WO2022104519A1 - 一种数据传输方法、设备及存储介质 - Google Patents
一种数据传输方法、设备及存储介质 Download PDFInfo
- Publication number
- WO2022104519A1 WO2022104519A1 PCT/CN2020/129386 CN2020129386W WO2022104519A1 WO 2022104519 A1 WO2022104519 A1 WO 2022104519A1 CN 2020129386 W CN2020129386 W CN 2020129386W WO 2022104519 A1 WO2022104519 A1 WO 2022104519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data block
- scheduling resource
- free scheduling
- authorization
- shared channel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 115
- 230000005540 biological transmission Effects 0.000 title claims abstract description 85
- 238000004590 computer program Methods 0.000 claims description 54
- 238000001514 detection method Methods 0.000 claims description 23
- 238000012545 processing Methods 0.000 claims description 22
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims description 10
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 27
- 238000004891 communication Methods 0.000 description 17
- 230000006870 function Effects 0.000 description 11
- 230000008054 signal transmission Effects 0.000 description 10
- 230000011664 signaling Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 6
- 238000013475 authorization Methods 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 235000019800 disodium phosphate Nutrition 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1887—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1812—Hybrid protocols; Hybrid automatic repeat request [HARQ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1893—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/25—Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
Definitions
- the present application relates to the field of communications, and in particular, to a data transmission method, device and storage medium.
- D2D Device to Device
- SL Sidelink
- LBT Listen Before Talk
- embodiments of the present application provide a data transmission method, device, and storage medium.
- the present application provides a data transmission method, comprising: if a first device fails to initially transmit a data block or retransmit a data block by using a first license-free scheduling resource, the first device uses a second license-free scheduling resource. The resource retransmits the data block.
- the present application provides a data transmission method, comprising: if a first device fails to initially transmit a data block or retransmit a data block to a second device by using the first license-free scheduling resource, the second device uses the first Second, the authorization-free scheduling resource receives the retransmission of the data block.
- the present application provides a first device, comprising: a sending unit configured to, if the first device fails to initially transmit a data block or retransmit a data block by using a first authorization-free scheduling resource, the first device uses The second grant-free scheduling resource retransmits the data block.
- a second device comprising: a receiving unit configured to: if the first device fails to initially transmit a data block or retransmit a data block to a second device by using the first authorization-free scheduling resource, the second device The device receives the retransmission of the data block using the second grant-free scheduling resource.
- a first device comprising: a processor and a memory for storing a computer program executable on the processor,
- the memory is used for storing a computer program, and when the processor is used for calling and running the computer program stored in the memory, the first device is used to execute the steps of the above data transmission method.
- a second device comprising: a processor and a memory for storing a computer program executable on the processor,
- the memory is used for storing a computer program, and when the processor is used for calling and running the computer program stored in the memory, the second device is used to execute the steps of the above data transmission method.
- a chip including: a processor for calling and running a computer program from a memory, so that a device on which the chip is installed executes the method of the data transmission method executed by the first device.
- a chip including: a processor for calling and running a computer program from a memory, so that a device on which the chip is installed executes the data transmission method performed by the second device.
- a storage medium which stores an executable program, and when the executable program is executed by a processor, implements the data transmission method executed by the above-mentioned first device.
- a storage medium which stores an executable program, and when the executable program is executed by a processor, implements the data transmission method executed by the second device.
- a computer program causes a computer to execute the data transmission method executed by the above-mentioned first device.
- a computer program is provided, and the computer program causes a computer to execute the data transmission method executed by the above-mentioned second device.
- the data transmission method provided by the embodiment of the present application includes: if the first device fails to initially transmit the data block or retransmit the data block by using the first license-free scheduling resource, then the first device uses the second license-free scheduling resource to retransmit the data block. the data block.
- the first device fails to initially transmit the data block or retransmit the data block by using the first authorization-free scheduling resource, it does not rely on the dynamic scheduling resources of the network device to realize the retransmission of the data block, but uses the The second authorization-free scheduling resource configured by the network device retransmits the data block, avoiding the delay caused by retransmitting the data block by using the dynamic scheduling resource, and even the problem of not being able to obtain the retransmission resource in time, and improving the transmission efficiency of the data block .
- FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of an optional processing flow of the data transmission method provided by an embodiment of the present application
- FIG. 3 is a schematic diagram of another optional processing flow of the data transmission method provided by the embodiment of the present application.
- FIG. 4 is a schematic diagram of a detailed optional processing flow of the data transmission method provided by the embodiment of the present application.
- FIG. 5 is a schematic diagram of another detailed optional processing flow of the data transmission method provided by the embodiment of the present application.
- FIG. 6 is a schematic diagram of another detailed optional processing flow of the data transmission method provided by the embodiment of the present application.
- FIG. 7 is a schematic structural diagram of the composition of a first device provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a second device according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a device composition provided by an embodiment of the present application.
- FIG. 10 is a schematic block diagram of a chip provided by an embodiment of the present application.
- the working carrier of the sidelink can be an unlicensed spectrum such as 2.4GHz, 5GHz, 6GHz, or 60GHz.
- the network device configures the sidelink transmission resources and other control parameters for the sidelink communication to the terminal device used to send or receive the data.
- the network device may allocate sideline transmission resources to the terminal device in a dynamic scheduling (Dynamic Scheduling) manner; or the network device may allocate a Scheduled Grant (CG) transmission resource to the terminal device.
- CG Scheduled Grant
- the first type of configuration authorization the network device configures the sideline transmission resources for the terminal device through Radio Resource Control (RRC) signaling.
- RRC signaling configuration includes the period, time domain resources, and frequency domain resources of the sideline transmission resources. , demodulation reference signal (Demodulation Reference Signal, DMRS), modulation and coding scheme (Modulation and Coding Scheme, MCS), etc. all transmission resources and transmission parameters.
- DMRS Demodulation Reference Signal
- MCS Modulation and Coding Scheme
- the second type of configuration authorization a two-step resource configuration method is adopted, that is, the network device allocates resources through RRC signaling and downlink control information (Downlink Control Information, DCI).
- DCI Downlink Control Information
- the period including time-frequency resources is configured by RRC signaling.
- HARQ Hybrid Automatic Repeat reQuest
- the terminal device When the terminal device receives the RRC signaling, it cannot immediately use the resources and parameters configured by the high-level parameters for sideline transmission, but must wait for the corresponding DCI activation and configure other resources and transmission parameters before performing sideline transmission.
- the network device can deactivate the configuration transmission through DCI, and after the terminal device receives the deactivated DCI, it can no longer use the transmission resource for sideline transmission.
- the transmitting terminal equipment receives the transmission resource configuration and control parameters sent by the network equipment, the TX UE sends data to the receiving (Receive, RX) UE, and waits for the feedback information of the RX UE.
- RX UE Receive the transmission resource configuration and control parameters sent by the network device. After receiving the data packet of the TX UE, if it can be decoded correctly, the HARQ ACK is fed back on the Physical Sidelink Feedback Channel (PSFCH) channel. If decoding fails, a negative acknowledgment (HARQ NACK) is fed back on the PSFCH channel.
- PSFCH Physical Sidelink Feedback Channel
- HARQ NACK negative acknowledgment
- the sidelink operates in an unlicensed spectrum
- LBT detection needs to be performed before sending a data block; if the LBT detection result is that the channel on which the data block is sent is busy, the data block fails to be sent.
- the network device dynamically schedules the resources for retransmitting the data block; in this way, additional time delay may be introduced.
- the resources for retransmitting the data block may not be obtained in time.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- CDMA Wideband Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- WiMAX Worldwide Interoperability for Microwave Access
- the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with the UE 120 (or referred to as a communication terminal device, a terminal device).
- the network device 110 may provide communication coverage for a particular geographic area and may communicate with UEs located within the coverage area.
- the network device 110 may be a network device (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a network device (NodeB, NB) in a WCDMA system, or an evolution in an LTE system.
- BTS Base Transceiver Station
- NodeB NodeB
- Evolutional Node B eNB or eNodeB
- a wireless controller in a cloud radio access network Cloud Radio Access Network, CRAN
- the network equipment can be a mobile switching center, relay station, access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolved Public Land Mobile Network (PLMN), etc.
- PLMN Public Land Mobile Network
- the communication system 100 also includes at least one UE 120 located within the coverage of the network device 110 .
- UE includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or another UE's apparatus configured to receive/transmit communication signals; and/or an Internet of Things (IoT) device.
- a UE arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal device", a “wireless terminal device” or a "mobile terminal device”.
- D2D communication may be performed between UEs 120 .
- a schematic diagram of an optional processing flow of the data transmission method provided by the embodiment of the present application, as shown in FIG. 2 may at least include the following steps:
- Step S201 if the first device fails to initially transmit the data block or retransmit the data block by using the first license-free scheduling resource, the first device retransmits the data block by using the second license-free scheduling resource.
- the frequency data of the working carrier is unlicensed spectrum when the first device transmits data on the sidelink
- the first device initially transmits the data block or retransmits the data block on the PSSCH it needs to pass the LBT.
- the method determines whether the PSSCH for sending the data block is busy, if the detection result of LBT is that the PSSCH is idle, the data block can be sent; if the detection result of the LBT is that the PSSCH is busy, the sending of the data block fails.
- the first device sends the initial transmission data block or the retransmitted data block to the second device, and when the second device detects the PSFCH used to receive the initial transmission data block or the retransmitted data block, it determines that the PSFCH channel is busy, and it can also be considered that the PSFCH channel is busy.
- the first device fails to initially transmit the data block or retransmit the data block.
- the first device sends the initial transmission data block or the retransmitted data block to the second device, and the second device sends HARQ NACK feedback for the initial transmission data block or the retransmitted data block, and it can also be considered that the first device initially transmitted the data block. or failed to retransmit the data block.
- the first device may need to pass the physical uplink control channel (Physical Uplink Control Channel, PUCCH), or the physical uplink shared channel (Physical Uplink Share channel).
- PUCCH Physical Uplink Control Channel
- PUSCH Physical Uplink Share channel
- the first unlicensed scheduling resource includes N shared channel time domain resources within a period; the second unlicensed scheduling resource includes N shared channel time domain resources within a period; it can also be understood as , the first license-free scheduling resource and the second license-free scheduling resource include N wireless resources in one cycle, and N may be a positive integer such as 1, 2, 3, . . .
- N radio resources such as N shared channel time domain resources, may be used for sending the same data block, or the N radio resources, such as N shared channel time domain resources, may be used for sending different data blocks.
- the first grant-free scheduling resource may be the same as the second grant-free scheduling resource.
- the first device may also use the first grant-free scheduling resource to retransmit the data block.
- the first device uses the first license-free scheduling resource in the first A shared channel time-frequency resource retransmits the data block, or the first device retransmits the data block using the second shared channel time-frequency resource in the first grant-free scheduling resource.
- the first authorization-free scheduling resource may also be different from the second authorization-free scheduling resource. For example, if the first device fails to initially transmit the data block or retransmit the data block by using the first time-frequency resource in the first license-free scheduling resource, the first device uses the first license-free scheduling resource that is different from the first license-free scheduling resource. Second, the authorization-free scheduling resource retransmits the data block.
- the initially transmitted data block and the retransmitted data block correspond to the same HARQ process.
- the method may further include:
- Step S200 the first device determines the first authorization-free scheduling resource and the second authorization-free scheduling resource.
- the first device determines sideline transmission resources through RRC signaling sent by the network device, and the sideline transmission resources include at least a first license-free scheduling resource and a second license-free scheduling resource, that is, the sideline transmission resource.
- the transmission resources may include a number of grant-free scheduling resources.
- the first device determines the sideline transmission resources through RRC signaling and DCI sent by the network device, and the sideline transmission resources include at least the first license-free scheduling resource and the second license-free scheduling resource, that is, all the The sideline transmission resources may include multiple license-free scheduling resources.
- the first device may also be referred to as a TX UE
- the second device may also be referred to as an RX UE.
- a schematic diagram of an optional processing flow of the data transmission method provided by the embodiment of the present application, as shown in FIG. 3 may at least include the following steps:
- Step S301 if the first device fails to initially transmit the data block or retransmit the data block to the second device using the first license-free scheduling resource, the second device uses the second license-free scheduling resource to receive the retransmission of the data block .
- the failure of the first device to initially transmit the data block or to retransmit the data block to the second device by using the first grant-free scheduling resource may include at least one of the following:
- the LBT detection of the PSSCH by the first device fails, the LBT detection of the PSFCH by the second device fails, and the second device sends HARQ NACK feedback.
- the first unlicensed scheduling resource includes N shared channel time domain resources within a period; the second unlicensed scheduling resource includes N shared channel time domain resources within a period; it can also be understood as , the first license-free scheduling resource and the second license-free scheduling resource include N wireless resources in one cycle, and N may be a positive integer such as 1, 2, 3, . . .
- N radio resources such as N shared channel time domain resources, may be used for sending the same data block, or the N radio resources, such as N shared channel time domain resources, may be used for sending different data blocks.
- the first license-free scheduling resource and the second license-free scheduling resource are the same; for example, if the first device fails to initially transmit or retransmit a data block by using the first license-free scheduling resource , the first device may also retransmit the data block by using the first license-free scheduling resource, and correspondingly, the second device uses the first license-free scheduling resource to receive the retransmitted data block.
- the first device uses the first license-free scheduling resource in the first A shared channel time-frequency resource to retransmit the data block, that is, the second device uses the first shared channel time-frequency resource in the first license-free scheduling resource to receive the retransmitted data block; or, the first device uses the first license-free scheduling resource to receive the retransmitted data block;
- the second shared channel time-frequency resource in the resources retransmits the data block, that is, the second device uses the second shared channel time-frequency resource in the first grant-free scheduling resource to receive the retransmitted data block.
- the first authorization-free scheduling resource and the second authorization-free scheduling resource are different.
- the first device uses the first license-free scheduling resource that is different from the first license-free scheduling resource.
- the second authorization-free scheduling resource retransmits the data block, that is, the second device uses the second authorization-free scheduling resource different from the first authorization-free scheduling resource to receive the retransmitted data block,
- the initially transmitted data block and the retransmitted data block correspond to the same HARQ process.
- the initially transmitted data block and the retransmitted data block correspond to the same HARQ process.
- the first device may also be referred to as a TX UE
- the second device may also be referred to as an RX UE.
- a schematic diagram of an optional detailed processing flow of the data transmission method provided by the embodiment of the present application, as shown in FIG. 4 may at least include the following steps:
- Step S401 the network device configures two sets of scheduling-free authorization resources for the TX UE.
- the two sets of scheduling-free authorized resources are CG1 and CG2, respectively.
- both CG1 and CG2 can be configured by type-1 configured grant; or, both CG1 and CG2 can be configured by type-2 configured grant; or, one of CG1 and CG2 can be configured by type-1 configured grant way to configure, and another way to configure by type-2 configured grant.
- Step S402 the TX UE fails to initially transmit the data block using CG1.
- the initial transmission data block is not sent successfully due to the failure of LBT detection at the physical layer.
- the LTB detection failure of the physical layer may be the LBT detection failure of the PSSCH by the TX UE.
- Step S403 the TX UE uses CG2 to retransmit the data block in the process of initially transmitting the data block.
- Step S404 after the RX UE decodes the data block correctly, it uses the PSFCH to successfully send the HARQ ACK feedback.
- Step S405 the TX UE sends HARQ ACK feedback to the network device through the PUCCH.
- FIG. 5 Another optional detailed processing flow diagram of the data transmission method provided by the embodiment of the present application, as shown in FIG. 5 , may at least include the following steps:
- Step S501 the network device configures two sets of scheduling-free authorization resources for the TX UE.
- the two sets of scheduling-free authorized resources are CG1 and CG2, respectively.
- both CG1 and CG2 can be configured by type-1 configured grant; or, both CG1 and CG2 can be configured by type-2 configured grant; or, one of CG1 and CG2 can be configured by type-1 configured grant
- the method is configured by the method, and the other is configured by the method of type-2configured grant.
- Step S502 the TX UE uses CG1 to initially transmit the data block.
- Step S503 after the RX UE decodes the data block correctly, it fails to send the HARQ ACK feedback by using the PSFCH.
- the failure of the RX UE to send the HARQ ACK feedback using the PSFCH may be that the failure of the RX UE to detect the LBT on the PFSCH causes the failure to send the HARQ ACK feedback.
- Step S504 the TX UE uses CG2 to retransmit the data block in the process of initially transmitting the data block.
- the TX UE uses CG2 to retransmit the data block in the process of initially transmitting the data block.
- Step S505 after the RX UE decodes the data block correctly, it uses the PSFCH to successfully send the HARQ ACK feedback.
- Step S506 the TX UE sends HARQ ACK feedback to the network device through the PUCCH.
- Another optional detailed processing flow diagram of the data transmission method provided by the embodiment of the present application, as shown in FIG. 6 may at least include the following steps:
- Step S601 the network device configures two sets of scheduling-free authorization resources for the TX UE.
- the two sets of scheduling-free authorized resources are CG1 and CG2, respectively.
- both CG1 and CG2 can be configured by type-1 configured grant; or, both CG1 and CG2 can be configured by type-2 configured grant; or, one of CG1 and CG2 can be configured by type-1 configured grant way to configure, and another way to configure by type-2 configured grant.
- Step S602 the TX UE uses CG1 to initially transmit the data block.
- Step S603 the RX UE does not decode the data block correctly, and uses the PSFCH to send HARQ NACK feedback.
- Step S604 the TX UE uses CG2 to retransmit the data block in the process of initially transmitting the data block.
- Step S605 after the RX UE decodes the data block correctly, it uses the PSFCH to successfully send the HARQ ACK feedback.
- Step S606 the TX UE sends HARQ ACK feedback to the network device through the PUCCH.
- the transmitting end device in the case where the sidelink works in the unlicensed spectrum, if the transmitting end device fails to send the data block in the first license-free scheduling resource, the transmitting end device performs the second license-free scheduling The resource retransmits the data block; in this way, since the network device does not need to dynamically schedule resources for retransmitting the data block, the reliability and timeliness of the occurrence of the data block can be improved, and the efficiency of the data block transmission can be improved.
- An optional structural schematic diagram of the first device 900 includes:
- the sending unit 901 is configured to, if the first device fails to initially transmit the data block or retransmit the data block by using the first authorization-free scheduling resource, the first device retransmits the data block by using the second authorization-free scheduling resource.
- the failure to initially transmit or retransmit the data block includes at least one of the following:
- the HARQ NACK feedback sent by the second device is received.
- the first authorization-free scheduling resource and the second authorization-free scheduling resource are the same;
- the first authorization-free scheduling resource and the second authorization-free scheduling resource are different.
- the first grant-free scheduling resource includes N shared channel time domain resources in one cycle;
- the second grant-free scheduling resource includes N shared channel time domain resources in one cycle; N is a positive integer.
- the N shared channel time domain resources are used for transmission of the same data block
- the N shared channel time domain resources are used for sending different data blocks.
- the initially transmitted data block and the retransmitted data block correspond to the same HARQ process.
- the first device 900 further includes:
- the first processing unit 902 is configured to determine the first authorization-free scheduling resource and the second authorization-free scheduling resource.
- the function of the sending unit 901 may be implemented by a transceiver, and the function of the first processing unit 902 may be implemented by a processor.
- an embodiment of the present application further provides a second device.
- An optional structural schematic diagram of the second device 800 includes:
- the receiving unit 801 is configured to, if a first device fails to initially transmit a data block or retransmit a data block to a second device using the first license-free scheduling resource, the second device uses the second license-free scheduling resource to receive the data block retransmission.
- the failure of the initial transmission of the data block or the retransmission of the data block includes at least one of the following:
- the second device sends HARQ NACK feedback.
- the first authorization-free scheduling resource and the second authorization-free scheduling resource are the same;
- the first authorization-free scheduling resource and the second authorization-free scheduling resource are different.
- the first grant-free scheduling resource includes N shared channel time domain resources in one cycle;
- the second grant-free scheduling resource includes N shared channel time domain resources in one cycle; N is a positive integer.
- the N shared channel time domain resources are used for transmission of the same data block
- the N shared channel time domain resources are used for sending different data blocks.
- the initially transmitted data block and the retransmitted data block correspond to the same HARQ process.
- the second device 800 may further include a second processing unit 802 configured to determine the first grant-free scheduling resource and the second grant-free scheduling resource for receiving the data block.
- the function of the receiving unit 801 may be implemented by a transceiver, and the function of the second processing unit 802 may be implemented by a processor.
- Embodiments of the present application further provide a first device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein, when the processor is configured to run the computer program, the first device The device performs the steps of the above signal transmission method.
- Embodiments of the present application further provide a second device, including a processor and a memory for storing a computer program that can be executed on the processor, wherein, when the processor is configured to run the computer program, the second device The device performs the steps of the above signal transmission method.
- An embodiment of the present application further provides a chip, including: a processor configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the signal transmission method executed by the second device.
- An embodiment of the present application further provides a chip, including: a processor configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the signal transmission method executed by the first device.
- the embodiment of the present application further provides a storage medium, which stores an executable program, and when the executable program is executed by the processor, implements the signal transmission method executed by the second device.
- An embodiment of the present application further provides a storage medium storing an executable program, and when the executable program is executed by a processor, the signal transmission method performed by the first device is implemented.
- the embodiment of the present application further provides a computer program product, including computer program instructions, the computer program instructions cause the computer to execute the signal transmission method executed by the second device.
- Embodiments of the present application further provide a computer program product, including computer program instructions, the computer program instructions causing the computer to execute the signal transmission method executed by the first device.
- the embodiment of the present application further provides a computer program, the computer program enables the computer to execute the signal transmission method executed by the second device.
- the embodiment of the present application further provides a computer program, the computer program enables the computer to execute the signal transmission method executed by the first device.
- the device 700 includes: at least one processor 701 , memory 702 , and at least one network interface 704 .
- the various components in device 700 are coupled together by bus system 705 .
- bus system 705 is used to implement the connection communication between these components.
- the bus system 705 also includes a power bus, a control bus and a status signal bus.
- the various buses are labeled as bus system 705 in FIG. 9 .
- memory 702 may be either volatile memory or non-volatile memory, and may include both volatile and non-volatile memory.
- the non-volatile memory may be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), Magnetic Random Access Memory (ferromagnetic random access memory, FRAM,), Flash Memory (Flash Memory), Magnetic Surface Memory, Optical Disk, or Optical Disk ( Compact Disc Read-Only Memory, CD-ROM); magnetic surface memory can be disk memory or tape memory.
- Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
- RAM Static Random Access Memory
- SSRAM Synchronous Static Random Access Memory
- SSRAM Dynamic Random Access Memory
- SDRAM Synchronous Dynamic Random Access Memory
- DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
- Enhanced Type synchronous dynamic random access memory Enhanced Synchronous Dynamic Random Access Memory, ESDRAM
- synchronous link dynamic random access memory SyncLink Dynamic Random Access Memory, SLDRAM
- direct memory bus random access memory Direct Rambus Random Access Memory, DRRAM
- DRRAM Direct Rambus Random Access Memory
- the memory 702 in this embodiment of the present application is used to store various types of data to support the operation of the device 700 .
- Examples of such data include: any computer program used to operate on device 700, such as application 7022.
- the program for implementing the method of the embodiment of the present application may be included in the application program 7022 .
- the methods disclosed in the above embodiments of the present application may be applied to the processor 701 or implemented by the processor 701 .
- the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method can be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in the form of software.
- the above-mentioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
- the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
- a general purpose processor may be a microprocessor or any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
- the software module may be located in a storage medium, and the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
- device 700 may be implemented by one or more of Application Specific Integrated Circuits (ASICs), DSPs, Programmable Logic Devices (PLDs), Complex Programmable Logic Devices (Complex Programmable Logic Devices) Logic Device, CPLD), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic component implementation for performing the aforementioned method.
- ASICs Application Specific Integrated Circuits
- DSPs Digital Signal processors
- PLDs Programmable Logic Devices
- Complex Programmable Logic Devices Complex Programmable Logic Devices
- CPLD Complex Programmable Logic Devices
- FPGA field-programmable Logic Device
- controller MCU
- MPU or other electronic component implementation for performing the aforementioned method.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
- the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
- FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
- the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
- the chip 1000 may further include a memory 1020 .
- the processor 1010 may call and run a computer program from the memory 1020 to implement the methods in the embodiments of the present application.
- the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
- the chip 1000 may further include an input interface 1030 .
- the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
- the chip 1000 may further include an output interface 1040 .
- the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
- the chip can be applied to the first device or the second device in the embodiment of the present application, and the chip can implement the corresponding processes of each method in the embodiment of the present application, which is not repeated here for brevity.
- the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
- the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
- each step of the above method embodiment may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
- the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
- the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
- the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
- the disclosed system, apparatus and method may be implemented in other manners.
- the apparatus embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
- the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
一种数据传输方法、设备及存储介质。所述方法包括:若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块(S201)。
Description
本申请涉及通信领域,尤其涉及一种数据传输方法、设备及存储介质。
设备到设备(D2D,Device to Device)通信是一种基于侧行链路(SL,Sidelink)的传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,D2D通信是采用终端到终端直接通信的方式。若侧行链路工作在非授权频谱,在发送数据块之前需要进行先听后说(Listen Before Talk,LBT)检测;LBT的检测结果影响着数据块发送的成功率,因此,如何提高侧行链路传输中的数据块的传输效率是一直追求的目标。
发明内容
为解决上述技术问题,本申请实施例提供了一种数据传输方法、设备及存储介质。
第一方面,本申请提供了一种数据传输方法,包括:若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
第二方面,本申请提供了一种数据传输方法,包括:若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
第三方面,本申请提供了一种第一设备,包括:发送单元,配置为若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
第四方面,提供了一种第二设备,包括:接收单元,配置为若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
第五方面,提供了一种第一设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述 存储器中存储的计算机程序时,使得所述第一设备执行上述数据传输方法的步骤。
第六方面,提供了一种第二设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序时,使得所述第二设备执行上述数据传输方法的步骤。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第一设备执行的数据传输方法的方法。
第八方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第二设备执行的数据传输的方法。
第九方面,提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第一设备执行的数据传输方法。
第十方面,提供了一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第二设备执行的数据传输方法。
第十一方面,提供了一种计算机程序,所述计算机程序使得计算机执行上述第一设备执行的数据传输方法。
第十二方面,提供了一种计算机程序,所述计算机程序使得计算机执行上述第二设备执行的数据传输方法。
本申请实施例提供的数据传输方法,包括:若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。如此,使得第一设备在利用第一免授权调度资源初传数据块或重传数据块失败的情况在,不依赖于网络设备的动态调度资源来实现所述数据块的重传,而是利用网络设备已配置的第二免授权调度资源重传所述数据块,避免利用动态调度资源重传数据块导致的时延、甚者无法及时获得重传资源的问题,提高了数据块的传输效率。
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的数据传输方法的一种可选处理流程示意图;
图3是本申请实施例提供的数据传输方法的另一种可选处理流程示意 图;
图4是本申请实施例提供的数据传输方法的一种详细可选处理流程示意图;
图5是本申请实施例提供的数据传输方法的另一种详细可选处理流程示意图;
图6是本申请实施例提供的数据传输方法的再一种详细可选处理流程示意图;
图7是本申请实施例提供的一种第一设备组成结构示意图;
图8是本申请实施例提供的一种第二设备组成结构示意图;
图9为本申请实施例提供的一种设备组成结构示意图;
图10是本申请实施例提供的一种芯片的示意性框图。
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例进行详细描述之前,对本申请实施例涉及的相关信息进行说明。
侧行链路的工作载波可以是2.4GHz、5GHz、6GHz或者60GHz等非授权频谱。网络设备向用于发送数据或接收数据的终端设备配置侧行链路通信的侧行传输资源和其他控制参数。网络设备可以通过动态调度(Dynamic Scheduling)的方式为终端设备分配侧行传输资源;或者网络设备可以为终端设备分配免调度授权(Configured Grant,CG)传输资源。对于网络设备为终端设备分配CG传输资源的分配方式,主要包括两种方式:第一类配置授权(type-1 configured grant)和第二类配置授权(type-2 configured grant);具体的:
第一类配置授权:网络设备通过无线资源控制(Radio Resource Control,RRC)信令为终端设备配置侧行传输资源,该RRC信令配置包括侧行传输资源的周期、时域资源、频域资源、解调参考信号(Demodulation Reference Signal,DMRS)、调制编码方式(Modulation and Coding Scheme,MCS)等在内的全部传输资源和传输参数。当终端设备接收到该高层参数后,可立即使用所配置的传输参数在配置的时频资源上进行侧行传输。
第二类配置授权:采用两步的资源配置方式,即网络设备通过RRC信令和下行控制信息(Downlink Control Information,DCI)分配资源的方式;首先,由RRC信令配置包括时频资源的周期、冗余版本、重传次数、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程数等在内的传输资源和传输参数,然后由DCI激活第二类配置授权的传输,并同时配置包括时域资源、频域资源、MCS等在内的其他传输资源和传输参数。终端设备在接收到RRC信令时,不能立即使用该高层参数配置的资源和参数进行侧行传输,而必须等接收到相应的DCI激活并配置其他资源和传输参数后,才能进行侧行传输。此外,网络设备可以通过DCI去激活该配置传输,当终端设备接收到去激活的DCI后,不能再使用该传输资源进行侧行传输。
发送终端设备(Transmit User Equipment,TX UE),接收网络设备发送的传输资源配置和控制参数,TX UE发送数据给接收(Receive,RX)UE,并且等待RX UE的反馈信息。
RX UE:接收网络设备发送的的传输资源配置和控制参数。在接收到TX UE的数据包以后,如果能够正确解码,那么在物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)信道上反馈HARQ ACK。如果解码失败,那么在PSFCH信道上反馈负确认信息(HARQ NACK)。
相关技术中,若侧行链路工作在非授权频谱,在发送数据块之前需要进行LBT检测;若LBT检测结果为发送数据块的信道忙碌,则数据块发送失败。在该场景下,需要依赖于网络设备的动态调度来重传数据块,即网络设备动态调度用于重传数据块的资源;如此,可能会引入额外的时间延迟,若终端设备与网络设备之间的Uu接口也工作在非授权频谱的时候,还可能无法及时获得用于重传数据块的资源。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE 频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。
可选地,UE120之间可以进行D2D通信。
本申请实施例提供的数据传输方法的一种可选处理流程示意图,如图2所示,至少可以包括以下步骤:
步骤S201,若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
在一些实施例中,若第一设备在侧行链路上传输数据时,工作载波的频率数据非授权频谱,则第一设备在PSSCH上初传数据块或重传数据块时, 需要通过LBT的方式确定发送数据块的PSSCH是否忙碌,若LBT的检测结果是PSSCH空闲,则能够发送数据块;若LBT的检测结果是PSSCH忙碌,则发送数据块失败。或者,第一设备发送初传数据块或重传数据块至第二设备,第二设备在检测用于接收初传数据块或重传数据块的PSFCH的时候,确定PSFCH信道忙碌,也可以认为第一设备初传数据块或重传数据块失败。或者,第一设备发送初传数据块或重传数据块至第二设备,第二设备针对该初传数据块或重传数据块,发送HARQ NACK反馈,也可以认为第一设备初传数据块或重传数据块失败。在另一些实施例中,第一设备在收到第二设备的HARQ ACK反馈以后,第一设备可能需要通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)、或者物理上行共享信道(Physical Uplink Share Channel,PUSCH)通知网络设备HARQ进程发送成功。
在一些实施例中,第一免授权调度资源在一个周期内包括N个共享信道时域资源;所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;也可以理解为,第一免授权调度资源和所述第二免授权调度资源在一个周期内包括N个无线资源,N可以是1、2、3…等正整数。其中,N个无线资源,如N个共享信道时域资源可以用于相同数据块的发送,或者,所述N个无线资源,如N个共享信道时域资源可以用于不同数据块的发送。
在一些实施例中,所述第一免授权调度资源可以与所述第二免授权调度资源相同。举例来说,若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备还可以利用第一免授权调度资源重传所述数据块。在具体实施时,若第一设备利用第一免授权调度资源中的第一共享信道时频资源初传数据块或重传数据块失败,则第一设备利用第一免授权调度资源中的第一共享信道时频资源重传数据块,或者第一设备利用第一免授权调度资源中的第二共享信道时频资源重传数据块。
在另一些实施例中,所述第一免授权调度资源也可以与所述第二免授权调度资源不同。举例来说,若第一设备利用第一免授权调度资源中的第一时频资源初传数据块或重传数据块失败,则所述第一设备利用与第一免授权调度资源不同的第二免授权调度资源重传所述数据块。
在一些实施例中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
本申请实施例中,所述方法还可以包括:
步骤S200,第一设备确定所述第一免授权调度资源和所述第二免授权 调度资源。
在一些实施例中,第一设备通过网络设备发送的RRC信令确定侧行传输资源,所述侧行传输资源至少包括第一免授权调度资源和第二免授权调度资源,即所述侧行传输资源可以包括多个免授权调度资源。
在另一些实施例中,第一设备通过网络设备发送的RRC信令和DCI确定侧行传输资源,所述侧行传输资源至少包括第一免授权调度资源和第二免授权调度资源,即所述侧行传输资源可以包括多个免授权调度资源。
需要说明的是,本申请实施例中第一设备也可以称为TX UE,第二设备也可以称为RX UE。
本申请实施例提供的数据传输方法的一种可选处理流程示意图,如图3所示,至少可以包括以下步骤:
步骤S301,若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
在一些实施例中,第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败可以包括下述中的至少一种:
第一设备对PSSCH的LBT检测失败、第二设备对PSFCH的LBT检测失败和第二设备发送HARQ NACK反馈。
在一些实施例中,第一免授权调度资源在一个周期内包括N个共享信道时域资源;所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;也可以理解为,第一免授权调度资源和所述第二免授权调度资源在一个周期内包括N个无线资源,N可以是1、2、3…等正整数。其中,N个无线资源,如N个共享信道时域资源可以用于相同数据块的发送,或者,所述N个无线资源,如N个共享信道时域资源可以用于不同数据块的发送。
在一些实施例中,所述第一免授权调度资源和所述第二免授权调度资源相同;举例来说,若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备还可以利用第一免授权调度资源重传所述数据块,相应的,第二设备利用第一免授权调度资源接收所述重传数据块。在具体实施时,若第一设备利用第一免授权调度资源中的第一共享信道时频资源初传数据块或重传数据块失败,则第一设备利用第一免授权调度资源中的第一共享信道时频资源重传数据块,即第二设备利用第一免授权调度资源中的第一共享信道时频资源接收所述重传数据块;或者,第一设备利用第一免授权调度资源中的第二共享信道时频资源重传数据块,即第二 设备利用第一免授权调度资源中的第二共享信道时频资源接收所述重传数据块。
在另一些实施例中,所述第一免授权调度资源和所述第二免授权调度资源不同。
举例来说,若第一设备利用第一免授权调度资源中的第一时频资源初传数据块或重传数据块失败,则所述第一设备利用与第一免授权调度资源不同的第二免授权调度资源重传所述数据块,即第二设备利用与第一免授权调度资源不同的第二免授权调度资源接收所述重传数据块,
在一些实施例中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
在一些实施例中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
需要说明的是,本申请实施例中第一设备也可以称为TX UE,第二设备也可以称为RX UE。
本申请实施例提供的数据传输方法的一种可选详细处理流程示意图,如图4所示,至少可以包括以下步骤:
步骤S401,网络设备为TX UE配置两套免调度授权资源。
在一些实施例中,两套免调度授权资源分别是CG1和CG2。其中,CG1和CG2均可以通过type-1 configured grant的方式配置;或者,CG1和CG2均可以通过type-2 configured grant的方式配置;或者,CG1和CG2中的一个可以通过type-1 configured grant的方式配置,另一个通过type-2 configured grant的方式配置。
步骤S402,TX UE利用CG1初传数据块失败。
在一些实施例中,由于物理层的LBT检测失败,所述初传数据块没有发送成功。其中,物理层的LTB检测失败可以是TX UE对PSSCH的LBT检测失败。
步骤S403,TX UE利用CG2在初传数据块的进程重传数据块。
步骤S404,RX UE正确解码数据块后,利用PSFCH成功发送HARQ ACK反馈。
步骤S405,TX UE通过PUCCH向网络设备发送HARQ ACK反馈。
本申请实施例提供的数据传输方法的另一种可选详细处理流程示意图,如图5所示,至少可以包括以下步骤:
步骤S501,网络设备为TX UE配置两套免调度授权资源。
在一些实施例中,两套免调度授权资源分别是CG1和CG2。其中,CG1和CG2均可以通过type-1 configured grant的方式配置;或者,CG1和CG2均可以通过type-2 configured grant的方式配置;或者,CG1和CG2中的一个可以通过type-1 configured grant的方式配置,另一个通过type-2configured grant的方式配置。
步骤S502,TX UE利用CG1初传数据块。
步骤S503,RX UE正确解码数据块后,利用PSFCH发送HARQ ACK反馈失败。
在一些实施例中,RX UE利用PSFCH发送HARQ ACK反馈失败可以是,RX UE对PFSCH的LBT检测失败导致发送HARQ ACK反馈失败。
步骤S504,TX UE利用CG2在初传数据块的进程重传数据块。
在一些实施例中,TX UE在发送数据块的PSSCH对应的PSFCH上未接收到HARQ反馈,则TX UE利用CG2在初传数据块的进程重传数据块。
步骤S505,RX UE正确解码数据块后,利用PSFCH成功发送HARQ ACK反馈。
步骤S506,TX UE通过PUCCH向网络设备发送HARQ ACK反馈。
本申请实施例提供的数据传输方法的再一种可选详细处理流程示意图,如图6所示,至少可以包括以下步骤:
步骤S601,网络设备为TX UE配置两套免调度授权资源。
在一些实施例中,两套免调度授权资源分别是CG1和CG2。其中,CG1和CG2均可以通过type-1 configured grant的方式配置;或者,CG1和CG2均可以通过type-2 configured grant的方式配置;或者,CG1和CG2中的一个可以通过type-1 configured grant的方式配置,另一个通过type-2 configured grant的方式配置。
步骤S602,TX UE利用CG1初传数据块。
步骤S603,RX UE没有正确解码数据块,利用PSFCH发送HARQ NACK反馈。
步骤S604,TX UE利用CG2在初传数据块的进程重传数据块。
步骤S605,RX UE正确解码数据块后,利用PSFCH成功发送HARQ ACK反馈。
步骤S606,TX UE通过PUCCH向网络设备发送HARQ ACK反馈。
本申请实施例提供的数据传输方法,在侧行链路工作在非授权频谱的情况下,若发送端设备在第一免授权调度资源发送数据块失败,则发送端 设备在第二免授权调度资源重传所述数据块;如此,由于不需要网络设备动态调度重传所述数据块的资源,因此,能够提高数据块发生的可靠性和及时性,提高数据块传输的效率。
为实现上述数据传输方法,本申请实施例还提供一种第一设备,所述第一设备900的一种可选组成结构示意图,如图7所示,包括:
发送单元901,配置为若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
在一些实施例中,所述初传或重传数据块失败包括下述中的至少一项:
PSSCH的LBT检测失败;
PSFCH的LBT检测失败;
接收到第二设备发送的HARQ NACK反馈。
在一些实施例中,所述第一免授权调度资源和所述第二免授权调度资源相同;
或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
在一些实施例中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;
和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
在一些实施例中,所述N个共享信道时域资源用于相同数据块的发送;
或,所述N个共享信道时域资源用于不同数据块的发送。
在一些实施例中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
在一些实施例中,所述第一设备900还包括:
第一处理单元902,配置为确定所述第一免授权调度资源和所述第二免授权调度资源。
需要说明的是,本申请实施例中,发送单元901的功能可以由收发器实现,第一处理单元902的功能可以由处理器实现。
为实现上述数据传输方法,本申请实施例还提供一种第二设备,所述第二设备800的一种可选组成结构示意图,如图8所示,包括:
接收单元801,配置为若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
在一些实施例中,所述初传数据块或重传数据块失败包括下述中的至少一项:
PSSCH的LBT检测失败;
PSFCH的LBT检测失败;
所述第二设备发送HARQ NACK反馈。
在一些实施例中,所述第一免授权调度资源和所述第二免授权调度资源相同;
或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
在一些实施例中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;
和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
在一些实施例中,所述N个共享信道时域资源用于相同数据块的发送;
或,所述N个共享信道时域资源用于不同数据块的发送。
在一些实施例中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
在一些实施例中,所述第二设备800还可以包括第二处理单元802,配置为确定用于接收数据块的第一免授权调度资源和第二免授权调度资源。
需要说明的是,本申请实施例中,接收单元801的功能可以由收发器实现,第二处理单元802的功能可以由处理器实现。
本申请实施例还提供一种第一设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,使得所述第一设备执行上述信号传输方法的步骤。
本申请实施例还提供一种第二设备,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,使得所述第二设备执行上述信号传输方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第二设备执行的信号传输方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述第一设备执行的信号传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行 程序被处理器执行时,实现上述第二设备执行的信号传输方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述第一设备执行的信号传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二设备执行的信号传输方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一设备执行的信号传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述第二设备执行的信号传输方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述第一设备执行的信号传输方法。
图9是本申请实施例的设备(第一设备或第二设备)的硬件组成结构示意图,设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(ferromagnetic random access memory,FRAM,)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static Random Access Memory,SRAM)、同步静态随机存取存储器(Synchronous Static Random Access Memory,SSRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、同步动态随机存取存储器(Synchronous Dynamic Random Access Memory,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate Synchronous Dynamic Random Access Memory,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced Synchronous Dynamic Random Access Memory,ESDRAM)、同步连接动态随机存取存储器(SyncLink Dynamic Random Access Memory,SLDRAM)、直接内存总线随机存取存储器(Direct Rambus Random Access Memory,DRRAM)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持设备700的操作。这些数据的示例包括:用于在设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,设备700可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,ASIC)、DSP、可编程逻辑器件(Programmable Logic Device,PLD)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的第一设备或第二设备,并且该芯片可以实现本申请实施例的各个方法的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通 用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在 一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (36)
- 一种数据传输方法,包括:若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
- 根据权利要求1所述的方法,其中,所述初传数据块或重传数据块失败包括下述中的至少一项:物理侧行链路共享信道PSSCH的先听后说LBT检测失败;物理侧行链路反馈信道PSFCH的LBT检测失败;接收到第二设备发送的混合自动重传请求非确认HARQ NACK反馈。
- 根据权利要求1或2所述的方法,其中,所述第一免授权调度资源和所述第二免授权调度资源相同;或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
- 根据权利要求1至3任一项所述的方法,其中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
- 根据权利要求4所述的方法,其中,所述N个共享信道时域资源用于相同数据块的发送;或,所述N个共享信道时域资源用于不同数据块的发送。
- 根据权利要求1至5任一项所述的方法,其中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
- 根据权利要求1至6任一项所述的方法,其中,所述方法还包括:所述第一设备确定所述第一免授权调度资源和所述第二免授权调度资源。
- 一种数据传输方法,所述方法包括:若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
- 根据权利要求8所述的方法,其中,所述初传数据块或重传数据块失败包括下述中的至少一项:物理侧行链路共享信道PSSCH的先听后说LBT检测失败;物理侧行链路反馈信道PSFCH的LBT检测失败;所述第二设备发送混合自动重传请求非确认HARQ NACK反馈。
- 根据权利要求8或9所述的方法,其中,所述第一免授权调度资源和所述第二免授权调度资源相同;或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
- 根据权利要求8至10任一项所述的方法,其中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
- 根据权利要求11所述的方法,其中,所述N个共享信道时域资源用于相同数据块的发送;或,所述N个共享信道时域资源用于不同数据块的发送。
- 根据权利要求8至12任一项所述的方法,其中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
- 一种第一设备,所述第一设备包括:发送单元,配置为若第一设备利用第一免授权调度资源初传数据块或重传数据块失败,则所述第一设备利用第二免授权调度资源重传所述数据块。
- 根据权利要求14所述的第一设备,其中,所述初传或重传数据块失败包括下述中的至少一项:物理侧行链路共享信道PSSCH的先听后说LBT检测失败;物理侧行链路反馈信道PSFCH的LBT检测失败;接收到第二设备发送的混合自动重传请求非确认HARQ NACK反馈。
- 根据权利要求14或15所述的第一设备,其中,所述第一免授权调度资源和所述第二免授权调度资源相同;或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
- 根据权利要求14至16任一项所述的第一设备,其中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
- 根据权利要求17所述的第一设备,其中,所述N个共享信道时域资源用于相同数据块的发送;或,所述N个共享信道时域资源用于不同数据块的发送。
- 根据权利要求14至18任一项所述的第一设备,其中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
- 根据权利要求14至19任一项所述的第一设备,其中,所述第一设 备还包括:第一处理单元,配置为确定所述第一免授权调度资源和所述第二免授权调度资源。
- 一种第二设备,所述第二设备包括:接收单元,配置为若第一设备利用第一免授权调度资源向第二设备初传数据块或重传数据块失败,则所述第二设备利用第二免授权调度资源接收所述数据块的重传。
- 根据权利要求21所述的第二设备,其中,所述初传数据块或重传数据块失败包括下述中的至少一项:物理侧行链路共享信道PSSCH的先听后说LBT检测失败;物理侧行链路反馈信道PSFCH的LBT检测失败;所述第二设备发送混合自动重传请求非确认HARQ NACK反馈。
- 根据权利要求21或22所述的第二设备,其中,所述第一免授权调度资源和所述第二免授权调度资源相同;或者,所述第一免授权调度资源和所述第二免授权调度资源不同。
- 根据权利要求21至23任一项所述的第二设备,其中,所述第一免授权调度资源在一个周期内包括N个共享信道时域资源;和/或,所述第二免授权调度资源在一个周期内包括N个共享信道时域资源;N为正整数。
- 根据权利要求24所述的第二设备,其中,所述N个共享信道时域资源用于相同数据块的发送;或,所述N个共享信道时域资源用于不同数据块的发送。
- 根据权利要求21至25任一项所述的第二设备,其中,所述初传数据块和所述重传数据块对应同一个HARQ进程。
- 一种第一设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至7任一项所述方法的步骤。
- 一种第二设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求8至13任一项所述方法的步 骤。
- 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至7任一项所述的方法。
- 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求8至13任一项所述的方法。
- 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至7任一项所述方法的步骤。
- 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求8至13任一项所述方法的步骤。
- 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至7任一项所述的方法。
- 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求8至13任一项所述的方法。
- 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至7任一项所述的方法。
- 一种计算机程序,所述计算机程序使得计算机执行如权利要求8至13任一项所述的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/129386 WO2022104519A1 (zh) | 2020-11-17 | 2020-11-17 | 一种数据传输方法、设备及存储介质 |
CN202080106942.1A CN116458240A (zh) | 2020-11-17 | 2020-11-17 | 一种数据传输方法、设备及存储介质 |
EP20961811.5A EP4250837A4 (en) | 2020-11-17 | 2020-11-17 | DATA TRANSMISSION METHOD, DEVICE AND STORAGE MEDIUM |
US18/090,912 US20230180291A1 (en) | 2020-11-17 | 2022-12-29 | Method for data transmission and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/129386 WO2022104519A1 (zh) | 2020-11-17 | 2020-11-17 | 一种数据传输方法、设备及存储介质 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/090,912 Continuation US20230180291A1 (en) | 2020-11-17 | 2022-12-29 | Method for data transmission and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022104519A1 true WO2022104519A1 (zh) | 2022-05-27 |
Family
ID=81707950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/129386 WO2022104519A1 (zh) | 2020-11-17 | 2020-11-17 | 一种数据传输方法、设备及存储介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230180291A1 (zh) |
EP (1) | EP4250837A4 (zh) |
CN (1) | CN116458240A (zh) |
WO (1) | WO2022104519A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024130566A1 (zh) * | 2022-12-20 | 2024-06-27 | 北京小米移动软件有限公司 | 一种反馈方法、装置、设备及存储介质 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11930530B2 (en) * | 2021-06-07 | 2024-03-12 | Qualcomm Incorporated | Early LBT failure reporting for multi-TTI grant for sidelink communication in unlicensed spectrum |
US20230058614A1 (en) * | 2021-08-13 | 2023-02-23 | Qualcomm Incorporated | Conditional use of allocated periodic resources |
US20230232454A1 (en) * | 2022-01-04 | 2023-07-20 | Qualcomm Incorporated | Retransmissions over a sidelink unlicensed band |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104378183A (zh) * | 2013-08-13 | 2015-02-25 | 普天信息技术有限公司 | 上行数据处理方法及装置 |
CN106549736A (zh) * | 2015-09-17 | 2017-03-29 | 中国移动通信集团公司 | 一种跨载波rlc层数据重传方法及装置 |
CN107734651A (zh) * | 2016-08-10 | 2018-02-23 | 华为技术有限公司 | 一种数据传输方法及终端、网络设备 |
US20180302919A1 (en) * | 2015-12-24 | 2018-10-18 | Huawei Technologies Co., Ltd. | Uplink retransmitted data sending method, apparatus, and system |
CN109565870A (zh) * | 2018-11-09 | 2019-04-02 | 北京小米移动软件有限公司 | 调整自动重传的方法、装置、基站及终端 |
-
2020
- 2020-11-17 EP EP20961811.5A patent/EP4250837A4/en not_active Withdrawn
- 2020-11-17 WO PCT/CN2020/129386 patent/WO2022104519A1/zh active Application Filing
- 2020-11-17 CN CN202080106942.1A patent/CN116458240A/zh active Pending
-
2022
- 2022-12-29 US US18/090,912 patent/US20230180291A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104378183A (zh) * | 2013-08-13 | 2015-02-25 | 普天信息技术有限公司 | 上行数据处理方法及装置 |
CN106549736A (zh) * | 2015-09-17 | 2017-03-29 | 中国移动通信集团公司 | 一种跨载波rlc层数据重传方法及装置 |
US20180302919A1 (en) * | 2015-12-24 | 2018-10-18 | Huawei Technologies Co., Ltd. | Uplink retransmitted data sending method, apparatus, and system |
CN107734651A (zh) * | 2016-08-10 | 2018-02-23 | 华为技术有限公司 | 一种数据传输方法及终端、网络设备 |
CN109565870A (zh) * | 2018-11-09 | 2019-04-02 | 北京小米移动软件有限公司 | 调整自动重传的方法、装置、基站及终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4250837A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024130566A1 (zh) * | 2022-12-20 | 2024-06-27 | 北京小米移动软件有限公司 | 一种反馈方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP4250837A4 (en) | 2024-01-03 |
US20230180291A1 (en) | 2023-06-08 |
CN116458240A (zh) | 2023-07-18 |
EP4250837A1 (en) | 2023-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022104519A1 (zh) | 一种数据传输方法、设备及存储介质 | |
EP3751914B1 (en) | Communication method, communication apparatus and readable storage medium | |
WO2020168577A1 (zh) | 传输上行反馈信息的方法、终端设备和网络设备 | |
JP7195455B2 (ja) | 再送リソース設定方法、装置、チップ及びコンピュータプログラム | |
KR20210006965A (ko) | 피드백 정보를 전송하는 방법과 장치 | |
EP3553986A1 (en) | Transmission method, network equipment, and terminal equipment | |
US20220166559A1 (en) | Feedback information transmission method and apparatus and communications device | |
US11991729B2 (en) | Resource configuration method and apparatus, and communication device | |
WO2021147076A1 (zh) | Harq-ack码本的反馈方法、装置、设备及存储介质 | |
WO2020191559A1 (zh) | 传输数据信道的方法和终端设备 | |
WO2021062609A1 (zh) | 通信方法和通信装置 | |
US20220052796A1 (en) | Harq information feedback method and device | |
TW202014015A (zh) | 傳輸訊息的方法和終端設備 | |
WO2020087424A1 (zh) | 一种数据传输方法、终端设备及存储介质 | |
US12004014B2 (en) | Wireless communication method and communication device | |
TW202019208A (zh) | 一種回饋資源的複用方法、終端設備及網路設備 | |
WO2020051919A1 (zh) | 一种资源确定及配置方法、装置、终端、网络设备 | |
WO2020037655A1 (zh) | 一种反馈信息长度的确定方法及装置、通信设备 | |
KR20220002342A (ko) | 사이드링크 데이터를 전송하는 방법 및 단말기 디바이스 | |
KR20210047324A (ko) | 정보 전송 방법, 장치 및 저장 매체 | |
WO2021109038A1 (zh) | 一种上行传输方法、电子设备及存储介质 | |
WO2020103316A1 (zh) | 一种传输数据的方法和终端设备 | |
CN118019125A (zh) | 支持2类配置的授权的网络控制的中继器(ncr)过程 | |
WO2020042036A1 (zh) | 无线通信方法和通信设备 | |
JP2023525249A (ja) | サイドリンクフィードバック情報の送受信方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961811 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202080106942.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020961811 Country of ref document: EP Effective date: 20230619 |