WO2021012320A1 - 一种充电装置、充电方法、计算机设备以及计算机可读存储介质 - Google Patents

一种充电装置、充电方法、计算机设备以及计算机可读存储介质 Download PDF

Info

Publication number
WO2021012320A1
WO2021012320A1 PCT/CN2019/099872 CN2019099872W WO2021012320A1 WO 2021012320 A1 WO2021012320 A1 WO 2021012320A1 CN 2019099872 W CN2019099872 W CN 2019099872W WO 2021012320 A1 WO2021012320 A1 WO 2021012320A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electric vehicle
charging
power supply
chip
Prior art date
Application number
PCT/CN2019/099872
Other languages
English (en)
French (fr)
Inventor
石宝辉
Original Assignee
恒大智慧充电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒大智慧充电科技有限公司 filed Critical 恒大智慧充电科技有限公司
Publication of WO2021012320A1 publication Critical patent/WO2021012320A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to the field of charging, in particular, it mainly relates to a charging device, a charging method, a computer device, and a computer-readable storage medium.
  • the present invention provides a charging device, a charging method, a computer device, and a computer-readable storage medium, which are configured in an electric vehicle, and can enable a charging pile to charge the electric vehicle when the battery of the electric vehicle is out of power.
  • a rectifier coupled to the control guiding CP signal line of the charging pile and the protective grounding PE line, is used to convert the voltage signal input by the CP signal line into a positive voltage; a voltage converter is connected to the connection control system and/or of the electric vehicle The charging system of the electric vehicle is used to convert the positive voltage output by the rectifier into a stable power supply voltage, and the stable power supply voltage is used to supply power to the connection control system of the electric vehicle and/or to charge the electric vehicle System power supply.
  • the rectifier includes a diode D1, a diode D2, a diode D3, and a diode D4; the CP signal line, the anode of D1 is connected to the cathode of D4; the cathode of D1 is connected to the anode of D2, and the D1
  • the voltage of the negative pole of D2 is used as the input voltage of the voltage converter; the negative pole of D2 and the positive pole of D5 are connected to the PE line; the positive pole of D4 is connected to the negative pole of D5.
  • the rectifier further includes a diode D3, which is used to clamp the voltage to the target positive voltage after the voltage output by the negative electrode of D1 exceeds the rated voltage.
  • the negative electrode of D1 is connected to the negative electrode of D3, and the positive electrode of D3 is connected to the positive electrode of D4.
  • the rectifier is specifically used to rectify the -12V, 6V, 9V, or 12V voltage input from the CP signal line and output 12V, 6V, 9V, or 12V, respectively; the voltage converter is specifically used to input the rectifier The voltage of 6V or 9V or 12V is converted into stable 12V and output.
  • the voltage converter specifically includes a BOOST circuit.
  • the BOOST circuit includes: a DC-DC chip; a capacitor C14 and a capacitor C15, the capacitor C14 and the capacitor C15 are connected in parallel to the D3, and the negative electrode of the D3 is connected to the DC-DC chip VIN pin; resistor R17 and resistor R13, the MODE pin of the DC-DC chip is connected to one end of the resistor R17, the other end of the R17 is connected to the negative electrode of D3, and the EN tube of the DC-DC chip
  • the pin is connected to one end of the resistor R13, the other end of the R13 is connected to the negative electrode of D3; the capacitor C17, one end of the capacitor C17 is connected to the BST pin of the DC-DC chip, and the other end is connected to the DC-DC
  • the device further includes a judgment circuit for judging that when the power supply voltage of the on-board battery is lower than a first threshold, the stable power supply voltage output by the voltage converter is controlled to be that of the electric vehicle Connect the power supply of the control system and/or the charging system of the electric vehicle.
  • the judging circuit is used to determine when the on-vehicle battery power is higher than or equal to a first threshold, and control the on-board battery to supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle And control the stable power supply voltage output by the voltage converter to no longer supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the judgment circuit includes an N-channel metal oxide semi-field effect transistor MOSFET, the gate of the MOSFET is connected to the on-board battery, and the source of the MOSFET is connected to the output terminal of the voltage converter, The drain of the MOSFET is connected to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • MOSFET N-channel metal oxide semi-field effect transistor MOSFET
  • the device is configured in an electric vehicle.
  • a second aspect of the present invention provides a charging method, including: receiving a voltage signal input from a CP signal line of a control guide of a charging pile, rectifying and converting the voltage signal into a positive voltage; and converting the rectified and converted positive voltage It is converted into a stable power supply voltage, and the stable power supply voltage is used to supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the receiving the voltage signal input by the CP signal line of the control guide of the charging pile, and rectifying and converting the voltage signal into a positive voltage includes: rectifying the -12V or 6V or 9V or 12V voltage input by the CP signal line And output 12V or 6V or 9V or 12V voltage respectively; said converting the positive voltage obtained after the rectification and conversion into a stable supply voltage includes: converting the 6V, 9V or 12V voltage obtained after the rectification and conversion into a stable voltage 12V and output.
  • the receiving the voltage signal input by the control and guiding CP signal line of the charging pile and rectifying and converting the voltage signal into a positive voltage includes: receiving the voltage signal input by the control and guiding CP signal line of the charging pile; When the voltage signal exceeds the rated voltage, the voltage signal is rectified and converted and clamped to the target positive voltage.
  • the method further includes: determining when the power supply voltage of the on-board battery is lower than a first threshold, controlling the stable power supply voltage to supply power to the connection control system of the electric vehicle and/or to charge the electric vehicle System power supply.
  • the method further includes: determining when the power supply voltage of the on-board battery is higher than or equal to a first threshold, controlling the on-board battery to supply power to the connection control system of the electric vehicle and/or to charge the electric vehicle
  • the system supplies power, and controls the stable power supply voltage to no longer supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • a third aspect of the present invention provides a computer device that includes a memory, a processor, and a computer program stored in the memory and capable of running on the processor, and the processor runs the computer program to enable all
  • the computer device executes the steps of the method described in the second aspect.
  • a fourth aspect of the present invention provides a computer-readable storage medium having a computer program stored on the storage medium, and when the computer program is executed by a computer, the method described in the second aspect is implemented.
  • the present invention provides a charging device, a charging method, a computer device, and a computer-readable storage medium, which can use the CP signal line of the charging pile to supply power and/or the control system when the battery of the electric vehicle is out of power.
  • the charging system of the electric vehicle provides power supply so that the charging pile can normally charge the battery of the electric vehicle.
  • FIG. 1 is a schematic structural diagram of a charging device provided in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the connection of the charging device according to the first embodiment of the present invention.
  • FIG. 3 is a flowchart of a charging method provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a computer device provided in Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of the connection of a storage medium according to Embodiment 4 of the present invention.
  • the terms “including” or “may include” that can be used in various embodiments of the present invention indicate the existence of the disclosed function, operation, or element, and do not limit the existence of one or more functions, operations, or elements. increase.
  • the terms “including”, “having” and their cognates are only intended to represent specific features, numbers, steps, operations, elements, components, or combinations of the foregoing, And should not be understood as first excluding the existence of one or more other features, numbers, steps, operations, elements, components or combinations of the foregoing items or adding one or more features, numbers, steps, operations, elements, components Or the possibility of a combination of the foregoing.
  • the expression "A or/and B" includes any combination or all combinations of the words listed at the same time, for example, may include A, may include B, or may include both A and B.
  • Expressions used in various embodiments of the present invention can modify various constituent elements in the various embodiments, but may not limit the corresponding constituent elements.
  • the above expression does not limit the order and/or importance of the elements.
  • the above description is only used for the purpose of distinguishing one element from other elements.
  • the first user device and the second user device indicate different user devices, although both are user devices.
  • the first element may be referred to as the second element, and similarly, the second element may also be referred to as the first element.
  • FIG. 1 shows a charging device 100 provided by Embodiment 1 of the present invention.
  • the charging device 100 includes:
  • the rectifier 110 is coupled to a CP (Control pilot) signal line and a protective earth PE (Protecting Earth) line of the charging pile, and is used to convert a voltage signal input from the CP signal line into a positive voltage;
  • CP Control pilot
  • PE Protected Earth
  • the voltage converter 120 is connected to the connection control system of the electric vehicle and/or the charging system of the electric vehicle, and is used to convert the positive voltage output by the rectifier into a stable power supply voltage, and the stable power supply voltage is used to supply the The power supply of the connection control system of the electric vehicle and/or the power supply of the charging system of the electric vehicle.
  • the rectifier 110 includes a diode D1, a diode D2, a diode D3, and a diode D4; the CP signal line and the anode of D1 are connected to the cathode of D4; the cathode of D1 is connected to the anode of D2, The voltage of the negative pole of D1 is used as the input voltage of the voltage converter; the negative pole of D2 and the positive pole of D5 are connected to the PE line; the positive pole of D4 is connected to the negative pole of D5.
  • the rectifier 110 further includes a diode D3, which is a voltage regulator tube, and the D3 is used to clamp the voltage to the target positive voltage after the voltage output by the negative electrode of D1 exceeds the rated voltage.
  • the negative electrode of D1 is connected to the negative electrode of D3, and the positive electrode of D3 is connected to the positive electrode of D4.
  • the rectifier 110 is specifically configured to rectify the -12V, 6V, 9V, or 12V voltage input from the CP signal line and output a 12V, 6V, 9V, or 12V voltage, respectively.
  • the input voltage is -12V or 6V or 9V or 12V.
  • the output voltage is positive; when the input voltage is positive, after passing through the rectifier 110, the output voltage is the input voltage.
  • the input voltage is -12V
  • the output voltage is 12V; when the input voltage is 9V, the output voltage is 9V.
  • the voltage converter 120 may specifically include a BOOST circuit, and the voltage converter is specifically configured to convert the 6V or 9V or 12V input by the rectifier into a stable 12V and output it.
  • the BOOST circuit is selected here to perform boost level conversion.
  • the BOOST circuit includes: a DC-DC chip U4; a capacitor C14 and a capacitor C15, the capacitor C14 and the capacitor C15 are connected in parallel to the D3, and the negative electrode of the D3 is connected to the VIN pin of the DC-DC chip Resistor R17 and resistor R13, the MODE pin of the DC-DC chip is connected to one end of the resistor R17, the other end of the R17 is connected to the negative electrode of D3, and the EN pin of the DC-DC chip is connected to the resistor One end of R13, the other end of R13 is connected to the negative electrode of D3; a capacitor C17, one end of the capacitor C17 is connected to the BST pin of the DC-DC chip, and the other end is connected to the SW of the DC-DC chip Pin; inductor L2, one end of the L2 is connected to the SW pin of the DC-DC chip, the other end of the L2 is connected to the VIN pin of the DC-DC chip; a capacitor C18 and a resistor R19,
  • C14 and C15 are input capacitors for supplying power to the voltage converter 120.
  • R17 makes the chip work in PWM mode, and R13 makes the chip start working when it is powered on by default.
  • L2 is the energy storage inductor.
  • C17 is the power supply loop capacitance of the switch tube inside the chip.
  • R14 and R16 are voltage divider circuits that provide a voltage feedback path for the BOOST circuit.
  • C18 and R19 are compensation circuits that adjust the loop stability and dynamic response speed of the BOOST circuit.
  • C11, C12, and C13 are output capacitors, which provide energy storage and power supply for subsequent circuits.
  • BOOST is a switch control mode.
  • the device also includes a judging circuit 130, as shown by the dashed box, the judging circuit is used to determine when the power supply voltage of the on-board battery is lower than the first threshold, and control the stable power supply voltage output by the voltage converter to be the The power supply of the connection control system of the electric vehicle and/or the power supply of the charging system of the electric vehicle.
  • the judgment circuit is used to judge when the on-board battery power is higher than or equal to a first threshold, control the on-board battery to supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle, and control all The stable power supply voltage output by the voltage converter no longer supplies power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the judgment circuit may include an N-channel MOSFET, as shown in Q3 in the figure, the gate (pin 3) of the MOSFET is connected to the vehicle battery V_BATTERY, and the MOSFET The source (pin 4/8) is connected to the output terminal of the voltage converter, and the drain (pin 1/2/5/6/7) of the MOSFET is connected to the connection control system of the electric vehicle and /Or the charging system V_CAR of the electric vehicle is connected.
  • the power supply voltage when the battery has no or low power, the power supply voltage will decrease, that is, if V_BATTERY ⁇ V_Q3.8-0.3V, V_Q3.8 is the voltage output by Q3 pin 8 and Q3 is turned on, then VOUT
  • the output of the battery is connected to the control circuit and/or the charging system of the electric vehicle; when the battery is fully charged, V_BATTERY ⁇ V_Q3.8-0.3V, Q3 is turned off, that is, the vehicle battery is connected to the control circuit and/or the electric vehicle
  • the car’s charging system supplies power.
  • the connection relationship of the circuit provided by the embodiment of the present invention is shown in FIG. 2, where the charging interface may be a national-standard seven-hole socket.
  • LI/L2/L3/N is directly connected to the charging system for charging.
  • the CP/PE signal line is connected to the rectifier.
  • CC/CP/PE is connected to the connection control system.
  • the charging system can communicate with the connection control system with or without the on-board system.
  • the charging device can use the CP signal line of the charging pile to supply power to the connection control system and/or the charging system of the electric vehicle when the battery of the electric vehicle is out of power, so that the charging pile It can charge the battery of an electric vehicle normally. And when the battery has enough power, switch to the battery to supply power to the connection control system and the charging system to ensure that the charging pile can normally charge the battery of the electric vehicle.
  • FIG. 3 shows the charging method provided in the second embodiment of the present invention.
  • the execution subject of the charging method may be a charging device, and the charging device may be configured in an electric vehicle.
  • the method includes:
  • Step 310 Receive a voltage signal input from the control and guide CP signal line of the charging pile, and rectify the voltage signal into a positive voltage.
  • Step 320 Convert the positive voltage obtained after the rectification and conversion into a stable power supply voltage, where the stable power supply voltage is used to power the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the control of receiving the charging pile leads the voltage signal input by the CP signal line, and rectifying and converting the voltage signal into a positive voltage, including: rectifying the -12V or 6V or 9V or 12V voltage input by the CP signal line and outputting 12V respectively Or 6V or 9V or 12V voltage.
  • the input voltage is -12V or 6V or 9V or 12V.
  • the output voltage is positive; when the input voltage is positive, after passing through the rectifier, the output voltage is the input voltage.
  • the output voltage is 12V; when the input voltage is 9V, the output voltage is 9V.
  • the converting the positive voltage obtained after the rectification and conversion into a stable power supply voltage includes: converting the 6V, 9V or 12V voltage obtained after the rectification and conversion into a stable 12V and outputting it.
  • the BOOST circuit is selected here to perform boost level conversion.
  • the receiving the voltage signal input by the CP signal line of the control and guiding of the charging pile and rectifying and converting the voltage signal into a positive voltage includes: the receiving the voltage signal input by the CP signal line of the control and guiding of the charging pile, when the voltage When the signal exceeds the rated voltage, the voltage signal is rectified and converted and clamped to the target positive voltage.
  • the method further includes: determining that when the power supply voltage of the on-board battery is lower than the first threshold, controlling the stable power supply voltage to supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the method further includes: determining that when the power supply voltage of the on-board battery is higher than or equal to a first threshold, controlling the on-board battery to supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle, and The stable power supply voltage is controlled to no longer supply power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle.
  • the above judgment can be made by the power supply voltage of the on-board battery, for example, the voltage V_BATTERY and V_Q3.8- 0.3V compared.
  • the above judgment process may include: confirming that the charging gun is connected to the electric vehicle, and judging whether the on-board battery has electricity or whether the battery is low. As described above, the judgment can be made by the power supply voltage of the on-board battery. If the power supply voltage of the on-board battery is lower than the first threshold, it is judged that the on-board battery is insufficient or out of power, and the control connection system and/or the charging system are supplied with power through the circuit provided in the first embodiment of the present invention. The control connection system communicates with the charging pile, and the connection and handshake are successful. The charging pile is for charging the on-board battery of the electric vehicle. Determine whether the on-board battery meets the power consumption requirements of the connection control system.
  • the circuit provided in the first embodiment of the present invention no longer supplies power to the connection control system of the electric vehicle and/or the charging system of the electric vehicle, and the on-board battery powers the connection control system and/or the electric vehicle.
  • the car’s charging system supplies power.
  • the charging method provided by the present invention can use the CP signal line of the charging pile to supply power to the connection control system and/or the charging system of the electric vehicle when the battery of the electric vehicle is out of power, so that the charging pile It can charge the battery of an electric vehicle normally. And when the battery has enough power, switch to the battery to supply power to the connection control system and the charging system to ensure that the charging pile can normally charge the battery of the electric vehicle.
  • the third embodiment of the present invention also provides a computer device 400.
  • the computer device includes: a memory 410, a processor 420, and a computer program stored in the memory and capable of running on the processor, The processor runs the computer program to make the computer device 400 execute the method in the second embodiment.
  • the computer device 400 may be a charging device, and the charging device may be configured in an electric vehicle.
  • the fourth embodiment of the present invention also provides a storage medium 500. As shown in FIG. 5, the storage medium stores the program described in the fourth embodiment. When the program is executed by the processor 510, the implementation is as described in the first embodiment. Method steps. For the method, reference may be made to the description in the first embodiment and the second embodiment above, and details are not described herein again.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM) and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种充电装置、充电方法、计算机设备以及计算机可读存储介质,所述充电装置包括整流器,耦合于充电桩的控制引导CP信号线和保护接地PE线,用于将所述CP信号线输入的电压信号转换为正电压;电压转换器,连接于电动汽车的连接控制系统和/或所述电动汽车的充电系统,用于将整流器输出的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。能够在电动汽车的电池没有电的情况下,使得充电桩能够为电动汽车充电。

Description

一种充电装置、充电方法、计算机设备以及计算机可读存储介质 技术领域
本发明涉及充电领域,具体而言,主要涉及一种充电装置、充电方法、计算机设备以及计算机可读存储介质。
背景技术
目前电动汽车不断增多,电动汽车通过电力来驱动车辆行驶。用户使用充电桩为电动汽车充电。但是在电动汽车的车载蓄电池没有电的情况下,充电桩无法为电动汽车充电。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明提供的一种充电装置、充电方法、计算机设备以及计算机可读存储介质,配置于电动汽车,能够在在电动汽车的电池没有电的情况下,使得充电桩能够为电动汽车充电。
为了实现上述目的,本发明的第一方面提供如下的充电装置,该充电装置包括:
整流器,耦合于充电桩的控制引导CP信号线和保护接地PE线,用于将所述CP信号线输入的电压信号转换为正电压;电压转换器,连接于电动汽车的连接控制系统和/或所述电动汽车的充电系统,用于将整流器输出的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
可选的,所述整流器包括二极管D1,二极管D2,二极管D3,二极管D4;所述CP信号线、D1的正极与D4的负极相连;所述D1的负极与D2的正极相连,所述D 1的负极的电压作为所述电压转换器的输入电压;所述D2的负极、D5的正极与PE线相连;所述D4的正极与D5的负极相连。
可选的,所述整流器还包括二级管D3,所述D3用于在D1的负极输出的电压超过额定电压后将该电压钳位于目标正电压。
可选的,所述D1的负极与所述D3的负极相连,所述D3的正极与所述D4的正极相连。
可选的,所述整流器具体用于将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压;所述电压转换器具体用于将整流器输入的6V或9V或12V电压转换为稳定的12V并输出。
可选的,所述电压转换器具体包括BOOST电路。
可选的,所述BOOST电路包括:直流DC-直流DC芯片;电容C14和电容C15,所述电容C14和电容C15并联于所述D3,所述D3的负极连接于所述DC-DC芯片的VIN管脚;电阻R17与电阻R13,所述DC-DC芯片的MODE管脚连接所述电阻R17的一端,所述R17的另一端与D3的负极相连,以及所述DC-DC芯片的EN管脚连接电阻R13的一端,所述R13的另一端与D3的负极相连;电容C17,所述电容C17的一端连于所述DC-DC芯片的BST管脚,另一端连于所述DC-DC芯片的SW管脚;电感L2,所述L2的一端连接于所述DC-DC芯片的SW管脚,所述L2的另一端连接于所述DC-DC芯片的VIN管脚;电容C18与电阻R19,所述电容C18的一端与电阻R19相连,C18的另一端与所述DC-DC芯片的COMP管脚相连;电阻R14与电阻R16,所述电阻R14的一端与电阻R16的一端共同连接于所述DC-DC芯片的FB管脚,所述电阻R16的另一端接地,所述R14的另一端连接于所述DC-DC芯片的VOUT管脚。
可选的,所述装置还包括判断电路,所述判断电路用于判断当车载蓄电池的供电电压低于第一阈值时,控制所述电压转换器输出的稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
可选的,所述判断电路用于判断当车载蓄电池电量高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述电压转换器输出的稳定的供电电压不再为所述电动 汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
可选的,所述判断电路包括N沟道金氧半场效晶体管MOSFET,所述MOSFET的栅极与所述车载蓄电池相连,所述MOSFET的源极与所述电压转换器的输出端相连,所述MOSFET的漏极与所述电动汽车的连接控制系统和/或所述电动汽车的充电系统相连。
可选的,所述装置配置于电动汽车。
本发明的第二方面提供一种充电方法,包括:接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压;将所述整流转换后得到的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
可选的,所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压;所述将所述整流转换后得到的正电压转换为稳定的供电电压,包括:将所述整流转换后得到的6V或9V或12V电压转换为稳定的12V并输出。
可选的,所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:所述接收充电桩的控制引导CP信号线输入的电压信号,当所述电压信号超过额定电压时,将所述电压信号进行整流转换并钳位于目标正电压。
可选的,所述方法还包括:判断当车载蓄电池的供电电压低于第一阈值时,控制所述稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
可选的,所述方法还包括:判断当车载蓄电池的供电电压高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述稳定的供电电压不再为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
本发明的第三方面提供一种计算机设备,所述计算机设备包括存储器、处理器及存储在存储器上并可在所述处理器上运行计算机程序,所述处理器运行所述 计算机程序以使所述计算机设备执行第二方面所述的方法的步骤。
本发明的第四方面提供一种计算机可读存储介质,所述存储介质上存储有计算机程序,所述计算机程序被计算机执行时实施第二方面所述的方法。
发明的有益效果
有益效果
本发明提供的一种充电装置、充电方法、计算机设备以及计算机可读存储介质,能够在在电动汽车的电池没有电的情况下,利用充电桩的CP信号线为连接控制系统供电和/或所述电动汽车的充电系统供电,以使得充电桩能够正常为电动汽车的电池进行充电。
对附图的简要说明
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对本发明范围的限定。
图1为本发明实施例一提供的充电装置的结构示意图;
图2为本发明实施例一提供的充电装置连接情况的示意图;
图3为本发明实施例二提供的充电方法的流程图;
图4为本发明实施例三提供的计算机设备的结构示意图;
图5为本发明实施例四提供的一种存储介质的连接示意图。
发明实施例
本发明的实施方式
在下文中,将更全面地描述本发明的各种实施例。本发明可具有各种实施例,并且可在其中做出调整和改变。然而,应理解:不存在将本发明的各种实施例限于在此公开的特定实施例的意图,而是应将本发明理解为涵盖落入本发明的各种实施例的精神和范围内的所有调整、等同物和/或可选方案。
在下文中,可在本发明的各种实施例中使用的术语“包括”或“可包括”指示所公开的功能、操作或元件的存在,并且不限制一个或更多个功能、操作或元件的 增加。此外,如在本发明的各种实施例中所使用,术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
在本发明的各种实施例中,表述“A或/和B”包括同时列出的文字的任何组合或所有组合,例如,可包括A、可包括B或可包括A和B二者。
在本发明的各种实施例中使用的表述(诸如“第一”、“第二”等)可修饰在各种实施例中的各种组成元件,不过可不限制相应组成元件。例如,以上表述并不限制所述元件的顺序和/或重要性。以上表述仅用于将一个元件与其它元件区别开的目的。例如,第一用户装置和第二用户装置指示不同用户装置,尽管二者都是用户装置。例如,在不脱离本发明的各种实施例的范围的情况下,第一元件可被称为第二元件,同样地,第二元件也可被称为第一元件。
应注意到:在本发明中,除非另有明确的规定和定义,“安装”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接、也可以是可拆卸连接、或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也是可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,本领域的普通技术人员需要理解的是,文中指示方位或者位置关系的术语为基于附图所示的方位或者位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的各种实施例中使用的术语仅用于描述特定实施例的目的并且并非意在限制本发明的各种实施例。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本发明的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本发明的各种实施例中被清楚地限定。
请参考图1,图1示出了本发明实施例一提供的充电装置100,该充电装置100包括:
整流器110,耦合于充电桩的CP(Control pilot,控制引导)信号线和保护接地PE(Protecting Earthing,保护接地)线,用于将所述CP信号线输入的电压信号转换为正电压;
电压转换器120,连接于电动汽车的连接控制系统和/或所述电动汽车的充电系统,用于将整流器输出的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
如虚线框110所示,所述整流器110包括二极管D1,二极管D2,二极管D3,二极管D4;所述CP信号线、D1的正极与D4的负极相连;所述D1的负极与D2的正极相连,所述D1的负极的电压作为所述电压转换器的输入电压;所述D2的负极、D5的正极与PE线相连;所述D4的正极与D5的负极相连。
所述整流器110还包括二级管D3,其为稳压管,所述D3用于在D1的负极输出的电压超过额定电压后将该电压钳位于目标正电压。所述D1的负极与所述D3的负极相连,所述D3的正极与所述D4的正极相连。
所述整流器110具体用于将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压。示例性的,CP信号线在实际通信过程中,输入的电压为-12V或6V或9V或12V。当输入的电压为负电压时,经过整流器110后,输出的电压为正电压;当输入的电压为正电压时,经过整流器110后,输出的电压为输入的电压。如,当输入的电压为-12V时,输出的电压为12V;当输入的电压为9V时,输出的电压为9V。
具体地,当CP输入为正电压时且PE为正常的零电位时,D1和D5导通,D3的管脚2为正电压,管脚1为参考电平;当CP信号为负电压且PE为正常零电位时,D2和D4导通,D3的管脚2为正电压,管脚1为参考电平。
如虚线框120所示,电压转换器120具体可以包括BOOST电路,所述电压转换器具体用于将整流器输入的6V或9V或12V电压转换为稳定的12V并输出。具体地,考虑到大部分车载电源为12V,因此这里选择BOOST电路,进行升压电平转换。现有的充放电电路的充电管理功耗为4-7W<12W,CP信号线传输的功率为6 V*2A=12W,满足充电管理的功率消耗。
所述BOOST电路包括:直流DC-直流DC芯片U4;电容C14和电容C15,所述电容C14和电容C15并联于所述D3,所述D3的负极连接于所述DC-DC芯片的VIN管脚;电阻R17与电阻R13,所述DC-DC芯片的MODE管脚连接所述电阻R17的一端,所述R17的另一端与D3的负极相连,以及所述DC-DC芯片的EN管脚连接电阻R13的一端,所述R13的另一端与D3的负极相连;电容C17,所述电容C17的一端连于所述DC-DC芯片的BST管脚,另一端连于所述DC-DC芯片的SW管脚;电感L2,所述L2的一端连接于所述DC-DC芯片的SW管脚,所述L2的另一端连接于所述DC-DC芯片的VIN管脚;电容C18与电阻R19,所述电容C18的一端与电阻R19相连,C18的另一端与所述DC-DC芯片的COMP管脚相连;电阻R14与电阻R16,所述电阻R14的一端与电阻R16的一端共同连接于所述DC-DC芯片的FB管脚,所述电阻R16的另一端接地,所述R14的另一端连接于所述DC-DC芯片的VOUT管脚。
具体地,C14和C15为输入电容,为所述电压转换器120供电用。R17使芯片工作在PWM模式,R13使芯片默认上电使能开始工作。L2为储能电感。C17为芯片内部开关管供电回路电容。R14和R16为分压电路,为BOOST电路提供电压反馈路径。C18和R19为补偿电路,调整BOOST电路的环路稳定性和动态响应速度。C11和C12和C13为输出电容,为后续电路储能供电。BOOST为开关控制方式,内部开关闭合时,L2储能,VOUT输出为0;内部开关断开时,L2续流,由于参考VIN为低电位,经过L2续流后,VOUT>VIN。通过配置上述相关器件的参数,可以将上述的6V/9V/12V转换为稳定的12V电压。
所述装置还包括判断电路130,如虚线框所示,所述判断电路用于判断当车载蓄电池的供电电压低于第一阈值时,控制所述电压转换器输出的稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
所述判断电路用于判断当车载蓄电池电量高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述电压转换器输出的稳定的供电电压不再为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
具体地,所述判断电路可以包括N沟道金氧半场效晶体管MOSFET,如图中Q3所示,所述MOSFET的栅极(管脚3)与所述车载蓄电池V_BATTERY相连,所述MOSFET的源极(管脚4/8)与所述电压转换器的输出端相连,所述MOSFET的漏极(管脚1/2/5/6/7),与所述电动汽车的连接控制系统和/或所述电动汽车的充电系统V_CAR相连。根据蓄电池供电原理,当蓄电池没有电或电量低时供电电压会降低,即若V_BATTERY<V_Q3.8-0.3V时,其中V_Q3.8为Q3的管脚8输出的电压,Q3导通,则VOUT的输出为连接控制电路和/或所述电动汽车的充电系统供电;当蓄电池电量充足时,V_BATTERY≥V_Q3.8-0.3V,Q3关断,即车载蓄电池为连接控制电路和/或所述电动汽车的充电系统供电。本领域普通技术人员应当了解,使用P沟道MOSFET也可以达到相同的技术目的,为本发明实施例的等同设计。
本发明实施例提供的电路的连接关系如图2所示,其中充电接口可以为国家规范的七孔插座。LI/L2/L3/N直接与充电系统相连以备进行充电。CP/PE信号线与整流器相连。CC/CP/PE与连接控制系统相连。充电系统可以通过或不通过车载系统,与连接控制系统通信。
当充电桩的充电枪插入电动汽车,如果车载蓄电池没有电或电量低,充电桩与电动汽车无法进行充电流程所需要的通信。本发明提供的一种充电装置,能够在在电动汽车的电池没有电的情况下,利用充电桩的CP信号线为连接控制系统供电和/或所述电动汽车的充电系统供电,以使得充电桩能够正常为电动汽车的电池进行充电。并且当蓄电池有足够电量的时候,切换到蓄电池为连接控制系统和充电系统供电,以保证充电桩能够正常为电动汽车的电池进行充电。
请参考图3,图3示出了本发明实施例二提供的充电方法,可选的,该充电方法的执行主体可以为充电装置,该充电装置可以配置于电动汽车,该方法包括:
步骤310,接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压。
步骤320,将所述整流转换后得到的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压。示例性的,CP信号线在实际通信过程中,输入的电压为-12V或6V或9V或12V。当输入的电压为负电压时,经过整流器后,输出的电压为正电压;当输入的电压为正电压时,经过整流器后,输出的电压为输入的电压。如,当输入的电压为-12V时,输出的电压为12V;当输入的电压为9V时,输出的电压为9V。
所述将所述整流转换后得到的正电压转换为稳定的供电电压,包括:将所述整流转换后得到的6V或9V或12V电压转换为稳定的12V并输出。具体地,考虑到大部分车载电源为12V,因此这里选择BOOST电路,进行升压电平转换。现有的充放电电路的充电管理功耗为4-7W<12W,CP信号线传输的功率为6V*2A=12W,满足充电管理的功率消耗。
所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:所述接收充电桩的控制引导CP信号线输入的电压信号,当所述电压信号超过额定电压时,将所述电压信号进行整流转换并钳位于目标正电压。
所述方法还包括:判断当车载蓄电池的供电电压低于第一阈值时,控制所述稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。所述方法还包括:判断当车载蓄电池的供电电压高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述稳定的供电电压不再为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。具体地,参见实施例一中的相关描述,由于当蓄电池没有电或电量低时电压会降低,可以通过车载蓄电池的供电电压进行上述判断,如:可以通过车载蓄电池的电压V_BATTERY与V_Q3.8-0.3V相比较。
具体地,上述判断过程可以包括:确认充电枪与电动汽车连接,判断车载蓄电池是否有电或是否电量低,如上所述,可以通过车载蓄电池的供电电压进行判断。如果车载蓄电池的供电电压低于第一阈值,判断所述车载蓄电池电量不足 或没有电,则通过本发明实施例一中提供的电路为控制连接系统和/或充电系统供电。所述控制连接系统与充电桩进行通信,连接且握手成功,所述充电桩为电动车的车载蓄电池进行充电。判断车载蓄电池是否满足连接控制系统的功耗需求,当不满足时,继续由本发明实施例一中提供的电路为控制连接系统和/或充电系统供电;当判断车载蓄电池满足连接控制系统的功耗需求时,本发明实施例一中提供的电路不再为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,由车载蓄电池为连接控制系统供电和/或所述电动汽车的充电系统供电。
关于本实施例提供的方法的其他技术特征,可以参见本发明实施例一中的相关描述。
当充电桩的充电枪插入电动汽车,如果车载蓄电池没有电或电量低,充电桩与电动汽车无法进行充电流程所需要的通信。本发明提供的一种充电方法,能够在在电动汽车的电池没有电的情况下,利用充电桩的CP信号线为连接控制系统供电和/或所述电动汽车的充电系统供电,以使得充电桩能够正常为电动汽车的电池进行充电。并且当蓄电池有足够电量的时候,切换到蓄电池为连接控制系统和充电系统供电,以保证充电桩能够正常为电动汽车的电池进行充电。
本发明实施例三还提供一种计算机设备400,如图4所示,所述计算机设备包括:存储器410、处理器420及存储在所述存储器上并可在所述处理器上运行计算机程序,所述处理器运行所述计算机程序以使所述计算机设备400执行实施例二中的方法。关于所述计算机设备400的其他功能可参照实施例一中的描述,此处不再赘述。所述计算机设备400可以为充电装置,该充电装置可以配置于电动汽车。
本发明实施例四还提供一种存储介质500,如图5所示,所述存储介质上存储有实施例四中所述程序,所述程序被处理器510执行时实现如实施例一中的方法的步骤。所述方法可参照上述实施例一和实施例二中的描述,此处不再赘述。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在 一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)以及存储器总线动态RAM(RDRAM)等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明范围的限制。应当指出的是,对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (18)

  1. 一种充电装置,其特征在于,包括:
    整流器,耦合于充电桩的控制引导CP信号线和保护接地PE线,用于将所述CP信号线输入的电压信号转换为正电压;
    电压转换器,连接于电动汽车的连接控制系统和/或所述电动汽车的充电系统,用于将整流器输出的正电压转换为稳定的供电电压,所述稳定的供电电压用于为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
  2. 根据权利要求1所述的装置,其特征在于,
    所述整流器包括二极管D1,二极管D2,二极管D3,二极管D4;
    所述CP信号线、D1的正极与D4的负极相连;
    所述D1的负极与D2的正极相连,所述D1的负极的电压作为所述电压转换器的输入电压;
    所述D2的负极、D5的正极与PE线相连;
    所述D4的正极与D5的负极相连。
  3. 根据权利要求2所述的装置,其特征在于,
    所述整流器还包括二级管D3,所述D3用于在D1的负极输出的电压超过额定电压后将该电压钳位于目标正电压。
  4. 根据权利要求3所述的装置,其特征在于,
    所述D1的负极与所述D3的负极相连,所述D3的正极与所述D4的正极相连。
  5. 根据权利要求1所述的装置,其特征在于,
    所述整流器具体用于将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压;
    所述电压转换器具体用于将整流器输入的6V或9V或12V电压转换为稳定的12V并输出。
  6. 根据权利要求2所述的装置,其特征在于,
    所述电压转换器具体包括BOOST电路。
  7. 根据权利要求6所述的装置,其特征在于,
    所述BOOST电路包括:
    直流DC-直流DC芯片;
    电容C14和电容C15,所述电容C14和电容C15并联于所述D3,所述D3的负极连接于所述DC-DC芯片的VIN管脚;
    电阻R17与电阻R13,所述DC-DC芯片的MODE管脚连接所述电阻R17的一端,所述R17的另一端与D3的负极相连,以及所述DC-DC芯片的EN管脚连接电阻R13的一端,所述R13的另一端与D3的负极相连;
    电容C17,所述电容C17的一端连于所述DC-DC芯片的BST管脚,另一端连于所述DC-DC芯片的SW管脚;
    电感L2,所述L2的一端连接于所述DC-DC芯片的SW管脚,所述L2的另一端连接于所述DC-DC芯片的VIN管脚;
    电容C18与电阻R19,所述电容C18的一端与电阻R19相连,C18的另一端与所述DC-DC芯片的COMP管脚相连;
    电阻R14与电阻R16,所述电阻R14的一端与电阻R16的一端共同连接于所述DC-DC芯片的FB管脚,所述电阻R16的另一端接地,所述R14的另一端连接于所述DC-DC芯片的VOUT管脚。
  8. 根据权利要求1所述的装置,其特征在于,所述装置还包括判断电路,
    所述判断电路用于判断当车载蓄电池的供电电压低于第一阈值时,控制所述电压转换器输出的稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
  9. 根据权利要求8所述的装置,其特征在于,
    所述判断电路用于判断当车载蓄电池电量高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述电压转换器输出的稳定的供电电压不再为所述电动汽车的连接控制系统供电和/或所 述电动汽车的充电系统供电。
  10. 根据权利要求8所述的装置,其特征在于,
    所述判断电路包括N沟道金氧半场效晶体管MOSFET,所述MOSFET的栅极与所述车载蓄电池相连,所述MOSFET的源极与所述电压转换器的输出端相连,所述MOSFET的漏极与所述电动汽车的连接控制系统和/或所述电动汽车的充电系统相连。
  11. 根据权利要求1所述的装置,其特征在于,
    所述装置配置于电动汽车。
  12. 一种充电方法,其特征在于,包括:
    接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压;
    将所述整流转换后得到的正电压转换为稳定的供电电压,所述稳定的供电电压用于为电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
  13. 根据权利要求12所述的方法,其特征在于,所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:
    将CP信号线输入的-12V或6V或9V或12V电压整流并分别输出12V或6V或9V或12V电压;
    所述将所述整流转换后得到的正电压转换为稳定的供电电压,包括:
    将所述整流转换后得到的6V或9V或12V电压转换为稳定的12V并输出。
  14. 根据权利要求12所述的方法,其特征在于,所述接收充电桩的控制引导CP信号线输入的电压信号,将所述电压信号进行整流转换为正电压,包括:
    所述接收充电桩的控制引导CP信号线输入的电压信号,当所述电压信号超过额定电压时,将所述电压信号进行整流转换并钳位于 目标正电压。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    判断当车载蓄电池的供电电压低于第一阈值时,控制所述稳定的供电电压为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    判断当车载蓄电池的供电电压高于或等于第一阈值时,控制所述车载蓄电池为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电,并且控制所述稳定的供电电压不再为所述电动汽车的连接控制系统供电和/或所述电动汽车的充电系统供电。
  17. 一种计算机设备,其特征在于,所述计算机设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行计算机程序,所述处理器运行所述计算机程序以使所述计算机设备执行权利要求12-16任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被计算机执行时实施如权利要求12-16任一项所述的方法。
PCT/CN2019/099872 2019-07-23 2019-08-09 一种充电装置、充电方法、计算机设备以及计算机可读存储介质 WO2021012320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910665483.XA CN110182079B (zh) 2019-07-23 2019-07-23 一种充电装置、充电方法、计算机设备以及计算机可读存储介质
CN201910665483.X 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021012320A1 true WO2021012320A1 (zh) 2021-01-28

Family

ID=67725905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099872 WO2021012320A1 (zh) 2019-07-23 2019-08-09 一种充电装置、充电方法、计算机设备以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110182079B (zh)
WO (1) WO2021012320A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994207A (zh) * 2021-04-30 2021-06-18 深圳市永联科技股份有限公司 电容控制电路以及供电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037833A (zh) * 2013-03-07 2014-09-10 现代自动车株式会社 用于为车辆电池充电的供电系统及方法
CN105226735A (zh) * 2014-06-13 2016-01-06 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机
CN106585397A (zh) * 2016-11-16 2017-04-26 东软集团股份有限公司 一种电动汽车充电的方法、装置及系统
CN107539141A (zh) * 2016-06-28 2018-01-05 现代自动车株式会社 电动车辆的充电控制方法和系统
KR20180128603A (ko) * 2017-05-24 2018-12-04 엘지이노텍 주식회사 전기자동차용 배터리 충전 장치 및 충전 방법
CN109159685A (zh) * 2018-09-28 2019-01-08 北京新能源汽车股份有限公司 一种充电控制系统、控制方法及电动汽车
CN209022767U (zh) * 2018-09-26 2019-06-25 浙江吉利汽车研究院有限公司 一种车辆充电装置及车辆

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638933A (zh) * 2017-10-06 2019-04-16 保时捷股份公司 在充电站或加电站的电力电子装置中的电流隔离

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037833A (zh) * 2013-03-07 2014-09-10 现代自动车株式会社 用于为车辆电池充电的供电系统及方法
CN105226735A (zh) * 2014-06-13 2016-01-06 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机
CN107539141A (zh) * 2016-06-28 2018-01-05 现代自动车株式会社 电动车辆的充电控制方法和系统
CN106585397A (zh) * 2016-11-16 2017-04-26 东软集团股份有限公司 一种电动汽车充电的方法、装置及系统
KR20180128603A (ko) * 2017-05-24 2018-12-04 엘지이노텍 주식회사 전기자동차용 배터리 충전 장치 및 충전 방법
CN209022767U (zh) * 2018-09-26 2019-06-25 浙江吉利汽车研究院有限公司 一种车辆充电装置及车辆
CN109159685A (zh) * 2018-09-28 2019-01-08 北京新能源汽车股份有限公司 一种充电控制系统、控制方法及电动汽车

Also Published As

Publication number Publication date
CN110182079A (zh) 2019-08-30
CN110182079B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
KR101055341B1 (ko) 전원 공급 회로, 전원 공급 회로를 구비한 충전 유닛, 및 전원 공급 방법
US9825485B2 (en) Wireless power transmitter and wireless power receiver
US9391467B2 (en) Step-up battery charging management system and control method thereof
US8253389B2 (en) Battery protection circuit and method for energy harvester circuit
US9438108B2 (en) Bias voltage generating circuit and switching power supply thereof
US8138731B2 (en) Power regulation for large transient loads
US11955893B2 (en) Switching power supply, power adapter and charger
US8004236B2 (en) Contactless charging device and contactless charging method
US20190058343A1 (en) Charger system and power adapter thereof
CN101241389B (zh) 计算机及其供电方法
US8278884B2 (en) DC-DC converter
CN114256943B (zh) 一种快充充电器和快充芯片
EP1879284A2 (en) DC-DC converter and power supply apparatus
CN114552957A (zh) 开关电源的供电电路及其供电方法
WO2021012320A1 (zh) 一种充电装置、充电方法、计算机设备以及计算机可读存储介质
US20110074359A1 (en) Self contained power source
CN101373930B (zh) 直流电压转换电路
US20190089264A1 (en) Synchronous rectifier circuit and switching power supply apparatus
CN102025174B (zh) 一种根据电池电压自动调整输出的新型充电器
US11387666B2 (en) Dual stage battery charger
US20230078292A1 (en) Solar controller, method, non-transitory storage medium, and vehicle
CN112104093B (zh) 一种巡线机器人的感应取电控制装置及其mppt控制方法
CN110838747B (zh) 移动电源的供电控制方法、移动电源
CN210517858U (zh) 终端电源电路及终端
CN110535329B (zh) 用于减少电源变换器的电源损耗的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938215

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19938215

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19938215

Country of ref document: EP

Kind code of ref document: A1