WO2021012283A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2021012283A1
WO2021012283A1 PCT/CN2019/097789 CN2019097789W WO2021012283A1 WO 2021012283 A1 WO2021012283 A1 WO 2021012283A1 CN 2019097789 W CN2019097789 W CN 2019097789W WO 2021012283 A1 WO2021012283 A1 WO 2021012283A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
terminal device
pdschs
network device
domain resource
Prior art date
Application number
PCT/CN2019/097789
Other languages
English (en)
French (fr)
Inventor
杨宁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/097789 priority Critical patent/WO2021012283A1/zh
Priority to CN201980089717.9A priority patent/CN113330762B/zh
Publication of WO2021012283A1 publication Critical patent/WO2021012283A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • This application relates to the field of communication, and more specifically, to a method and device for wireless communication.
  • NTN non-terrestrial network
  • the present application provides a wireless communication method and device, which can reduce service transmission delay.
  • a wireless communication method including: a terminal device receives multiple physical downlink shared channel PDSCHs scheduled by a network device for a first transport block TB, wherein the multiple PDSCHs scheduled by the network device The duration between two consecutive PDSCHs in is less than or equal to the round-trip transmission duration of data transmission between the terminal device and the network device.
  • a wireless communication method including: a network device sends multiple physical downlink shared channel PDSCHs for a first transport block TB to a terminal device, wherein among the multiple PDSCHs sent by the network device The duration between two consecutive PDSCHs is less than or equal to the round-trip transmission duration of data transmission between the terminal device and the network device.
  • a terminal device which is used to execute the method in the first aspect or its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of its implementation modes method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product which includes computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the network device can directly send multiple transmissions for the same TB to the terminal device without waiting for the feedback information sent by the terminal device.
  • This method can reduce the two consecutive PDSCHs sent by the network device. Therefore, the data transmission delay can be reduced and the user experience can be improved.
  • Fig. 1 is a schematic diagram of a wireless communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a repeated transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another repeated transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another repeated transmission method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another repeated transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a system 100 according to an embodiment of the present application.
  • the terminal device 110 is connected to the first network device 130 under the first communication system and the second network device 120 under the second communication system.
  • the first network device 130 is a Long Term Evolution (Long Term Evolution).
  • the second network device 120 is a network device under a New Radio (NR).
  • NR New Radio
  • the first network device 130 and the second network device 120 may include multiple cells.
  • FIG. 1 is an example of a communication system in an embodiment of the present application, and the embodiment of the present application is not limited to that shown in FIG. 1.
  • the communication system to which the embodiment of the present application is adapted may include at least multiple network devices under the first communication system and/or multiple network devices under the second communication system.
  • the system 100 shown in FIG. 1 may include one main network device under the first communication system and at least one auxiliary network device under the second communication system. At least one auxiliary network device is respectively connected to the one main network device to form multiple connections, and is connected to the terminal device 110 to provide services for it. Specifically, the terminal device 110 may simultaneously establish a connection through the main network device and the auxiliary network device.
  • connection established between the terminal device 110 and the main network device is the main connection
  • connection established between the terminal device 110 and the auxiliary network device is the auxiliary connection.
  • the control signaling of the terminal device 110 may be transmitted through the main connection
  • the data of the terminal device 110 may be transmitted through the main connection and the auxiliary connection at the same time, or may be transmitted only through the auxiliary connection.
  • first communication system and the second communication system in the embodiment of the present application are different, but the specific types of the first communication system and the second communication system are not limited.
  • the first communication system and the second communication system may be various communication systems, such as: Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) ), Universal Mobile Telecommunication System (UMTS), etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the main network device and the auxiliary network device may be any access network device.
  • the access network device may be a base station (Base Transceiver) in the Global System of Mobile Communications (GSM) system or Code Division Multiple Access (CDMA). Station, BTS), it can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in a Long Term Evolution (LTE) system (Evolutional Node B, eNB or eNodeB).
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • Station, BTS can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in a Long Term Evolution (LTE) system (Evolutional Node B, eNB or eNodeB).
  • GSM Global System of Mobile Communications
  • CDMA Code Division Multiple Access
  • Station, BTS can also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system,
  • the access network device may also be a Next Generation Radio Access Network (NG RAN), or a base station (gNB) in an NR system, or a cloud radio access network (Cloud
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • Cloud Cloud
  • the radio controller in Radio Access Network, CRAN, or the access network device can be a relay station, access point, in-vehicle device, wearable device, or in the future evolution of Public Land Mobile Network (PLMN) Network equipment, etc.
  • PLMN Public Land Mobile Network
  • the first network device 130 is taken as the main network device, and the second network device 120 is taken as an auxiliary network device as an example.
  • the first network device 130 may be an LTE network device, and the second network device 120 may be an NR network device. Or, the first network device 130 may be an NR network device, and the second network device 120 may be an LTE network device. Or both the first network device 130 and the second network device 120 may be NR network devices. Or the first network device 130 may be a GSM network device, a CDMA network device, etc., and the second network device 120 may also be a GSM network device, a CDMA network device, etc. Or the first network device 130 may be a Macrocell, and the second network device 120 may be a Microcell, Picocell, Femtocell, or the like.
  • the terminal device 110 may be any terminal device, and the terminal device 110 includes but is not limited to:
  • wired lines such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection; and/or another data connection/network; and/ Or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters; and/or another terminal device
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” or a "mobile terminal”.
  • Examples of mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Satellite communication is not restricted by the user area. For example, ordinary terrestrial communication cannot cover areas such as oceans, mountains, deserts, etc. As communication equipment cannot be installed or communication coverage is not available due to sparse population, normal communication cannot be carried out in these areas. As for satellite communications, since a satellite can cover a larger ground and the satellite can orbit the earth, theoretically every corner of the earth can be covered by satellite communications. Secondly, satellite communication has greater social value.
  • Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication distance increases and the cost of communication does not increase significantly.
  • the stability of satellite communication is high, and it is not restricted by natural disasters.
  • Communication satellites can be divided into Low-Earth Orbit (LEO) satellites, Medium-Earth Orbit (MEO) satellites, Geostationary Earth Orbit (GEO) satellites, and highly elliptical satellites according to their orbital heights.
  • Orbit High Elliptical Orbit, HEO
  • LEO satellite and GEO satellite The following is an explanation of LEO satellite and GEO satellite.
  • the altitude range of LEO satellites is 500km-1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • the orbital height of the GEO satellite is 35786km, and the rotation period around the earth is 24 hours.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure satellite coverage and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • NR has two levels of retransmission mechanisms: the hybrid automatic repeat request (HARQ) mechanism of the medium access control (MAC) layer and the radio link control (radio link control). , RLC) layer's automatic repeat request (ARQ) mechanism.
  • HARQ hybrid automatic repeat request
  • MAC medium access control
  • radio link control radio link control
  • ARQ automatic repeat request
  • the retransmission of lost or erroneous data is mainly handled by the HARQ mechanism of the MAC layer and supplemented by the retransmission function of the RLC layer.
  • the HARQ mechanism of the MAC layer can provide fast retransmission, and the ARQ mechanism of the RLC layer can provide reliable data transmission.
  • HARQ uses Stop-and-Wait Protocol to send data.
  • the stop-and-wait protocol after the sender sends a transport block (TB), it stops and waits for the feedback information sent by the receiver. In this way, after each transmission, the sender stops and waits for feedback, which will result in low user throughput.
  • the feedback information may include Acknowledgement (ACK) information and Non-Acknowledgement (NACK) information. Therefore, NR can use multiple parallel HARQ processes to improve throughput.
  • ACK Acknowledgement
  • NACK Non-Acknowledgement
  • NR can use multiple parallel HARQ processes to improve throughput.
  • the sender can use another HARQ process to continue sending data.
  • These HARQ processes together form a HARQ entity, which combines the stop-and-wait protocol to allow continuous data transmission.
  • HARQ can include uplink HARQ and downlink HARQ.
  • Uplink HARQ is for uplink data transmission
  • downlink HARQ is for downlink data transmission, and the two are independent of each other.
  • each downlink HARQ process can only process 1 TB at the same time; for terminal equipment that supports downlink space division multiplexing, each downlink HARQ process can process 1 at the same time Or 2 TB.
  • HARQ can be divided into synchronous and asynchronous in the time domain, and can be divided into non-adaptive and adaptive in the frequency domain.
  • NR downlink uses asynchronous adaptive HARQ mechanism.
  • Asynchronous HARQ that is, retransmission can occur at any time, and the time interval between the retransmission of the same TB and the previous transmission is not fixed.
  • Adaptive HARQ can change the frequency domain resources used for retransmission and the modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • the network Before the network transmits downlink data to the terminal, it needs to allocate appropriate time-frequency domain resources for the downlink transmission of the terminal, and notify the terminal through the physical downlink control channel (PDCCH) that carries scheduling signaling.
  • the PDCCH can Including the allocated time-frequency domain resource location, MCS, used downlink HARQ process identification (identity, ID), initial transmission and retransmission indication, etc.
  • the terminal uses the indicated HARQ process on the corresponding resource to receive downlink data according to the received PDCCH indication, and the downlink data may be carried in a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the process for the terminal to receive downlink data is as follows:
  • the terminal If the terminal receives initial transmission data and there is no other data in the buffer of the corresponding HARQ process, the terminal puts the received downlink data into the buffer of the corresponding HARQ process and decodes the data.
  • the terminal If the terminal receives the initial transmission data, and there are other data in the buffer of the corresponding HARQ process, the terminal replaces the downlink data received this time with the existing data in the buffer of the HARQ process and puts it in the HARQ In the cache of the process, and decode the data.
  • the terminal soft-combines the downlink data received this time with the existing data in the buffer of the corresponding HARQ process, and decodes the combined data.
  • the terminal If the terminal decodes successfully, it sends an ACK feedback to the network. After receiving the ACK, the network can use the HARQ process to continue scheduling new data transmission. If the terminal fails to decode, it sends a NACK feedback to the network. After the network receives the NACK, the network decides whether to use the HARQ to continue scheduling the retransmission of the data block or to abandon the data block to schedule new data transmission.
  • the network device can abandon the data block and schedule new data transmission; if the number of retransmissions of the data block has not reached the maximum number of retransmissions, the network device You can continue to send the retransmitted data of the data block to the terminal device. Before the network receives the ACK/NACK feedback for a certain HARQ process sent from the terminal, the HARQ process cannot be used for data transmission.
  • the network needs to wait at least 1 round trip time (RTT) from sending downlink data to receiving ACK/NACK feedback for this downlink transmission.
  • RTT can Indicates the sum of the time required for the network to send data to the terminal receiving the data, and the time required for the terminal to send data to the network receiving the data.
  • the time interval between two transmissions of the same TB is at least one RTT.
  • the retransmission delay is too large, the service transmission delay increases, which seriously affects the user experience. For example, if the terminal device fails to receive the data for the first time, it will take a long time to receive the retransmitted data sent by the network device, resulting in increased retransmission delay.
  • the number of configured downlink HARQ processes depends on the size of the RTT.
  • the larger the RTT it means that more downlink HARQ processes need to be configured for the UE in order not to affect the user throughput.
  • the NTN system has a substantial increase in RTT.
  • the current maximum HARQ number of 16 supported by the NR protocol may not be sufficient to support the continuous transmission of downlink data in the NTN.
  • the number of downlink HARQ is increased, it will undoubtedly increase the complexity of terminal processing.
  • the embodiment of the present application provides a wireless communication method, which can ensure the requirement of service transmission delay and continuous transmission of downlink data, and improve user experience. As shown in Figure 2, the method includes step S210.
  • the network device sends multiple PDSCHs for the first TB to the terminal device, where the network device schedules the duration between two consecutive PDSCHs in the multiple PDSCHs to be less than or equal to the round-trip data transmission between the terminal device and the network device Transmission time.
  • the terminal device in the embodiment of the present application may be a terminal device in the NTN system, and the network device may be a network device in the NTN system.
  • the network equipment in the NTN system if the network equipment sends multiple transmissions for the same TB to the terminal equipment, it is not limited to the stopping protocol of the HARQ mechanism, that is, the network equipment does not need to wait for the terminal.
  • the feedback information sent by the device, and multiple PDSCHs can be sent to the terminal device in a HARQ process. Compared with the traditional HARQ stop-and-wait protocol mechanism, it can reduce the time interval between two consecutive PDSCHs sent by the network device. This can reduce data transmission delay and improve user experience.
  • the time interval for the network device to send two consecutive PDSCHs in a HARQ process is reduced, the continuity of data transmission can be ensured with a small number of HARQ processes, and the processing complexity of the terminal device will not increase. .
  • the network device may send the PDSCH for the first TB to the terminal device in a certain HARQ process, and the network device may not receive the feedback for the first TB sent by the terminal device before The HARQ process continuously sends multiple PDSCHs for the first TB to the terminal device.
  • the multiple PDSCHs sent by the network device to the terminal device are for the transmission of the same data.
  • the data included in the multiple PDSCHs may be the same, or the multiple PDSCHs may include different cyclic redundancy for the same data.
  • the time interval between two adjacent PDSCH transmissions may be the same or different.
  • the network device sends the PDSCH 3 times to the terminal device for the first TB, namely PDSCH1, PDSCH2, and PDSCH3.
  • the time interval between transmitting PDSCH1 and transmitting PDSCH2 may be the same as or different from the time interval between transmitting PDSCH2 and transmitting PDSCH3.
  • the time interval between transmitting PDSCH1 and PDSCH2 and the time interval between transmitting PDSCH2 and PDSCH3 may both be less than the duration of one RTT.
  • the multiple PDSCHs in the embodiment of the present application may include two or more PDSCHs.
  • the HARQ processes used by the multiple PDSCHs are the same.
  • one HARQ process can process one TB at the same time, or one HARQ process can process multiple TBs at the same time.
  • one HARQ process can process two TBs at the same time, which is not specifically limited in the embodiment of the present application.
  • the multiple PDSCHs may be scheduled by the PDCCH, and the time domain resource positions of the multiple PDSCHs scheduled by the PDCCH may be continuous or discontinuous; and the frequency domain resource positions of the multiple PDSCHs scheduled by the PDCCH may be the same or different,
  • the embodiment of the application does not specifically limit this. In this way, the flexibility of network device scheduling can be improved, so that the repeated transmission of the network device can obtain larger time diversity gain and frequency diversity gain.
  • the terminal device After receiving the multiple PDSCHs sent by the network device, the terminal device can decode the multiple PDSCHs, and can feed back to the network device according to the decoding conditions of the multiple PDSCHs.
  • the network device receives the ACK message sent by the terminal device, it can stop sending the PDSCH for the first TB to the terminal device; if the network device receives the NACK message sent by the terminal device, or has not received the feedback sent by the terminal device In the case of a message, the network device can determine whether it needs to continue transmitting the first TB to the terminal device according to the specific situation.
  • the terminal device can decode the received PDSCH every time it receives a PDSCH. For example, the terminal device receives the second PDSCH among the multiple PDSCHs. If the second PDSCH is the first transmission of the first TB, the terminal device decodes the second PDSCH; if the second PDSCH is the retransmission of the first TB, the terminal device can compare the second PDSCH with the data received before receiving the second PDSCH. The PDSCH of the first TB is combined, and the combined data is decoded. It is understandable that combining PDSCH refers to combining data in PDSCH.
  • the terminal device may also decode the received PDSCH after receiving multiple PDSCHs. For example, the terminal device may receive M PDSCHs for the first TB scheduled by the network device, where M is an integer greater than 1, and the terminal device may combine the received M PDSCHs and decode the combined PDSCH.
  • the terminal device can directly decode the combined M PDSCHs; if the M PDSCHs are all retransmissions of the first TB, the combined PDSCHs are still The PDSCHs received before receiving the M PDSCHs are combined, that is, the terminal device can combine the M PDSCHs and the previously received PDSCHs, and then decode the combined PDSCHs.
  • the combined decoding of several PDSCHs by the terminal device may be instructed by the network device.
  • the network device may send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to decode the PDSCH of the first TB once and the number of PDSCH transmissions corresponding to M times, or the first indication information is used to indicate The number of PDSCH transmissions corresponding to one feedback performed by the terminal device for the first TB is M times.
  • the terminal device needs to feed back to the network device every time it decodes, regardless of whether the decoding succeeds or fails. In other words, if the terminal device decodes successfully, it sends an ACK message to the network device; if the terminal device fails to decode, it needs to send a NACK message to the network device.
  • the first indication information may be carried on radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the network device may send the first indication information to the terminal device through RRC signaling.
  • the network device may wait for feedback from the terminal device after sending M PDSCHs. If the ACK feedback sent by the terminal device is received, other downlink data can be continuously scheduled; if the NACK feedback from the terminal device is received, the retransmission to the terminal device can be continued.
  • the network device can wait for feedback from the terminal device after sending M PDSCHs, and only after receiving the NACK feedback from the terminal device, continue to retransmit to the terminal device. Transmit the first TB instead of repeatedly sending the first TB indefinitely, thereby saving system resources and avoiding waste of system resources.
  • the terminal device may send an ACK feedback to the network device to inform the network device that the first TB has been successfully received.
  • the terminal device may send a NACK feedback to the network device, or may not send a NACK feedback to the network device. Since the network device sends multiple PDSCHs for the same downlink TB to the terminal device, it is not directly based on the feedback of the terminal device. Therefore, the terminal device may not send the NACK feedback to the network device if the decoding is not successful. Yes, as long as the network device does not receive the ACK feedback sent by the terminal device, it can continue to send the PDSCH for the downlink TB to the terminal device, which can save the signaling overhead of the terminal device.
  • the embodiment of the present application does not specifically limit the manner in which the network device schedules the multiple PDSCHs.
  • the network device can use multiple PDCCHs to schedule the multiple PDSCHs respectively, that is, one PDCCH can schedule only one PDSCH, and this way does not need to modify the format of the traditional PDCCH.
  • the network device can also use one PDCCH to schedule the multiple PDSCHs. In this way, only one PDCCH can schedule multiple PDSCHs at the same time, thereby saving signaling overhead.
  • the two methods are described below in combination with specific conditions.
  • the network device schedules multiple PDSCHs through multiple PDCCHs.
  • the terminal device tries to decode every time it receives the PDSCH. If the terminal device decodes successfully, it sends an ACK message to the network device; if the terminal device fails to decode, it does not send a NACK message to the network device.
  • one PDCCH may be used to indicate the time domain resource location of its scheduled PDSCH, the frequency domain resource location of its scheduled PDSCH, and/or its scheduled PDCCH transmission is the initial transmission or retransmission of the first TB.
  • the terminal device can receive RRC signaling sent by the network device, and the RRC signaling can configure the maximum number of HARQ processes that the terminal device can support.
  • the terminal device receives N PDCCHs sent by the network device, where N is an integer greater than or equal to 1, and the N PDCCHs are used to indicate N PDSCH transmissions of the same downlink TB. specifically:
  • Each PDCCH indicates one PDSCH transmission of the downlink TB.
  • the first PDCCH may indicate the initial transmission of the downlink TB, and the following (N-1) (if N is greater than 1) PDCCHs respectively indicate (N-1) retransmissions of the downlink TB; or the N PDCCHs Indicate N retransmissions of the downlink TB.
  • Each PDCCH can respectively indicate the time domain resources and frequency domain resources used for the corresponding PDSCH transmission.
  • the frequency domain resources used for the N times of PDSCH transmission may be the same or different, and the time domain resources may be continuous or discontinuous.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources indicated by each PDCCH according to the received PDCCH N times. Whenever the terminal device receives the PDSCH transmission of the downlink TB, it will try to decode the downlink TB according to the following method:
  • the terminal device can store the received data in the buffer of the corresponding HARQ process , Decode the data in the buffer.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and there is data in the HARQ process buffer corresponding to the downlink TB transmission, the terminal device can replace the data in the HARQ process with the data received this time For existing data, store the data received this time in the buffer of the corresponding HARQ process, and decode the data in the buffer.
  • the terminal device can soft-combine the data received this time with the existing data in the HARQ process buffer, and decode the combined data .
  • the terminal device may also decode the multiple PDSCHs after receiving multiple PDSCHs. For example, the terminal device performs decoding every time X PDSCHs are received, and X is an integer greater than or equal to 2. In this way, the resources required for the terminal equipment to decode the PDSCH can be saved.
  • the terminal device can feed back to the network device according to the PDSCH transmission result of the downlink TB received each time. details as follows:
  • the terminal device can send an ACK feedback to the network device. And if the terminal device receives the PDSCH of the downlink TB scheduled by the network device after sending the ACK, the terminal device may no longer receive the PDSCH transmission of the downlink TB.
  • the terminal device may not send a NACK feedback to the network device. If the terminal device receives the PDSCH of the downlink TB scheduled by the network device after the decoding fails, the terminal device continues to receive the PDSCH transmission of the downlink TB.
  • the terminal device may not send the NACK feedback to the network device if the decoding is not successful. Yes, as long as the network device does not receive the ACK feedback sent by the terminal device, it can continue to send the PDSCH for the downlink TB to the terminal device, which can save the signaling overhead of the terminal device.
  • the terminal device may also send a NACK feedback to the network device when the decoding is not successful, which is not specifically limited in the embodiment of the present application.
  • the network device can use the downlink HARQ process occupied by the downlink TB to schedule the transmission of other downlink data; if the network device has not received the ACK feedback sent by the terminal device, Then, a network device may decide by itself whether to continue scheduling the retransmission of the downlink TB, or to abandon the transmission of the downlink TB and use the downlink HARQ process occupied by the downlink TB to start scheduling the transmission of other downlink data.
  • the network device can abandon the downlink TB The transmission of other downlink data is scheduled.
  • the terminal equipment receives the 3 PDCCHs of the downlink TB1 scheduled by the network equipment. These 3 PDCCHs respectively indicate the 3 PDSCH transmissions of TB1.
  • the 3 PDSCHs all use different time domain and frequency domain resources, and the 3 PDSCH transmissions use Downlink HARQ process i.
  • the UE Each time the UE receives the PDSCH on the corresponding time-frequency domain resources according to the received PDCCH indication, and tries to decode it.
  • the terminal device receives the first PDCCH for scheduling TB1 transmission, the PDCCH indicates the initial transmission of TB1, the terminal device receives the PDSCH on the time-frequency domain resources indicated by the PDCCH, and the terminal device stores the received data in the downlink HARQ In the cache of process i, and decode the data in the cache, the decoding failed this time.
  • the terminal device receives the second PDCCH for scheduling TB1 transmission.
  • the PDCCHJ indicates the retransmission of TB1.
  • the terminal device receives the PDSCH on the time-frequency domain resources indicated by the PDCCH, and the terminal device compares the data received this time with the The existing data in the buffer of the HARQ process i is soft-combined, and the combined data is decoded. The decoding is successful this time, and the terminal device sends an ACK to the network.
  • the network device schedules TB1 for the third time and sends a PDCCH to the terminal device.
  • the PDCCH indicates the retransmission of TB1, and the terminal device receives the PDCCH to indicate that the downlink TB1 is scheduled.
  • the terminal device no longer receives the third PDSCH transmission of TB1.
  • the network device After the network device receives the ACK feedback for TB1 from the terminal device, it can stop sending the PDSCH of TB1 to the terminal device, and start to use the downlink HARQ process i to schedule the transmission of TB2.
  • the terminal device receives the 4 PDCCHs for scheduling downlink TB2 sent by the network device. These 4 PDCCHs respectively indicate 4 PDSCH transmissions of TB2. The 4 PDSCH transmissions use different time-frequency domain resources, and the PDSCH transmission of TB2 uses the downlink HARQ process i.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource according to the PDCCH indication received each time, and tries to decode it, and the terminal device fails in these 4 times of decoding.
  • the network device considers that the number of times that TB2 is scheduled for PDSCH transmission reaches the maximum number of transmission times. After that, the network device no longer schedules TB2's PDSCH transmission, but uses the downlink HARQ process i to start scheduling other data transmission.
  • the network device schedules multiple PDSCHs through one PDCCH.
  • the terminal device tries to decode every time it receives the PDSCH. If the terminal device decodes successfully, it sends an ACK message to the network device; if the terminal device fails to decode, it does not send a NACK message to the network device.
  • one PDCCH can be used to indicate at least one of the following: the time domain resource positions of the multiple PDSCHs, the frequency domain resource positions of the multiple PDSCHs, and the transmission of the multiple PDCCHs is the initial transmission of the first TB Or retransmission, etc.
  • multiple PDSCHs are scheduled using the same PDCCH, and the same PDCCH is used to indicate at least one of the following information: the time domain resource location of the first PDSCH, the frequency domain resource location of the first PDSCH, and the transmission of multiple PDSCHs It is the initial transmission or the retransmission of the first TB respectively, where the first PDSCH is one PDSCH of the multiple PDSCHs.
  • the PDCCH indicating the time-frequency domain resource positions of multiple PDSCHs may be indicated in a display manner, that is, the PDCCH includes different fields, and the different fields are respectively used to indicate the positions of the time-frequency domain resources of the multiple PDSCHs.
  • the PDCCH only indicates the position of the time-frequency domain resource of one PDSCH, and the positions of the time-frequency domain resources of other PDSCHs may be calculated according to the position of the time-frequency domain resources of the PDSCH according to a certain rule.
  • the PDCCH only indicates the time-frequency domain resource location of the first PDSCH, the time-domain resource locations of other PDSCHs are continuous with the first PDSCH time-domain resource locations, or the time-domain resource locations of adjacent PDSCHs have the same time interval ,
  • the same time interval can be preset.
  • the frequency domain resource positions of other PDSCHs may be the same as the frequency domain resource positions of the first PDSCH, or the frequency domain resource positions of other PDSCHs are obtained by frequency hopping according to a certain rule according to the frequency domain resource positions of the first PDSCH.
  • the first PDSCH can be understood as the PDSCH with the earliest transmission time among multiple PDSCHs.
  • the first PDSCH can be the initial PDSCH transmission or the retransmission PDSCH.
  • the PDCCH in the embodiment of the present application is not limited to indicating the time-frequency domain resource location of the first PDSCH transmission.
  • the PDCCH can also indicate the time-frequency domain resource location of the last PDSCH transmission, or the PDCCH can also indicate any one of them. Time-frequency domain resource location for PDSCH transmission.
  • the terminal device may receive RRC signaling sent by the network device, and the RRC signaling may configure the maximum number of HARQ processes that the terminal device can support.
  • the terminal device receives 1 PDCCH sent by the network device.
  • the PDCCH indicates N PDSCH transmissions of the same downlink TB, and N is an integer greater than or equal to 1. specifically:
  • the first PDSCH transmission is the initial transmission of the downlink TB, and the following N-1 (if N is greater than 1) PDSCH transmissions are the N- of the downlink TB. 1 retransmission; or the PDCCH indicates that the N PDSCH transmissions are N retransmissions of the downlink TB.
  • the PDSCH transmission of the downlink TB indicated by the N PDCCHs uses the same downlink HARQ process.
  • the PDCCH indicates the time-frequency domain resources used for N PDSCH transmissions.
  • the frequency domain resources used for the N times of PDSCH transmission may be the same or different, and the time domain resources may be continuous or discontinuous. There are two ways to indicate the resources used for these N times of PDSCH transmission:
  • the first type Explicitly indicate in the PDCCH the time-frequency domain resource locations used for each PDSCH transmission.
  • the second type the PDCCH explicitly indicates the time-frequency domain resource location used for the first PDSCH transmission, and the following N-1 (if N is greater than 1) PDSCH transmissions are obtained by frequency hopping based on a predefined rule.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources corresponding to each PDSCH transmission according to the received PDCCH indication. Each time the terminal device receives the PDSCH transmission of the downlink TB, it will try to decode the TB according to the following method:
  • the terminal device can store the received data in the buffer of the corresponding HARQ process , Decode the data in the buffer.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and there is data in the HARQ process buffer corresponding to the downlink TB transmission, the terminal device can replace the data in the HARQ process with the data received this time For existing data, store the data received this time in the buffer of the corresponding HARQ process, and decode the data in the buffer.
  • the terminal device can soft-combine the data received this time with the existing data in the HARQ process buffer, and decode the combined data .
  • the terminal device can feed back to the network device according to the PDSCH transmission result of the downlink TB received each time. details as follows:
  • the terminal device can send an ACK feedback to the network device. And if the terminal device receives the PDSCH of the downlink TB scheduled by the network device after sending the ACK, the terminal device may no longer receive the PDSCH transmission of the downlink TB.
  • the terminal device may not send a NACK feedback to the network device. If the terminal device receives the PDSCH of the downlink TB scheduled by the network device after the decoding fails, the terminal device continues to receive the PDSCH transmission of the downlink TB.
  • the terminal device may also send a NACK feedback to the network device when the decoding is not successful, which is not specifically limited in the embodiment of the present application.
  • the network device can use the downlink HARQ process occupied by the downlink TB to schedule the transmission of other downlink data; if the network device has not received the ACK feedback sent by the terminal device, Then, a network device may decide by itself whether to continue scheduling the retransmission of the downlink TB, or to abandon the transmission of the downlink TB and use the downlink HARQ process occupied by the downlink TB to start scheduling the transmission of other downlink data.
  • the network device can abandon the downlink TB The transmission of other downlink data is scheduled.
  • the terminal device receives 1 PDCCH of the downlink TB1 scheduled by the network device.
  • the PDCCH indicates 3 PDSCH transmissions of TB1.
  • the 3 PDSCH transmissions all use different time-frequency domain resources, and the PDSCH transmission of TB1 uses the downlink HARQ process i.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource and tries to decode it.
  • the terminal device receives the PDSCH on the time-frequency domain resource corresponding to the first PDSCH transmission indicated by the PDCCH, and the terminal device stores the received data in the buffer of the downlink HARQ process i, and decodes the data in the buffer , The decoding failed this time.
  • the terminal device receives the PDSCH on the time-frequency domain resource corresponding to the second PDSCH transmission indicated by the PDCCH, and the terminal device softly combines the data received this time with the existing data in the HARQ process buffer, and The combined data is decoded, and the decoding is successful this time, and the terminal device sends an ACK message to the network device.
  • the terminal device Since the terminal device has successfully decoded TB1, the terminal device no longer receives the third PDSCH transmission of TB1 indicated by the PDCCH.
  • the network device After receiving the ACK feedback from the terminal device for TB1, the network device can stop sending the PDSCH for TB1 to the terminal device, and start to use the downlink HARQ process i to schedule the transmission of TB2.
  • the terminal device receives 1 PDCCH of the downlink TB2 scheduled by the network device.
  • the PDCCH indicates 4 PDSCH transmissions of TB2.
  • the 4 PDSCH transmissions all use different time-frequency domain resources, and the PDSCH transmission of TB2 uses downlink HARQ process i.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources corresponding to the 4 PDSCH transmissions and tries to decode.
  • the terminal device fails in all 4 times of decoding.
  • the terminal device again receives a PDCCH from the network device for scheduling downlink TB2.
  • the PDCCH indicates 4 PDSCH transmissions of TB2.
  • the 4 PDSCH transmissions all use different time-frequency domain resources, and all use the downlink HARQ process i.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources corresponding to the 4 PDSCH transmissions and tries to decode.
  • the terminal device fails in all 4 times of decoding.
  • the network device considers that the number of times that TB1 is scheduled to perform PDSCH transmission reaches the maximum number of transmissions of 8 times. After that, the network device no longer schedules PDSCH transmission of TB2, but uses the downlink HARQ process i to start scheduling other data transmission.
  • Manner 3 The network device schedules multiple PDSCHs through multiple PDCCHs. After receiving the M PDSCHs of the downlink TB, the terminal device performs joint decoding on the M PDSCHs received, and then sends an ACK/NACK feedback to the network device.
  • M is configured by network equipment.
  • the manner in which the network device schedules multiple PDSCHs through multiple PDCCHs is similar to that of way 1.
  • details are not repeated here.
  • the terminal device receives RRC signaling sent by the network device, and the RRC signaling may configure the maximum number of HARQ processes that the terminal device can support.
  • the RRC signaling may also include the first indication information described above, that is, the RRC signaling may be used to instruct the terminal equipment to feed back the number of PDSCH transmissions of the TB corresponding to one ACK/NACK for the reception of a downlink TB. .
  • the terminal device receives M PDCCHs from the network device, and these PDCCHs indicate PDSCH transmission of the same downlink TB, where M is an integer greater than or equal to 1. specifically:
  • Each PDCCH indicates one PDSCH transmission of the downlink TB.
  • the first PDCCH indicates the initial transmission of the downlink TB
  • the following M-1 (if M is greater than 1) PDCCHs respectively indicate the M-1 retransmissions of the downlink TB; or the M PDCCHs indicate the downlink TB respectively M retransmissions.
  • Each PDCCH indicates the time-frequency domain resources used for the corresponding PDSCH transmission.
  • the frequency domain resources used for the M PDSCH transmissions may be the same or different, and the time domain resources may be continuous or discontinuous.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources indicated by each PDCCH according to the received M PDCCH indications.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and there is no data in the buffer of the HARQ process corresponding to the transmission of the downlink TB, the terminal device stores the received data in the buffer of the corresponding HARQ process.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and the transmission of the downlink TB corresponds to the data in the buffer of the HARQ process, the terminal device replaces the existing data in the buffer of the HARQ process with the data received this time , Save the data received this time into the buffer of the corresponding HARQ process.
  • the terminal device If the terminal device receives the retransmission of the downlink TB, the terminal device soft merges the data received this time with the existing data in the buffer of the HARQ process.
  • the terminal receiving device After receiving the M PDSCH transmissions of the downlink TB, the terminal receiving device tries to decode the combined data in the buffer of the HARQ process corresponding to the TB, and feeds back to the network device according to the decoding result. If the terminal device decodes successfully, the terminal device sends an ACK message to the network. If the terminal reports a decoding failure, the terminal reports a NACK message to the network.
  • the terminal device receives the RRC signaling sent by the network device.
  • the RRC signaling is used to configure the maximum number of downlink HARQ processes that the terminal device can support, and the RRC signaling is used to instruct the terminal device to receive feedback on the 4 PDSCHs of a downlink TB One ACK/NACK.
  • the terminal device receives the 4 PDCCHs of the downlink TB1 scheduled by the network device.
  • the 4 PDCCHs respectively indicate 4 PDSCH transmissions of TB1.
  • the 4 PDSCH transmissions all use different time-frequency domain resources, and the PDSCH transmission of TB1 uses downlink HARQ process i. Among them, the first PDCCH indicates the initial transmission of TB1, and the last three PDCCHs indicate the three retransmissions of TB1.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource each time according to the received PDCCH indication.
  • the terminal device receives the PDCCH transmitted by the first scheduling TB1, the terminal device receives the PDSCH on the time-frequency domain resources indicated by the PDCCH, and stores the data received this time in the buffer of the downlink HARQ process i.
  • the terminal device When the terminal device receives the PDCCH scheduled for TB1 transmission in Article 2, Article 3, and Article 4, the terminal device receives the PDSCH on the time-frequency domain resources indicated by each PDCCH, and the terminal device will receive the PDSCH each time.
  • the data is soft merged with the existing data in the buffer of the HARQ process i.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB1, the terminal device attempts to decode the combined data in the buffer of the HARQ process i corresponding to the TB. If the decoding fails, the terminal device sends a NACK message to the network device.
  • the network device After the network device receives the NACK feedback for TB1 sent by the terminal device, the network device continues to schedule 4 retransmissions for TB1, and uses 4 PDCCHs to indicate the 4 PDSCH transmissions.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource each time according to the received PDCCH indication, and the terminal device softly merges the data received this time with the existing data in the HARQ process buffer.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB1, the terminal device attempts to decode the combined data in the buffer of the HARQ process corresponding to the TB. If the decoding fails, the terminal device sends a NACK message to the network device.
  • the network device After the network device receives the NACK feedback for TB1 sent by the terminal device, the network device decides not to schedule the retransmission of TB1.
  • the network equipment starts to use the downlink HARQ process i to schedule 4 transmissions of TB2, and uses 4 PDCCHs to indicate the 4 PDSCH transmissions.
  • the first PDCCH indicates the initial transmission of TB2, and the following three PDCCHs respectively indicate the 3 retransmissions of TB2.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource each time according to the received PDCCH indication.
  • the terminal device receives the first PDCCH for scheduling TB2 transmission, the terminal device receives the PDSCH on the time-frequency domain resources indicated by the PDCCH, and the terminal device replaces the data in the buffer of the downlink HARQ process i with the data received this time. There are data.
  • the terminal equipment When the terminal equipment receives the PDCCH transmitted by the second, third, and fourth scheduling TB1, the terminal equipment receives the PDSCH on the time-frequency domain resources indicated by each PDCCH, and the terminal equipment will The data is soft merged with the existing data in the buffer of the HARQ process.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB2, the terminal device attempts to decode the combined data in the buffer of the HARQ process corresponding to the TB. If the decoding is successful, the terminal device sends an ACK message to the network device.
  • the network device After the network device receives the ACK feedback for TB2 sent by the terminal device, the network device can use the downlink HARQ process i to schedule other data transmission of the terminal device.
  • Manner 4 The network device schedules multiple PDSCHs through one PDCCH. After receiving the M PDSCHs of the downlink TB, the terminal device performs joint decoding on the M PDSCHs received, and then sends an ACK/NACK feedback to the network device.
  • M is configured by network equipment.
  • the terminal device receives RRC signaling sent by the network device, and the RRC signaling may configure the maximum number of HARQ processes that the terminal device can support.
  • the RRC signaling may also include the first indication information described above, that is, the RRC signaling may be used to instruct the terminal equipment to feed back the number of PDSCH transmissions of the TB corresponding to one ACK/NACK for the reception of a downlink TB. .
  • the terminal device receives 1 PDCCH from the network device, and these PDCCHs indicate M PDSCH transmissions of the same downlink TB. specifically:
  • the PDCCH indicates the M PDSCH transmissions of the downlink TB, the first PDSCH transmission is the initial transmission of the downlink TB, and the subsequent M-1 PDSCH transmissions are the M-1 retransmissions of the downlink TB; or the PDCCH indicates The M PDSCH transmissions are M retransmissions of the downlink TB.
  • the PDSCH transmission of the downlink TB indicated by the M PDCCHs all use the same downlink HARQ process.
  • the PDCCH indicates the time-frequency domain resources used for M PDSCH transmissions.
  • the frequency domain resources used for the M PDSCH transmissions may be the same or different, and the time domain resources may be continuous or discontinuous.
  • the method for indicating the resources used for the M PDSCH transmissions is the same as Mode 2.
  • the terminal device sequentially receives the PDSCH on the time-frequency domain resources corresponding to each PDSCH transmission according to the received PDCCH indication.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and there is no data in the buffer of the HARQ process corresponding to the transmission of the downlink TB, the terminal device stores the received data in the buffer of the corresponding HARQ process.
  • the terminal device If the terminal device receives the initial transmission of the downlink TB, and the transmission of the downlink TB corresponds to the data in the buffer of the HARQ process, the terminal device replaces the existing data in the buffer of the HARQ process with the data received this time , Save the data received this time into the buffer of the corresponding HARQ process.
  • the terminal device If the terminal device receives the retransmission of the downlink TB, the terminal device soft merges the data received this time with the existing data in the buffer of the HARQ process.
  • the terminal device After receiving the M PDSCH transmissions of the downlink TB, the terminal device attempts to decode the combined data in the buffer of the HARQ process corresponding to the TB. The terminal device can feedback to the network device according to the decoding result. If the terminal device decodes successfully, the terminal device sends an ACK to the network device. If the terminal device fails to decode, the terminal device sends a NACK to the network device.
  • the network device further decides whether to continue to send the retransmission for the downlink TB to the terminal device.
  • the network device can use the downlink HARQ process occupied by the TB to schedule the transmission of other downlink data. If the network device receives the NACK feedback from the terminal device, the network device can decide on its own whether to use the downlink HARQ process occupied by the TB to continue to schedule the retransmission of the TB or to use the downlink HARQ process occupied by the TB to schedule other downlink data transmissions.
  • the terminal device receives the RRC signaling sent by the network device.
  • the RRC signaling is used to configure the maximum number of downlink HARQ processes that the terminal device can support, and the RRC signaling is used to instruct the terminal device to receive feedback on the 4 PDSCHs of a downlink TB One ACK/NACK.
  • the terminal device receives the PDCCH for scheduling downlink TB1 from the network device.
  • the PDCCH indicates 4 PDSCH transmissions of TB1.
  • the 4 PDSCH transmissions all use different time-frequency domain resources, and the PDSCH transmission of TB1 uses downlink HARQ process i.
  • the first PDCCH indicates the initial transmission of TB1
  • the last three PDCCHs indicate the three retransmissions of TB1.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource each time according to the received PDCCH indication.
  • the terminal device receives the PDSCH on the time-frequency domain resource used for the first PDSCH transmission indicated by the PDCCH, and stores the received data in the buffer of the downlink HARQ process i.
  • the terminal device receives the PDSCH on the time-frequency domain resources used for the second, third, and fourth PDSCH transmissions indicated by the PDCCH, and the terminal device stores the data received each time with the HARQ process i buffer The existing data is soft merged.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB1, the terminal device attempts to decode the combined data in the buffer of the HARQ process i corresponding to the TB. If the decoding fails, the terminal device sends a NACK message to the network device.
  • the network device After the network device receives the NACK feedback for TB1 sent by the terminal device, the network device continues to schedule 4 retransmissions for TB1, and uses 1 PDCCH to indicate these 4 PDSCH transmissions.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resource according to the PDCCH indication received each time, and the terminal device soft merges the data received each time with the existing data in the buffer of the HARQ process i.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB1, the terminal device attempts to decode the combined data in the buffer of the HARQ process i corresponding to the TB. If the decoding fails, the terminal device sends a NACK to the network device.
  • the network device After the network device receives the NACK feedback for TB1 from the terminal device, the network device decides not to schedule the retransmission of TB1.
  • the network equipment starts to use the HARQ process i to schedule 4 transmissions of TB2, and uses 1 PDCCH to indicate these 4 PDSCH transmissions.
  • the first PDCCH indicates the initial transmission of TB2, and the following three PDCCHs respectively indicate the 3 retransmissions of TB2.
  • the terminal device receives the PDSCH on the corresponding time-frequency domain resources according to the PDCCH indication received each time.
  • the terminal device receives the PDSCH on the time-frequency domain resource used for the first PDSCH transmission indicated by the PDCCH, and the terminal device replaces the existing data in the buffer of the downlink HARQ process i with the data received this time.
  • the terminal device receives the PDSCH on the time-frequency domain resources used for the second, third, and fourth PDSCH transmissions indicated by the PDCCH, and the terminal device stores the data received each time with the HARQ process i buffer The existing data is soft merged.
  • the terminal device After receiving the 4 PDSCH transmissions of the downlink TB2, the terminal device attempts to decode the combined data in the buffer of the HARQ process i corresponding to the TB. If the decoding is successful, the terminal device sends an ACK message to the network device.
  • the network device After the network device receives the ACK feedback for TB2 sent by the terminal device, the network device can use the downlink HARQ process i to schedule other data transmission of the terminal device.
  • the network device can repeatedly send the same TB multiple times in one downlink bundling transmission.
  • the downlink bundling transmission mode supported by the NR standard is mainly used to enhance coverage.
  • the bundling transmission mode is to repeatedly send multiple times to the TB on the same frequency domain resource. Using this repetitive transmission method can only obtain a very limited frequency diversity. Gain and time diversity gain.
  • the wireless communication method according to the embodiment of the present application is described in detail above.
  • the device according to the embodiment of the present application will be described below in conjunction with FIG. 7 to FIG. 11.
  • the technical features described in the method embodiment are applicable to the following device embodiments.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device may be any terminal device described above.
  • the terminal device 700 in FIG. 7 includes a communication unit 710, where:
  • the communication unit 710 is configured to receive multiple physical downlink shared channel PDSCHs for the first transport block TB scheduled by the network device, where the duration between two consecutive PDSCHs of the multiple PDSCHs scheduled by the network device is less than Or equal to the round-trip transmission time length of data transmission between the terminal device and the network device.
  • the multiple PDSCHs are scheduled by different physical downlink control channels PDCCH, where one PDCCH is used to indicate the time domain resource location, frequency domain resource location of its scheduled PDSCH, and/or its scheduled PDSCH transmission.
  • PDCCH physical downlink control channels
  • the multiple PDSCHs are scheduled using the same PDCCH, and the same PDCCH is used to indicate at least one of the following information: time domain resource positions of the multiple PDSCHs, frequency domains of the multiple PDSCHs.
  • the resource location and the transmission of the multiple PDSCHs are respectively the initial transmission or retransmission of the first TB.
  • the multiple PDSCHs are scheduled using the same PDCCH, and the same PDCCH is used to indicate at least one of the following information: the time domain resource location of the first PDSCH, and the frequency domain resource of the first PDSCH.
  • the location and the transmission of the multiple PDSCHs are respectively the initial transmission or retransmission of the first TB, the first PDSCH is one PDSCH of the multiple PDSCHs, and the timing of other PDSCHs of the multiple PDSCHs
  • the position of the domain resource and the position of the frequency resource are respectively determined according to the position of the time domain resource and the position of the frequency domain resource of the first PDSCH, and the other PDSCHs are PDSCHs other than the first PDSCH among the plurality of PDSCHs.
  • the time domain resource positions of the multiple PDSCHs are continuous, or the time domain resource positions of the multiple PDSCHs are not continuous.
  • the frequency domain resource positions of the multiple PDSCHs are the same, or the frequency domain resource positions of the multiple PDSCHs are different.
  • the communication unit 710 is configured to: receive a second PDSCH, where the second PDSCH is one of the multiple PDSCHs; the terminal device further includes a processing unit 720, which is configured to Perform the following operations: when the second PDSCH transmission is the first transmission of the first TB, decode the second PDSCH; when the second PDSCH transmission is the retransmission of the first TB In the case of transmission, the second PDSCH and the PDSCH for the first TB received before receiving the second PDSCH are combined and decoded.
  • the communication unit 710 is configured to: receive M PDSCHs scheduled by the network device for the first TB, where M is an integer greater than or equal to 1, wherein the transmission of the M PDSCHs includes The first transmission of the first TB; the terminal device further includes a processing unit 720, the processing unit is configured to perform the following operations: combine the received M PDSCHs; decode the combined PDSCH.
  • the communication unit 710 is configured to: receive M PDSCHs scheduled by the network device for the first TB, where M is an integer greater than or equal to 1, wherein the transmissions of the M PDSCHs are all Retransmission of the first TB; the terminal device further includes a processing unit 720, the processing unit 720 is configured to perform the following operations: the received M PDSCH, and received before the M PDSCH received Merging the PDSCH of the first TB; and decoding the merged PDSCH.
  • the communication unit 710 is configured to: receive first indication information sent by the network device, where the first indication information is used to instruct the terminal device to decode once the PDSCH corresponding to the PDSCH of the first TB The number of transmissions is M, or the first indication information is used to indicate that the number of transmissions of the PDSCH corresponding to one feedback performed by the terminal device for the first TB is M.
  • the communication unit 710 is configured to: if the decoding is successful, send a confirmation ACK message to the network device; if the decoding is unsuccessful, not send a non-confirmation NACK message to the network device.
  • the communication unit 710 is configured to: if the decoding is successful, send an ACK message to the network device; if the decoding is unsuccessful, send a NACK message to the network device.
  • the communication unit 710 is configured to: in the case of successful decoding, no longer receive the PDSCH for the first TB sent by the network device.
  • the HARQ processes used by the multiple PDSCHs are the same.
  • the terminal device is a terminal device in a non-terrestrial communication network NTN system.
  • FIG. 8 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the network device may be any of the network devices described above.
  • the network device 800 in FIG. 8 includes a communication unit 810, wherein:
  • the communication unit 810 is configured to send multiple physical downlink shared channel PDSCHs for the first transport block TB to the terminal device, where the duration between two consecutive PDSCHs of the multiple PDSCHs sent by the network device is less than or It is equal to the round-trip transmission duration of data transmission between the terminal device and the network device.
  • the communication unit 810 is configured to stop sending the PDSCH of the first TB to the terminal device when the ACK feedback for the first TB sent by the terminal device is received.
  • the multiple PDSCHs are scheduled by different physical downlink control channels PDCCH, where one PDCCH is used to indicate the time domain resource position, frequency domain resource position, and/or scheduled PDSCH transmission of one PDSCH as the first Initial transmission or retransmission of one TB.
  • PDCCH physical downlink control channels
  • the multiple PDSCHs are scheduled using the same PDCCH, and the same PDCCH is used to indicate at least one of the following information: time domain resource positions of the multiple PDSCHs, frequency domains of the multiple PDSCHs.
  • the resource location and the transmission of the multiple PDSCHs are respectively the initial transmission or retransmission of the first TB.
  • the multiple PDSCHs are scheduled using the same PDCCH, and the same PDCCH is used to indicate at least one of the following information: the time domain resource location of the first PDSCH, and the frequency domain resource of the first PDSCH.
  • the location and the transmission of the multiple PDSCHs are respectively the initial transmission or retransmission of the first TB, the first PDSCH is one PDSCH of the multiple PDSCHs, and the timing of other PDSCHs of the multiple PDSCHs
  • the position of the domain resource and the position of the frequency resource are respectively determined according to the position of the time domain resource and the position of the frequency domain resource of the first PDSCH, and the other PDSCHs are PDSCHs other than the first PDSCH among the plurality of PDSCHs.
  • the time domain resource positions of the multiple PDSCHs are continuous, or the time domain resource positions of the multiple PDSCHs are not continuous.
  • the frequency domain resource positions of the multiple PDSCHs are the same, or the frequency domain resource positions of the multiple PDSCHs are different
  • the communication unit 810 is configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to decode once the PDSCH corresponding to the PDSCH of the first TB
  • the number of transmissions is M, or the first indication information is used to indicate that the number of transmissions of the PDSCH corresponding to one feedback performed by the terminal device for the first TB is M, and M is an integer greater than or equal to 1.
  • the network device further includes a processing unit 820, the processing unit 820 is configured to: if the feedback for the first TB sent by the terminal device is not received within a preset time period, or receive In the case of the NACK feedback for the first TB sent by the terminal device, determine whether to continue to send the PDSCH for the first TB to the terminal device according to the number of retransmissions of the first TB.
  • the HARQ processes used by the multiple PDSCHs are the same.
  • the network device is a network device in a non-terrestrial communication network NTN system.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device of an embodiment of the application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • the communication device 900 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application. For simplicity , I won’t repeat it here.
  • Fig. 10 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the device 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the device 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or devices, and specifically, can obtain information or data sent by other devices or devices.
  • the device 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or devices, specifically, can output information or data to other devices or devices.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of this application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device mentioned in the embodiments of the present application may be a chip, and the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法及装置,能够减小业务传输时延。所述方法包括:终端设备接收网络设备调度的针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备调度的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。

Description

无线通信的方法及设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
目前第三代合作伙伴计划(3rd generation partnership project,3GPP)正在研究非地面通信网络(non terrestrial network,NTN)技术,NTN一般采用卫星通信的方式向地面用户提供通信服务。与传统的蜂窝网络相比,NTN系统中,终端设备与卫星之间的信号传播时延较大,较大的传输时延会导致业务时延增大,影响用户体验。
因此,如何减小业务传输时延成为亟需解决的问题。
发明内容
本申请提供一种无线通信的方法及装置,能够减小业务传输时延。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备调度的针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备调度的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
第二方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备发送的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本申请提供的技术方案,网络设备可以不需要等待终端设备发送的反馈信息,而直接向终端设备发送针对同一个TB的多次传输,由于这种方式能够减小网络设备发送的连续两个PDSCH之间的时间间隔,因此能够降低数据的传输时延,提高用户体验。
附图说明
图1是本申请实施例应用的无线通信系统的示意图。
图2是本申请实施例提供的一种无线通信的方法的示意性流程图。
图3是本申请实施例提供的一种重复传输的方法的示意图。
图4是本申请实施例提供的另一种重复传输的方法的示意图。
图5是本申请实施例提供的另一种重复传输的方法的示意图。
图6是本申请实施例提供的另一种重复传输的方法的示意图。
图7是本申请实施例提供的一种终端设备的示意性框图。
图8是本申请实施例提供的一种网络设备的示意性框图。
图9是本申请实施例的通信设备的示意性结构图。
图10是本申请实施例的装置的示意性结构图。
图11是本申请实施例的通信系统的示意性框图。
具体实施方式
图1是本申请实施例的系统100的示意图。
如图1所示,终端设备110与第一通信系统下的第一网络设备130和第二通信系统下的第二网络设备120相连,例如,该第一网络设备130为长期演进(Long Term Evolution,LTE)下的网络设备,该第二网络设备120为新空口(New Radio,NR)下的网络设备。
其中,该第一网络设备130和该第二网络设备120下可以包括多个小区。
应理解,图1是本申请实施例的通信系统的示例,本申请实施例不限于图1所示。
作为一个示例,本申请实施例适应的通信系统可以包括至少该第一通信系统下的多个网络设备和/或该第二通信系统下的多个网络设备。
例如,图1所示的系统100可以包括第一通信系统下的一个主网络设备和第二通信系统下的至少一个辅助网络设备。至少一个辅助网络设备分别与该一个主网络设备相连,构成多连接,并分别与终端设备110连接为其提供服务。具体地,终端设备110可以通过主网络设备和辅助网络设备同时建立连接。
可选地,终端设备110和主网络设备建立的连接为主连接,终端设备110与辅助网络设备建立的连接为辅连接。终端设备110的控制信令可以通过主连接进行传输,而终端设备110的数据可以通过主连接以及辅连接同时进行传输,也可以只通过辅连接进行传输。
作为又一示例,本申请实施例中的第一通信系统和第二通信系统不同,但对第一通信系统和该第二通信系统的具体类别不作限定。
例如,该第一通信系统和该第二通信系统可以是各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
所述主网络设备和所述辅助网络设备可以为任意接入网设备。
可选地,在一些实施例中,所述接入网设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。
可选地,所述接入网设备还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
在图1所示的系统100中,以该第一网络设备130为主网络设备,以该第二网络设备120为辅助网络设备为例。
该第一网络设备130可以为LTE网络设备,该第二网络设备120可以为NR网络设备。或者该第一网络设备130可以为NR网络设备,第二网络设备120可以为LTE网络设备。或者该第一网络设备130和该第二网络设备120都可以为NR网络设备。或者该第一网络设备130可以为GSM网络设备,CDMA网络设备等,该第二网络设备120也可以为GSM网络设备,CDMA网络设备等。或者第一网络设备130可以是宏基站(Macrocell),第二网络设备120可以为微蜂窝基站(Microcell)、微微蜂窝基站(Picocell)或者毫微微蜂窝基站(Femtocell)等。
可选地,所述终端设备110可以是任意终端设备,所述终端设备110包括但不限于:
经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal  Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。
目前3GPP正在研究NTN技术,NTN技术一般采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等区域由于无法搭设通信设备或由于人口稀少而不做通信覆盖,导致这些区域不能进行正常的通信。而对于卫星通信来说,由于一颗卫星可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信具有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加。最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同可以分为低地球轨道(Low-Earth Orbit,LEO)卫星、中地球轨道(Medium-Earth Orbit,MEO)卫星、地球同步轨道(Geostationary Earth Orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。目前阶段主要研究的是LEO卫星和GEO卫星,下面对LEO卫星和GEO卫星进行说明。
LEO卫星的高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间为20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO卫星的轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信系统的系统容量,卫星采用多波束覆盖地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
以NR系统为例,NR有两级重传机制:媒体接入控制(medium access control,MAC)层的混合自动重传请求(hybrid automatic repeat request,HARQ)机制和无线链路控制(radio link control,RLC)层的自动重传请求(automatic repeat request,ARQ)机制。丢失或出错的数据的重传主要是由MAC层的HARQ机制处理的,并由RLC层的重传功能进行补充。MAC层的HARQ机制能够提供快速重传,RLC层的ARQ机制能够提供可靠的数据传输。
HARQ使用停等协议(Stop-and-Wait Protocol)来发送数据。在停等协议中,发送端发送一个传输块(transport block,TB)后,就停下来等待接收端发送的反馈信息。这样,每次传输后发送端就停下来等待反馈,会导致用户吞吐量很低,该反馈信息可以包括确认(Acknowledgement,ACK)信息和非确认(Non-Acknowledgement,NACK)信息。因此,NR可以使用多个并行的HARQ进程来提高吞吐量。当一个HARQ进程在等待反馈信息时,发送端可以使用另一个HARQ进程来继续发送数据。这些HARQ进程共同组成了一个HARQ实体,这个实体结合了停等协议,允许数据连续传输。
HARQ可以包括上行HARQ和下行HARQ。上行HARQ是针对上行数据传输,下行HARQ是针对下行数据传输,两者相互独立。
对于不支持下行空分复用的终端设备而言,每个下行HARQ进程只能同时处理1个TB;对于支持下行空分复用的终端设备而言,每个下行HARQ进程可以同时处理1个或者2个TB。
HARQ在时域上可以分为同步和异步两类,在频域上可以分为非自适应和自适应两类。NR下行使用异步自适应HARQ机制。异步HARQ即重传可以发生在任意时刻,同一个TB的重传与上一次传输的时间间隔是不固定的。自适应HARQ可以改变重传所使用的频域资源和调制编码方式(modulation and coding scheme,MCS)。
网络在给终端传输下行数据之前,需要先给该终端的下行传输分配合适的时频域资源,并通过承载调度信令的物理下行控制信道(physical downlink control channel,PDCCH)告知终端,PDCCH中可以包含分配的时频域资源位置、MCS、使用的下行HARQ进程标识(identity,ID)、初传重传指示等。 终端根据接收到的PDCCH指示在对应的资源上使用指示的HARQ进程接收下行数据,该下行数据可以承载在物理下行共享信道(physical downlink shared channel,PDSCH)中。
终端接收下行数据的过程如下:
a)如果终端接收到的是初传数据,并且对应的HARQ进程的缓存中当前没有其他数据,则终端将接收的下行数据放入对应的HARQ进程的缓存中,并对该数据进行解码。
b)如果终端接收到的是初传数据,并且对应的HARQ进程的缓存中已有其他数据,则终端将本次接收的下行数据替换该HARQ进程的缓存中的已有数据,放入该HARQ进程的缓存中,并对该数据进行解码。
c)如果终端接收到的是重传数据,则终端将本次接收的下行数据与对应HARQ进程的缓存中的已有数据进行软合并,并对合并后的数据进行解码。
终端如果解码成功,则向网络发送ACK反馈,网络在收到ACK后,就可以使用该HARQ进程继续调度新传数据。终端如果解码失败,则向网络发送NACK反馈,网络在收到NACK后,由网络决定是使用该HARQ继续调度该数据块的重传还是放弃该数据块调度新传数据。例如,如果该数据块的重传次数已经达到最大重传次数,则网络设备可以放弃该数据块而调度新传数据;如果该数据块的重传次数还未达到最大重传次数,则网络设备可以继续向终端设备发送该数据块的重传数据。在网络收到来自终端发送的针对某个HARQ进程的ACK/NACK反馈之前,不能使用该HARQ进程进行数据传输。
根据上文描述的HARQ的停等协议可知,网络从发送下行数据到接收到针对这次下行传输的ACK/NACK反馈至少需要等待1个往返传输时间(round trip time,RTT)的时长,RTT可以表示网络发送数据到终端接收到该数据所需要的时间,以及终端发送数据到网络接收到该数据所需要的时间之和。也就是说,基于目前的下行HARQ机制,对于同一个TB的两次传输之间的时间间隔至少是一个RTT。与传统的蜂窝网络相比,由于NTN系统中UE与卫星之间的信号传输时延大幅增加,如果在NTN系统中直接沿用目前陆地的NR系统的下行HARQ机制,会存在以下两方面的问题:
1、由于重传时延过大,导致业务传输时延增大,严重影响用户体验。例如,如果终端设备第一次数据接收失败,则还需要等较长的时间才能接收到网络设备发送的重传数据,从而导致重传时延增大。
2、为了支持下行数据的连续传输,需要为UE同时配置多个下行HARQ进程,其中配置的下行HARQ进程的数目取决于RTT的大小。RTT越大,意味着为了不影响用户吞吐量需要为UE配置更多的下行HARQ进程数。而NTN系统相比于陆地NR系统,RTT大幅增加,目前NR协议所支持的最大HARQ数目16很有可能不足以支持NTN中下行数据的连续传输。另一方面,如果增大下行HARQ数目,无疑会增加终端处理的复杂度。
因此,需要研究NTN中的下行HARQ增强方案,以保证业务传输的时延要求以及保证下行数据的连续传输。
本申请实施例提供一种无线通信的方法,能够保证业务传输时延的要求以及下行数据的连续传输,提高用户体验。如图2所示,该方法包括步骤S210。
S210、网络设备向终端设备发送针对第一TB的多个PDSCH,其中,网络设备调度该多个PDSCH中的连续两个PDSCH之间的时长小于或等于终端设备与网络设备之间传输数据的往返传输时长。
本申请实施例中的终端设备可以是NTN系统中的终端设备,网络设备可以是NTN系统中的网络设备。
对于NTN系统中的网络设备而言,如果网络设备向终端设备发送针对同一个TB的多次传输,其可以不受限于HARQ机制的停等协议,也就是说,网络设备可以不需要等待终端设备发送的反馈信息,而在一个HARQ进程上可以向终端设备发送多个PDSCH,相比于传统的HARQ停等协议机制,由于能够减小网络设备发送的连续两个PDSCH之间的时间间隔,从而能够降低数据的传输时延,提高用户体验。另外,由于网络设备在一个HARQ进程上连续发送两次PDSCH的时间间隔减小,从而可以仅需较少的HARQ进程数就能够保证数据传输的连续性,也不会增加终端设备处理的复杂度。
以第一TB为例,网络设备可以在某个HARQ进程上向终端设备发送针对该第一TB的PDSCH,并且网络设备可以在没有接收到终端设备发送的针对该第一TB的反馈之前,在该HARQ进程上连续向终端设备发送多个针对该第一TB的PDSCH。
可以理解的是,网络设备向终端设备发送的多个PDSCH是针对同一个数据的传输。该多个PDSCH中包括的数据可以相同,或者该多个PDSCH中包括针对同一个数据的不同的循环冗余。
该多个PDSCH传输中,相邻两个PDSCH传输之间的时间间隔可以相同,也可以不同。例如,网络设备针对第一TB向终端设备发送了3次PDSCH,即PDSCH1、PDSCH2和PDSCH3。其中,发送PDSCH1和发送PDSCH2之间的时间间隔,可以与发送PDSCH2和发送PDSCH3之间的时间间隔相同,也可以不同。但是,发送PDSCH1和发送PDSCH2之间的时间间隔,与发送PDSCH2和发送PDSCH3 之间的时间间隔可以均小于一个RTT的时长。
本申请实施例中的多个PDSCH可以包括两个或两个以上的PDSCH。该多个PDSCH使用的HARQ进程相同。
本申请实施例中,一个HARQ进程可以同时处理一个TB,或者一个HARQ进程可以同时处理多个TB,如一个HARQ进程可以同时处理两个TB,本申请实施例对此不做具体限定。
该多个PDSCH可以被PDCCH调度,PDCCH调度的该多个PDSCH的时域资源位置可以连续,也可以不连续;且PDCCH调度的该多个PDSCH的频域资源位置可以相同,也可以不相同,本申请实施例对此不作具体限定。这样,能够提高网络设备调度的灵活性,使得网络设备的重复传输能够获得较大的时间分集增益和频率分集增益。
终端设备在接收到网络设备发送的多个PDSCH之后,可以对该多个PDSCH进行解码,并可以根据该多个PDSCH的解码情况,向网络设备进行反馈。网络设备在接收到终端设备发送的ACK消息的情况下,可以停止向终端设备发送针对第一TB的PDSCH;如果网络设备接收到终端设备发送的NACK消息,或者一直未接收到终端设备发送的反馈消息的情况下,网络设备可以根据具体情况确定是否需要向终端设备继续传输第一TB。
终端设备可以在每接收到一个PDSCH之后,都对接收到的PDSCH进行解码。例如,终端设备接收到多个PDSCH中的第二PDSCH。如果第二PDSCH为第一TB的初传,终端设备对第二PDSCH进行解码;如果第二PDSCH为第一TB的重传,终端设备可以将第二PDSCH与接收第二PDSCH之前接收到的针对第一TB的PDSCH进行合并,并对合并之后的数据进行解码。可以理解的是,合并PDSCH指的是合并PDSCH中的数据。
终端设备也可以在接收到多个PDSCH之后,再对接收到的PDSCH进行解码。例如,终端设备可以接收网络设备调度的针对第一TB的M个PDSCH,M为大于1的整数,终端设备可以将接收到的M个PDSCH进行合并,并对合并之后的PDSCH进行解码。
如果该M个PDSCH中包括第一TB的初传,终端设备可直接对合并之后的M个PDSCH进行解码;如果M个PDSCH均为第一TB的重传的情况下,则合并之后的PDSCH还合并有在接收该M个PDSCH之前接收到的PDSCH,也就是说,终端设备可以将该M个PDSCH以及之前接收到的PDSCH进行合并,然后对合并之后的PDSCH进行解码。
终端设备对几个PDSCH进行合并解码可以是网络设备指示的。例如,网络设备可以向终端设备发送第一指示信息,该第一指示信息用于指示终端设备解码一次第一TB的PDSCH所对应的PDSCH的传输次数为M次,或者第一指示信息用于指示终端设备针对第一TB进行一次反馈所对应的PDSCH的传输次数为M次。
如果网络设备向终端设备发送了第一指示信息,则终端设备每次解码完之后,不论是解码成功还是解码失败,都需要向网络设备反馈。也就是说,如果终端设备解码成功,向网络设备发送ACK消息;如果终端设备解码失败,则需要向网络设备发送NACK消息。
可选地,该第一指示信息可以承载在无线资源控制(radio resource control,RRC)信令上。也就是说,网络设备可以通过RRC信令向终端设备发送第一指示信息。
如果网络设备向终端设备发送了第一指示信息,则网络设备可以在发送完M个PDSCH之后,等待终端设备的反馈。如果接收到终端设备发送的ACK反馈,则可以继续调度其他下行数据;如果接收到终端设备的NACK反馈,则可以继续向终端设备进行重传。
通过发送第一指示信息的方式进行重传的方式,网络设备在发送完M个PDSCH之后,可以等待终端设备的反馈,只有在接收到终端设备的NACK反馈的情况下,再继续向终端设备重传第一TB,而不是无限制地一直重复发送第一TB,从而能够节省系统资源,避免系统资源的浪费。
终端设备可以在接收到解码成功后,向网络设备发送ACK反馈,以告知网络设备已成功接收到第一TB。终端设备在解码失败的情况下,可以向网络设备发送NACK反馈,也可以不向网络设备发送NACK反馈。由于网络设备向终端设备发送针对同一个下行TB的多个PDSCH是不基于终端设备的反馈而直接发送的,因此,终端设备在没有解码成功的情况下,可以不向网络设备发送NACK反馈,对应的,网络设备只要没有接收到终端设备发送的ACK反馈,就可以继续向终端设备发送针对该下行TB的PDSCH,这样可以节省终端设备的信令开销。
本申请实施例对网络设备调度该多个PDSCH的方式不做具体限定。例如,网络设备可以使用多个PDCCH分别调度该多个PDSCH,也就是说,一个PDCCH可以仅调度一个PDSCH,这种方式可以不用对传统的PDCCH的格式进行修改。又例如,网络设备也可以使用一个PDCCH调度该多个PDSCH,这种方式仅需一个PDCCH就可以同时调度多个PDSCH,从而能够节省信令开销。下面结合具体情况对这两种方式进行描述。
方式1、网络设备通过多个PDCCH调度多个PDSCH。终端设备每次接收到PDSCH,都尝试解码。如果终端设备解码成功,向网络设备发送ACK消息;如果终端设备解码失败,不向网络设备发送NACK消息。
在该情况下,一个PDCCH可用于指示其调度的PDSCH的时域资源位置、其调度的PDSCH的频域资源位置和/或其调度的PDCCH的传输为第一TB的初传或重传等。
终端设备可以接收网络设备发送的RRC信令,该RRC信令可以配置终端设备可支持的最大HARQ进程数。
终端设备接收网络设备发送的N条PDCCH,其中,N为大于或等于1的整数,该N条PDCCH用于指示同一个下行TB的N次PDSCH传输。具体地:
a)每条PDCCH指示该下行TB的一次PDSCH传输。其中,第一条PDCCH可以指示该下行TB的初始传输,后面的(N-1)(如果N大于1)条PDCCH分别指示该下行TB的(N-1)次重传;或者该N条PDCCH指示该下行TB的N次重传。
b)该N条PDCCH指示的该下行TB的PDSCH传输都使用同一个下行HARQ进程。
c)每条PDCCH可以分别指示对应的PDSCH传输所使用的时域资源和频域资源。该N次PDSCH的传输所使用的频域资源可以相同,也可以不同,时域资源可以连续,也可以不连续。
终端设备根据接收到的N次PDCCH,依次在每条PDCCH指示的时频域资源上接收PDSCH。终端设备每接收到该下行TB的PDSCH传输,都会按照如下方法尝试对该下行TB进行解码:
1)如果终端设备接收到的是该下行TB的初传,并且该下行TB的传输对应的HARQ进程的缓存中没有数据,则终端设备可将接收到的数据存到对应的HARQ进程的缓存中,把那个对该缓存中的数据进行解码。
2)如果终端设备接收到的是该下行TB的初传,并且该下行TB的传输对应的HARQ进程的缓存中已有数据,则终端设备可以用本次接收到的数据替换该HARQ进程中的已有数据,将本次接收到的数据存到对应的HARQ进程的缓存中,并对缓存中的数据进行解码。
3)如果终端设备接收到的是该下行TB的重传,则终端设备可以将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并,并对合并之后的数据进行解码。
当然,本申请实施例的终端设备除了每次接收到PDSCH之后都尝试进行解码之外,终端设备还可以在接收多个PDSCH之后,将多个PDSCH合并之后再进行解码。如终端设备每接收X个PDSCH再进行解码,X为大于或等于2的整数。这样可以节省终端设备解码PDSCH所需要的资源。
终端设备可以根据每次接收到该下行TB的PDSCH的传输结果,向网络设备进行反馈。具体如下:
如果终端设备解码成功,则终端设备可以向网络设备发送ACK反馈。并且如果终端设备在发送ACK之后又接收到网络设备调度的该下行TB的PDSCH,终端设备可以不再接收该下行TB的PDSCH传输。
如果终端设备解码失败,终端设备可以不向网络设备发送NACK反馈。终端设备如果在解码失败后又接收到网络设备调度的该下行TB的PDSCH,终端设备继续接收该下行TB的PDSCH传输。
由于网络设备向终端设备发送针对同一个下行TB的多个PDSCH是不基于终端设备的反馈而直接发送的,因此,终端设备在没有解码成功的情况下,可以不向网络设备发送NACK反馈,对应的,网络设备只要没有接收到终端设备发送的ACK反馈,就可以继续向终端设备发送针对该下行TB的PDSCH,这样可以节省终端设备的信令开销。
当然,终端设备在没有解码成功的情况下,也可以向网络设备发送NACK反馈,本申请实施例对此不作具体限定。
如果网络设备接收到终端设备发送针对该下行TB的ACK反馈,网络设备可以使用该下行TB占用的下行HARQ进程调度其他下行数据的传输;如果网络设备一直都没有接收到终端设备发送的ACK反馈,则可以有网络设备自行决定是继续调度该下行TB的重传,还是放弃该下行TB的传输而使用该下行TB占用的下行HARQ进程开始调度其他下行数据的传输。如网络设备在预设时间内没有接收到终端设备发送的针对该下行TB的ACK反馈,或者网络设备调度的针对该下行TB的传输次数已经达到最大重传次数,则网络设备可以放弃该下行TB的传输而调度其他下行数据的传输。
下面结合图3对该过程进行详细描述。
终端设备接收网络设备调度的下行TB1的3条PDCCH,这3条PDCCH分别指示TB1的3次PDSCH传输,3次PDSCH均使用不同的时域和频域资源,并且这3次PDSCH传输使用的是下行HARQ进程i。
UE每次根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH,并尝试解码。
首先,终端设备接收到第一条调度TB1传输的PDCCH,该PDCCH指示TB1的初传,终端设备在 该PDCCH指示的时频域资源上接收PDSCH,并且终端设备将接收到的数据存到下行HARQ进程i的缓存中,并对缓存中的数据进行解码,本次解码失败。
然后,终端设备接收到第二条调度TB1传输的PDCCH,该PDCCHJ指示TB1的重传,终端设备在该PDCCH指示的时频域资源上接收PDSCH,并且终端设备将本次接收到的数据与该HARQ进程i的缓存中的已有数据进行软合并,并对合并后的数据进行解码,本次解码成功,终端设备向网络发送ACK。
在网络设备接收到来自终端设备针对TB1的ACK反馈之前,网络设备第三次调度TB1并向终端设备发送了PDCCH,该PDCCH指示TB1的重传,终端设备接收到该PDCCH指示调度的是下行TB1,此时由于终端设备已对TB1解码成功,终端设备不再接收TB1的第3次PDSCH传输。
网络设备在接收到来自终端设备针对TB1的ACK反馈之后,可以停止向终端设备发送TB1的PDSCH,而开始使用下行HARQ进程i调度TB2的传输。
终端设备接收网络设备发送的调度下行TB2的4条PDCCH,这4条PDCCH分别指示TB2的4次PDSCH传输,4次PDSCH传输均使用不同的时频域资源,并且TB2的PDSCH传输使用的是下行HARQ进程i。
终端设备根据每次接收到的PDCCH指示,在对应的时频域资源上接收PDSCH,并尝试解码,终端设备这4次解码均失败。此时网络设备认为调度TB2进行PDSCH传输的次数达到最大传输次数,此后网络设备不再调度TB2的PDSCH传输,而使用该下行HARQ进程i开始调度其他数据传输。
方式2、网络设备通过1个PDCCH调度多个PDSCH。终端设备每次接收到PDSCH,都尝试解码。如果终端设备解码成功,向网络设备发送ACK消息;如果终端设备解码失败,不向网络设备发送NACK消息。
在该情况下,一个PDCCH可用于指示以下中的至少一种:该多个PDSCH的时域资源位置、该多个PDSCH的频域资源位置、该多个PDCCH的传输为第一TB的初传或重传等。例如,多个PDSCH使用同一个PDCCH进行调度,该同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、第一PDSCH的频域资源位置、多个PDSCH的传输分别为第一TB的初传或重传,其中,第一PDSCH为所述多个PDSCH中的一个PDSCH。
该PDCCH指示多个PDSCH的时频域资源位置可以是通过显示的方式进行指示,即PDCCH中包括不同的字段,该不同的字段分别用于指示多个PDSCH的时频域资源的位置。或者,该PDCCH仅指示一个PDSCH的时频域资源位置,其他的PDSCH的时频域资源的位置可以是根据该PDSCH的时频域资源的位置按照一定规则计算得到的。
例如,该PDCCH仅指示第一次PDSCH的时频域资源位置,其他PDSCH的时域资源位置与第一次PDSCH的时域资源位置连续,或者相邻PDSCH的时域资源位置具有相同的时间间隔,该相同的时间间隔可以是预设置的。其他PDSCH的频域资源位置可以与第一次PDSCH的频域资源位置相同,或者其他PDSCH的频域资源位置是根据第一次PDSCH的频域资源位置按照一定的规则跳频得到的。
第一次PDSCH可以理解为多个PDSCH中的传输时间最早的PDSCH,该第一次PDSCH可以出初传PDSCH,也可以是重传PDSCH。
当然,本申请实施例的PDCCH并不限于指示第一次PDSCH传输的时频域资源位置,该PDCCH也可以指示最后一次PDSCH传输的时频域资源位置,或者该PDCCH也可以指示中间的任意一个PDSCH传输的时频域资源位置。
例如,终端设备可以接收网络设备发送的RRC信令,该RRC信令可以配置终端设备可支持的最大HARQ进程数。
终端设备接收网络设备发送的1条PDCCH,该PDCCH指示同一个下行TB的N次PDSCH传输,N为大于或等于1的整数。具体地:
a)该PDCCH指示的该下行TB的N次PDSCH传输中,第1次PDSCH传输是该下行TB的初始传输,后面的N-1(如果N大于1)次PDSCH传输是该下行TB的N-1次重传;或者该PDCCH指示该N次PDSCH传输是该下行TB的N次重传。
b)这N条PDCCH指示的该下行TB的PDSCH传输使用的是同一个下行HARQ进程。
c)该PDCCH指示N次PDSCH传输所使用的时频域资源。这N次PDSCH传输使用的频域资源可以相同也可以不同,时域资源可以连续也可以不连续。对于这N次PDSCH传输所用资源的指示,有以下两种方式:
第一种:在PDCCH中显式地分别指示每次PDSCH传输所使用的时频域资源位置。
第二种:在PDCCH中显式地指示第一次PDSCH传输所使用地时频域资源位置,后面的N-1(如果N大于1)次PDSCH传输基于预定义的规则进行跳频得到。
终端设备根据接收到的PDCCH指示,依次在每次PDSCH传输对应的时频域资源上接收PDSCH。终端设备每一次接收该下行TB的PDSCH传输,都会按照如下方法对该TB尝试解码:
1)如果终端设备接收到的是该下行TB的初传,并且该下行TB的传输对应的HARQ进程的缓存中没有数据,则终端设备可将接收到的数据存到对应的HARQ进程的缓存中,把那个对该缓存中的数据进行解码。
2)如果终端设备接收到的是该下行TB的初传,并且该下行TB的传输对应的HARQ进程的缓存中已有数据,则终端设备可以用本次接收到的数据替换该HARQ进程中的已有数据,将本次接收到的数据存到对应的HARQ进程的缓存中,并对缓存中的数据进行解码。
3)如果终端设备接收到的是该下行TB的重传,则终端设备可以将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并,并对合并之后的数据进行解码。
终端设备可以根据每次接收到该下行TB的PDSCH的传输结果,向网络设备进行反馈。具体如下:
如果终端设备解码成功,则终端设备可以向网络设备发送ACK反馈。并且如果终端设备在发送ACK之后又接收到网络设备调度的该下行TB的PDSCH,终端设备可以不再接收该下行TB的PDSCH传输。
如果终端设备解码失败,终端设备可以不向网络设备发送NACK反馈。终端设备如果在解码失败后又接收到网络设备调度的该下行TB的PDSCH,终端设备继续接收该下行TB的PDSCH传输。
当然,终端设备在没有解码成功的情况下,也可以向网络设备发送NACK反馈,本申请实施例对此不作具体限定。
如果网络设备接收到终端设备发送针对该下行TB的ACK反馈,网络设备可以使用该下行TB占用的下行HARQ进程调度其他下行数据的传输;如果网络设备一直都没有接收到终端设备发送的ACK反馈,则可以有网络设备自行决定是继续调度该下行TB的重传,还是放弃该下行TB的传输而使用该下行TB占用的下行HARQ进程开始调度其他下行数据的传输。如网络设备在预设时间内没有接收到终端设备发送的针对该下行TB的ACK反馈,或者网络设备调度的针对该下行TB的传输次数已经达到最大重传次数,则网络设备可以放弃该下行TB的传输而调度其他下行数据的传输。
下面结合图4对该过程进行详细描述。
终端设备接收网络设备调度下行TB1的1条PDCCH,该PDCCH指示TB1的3次PDSCH传输,3次PDSCH传输均使用不同的时频域资源,并且TB1的PDSCH传输使用下行HARQ进程i。
终端设备根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH,并尝试解码。
首先,终端设备在该PDCCH指示的第1次PDSCH传输对应的时频域资源上接收PDSCH,并且终端设备将接收到的数据存到下行HARQ进程i的缓存中,并对缓存中的数据进行解码,本次解码失败。
然后,终端设备在该PDCCH指示的第2次PDSCH传输对应的时频域资源上接收PDSCH,并且终端设备将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并,并对合并后的数据进行解码,本次解码成功,终端设备向网络设备发送ACK消息。
由于终端设备已对TB1解码成功,终端设备不再接收该PDCCH指示的TB1的第3次PDSCH传输。
网络设备在收到来自终端设备针对TB1的ACK反馈之后,可以停止向终端设备发送针对TB1的PDSCH,而开始使用下行HARQ进程i调度TB2的传输。
终端设备接收网络设备调度下行TB2的1条PDCCH,该PDCCH指示TB2的4次PDSCH传输,4次PDSCH传输均使用不同的时频域资源,并且TB2的PDSCH传输使用下行HARQ进程i。
终端设备根据接收到的PDCCH指示,在4次PDSCH传输对应的时频域资源上依次接收PDSCH,并尝试解码,终端设备这4次解码均失败。
终端设备又接收来自网络设备的调度下行TB2的1条PDCCH,该PDCCH指示TB2的4次PDSCH传输,4次PDSCH传输均使用不同的时频域资源,并且都使用下行HARQ进程i。
终端设备根据接收到的PDCCH指示,在4次PDSCH传输对应的时频域资源上依次接收PDSCH,并尝试解码,终端设备这4次解码均失败。
此时网络设备认为调度TB1进行PDSCH传输的次数达到最大传输次数8次,此后网络设备不再调度TB2的PDSCH传输,而使用该下行HARQ进程i开始调度其他数据传输。
方式3、网络设备通过多个PDCCH调度多个PDSCH。终端设备接收到该下行TB的M个PDSCH后,对这M次接收到的PDSCH进行联合解码,然后向网络设备发送一次ACK/NACK反馈。其中,M由网络设备配置。
在该情况下,网络设备通过多个PDCCH调度多个PDSCH的方式与方式1类似,为了简介,此处 不再赘述。
例如,终端设备接收网络设备发送的RRC信令,该RRC信令可以配置终端设备可支持的最大HARQ进程数。此外,该RRC信令也可以包括上文描述的第一指示信息,即该RRC信令可用于指示终端设备针对一个下行TB的接收反馈一次ACK/NACK所对应的该TB的PDSCH的传输次数M。
终端设备接收来自网络设备的M条PDCCH,这些PDCCH指示同一个下行TB的PDSCH传输,其中,M为大于或等于1的整数。具体地:
a)每条PDCCH指示该下行TB的一次PDSCH传输。其中,第一条PDCCH指示该下行TB的初始传输,后面的M-1(如果M大于1)条PDCCH分别指示该下行TB的M-1次重传;或者这M条PDCCH分别指示该下行TB的M次重传。
b)这M条PDCCH指示的该下行TB的PDSCH传输都使用同一个下行HARQ进程。
c)每条PDCCH指示对应的PDSCH传输所使用的时频域资源。这M次PDSCH传输使用的频域资源可以相同也可以不同,时域资源可以连续也可以不连续。
终端设备根据接收到的M次PDCCH指示,依次在每条PDCCH指示的时频域资源上接收PDSCH。
如果终端设备接收的是该下行TB的初传,并且该下行TB的传输对应HARQ进程的缓存中没有数据,则终端设备将接收到的数据存到对应HARQ进程的缓存中。
如果终端设备接收的是该下行TB的初传,并且该下行TB的传输对应HARQ进程的缓存中已有数据,则终端设备用本次接收到的数据替换该HARQ进程的缓存中的已有数据,将本次接收到的数据存到对应HARQ进程的缓存中。
如果终端设备接收的是该下行TB的重传,则终端设备将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并。
终端接设备收完该下行TB的这M次PDSCH传输后,对该TB对应HARQ进程的缓存中的合并数据尝试解码,并根据解码结果,向网络设备进行反馈。如果终端设备解码成功,则终端设备向网络发送ACK消息。如果终端上报解码失败,则终端上报向网络上报发送NACK消息。
下面结合图5对该过程进行详细描述。
终端设备接收网络设备发送的RRC信令,该RRC信令用于配置该终端设备可支持的最大下行HARQ进程数,以及该RRC信令用于指示终端设备针对一个下行TB的4次PDSCH接收反馈一次ACK/NACK。
终端设备接收网络设备调度下行TB1的4条PDCCH,这4条PDCCH分别指示TB1的4次PDSCH传输,4次PDSCH传输均使用不同的时频域资源,并且TB1的PDSCH传输使用下行HARQ进程i。其中,第1条PDCCH指示TB1的初传,后面3条PDCCH分别指示TB1的3次重传。
终端设备每次根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH。
首先,终端设备接收到第1条调度TB1传输的PDCCH,终端设备在该PDCCH指示的时频域资源上接收PDSCH,并将本次接收到的数据存到下行HARQ进程i的缓存中。
当终端设备接收到第2条、第3条、第4条调度TB1传输的PDCCH的时候,终端设备分别在每条PDCCH指示的时频域资源上接收PDSCH,并且终端设备将每次接收到的数据与该HARQ进程i的缓存中的已有数据进行软合并。
终端设备接收完该下行TB1的这4次PDSCH传输后,对该TB对应HARQ进程i的缓存中的合并数据尝试解码。如果解码失败,则终端设备向网络设备发送NACK消息。
网络设备在收到终端设备发送的针对TB1的NACK反馈之后,网络设备继续调度4次针对TB1的重传,并分别用4条PDCCH指示这4次PDSCH传输。
终端设备每次根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH,并且终端设备将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并。
终端设备接收完该下行TB1的这4次PDSCH传输后,对该TB对应HARQ进程的缓存中的合并数据尝试解码。如果解码失败,则终端设备向网络设备发送NACK消息。
网络设备在收到终端设备发送的针对TB1的NACK反馈之后,网络设备决定不再调度TB1的重传。
网络设备开始使用下行HARQ进程i调度TB2的4次传输,并分别用4条PDCCH指示这4次PDSCH传输。其中第1条PDCCH指示TB2的初传,后面3条PDCCH分别指示TB2的3次重传。
终端设备每次根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH。
首先,终端设备接收到第1条调度TB2传输的PDCCH,终端设备在该PDCCH指示的时频域资源上接收PDSCH,终端设备用本次接收到的数据替换该下行HARQ进程i的缓存中的已有数据。
当终端设备接收到第2条、第3条、第4条调度TB1传输的PDCCH的时候,终端设备分别在每 条PDCCH指示的时频域资源上接收PDSCH,并且终端设备将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并。
终端设备接收完该下行TB2的这4次PDSCH传输后,对该TB对应的HARQ进程的缓存中的合并数据尝试解码。如果解码成功,则终端设备向网络设备发送ACK消息。
网络设备在收到终端设备发送的针对TB2的ACK反馈之后,网络设备可以使用下行HARQ进程i调度该终端设备的其他数据传输。
方式4、网络设备通过1个PDCCH调度多个PDSCH。终端设备接收到该下行TB的M个PDSCH后,对这M次接收到的PDSCH进行联合解码,然后向网络设备发送一次ACK/NACK反馈。其中,M由网络设备配置。
在该情况下,网络设备通过1个PDCCH调度多个PDSCH的方式与方式2类似,为了简介,此处不再赘述。
例如,终端设备接收网络设备发送的RRC信令,该RRC信令可以配置终端设备可支持的最大HARQ进程数。此外,该RRC信令也可以包括上文描述的第一指示信息,即该RRC信令可用于指示终端设备针对一个下行TB的接收反馈一次ACK/NACK所对应的该TB的PDSCH的传输次数M。
终端设备接收来自网络设备的1条PDCCH,这些PDCCH指示同一个下行TB的M次PDSCH传输。具体地:
该PDCCH指示该下行TB的M次PDSCH传输中,第1次PDSCH传输是该下行TB的初始传输,后面的M-1次PDSCH传输是该下行TB的M-1次重传;或者该PDCCH指示这M次PDSCH传输是该下行TB的M次重传。
这M条PDCCH指示的该下行TB的PDSCH传输都使用同一个下行HARQ进程。
该PDCCH指示M次PDSCH传输所使用的时频域资源。这M次PDSCH传输使用的频域资源可以相同也可以不同,时域资源可以连续也可以不连续。这M次PDSCH传输所用资源的指示方法同方式2。
终端设备根据接收到的PDCCH指示,依次在每次PDSCH传输对应的时频域资源上接收PDSCH。
如果终端设备接收的是该下行TB的初传,并且该下行TB的传输对应HARQ进程的缓存中没有数据,则终端设备将接收到的数据存到对应HARQ进程的缓存中。
如果终端设备接收的是该下行TB的初传,并且该下行TB的传输对应HARQ进程的缓存中已有数据,则终端设备用本次接收到的数据替换该HARQ进程的缓存中的已有数据,将本次接收到的数据存到对应HARQ进程的缓存中。
如果终端设备接收的是该下行TB的重传,则终端设备将本次接收到的数据与该HARQ进程的缓存中的已有数据进行软合并。
终端设备接收完该下行TB的这M次PDSCH传输后,对该TB对应HARQ进程的缓存中的合并数据尝试解码。终端设备可以根据解码结果,向网络设备进行反馈。如果终端设备解码成功,则终端设备向网络设备发送ACK。如果终端设备解码失败,则终端设备向网络设备发送NACK。
网络设备根据收到的终端设备发送的针对该下行TB的ACK/NACK反馈,进一步决定是否需要继续向终端设备发送针对该下行TB的重传。
如果网络设备接收到来自终端设备的ACK反馈,网络设备可以使用该TB占用的下行HARQ进程调度其他下行数据的传输。如果网络设备接收到来自终端设备的NACK反馈,网络设备可以自行决定使用该TB占用的下行HARQ进程继续调度该TB的重传还是使用该TB占用的下行HARQ进程调度其他下行数据的传输。
下面结合图6对该过程进行详细描述。
终端设备接收网络设备发送的RRC信令,该RRC信令用于配置该终端设备可支持的最大下行HARQ进程数,以及该RRC信令用于指示终端设备针对一个下行TB的4次PDSCH接收反馈一次ACK/NACK。
终端设备接收来自网络设备的调度下行TB1的PDCCH,该PDCCH分别指示TB1的4次PDSCH传输,该4次PDSCH传输均使用不同的时频域资源,并且TB1的PDSCH传输使用下行HARQ进程i。其中,第1条PDCCH指示TB1的初传,后面3条PDCCH分别指示TB1的3次重传。
终端设备每次根据接收到的PDCCH指示,在对应的时频域资源上接收PDSCH。
首先,终端设备在该PDCCH指示的第1次PDSCH传输所使用的时频域资源上接收PDSCH,并将接收到的数据存到下行HARQ进程i的缓存中。
终端设备在该PDCCH指示的第2次、第3次、第4次PDSCH传输所使用的时频域资源上分别接收PDSCH,并且终端设备将每次接收到的数据与该HARQ进程i的缓存中的已有数据进行软合并。
终端设备接收完该下行TB1的这4次PDSCH传输后,对该TB对应HARQ进程i的缓存中的合并数据尝试解码。如果解码失败,则终端设备向网络设备发送NACK消息。
网络设备在收到终端设备发送的针对TB1的NACK反馈之后,网络设备继续调度4次针对TB1的重传,并分别用1条PDCCH指示这4次PDSCH传输。
终端设备根据每次接收到的PDCCH指示,在对应的时频域资源上接收PDSCH,并且终端设备将每次接收到的数据与该HARQ进程i的缓存中的已有数据进行软合并。
终端设备接收完该下行TB1的这4次PDSCH传输后,对该TB对应HARQ进程i的缓存中的合并数据尝试解码。如果解码失败,则终端设备向网络设备发送NACK。
网络设备在收到来自终端设备针对TB1的NACK反馈之后,网络设备决定不再调度TB1的重传。
网络设备开始使用该行HARQ进程i调度TB2的4次传输,并用1条PDCCH指示这4次PDSCH传输。其中第1条PDCCH指示TB2的初传,后面3条PDCCH分别指示TB2的3次重传。
终端设备根据每次接收到的PDCCH指示,在对应的时频域资源上接收PDSCH。
首先,终端设备在该PDCCH指示的第1次PDSCH传输所使用的时频域资源上接收PDSCH,终端设备用本次接收到的数据替换该下行HARQ进程i的缓存中的已有数据。
终端设备在该PDCCH指示的第2次、第3次、第4次PDSCH传输所使用的时频域资源上分别接收PDSCH,并且终端设备将每次接收到的数据与该HARQ进程i的缓存中的已有数据进行软合并。
终端设备接收完该下行TB2的这4次PDSCH传输后,对该TB对应HARQ进程i的缓存中的合并数据尝试解码。如果解码成功,则终端设备向网络设备发送ACK消息。
网络设备在收到终端设备发送的针对TB2的ACK反馈之后,网络设备可以使用下行HARQ进程i调度该终端设备的其他数据传输。
上文主要是以非捆绑(bundling)传输为例进行描述的,但是本申请实施例并不限于此,本申请实施例提供的方法也同样适用于下行bundling传输。对于支持下行bundling传输的情况,可以将上述实施例中的一次PDSCH传输替换为一次下行bundling传输来实现。
网络设备可以在一次下行bundling传输中对相同的TB进行多次重复发送。
目前NR标准支持的下行bundling传输方式主要用于增强覆盖,bundling传输方式是对TB在相同的频域资源上连续地重复发送多次,采用这种重复传输的方式只能获得很有限的频率分集增益和时间分集增益。
上文中详细描述了根据本申请实施例的无线通信的方法,下面将结合图7至图11,描述根据本申请实施例的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图7是本申请实施例提供的一种终端设备的示意性框图,该终端设备可以是上文描述的任一种终端设备。图7的终端设备700包括通信单元710,其中:
通信单元710,用于接收网络设备调度的针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备调度的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
可选地,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示其调度的PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
可选地,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
可选地,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
可选地,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
可选地,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同。
可选地,所述通信单元710用于:接收第二PDSCH,所述第二PDSCH为所述多个PDSCH中的一个PDSCH;所述终端设备还包括处理单元720,所述处理单元720用于执行以下操作:在所述第二PDSCH的传输为所述第一TB的初传的情况下,对所述第二PDSCH进行解码;在所述第二PDSCH的传输为所述第一TB的重传的情况下,将所述第二PDSCH以及在接收所述第二PDSCH之前接收到的 针对第一TB的PDSCH进行合并解码。
可选地,所述通信单元710用于:接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输中包括所述第一TB的初传;所述终端设备还包括处理单元720,所述处理单元用于执行以下操作:将接收到的M个PDSCH进行合并;对合并之后的PDSCH进行解码。
可选地,所述通信单元710用于:接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输均为所述第一TB的重传;所述终端设备还包括处理单元720,所述处理单元720用于执行以下操作:将接收到的M个PDSCH,以及在接收所述M个PDSCH之前接收到的针对所述第一TB的PDSCH进行合并;对合并之后的PDSCH进行解码。
可选地,所述通信单元710用于:接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M。
可选地,所述通信单元710用于:在解码成功的情况下,向所述网络设备发送确认ACK消息;在解码不成功的情况下,不向所述网络设备发送非确认NACK消息。
可选地,所述通信单元710用于:在解码成功的情况下,向所述网络设备发送ACK消息;在解码不成功的情况下,向所述网络设备发送NACK消息。
可选地,所述通信单元710用于:在解码成功的情况下,不再接收所述网络设备发送的针对所述第一TB的PDSCH。
可选地,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
可选地,所述终端设备为非地面通信网络NTN系统中的终端设备。
图8是本申请实施例提供的一种网络设备的示意性框图,该网络设备可以是上文描述的任一种网络设备。图8的网络设备800包括通信单元810,其中:
通信单元810,用于向终端设备发送针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备发送的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
可选地,所述通信单元810用于:在接收到所述终端设备发送的针对所述第一TB的ACK反馈的情况下,停止向所述终端设备发送所述第一TB的PDSCH。
可选地,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示一个PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
可选地,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
可选地,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
可选地,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
可选地,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同
可选地,所述通信单元810用于:向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M,M为大于或等于1的整数。
可选地,所述网络设备还包括处理单元820,所述处理单元820用于:在预设时长内没有接收到所述终端设备发送的针对所述第一TB的反馈的情况下,或者接收到所述终端设备发送的针对所述第一TB的NACK反馈的情况下,根据所述第一TB的重传次数,确定是否继续向所述终端设备发送针对所述第一TB的PDSCH。
可选地,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
可选地,所述网络设备为非地面通信网络NTN系统中的网络设备。
图9是本申请实施例提供的一种通信设备900示意性结构图。图9所示的通信设备900包括处理 器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的装置的示意性结构图。图10所示的装置1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,装置1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该装置1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或装置进行通信,具体地,可以获取其他设备或装置发送的信息或数据。
可选地,该装置1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或装置进行通信,具体地,可以向其他设备或装置输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的装置可以为芯片,该芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (64)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备调度的针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备调度的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
  2. 根据权利要求1所述的方法,其特征在于,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示其调度的PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
  3. 根据权利要求1所述的方法,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
  4. 根据权利要求1所述的方法,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述终端设备接收网络设备调度的针对第一传输块TB的多个物理下行控制信道PDSCH,包括:
    所述终端设备接收第二PDSCH,所述第二PDSCH为所述多个PDSCH中的一个PDSCH;
    所述方法还包括:
    在所述第二PDSCH的传输为所述第一TB的初传的情况下,所述终端设备对所述第二PDSCH进行解码;
    在所述第二PDSCH的传输为所述第一TB的重传的情况下,所述终端设备将所述第二PDSCH以及在接收所述第二PDSCH之前接收到的针对所述第一TB的PDSCH进行合并解码。
  8. 根据权利要求1-6中任一项所述的方法,其特征在于,所述终端设备接收网络设备调度的针对第一传输块TB的多个物理下行控制信道PDSCH,包括:
    所述终端设备接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输中包括所述第一TB的初传;
    所述方法还包括:
    所述终端设备将接收到的M个PDSCH进行合并;
    所述终端设备对合并之后的PDSCH进行解码。
  9. 根据权利要求1-6中任一项所述的方法,其特征在于,所述终端设备接收网络设备调度的针对第一传输块TB的多个物理下行控制信道PDSCH,包括:
    所述终端设备接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输均为所述第一TB的重传;
    所述方法还包括:
    所述终端设备将接收到的M个PDSCH,以及在接收所述M个PDSCH之前接收到的针对所述第一TB的PDSCH进行合并;
    所述终端设备对合并之后的PDSCH进行解码。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在解码成功的情况下,向所述网络设备发送确认ACK消息;
    所述终端设备在解码不成功的情况下,不向所述网络设备发送非确认NACK消息。
  12. 根据权利要求7-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在解码成功的情况下,向所述网络设备发送ACK消息;
    所述终端设备在解码不成功的情况下,向所述网络设备发送NACK消息。
  13. 根据权利要求7-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在解码成功的情况下,不再接收所述网络设备发送的针对所述第一TB的PDSCH。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
  15. 根据权利要求1-14中任一项所述的方法,其特征在于,所述终端设备为非地面通信网络NTN系统中的终端设备。
  16. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备发送的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备在接收到所述终端设备发送的针对所述第一TB的确认ACK反馈的情况下,停止向所述终端设备发送针对所述第一TB的PDSCH。
  18. 根据权利要求16或17所述的方法,其特征在于,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示一个PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
  19. 根据权利要求16或17所述的方法,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
  20. 根据权利要求16或17所述的方法,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
  21. 根据权利要求16-20中任一项所述的方法,其特征在于,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
  22. 根据权利要求16-21中任一项所述的方法,其特征在于,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同。
  23. 根据权利要求16-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M,M为大于或等于1的整数。
  24. 根据权利要求16-23中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在预设时长内没有接收到所述终端设备发送的针对所述第一TB的反馈的情况下,或者所述网络设备接收到所述终端设备发送的针对所述第一TB的非确认NACK反馈的情况下,所述网络设备根据所述第一TB的重传次数,确定是否继续向所述终端设备发送针对所述第一TB的PDSCH。
  25. 根据权利要求16-24中任一项所述的方法,其特征在于,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
  26. 根据权利要求16-25中任一项所述的方法,其特征在于,所述网络设备为非地面通信网络NTN系统中的网络设备。
  27. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备调度的针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备调度的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
  28. 根据权利要求27所述的终端设备,其特征在于,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示其调度的PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
  29. 根据权利要求27所述的终端设备,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多 个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
  30. 根据权利要求27所述的终端设备,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
  31. 根据权利要求27-30中任一项所述的终端设备,其特征在于,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
  32. 根据权利要求27-31中任一项所述的终端设备,其特征在于,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同。
  33. 根据权利要求27-32中任一项所述的终端设备,其特征在于,所述通信单元用于:
    接收第二PDSCH,所述第二PDSCH为所述多个PDSCH中的一个PDSCH;
    所述终端设备还包括处理单元,所述处理单元用于执行以下操作:
    在所述第二PDSCH的传输为所述第一TB的初传的情况下,对所述第二PDSCH进行解码;
    在所述第二PDSCH的传输为所述第一TB的重传的情况下,将所述第二PDSCH以及在接收所述第二PDSCH之前接收到的针对所述第一TB的PDSCH进行合并解码。
  34. 根据权利要求27-33中任一项所述的终端设备,其特征在于,所述通信单元用于:
    接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输中包括所述第一TB的初传;
    所述终端设备还包括处理单元,所述处理单元用于执行以下操作:
    将接收到的M个PDSCH进行合并;
    对合并之后的PDSCH进行解码。
  35. 根据权利要求27-33中任一项所述的终端设备,其特征在于,所述通信单元用于:
    接收所述网络设备调度的针对所述第一TB的M个PDSCH,M为大于或等于1的整数,其中,所述M个PDSCH的传输均为所述第一TB的重传;
    所述终端设备还包括处理单元,所述处理单元用于执行以下操作:
    将接收到的M个PDSCH,以及在接收所述M个PDSCH之前接收到的针对所述第一TB的PDSCH进行合并;
    对合并之后的PDSCH进行解码。
  36. 根据权利要求34或35所述的终端设备,其特征在于,所述通信单元用于:
    接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M。
  37. 根据权利要求33-36中任一项所述的终端设备,其特征在于,所述通信单元用于:
    在解码成功的情况下,向所述网络设备发送确认ACK消息;
    在解码不成功的情况下,不向所述网络设备发送非确认NACK消息。
  38. 根据权利要求33-36中任一项所述的终端设备,其特征在于,所述通信单元用于:
    在解码成功的情况下,向所述网络设备发送ACK消息;
    在解码不成功的情况下,向所述网络设备发送NACK消息。
  39. 根据权利要求33-38中任一项所述的终端设备,其特征在于,所述通信单元用于:
    在解码成功的情况下,不再接收所述网络设备发送的针对所述第一TB的PDSCH。
  40. 根据权利要求27-39中任一项所述的终端设备,其特征在于,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
  41. 根据权利要求27-40中任一项所述的终端设备,其特征在于,所述终端设备为非地面通信网络NTN系统中的终端设备。
  42. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送针对第一传输块TB的多个物理下行共享信道PDSCH,其中,所述网络设备发送的所述多个PDSCH中的连续两个PDSCH之间的时长小于或等于所述终端设备与所述网络设备之间传输数据的往返传输时长。
  43. 根据权利要求42所述的网络设备,其特征在于,所述通信单元用于:
    在接收到所述终端设备发送的针对所述第一TB的确认ACK反馈的情况下,停止向所述终端设备 发送所述第一TB的PDSCH。
  44. 根据权利要求42或43所述的网络设备,其特征在于,所述多个PDSCH被不同的物理下行控制信道PDCCH调度,其中,一个PDCCH用于指示一个PDSCH的时域资源位置、频域资源位置和/或其调度的PDSCH传输为所述第一TB的初传或重传。
  45. 根据权利要求42或43所述的网络设备,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一个:所述多个PDSCH的时域资源位置、所述多个PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传。
  46. 根据权利要求42或43所述的网络设备,其特征在于,所述多个PDSCH使用同一个PDCCH进行调度,所述同一个PDCCH用于指示以下信息中的至少一种:第一PDSCH的时域资源位置、所述第一PDSCH的频域资源位置、所述多个PDSCH的传输分别为所述第一TB的初传或重传,所述第一PDSCH为所述多个PDSCH中的一个PDSCH,所述多个PDSCH中的其他PDSCH的时域资源位置和频率资源位置分别是根据所述第一PDSCH的时域资源位置和频域资源位置确定的,所述其他PDSCH为所述多个PDSCH中除所述第一PDSCH之外的PDSCH。
  47. 根据权利要求42-46中任一项所述的网络设备,其特征在于,所述多个PDSCH的时域资源位置连续,或所述多个PDSCH的时域资源位置不连续。
  48. 根据权利要求42-47中任一项所述的网络设备,其特征在于,所述多个PDSCH的频域资源位置相同,或所述多个PDSCH的频域资源位置不相同。
  49. 根据权利要求42-48中任一项所述的网络设备,其特征在于,所述通信单元用于:
    向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备解码一次所述第一TB的PDSCH所对应的PDSCH的传输次数为M,或所述第一指示信息用于指示所述终端设备针对所述第一TB进行一次反馈所对应的PDSCH的传输次数为M,M为大于或等于1的整数。
  50. 根据权利要求42-49中任一项所述的网络设备,其特征在于,所述网络设备还包括处理单元,所述处理单元用于:
    在预设时长内没有接收到所述终端设备发送的针对所述第一TB的反馈的情况下,或者接收到所述终端设备发送的针对所述第一TB的非确认NACK反馈的情况下,根据所述第一TB的重传次数,确定是否继续向所述终端设备发送针对所述第一TB的PDSCH。
  51. 根据权利要求42-50中任一项所述的网络设备,其特征在于,所述多个PDSCH使用的混合自动重传请求HARQ进程相同。
  52. 根据权利要求42-51中任一项所述的网络设备,其特征在于,所述网络设备为非地面通信网络NTN系统中的网络设备。
  53. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至15中任一项所述的方法。
  54. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求16至26中任一项所述的方法。
  55. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述通信装置的设备执行权利要求1至15中任一项所述的方法。
  56. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述通信装置的设备执行权利要求16至26中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求1至15中任一项所述的方法。
  58. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行权利要求16至26中任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求1至15中任一项所述的方法。
  60. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行权利要求16至26中任一项所述的方法。
  61. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1至15中任一项所述的方法。
  62. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求16至26中任一项所述的方法。
  63. 一种通信系统,其特征在于,包括如权利要求27至41中任一项所述的终端设备。
  64. 一种通信系统,其特征在于,包括如权利要求42至52中任一项所述的网络设备。
PCT/CN2019/097789 2019-07-25 2019-07-25 无线通信的方法及设备 WO2021012283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/097789 WO2021012283A1 (zh) 2019-07-25 2019-07-25 无线通信的方法及设备
CN201980089717.9A CN113330762B (zh) 2019-07-25 2019-07-25 无线通信的方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097789 WO2021012283A1 (zh) 2019-07-25 2019-07-25 无线通信的方法及设备

Publications (1)

Publication Number Publication Date
WO2021012283A1 true WO2021012283A1 (zh) 2021-01-28

Family

ID=74193097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097789 WO2021012283A1 (zh) 2019-07-25 2019-07-25 无线通信的方法及设备

Country Status (2)

Country Link
CN (1) CN113330762B (zh)
WO (1) WO2021012283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022121710A1 (zh) * 2020-12-07 2022-06-16 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710806B (zh) * 2022-04-18 2023-08-25 南方电网数字电网集团信息通信科技有限公司 一种控制命令低延时的传输方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055111A (zh) * 2013-02-07 2018-05-18 华为技术有限公司 数据传输方法及装置
CN108092757A (zh) * 2015-03-11 2018-05-29 三星电子株式会社 用于通信系统中的重复传输的资源分配
CN109788565A (zh) * 2017-11-13 2019-05-21 华硕电脑股份有限公司 指示无线通信中的数据传送的时域资源分配的方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108293248B (zh) * 2015-11-04 2022-03-11 康维达无线有限责任公司 通信装置、基础设施设备、通信系统和方法
US10306615B2 (en) * 2015-12-09 2019-05-28 Mediatek Inc. Control-less data transmission for narrow band internet of things
JP2018026661A (ja) * 2016-08-09 2018-02-15 ソニー株式会社 通信装置、通信方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108055111A (zh) * 2013-02-07 2018-05-18 华为技术有限公司 数据传输方法及装置
CN108092757A (zh) * 2015-03-11 2018-05-29 三星电子株式会社 用于通信系统中的重复传输的资源分配
CN109788565A (zh) * 2017-11-13 2019-05-21 华硕电脑股份有限公司 指示无线通信中的数据传送的时域资源分配的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Capability on processing TB for the same HARQ process within HARQ RTT Timer", 3GPP TSG-RAN WG2 MEETING #83; R2-132778 36331_CR(REL-11) CAPABILITY ON PROCESSING TB FOR THE SAME HARQ PROCESS WITHIN HARQ RTT TIMER, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 August 2013 (2013-08-10), Barcelona, Spain; 20130819 - 20130823, XP050718517 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022121710A1 (zh) * 2020-12-07 2022-06-16 展讯半导体(南京)有限公司 重复传输次数确定方法与装置、终端和网络设备

Also Published As

Publication number Publication date
CN113330762A (zh) 2021-08-31
CN113330762B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
US9521669B2 (en) HARQ for dynamic change of the TDD UL/DL configuration in LTE TDD systems
US9025573B2 (en) Introducing a delay in the transmission of a nack for a packet received employing coordinated multi-point transmission
US20120163357A1 (en) Method of retransmitting and receiving packets in heterogeneous network environment
CN112187414B (zh) 指示数据传输情况的方法和装置
WO2021081908A1 (zh) 为上行逻辑信道分配资源的方法和终端设备
EP4044480A1 (en) Ntn-based data transmission method and apparatus, and storage medium
US20230231665A1 (en) Method for feeding back hybrid automatic repeat request acknowledgement (harq-ack) and terminal device
WO2021012283A1 (zh) 无线通信的方法及设备
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2020133445A1 (zh) 无线通信方法、终端设备和网络设备
WO2020087424A1 (zh) 一种数据传输方法、终端设备及存储介质
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
WO2022104519A1 (zh) 一种数据传输方法、设备及存储介质
WO2021146865A1 (zh) 通信方法、装置、设备及存储介质
WO2021168627A1 (zh) 一种传输控制方法、终端设备、网络设备
US20230199799A1 (en) Wireless communication method, terminal device and network device
WO2021072609A1 (zh) 无线通信的方法及设备
US20230015847A1 (en) Method for releasing uplink resource, terminal device, and network device
US20230024055A1 (en) Method and apparatus for transmitting data and communication system
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
WO2021073021A1 (zh) 传输数据的方法、终端设备和网络设备
JP2023525249A (ja) サイドリンクフィードバック情報の送受信方法及び装置
KR20200118480A (ko) 무선 통신 방법과 통신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938574

Country of ref document: EP

Kind code of ref document: A1