ramp-up threshold correspond to the first real-time power load, and are used to determine whether the phase line corresponding to the first real-time power load needs to be charged Regulation;
  • the second current down threshold and the second current up threshold correspond to the second real-time power load, and are used to determine whether the loop corresponding to the second real-time power load needs to be charged and regulated;
  • the third current ramp-up threshold and the third current ramp-up threshold correspond to the third real-time power load, and are used to determine whether the loop corresponding to the third real-time power load needs to be charged and regulated.
  • the real-time power load includes at least one or at least two of the first real-time power load, the second real-time power load, and the third real-time power load
  • the current decrease threshold and the current increase threshold are set corresponding to the real-time power load
  • the current decrease threshold includes a first current decrease threshold, a second current decrease threshold, and a third current decrease threshold.
  • At least one or at least two of the thresholds, and the current ramp-up threshold includes at least one or at least two of the first current ramp-up threshold, the second current ramp-up threshold, and the third current ramp-up threshold One.
  • the comparison unit 20 is used to compare the real-time power load with the current ramp-up threshold, and/or compare the real-time power load with the current ramp-up threshold, and obtain a comparison result. Specifically, the comparison unit 20 compares the first real-time power load with the first current after receiving the first real-time power load, the second real-time power load, and the third real-time power load. Comparing the lowering threshold with the first current raising threshold, and/or comparing the second real-time power load with the second current lowering threshold and the second current raising threshold, respectively, and/ Or, compare the third real-time power load with the third current down threshold and the third current up threshold respectively to obtain a comparison result.
  • any one of the real-time power loads of the comparison unit 20 is less than the corresponding current ramp-up threshold, it is determined that there is a current in at least one of the phase line, loop, and transformer. Underload, and obtain a comparison result of current underload; when any one of the real-time power loads is greater than the corresponding current drop threshold, the comparison unit 20 determines that at least one of the phase wires, loops, and transformers A current overload is present, and a comparison result of the current overload is obtained; none of the real-time electrical loads of the comparison unit 20 is less than the corresponding current increase threshold and none is greater than the corresponding current adjustment When the threshold value is lowered, it is determined that the currents of the phase wires, loops and transformers are normal, and a comparison result of normal currents is obtained.
  • the processing unit 30 is configured to receive the comparison result sent by the comparison unit 20, and when the comparison result is current overload, calculate the adjustment according to the real-time power load and the current drop threshold. Decrease the current, and/or when the comparison result is a current underload, calculate the boost current according to the real-time power load and the current boost threshold.
  • the reduced current is set corresponding to the real-time power load and the current reduction threshold, that is, one of the reduced currents can be obtained through one of the real-time power load and a current reduction threshold.
  • the reduced current includes at least one or at least two of the first reduced current, the second reduced current, and the third reduced current, and the first reduced current is the same as the
  • the first real-time power load corresponds to the current that needs to be reduced on the phase line corresponding to the first real-time power load;
  • the second reduced current corresponds to the second real-time power load, which is the second real-time power load
  • the third reduced current corresponds to the third real-time power load, and is the current to be reduced on the transformer corresponding to the third real-time power load.
  • the processing unit 30 obtains a first reduced current according to the first real-time power load and the first current reduction threshold value or according to the second real-time power load and The second current reduction threshold value generates a second reduction current or a third reduction current value is generated according to the third real-time power load and the third current reduction threshold value, and it is convenient for the control unit 40 according to the The first reduced current or the second reduced current or the third reduced current performs charging control.
  • the processing unit 30 obtains a first reduced current according to the first real-time power load and the first current reduction threshold value, and obtains a first reduction current according to the second real-time power load and the second current reduction threshold value.
  • the second step-down current facilitates the adjustment unit 40 to perform charging adjustment according to the first step-down current and the second step-down current.
  • the processing unit 30 obtains a first reduced current according to the first real-time power load and the first current reduction threshold value, and obtains a third reduction current according to the third real-time power load and the third current reduction threshold value.
  • the current is reduced, and it is convenient for the control unit 40 to perform charging control according to the first reduced current and the third reduced current.
  • the processing unit 30 obtains a second reduced current according to the second real-time power load and the second current reduction threshold value, and obtains a third reduction current according to the third real-time power load and the third current reduction threshold value.
  • the current is reduced, and it is convenient for the control unit 40 to perform charging control according to the second reduced current and the third reduced current.
  • the processing unit 30 obtains a first reduced current according to the first real-time power load and the first current reduction threshold value, and obtains a first reduction current according to the second real-time power load and the second current reduction threshold value Secondly adjust the current and obtain the third reduced current according to the third real-time power load and the third current reduction threshold, and facilitate the control unit 40 according to the first reduced current, the second reduced current and The third reduction current is used for charging control.
  • the processing unit 30 calculates the first reduced current, the second reduced current, and the third reduced current and transmits them to the control unit 40 for power control.
  • the first reduced current may be (I 1 -I A )/N 1
  • the second reduced current may be (I 2 -I B )*I 1 /( I 2 *N 1 )
  • the third reduced current may be (I 3 -I C )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time electrical load, and I A is the first Current drop threshold, N 1 is the number of charging devices in the first set, I 2 is the second real-time electrical load, I B is the second current drop threshold, I 3 is the third real-time electrical load, and I C is the third Current reduction threshold.
  • the first real-time power load I 1 is 230 A
  • the first current reduction threshold I A is 200 A
  • the number N 1 of the first set of charging devices is 4, and the second real-time
  • the electrical load I 2 is 550 A
  • the second current reduction threshold I B is 500 A
  • the third real-time electrical load I 3 is 1060 A
  • the third current reduction threshold I C is 1000 A
  • the ramp-up current is set corresponding to the real-time power load and the current ramp-up threshold, that is, one of the ramp-up currents can be obtained through a real-time power load and a current ramp-up threshold. Current.
  • the boost current includes at least one or at least two of the first boost current, the second boost current, and the third boost current, and the first boost current and the
  • the first real-time power load corresponds to the current to be increased on the phase line corresponding to the first real-time power load;
  • the second boosted current corresponds to the second real-time power load, which is the second real-time power load
  • the third raised current corresponds to the third real-time power load, and is the current to be raised on the transformer corresponding to the third real-time electric load.
  • the processing unit 30 obtains a first boost current according to the first real-time power load and the first current boost threshold value or according to the second real-time power load And the second current raising threshold value to obtain a second raising current or according to the third real-time power load and the third current raising threshold value to obtain a third raising current, and facilitate the control unit 40 according to The first step-up current, the second step-up current, or the third step-up current performs charging control.
  • the processing unit 30 obtains a first increase current according to the first real-time power load and the first current increase threshold value and obtains a first increase current according to the second real-time power load and the second current increase threshold value
  • the second boost current is convenient for the regulation unit 40 to perform charging regulation according to the first boost current and the second boost current.
  • the processing unit 30 obtains a first increase current according to the first real-time power load and the first current increase threshold value and obtains a first increase current according to the third real-time power load and the third current increase threshold value
  • the third boost current is convenient for the regulation unit 40 to perform charging regulation according to the first boost current and the third boost current.
  • the processing unit 30 obtains a second increased current according to the second real-time power load and the second current increase threshold value, and obtains a second increase current according to the third real-time power load and the third current increase threshold value
  • the third boost current is convenient for the regulation unit 40 to perform charging regulation according to the second boost current and the third boost current.
  • the real-time electrical load includes the first real-time electrical load, the second real-time electrical load, and the third real-time electrical load, that is, the phase line, the loop, and the transformer all have current underload
  • the processing unit 30 obtains a first increase current according to the first real-time power load and the first current increase threshold value and obtains a first increase current according to the second real-time power load and the second current increase threshold value
  • the second step-up current and the third step-up current are obtained according to the third real-time power load and the third current-up threshold value, and it is convenient for the control unit 40 to obtain the third step-up current according to the first step-up current and the second step-up current And the third boosting current for charging regulation.
  • the processing unit 30 calculates the first ramp-up current, the second ramp-up current, and the third ramp-up current and then transmits them to the control unit 40 for power control.
  • the first boost current may be (I a -I 1 )/N 1
  • the second boost current may be (I b -I 2 )*I 1 /( I 2 *N 1 )
  • the third step-up current can be (I c -I 3 )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time electric load, and I a is the first Current ramp-up threshold, N 1 is the number of charging devices in the first set, I 2 is the second real-time power load, I b is the second current ramp-up threshold, I 3 is the third real-time power load, and I c is the third Current rise threshold.
  • the first real-time power load I 1 is 80 A
  • the first current increase threshold I a is 120 A
  • the number N 1 of the first set of charging devices is 5, and the second real-time
  • the electric load I 2 is 250 A
  • the second current increase threshold I b is 300 A
  • the third real-time electric load I 3 is 550 A
  • the third current increase threshold I c is 600 A
  • the adjusting unit 40 is configured to adjust the charging current of the charging device according to the first decrease current, the second decrease current, and the third decrease current, or according to the first decrease current.
  • the boost current, the second boost current, and the third boost current boost the charging current of the charging device.
  • the adjusting unit 40 needs to compare the first reduced current, the second reduced current, and the third reduced current and select the first The one with the largest current value among the reduced current, the second reduced current and the third reduced current reduces the charging current of the charging device.
  • control unit 40 is configured to reduce the charging current of the charging device in the phase line according to the first reduction current when only the phase line has a current overload.
  • control unit 40 is configured to reduce the charging current of the charging device in the loop according to the second reduced current when only the loop has a current overload.
  • control unit 40 is configured to reduce the charging current of the charging device in the loop according to the third reduction current when only the transformer has a current overload.
  • control unit 40 is used for when the phase line and the loop have current overload and the transformer does not have current overload, according to the first reduction current and the second reduction current current The larger value reduces the charging current of all charging devices on the circuit with current overload.
  • control unit 40 is configured to reduce the current in the first and third reduction currents when there is current overload in the phase line and the transformer and there is no current overload in the loop. The larger value reduces the charging current of all charging devices on the transformer with current overload.
  • control unit 40 is configured to reduce the current in the second and third reduction currents when there is current overload in the loop and the transformer and there is no current overload in the phase line. The larger value reduces the charging current of all charging devices on the transformer with current overload.
  • control unit 40 is used to adjust the current according to the first step-down current, the second step-down current, and the first step-down current when there is current overload on the phase line, the loop, and the transformer.
  • the one with the larger current value among the three current reductions reduces the charging current of all charging devices on the transformer with current overload.
  • the control unit 40 when there is a current overload in one of the phase line, the loop, and the transformer, the control unit 40 directly adjusts the current according to the first reduction current or the second reduction current or the third reduction current. The current is reduced and the charging current of the charging device on the phase line or the loop or the transformer is increased, thereby preventing the current overload of the phase line, the loop and the transformer.
  • the control unit 40 compares the reduced current of the phase line, loop, or transformer where the current overload occurs, and selects the regulator. The larger one of the reduced currents reduces the charging current of the charging equipment of the phase line, the loop or the transformer.
  • the adjusting unit 40 when the adjusting unit 40 increases the charging current of the charging device, it needs to compare the first increase current, the second increase current, and the third increase current and select the first The one with the smaller current value among a boost current, the second boost current and the third boost current boosts the charging current of the charging device.
  • the regulating unit 40 is configured to increase the charging current of the charging device in the phase line according to the first ramp-up current when only the phase line is under current.
  • control unit 40 is configured to increase the charging current of the charging device in the circuit according to the second increase current when only the circuit has a current underload.
  • control unit 40 is configured to adjust the charging current of the charging device in the transformer according to the third step-up current when only the transformer has a current underload.
  • control unit 40 is used to adjust the current according to the first step-up current and the second step-up current when there is a current underload in the phase line and the loop and there is no current underload in the transformer.
  • the one with the smaller current value increases the charging current of the charging equipment on the phase line with current underload.
  • control unit 40 is used to adjust the current according to the first step-up current and the third step-up current when there is a current underload in the phase line and the transformer and there is no current underload in the loop.
  • the one with the smaller current value increases the charging current of all charging devices on the phase line with current underload.
  • control unit 40 is used to adjust the current according to the first step-up current and the third step-up current when there is a current underload in the loop and the transformer and there is no current underload in the phase line.
  • the one with the smaller current value increases the charging current of all charging devices on the phase line with current underload.
  • the regulation unit 40 is used to directly adjust the current according to the first boost current or the second regulation when there is a current underload in one of the phase line, the loop, and the transformer.
  • the boost current or the third boost current boosts the charging current of the charging device on the phase line or the loop or the transformer, thereby improving the charging efficiency.
  • the control unit 40 compares the step-up current of the phase line, loop, or transformer where the current underload occurs, and selects all The smaller one of the boost currents increases the charging current of the phase line or the loop charging equipment, but does not increase the charging current of the phase line or loop charging equipment without current underload.
  • the first real-time power load or the second real-time power load of the circuit or phase line with current underload in the transformer is improved, and the charging efficiency of the charging equipment on the phase line with current underload is improved, and because only Increase the charging current of the charging equipment on the phase line or loop with current underload, and according to the smaller current value of the first boost current, the second boost current, and the third boost current The increase is performed, so that no current overload occurs after the charging current of the charging device is increased, and the safety of charging regulation is ensured.
  • the regulating unit 40 is further configured to immediately reduce the charging current of the charging device when the comparison result is current overload, and/or when the comparison result is current overload and the current After the current overload state continues for a preset time, the charging current of the charging device is increased.
  • the comparison result is current overload, it means that at least one of the phase wires, loops, or transformers has current overload. At this time, it is necessary to immediately reduce the charging current of the charging device to prevent the current overload from causing the The phase line, loop or transformer trips, thereby affecting the operation of the charging equipment.
  • the comparison result is a current underload, it means that there is a current underload in at least one of the phase wires, loops, or transformers.
  • the current underload continues for a preset time, it means that the current in the entire system continues to drop at this time. Then increase the charging current of the charging device to improve the charging efficiency of the charging device.
  • the power control system of the present invention can obtain real-time power loads on phase wires, circuits, and transformers, and compare the real-time power load with the current reduction threshold current reduction threshold and the current increase threshold current increase threshold.
  • the charging current of some charging equipment is reduced, and the charging current of some charging equipment is increased when there is a current underload, so as to ensure the safety of the power grid while improving the charging efficiency.
  • Intelligent control can obtain real-time power loads on phase wires, circuits, and transformers, and compare the real-time power load with the current reduction threshold current reduction threshold and the current increase threshold current increase threshold.
  • the second embodiment of the present invention provides a charging management method.
  • the charging method is applied to any embodiment or permutation and combination of the foregoing charging power control system, including the following steps:
  • Step S210 Obtain real-time power load.
  • charging equipment is installed at parking spaces in the community to charge vehicles parked in the parking spaces.
  • the charging device is connected to a power network to obtain power and charge the vehicle.
  • the power network includes a transformer, a loop, and a phase line.
  • the charging device is connected to the phase line and connected to the vehicle through the phase line.
  • the loop is connected to the transformer again, and the transformer is connected with a power transmission cable to obtain power and transmit it to the charging device.
  • the power network includes at least one transformer, one transformer includes at least one loop, one loop includes at least one phase wire, and one phase wire includes at least one phase wire. ⁇ Charging equipment.
  • the real-time power load includes a first real-time power load, a second real-time power load, and a third real-time power load
  • the first real-time power load is the power of the charging device in the first set.
  • the sum of real-time power loads, the second real-time power load is the sum of real-time power loads of charging devices in the second set
  • the third real-time power load is the sum of real-time power loads of charging devices in the third set
  • the second set includes at least one of the first set
  • the third set includes at least one of the second set.
  • the first real-time power load is a real-time power load on a phase line
  • the second real-time power load is a real-time power load on a loop
  • the third real-time power load is a transformer Real-time power load
  • the real-time power load is used to monitor the current overload or current under load on the phase line, the loop, and the transformer, if the phase line, the loop or the If the power capacity on the transformer is large enough, there is no need to monitor the power overload; similarly, if there is no need to increase the charging power on the phase line, the loop or the charging equipment on the transformer, there is no need Monitor the power under-load situation, so the real-time power load only needs to include the real-time power load of the phase line, loop or transformer that needs to be charged and regulated, and other real-time power loads that do not need to be regulated can be omitted, that is, the real-time power load includes all At least one or at least two of the first real-time electric load, the second real-time electric load, and the third real-time electric load.
  • the charging equipment in the first set is the charging equipment connected to the same phase line, so the real-time power load on the phase line is The sum of the real-time power loads of the charging equipment on the phase line; similarly, the real-time power load of the loop is the sum of the real-time power loads of the phase wires connected to the loop; the same, the The real-time power load of the transformer is the sum of the real-time power load of the loop connected to the transformer.
  • the real-time power load before acquiring the real-time power load, it is necessary to acquire the real-time power load of all the charging equipment connected to the power network, and then according to the charging equipment's power grid and phase line, loop and The relationship between the transformers thus calculates the real-time power load of all phases in the grid, that is, the first real-time power load, the real-time power load of all circuits, that is, the second real-time power load, and the real-time power load of all transformers, that is, the third real-time power load. Electric load.
  • Step S220 Compare at least two of the first real-time electrical load, the second real-time electrical load, and the third real-time electrical load with corresponding current drop thresholds, respectively, and/or compare the first real-time electrical load , At least two of the second real-time electric load and the third real-time electric load are adjusted to the corresponding current rise threshold, and a comparison result is obtained.
  • the current reduction threshold is the upper limit warning value of the charging current of the phase line, the loop, and the transformer, that is, if the current reduction threshold is exceeded, the phase line, And/or the charging current of the loop and/or the transformer is too high, and charging adjustment is required to prevent the phase line, and/or the loop, and/or the transformer from tripping or being damaged.
  • the current reduction threshold includes a first current reduction threshold, a second current reduction threshold, and a third current reduction threshold
  • the first current reduction threshold is the upper limit warning value of the charging current of the phase line
  • the second current reduction threshold is the upper limit warning value of the charging current of the loop
  • the third current reduction threshold is the upper limit warning value of the charging current of the transformer.
  • the current ramp-up threshold is the lower limit warning value of the charging current of the phase line, the loop, and the transformer, that is, if the current ramp-up threshold is not exceeded, the phase line , And/or the charging current of the loop and/or the transformer is too low, and charging regulation is required to prevent the phase line, and/or the loop, and/or the charging equipment in the transformer Too low charging current leads to lower charging efficiency of the vehicle.
  • the current ramp-up threshold includes a first current ramp-up threshold, a second current ramp-up threshold, and a third current ramp-up threshold
  • the first current ramp-up threshold is a lower limit warning value of the charging current of the phase line
  • the second current increase threshold is the lower limit warning value of the charging current of the loop
  • the third current increase threshold is the lower limit warning value of the charging current of the transformer.
  • the first current ramp-down threshold and the first current ramp-up threshold correspond to the first real-time power load, and are used to determine whether the phase line corresponding to the first real-time power load needs to be charged Regulation;
  • the second current down threshold and the second current up threshold correspond to the second real-time power load, and are used to determine whether the loop corresponding to the second real-time power load needs to be charged and regulated;
  • the third current ramp-up threshold and the third current ramp-up threshold correspond to the third real-time power load, and are used to determine whether the loop corresponding to the third real-time power load needs to be charged and regulated.
  • the real-time power load includes at least one or at least two of the first real-time power load, the second real-time power load, and the third real-time power load
  • the current decrease threshold and the current increase threshold are set corresponding to the real-time power load
  • the current decrease threshold includes a first current decrease threshold, a second current decrease threshold, and a third current decrease threshold.
  • At least one or at least two of the thresholds, and the current ramp-up threshold includes at least one or at least two of the first current ramp-up threshold, the second current ramp-up threshold, and the third current ramp-up threshold One.
  • the first real-time electric load is respectively compared with the first current drop threshold and the current The first current ramp-up threshold is compared, and/or the second real-time power load is compared with the second current ramp-up threshold and the second current ramp-up threshold respectively, and/or the first The three real-time power loads are respectively compared with the third current down threshold and the third current up threshold to obtain a comparison result.
  • any one of the real-time power loads is less than the corresponding current ramp-up threshold, it is determined that at least one of the phase line, loop, and transformer has a current underload, and obtains The comparison result of current underload; when any one of the real-time power loads is greater than the corresponding current drop threshold, it is determined that at least one of the phase line, loop, and transformer has current overload, and the current overload is obtained Comparison result; when any one of the real-time power loads is not less than the corresponding current ramp-up threshold and neither is greater than the corresponding current ramp-down threshold, then determine the current of the phase line, loop, and transformer Normal, and get the comparison result that the current is normal.
  • Step S230 Calculate the reduced current or the increased current according to the comparison result.
  • the reduced current is calculated according to the real-time power load and the current reduction threshold, and/or when the comparison result is current underload, according to the Calculate the ramp-up current based on the real-time power load and the current ramp-up threshold.
  • the reduced current is set corresponding to the real-time power load and the current reduction threshold, that is, one of the reduced currents can be obtained through one of the real-time power load and a current reduction threshold.
  • the reduced current includes at least one or at least two of the first reduced current, the second reduced current, and the third reduced current, and the first reduced current is the same as the
  • the first real-time power load corresponds to the current that needs to be reduced on the phase line corresponding to the first real-time power load;
  • the second reduced current corresponds to the second real-time power load, which is the second real-time power load
  • the third reduced current corresponds to the third real-time power load, and is the current to be reduced on the transformer corresponding to the third real-time power load.
  • the processing unit 30 obtains a first reduced current according to the first real-time power load and the first current reduction threshold value or according to the second real-time power load and The second current reduction threshold value generates a second reduction current or a third reduction current according to the third real-time power load and the third current reduction threshold value, and facilitates the reduction according to the first The current or the second reduced current or the third reduced current performs charging control.
  • the real-time electric load includes the first real-time electric load and the second real-time electric load, that is, only the phase line and the loop have current overload and the transformer does not have current overload
  • this A first reduced current is obtained according to the first real-time power load and the first current reduction threshold value
  • a second reduced current is obtained according to the second real-time power load and the second current reduction threshold value
  • the real-time electric load includes the first real-time electric load and the third real-time electric load, that is, only the phase line and the transformer have current overload and the loop does not have current overload
  • this When obtaining a first reduced current according to the first real-time power load and the first current reduction threshold value, and a third reduced current according to the third real-time power load and the third current reduction threshold value , And it is convenient to perform charging control according to the first reduced current and the third reduced current.
  • the real-time electric load includes the second real-time electric load and the third real-time electric load, that is, only the circuit and the transformer have current overload and the phase line does not have current overload
  • this Calculate a second reduced current according to the second real-time power load and the second current reduction threshold value and a third reduction current according to the third real-time power load and the third current reduction threshold value , And it is convenient for subsequent charge control according to the second reduced current and the third reduced current.
  • the real-time electric load includes the first real-time electric load, the second real-time electric load, and the third real-time electric load, that is, the phase line, the loop, and the transformer all have current overload
  • a first reduction current is obtained according to the first real-time power load and the first current reduction threshold value
  • a second reduction current is derived according to the second real-time power load and the second current reduction threshold value
  • Current and a third reduced current according to the third real-time power load and the third current reduction threshold and charge according to the first reduced current, the second reduced current and the third reduced current Regulation.
  • the first reduced current may be (I 1 -I A )/N 1
  • the second reduced current may be (I 2 -I B )*I 1 /( I 2 *N 1 )
  • the third reduced current may be (I 3 -I C )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time electrical load, and I A is the first Current drop threshold, N 1 is the number of charging devices in the first set, I 2 is the second real-time electrical load, I B is the second current drop threshold, I 3 is the third real-time electrical load, and I C is the third Current reduction threshold.
  • the first real-time power load I 1 is 230 A
  • the first current reduction threshold I A is 200 A
  • the number N 1 of the first set of charging devices is 4, and the second real-time
  • the electrical load I 2 is 550 A
  • the second current reduction threshold I B is 500 A
  • the third real-time electrical load I 3 is 1060 A
  • the third current reduction threshold I C is 1000 A
  • the ramp-up current is set corresponding to the real-time power load and the current ramp-up threshold, that is, one of the ramp-up currents can be obtained through a real-time power load and a current ramp-up threshold. Current.
  • the boost current includes at least one or at least two of the first boost current, the second boost current, and the third boost current, and the first boost current and the
  • the first real-time power load corresponds to the current to be increased on the phase line corresponding to the first real-time power load;
  • the second boosted current corresponds to the second real-time power load, which is the second real-time power load
  • the third raised current corresponds to the third real-time power load, and is the current to be raised on the transformer corresponding to the third real-time electric load.
  • the real-time electric load includes only one of the first real-time electric load, the second real-time electric load, and the third real-time electric load, that is, only the phase line and the loop Or one of the transformers has a current underload.
  • the first boosted current is obtained according to the first real-time power load and the first current boost threshold, or the second real-time power load and the The second current-raising threshold value is used to obtain a second raising current or the third real-time power load and the third current-raising threshold value are used to generate a third raising current, so as to facilitate the subsequent rise of the current according to the first Or the second boosting current or the third boosting current performs charging regulation.
  • the real-time electric load includes the first real-time electric load and the second real-time electric load, that is, only the phase line and the loop have current underload and the transformer does not have current underload
  • a first boosted current is obtained according to the first real-time power load and the first current boost threshold value
  • a second boosted current is obtained according to the second real-time power load and the second current boost threshold value.
  • the current is increased, and it is convenient for the regulation unit 40 to perform charging regulation according to the first boost current and the second boost current.
  • the real-time electric load includes the first real-time electric load and the third real-time electric load, that is, only the phase line and the transformer have a current underload and the loop does not have a current underload
  • a first boosted current is obtained according to the first real-time power load and the first current boost threshold value
  • a third boosted current is obtained according to the third real-time power load and the third current boost threshold value.
  • the real-time electric load includes the second real-time electric load and the third real-time electric load, that is, only the loop and the transformer have a current underload and the phase line does not have a current underload
  • a second boost current is obtained according to the second real-time power load and the second current increase threshold value
  • a third adjustment current is obtained according to the third real-time power load and the third current increase threshold value. The current is increased, and it is convenient to perform charging control according to the second step-up current and the third step-up current.
  • the real-time electrical load includes the first real-time electrical load, the second real-time electrical load, and the third real-time electrical load, that is, the phase line, the loop, and the transformer all have current underload
  • a first boosted current is obtained according to the first real-time power load and the first current boost threshold value
  • a second boosted current is obtained according to the second real-time power load and the second current boost threshold value.
  • the first boost current may be (I a -I 1 )/N 1
  • the second boost current may be (I b -I 2 )*I 1 /( I 2 *N 1 )
  • the third step-up current can be (I c -I 3 )*I 1 /(I 3 *N 1 ), where I 1 is the first real-time electric load, and I a is the first Current ramp-up threshold, N 1 is the number of charging devices in the first set, I 2 is the second real-time power load, I b is the second current ramp-up threshold, I 3 is the third real-time power load, and I c is the third Current rise threshold.
  • the first real-time power load I 1 is 80 A
  • the first current increase threshold I a is 120 A
  • the number N 1 of the first set of charging devices is 5, and the second real-time
  • the electric load I 2 is 250 A
  • the second current increase threshold I b is 300 A
  • the third real-time electric load I 3 is 550 A
  • the third current increase threshold I c is 600 A
  • the charging current of the charging device when reducing the charging current of the charging device, it is necessary to compare the first reduced current, the second reduced current and the third reduced current and select the first reduced current, The one with the largest current value among the second reduced current and the third reduced current reduces the charging current of the charging device.
  • the charging current of the charging device in the phase line is reduced according to the first reduced current.
  • the charging current of the charging device in the loop is reduced according to the second reduced current.
  • the charging current of the charging device in the loop is reduced according to the third reduced current.
  • the current value of the first reduced current and the second reduced current is adjusted according to the larger current value.
  • the current value of the first step-down current and the third step-down current are adjusted according to the larger current value.
  • the current value of the second step-down current and the third step-down current are adjusted according to the larger current value.
  • the current value in the first reduced current, the second reduced current, and the third reduced current The larger one reduces the charging current of all charging devices on the transformer with current overload.
  • the increase is adjusted directly according to the first step-down current, the second step-down current, or the third step-down current.
  • the charging current of the charging device on the phase line or the loop or the transformer thereby preventing the current overload of the phase line, the loop and the transformer.
  • the second boost current and the third boost current when increasing the charging current of the charging device, it is necessary to compare the first boost current, the second boost current and the third boost current and select the first boost current, The smaller current value of the second boost current and the third boost current increases the charging current of the charging device.
  • the charging current of the charging device in the phase line is increased according to the first increased current.
  • the charging current of the charging device in the loop is increased according to the second increased current.
  • the charging current of the charging device in the transformer is increased according to the third step-up current.
  • the first step-up current and the third step-up current whichever has the smaller current value Increase the charging current of all charging devices on the phase line with current underload.
  • the first real-time power load or the second real-time power load of the circuit or phase line with current underload in the transformer is improved, and the charging efficiency of the charging equipment on the phase line with current underload is improved, and because only Increase the charging current of the charging equipment on the phase line or loop with current underload, and according to the smaller current value of the first boost current, the second boost current, and the third boost current The increase is performed, so that no current overload occurs after the charging current of the charging device is increased, and the safety of charging regulation is ensured.
  • the charging current of the charging device is immediately reduced when the real-time power load is greater than the current reduction threshold, and/or when the real-time power load is not greater than the current increase After the threshold state continues for a preset time, the charging current of the charging device is increased.
  • the real-time power load is greater than the current reduction threshold, it means that at least one of the phase wires, loops, or transformers has a current overload. At this time, it is necessary to immediately reduce the charging current of the charging device to prevent Current overload causes the phase line, loop or transformer to trip, thereby affecting the operation of the charging device.
  • the real-time power load is not greater than the current ramp-up threshold, it means that there is a current underload in at least one of the phase wires, loops, or transformers.
  • the current underload continues for a preset time, it means that the current in the entire system
  • the charging current of the charging device is increased to improve the charging efficiency of the charging device.
  • the charging current of the charging device is immediately reduced, and/or when the comparison result is current overload and the current overload state continues for a preset time Then increase the charging current of the charging device.
  • the comparison result is current overload, it means that at least one of the phase wires, loops, or transformers has current overload. At this time, it is necessary to immediately reduce the charging current of the charging device to prevent the current overload from causing the The phase line, loop or transformer trips, thereby affecting the operation of the charging equipment.
  • the comparison result is a current underload, it means that there is a current underload in at least one of the phase wires, loops, or transformers.
  • the current underload continues for a preset time, it means that the current in the entire system continues to drop at this time. Then increase the charging current of the charging device to improve the charging efficiency of the charging device.
  • the charging management method of the present invention can obtain real-time power loads on phase lines, circuits, and transformers, and compare the real-time power load with the current reduction threshold current reduction threshold and the current increase threshold current increase threshold.
  • the charging current of some charging equipment is reduced, and the charging current of some charging equipment is increased when there is a current underload, so as to ensure the safety of the power grid while improving the charging efficiency. Intelligent control.
  • the present invention also provides a computer device.
  • the user device includes a memory, a processor, and a program stored in the memory and capable of running a charging management method on the processor, and the processor runs the computer program So that the computer device executes the above charging management method.
  • the present invention also provides a storage medium on which the charging management method program is stored, and when the charging management method program is executed by a processor, the steps of the charging management method as described above are implemented.
  • the charging management method refer to the above-mentioned embodiments, which will not be repeated here.
  • the third embodiment of the present invention provides a charging control system 300
  • the charging control system 300 is used according to the first embodiment of the power regulation system 100 of the present invention set the first current reduction threshold to connect the new The charging equipment connected to the grid performs charging control.
  • the charging device newly connected to the power grid is the intended charging device.
  • the first current reduction threshold is set for the phase line in the power control system 100, when a newly connected device to be charged in the phase line needs to obtain current from the phase line for charging Therefore, the first real-time power load on the phase line will increase.
  • the power control system 100 will be triggered to generate current overload on the phase line, loop, or The charging control of the charging equipment in the transformer, thereby reducing the charging current of the other charging equipment, and affecting the charging efficiency of the other charging equipment.
  • the proposed charging equipment when the proposed charging equipment is newly connected in the phase line, it needs to be based on The first current reduction threshold of the phase line performs charging control on the intended charging device to ensure that the newly connected charging device can be charged normally without triggering the power regulation of the power regulation system 100 .
  • the charging control system 300 includes a charging demand acquisition unit 310, an analysis unit 330, and a control unit 350.
  • the charging demand acquisition unit 310 is used to acquire the charging demand of a newly connected device to be charged. , And transmitted to the analysis unit 330.
  • the power acquisition unit 10 of the power regulation system 100 of the first embodiment obtains the charging equipment in the phase line.
  • the charging current is obtained and the intended charging current is obtained, and the control unit 350 starts or turns off the charging function of the intended charging device according to the intended charging current.
  • the charging device sets a current start value and a current upper limit value, and the charging current of the charging device can be adjusted between the current start value and the current upper limit value, that is, Increase or decrease.
  • the current start value is 6A
  • the current upper limit value is 32A. It can be understood that when the charging current of the charging device is less than the current start value, the charging device cannot start the charging function.
  • the user may first connect the charging device to the vehicle, and then turn on the charging device by scanning a code or swiping a card. It can be understood that after the user turns on the device to be charged, the device to be charged sends the charging demand to the charging demand acquiring unit 310, and the charging demand acquiring unit 310 can obtain the charging demand of the device to be charged. .
  • the charging demand acquisition unit 310 sends the charging demand to the analysis unit 330, and the analysis unit 330 acquires the phase of the device to be charged through the power acquisition unit 10.
  • the charging current of all other charging devices in the line and calculate the proposed charging current.
  • the analysis unit 330 stores the serial number information of all charging devices in the phase line, and the analysis unit 330 sends the serial number information of the charging devices in the phase line to the power acquisition unit 10 and passes all the charging devices.
  • the power obtaining unit 10 obtains the corresponding charging current of the charging device.
  • the analysis unit 330 receives the charging current, it superimposes the charging current of the charging device to obtain the current first real-time power load of the phase line, and calculates the current idle current of the phase line and /Or available current.
  • the idle current is the difference between the first current reduction threshold in the phase line and the first real-time power load. It can be understood that if the first current threshold is 200A and the first real-time power load is 180A, the idle current is 20A.
  • the available current is the sum of the idle current and the current adjustment value.
  • the current adjustment value is the sum of the adjustable current values of all the charging devices in the phase line, and the adjustable current value is the difference between the charging current of the charging device and the current start value.
  • the available current is calculated. It can be understood that if the current number of all charging devices in the phase line is 3, namely charging device A, charging device B, and charging device C, the charging current of charging device A is 9A, and the charging current of charging device B is 11A.
  • the analysis unit 330 obtains that the pseudo charging current is zero when the available current is less than the current start value. Specifically, for example, when the available current of the analysis unit 330 is 4A, since the current startup value in this embodiment is 6A, the available current is less than the current startup value, indicating that the phase line The available current inside is not enough to start the charging function of the device to be charged. In other words, when it is ensured that the first real-time power load of the phase line does not exceed the first current reduction threshold at this time, even if the charging current of all the charging devices in the phase line is adjusted to 6A, the phase line The available current in the power supply is only 4A.
  • the analysis unit 330 is not allowed to start the charging function of the device to be charged when the available current is less than the current start value, so that the current to be charged is zero.
  • control unit 350 when the control unit 350 receives that the current to be charged is zero, it will not start the charging function of the device to be charged. Further, the control unit 350 adds the intended charging device to the scheduled charging sequence, and starts the charging function of the intended charging device when the available current is not less than the current start value.
  • the analysis unit 330 obtains that the pseudo charging current is the first The ratio of the current reduction threshold to the total number of charging devices, where the total number of charging devices is the sum of the number of charging devices in the phase line and the number of charging devices to be charged.
  • the available current of the analysis unit 330 is 16A and the idle current is 4A
  • the idle current is less than the current start value and The available current is not less than the current start value, indicating that the idle current at this time is not enough to start the charging function of the intended charging device, but the charging current of other charging devices in the phase line can be allocated to the intended charging device so as Start the charging function of the device to be charged.
  • all currents of the phase line can be redistributed to the charging equipment and the charging equipment in the phase line.
  • the intended charging device thus ensures the charging function of the charging device in the phase line and the intended charging device, so it is obtained that the intended charging current is the ratio of the first current reduction threshold and the total number of charging devices ratio.
  • the number of charging devices is added to obtain the total number of charging devices, and the current value of the first current reduction threshold is evenly distributed to the charging devices in the phase line and the intended charging device so as to meet the requirements of the phase line
  • the charging requirements of the charging equipment and the proposed charging equipment since the current value of the first current reduction threshold is evenly distributed to the charging equipment in the phase line and the intended charging equipment, the first real-time power load of the phase line does not exceed the first A current reduction threshold avoids triggering the charging control of the power control system 100.
  • control unit 350 when the control unit 350 receives that the pseudo-charging current is the ratio of the first current reduction threshold to the total number of charging devices, it activates the charging function of the pseudo-charging device and controls the phase All charging devices in the line and the intended charging device are charged according to the intended charging current or the current upper limit value.
  • the charging device cannot output the pseudo charging current, and the control unit 350 Control all charging equipment in the phase line and the intended charging equipment to charge according to the upper limit of current; if the intended charging current is not greater than 32A, that is, not greater than the upper limit of current, then If the pseudo-charging current does not exceed the current upper limit value, the charging device can output the pseudo-charging current. At this time, the control unit 350 controls all the charging devices in the phase line and the pseudo-charging devices in accordance with the The charging current is to be charged.
  • the analysis unit 330 obtains the pseudo-charging current as the current start value when the idle current is not less than the current start value and less than the current upper limit value. Specifically, for example, when the analysis unit 330 has an idle current of 10A, since the current start value is 6A and the current upper limit value is 32A in this embodiment, the idle current is not less than the current The starting value is less than the upper current limit of 32A, indicating that the current idle current is sufficient to start the charging function of the intended charging device but not enough to enable the intended charging device to be charged at the upper limit of current, so it only needs to be guaranteed The charging current can meet the charging requirement of the device to be charged. At this time, the analysis unit 330 obtains that the charging current is the current start value.
  • control unit 350 activates the charging function of the intended charging device and controls the intended charging device to charge according to the current startup value when the intended charging current is the current startup value. It can be understood that in this case, the control unit 350 does not need to regulate the charging current of other charging devices in the phase line, but only needs to activate the charging function of the intended charging device and control the intended charging according to the current start value. The device can be charged.
  • the analysis unit 330 obtains that the pseudo charging current is the current upper limit value when the idle current is not less than the current upper limit value. Specifically, when the analysis unit 360 has an idle current of 33A, since the current upper limit value in this embodiment is 32A, the idle current is greater than the current upper limit value, indicating that the current idle current is sufficient to start The charging function of the intended charging device can allow the intended charging device to be charged at the current upper limit value. At this time, the analysis unit 330 obtains that the intended charging current is the current upper limit value.
  • control unit 350 activates the charging function of the intended charging device and controls the intended charging device to charge according to the current upper limit value when the intended charging current is the current upper limit value. It can be understood that in this case, the control unit 350 does not need to adjust the charging current of other charging devices in the phase line, but only needs to activate the charging function of the intended charging device and control the charging according to the upper limit of current. The device can be charged.
  • the analysis unit 330 needs to calculate the current to be charged based on the first real-time power load and the first available power in the phase line, so as to ensure that The charging requirement of the device to be charged is met without triggering the charging control of the power control system 100.
  • the charging control system of the present invention can obtain the charging demand of the user, analyze whether the charging demand of the intended charging device can be met according to the available power and idle power of the current phase line, and calculate the intended charging current, so that The charging function of the device to be charged is activated within the allowable range of the line power, which ensures the flexibility of charging and the intelligence of charging management.
  • the fourth embodiment of the present invention provides a charging method, which is applied to any embodiment or permutation and combination of the foregoing charging control system, and includes the following steps:
  • Step S410 Obtain the charging requirements of the equipment to be charged connected in the phase line.
  • the first current reduction threshold is set for the phase line in the power control system 100, when a new charging device connected to the phase line needs to be charged from the phase line Obtaining current on the line for charging will cause the first real-time power load on the phase line to increase. When the first real-time power load continues to increase and current overload occurs, the power control system 100 will be triggered to generate current.
  • the charging device sets a current start value and a current upper limit value, and the charging current of the charging device can be adjusted between the current start value and the current upper limit value, that is, Increase or decrease.
  • the current start value is 6A
  • the current upper limit value is 32A. It can be understood that when the charging current of the charging device is less than the current start value, the charging device cannot start the charging function.
  • the user may first connect the charging device to the vehicle, and then turn on the charging device by scanning a code or swiping a card. It can be understood that after the user turns on the device to be charged, the charging requirement of the device to be charged can be obtained.
  • Step S420 Calculate the idle current and/or the available current, and obtain the expected charging current according to the idle current and/or the available current.
  • the idle current is the difference between the first current reduction threshold in the phase line and the first real-time power load. It can be understood that if the first current threshold is 200A and the first real-time power load is 180A, the idle current is 20A.
  • the available current is the sum of the idle current and the current adjustment value.
  • the current adjustment value is the sum of the adjustable current values of all the charging devices in the phase line, and the adjustable current value is the difference between the charging current of the charging device and the current start value.
  • the available current is calculated. It can be understood that if the current number of all charging devices in the phase line is 3, namely charging device A, charging device B, and charging device C, the charging current of charging device A is 9A, and the charging current of charging device B is 11A.
  • the available current when the available current is less than the current start value, it is obtained that the pseudo-charging current is zero.
  • the available current is 4A
  • the current startup value in this embodiment is 6A
  • the available current is less than the current startup value, indicating that the available current in the phase line is insufficient at this time Start the charging function of the device to be charged.
  • the phase line The available current in the power supply is only 4A.
  • the charging current of some charging devices in the phase line will be reduced by less than 6A, which will lead to The charging current of the charging device is smaller than the current start value and then turned off, affecting the normal charging of the charging device in the phase line. Therefore, when the available current is less than the current start value, it is not allowed to start the charging function of the intended charging device, so it is concluded that the intended charging current is zero.
  • the available current is less than the current start value, it means that even when the current of all charged charging devices is reduced to the current start value, the available current in the phase line still cannot reach the current of the charging device Start value. Therefore, if the charging function of the charging device that initiates the charging request is to be activated, the first real-time power load in the phase line will exceed the first current reduction threshold, which will trigger the power control system 100. Charging control, so as to reduce the charging current of all charging devices in the phase line, causing the charging current of some charging devices to be lower than the current start value and thus shut down, affecting the charging of other users.
  • the analysis unit 330 obtains that the pseudo charging current is the first A ratio of the current reduction threshold to the total number of charging devices, where the total number of charging devices is the sum of the number of all charging devices in the phase line and the number of devices to be charged.
  • the idle current is less than the current startup value and the available current is not Less than the current start value, indicating that the idle current at this time is not enough to start the charging function of the intended charging device, but the charging current of other charging devices in the phase line can be allocated to the intended charging device to start the intended charging The charging function of the device.
  • all currents of the phase line can be redistributed to the charging equipment and the charging equipment in the phase line.
  • the intended charging device thus ensures the charging function of the charging device in the phase line and the intended charging device, so that the intended charging current is obtained as the ratio of the first current reduction threshold to the total number of charging devices.
  • the available current is not less than the current start value, and the idle current is less than the current start value
  • the total number of charging devices is obtained by adding, and the current value of the first current reduction threshold is evenly distributed to the charging devices in the phase line and the to-be-charging devices so as to meet the requirements of the charging devices and the charging devices in the phase line.
  • the charging requirements of the device to be charged since the current value of the first current reduction threshold is evenly distributed to the charging equipment in the phase line and the intended charging equipment, the first real-time power load of the phase line does not exceed the first A current reduction threshold avoids triggering the charging control of the power control system 100.
  • the idle current when the idle current is not less than the current start value and less than the current upper limit value, it is obtained that the pseudo-charging current is the current start value.
  • the idle current when the idle current is 10A, since the current start value is 6A in this embodiment, and the current upper limit value is 32A, the idle current is not less than the current start value and less than the current start value.
  • the upper limit of current is 32A, indicating that the current idle current is sufficient to start the charging function of the intended charging device but not enough to enable the intended charging device to be charged at the upper limit of current, so it is only necessary to ensure that the charging current can meet The charging requirement of the intended charging device is sufficient, and at this time, the intended charging current is obtained as the current start value.
  • the idle current when the idle current is not less than the current upper limit value, it indicates that the current idle current is sufficient to start the charging function of the intended charging device, and it can allow the intended charging device to use current
  • the upper limit value is charged, and the current to be charged is obtained as the current upper limit value.
  • the idle current when the idle current is 33A, since the current upper limit value in this embodiment is 32A, and the idle current is greater than the current upper limit value, it indicates that the current idle current is sufficient to start the charging device
  • the charging function is capable of allowing the charging device to be charged at the upper limit of current. At this time, it is obtained that the charging current is the upper limit of current.
  • Step S430 Start or close the charging function of the device to be charged according to the current to be charged.
  • the charging function of the pseudo-charging device when the pseudo-charging current is zero, when the pseudo-charging current is received as zero, the charging function of the pseudo-charging device will not be activated. Further, the device to be charged is added to the scheduled charging sequence, and when the available current is not less than the current start value, the charging function of the device to be charged is started.
  • the pseudo-charging device when receiving that the pseudo-charging current is the ratio of the first current reduction threshold to the total number of charging devices, start the charging function of the pseudo-charging device and control the All charging devices and the intended charging devices in the phase line are charged according to the intended charging current or the current upper limit value.
  • the charging device cannot output the pseudo-charging current, and the phase is controlled at this time All charging devices in the line and the intended charging device are charged according to the upper limit of current; if the intended charging current is not greater than 32A, that is, not greater than the upper limit of current, the intended charging current does not exceed For the current upper limit value, the charging device can output the pseudo-charging current.
  • the control unit 350 controls all the charging devices in the phase line and the pseudo-charging device to charge according to the pseudo-charging current .
  • the charging function of the pseudo-charging device is activated and the pseudo-charging device is controlled to charge according to the current starting value. It can be understood that in this case, there is no need to adjust the charging current of other charging devices in the phase line, just start the charging function of the intended charging device and control the intended charging device to charge according to the current start value. .
  • the charging function of the intended charging device when receiving that the intended charging current is the current upper limit value, the charging function of the intended charging device is activated and the intended charging device is controlled to perform according to the current upper limit value. Recharge. It can be understood that in this case, there is no need to adjust the charging current of other charging devices in the phase line, just start the charging function of the intended charging device and control the charging device to charge according to the upper limit of current. .
  • the present invention also provides a computer device.
  • the user device includes a memory, a processor, and a program stored in the memory and capable of running a charging method on the processor, and the processor runs the computer program to The computer device is caused to execute the above charging method.
  • the present invention also provides a storage medium on which the charging method program is stored, and when the charging method program is executed by a processor, the steps of the charging method as described above are implemented.
  • the charging method refer to the above-mentioned implementation manner, which will not be repeated here.
  • the charging method of the present invention can obtain the charging demand of the user, analyze whether the charging demand of the intended charging device can be satisfied according to the current available power and idle power of the phase line, and calculate the intended charging current, so that the phase line
  • the charging function of the device to be charged is activated within the allowable range of electric power, which ensures the flexibility of charging and the intelligence of charging management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种电力调控系统,包括电力获取单元,用于获取实时电力负载;实时电力负载包括第一实时电力负载、第二实时电力负载和第三实时电力负载中的至少两个;比较单元,用于分别比较第一实时电力负载、第二实时电力负载和第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较第一实时电力负载、第二实时电力负载和第三实时电力负载中的至少两个与对应的电流调升阈值得出比较结果;处理单元,用于根据比较结果计算调降电流或调升电流;调控单元,用于根据调降电流调降充电电流或根据调升电流调升充电电流。本发明的电力调控系统实现了电力调控智能化。此外,还提供一种充电管理方法、充电控制系统、充电方法、计算机设备及存储介质。

Description

电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质 技术领域
本发明涉及智慧充电领域,具体而言,主要涉及一种根据社区实时电力负载情况进行调控的电力调控系统、充电管理方法、充电控制系统、充电方法、计算机设备及存储介质。
背景技术
随着科技水平和人们生活水平的不断提高,越来越多的人开始购买汽车来提升生活的便利性,改善生活质量。但是由于目前汽车容量的不断增多,汽车尾气的排放给生态环境带来了较大影响。为了改善日益恶化的生态环境,电动汽车营运而生,电动汽车通过电力来提供能源驱动车辆行驶,在行驶过程中不会产生汽车尾气,对减少汽车尾气和改善环境污染具有较大作用。但是受限于电动汽车电池技术的发展瓶颈,目前电动汽车的续航里程普遍较低,不能满足人们长时间长距离的使用,因此较多的电动车主会在居住的社区内对电动汽车进行充电以满足使用需求。
技术问题
但是,目前的小区一般通过变压器、回路、相线的形式将电力线路上的电力分配至不同的充电设备以为用户的车辆进行充电。但是由于在充电设备使用的过程中,由于充电设备故障或其他原因可能会导致部分充电设备的电力无限制地增大从而导致相线、回路甚至变压器的电力负载过高,从而导致损坏变压器的情况发生。因此如何针对社区电力情况进行充电调控将成为智慧社区充电设施建设的一个重要课题。
技术解决方案
本发明的目的在于克服现有技术的缺陷,提供一种电力调控系统及充电管理方法从而根据社区实时电力负载情况进行电力调控;本发明进一步提供一种充电控制系统及充电方法,根据实时电力负载情况对新接入的充电设备进行充电控制。
为了实现上述目的,本发明采用如下的技术方案:
第一方面,本发明提供一种电力调控系统,包括:
电力获取单元,用于获取实时电力负载;
所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载中的至少两个;
比较单元,用于分别比较所述第一实时电力负载、第二实时电力负载和所第一方面,述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果;
处理单元,用于根据所述比较结果计算调降电流或调升电流;
调控单元,用于根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流。
可选地,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少两个,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值中的至少两个,所述第一实时电力负载与所述第一电流调降阈值及所述第一电流调升阈值对应,所述第二实时电力负载与所述第二电流调降阈值及所述第二电流调升阈值对应,所述第三实时电力负载与所述第三电流调降阈值及所述第三电流调升阈值对应。
可选地,所述比较单元,用于在所述实时电力负载中的任意一个小于对应的所述电流调升阈值时得出电流欠载的比较结果,和/或在所述实时电力负载中的任意一个大于对应的所述电流调降阈值时得出电流过载的比较结果,和/或在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且不大于对应的所述电流调降阈值时得出电流正常的比较结果。
可选地,所述处理单元,用于当所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或,
所述比较结果为电流欠载时根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
可选地,所述第一集合内的充电设备为接入同一相线的充电设备,所述第二集合内的充电设备为接入同一回路的充电设备,所述第三集合内的充电设备为接入同一变压器的充电设备。
可选地,所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少两个,所述比较单元用于当所述比较结果为电流过载时,根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流;
或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
或根据所述第二实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流。
可选地,所述第一调降电流为(I 1-I A)/N 1,所述第二调降电流为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。
可选地,所述调控单元,用于在所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
可选地,所述调控单元,用于在所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,所述调控单元,用于在所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,所述调控单元,用于在所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少两个,所述比较单元用于当所述比较结果为电流欠载时,根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流;
或根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
或根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
或根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流。
可选地,所述调控单元,所述第一调升电流为(I a-I 1)/N 1,所述第二调升电流为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。
可选地,所述调控单元,用于在所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
可选地,所述调控单元,用于在所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
可选地,所述调控单元,用于在所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的回路上的所有充电设备的充电电流。
可选地,所述调控单元,用于在所述相线、所述回路和所述变压器均存在电流欠载时,按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
可选地,所述调控单元用于在所述实时电力负载超过所述电流调降阈值时立即调降所述充电设备的充电电流,和/或在所述实时电力负载不超过所述电流调升阈值的状态持续预设时间后调升所述充电设备的充电电流。
第二方面,本发明提供一种充电管理方法,包括:
获取实时电力负载, 所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载中的至少两个;
分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果;
根据所述比较结果计算调降电流或调升电流;
根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流。
可选地,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少两个,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值中的至少两个,所述第一实时电力负载与所述第一电流调降阈值及所述第一电流调升阈值对应,所述第二实时电力负载与所述第二电流调降阈值及所述第二电流调升阈值对应,所述第三实时电力负载与所述第三电流调降阈值及所述第三电流调升阈值对应。
可选地,所述实时电力负载中的任意一个小于对应的所述电流调升阈值时得出电流欠载的比较结果,和/或所述实时电力负载中的任意一个大于对应的所述电流调降阈值时得出电流过载的比较结果,和/或在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且不大于对应的所述电流调降阈值时得出电流正常的比较结果。
可选地,根据所述比较结果计算调降电流或调升电流,包括:
所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或,
所述比较结果为电流欠载时根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
可选地,所述第一实时电力负载为第一集合内所述充电设备的实时电力负载之和,所述第二实时电力负载为第二集合内的充电设备的实时电力负载之和,所述第三实时电力负载为第三集合内的充电设备的实时电力负载之和,所述第二集合包括至少一个所述第一集合,所述第三集合包括至少一个所述第二集合。
可选地,所述第一集合内的充电设备为接入同一相线的充电设备,所述第二集合内的充电设备为接入同一回路的充电设备,所述第三集合内的充电设备为接入同一变压器的充电设备。
可选地,分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果,包括:
所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少两个;
所述比较结果为电流过载时,根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流;
或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流。
可选地,所述第一调降电流为(I 1-I A)/N 1,所述第二调降电流为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可选地,分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果,包括:
所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少两个;
所述比较结果为电流欠载时,根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流;
所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流。
可选地,所述第一调升电流为(I a-I 1)/N 1,所述第二调升电流为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的回路上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述相线、所述回路和所述变压器均存在电流欠载时,按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
可选地,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
所述比较结果为电流过载时立即调降所述充电设备的充电电流,和/或在所述比较结果为电流过载且所述电流过载状态持续预设时间后调升所述充电设备的充电电流。
第三方面,本发明提供一种计算机设备,所述计算机设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述计算机设备执行本发明第二方面所述的充电管理方法。
第四方面,本发明提供一种存储介质,用于存储计算机程序,所述计算机程序被执行时实现本发明第二方面所述的充电管理方法。
第五方面,本发明提供一种充电控制系统,包括:
充电需求获取单元,用于获取相线内接入的拟充电设备的充电需求;
分析单元,用于接收所述充电需求并计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流;
所述空闲电流为所述相线的第一电流调降阈值与第一实时电力负载的差值,所述可用电流为所述空闲电流与电流调整值之和,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和与所述可调电流值为所述充电设备的充电电流与电流启动值的差值;
控制单元,用于根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
可选地,所述分析单元用于在所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。
可选地,所述控制单元用于在所述拟充电电流为零时,关闭所述拟充电设备的充电功能。
可选地,所述分析单元用于在所述可用电流不小于所述电流启动值且所述空闲电流小于所述电流启动值时,得出所述拟充电电流为所述第一电流调降阈值与充电设备总数量的比值,所述充电设备的总数量为所述相线内所有充电设备的数量和所述拟充电设备的数量之和。
可选地,所述控制单元用于在所述拟充电电流为为所述第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
可选地,所述分析单元用于在所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。
可选地,所述控制单元用于在所述拟充电电流为所述第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或电流上限值进行充电。
可选地,所述控制单元用于在所述拟充电电流大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电。
可选地,所述控制单元用于在所述拟充电电流不大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
可选地,所述分析单元用于在所述空闲电流不小于所述电流上限值时,得出所述拟充电电流为所述电流上限值。
可选地,所述控制单元用于在所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。
第六方面,本发明提供一种充电方法,包括:
获取相线内接入的拟充电设备的充电需求;
计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,所述空闲电流为所述相线的第一电流调降阈值与第一实时电力负载的差值,所述可用电流为所述空闲电流与电流调整值之和,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和,所述可调电流值为所述充电设备的充电电流与电流启动值的差值;
根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
可选地,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。
可选地,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为零时,关闭所述拟充电设备的充电功能。
可选地,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述可用电流不小于所述电流启动值且所述空闲电流小于所述电流启动值时,根据所述可用电流和所述空闲电流得出所述拟充电电流为第一电流调降阈值与充电设备总数量的比值,所述充电设备总数量为所述相线内所有充电设备的数量和所述拟充电设备的数量之和。
可选地,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或电流上限值进行充电。
可选地,所述拟充电电流大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电。
可选地,所述拟充电电流不大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
可选地,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。
可选地,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为所述电流启动值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流启动值进行充电。
可选地,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述空闲电流不小于所述电流上限值时,得出所述拟充电电流为所述电流上限值。
可选地,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。
第七方面,本发明提供一种计算机设备,所述计算机设备包括存储器以及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述计算机设备执行本发明第六方面所述的充电方法。
第八方面,本发明提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被执行时实现本发明第六方面所述的充电方法。
有益效果
本发明的提供的电力调控系统及充电管理方法,能够获取实时电力负载情况,比较实时电力负载情况与电流调降阈值和电流调升阈值的关系,并根据所述比较关系计算调降电流或调升电流,从而调升所述充电设备的充电电流或调降所述充电设备的充电电流。本发明提供的充电控制系统及充电方法,能够根据所述相线内的空闲电流和/或可用电流计算拟充电电流,并根据所述拟充电电流控制所述拟充电设备的开启或关闭,保证了社区用电安全,实现了社区充电控制的智能化。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施方式,因此不应被看作是对本发明范围的限定。
图1为本发明第一实施方式的电力调控系统的结构框图;
图2为本发明第一实施方式的电力网络的架构拓扑图;
图3为本发明第二实施方式的充电管理方法的流程示意图;
图4为本发明第三实施方式的充电控制系统的结构框图;
图5为本发明第四实施方式的充电方法的流程示意图。
本发明的实施方式
在下文中,将更全面地描述本发明的各种实施方式。本发明可具有各种实施方式,并且可在其中做出调整和改变。然而,应理解:不存在将本发明的各种实施方式限于在此公开的特定实施方式的意图,而是应将本发明理解为涵盖落入本发明的各种实施方式的精神和范围内的所有调整、等同物和/或可选方案。
在下文中,可在本发明的各种实施方式中使用的术语“包括”或“可包括”指示所公开的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的增加。此外,如在本发明的各种实施方式中所使用,术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本发明的各种实施方式中,表述“A或/和B”包括同时列出的文字的任何组合或所有组合,例如,可包括A、可包括B或可包括A和B二者。
在本发明的各种实施方式中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施方式中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施方式的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:在本发明中,除非另有明确的规定和定义,“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接、也可以是可拆卸连接、或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也是可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,本领域的普通技术人员需要理解的是,文中指示方位或者位置关系的术语为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的各种实施方式中使用的术语仅用于描述特定实施方式的目的并且并非意在限制本发明的各种实施方式。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施方式所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施方式中被清楚地限定。
请参考图1,图1示出了本发明第一实施方式的电力调控系统的结构框图。
在本实施方式中,在社区中,为了便于居民充电,在社区停车位附近设置充电设备以便于用户将车辆停入停车位后使用所述充电设备进行充电。进一步地,所述充电设备均接入电力调控系统100中,以接收所述电力调控系统100的调控指令进行充电调控。
进一步地,所述电力调控系统100包括电力获取单元10、比较单元20、处理单元30和调控单元40。所述电力获取单元10用于获取社区充电设备的实时电力负载,并传送至所述比较单元20。所述比较单元20与所述电力获取单元10电性连接,用于接收所述实时电力负载,并根据预存储的电流调降阈值和/或电流调升阈值进行比较以得出比较结果。所述处理单元30与所述比较单元20电性连接,用于接收所述比较单元20的比较结果并计算调升电流或调降电流。所述调控单元40与所述处理单元30电性连接,以根据所述调升电流调升所述充电设备的充电电流或根据所述调降电流调降所述充电设备的充电电流。
进一步地,所述电力获取单元10设置在所述社区电力线路上,能够获取所述社区内所有充电设备的实时电力负载,即充电电流。进一步地,请结合参考图2,在本实施方式中,所述充电设备接入社区电力网络中获取电力并为车辆进行充电,所述电力网络包括变压器、回路和相线,所述充电设备接入所述相线中,并通过所述相线接入所述回路,所述回路再接入所述变压器中,所述变压器与输电线缆连接以获取电力并传送至所述充电设备。进一步地,在本实施方式中,所述电力网络包括至少一个所述变压器,一个所述变压器包括至少一条所述回路,一条回路包括至少一条所述相线,一条所述相线包括至少一个所述充电设备。
进一步地,在本实施方式中,所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载,所述第一实时电力负载为第一集合内所述充电设备的实时电力负载之和,所述第二实时电力负载为第二集合内的充电设备的实时电力负载之和,所述第三实时电力负载为第三集合内的充电设备的实时电力负载之和。进一步地,所述第二集合包括至少一个所述第一集合,所述第三集合包括至少一个所述第二集合。
进一步地,在本实施方式中,所述第一实时电力负载为相线上的实时电力负载,所述第二实时电力负载为回路上的实时电力负载,所述第三实时电力负载为变压器的实时电力负载,因此所述第一集合内的充电设备为接入同一所述相线的充电设备,所述第二集合内的充电设备为接入同一所述回路的充电设备,所述第三集合内的充电设备为接入同一所述变压器的充电设备。进一步地,可以理解,由于所述实时电力负载时用于监控所述相线、所述回路、所述变压器上的电流过载或电流欠载情况,因此若所述相线、所述回路或所述变压器上的电力容量足够大,不会出现电流过载,则不需要监控所述其电力过载情况;同理,若所述相线、所述回路或所述变压器上的充电设备上无需调升充电功率,则不需要监控器电力欠载情况,因此所述实时电力负载仅需包括需要进行充电调控的相线、回路或变压器的实时电力负载即可,其他无需调控的实时电力负载可以省略,即所述实时电力负载包括所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少一个或至少两个。
进一步地,由于所述相线包括至少一个所述充电设备,所述第一集合内的充电设备为接入同一所述相线的充电设备,因此所述相线上的实时电力负载为接入所述相线上的所述充电设备的实时电力负载之和;同理,所述回路的实时电力负载为接入所述回路的所述相线的实时电力负载之和;同理,所述变压器的实时电力负载为接入所述变压器的所述回路的实时电力负载之和。
进一步地,所述电力获取单元10获取到所述充电设备的实时电力负载后,能够根据所述充电设备与相线、回路和变压器的从属关系从而计算出所述电网中所有相线的实时电力负载,即第一实时电力负载,所有回路的实时电力负载,即第二实时电力负载,所有变压器的实时电力负载,即第三实时电力负载,并将所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载的相关信息传送至所述比较单元20。具体地,当所述电力获取单元10获取到所述充电设备的实时电力负载后,同时能够获取到所述充电设备的编号信息,并识别出所述充电设备接入哪一条相线、哪一条回路及哪一个充电设备,从而将接入同一条所述相线的充电设备的实时电力负载相加得到所述相线的所述第一实时电力负载,将接入同一条所述回路的充电设备的实时电力负载相加得到所述回路的所述第二实时电力负载,将接入同一个所述变压器的充电设备的实时电力负载相加得到所述变压器的所述第三实时电力负载。
进一步地,所述比较单元20中存储有电流调降阈值和电流调升阈值,以用于将所述实时电力负载与所述电流调降阈值和所述电流调升阈值分别进行比较以得出比较结果。进一步地,在本实施方式中,所述电流调降阈值为所述相线、所述回路及所述变压器的充电电流上限警戒值,即超过所述电流调降阈值则说明所述相线、和/或所述回路、和/或所述变压器的充电电流过高,需要进行充电调控,从而防止所述相线、和/或所述回路、和/或所述变压器出现跳闸或损坏。进一步地,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值,所述第一电流调降阈值为所述相线的充电电流上限警戒值,所述第二电流调降阈值为所述回路的充电电流上限警戒值,所述第三电流调降阈值为所述变压器的充电电流上限警戒值。
进一步地,在本实施方式中,所述电流调升阈值为所述相线、所述回路及所述变压器的充电电流下限警戒值,即不超过所述电流调升阈值则说明所述相线、和/或所述回路、和/或所述变压器的充电电流过低,需要进行充电调控,从而防止所述相线、和/或所述回路、和/或所述变压器内的充电设备的充电电流过低导致车辆的充电效率较低。进一步地,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值,所述第一电流调升阈值为所述相线的充电电流下限警戒值,所述第二电流调升阈值为所述回路的充电电流下限警戒值,所述第三电流调升阈值为所述变压器的充电电流下限警戒值。
进一步地,所述第一电流调降阈值和所述第一电流调升阈值与所述第一实时电力负载对应,用于判断所述第一实时电力负载对应的所述相线是否需要进行充电调控;所述第二电流调降阈值和所述第二电流调升阈值与所述第二实时电力负载对应,用于判断所述第二实时电力负载对应的所述回路是否需要进行充电调控;所述第三电流调降阈值和所述第三电流调升阈值与所述第三实时电力负载对应,用于判断所述第三实时电力负载对应的所述回路是否需要进行充电调控。
进一步地,在本实施方式中,由于所述实时电力负载包括所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少一个或至少两个,而且由于所述电流调降阈值和所述电流调升阈值是与所述实时电力负载对应设置,因此所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少一个或至少两个,所述电流调升阈值包括所述第一电流调升阈值、所述第二电流调升阈值和所述第三电流调升阈值中的至少一个或至少两个。
进一步地,在本实施方式中,所述比较单元20用于比较所述实时电力负载与电流调降阈值,和/或比较所述实时电力负载与所述电流调升阈值并得出比较结果。具体地,所述比较单元20在接收到所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载后将所述第一实时电力负载分别与所述第一电流调降阈值和所述第一电流调升阈值进行比较,和/或将所述第二实时电力负载分别与所述第二电流调降阈值和所述第二电流调升阈值进行比较,和/或将所述第三实时电力负载分别与所述第三电流调降阈值和所述第三电流调升阈值进行比较以得出比较结果。
进一步地,在本实施方式中,所述比较单元20在所述实时电力负载中的任意一个小于对应的所述电流调升阈值,则判断所述相线、回路和变压器中的至少一个存在电流欠载,并得出电流欠载的比较结果;所述比较单元20在实时电力负载中的任意一个大于对应的所述电流调降阈值时,则判断所述相线、回路和变压器中的至少一个存在电流过载,并得出电流过载的比较结果;所述比较单元20在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且均不大于对应的所述电流调降阈值时,则判断所述相线、回路和变压器的电流正常,并得出电流正常的比较结果。
进一步地,所述处理单元30用于接收所述比较单元20传送的比较结果后,并当所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或当所述比较结果为电流欠载时,根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
进一步地,在本实施方式中,所述调降电流与所述实时电力负载和电流调降阈值对应设置,即通过一个所述实时电力负载和一个电流调降阈值能够得出一个所述调降电流。因此,在本实施方式中,所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少一个或至少两个,所述第一调降电流与所述第一实时电力负载对应,为所述第一实时电力负载对应的相线上的需调降的电流;所述第二调降电流与所述第二实时电力负载对应,为所述第二实时电力负载对应的回路上的需调降的电流;所述第三调降电流与所述第三实时电力负载对应,为所述第三实时电力负载对应的变压器上的需调降的电流。
进一步地,当所述实时电力负载仅包括所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载中的一个时,即仅有所述相线、所述回路和所述变压器中的一个存在电流过载,所述处理单元30根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流或根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于所述调控单元40根据所述第一调降电流或所述第二调降电流或所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第二实时电力负载时,即仅有所述相线和所述回路存在电流过载且所述变压器不存在电流过载,此时所述处理单元30根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流,并便于所述调控单元40根据所述第一调降电流和所述第二调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第三实时电力负载时,即仅有所述相线和所述变压器存在电流过载且所述回路不存在电流过载,所述处理单元30根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于所述调控单元40根据所述第一调降电流和所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第二实时电力负载和所述第三实时电力负载时,即仅有所述回路和所述变压器存在电流过载且所述相线不存在电流过载,所述处理单元30根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于所述调控单元40根据所述第二调降电流和所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载时,即所述相线、所述回路和所述变压器均存在电流过载,所述处理单元30根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于所述调控单元40根据第一调降电流、第二调降电流和所述第三调降电流进行充电调控。
进一步地,此时所述处理单元30计算出所述第一调降电流、所述第二调降电流和所述第三调降电流并传送至所述调控单元40进行电力调控。
进一步地,在本实施方式中,所述第一调降电流可以为(I 1-I A)/N 1,所述第二调降电流可以为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流可以为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。具体地,例如所述第一实时电力负载I 1为230A,所述第一电流调降阈值I A为200A,所述第一集合的充电设备的数量N 1为4个,所述第二实时电力负载I 2为550A,所述第二电流调降阈值I B为500A,所述第三实时电力负载I 3为1060A,所述第三电流调降阈值I C为1000A时,则所述第一调降电流可以为(230A-200A)/4=7.5A,所述第二调降电流可以为(550A-500A)*230A/(550A*4)=5.22A,所述第三调降电流可以为(1060A-1000A)*230A/(1060A*4)=3.25A。
同理,在本实施方式中,所述调升电流与所述实时电力负载和电流调升阈值对应设置,即通过一个所述实时电力负载和一个电流调升阈值能够得出一个所述调升电流。因此,在本实施方式中,所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少一个或至少两个,所述第一调升电流与所述第一实时电力负载对应,为所述第一实时电力负载对应的相线上的需调升的电流;所述第二调升电流与所述第二实时电力负载对应,为所述第二实时电力负载对应的回路上的需调升的电流;所述第三调升电流与所述第三实时电力负载对应,为所述第三实时电力负载对应的变压器上的需调升的电流。
进一步地,当所述实时电力负载仅包括所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载中的一个时,即仅有所述相线、所述回路或所述变压器中的一个存在电流欠载,所述处理单元30根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流或根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流或根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于所述调控单元40根据所述第一调升电流或所述第二调升电流或所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第二实时电力负载时,即仅有所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载,所述处理单元30根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流,并便于所述调控单元40根据所述第一调升电流和所述第二调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第三实时电力负载时,即仅有所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载,所述处理单元30根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于所述调控单元40根据所述第一调升电流和所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第二实时电力负载和所述第三实时电力负载时,即仅有所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载,所述处理单元30根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于所述调控单元40根据所述第二调升电流和所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载时,即所述相线、所述回路和所述变压器均存在电流欠载,所述处理单元30根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于所述调控单元40根据第一调升电流、第二调升电流和所述第三调升电流进行充电调控。
进一步地,此时所述处理单元30计算出所述第一调升电流、所述第二调升电流和所述第三调升电流后传送至所述调控单元40进行电力调控。
进一步地,在本实施方式中,所述第一调升电流可以为(I a-I 1)/N 1,所述第二调升电流可以为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流可以为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。具体地,例如所述第一实时电力负载I 1为80A,所述第一电流调升阈值I a为120A,所述第一集合的充电设备的数量N 1为5个,所述第二实时电力负载I 2为250A,所述第二电流调升阈值I b为300A,所述第三实时电力负载I 3为550A,所述第三电流调升阈值I c为600A时,则所述第一调升电流可以为(120A-80A)/5=8A,所述第二调升电流可以为(300A-250A)*120A/(250A*5)=4.8A,所述第三调升电流可以为(600A-550A)*120A/(550A*5)=2.18A。
进一步地,所述调控单元40用于根据所述第一调降电流、所述第二调降电流、所述第三调降电流调降所述充电设备的充电电流或根据所述第一调升电流、所述第二调升电流、所述第三调升电流调升所述充电设备的充电电流。
进一步地,所述调控单元40在调降所述充电设备的充电电流时需要先比较所述第一调降电流、所述第二调降电流和所述第三调降电流并选取所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值最大的一个调降所述充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述相线存在电流过载时,根据所述第一调降电流调降所述相线内的充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述回路存在电流过载时,根据所述第二调降电流调降所述回路内的充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述变压器存在电流过载时,根据所述第三调降电流调降所述回路内的充电设备的充电电流。
进一步地,所述调控单元40用于在所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
进一步地,所述调控单元40用于在所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
进一步地,所述调控单元40用于在所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
进一步地,所述调控单元40用于在所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可以理解,所述调控单元40在所述相线、所述回路和所述变压器中一个存在电流过载时,直接根据所述第一调降电流或所述第二调降电流或所述第三调降电流调升所述相线或所述回路或所述变压器上的充电设备的充电电流,从而防止所述相线、所述回路和所述变压器的电流过载。所述调控单元40在所述相线、所述回路和所述变压器中的至少两个存在电流过载时,通过比较发生电流过载的相线、回路或变压器的调降电流,并选取所述调降电流中较大的一个调降所述相线、所述回路或所述变压器的充电设备的充电电流。因此,不仅能够调降所述回路中存在电流过载的相线上的充电设备的充电电流,而且能够调降所述回路和/或变压器中不存在电流过载的相线的充电设备的充电电流,从而使得存在电流过载的相线上的第一实时电力负载降低,同时使得存在电流过载的所述回路的第二实时电力负载和/或第三实时电力负载降低,防止电流过载。
进一步地,所述调控单元40在调升所述充电设备的充电电流时需要先比较所述第一调升电流、所述第二调升电流和所述第三调升电流并选取所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升所述充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述相线存在电流欠载时,根据所述第一调升电流调升所述相线内的充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述回路存在电流欠载时,根据所述第二调升电流调升所述回路内的充电设备的充电电流。
进一步地,所述调控单元40用于在仅有所述变压器存在电流欠载时,根据所述第三调升电流调升所述变压器内的充电设备的充电电流。
进一步地,所述调控单元40用于在所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
进一步地,所述调控单元40用于在所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
进一步地,所述调控单元40用于在所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
进一步地,可以理解,所述调控单元40用于在所述相线、所述回路和所述变压器中的一个存在电流欠载时,直接根据所述第一调升电流或所述第二调升电流或所述第三调升电流调升所述相线或所述回路或所述变压器上的充电设备的充电电流,从而提高充电效率。所述调控单元40在所述相线、所述回路和所述变压器中的至少两个存在电流欠载时,通过比较发生电流欠载的相线、回路或变压器的调升电流,并选取所述调升电流中较小的一个调升所述相线或所述回路充电设备的充电电流,而不调升未存在电流欠载的相线或回路的充电设备的充电电流。因此,不仅提高所述变压器内存在电流欠载的回路或相线的第一实时电力负载或第二实时电力负载,进而提高存在电流欠载的相线上的充电设备的充电效率,而且由于仅调升存在电流欠载的相线或回路上的充电设备的充电电流,而且按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的进行调升,从而使得在调升所述充电设备的充电电流后不会出现电流过载的情况,保证了充电调控的安全性。
进一步地,在本实施方式中,所述调控单元40进一步用于在所述比较结果为电流过载时立即调降所述充电设备的充电电流,和/或在所述比较结果为电流过载且所述电流过载状态持续预设时间后调升所述充电设备的充电电流。可以理解,当所述比较结果为电流过载,则说明所述相线、回路或变压器中至少一个存在电流过载,此时需要立即调降所述充电设备的充电电流,以防止电流过载导致所述相线、回路或变压器跳闸,从而影响所述充电设备工作。当所述比较结果为电流欠载,说明此时相线、回路或变压器中至少一个存在电流欠载,当电流欠载情况持续预设时间,则说明此时整个系统中电流在持续下降,此时再调升所述充电设备的充电电流,以提高所述充电设备的充电效率。
本发明的电力调控系统能够获取相线、回路和变压器上的实时电力负载,并比较所述实时电力负载与所述电流调降阈值电流调降阈值和所述电流调升阈值电流调升阈值的关系,并在存在电流过载时调降部分充电设备的充电电流,在存在电流欠载时调升部分充电设备的充电电流,以在提高充电效率的情况下保证电网的用电安全,实现了电力调控的智能化。
请参考图3,本发明第二实施方式提供一种充电管理方法,所述充电方法,应用于前述充电电力调控系统的任意实施方式或实施方式的排列、组合,包括以下步骤:
步骤S210:获取实时电力负载。
在社区中,为了便于居民充电,在所述社区内的车位处设置充电设备以为停放在所述车位的车辆进行充电。所述充电设备接入电力网络中获取电力并为车辆进行充电,所述电力网络包括变压器、回路和相线,所述充电设备接入所述相线中,并通过所述相线接入所述回路,所述回路再接入所述变压器中,所述变压器与输电线缆连接以获取电力并传送至所述充电设备。进一步地,在本实施方式中,所述电力网络至少包括一个所述变压器,一个所述变压器包括至少一条所述回路,一条回路包括至少一条所述相线,一条所述相线包括至少一个所述充电设备。
进一步地,在本实施方式中,所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载,所述第一实时电力负载为第一集合内所述充电设备的实时电力负载之和,所述第二实时电力负载为第二集合内的充电设备的实时电力负载之和,所述第三实时电力负载为第三集合内的充电设备的实时电力负载之和,所述第二集合包括至少一个所述第一集合,所述第三集合包括至少一个所述第二集合。
进一步地,在本实施方式中,所述第一实时电力负载为相线上的实时电力负载,所述第二实时电力负载为回路上的实时电力负载,所述第三实时电力负载为变压器的实时电力负载,因此所述第一集合内的充电设备为接入同一所述相线的充电设备,所述第二集合内的充电设备为接入同一所述回路的充电设备,所述第三集合内的充电设备为接入同一所述变压器的充电设备。进一步地,可以理解,由于所述实时电力负载时用于监控所述相线、所述回路、所述变压器上的电流过载或电流欠载情况,因此若所述相线、所述回路或所述变压器上的电力容量足够大,则不需要监控所述其电力过载情况;同理,若所述相线、所述回路或所述变压器上的充电设备上无需调升充电功率,则不需要监控器电力欠载情况,因此所述实时电力负载仅需包括需要进行充电调控的相线、回路或变压器的实时电力负载,其他无需调控的实时电力负载可以省略,即所述实时电力负载包括所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少一个或至少两个。
进一步地,由于所述相线包括至少一个所述充电设备,所述第一集合内的充电设备为接入同一所述相线的充电设备,因此所述相线上的实时电力负载为接入所述相线上的所述充电设备的实时电力负载之和;同理,所述回路的实时电力负载为接入所述回路的所述相线的实时电力负载之和;同理,所述变压器的实时电力负载为接入所述变压器的所述回路的实时电力负载之和。
进一步地,在本实施方式中,获取所述实时电力负载之前需要先获取接入所述电力网络的所有所述充电设备的实时电力负载,再根据所述充电设备在电网与相线、回路和变压器的关系从而计算出所述电网中所有相线的实时电力负载,即第一实时电力负载,所有回路的实时电力负载,即第二实时电力负载,所有变压器的实时电力负载,即第三实时电力负载。
步骤S220:分别比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果。
进一步地,获取到所述实时电力负载后需要将所述实时电力负载与预存储的所述电流调降阈值和所述电流调升阈值分别进行比较以得出比较结果。进一步地,在本实施方式中,所述电流调降阈值为所述相线、所述回路及所述变压器的充电电流上限警戒值,即超过所述电流调降阈值则说明所述相线、和/或所述回路、和/或所述变压器的充电电流过高,需要进行充电调控,从而防止所述相线、和/或所述回路、和/或所述变压器出现跳闸或损坏。进一步地,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值,所述第一电流调降阈值为所述相线的充电电流上限警戒值,所述第二电流调降阈值为所述回路的充电电流上限警戒值,所述第三电流调降阈值为所述变压器的充电电流上限警戒值。
进一步地,在本实施方式中,所述电流调升阈值为所述相线、所述回路及所述变压器的充电电流下限警戒值,即不超过所述电流调升阈值则说明所述相线、和/或所述回路、和/或所述变压器的充电电流过低,需要进行充电调控,从而防止所述相线、和/或所述回路、和/或所述变压器内的充电设备的充电电流过低导致车辆的充电效率较低。进一步地,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值,所述第一电流调升阈值为所述相线的充电电流下限警戒值,所述第二电流调升阈值为所述回路的充电电流下限警戒值,所述第三电流调升阈值为所述变压器的充电电流下限警戒值。
进一步地,所述第一电流调降阈值和所述第一电流调升阈值与所述第一实时电力负载对应,用于判断所述第一实时电力负载对应的所述相线是否需要进行充电调控;所述第二电流调降阈值和所述第二电流调升阈值与所述第二实时电力负载对应,用于判断所述第二实时电力负载对应的所述回路是否需要进行充电调控;所述第三电流调降阈值和所述第三电流调升阈值与所述第三实时电力负载对应,用于判断所述第三实时电力负载对应的所述回路是否需要进行充电调控。
进一步地,在本实施方式中,由于所述实时电力负载包括所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少一个或至少两个,而且由于所述电流调降阈值和所述电流调升阈值是与所述实时电力负载对应设置,因此所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少一个或至少两个,所述电流调升阈值包括所述第一电流调升阈值、所述第二电流调升阈值和所述第三电流调升阈值中的至少一个或至少两个。
进一步地,在接收到所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载后将所述第一实时电力负载分别与所述第一电流调降阈值和所述第一电流调升阈值进行比较,和/或将所述第二实时电力负载分别与所述第二电流调降阈值和所述第二电流调升阈值进行比较,和/或将所述第三实时电力负载分别与所述第三电流调降阈值和所述第三电流调升阈值进行比较以得出比较结果。
进一步地,在本实施方式中,所述实时电力负载中的任意一个小于对应的所述电流调升阈值,则判断所述相线、回路和变压器中的至少一个存在电流欠载,并得出电流欠载的比较结果;在实时电力负载中的任意一个大于对应的所述电流调降阈值时,则判断所述相线、回路和变压器中的至少一个存在电流过载,并得出电流过载的比较结果;在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且均不大于对应的所述电流调降阈值时,则判断所述相线、回路和变压器的电流正常,并得出电流正常的比较结果。
步骤S230:根据所述比较结果计算调降电流或调升电流。
进一步地,当当所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或当所述比较结果为电流欠载时,根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
进一步地,在本实施方式中,所述调降电流与所述实时电力负载和电流调降阈值对应设置,即通过一个所述实时电力负载和一个电流调降阈值能够得出一个所述调降电流。因此,在本实施方式中,所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少一个或至少两个,所述第一调降电流与所述第一实时电力负载对应,为所述第一实时电力负载对应的相线上的需调降的电流;所述第二调降电流与所述第二实时电力负载对应,为所述第二实时电力负载对应的回路上的需调降的电流;所述第三调降电流与所述第三实时电力负载对应,为所述第三实时电力负载对应的变压器上的需调降的电流。
进一步地,当所述实时电力负载仅包括所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载中的一个时,即仅有所述相线、所述回路和所述变压器中的一个存在电流过载,所述处理单元30根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流或根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于根据所述第一调降电流或所述第二调降电流或所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第二实时电力负载时,即仅有所述相线和所述回路存在电流过载且所述变压器不存在电流过载,此时根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流,并便于根据所述第一调降电流和所述第二调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第三实时电力负载时,即仅有所述相线和所述变压器存在电流过载且所述回路不存在电流过载,此时根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于根据所述第一调降电流和所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第二实时电力负载和所述第三实时电力负载时,即仅有所述回路和所述变压器存在电流过载且所述相线不存在电流过载,此时根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并便于后续根据所述第二调降电流和所述第三调降电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载时,即所述相线、所述回路和所述变压器均存在电流过载,此时根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流,并根据第一调降电流、第二调降电流和所述第三调降电流进行充电调控。
进一步地,在本实施方式中,所述第一调降电流可以为(I 1-I A)/N 1,所述第二调降电流可以为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流可以为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。具体地,例如所述第一实时电力负载I 1为230A,所述第一电流调降阈值I A为200A,所述第一集合的充电设备的数量N 1为4个,所述第二实时电力负载I 2为550A,所述第二电流调降阈值I B为500A,所述第三实时电力负载I 3为1060A,所述第三电流调降阈值I C为1000A时,则所述第一调降电流可以为(230A-200A)/4=7.5A,所述第二调降电流可以为(550A-500A)*230A/(550A*4)=5.22A,所述第三调降电流可以为(1060A-1000A)*230A/(1060A*4)=3.25A。
同理,在本实施方式中,所述调升电流与所述实时电力负载和电流调升阈值对应设置,即通过一个所述实时电力负载和一个电流调升阈值能够得出一个所述调升电流。因此,在本实施方式中,所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少一个或至少两个,所述第一调升电流与所述第一实时电力负载对应,为所述第一实时电力负载对应的相线上的需调升的电流;所述第二调升电流与所述第二实时电力负载对应,为所述第二实时电力负载对应的回路上的需调升的电流;所述第三调升电流与所述第三实时电力负载对应,为所述第三实时电力负载对应的变压器上的需调升的电流。
进一步地,当所述实时电力负载仅包括所述第一实时电力负载、所述第二实时电力负载、所述第三实时电力负载中的一个时,即仅有所述相线、所述回路或所述变压器中的一个存在电流欠载,此时根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流或根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流或根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于后续根据所述第一调升电流或所述第二调升电流或所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第二实时电力负载时,即仅有所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载,此时根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流,并便于所述调控单元40根据所述第一调升电流和所述第二调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载和所述第三实时电力负载时,即仅有所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载,此时根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于根据所述第一调升电流和所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第二实时电力负载和所述第三实时电力负载时,即仅有所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载,此时根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于根据所述第二调升电流和所述第三调升电流进行充电调控。
进一步地,所述实时电力负载包括所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载时,即所述相线、所述回路和所述变压器均存在电流欠载,此时根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流,并便于根据第一调升电流、第二调升电流和所述第三调升电流进行充电调控。
进一步地,在本实施方式中,所述第一调升电流可以为(I a-I 1)/N 1,所述第二调升电流可以为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流可以为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。具体地,例如所述第一实时电力负载I 1为80A,所述第一电流调升阈值I a为120A,所述第一集合的充电设备的数量N 1为5个,所述第二实时电力负载I 2为250A,所述第二电流调升阈值I b为300A,所述第三实时电力负载I 3为550A,所述第三电流调升阈值I c为600A时,则所述第一调升电流可以为(120A-80A)/5=8A,所述第二调升电流可以为(300A-250A)*120A/(250A*5)=4.8A,所述第三调升电流可以为(600A-550A)*120A/(550A*5)=2.18A。
进一步地,在调降所述充电设备的充电电流时需要先比较所述第一调降电流、所述第二调降电流和所述第三调降电流并选取所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值最大的一个调降所述充电设备的充电电流。
进一步地,在仅有所述相线存在电流过载时,根据所述第一调降电流调降所述相线内的充电设备的充电电流。
进一步地,在仅有所述回路存在电流过载时,根据所述第二调降电流调降所述回路内的充电设备的充电电流。
进一步地,在仅有所述变压器存在电流过载时,根据所述第三调降电流调降所述回路内的充电设备的充电电流。
进一步地,在所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
进一步地,在所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
进一步地,在所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
进一步地,在所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
可以理解,在所述相线、所述回路和所述变压器中一个存在电流过载时,直接根据所述第一调降电流或所述第二调降电流或所述第三调降电流调升所述相线或所述回路或所述变压器上的充电设备的充电电流,从而防止所述相线、所述回路和所述变压器的电流过载。在所述相线、所述回路和所述变压器中的至少两个存在电流过载时,通过比较发生电流过载的相线、回路或变压器的调降电流,并选取所述调降电流中较大的一个调降所述相线、所述回路或所述变压器的充电设备的充电电流。因此,不仅能够调降所述回路中存在电流过载的相线上的充电设备的充电电流,而且能够调降所述回路和/或变压器中不存在电流过载的相线的充电设备的充电电流,从而使得存在电流过载的相线上的第一实时电力负载降低,同时使得存在电流过载的所述回路的第二实时电力负载和/或第三实时电力负载降低,防止电流过载。
进一步地,在调升所述充电设备的充电电流时需要先比较所述第一调升电流、所述第二调升电流和所述第三调升电流并选取所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升所述充电设备的充电电流。
进一步地,在仅有所述相线存在电流欠载时,根据所述第一调升电流调升所述相线内的充电设备的充电电流。
进一步地,在仅有所述回路存在电流欠载时,根据所述第二调升电流调升所述回路内的充电设备的充电电流。
进一步地,在仅有所述变压器存在电流欠载时,根据所述第三调升电流调升所述变压器内的充电设备的充电电流。
进一步地,在所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
进一步地,在所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
进一步地,在所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
进一步地,可以理解,在所述相线、所述回路和所述变压器中的一个存在电流欠载时,直接根据所述第一调升电流或所述第二调升电流或所述第三调升电流调升所述相线或所述回路或所述变压器上的充电设备的充电电流,从而提高充电效率。在所述相线、所述回路和所述变压器中的至少两个存在电流欠载时,通过比较发生电流欠载的相线、回路或变压器的调升电流,并选取所述调升电流中较小的一个调升所述相线或所述回路充电设备的充电电流,而不调升未存在电流欠载的相线或回路的充电设备的充电电流。因此,不仅提高所述变压器内存在电流欠载的回路或相线的第一实时电力负载或第二实时电力负载,进而提高存在电流欠载的相线上的充电设备的充电效率,而且由于仅调升存在电流欠载的相线或回路上的充电设备的充电电流,而且按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的进行调升,从而使得在调升所述充电设备的充电电流后不会出现电流过载的情况,保证了充电调控的安全性。
进一步地,在本实施方式中,在所述实时电力负载大于所述电流调降阈值时立即调降所述充电设备的充电电流,和/或在所述实时电力负载不大于所述电流调升阈值的状态持续预设时间后调升所述充电设备的充电电流。可以理解,当所述实时电力负载大于所述电流调降阈值时,说明所述相线、回路或变压器中至少一个存在电流过载,此时需要立即调降所述充电设备的充电电流,以防止电流过载导致所述相线、回路或变压器跳闸,从而影响所述充电设备工作。当所述实时电力负载不大于所述电流调升阈值,说明此时相线、回路或变压器中至少一个存在电流欠载,当电流欠载情况持续预设时间,则说明此时整个系统中电流在持续下降,此时再调升所述充电设备的充电电流,以提高所述充电设备的充电效率。
进一步地,在本实施方式中,在所述比较结果为电流过载时立即调降所述充电设备的充电电流,和/或在所述比较结果为电流过载且所述电流过载状态持续预设时间后调升所述充电设备的充电电流。可以理解,当所述比较结果为电流过载,则说明所述相线、回路或变压器中至少一个存在电流过载,此时需要立即调降所述充电设备的充电电流,以防止电流过载导致所述相线、回路或变压器跳闸,从而影响所述充电设备工作。当所述比较结果为电流欠载,说明此时相线、回路或变压器中至少一个存在电流欠载,当电流欠载情况持续预设时间,则说明此时整个系统中电流在持续下降,此时再调升所述充电设备的充电电流,以提高所述充电设备的充电效率。
本发明的充电管理方法能够获取相线、回路和变压器上的实时电力负载,并比较所述实时电力负载与所述电流调降阈值电流调降阈值和所述电流调升阈值电流调升阈值的关系,并在存在电流过载时调降部分充电设备的充电电流,在存在电流欠载时调升部分充电设备的充电电流,以在提高充电效率的情况下保证电网的用电安全,实现了电力调控的智能化。
本发明还提出一种计算机设备,所述用户设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行充电管理方法的程序,所述处理器运行所述计算机程序以使所述计算机设备执行上述充电管理方法。
本发明还提出一种存储介质,所述存储介质上存储有所述充电管理方法程序,所述充电管理方法的程序被处理器执行时实现如上所述的充电管理方法的步骤。所述充电管理方法可参照上述实施方式,此处不再赘述。
请参考图4,本发明第三实施方式提供一种充电控制系统300,所述充电控制系统300用于根据本发明第一实施方式的电力调控系统100设置的第一电流调降阈值对新接入电网的充电设备进行充电控制。在本实施方式中,新接入电网的所述充电设备为拟充电设备。
进一步地,由于所述电力调控系统100中对于所述相线设置了第一电流调降阈值,因此当所述相线内新接入的拟充电设备需要从所述相线中获取电流进行充电,因此会导致所述相线上的第一实时电力负载增高,在所述第一实时电力负载持续增高出现电流过载时将会触发所述电力调控系统100对产生电流过载的相线、回路或变压器内的充电设备的充电调控,从而调降其他所述充电设备的充电电流,影响其他所述充电设备的充电效率,因此在所述相线内新接入所述拟充电设备时,需要根据所述相线的第一电流调降阈值对所述拟充电设备进行充电控制从而在不触发所述电力调控系统100的电力调控的情况下尽可能保证所述新接入的充电设备能够正常充电。
进一步地,在本实施方式中,所述充电控制系统300包括充电需求获取单元310、分析单元330和控制单元350,所述充电需求获取单元310用于获取新接入的拟充电设备的充电需求,并传送至所述分析单元330,所述分析单元330接收到所述充电需求后通过所述第一实施方式的电力调控系统100的电力获取单元10获取所述相线内所述充电设备的充电电流并得出所述拟充电电流,所述控制单元350根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
进一步地,在本实施方式中,所述充电设备设置电流启动值和电流上限值,所述充电设备的充电电流可在所述电流启动值和所述电流上限值之间进行调控,即调升或调降。具体地,在本实施方式中,所述电流启动值为6A,所述电流上限值为32A。可以理解,当所述充电设备的充电电流小于所述电流启动值时,所述充电设备则不能启动充电功能。
进一步地,用户在需要对车辆进行充电时,可以先将所述拟充电设备与所述车辆进行充电连接,再通过扫码或刷卡等方式开启所述拟充电设备。可以理解,当用户开启所述拟充电设备后,所述拟充电设备将充电需求发送至所述充电需求获取单元310,所述充电需求获取单元310即可获取到所述拟充电设备的充电需求。
进一步地,所述充电需求获取单元310接收到所述充电需求后将所述充电需求发送给所述分析单元330,所述分析单元330通过所述电力获取单元10获取所述拟充电设备所在相线内的其他所有充电设备的充电电流,并计算所述拟充电电流。
进一步地,所述分析单元330内存储有所述相线内所有充电设备的编号信息,所述分析单元330将所述相线内充电设备的编号信息发送至所述电力获取单元10并通过所述电力获取单元10获取到对应的所述充电设备的充电电流。
进一步地,所述分析单元330接收到所述充电电流后,将所述充电设备的充电电流叠加以获取所述相线当前的第一实时电力负载,并计算所述相线当前的空闲电流和/或可用电流。
进一步地,在本实施方式中,所述空闲电流为所述相线内的第一电流调降阈值与所述第一实时电力负载的差值。可以理解,若所述第一电流阈值为200A,所述第一实时电力负载为180A,则所述空闲电流为20A。
进一步地,在本实施方式中,所述可用电流为所述空闲电流与电流调整值之和。进一步地,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和,所述可调电流值为所述充电设备的充电电流与电流启动值的差值。进一步,计算所述可用电流时需要先计算出所述相线内每一充电设备的可调电流值,再将所述可调电流值叠加得到所述电流调整值,再通过所述电流调整值计算出所述可用电流。可以理解,若所述相线内当前所有充电设备的数量为3个,分别为充电设备A、充电设备B和充电设备C,充电设备A的充电电流为9A,充电设备B的充电电流为11A,充电设备C的充电电流为12A,电流启动值为6A,空闲电流为20A,则所述充电设备A的可调电流值为9A-6A=3A,所述充电设备B的可调电流值为11A-6A=5A,所述充电设备C的可调电流值为12A-6A=6A,则所述电流调整值为3A+5A+6A=14A,所述可用电流为20A+14A=34A。
进一步地,在本实施方式中,所述分析单元330在所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。具体地,例如所述分析单元330在所述可用电流为4A时,由于本实施方式中所述电流启动值为6A,则所述可用电流小于所述电流启动值,说明此时所述相线内的可用电流不足以启动所述拟充电设备的充电功能。换言之,此时在保证所述相线的第一实时电力负载不超过所述第一电流调降阈值的情况下即使将所述相线内所有充电设备的充电电流调整至6A时所述相线内的可用电流仅为4A,此时若要启动所述拟充电设备的充电功能,将会使得所述相线内部分充电设备的充电电流电流调降值6A以下,进而导致所述相线内充电设备的充电电流小于所述电流启动值进而关闭,影响所述相线内所述充电设备的正常充电。因此,所述分析单元330在所述可用电流小于所述电流启动值时,不允许启动所述拟充电设备的充电功能,因此得出所述拟充电电流为零。
进一步地,所述控制单元350在接收到所述拟充电电流为零时,将不启动所述拟充电设备的充电功能。进一步地,所述控制单元350将所述拟充电设备加入预约充电序列,在所述可用电流不小于所述电流启动值时,再启动所述拟充电设备的充电功能。
进一步地,在本实施方式中,所述分析单元330在所述可用电流不小于所述电流启动值,且所述空闲电流小于所述电流启动值时,得出所述拟充电电流为第一电流调降阈值与充电设备总数量的比值,所述充电设备总数量为所述相线内的充电设备的数量和所述拟充电设备的充电数量之和。具体地,例如所述分析单元330在所述可用电流为16A,所述空闲电流为4A时,由于本实施方式中所述电流启动值为6A,因此所述空闲电流小于所述电流启动值且所述可用电流不小于所述电流启动值,说明此时的空闲电流不足以启动所述拟充电设备的充电功能但可以调配所述相线内其他充电设备的充电电流至所述拟充电设备从而启动所述拟充电设备的充电功能。换言之,此时在保证所述相线的第一实时电力负载不超过所述第一电流调降阈值的情况下可以将所述相线的所有电流重新分配至所述相线内的充电设备和所述拟充电设备从而保证所述相线内的充电设备和所述拟充电设备的充电功能,因此得出所述拟充电电流为所述第一电流调降阈值与所述充电设备总数量的比值。具体地,例如所述相线内的充电设备的数量为3个,所述第一调降阈值为80A,所述拟充电设备的数量为1个,则所述充电设备的总数量为3+1=4,所述拟充电电流为80A/4=20A。亦即,所述分析单元330在所述可用电流不小于所述电流启动值,且所述空闲电流小于所述电流启动值时,先将所述相线内所有充电设备的数量与所述拟充电设备的数量相加得到充电设备的总数量,并将所述第一电流调降阈值的电流值平均分配至所述相线内的充电设备和所述拟充电设备从而能够满足所述相线内的充电设备和所述拟充电设备的充电需求。进一步地,由于将所述第一电流调降阈值的电流值平均分配至所述相线内的充电设备和所述拟充电设备,使得所述相线的第一实时电力负载不超过所述第一电流调降阈值,避免触发所述电力调控系统100的充电调控。
进一步地,所述控制单元350在接收到所述拟充电电流为所述第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或所述电流上限值进行充电。进一步地,由于所述电流上限值为32A,若所述拟充电电流大于32A,即大于所述电流上限值,则所述充电设备不能输出所述拟充电电流,此时所述控制单元350控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电;若所述拟充电电流不大于32A,即不大于所述电流上限值,则所述拟充电电流未超过所述电流上限值,所述充电设备能够输出所述拟充电电流,此时所述控制单元350控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
进一步地,在本实施方式中,所述分析单元330在所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。具体地,例如所述分析单元330在所述空闲电流为10A时,由于本实施方式中所述电流启动值为6A,所述电流上限值为32A,因此所述空闲电流不小于所述电流启动值且小于所述电流上限值32A,说明当前的空闲电流足以启动所述拟充电设备的充电功能但不足以使得所述拟充电设备以所述电流上限值进行充电,因此仅需保证所述充电电流能够满足所述拟充电设备的充电需求即可,此时所述分析单元330得出所述拟充电电流为所述电流启动值。
进一步地,所述控制单元350在所述拟充电电流为所述电流启动值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流启动值进行充电。可以理解,此种情况下,所述控制单元350无需调控所述相线内其他充电设备的充电电流,仅需启动所述拟充电设备的充电功能并按照所述电流启动值控制所述拟充电设备进行充电即可。
进一步地,在本实施方式中, 所述分析单元330在所述空闲电流不小于所述电流上限值时,得出所述拟充电电流为所述电流上限值。具体地,所述分析单元360在所述空闲电流为33A时,由于本实施方式中所述电流上限值为32A,所述空闲电流大于所述电流上限值,说明当前的空闲电流足以启动所述拟充电设备的充电功能,而且能够允许所述拟充电设备以电流上限值进行充电,此时所述分析单元330得出所述拟充电电流为所述电流上限值。
进一步地,所述控制单元350在所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。可以理解,此种情况下,所述控制单元350无需调控所述相线内其他充电设备的充电电流,仅需启动所述拟充电设备的充电功能并按照所述电流上限值控制所述充电设备进行充电即可。
可以理解,每接入一个拟充电设备时,所述分析单元330均需要根据所述相线内的所述第一实时电力负载和所述第一可用电力计算所述拟充电电流,从而保证在不触发所述电力调控系统100的充电调控的情况下满足所述拟充电设备的充电需求。
本发明的充电控制系统能够获取用户的充电需求,并根据当前相线的可用电力和空闲电力分析能否满足所述拟充电设备的充电需求,并计算所述拟充电电流,从而在所述相线电力允许的范围内启动所述拟充电设备的充电功能,保证了充电的灵活性和充电管理的智能化。
请参考图5,本发明第四实施方式提供一种充电方法,所述充电方法应用于前述充电控制系统的任意实施方式或实施方式的排列、组合,包括以下步骤:
步骤S410:获取相线内接入的拟充电设备的充电需求。
进一步地,在本实施方式中,由于所述电力调控系统100中对于所述相线设置了第一电流调降阈值,因此当所述相线内新接入的拟充电设备需要从所述相线上中获取电流进行充电,因此会导致所述相线上的第一实时电力负载增高,在所述第一实时电力负载持续增高出现电流过载时将会触发所述电力调控系统100对产生电流过载的相线、回路或变压器内的充电设备的充电调控,从而调降其他所述充电设备的充电电流,影响其他所述充电设备的充电效率,因此在所述相线内新接入所述拟充电设备时,需要根据所述相线的第一电流调降阈值对所述拟充电设备进行充电控制从而在不触发所述电力调控系统100的电力调控的情况下尽可能保证所述新接入的充电设备能够正常充电。
进一步地,在本实施方式中,所述充电设备设置电流启动值和电流上限值,所述充电设备的充电电流可在所述电流启动值和所述电流上限值之间进行调控,即调升或调降。具体地,在本实施方式中,所述电流启动值为6A,所述电流上限值为32A。可以理解,当所述充电设备的充电电流小于所述电流启动值时,所述充电设备则不能启动充电功能。
进一步地,用户在需要对车辆进行充电时,可以先将所述拟充电设备与所述车辆进行充电连接,再通过扫码或刷卡等方式开启所述拟充电设备。可以理解,当用户开启所述拟充电设备后,即可获取到所述拟充电设备的充电需求。
步骤S420:计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流。
进一步地,获取到所述拟充电设备的充电需求后,需要进一步获取所述拟充电设备所在相线内的其他所有充电设备的充电电流,并计算所述拟充电电流。
进一步地,获取所述其他所有充电设备的充电电流时,先将所述相线内充电设备的编号信息发送至所述电力调控系统100内的电力获取单元10从而获取到对应的所述充电设备的充电电流。
进一步地,接收到所述充电设备的充电电流后,将所述充电设备的充电电流叠加以获取所述相线当前的第一实时电力负载,并计算所述相线当前的空闲电流和/或可用电流。
进一步地,在本实施方式中,所述空闲电流为所述相线内的第一电流调降阈值与所述第一实时电力负载的差值。可以理解,若所述第一电流阈值为200A,所述第一实时电力负载为180A,则所述空闲电流为20A。
进一步地,在本实施方式中,所述可用电流为所述空闲电流与电流调整值之和。进一步地,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和,所述可调电流值为所述充电设备的充电电流与电流启动值的差值。进一步,计算所述可用电流时需要先计算出所述相线内每一充电设备的可调电流值,再将所述可调电流值叠加得到所述电流调整值,再通过所述电流调整值计算出所述可用电流。可以理解,若所述相线内当前所有充电设备的数量为3个,分别为充电设备A、充电设备B和充电设备C,充电设备A的充电电流为9A,充电设备B的充电电流为11A,充电设备C的充电电流为12A,电流启动值为6A,空闲电流为20A,则所述充电设备A的可调电流值为9A-6A=3A,所述充电设备B的可调电流值为11A-6A=5A,所述充电设备C的可调电流值为12A-6A=6A,则所述电流调整值为3A+5A+6A=14A,所述可用电流为20A+14A=34A。
进一步地,在本实施方式中,在所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。具体地,在所述可用电流为4A时,由于本实施方式中所述电流启动值为6A,则所述可用电流小于所述电流启动值,说明此时所述相线内的可用电流不足以启动所述拟充电设备的充电功能。换言之,此时在保证所述相线的第一实时电力负载不超过所述第一电流调降阈值的情况下即使将所述相线内所有充电设备的充电电流调整至6A时所述相线内的可用电流仅为4A,此时若要启动所述拟充电设备的充电功能,将会使得所述相线内部分充电设备的充电电流电流调降值6A以下,进而导致所述相线内充电设备的充电电流小于所述电流启动值进而关闭,影响所述相线内所述充电设备的正常充电。因此,在所述可用电流小于所述电流启动值时,不允许启动所述拟充电设备的充电功能,因此得出所述拟充电电流为零。
当所述可用电流小于所述电流启动值时,说明即使将所有充电的充电设备的电流调降至所述电流启动值时,所述相线内的可用电流仍不能达到所述充电设备的电流启动值,因此若要启动发起充电需求的充电设备的充电功能,将会导致所述相线内的第一实时电力负载超过所述第一电流调降阈值,进而触发所述电力调控系统100的充电调控,从而调降所述相线内所有充电设备的充电电流,导致部分充电设备的充电电流低于所述电流启动值从而关闭,影响其他用户的充电。
进一步地,在本实施方式中,所述分析单元330在所述可用电流不小于所述电流启动值时,且所述空闲电流小于所述电流启动值时,得出所述拟充电电流为第一电流调降阈值与充电设备总数量的比值,所述充电设备总数量为所述相线内所有充电设备的数量和所述拟充电设备的数量之和。具体地,例如在所述可用电流为16A,所述空闲电流为4A时,由于本实施方式中所述电流启动值为6A,因此所述空闲电流小于所述电流启动值且所述可用电流不小于所述电流启动值,说明此时的空闲电流不足以启动所述拟充电设备的充电功能但可以调配所述相线内其他充电设备的充电电流至所述拟充电设备从而启动所述拟充电设备的充电功能。换言之,此时在保证所述相线的第一实时电力负载不超过所述第一电流调降阈值的情况下可以将所述相线的所有电流重新分配至所述相线内的充电设备和所述拟充电设备从而保证所述相线内的充电设备和所述拟充电设备的充电功能,因此得出所述拟充电电流为第一电流调降阈值与充电设备总数量的比值。具体地,例如此时所述相线内的充电设备的数量为3个,所述第一调降阈值为80A,所述拟充电设备的数量为1个,则所述充电设备的总数为3+1=4,所述拟充电电流为80A/4=20A。亦即,在所述可用电流不小于所述电流启动值,且所述空闲电流小于所述电流启动值时,先将所述相线内所有充电设备的数量与所述拟充电设备的数量相加得到充电设备的总数量,并将所述第一电流调降阈值的电流值平均分配至所述相线内的充电设备和所述拟充电设备从而能够满足所述相线内的充电设备和所述拟充电设备的充电需求。进一步地,由于将所述第一电流调降阈值的电流值平均分配至所述相线内的充电设备和所述拟充电设备,使得所述相线的第一实时电力负载不超过所述第一电流调降阈值,避免触发所述电力调控系统100的充电调控。进一步地,在本实施方式中,在所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。具体地,在所述空闲电流为10A时,由于本实施方式中所述电流启动值为6A,所述电流上限值为32A,因此所述空闲电流不小于所述电流启动值且小于所述电流上限值32A,说明当前的空闲电流足以启动所述拟充电设备的充电功能但不足以使得所述拟充电设备以所述电流上限值进行充电,因此仅需保证所述充电电流能够满足所述拟充电设备的充电需求即可,此时得出所述拟充电电流为所述电流启动值。
进一步地,在本实施方式中,在所述空闲电流不小于所述电流上限值时,说明当前的空闲电流足以启动所述拟充电设备的充电功能,而且能够允许所述拟充电设备以电流上限值进行充电,此时得出所述拟充电电流为所述电流上限值。具体地,在所述空闲电流为33A时,由于本实施方式中所述电流上限值为32A,所述空闲电流大于所述电流上限值,说明当前的空闲电流足以启动所述拟充电设备的充电功能,而且能够允许所述拟充电设备以所述电流上限值进行充电,此时得出所述拟充电电流为所述电流上限值。
步骤S430:根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
进一步地,接收到所述拟充电电流后,能够根据所述拟充电电流控制所述拟充电设备是否启动充电。
进一步地,在本实施方式中,当所述拟充电电流为零时,在接收到所述拟充电电流为零时,将不启动所述拟充电设备的充电功能。进一步地,将所述拟充电设备加入预约充电序列,在所述可用电流不小于所述电流启动值时,再启动所述拟充电设备的充电功能。
进一步地,在本实施方式中,在接收到所述拟充电电流为所述第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或所述电流上限值进行充电。进一步地,由于所述电流上限值为32A,若所述拟充电电流大于32A,即大于所述电流上限值,则所述充电设备不能输出所述拟充电电流,此时控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电;若所述拟充电电流不大于32A,即不大于所述电流上限值,则所述拟充电电流未超过所述电流上限值,所述充电设备能够输出所述拟充电电流,此时所述控制单元350控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
进一步地,在本实施方式中,在接收到所述拟充电电流为所述电流启动值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流启动值进行充电。可以理解,此种情况下,无需调控所述相线内其他充电设备的充电电流,仅需启动所述拟充电设备的充电功能并按照所述电流启动值控制所述拟充电设备进行充电即可。
进一步地,在本实施方式中,在接收到所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。可以理解,此种情况下,无需调控所述相线内其他充电设备的充电电流,仅需启动所述拟充电设备的充电功能并按照所述电流上限值控制所述充电设备进行充电即可。
可以理解,每接入一个拟充电设备时,均需要按照本方法所述的步骤判断是否能够启动所述拟充电设备,并根据所述相线内的所述第一实时电力负载和所述第一可用电力计算所述拟充电电流,从而保证在不触发所述电力调控系统100的充电调控的情况下满足所述拟充电设备的充电需求。
本发明还提出一种计算机设备,所述用户设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行充电方法的程序,所述处理器运行所述计算机程序以使所述计算机设备执行上述充电方法。
本发明还提出一种存储介质,所述存储介质上存储有所述充电方法程序,所述充电方法的程序被处理器执行时实现如上所述的充电方法的步骤。所述充电方法可参照上述实施方式,此处不再赘述。
本发明的充电方法能够获取用户的充电需求,并根据当前相线的可用电力和空闲电力分析能否满足所述拟充电设备的充电需求,并计算所述拟充电电流,从而在所述相线电力允许的范围内启动所述拟充电设备的充电功能,保证了充电的灵活性和充电管理的智能化。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施方式的其他示例可以具有不同的值。
应注意:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (64)

  1. 一种电力调控系统,其特征在于,包括:
    电力获取单元,用于获取实时电力负载;
    所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载中的至少两个;
    比较单元,用于分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果;
    处理单元,用于根据所述比较结果计算调降电流或调升电流;
    调控单元,用于根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流。
  2. 根据权利要求1所述的电力调控系统,其特征在于,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少两个,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值中的至少两个,所述第一实时电力负载与所述第一电流调降阈值及所述第一电流调升阈值对应,所述第二实时电力负载与所述第二电流调降阈值及所述第二电流调升阈值对应,所述第三实时电力负载与所述第三电流调降阈值及所述第三电流调升阈值对应。
  3. 根据权利要求1所述的电力调控系统,其特征在于,
    所述比较单元,用于在所述实时电力负载中的任意一个小于对应的所述电流调升阈值时得出电流欠载的比较结果,和/或在所述实时电力负载中的任意一个大于对应的所述电流调降阈值时得出电流过载的比较结果,和/或在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且不大于对应的所述电流调降阈值时得出电流正常的比较结果。
  4. 根据权利要求3所述的电力调控系统,其特征在于,
    所述处理单元,用于当所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或,
    所述比较结果为电流欠载时根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
  5. 根据权利要求2所述的电力调控系统,其特征在于,所述第一实时电力负载为第一集合内所述充电设备的实时电力负载之和,所述第二实时电力负载为第二集合内的充电设备的实时电力负载之和,所述第三实时电力负载为第三集合内的充电设备的实时电力负载之和,所述第二集合包括至少一个所述第一集合,所述第三集合包括至少一个所述第二集合。
  6. 根据权利要求5所述的电力调控系统,其特征在于,所述第一集合内的充电设备为接入同一相线的充电设备,所述第二集合内的充电设备为接入同一回路的充电设备,所述第三集合内的充电设备为接入同一变压器的充电设备。
  7. 根据权利要求6所述的电力调控系统,其特征在于,所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少两个,所述比较单元用于当所述比较结果为电流过载时,根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流;
    或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
    或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
    或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流。
  8. 根据权利要求7所述的电力调控系统,其特征在于,所述第一调降电流为(I 1-I A)/N 1,所述第二调降电流为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。
  9. 根据权利要求8所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
  10. 根据权利要求8所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  11. 根据权利要求8所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  12. 根据权利要求8所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  13. 根据权利要求6所述的电力调控系统,其特征在于,所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少两个,所述比较单元用于当所述比较结果为电流欠载时,根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流;
    或根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
    或根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
    或根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流。
  14. 根据权利要求13所述的电力调控系统,其特征在于,所述第一调升电流为(I a-I 1)/N 1,所述第二调升电流为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。
  15. 根据权利要求14所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
  16. 根据权利要求14所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
  17. 根据权利要求14所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的回路上的所有充电设备的充电电流。
  18. 根据权利要求14所述的电力调控系统,其特征在于,
    所述调控单元,用于在所述相线、所述回路和所述变压器均存在电流欠载时,按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
  19. 根据权利要求3所述的电力调控系统,其特征在于,所述调控单元用于在所述比较结果为电流过载时立即调降所述充电设备的充电电流,和/或在所述比较结果为电流过载且所述电流过载状态持续预设时间后调升所述充电设备的充电电流。
  20. 一种充电管理方法,其特征在于,包括:
    获取实时电力负载, 所述实时电力负载包括第一实时电力负载,第二实时电力负载和第三实时电力负载中的至少两个;
    分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果;
    根据所述比较结果计算调降电流或调升电流;
    根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流。
  21. 根据权利要求20所述的充电管理方法,其特征在于,所述电流调降阈值包括第一电流调降阈值、第二电流调降阈值和第三电流调降阈值中的至少两个,所述电流调升阈值包括第一电流调升阈值、第二电流调升阈值和第三电流调升阈值中的至少两个,所述第一实时电力负载与所述第一电流调降阈值及所述第一电流调升阈值对应,所述第二实时电力负载与所述第二电流调降阈值及所述第二电流调升阈值对应,所述第三实时电力负载与所述第三电流调降阈值及所述第三电流调升阈值对应。
  22. 根据权利要求20所述的充电管理方法,其特征在于,分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果,包括:
    所述实时电力负载中的任意一个小于对应的所述电流调升阈值时得出电流欠载的比较结果,和/或所述实时电力负载中的任意一个大于对应的所述电流调降阈值时得出电流过载的比较结果,和/或在所述实时电力负载中的任意一个均不小于对应的所述电流调升阈值且不大于对应的所述电流调降阈值时得出电流正常的比较结果。
  23. 根据权利要求22所述的充电管理方法,其特征在于,根据所述比较结果计算调降电流或调升电流,包括:
    所述比较结果为电流过载时,根据所述实时电力负载和所述电流调降阈值计算所述调降电流,和/或,
    所述比较结果为电流欠载时根据所述实时电力负载和所述电流调升阈值计算所述调升电流。
  24. 根据权利要求21所述的充电管理方法,其特征在于,所述第一实时电力负载为第一集合内所述充电设备的实时电力负载之和,所述第二实时电力负载为第二集合内的充电设备的实时电力负载之和,所述第三实时电力负载为第三集合内的充电设备的实时电力负载之和,所述第二集合包括至少一个所述第一集合,所述第三集合包括至少一个所述第二集合。
  25. 根据权利要求24所述的充电管理方法,其特征在于,所述第一集合内的充电设备为接入同一相线的充电设备,所述第二集合内的充电设备为接入同一回路的充电设备,所述第三集合内的充电设备为接入同一变压器的充电设备。
  26. 根据权利要求25所述的充电管理方法,其特征在于,分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果,包括:
    所述调降电流包括第一调降电流、第二调降电流和第三调降电流中的至少两个;
    所述比较结果为电流过载时,根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流;
    或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
    或根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流和根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流;
    或根据所述第一实时电力负载与所述第一电流调降阈值得出第一调降电流和根据所述第二实时电力负载与所述第二电流调降阈值得出第二调降电流及根据所述第三实时电力负载与所述第三电流调降阈值得出第三调降电流。
  27. 根据权利要求26所述的充电管理方法,其特征在于,所述第一调降电流为(I 1-I A)/N 1,所述第二调降电流为(I 2-I B)*I 1/(I 2*N 1),所述第三调降电流为(I 3-I C)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I A为第一电流调降阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I B为第二电流调降阈值,I 3为第三实时电力负载,I C为第三电流调降阈值。
  28. 根据权利要求27所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述相线和所述回路存在电流过载且所述变压器不存在电流过载时,按照所述第一调降电流和所述第二调降电流中电流值较大的一个调降存在电流过载的回路上的所有充电设备的充电电流。
  29. 根据权利要求27所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述相线和所述变压器存在电流过载且所述回路不存在电流过载时,按照所述第一调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  30. 根据权利要求27所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:所述回路和所述变压器存在电流过载且所述相线不存在电流过载时,按照所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  31. 根据权利要求27所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:所述相线、所述回路和所述变压器上均存在电流过载时,按照所述第一调降电流、所述第二调降电流和所述第三调降电流中电流值较大的一个调降存在电流过载的变压器上的所有充电设备的充电电流。
  32. 根据权利要求25所述的充电管理方法,其特征在于,分别比较所述第一实时电力负载、所述第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调降阈值,和/或比较所述第一实时电力负载、第二实时电力负载和所述第三实时电力负载中的至少两个与对应的电流调升阈值并得出比较结果,包括:
    所述调升电流包括第一调升电流、第二调升电流和第三调升电流中的至少两个;
    所述比较结果为电流欠载时,根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流;
    所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
    根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流和根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流;
    根据所述第一实时电力负载与所述第一电流调升阈值得出第一调升电流和根据所述第二实时电力负载与所述第二电流调升阈值得出第二调升电流及根据所述第三实时电力负载与所述第三电流调升阈值得出第三调升电流。
  33. 根据权利要求32所述的充电管理方法,其特征在于,所述第一调升电流为(I a-I 1)/N 1,所述第二调升电流为(I b-I 2)*I 1/(I 2*N 1),所述第三调升电流为(I c-I 3)*I 1/(I 3*N 1),其中I 1为第一实时电力负载,I a为第一电流调升阈值,N 1为第一集合的充电设备的数量,I 2为第二实时电力负载,I b为第二电流调升阈值,I 3为第三实时电力负载,I c为第三电流调升阈值。
  34. 根据权利要求33所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述相线和所述回路存在电流欠载且所述变压器不存在电流欠载时,按照所述第一调升电流和所述第二调升电流中电流值较小的一个调升存在电流欠载的相线上的充电设备的充电电流。
  35. 根据权利要求33所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述相线和所述变压器存在电流欠载且所述回路不存在电流欠载时,按照所述第一调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
  36. 根据权利要求33所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述回路和所述变压器存在电流欠载且所述相线不存在电流欠载时,按照所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的回路上的所有充电设备的充电电流。
  37. 根据权利要求33所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述相线、所述回路和所述变压器均存在电流欠载时,按照所述第一调升电流、所述第二调升电流和所述第三调升电流中电流值较小的一个调升存在电流欠载的相线上的所有充电设备的充电电流。
  38. 根据权利要求22所述的充电管理方法,其特征在于,根据所述调降电流调降充电设备的充电电流或根据所述调升电流调升所述充电设备的充电电流,包括:
    所述比较结果为电流过载时立即调降所述充电设备的充电电流,和/或在所述比较结果为电流过载且所述电流过载状态持续预设时间后调升所述充电设备的充电电流。
  39. 一种计算机设备,包括:
    存储器,用于存储计算机程序;以及
    处理器,用于执行所述计算机程序从而完成权利要求20-38中任意一项所述的充电管理方法。
  40. 一种存储介质,用于存储计算机程序,所述计算机程序被执行时实现权利要求20-38中任意一项所述的充电管理方法。
  41. 一种充电控制系统,其特征在于,包括:
    充电需求获取单元,用于获取相线内接入的拟充电设备的充电需求;
    分析单元,用于接收所述充电需求并计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流;
    所述空闲电流为所述相线的第一电流调降阈值与第一实时电力负载的差值,所述可用电流为所述空闲电流与电流调整值之和,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和,所述可调电流值为所述充电设备的充电电流与电流启动值的差值;
    控制单元,用于根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
  42. 根据权利要求41所述的充电控制系统,其特征在于,所述分析单元用于在所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。
  43. 根据权利要求42所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流为零时,关闭所述拟充电设备的充电功能。
  44. 根据权利要求42所述的充电控制系统,其特征在于,所述分析单元用于在所述可用电流不小于所述电流启动值且所述空闲电流小于所述电流启动值时,得出所述拟充电电流为所述第一电流调降阈值与充电设备总数量的比值,所述充电设备的总数量为所述相线内所有充电设备的数量和所述拟充电设备的数量之和。
  45. 根据权利要求44所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流为所述第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或电流上限值进行充电。
  46. 根据权利要求45所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电。
  47. 根据权利要求45所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流不大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
  48. 根据权利要求42所述的充电控制系统,其特征在于,所述分析单元用于在所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。
  49. 根据权利要求48所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流为所述电流启动值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流启动值进行充电。
  50. 根据权利要求45所述的充电控制系统,其特征在于,所述分析单元用于在所述空闲电流不小于所述电流上限值时,得出所述拟充电电流为所述电流上限值。
  51. 根据权利要求50所述的充电控制系统,其特征在于,所述控制单元用于在所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。
  52. 一种充电方法,其特征在于,包括,
    获取相线内接入的拟充电设备的充电需求;
    计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,所述空闲电流为所述相线的第一电流调降阈值与第一实时电力负载的差值,所述可用电流为所述空闲电流与电流调整值之和,所述电流调整值为所述相线内的所有所述充电设备的可调电流值之和,所述可调电流值为所述充电设备的充电电流与电流启动值的差值;
    根据所述拟充电电流启动或关闭所述拟充电设备的充电功能。
  53. 根据权利要求52所述的充电方法,其特征在于,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述可用电流小于所述电流启动值时,得出所述拟充电电流为零。
  54. 根据权利要求53所述的充电方法,其特征在于,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为零时,关闭所述拟充电设备的充电功能。
  55. 根据权利要求53所述的充电方法,其特征在于,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述可用电流不小于所述电流启动值且所述空闲电流小于所述电流启动值时,根据所述可用电流和所述空闲电流得出所述拟充电电流为第一电流调降阈值与充电设备总数量的比值,所述充电设备总数量为所述相线内所有充电设备的数量和所述拟充电设备的数量之和。
  56. 根据权利要求55所述的充电方法,其特征在于,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为第一电流调降阈值与所述充电设备总数量的比值时,启动所述拟充电设备的充电功能并控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流或电流上限值进行充电。
  57. 根据权利要求56所述的充电方法,其特征在于,所述拟充电电流大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述电流上限值进行充电。
  58. 根据权利要求56所述的充电方法,其特征在于,所述拟充电电流不大于所述电流上限值时,控制所述相线内所有的充电设备和所述拟充电设备按照所述拟充电电流进行充电。
  59. 根据权利要求53所述的充电方法,其特征在于,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述空闲电流不小于所述电流启动值且小于电流上限值时,得出所述拟充电电流为所述电流启动值。
  60. 根据权利要求59所述的充电方法,其特征在于,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为所述电流启动值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流启动值进行充电。
  61. 根据权利要求56所述的充电方法,其特征在于,计算空闲电流和/或可用电流,并根据所述空闲电流和/或所述可用电流得出拟充电电流,包括:所述空闲电流不小于所述电流上限值时,得出所述拟充电电流为所述电流上限值。
  62. 根据权利要求61所述的充电方法,其特征在于,根据所述拟充电电流启动或关闭所述拟充电设备的充电功能,包括:所述拟充电电流为所述电流上限值时,启动所述拟充电设备的充电功能并控制所述拟充电设备按照所述电流上限值进行充电。
  63. 一种计算机设备,包括:
    存储器,用于存储计算机程序;以及
    处理器,用于执行所述计算机程序从而完成权利要求52-62中任意一项所述的充电方法。
  64. 一种存储介质,用于存储计算机程序,所述计算机程序被执行时实现权利要求52-62中任意一项所述的充电方法。
PCT/CN2019/099873 2019-07-23 2019-08-09 电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质 WO2021012321A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910666036.6A CN110518652B (zh) 2019-07-23 2019-07-23 充电方法、计算机设备及存储介质
CN201910665768.3A CN110190636B (zh) 2019-07-23 2019-07-23 电力调控系统
CN201910665767.9A CN110190657B (zh) 2019-07-23 2019-07-23 充电控制系统
CN201910666015.4 2019-07-23
CN201910666036.6 2019-07-23
CN201910665768.3 2019-07-23
CN201910665767.9 2019-07-23
CN201910666015.4A CN110549895B (zh) 2019-07-23 2019-07-23 充电管理方法、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021012321A1 true WO2021012321A1 (zh) 2021-01-28

Family

ID=74193055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099873 WO2021012321A1 (zh) 2019-07-23 2019-08-09 电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质

Country Status (1)

Country Link
WO (1) WO2021012321A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223028A (ja) * 2011-04-13 2012-11-12 Mitsubishi Electric Corp バッテリ充電システム
CN106684968A (zh) * 2016-12-05 2017-05-17 杭州嘉畅科技有限公司 一种充电调度系统及其控制方法
CN108879831A (zh) * 2018-06-26 2018-11-23 蔚来汽车有限公司 配电系统、容量共享系统、主站、子站、方法及设备
CN109910669A (zh) * 2019-04-29 2019-06-21 恒大智慧充电科技有限公司 充电调控方法、计算机设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223028A (ja) * 2011-04-13 2012-11-12 Mitsubishi Electric Corp バッテリ充電システム
CN106684968A (zh) * 2016-12-05 2017-05-17 杭州嘉畅科技有限公司 一种充电调度系统及其控制方法
CN108879831A (zh) * 2018-06-26 2018-11-23 蔚来汽车有限公司 配电系统、容量共享系统、主站、子站、方法及设备
CN109910669A (zh) * 2019-04-29 2019-06-21 恒大智慧充电科技有限公司 充电调控方法、计算机设备及存储介质

Similar Documents

Publication Publication Date Title
US10589638B2 (en) Electric vehicle charging device and method for charging electric vehicle
US9365175B2 (en) Power supply system for vehicle
US8004236B2 (en) Contactless charging device and contactless charging method
US20040070280A1 (en) Output suppressing method of a plurality of dispersed power sources and dispersed power source managing system
WO2013157186A1 (ja) 充電制御装置及び車両充電システム
JP2001327080A (ja) 電力貯蔵装置及びそれを備えた分散電源システムの制御方法
US12005799B2 (en) Method and device for charging an electric vehicle
CN110103754B (zh) 一种适应弱电网场合的充电桩及其输出功率控制方法
EP4124500A1 (en) Charging control method, charging system, and related device
US11637430B2 (en) Power rectification method and apparatus
US10924016B2 (en) Method for converting electric energy between C-type USB devices and corresponding device
JP2015164015A (ja) 直流給電システム、直流電源装置、及び給電制御方法
CN110518652B (zh) 充电方法、计算机设备及存储介质
WO2021012321A1 (zh) 电力调控系统、充电管理方法、充电控制系统及充电方法、计算机设备及存储介质
CN112193113B (zh) 一种电动车用的大功率充电装置的智能供电方法
CN110649687A (zh) 一种bms智能充电识别控制方法
WO2021088122A1 (zh) 充电调控系统、充电方法、计算机设备及存储介质
CN110549895B (zh) 充电管理方法、计算机设备及存储介质
CN113206534A (zh) 一种储能系统功率控制方法、控制器和储能系统
JP2021158738A (ja) 電力取引支援装置および電力取引方法
CN115117996B (zh) 充电控制器、充电控制器的控制方法和车辆
TWI790021B (zh) 具漣波注入之電源轉換系統與電源轉換控制方法
CN110901454B (zh) 充电方法、计算机设备及存储介质
CN115940317B (zh) 空间飞行器能源控制电路、光伏供电系统和供电控制方法
US20170101028A1 (en) Electrical source control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938616

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19938616

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19938616

Country of ref document: EP

Kind code of ref document: A1