WO2021012218A1 - 一种数据处理方法及通信装置 - Google Patents

一种数据处理方法及通信装置 Download PDF

Info

Publication number
WO2021012218A1
WO2021012218A1 PCT/CN2019/097530 CN2019097530W WO2021012218A1 WO 2021012218 A1 WO2021012218 A1 WO 2021012218A1 CN 2019097530 W CN2019097530 W CN 2019097530W WO 2021012218 A1 WO2021012218 A1 WO 2021012218A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
subframes
channel
frame
radio frame
Prior art date
Application number
PCT/CN2019/097530
Other languages
English (en)
French (fr)
Inventor
杨洪建
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/097530 priority Critical patent/WO2021012218A1/zh
Priority to CN201980097852.8A priority patent/CN114026935A/zh
Publication of WO2021012218A1 publication Critical patent/WO2021012218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a data processing method and communication device.
  • one wireless frame may include multiple subframes, and the length of each subframe is fixed.
  • a radio frame includes 10 subframes, and the length of each subframe is 1 ms.
  • the channel used to transmit a certain service requires at least two consecutive subframes, and the number of consecutive subframes that can be used to transmit the service in a radio frame is greater than the number of consecutive subframes required for the channel to transmit the service , Will make the terminal unable to determine the starting subframe of the continuous subframe used to transmit the service in the radio frame. For example, when the channel used to transmit service 1 requires 2 consecutive subframes, and the three consecutive subframes of subframes 0, 1, and 2 in the radio frame can be used to transmit service 1, the terminal cannot determine whether to use Whether the starting subframe of the consecutive subframes of the transmission service 1 is the 0th subframe or the 1st subframe.
  • the embodiments of the present application provide a data processing method and a communication device, which can determine a starting subframe for transmitting a first channel.
  • an embodiment of the present application provides a data processing method, the method includes: a terminal device receives first information from a network device, the first information may be used to determine whether the first subframe is used to transmit the first channel , The transmission of the first channel requires at least two consecutive subframes; the terminal device determines the starting subframe for transmitting the first channel in the subframe set according to the first information, and the first subframe is included in the subframe set.
  • the frame set includes multiple consecutive subframes in the same radio frame.
  • the terminal device can determine the starting subframe used for transmitting the first channel in the subframe set according to the first information, thereby helping to improve the accuracy and efficiency of receiving the first channel.
  • the first information may determine that the first subframe is used for transmitting the first channel; the terminal device may determine the starting subframe used for transmitting the first channel in the subframe set according to the first information. It is: the terminal device determines the first subframe as the starting subframe for transmitting the first channel in the subframe set.
  • the first information may determine that the first subframe is not used for transmitting the first channel; the specific implementation manner for the terminal device to determine the starting subframe for transmitting the first channel in the subframe set according to the first information may be It is: the terminal device determines the next subframe adjacent to the first subframe in the subframe set as the starting subframe for transmitting the first channel in the subframe set.
  • the terminal device may determine the next subframe adjacent to the first subframe in the subframe set as the subframe.
  • the initial subframe used to transmit the first channel in the frame set it is beneficial to improve the accuracy and efficiency of receiving the first channel.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • an embodiment of the present application provides another data processing method.
  • the method includes: a network device generates first information.
  • the first information can be used to determine whether the first subframe is used to transmit the first channel, and the A channel requires at least two consecutive subframes, the first subframe is included in the subframe set, and the subframe set includes multiple consecutive subframes in the same radio frame; the network device sends the first information to the terminal device.
  • the network device can generate first information to determine whether the first subframe is used to transmit the first channel, and send the first information to the terminal device. In this way, the terminal device can be based on the first information
  • the initial subframe used for transmitting the first channel in the subframe set is determined, so as to help improve the accuracy and efficiency of receiving the first channel.
  • the first information may determine that the first subframe is used for transmitting the first channel; the method may further include: the network device configures the first subframe as a subframe set for transmitting the first channel. Starting subframe.
  • the first information may determine that the first subframe is not used for transmitting the first channel; the method may further include: the network device configures the next subframe adjacent to the first subframe in the subframe set It is the starting subframe used to transmit the first channel in the subframe set.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • embodiments of the present application provide a communication device, which may be a terminal device or a device (for example, a chip) used for a terminal device, and the device has a function of implementing the method described in the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the embodiments of the present application provide another communication device.
  • the communication device may be a network device or a device (such as a chip) used in a network device, and the device has a function of implementing the method described in the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the embodiments of the present application provide yet another communication device.
  • the communication device may be a terminal device or a device (for example, a chip) used in a terminal device.
  • the communication device includes a memory and a processor.
  • the processor is connected to the memory via a bus.
  • the memory stores program instructions.
  • the processor calls the program instructions stored in the memory to implement the data processing method provided in the first aspect.
  • the embodiments of the present application provide yet another communication device.
  • the communication device may be a network device or a device (for example, a chip) used in a network device.
  • the communication device includes a memory and a processor, the processor is connected to the memory through a bus, the memory is stored with program instructions, and the processor calls the program instructions stored in the memory to implement the data processing method provided in the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the communication device described in the third aspect, which includes instructions for executing the program related to the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions used by the communication device according to the fourth aspect, which includes a program for executing the program involved in the second aspect.
  • embodiments of the present application provide a computer program product, which includes a program, which when executed by a communication device, causes the communication device to implement the method described in the first aspect.
  • an embodiment of the present application provides a computer program product, which includes a program, and when the program is executed by a communication device, the communication device realizes the method described in the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system disclosed in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data processing method disclosed in an embodiment of the present application.
  • Fig. 3a is a schematic flowchart of another data processing method disclosed in an embodiment of the present application.
  • FIG. 3b is a schematic diagram of a subframe configuration scheme in a radio frame disclosed in an embodiment of the present application.
  • FIG. 3c is a schematic diagram of another subframe configuration scheme in a radio frame disclosed in an embodiment of the present application.
  • FIG. 4a is a schematic flowchart of another data processing method disclosed in an embodiment of the present application.
  • 4b is a schematic diagram of another subframe configuration scheme in a radio frame disclosed in an embodiment of the present application.
  • FIG. 4c is a schematic diagram of another subframe configuration scheme in a radio frame disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the architecture of a communication system disclosed in an embodiment of the present application.
  • the communication system includes a network device 101 and a terminal device 102.
  • the network The device 101 may configure part or all of the subframes in the subframe set as subframes actually used for transmitting the first channel, generate the first information, and then send the first information to the terminal device 102.
  • the subframe set may include multiple consecutive subframes in the same radio frame, each subframe in the subframe set can theoretically be configured to transmit the first channel, and the subframe set includes the first subframe, The first information may be used to determine whether the first subframe is actually configured to transmit the first channel.
  • the terminal device 102 may determine the starting subframe actually used for transmitting the first channel in the subframe set according to the first information. Specifically, when the first subframe is the first subframe in the consecutive subframes in the subframe set, and the first subframe is actually configured to transmit the first channel, the terminal device may determine the first subframe It is the starting subframe actually used to transmit the first channel in the subframe set.
  • the network device 101 in the embodiment of the present application is an access device that the terminal device 102 accesses to the communication system in a wireless manner.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in the NR system, and other future mobile communication systems.
  • eNB evolved base station
  • TRP transmission reception point
  • gNB next generation base station
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network equipment provided in the embodiments of the present application may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit, and CU-DU is used.
  • the structure of the network equipment such as the protocol layer of the base station, can be separated, part of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU is centrally controlled by the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be called a terminal (terminal), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • the terminal device can be a mobile phone (mobile phone), wearable device, tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety (transportation) Wireless terminals in safety), wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • the network device 101 in FIG. 1 sends the first information to a terminal device for example only, and does not constitute a limitation to the embodiment of the present application.
  • the network device 101 may also send The first information is sent to other terminal devices, that is, the data processing method disclosed in the embodiments of the present application can be applied not only to a unicast communication system, but also to a broadcast or multicast communication system, or to a hybrid communication system. In a hybrid communication system, both unicast data and broadcast or multicast data can be transmitted.
  • the hybrid communication system can be a multimedia broadcast multicast service (MBMS)/unicast hybrid communication system or a further enhanced multimedia broadcast multicast service (FeMBMS)/unicast hybrid communication System, in the MBMS/unicast hybrid communication system, both MBMS services and unicast services (such as unicast data information or unicast control information) can be transmitted, and MBMS services can be transmitted in the FeMBMS/unicast hybrid communication system , It can also transmit unicast services.
  • the FeMBMS/unicast hybrid communication system is a special MBMS/unicast hybrid communication system that needs to meet at least one of the following two conditions: First, the radio frame in the system Subframe No. 4 (subframe) and/or Subframe No.
  • MBSFN subframes are subframes used to transmit MBMS services
  • MBSFN subframes can be divided into MBSFN areas and non-MBSFN areas, and MBSFN areas can be used to transmit physical multicast channels (PMCH) in MBSFN subframes Transmission resources, non-MBSFN areas may also be called unicast control areas, and non-MBSFN areas may be transmission resources used to transmit non-PMCH.
  • PMCH physical multicast channels
  • the size of the non-MBSFN area in the MBSFN subframe can be 0, that is, all the transmission resources of the MBSFN subframe can be used to transmit the PMCH.
  • the transmission resources involved in the embodiments of the present application may include one or more of time domain resources, frequency domain resources, and code channel resources, such as orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the first channel may be a physical channel.
  • the first channel may be a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH) Or PMCH.
  • PDSCH can be used to carry downlink service data, etc.
  • PDCCH can be used to carry downlink scheduling information (such as channel allocation and downlink control information (downlink control information, DCI));
  • PMCH can be used to transmit MBMS service data.
  • the MBMS service can use MBSFN to jointly send MBMS signals on the same time, frequency, and space resources through multiple cells synchronized with each other, and then naturally form a combination of multi-cell signals in the air.
  • the aforementioned non-PMCH may be PDSCH or PDCCH.
  • FIG. 2 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • the execution subject of step 201 and step 202 is the network device, or the chip in the network device
  • the execution subject of step 203 is the terminal device, or the chip in the terminal device
  • the following uses the network device and terminal device as the data processing method Take an example of the executive body of.
  • the method may include but is not limited to the following steps:
  • Step S201 The network device generates first information, which is used to determine whether the first subframe is used to transmit the first channel. At least two consecutive subframes are required to transmit the first channel, and the first subframe is included in the subframe. A frame set. The subframe set includes multiple consecutive subframes in the same radio frame.
  • the transmission of the first channel requires at least two consecutive subframes in a radio frame. Some or all of the subframes in a radio frame can be configured to transmit the first channel. All subframes can be configured to transmit the first channel. Specifically, the network device may configure all subframes in the subframe set to be used for transmitting the first channel. Optionally, the network device may configure only some consecutive subframes in the subframe set to be used for transmitting the first channel. channel.
  • a radio frame includes 10 subframes, and the 10 subframes are numbered from 0 to 9, and only subframes 1 to 4 in the radio frame can be configured to transmit the first channel, and the transmission of the first channel requires 2
  • the set of subframes may include subframes No. 1 to No. 2, subframes No. 2 to No. 3, subframes No. 3 to No. 4, subframes No. 1 to No. 3, and subframe No. 2 in the radio frame.
  • the subframe set includes two consecutive subframes (such as subframes No. 1 to No. 2, subframe No. 2 to No. 3, or subframe No. 3 to No.
  • the network device can All consecutive subframes are actually configured to transmit the first channel.
  • the subframe set includes three or four consecutive subframes (such as subframes 1 to 3, subframes 2 to 4, or subframes 1 to 4 in the radio frame)
  • the network device may Two consecutive subframes in the three or four consecutive subframes are actually configured to transmit the first channel, and the subframes in the subframe set that are not configured to transmit the first channel can be used to transmit other channels .
  • One radio frame may correspond to one or more subframe sets.
  • the subframe set includes multiple consecutive subframes in the radio frame. It should be noted that different subframe sets include different subframes. For example, when only subframes No. 1 to No. 4 in the radio frame can be configured to transmit the first channel, and the transmission of the first channel requires 2 consecutive subframes, the radio frame can correspond to two subframe sets, and the first subframe
  • the frame set may include subframes No. 1 to 2 in the radio frame
  • the second subframe set may include subframes No. 3 to 4 in the radio frame.
  • subframes 1 to 4 and subframes 6 to 9 in a radio frame can be configured to transmit the first channel, and when two consecutive subframes are required to transmit the first channel, the radio frame can correspond to Two sets of subframes, the first set of subframes may include at least two consecutive subframes among subframes No. 1 to No. 4 (such as subframes No. 1 to No. 2, subframes No. 2 to No. 3, and subframes No. 3 to 4.
  • Subframes, subframes 1 to 3, subframes 2 to 4, or subframes 1 to 4); the second set of subframes may include at least two consecutive subframes in subframes 6 to 9 Frames (such as subframes 6 to 7, subframes 7 to 8, subframes 8 to 9, subframes 6 to 8, subframes 7 to 9 or subframes 6 to 9 ).
  • the subframe configured to transmit the first channel may be the second subframe, that is, if a certain subframe is configured as the second subframe, the subframe is actually used to transmit the first channel.
  • Each subframe in the subframe set can theoretically be configured as a second subframe, that is, each subframe in the subframe set can theoretically be used to transmit the first channel, but in actual situations, in the subframe set
  • the subframes of may also be configured as non-second subframes, that is, the subframes in the subframe set may also be used to transmit channels other than the first channel.
  • the subframes in the subframe set can be configured as either the second subframe or the non-second subframe, and only when a certain subframe in the subframe set is configured as the second subframe At this time, the subframe is actually used to transmit the first channel.
  • the subframe set may include multiple consecutive subframes, and the multiple consecutive subframes may include the first subframe. It should be noted that multiple consecutive subframes refer to multiple subframes in the same radio frame.
  • the serial numbers are consecutive.
  • the first subframe may be the first subframe among multiple consecutive subframes in the subframe set. For example, if the subframe set includes subframes No. 1 to No. 4, the first subframe may be subframe No. 1. frame.
  • the network device may generate first information according to the configuration, and the first information may be used to determine whether the first subframe is actually used to transmit the first channel, that is, the first information It can be used to determine whether the first subframe is actually configured as the second subframe. It should be noted that the first information may be used to directly indicate or indirectly indicate whether the first subframe is actually used to transmit the first channel.
  • the network device may also generate the first information before completing the configuration of the subframes in the subframe set. Specifically, the network device may determine the configuration scheme of the subframes in the subframe set, But before the configuration is completed, the first information is generated.
  • the configuration scheme of the subframes in the subframe set may indicate whether each subframe in the subframe set is actually configured as a second subframe or a non-second subframe, that is, the configuration scheme of the subframes in the subframe set may be Indicate whether each subframe in the subframe set is actually used to transmit the first channel. It should be noted that in the embodiments of the present application, describing that a certain subframe is configured as the second subframe is equivalent to that the subframe is configured to transmit the first channel. Similarly, it is described that a certain subframe is configured for transmission. The first channel is equivalent to that the subframe is configured as the second subframe.
  • the first information may also indicate other subframes in the subframe set to which the first subframe belongs except for the first subframe. Whether the frame is configured as the second subframe.
  • the first information may include a bit-map, and the bit-map may be used to indicate whether each sub-frame in the sub-frame set is actually configured as the second sub-frame. The value of one bit may indicate whether the corresponding subframe is actually configured as the second subframe.
  • the value of the first bit in the bitmap is “1" it can indicate that the subframe corresponding to the first bit is configured as the second subframe; the value of the second bit in the bitmap is When "0", it may indicate that the subframe corresponding to the second bit is not configured as a second subframe, that is, the subframe corresponding to the second bit is configured as a non-second subframe.
  • one bit in the bitmap corresponds to one subframe in the subframe set. For example, when the subframe set includes subframes 1 to 4 in a radio frame, the bitmap may include 4 bits, among which, The value of the first bit is used to indicate whether subframe No.
  • the value of the second bit is used to indicate whether subframe No. 2 is configured as the second subframe;
  • the value of the three bits is used to indicate whether the subframe No. 3 is configured as the second subframe;
  • the value of the fourth bit is used to indicate whether the subframe No. 4 is configured as the second subframe.
  • the first information may be used to indicate the configuration of subframes in the subframe set corresponding to a radio frame.
  • the first information may also be used to indicate two consecutive or more than two consecutive subframes.
  • the configuration of the subframes in the subframe set corresponding to the radio frame For example, when one radio frame corresponds to multiple subframe sets (such as subframe set 1 and subframe set 2), the first information may be specifically used to indicate whether each subframe in subframe set 1 and subframe set 2 is configured as the first Two subframes.
  • the bitmap in the first information may indicate the configuration of subframes in each subframe set in the radio frame .
  • the bitmap in the first information may include 8 bits, and the first 4 bits in the bitmap are used to indicate the subframe set in turn Whether the 4 subframes in 1 are configured as the second subframe; the 5th to 8th bits in the bitmap are used to indicate whether the 4 subframes in the subframe set 2 are configured as the second subframe in turn .
  • the first information is used to indicate the configuration of subframes in the subframe set corresponding to the first radio frame and the second radio frame, and the first radio frame corresponds to a subframe set (such as subframe set 1), The two radio frames correspond to two subframe sets (such as subframe set 2 and subframe set 3).
  • the first information can be specifically used to indicate whether each subframe in subframe set 1, subframe set 2, and subframe set 3 is It is configured as a second subframe, where the first radio frame and the second radio frame are two consecutive subframes.
  • the bitmap in the first information may indicate two consecutive or more than two consecutive wireless frames The configuration of the subframes in the corresponding subframe set.
  • the bitmap in the first information may include 12 bits, and the first 4 bits in the bitmap are used in turn To indicate whether the 4 subframes in the subframe set 1 are configured as the second subframe; the 5th to 8th bits in the bitmap are used to indicate whether the 4 subframes in the subframe set 2 are configured in turn It is the second subframe; the 9th bit to the 12th bit in the bitmap are used to indicate whether the 4 subframes in the subframe set 3 are configured as the second subframe.
  • the first channel may be PMCH or other channels
  • the subframe (that is, the second subframe) for transmitting the first channel may be an MBSFN subframe or other types of subframes
  • the aforementioned radio frame may be a radio frequency.
  • the subframes that can be configured as the second subframe in the radio frames transmitted under different communication systems can be different.
  • different types of radio frames can be configured as the second subframe.
  • the subframes can be different. Specifically, when the first channel is PMCH and the second subframe is MBSFN, under the MBMS/unicast hybrid communication system, that is, when the network device is the network device corresponding to the MBMS/unicast hybrid cell, and the radio frame is an FDD frame , No. 0, No. 4, No. 5, and No. 9 subframes in the radio frame cannot be used to transmit the first channel theoretically, that is, subframes No. 0, No. 4, No. 5 and No.
  • subframe 9 cannot be configured theoretically It is an MBSFN subframe, that is, only subframes No. 1, No. 2, No. 3, No. 6, No. 7 and No. 8 in the radio frame can be configured as MBSFN subframes.
  • the 0, 1, 2, 5 and 6 subframes in the radio frame cannot theoretically be used to transmit the first channel. That is, subframes No. 0, No. 1, No. 2, No. 5, and No. 6 cannot be configured as MBSFN subframes in theory, that is, there are only No. 3, No. 4, No. 7, No. 8 and No. 9 in the radio frame.
  • the number subframe may be configured as an MBSFN subframe.
  • the 0 and 5 subframes in the radio frame cannot be used theoretically
  • For transmission of the first channel that is, subframes 0 and 5 cannot be configured as MBSFN subframes theoretically, that is to say, there are only numbers 1, 2, 3, 4, 6, and 7 in the radio frame.
  • Subframes No. 8, No. 8 and No. 9 may be configured as MBSFN subframes.
  • subframe No. 6 in the TDD frame may be configured as a downlink subframe or a special subframe.
  • the No. 6 subframe can be specifically configured as an MBSFN subframe.
  • the No. 3, No. 4, No. 6, No. 7 and No. 8 in the TDD frame The and 9th subframes can be configured as MBSFN subframes.
  • Special subframes can be composed of three parts: downlink pilot time slot (DwPTS), uplink pilot time slot (UpPTS), and guard period (GP).
  • DwPTS can transmit downlink
  • the reference signal can also transmit control information; UpPTS can transmit some short random access channel (RACH) and channel sounding reference signal (SRS) information; GP is the protection between uplink and downlink interval.
  • RACH random access channel
  • SRS channel sounding reference signal
  • the radio frame In an MBMS/unicast hybrid communication system, and the radio frame is an FDD frame and the second subframe is an MBSFN subframe, only subframes No. 1 to No. 3 and No. 6 to No. 8 can be configured as MBSFN in the radio frame Sub-frame. If two consecutive subframes are required to transmit the first channel, the radio frame can correspond to one or two subframe sets. When the radio frame corresponds to one subframe set, the subframe set can include subframes 1 and 2 , No. 2 and No. 3 subframes, No. 6 and No. 7 subframes, No. 7 and No. 8 subframes, No. 1 to No. 3 subframes or No. 6 to No.
  • the first subframe set can include subframes No. 1 and 2, subframes 2 and 3, or subframes 1 to 3, and the second subframe set can include subframes 6 and 7, and And the 8th subframe or the 6th to 8th subframe.
  • the radio frame may correspond to 1 or 2 subframe sets.
  • the subframe set may include subframes 1 to 3 or No. 6 to No. 8 subframes; when a radio frame corresponds to two subframe sets, the first subframe set may include No. 1 to No. 3 subframes, and the second subframe set may include No. 6 to No. 8 subframes.
  • the radio frame In an MBMS/unicast hybrid communication system, and the radio frame is a TDD frame and the second subframe is an MBSFN subframe, only subframes No. 3 to No. 4 and No. 7 to No. 9 in the radio frame can be configured as MBSFN Sub-frame. If two consecutive subframes are required to transmit the first channel, the radio frame can correspond to one or two subframe sets.
  • the subframe set can include subframes No. 3 and No. 4 , No. 7 and No. 8 subframes, No. 8 and No. 9 subframes or No. 7-9 subframes; when the radio frame corresponds to two subframe sets, the first subframe set can include No. 3 and No.
  • the second set of subframes may include subframes 7 and 8, subframes 8 and 9, or subframes 7-9. If three consecutive subframes are required to transmit the first channel, the radio frame may correspond to 1 subframe set, and the subframe set may include subframes No. 7-9.
  • the radio frame In the FeMBMS/unicast hybrid communication system, and the radio frame is an FDD frame and the second subframe is an MBSFN subframe, only No. 1 to No. 4 and No. 6 to No. 9 in the radio frame can be configured as MBSFN subframes .
  • the radio frame can correspond to 1, 2, 3, or 4 subframe sets.
  • the subframe set may include 1. Any two consecutive subframes, any three consecutive subframes, or any four consecutive subframes in the subframes No. 4 and No. 6-9.
  • the first subframe set can include any two consecutive subframes, any three consecutive subframes, or any of the subframes No.
  • the second set of subframes may include any two consecutive subframes, any three consecutive subframes, or any of the subframes No. 1 to No. 4 and No. 6 to No. 9 One of four consecutive subframes except for the first subframe set.
  • the situation when the radio frame corresponds to 3 subframe sets is similar to the situation when it corresponds to 2 subframe sets, and will not be repeated here.
  • the first subframe set may include subframes No. 1 to 2
  • the second subframe set may include subframes 3 to 4
  • the third subframe set may include subframes No. 6.
  • the fourth subframe set may include No. 8-9 subframe.
  • one radio frame may correspond to one or more subframe sets, and each subframe set includes a first subframe.
  • the wireless frame is an FDD frame. If the FDD frame corresponds to a subframe set, and the subframe set includes subframes No. 1 to No. 3, the first subframe may be subframe No. 1 in the FDD frame. If the FDD frame corresponds to a subframe set, and the subframe set includes subframes No. 6 to No. 8, the first subframe may be subframe No. 6 in the FDD frame.
  • the first subframe set includes subframes 1 to 3
  • the second subframe set includes subframes 6 to 8
  • the first subframe set in the first subframe set One subframe may be subframe No. 1 in the FDD frame
  • the first subframe in the second set of subframes may be subframe No. 6 in the FDD frame.
  • the radio frame is an FDD frame
  • the FDD frame corresponds to a subframe set, and the subframe set includes subframes 1 to 4
  • the first subframe It may be subframe No. 1 in the FDD frame
  • the FDD frame corresponds to a subframe set, and the subframe set includes subframes No. 6 to No. 9, the first subframe may be No. 6 in the FDD frame Sub-frame.
  • the FDD frame corresponds to two subframe sets, and the first subframe set includes subframes 1 to 4, and the second subframe set includes subframes 6 to 9, the first subframe set in the first subframe set One subframe may be subframe No. 1 in the FDD frame, and the first subframe in the second set of subframes may be subframe No. 6 in the FDD frame.
  • the radio frame is a TDD frame
  • the first subframe may be subframe No. 3 in the TDD frame; if the TDD frame corresponds to a subframe set, and the subframe set includes subframes No. 7 to No. 9, the first subframe may be No. 7 in the TDD frame. If the TDD frame corresponds to a set of subframes, and the set of subframes includes subframes No. 6 to No. 9, the first subframe may be subframe No. 6 in the TDD frame.
  • the first subframe set in the first subframe set One subframe may be subframe No. 3 in the TDD frame
  • the first subframe in the second set of subframes may be subframe No. 7 in the TDD frame.
  • subframes included in different subframe sets are different, and different subframe sets do not include the same subframe, that is, when a radio frame corresponds to multiple subframe sets, each subframe in the radio frame It exists in at most one subframe set, and cannot exist in multiple subframe sets.
  • Step S202 The network device sends the first information to the terminal device.
  • the network device may send the first information to the terminal device, so that the terminal device can determine the starting subframe for transmitting the first channel in the subframe set according to the first information.
  • the starting subframe used for transmitting the first channel in the subframe set may refer to the starting subframe used for transmitting a complete PMCH symbol in the subframe set.
  • the starting subframe may be the first subframe of the 3 consecutive subframes.
  • one or more complete PMCH symbols can be transmitted in a radio frame, but a subframe included in a subframe set can transmit at most one complete PMCH symbol.
  • one radio frame can include one or more Starting subframe
  • a subframe set can include at most one starting subframe.
  • the first information may be high-level indication information
  • the high-level indication information may be information transmitted in a high-level protocol layer.
  • the high-level protocol layer may refer to an open system interconnection (OSI) model or other At least one of the protocol layers above the physical layer in the model.
  • the high-level protocol layers may include, but are not limited to: medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (PDCP) One or more of a layer, a radio resource control (radio resource control, RRC) layer, and a non-access stratum (NAS).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access stratum
  • Step S203 The terminal device determines a starting subframe for transmitting the first channel in the subframe set according to the first information.
  • the terminal device after the terminal device receives the first information from the network device, it can determine the starting subframe for transmitting the first channel in the subframe set according to the first information, so as to facilitate accurate reception of the first channel according to the starting subframe. channel.
  • the terminal device may determine the first subframe Is the starting subframe actually used for transmitting the first channel in the subframe set to which the first subframe belongs; if the first information determines that the first subframe is not used for transmitting the first channel, the terminal device may set the first subframe The subframes other than the first subframe in the subframe set to which the first subframe belongs are determined to be the starting subframe actually used to transmit the first channel in the subframe set to which the first subframe belongs, or the terminal device may determine the first subframe There is no starting subframe for transmitting the first channel in the subframe set to which the subframe belongs.
  • both the set of subframes and the first subframe may be agreed upon by a protocol.
  • the first subframe may also be other subframes except the first subframe in the subframe set.
  • the first information may further include a subframe identifier, the subframe identifier is used to identify the first subframe, and the terminal device can determine whether the first subframe indicated by the subframe identifier is actually configured according to the first information Used to transmit the first channel.
  • the terminal device may determine the subframe for actually transmitting the first channel according to the number of consecutive subframes required for transmitting the first channel. For example, if 3 consecutive subframes are required to transmit the first channel, and the starting subframe is subframe No. 1, the terminal device may determine subframes No. 1 to No. 3 as subframes for actually transmitting the first channel.
  • the terminal device may receive the first channel on a time-frequency resource corresponding to the determined subframe in which the first channel is actually transmitted. In this way, it is possible to avoid the situation that the first channel cannot be received from the correct time-frequency resource when the starting subframe cannot be determined, thereby helping to improve the accuracy and efficiency of receiving the first channel.
  • the transmission of the first channel requires 2 consecutive subframes, which may indicate that all the transmission resources corresponding to the 2 consecutive subframes are used to transmit the first channel, or may indicate that the 2 consecutive subframes correspond to Part of the transmission resource is used to transmit the first channel.
  • the terminal device can start from the first subframe in the 2 consecutive subframes The start position of the corresponding transmission resource starts to receive the first channel.
  • the subframe used to transmit the first channel may include a first region and a non-first region, and the first region may be the second subframe used to transmit the first channel.
  • the transmission resource of the channel, the non-first area may be the transmission resource that is not used for transmitting the first channel in the second subframe.
  • the size of the non-first region in the second subframe may be 0, that is, all the transmission resources in the second subframe may be used to transmit the first channel.
  • the terminal device can receive the first channel from the first area in the 2 consecutive subframes.
  • the transmission of the first channel requires 2 consecutive subframes
  • the terminal device receiving the first channel from the first area in the 2 consecutive subframes is only for example, and does not constitute a limitation to the embodiment of this application
  • the terminal device may select from the 3 consecutive subframes (or other numbers of consecutive subframes)
  • the first area receives the first channel.
  • the foregoing first region may be one or more consecutive OFDM symbols in the time domain of the second subframe, or may be multiple non-continuous OFDM symbols.
  • the foregoing first region may be one or more continuous resources or multiple non-continuous resources in the frequency domain of the second subframe. Specifically, it may be one or more continuous resource blocks (RB) Or resource element (resource element, RE), or multiple non-contiguous RBs or REs.
  • the terminal device may start receiving the first OFDM symbol from the first OFDM symbol in the starting subframe.
  • One channel when the first OFDM symbol in the first region in the starting subframe is not the first OFDM symbol in the starting subframe, the terminal device can start from the first region in the starting subframe
  • the first OFDM symbol in the first OFDM symbol starts to receive the first channel, that is, the terminal device may not start receiving the first channel from the first OFDM symbol of the initial subframe.
  • one RB may include multiple REs, and REs (also called resource elements) are the smallest resource unit in LTE physical resources.
  • One RE can represent one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • all OFDM symbols in the second subframe with sub-carrier spacing (SCS) as a preset value can be used to transmit the first channel.
  • SCS sub-carrier spacing
  • the second subframe is an MBSFN subframe
  • all OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may include, but is not limited to, any value of 2.5 kHz or less than or equal to 0.417 kHz.
  • the MBSFN subframe meets any one of the following conditions, it can indicate that all OFDM symbols in the subframe can be used to transmit the first channel: MBSFN subframe with subcarrier spacing less than or equal to 0.417kHz ;
  • the cyclic prefix (CP) length of the OFDM symbol in the MBSFN subframe is greater than or equal to 300 ⁇ s; the length of the OFDM symbol (or called the core OFDM symbol) that does not contain the CP in the MBSFN subframe is greater than or equal to 2.4ms; MBSFN The length of the OFDM symbol in the subframe is greater than or equal to 2.7ms; the fast Fourier transform (FFT) size corresponding to the 20MHz bandwidth is greater than or equal to 73728; the FFT size corresponding to the 10MHz bandwidth is greater than or equal to 36864.
  • FFT fast Fourier transform
  • the first information when a radio frame corresponds to a set of subframes, and the first information is used to determine whether a subframe (ie, the first subframe) is used to transmit the first channel, the first information may also include the first channel.
  • a numerical value when the first numerical value is m, it may indicate that the next m subframes adjacent to the first subframe are all configured as the second subframe, and m may be an integer greater than or equal to 0.
  • the terminal device can quickly determine which subframes in the radio frame are used for transmitting the first channel according to the first information. For example, when subframe No. 1 in the radio frame is the first subframe, and subframe No.
  • the terminal device may determine that the first and second subframes in the radio frame are used for transmitting the first channel, and the first subframe is the starting subframe. For another example, when subframe No. 1 in the radio frame is the first subframe, and subframe No. 1 is not configured as the second subframe, and the first value is 2, the transmission of the first channel requires 2 consecutive second subframes.
  • the terminal device may determine that the second and third subframes in the radio frame are used for transmitting the first channel, and the second subframe is the starting subframe. In this way, carrying fewer bits of information in the first information can enable the terminal device to quickly determine the subframe and the starting subframe for transmitting the first channel.
  • the first information when a radio frame corresponds to multiple subframe sets, and the first information is used to determine whether the first subframe in each subframe set is used to transmit the first channel, the first information may also include multiple The first value. Different first values may correspond to the first subframes in different subframe sets. When the first value is m, it may indicate that the first subframes in the corresponding subframe set are configured as second subframes. For subframes, m can be an integer greater than or equal to zero. For example, when a radio frame corresponds to two subframe sets, subframe No. 1 in the first subframe set is the first subframe, and subframe No. 1 is configured as the second subframe, and the first subframe set corresponds to the first subframe.
  • a value is 1, the 6th subframe in the second subframe set is the first subframe, and the 6th subframe is not configured as the second subframe, the first value corresponding to the second subframe set is 2, and the transmission
  • the terminal device can determine that subframes 1 to 2 and subframes 7 to 8 in the radio frame are used to transmit the first channel, and subframe 1
  • the frame is the initial subframe for transmitting the first channel in the first subframe set
  • the 7th subframe is the initial subframe for transmitting the first channel in the second subframe set.
  • the starting subframe used for transmitting the first channel in the subframe set can be determined according to the first information, thereby helping to improve the accuracy and efficiency of receiving the first channel.
  • Figure 3a is a schematic flow chart of another data processing method provided by an embodiment of the present application.
  • This method describes in detail how the network device configures the start subframe of the first channel, and how the terminal device specifically responds to the first channel.
  • the information determines the starting subframe for transmitting the first channel in the subframe set.
  • the execution subject of steps 301 to 303 is the network device, or the chip in the network device
  • the execution subject of step 304 is the terminal device, or the chip in the terminal device
  • the following uses the network device and terminal device as the data processing method Take an example of the executive body of.
  • the method may include but is not limited to the following steps:
  • Step S301 The network device configures the first subframe as the initial subframe for transmitting the first channel in the subframe set.
  • the transmission of the first channel requires at least two consecutive subframes, and the first subframe is included in the subframe.
  • the set of subframes includes multiple consecutive subframes in the same radio frame.
  • the network device may configure the first subframe as a starting subframe for transmitting the first channel in the subframe set.
  • the network device configures the first subframe as the initial subframe for transmitting the first channel in the subframe set, it indicates that the first subframe and the All n-1 consecutive subframes adjacent to one subframe are used to transmit the first channel.
  • n may be an integer greater than or equal to 2
  • configuring the first subframe as the initial subframe for transmitting the first channel in the subframe set is equivalent to configuring the first subframe as the second subframe.
  • the network device may compare the first subframe in the subframe set with the first subframe.
  • the next adjacent subframe is configured as the initial subframe for transmitting the first channel in the set of subframes.
  • the gray filled square indicates that the subframe can theoretically be configured as the second subframe, and the white filled square indicates that the subframe cannot be configured as the second subframe.
  • the small square filled with gray and diagonal lines indicates that the subframe is actually configured as the second subframe. It can be seen from Figure 3b that subframes 1 to 3 in the radio frame can be configured as the second subframe (that is, subframes 1 to 3 can be configured to transmit the first channel), and the corresponding subframe of the radio frame
  • the frame set includes subframes 1 to 3.
  • the network device can set subframe 2 It is also configured as the second subframe, so that the first channel can be transmitted on the 1st subframe and the 2nd subframe later.
  • the starting subframe used for transmitting the first channel in the subframe set is the 1st subframe.
  • the network device can configure subframes No. 2 and No. 3 as The second subframe, so that the first channel can be transmitted on the second subframe and the third subframe subsequently.
  • the starting subframe used for transmitting the first channel in the subframe set is the second subframe.
  • the network device may use the first subframe The second subframe after the subframe is configured as the starting subframe for transmitting the first channel in the subframe set; if the subframe set is in addition to the first subframe and the next subframe adjacent to the first subframe If the number of other subframes is less than the number of consecutive subframes required to transmit the first channel, then there is no initial subframe for transmitting the first channel in the subframe set, that is, all subframes in the subframe set It is not actually used to transmit the first channel.
  • Step S302 The network device generates first information, and the first information determines that the first subframe is used for transmitting the first channel.
  • the network device may generate the first information according to whether the first subframe is configured as the starting subframe for transmitting the first channel in the subframe set, and the first information is used to determine whether the first subframe is Used to transmit the first channel. Specifically, if the network device configures the first subframe as the initial subframe for transmitting the first channel in the subframe set, the first information generated by the network device may be used to determine that the first subframe is used for transmitting the first channel. Channel; if the network device does not configure the first subframe as the starting subframe for transmitting the first channel in the subframe set, the first information generated by the network device can be used to determine that the first subframe is not used for transmitting the first channel channel.
  • Step S303 The network device sends the first information to the terminal device.
  • step S303 refers to the specific description of step S202 in FIG. 2, which will not be repeated here.
  • Step S304 The terminal device determines the aforementioned first subframe as the starting subframe for transmitting the first channel in the subframe set.
  • the terminal device after the terminal device receives the first information from the network device, it can determine the starting subframe for transmitting the first channel in the subframe set according to the first information, which is beneficial to Receive the first channel accurately. Specifically, if the first information determines that the first subframe is used for transmitting the first channel, the terminal device may determine the first subframe as the starting subframe for transmitting the first channel in the subframe set; if the first information If it is determined that the first subframe is not used for transmitting the first channel, the terminal device may determine the next subframe adjacent to the first subframe in the subframe set as the starting point for transmitting the first channel in the subframe set Sub-frame.
  • the first information may also be used to indicate the subframe set to which the first subframe belongs except for the first subframe. Whether other subframes are used to transmit the first channel.
  • the terminal device may determine the first subframe as the starting subframe for transmitting the first channel in the subframe set to which the first subframe belongs.
  • the terminal device may determine through the first information that the next subframe adjacent to the first subframe is the starting subframe of n consecutive subframes. Whether the frames are all configured to transmit the first channel, if n consecutive subframes starting with the next subframe adjacent to the first subframe are all configured to transmit the first channel, the terminal The device may determine the next subframe adjacent to the first subframe as the starting subframe for transmitting the first channel in the subframe set to which the first subframe belongs. If the next subframe adjacent to the first subframe is not configured for transmitting the first channel, the terminal device can determine through the first information that the second subframe after the first subframe is the starting subframe.
  • the terminal device can determine that there is no subframe set for transmission.
  • the starting subframe of the first channel can be an integer greater than or equal to 2.
  • the terminal device may determine whether each subframe in the subframe set is configured to transmit the first channel through the bitmap in the first information.
  • the terminal device may determine the first subframe as the starting subframe for transmitting the first channel in the subframe set; If the first information determines that the first subframe is not used for transmitting the first channel, the terminal device may determine the next subframe adjacent to the first subframe in the subframe set as the subframe set for transmitting the first channel.
  • the starting subframe of the channel In this way, it is beneficial to improve the accuracy and efficiency of receiving the first channel.
  • Figure 4a is a schematic flow diagram of another data processing method provided by an embodiment of the present application.
  • This method explains in detail how a network device configures the start of the first channel when a radio frame corresponds to multiple subframe sets.
  • the execution subject of step 401 and step 402 is the network device, or the chip in the network device
  • the execution subject of step 403 is the terminal device, or the chip in the terminal device
  • the following uses the network device and terminal device as the data processing method Take an example of the executive body of.
  • the method may include but is not limited to the following steps:
  • Step S401 The network device generates first information, which is used to determine whether the first subframe is used to transmit the first channel.
  • the transmission of the first channel requires at least two consecutive subframes, and the number of the first subframes is greater
  • the number of subframe sets is multiple, the first subframe corresponds to the subframe set one-to-one, each first subframe is included in the corresponding subframe set, and the subframe set includes multiple subframes in the same radio frame. Consecutive subframes.
  • one radio frame may correspond to one or more subframe sets, and each subframe set has a first subframe, and the first subframes in different subframe sets are different.
  • Step S402 The network device sends the first information to the terminal device.
  • step S402 refers to the specific description of step S202 in FIG. 2, which will not be repeated here.
  • Step S403 If the first information determines that the first subframe is used for transmitting the first channel, the terminal device determines the first subframe as the starting subframe for transmitting the first channel in the corresponding subframe set; If it is determined by information that the first subframe is not used for transmitting the first channel, the terminal device determines that the next subframe adjacent to the first subframe in the subframe set corresponding to the first subframe is used in the subframe set. It is the starting subframe for transmitting the first channel.
  • the terminal device when a wireless frame corresponds to multiple subframe sets, after receiving the first information from the network device, the terminal device can determine the start of the first channel for transmitting the first channel in each subframe set according to the first information. Sub-frame. Specifically, if the first information determines that the first subframe in the first subframe set is used for transmitting the first channel, the terminal device may determine the first subframe as the first subframe set for transmitting the first channel.
  • the starting subframe of a channel if the first information determines that the first subframe in the second subframe set is not used to transmit the first channel, the terminal device can set the second subframe set adjacent to the first subframe The next subframe of is determined as the starting subframe for transmitting the first channel in the second set of subframes.
  • the first information may include a bitmap, and the bitmap may indicate whether the subframes in each subframe set in the radio frame are actually configured to transmit the first channel.
  • the terminal device may also pass the bit in the first information The figure determines whether the n-1 subframes adjacent to the first subframe in the first subframe set are actually configured to transmit the first channel. If the n-1 subframes adjacent to the first subframe in the first subframe set are actually configured to transmit the first channel, the terminal device may determine the first subframe as the first subframe set Is used to transmit the first subframe of the first channel.
  • the terminal device can also determine the difference between the first subframe set in the second subframe set and the first channel through the bitmap in the first information. Whether the next subframe adjacent to the subframe (such as the third subframe) and the n-1 subframes adjacent to the third subframe are actually configured to transmit the first channel. If the third subframe and the n-1 subframes adjacent to the third subframe are actually configured to transmit the first channel, the terminal device may determine the third subframe as the second subframe set for use Transmission of the first subframe of the first channel. Wherein, the number of the n-1 subframes is greater than the number of the third subframe.
  • the radio frame is an FDD frame
  • only subframes No. 1 to No. 4 and No. 6 to No. 9 can be configured as the second subframe.
  • the first subframe set includes subframes 1 to 4 in the radio frame
  • the second subframe set Including No. 6 to No. 9 subframes in the radio frame.
  • the bitmap in the first information may include 8 bits, and the value of each bit in the 8 bits in turn indicates whether only subframes 1 to 4 and 6 to 9 in the radio frame are actually configured as In the second subframe, the value of each bit in the bitmap can be "0" or "1".
  • the configuration scheme of the subframe in the radio frame may include, but is not limited to, the three schemes shown in FIG. 4b.
  • the small square in Figure 4b represents a subframe of the radio frame
  • the number in the small square represents the number of the corresponding subframe in the radio frame to which it belongs
  • the small square filled with gray represents that the subframe can theoretically be configured as a second subframe.
  • the small square filled with white indicates that the subframe cannot be configured as the second subframe
  • the small square filled with gray and diagonal lines indicates that the subframe is actually configured as the second subframe.
  • the configuration of subframes in the first subframe set is the same as the configuration of subframes in the first subframe set in the first scheme in Fig. 4b , I won’t go into details here; the first subframe in the second set of subframes (i.e. subframe No. 6) and the 2 subframes adjacent to the first subframe (i.e. subframes 7 to 8) are not configured It is the second subframe.
  • the value of the bitmap in the first information is "01110000", and there is no initial subframe for transmitting the first channel in the second subframe set, that is, the second subframe set All the subframes in are not actually used for transmitting the first channel. In other words, there is only one starting subframe (ie, subframe No. 2) for transmitting the first channel in the radio frame.
  • the configuration of subframes in the second subframe set is the same as the configuration of subframes in the second subframe set in the first scheme in Figure 4b. This will not be repeated here; the first subframe in the first subframe set (that is, subframe No. 1) and the 2 subframes adjacent to the first subframe (that is, subframes No.
  • the value of the bitmap in the first information is "00000111", and there is no initial subframe for transmitting the first channel in the first subframe set, that is, the first subframe All the subframes in the set are not actually used for transmitting the first channel. In other words, there is only one starting subframe for transmitting the first channel (ie, subframe No. 7) in the radio frame.
  • the configuration scheme of the subframes in the radio frame can include, but is not limited to, the two solutions shown in Figure 4c.
  • the value of the bitmap corresponding to the first scheme in Figure 4c is "01111000", because the 3 subframes (namely No. 2) adjacent to the first subframe (namely No.
  • the terminal device may determine the No. 2 subframe as the starting subframe for transmitting the first channel in the first subframe set. Since the transmission of the first channel requires at least 3 consecutive second subframes, but the first subframe Only one subframe in the second subframe set is configured as the second subframe, so there is no starting subframe for transmitting the first channel in the second subframe set.
  • the network device may not send the first channel on the time-frequency resource corresponding to the 6th subframe.
  • the value of the bitmap corresponding to the second scheme in Figure 4c is "00001110", because the first subframe in the first subframe set (that is, the 1st subframe) and the 2 adjacent to the first subframe set Subframes (that is, subframes No. 2 to No. 3) are not configured as the second subframe, and the second subframe set is adjacent to the first subframe (that is, subframe No. 6) and adjacent to the first subframe. 2 subframes (that is, subframes No. 7 to No. 8) are configured as the second subframe.
  • the terminal device can determine the No.
  • the network device may also determine the 7th subframe as the first subframe, and further, transmit the first channel on the 7th to 9th subframes. That is to say, the network device can choose to transmit the first channel on the 6th to 8th subframe or the 7th to 9th subframe as required. In this way, the first channel can be transmitted in the radio frame more flexibly.
  • the terminal device can determine the starting subframe for transmitting the first channel in each subframe set according to the first information, which is beneficial to improve the reception time.
  • the accuracy and efficiency of a channel can be determined.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a device (such as a chip) used for a terminal device.
  • the communication device 50 is used to execute FIG. 2-
  • the communication device 50 may include:
  • the communication module 501 is configured to receive first information from a network device, and the first information can be used to determine whether a first subframe is used to transmit a first channel, and at least two consecutive subframes are required to transmit the first channel;
  • the processing module 502 is configured to determine a starting subframe for transmitting the first channel in the subframe set according to the first information, the first subframe is included in the subframe set, and the subframe set includes multiple data in the same radio frame. Consecutive subframes.
  • the first information may determine that the first subframe is used for transmitting the first channel; the processing module 502 is configured to determine the starting subframe for transmitting the first channel in the subframe set according to the first information At this time, it can be specifically used to determine the first subframe as the starting subframe for transmitting the first channel in the subframe set.
  • the first information may determine that the first subframe is not used for transmitting the first channel; the processing module 502 is configured to determine the starting subframe for transmitting the first channel in the subframe set according to the first information At this time, it can be specifically used to determine the next subframe adjacent to the first subframe in the subframe set as the starting subframe for transmitting the first channel in the subframe set.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • FIG. 6 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a device (such as a chip) used for a terminal device.
  • the communication device 60 may include a communication interface 601
  • the processor 602 and the memory 603, the communication interface 601, the processor 602, and the memory 603 may be connected to each other through one or more communication buses, or may be connected in other ways.
  • the related functions implemented by the communication module 501 and the processing module 502 shown in FIG. 5 may be implemented by the same processor 602, or may be implemented by multiple different processors 602.
  • the communication interface 601 may be used to send data and/or signaling, and receive data and/or signaling. In the embodiment of the present application, the communication interface 601 may be used to receive first information from a network device.
  • the communication interface 601 may be a transceiver.
  • the processor 602 is configured to perform the corresponding functions of the terminal device in the methods described in FIGS. 2 to 4a.
  • the processor 602 may include one or more processors.
  • the processor 602 may be one or more central processing units (CPU), network processors (NP), hardware chips, or any of them. combination.
  • the processor 602 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 603 is used to store program codes and the like.
  • the memory 603 may include a volatile memory (volatile memory), such as random access memory (random access memory, RAM); the memory 603 may also include a non-volatile memory (non-volatile memory), such as read-only memory (read-only memory). Only memory (ROM), flash memory (flash memory), hard disk drive (HDD) or solid-state drive (SSD); memory 603 may also include a combination of the foregoing types of memories.
  • the processor 602 may call the program code stored in the memory 603 to perform the following operations:
  • the communication interface 601 to receive first information from a network device.
  • the first information can be used to determine whether the first subframe is used to transmit the first channel. At least two consecutive subframes are required to transmit the first channel;
  • a starting subframe for transmitting the first channel in the subframe set is determined according to the first information.
  • the first subframe is included in the subframe set, and the subframe set includes multiple consecutive subframes in the same radio frame.
  • the first information may determine that the first subframe is used to transmit the first channel; the processor 602 is configured to determine, according to the first information, the first subframe used for transmitting the first channel in the subframe set. Specifically, the following operations may be performed: determining the first subframe as the starting subframe for transmitting the first channel in the subframe set.
  • the first information may determine that the first subframe is not used for transmitting the first channel; the processor 602 is configured to determine, according to the first information, the first subframe used for transmitting the first channel in the subframe set. Specifically, the following operations may be performed: determining the next subframe adjacent to the first subframe in the subframe set as the starting subframe for transmitting the first channel in the subframe set.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • the processor 602 may also perform operations corresponding to the terminal device in the embodiment shown in FIG. 2 to FIG. 4a. For details, please refer to the description in the method embodiment, which is not repeated here.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a network device or a device (such as a chip) used in a network device.
  • the communication device 70 is used to execute FIG. -For the steps performed by the network device in the method embodiment corresponding to FIG. 4a, the communication device 70 may include:
  • the processing module 701 is configured to generate first information.
  • the first information may be used to determine whether the first subframe is used to transmit the first channel.
  • the transmission of the first channel requires at least two consecutive subframes, and the first subframe includes For a subframe set, the subframe set includes multiple consecutive subframes in the same radio frame;
  • the communication module 702 is configured to send the first information to the terminal device.
  • the first information may determine that the first subframe is used for transmitting the first channel; the processing module 701 may also be used for: configuring the first subframe as a set of subframes for transmitting the first channel The starting subframe.
  • the first information may determine that the first subframe is not used to transmit the first channel; the processing module 701 may also be used to: set the next subframe adjacent to the first subframe in the subframe set It is configured as the starting subframe for transmitting the first channel in the set of subframes.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device may be a network device or a device (such as a chip) used in a network device.
  • the communication device 80 may include a communication interface 801
  • the processor 802 and the memory 803, the communication interface 801, the processor 802 and the memory 803 may be connected to each other through one or more communication buses, or may be connected in other ways.
  • the related functions implemented by the processing module 701 and the communication module 702 shown in FIG. 7 may be implemented by the same processor 802, or may be implemented by multiple different processors 802.
  • the communication interface 801 may be used to send data and/or signaling, and receive data and/or signaling. Applied in the embodiment of the present application, the communication interface 801 may be used to send the first information to the terminal device.
  • the communication interface 801 may be a transceiver.
  • the processor 802 is configured to perform corresponding functions of the network device in the methods described in FIGS. 2 to 4a.
  • the processor 802 may include one or more processors.
  • the processor 802 may be one or more central processing units (CPU), network processors (NP), hardware chips, or any of them. combination.
  • the processor 802 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the memory 803 is used to store program codes and the like.
  • the memory 803 may include a volatile memory (volatile memory), such as a random access memory (random access memory, RAM); the memory 803 may also include a non-volatile memory (non-volatile memory), such as a read-only memory (read-only memory).
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • read-only memory read-only memory
  • ROM read-only memory
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • memory 803 may also include a combination of the foregoing types of memories.
  • the processor 802 may call the program code stored in the memory 803 to perform the following operations:
  • the first information can be used to determine whether the first subframe is used to transmit the first channel. At least two consecutive subframes are required to transmit the first channel.
  • the first subframe is included in the subframe set.
  • the subframe set includes multiple consecutive subframes in the same radio frame;
  • the communication interface 801 is called to send the first information to the terminal device.
  • the first information may determine that the first subframe is used for transmitting the first channel; the processor 802 may also perform the following operations: configure the first subframe as a subframe set for transmitting the first channel. The starting subframe of the channel.
  • the first information may determine that the first subframe is not used for transmitting the first channel; the processor 802 may also perform the following operations: set the next subframe adjacent to the first subframe in the subframe set The subframe is configured as a starting subframe for transmitting the first channel in the set of subframes.
  • the number of the first subframe may be one or more, the number of the subframe set may be one or more, and the first subframe corresponds to the subframe set one to one, and each first subframe Included in the corresponding subframe set.
  • the foregoing wireless frame may be a wireless frequency division duplex FDD frame
  • the subframe set may include subframes No. 1, No. 2, and No. 3 in the wireless frame
  • the subframe set may include the wireless frame No. 6, No. 7 and No. 8 subframes in
  • the foregoing radio frame may be an FDD frame
  • the subframe set may include subframes No. 1, No. 2, No. 3, and No. 4 in the radio frame, or the set of subframes may include the radio frame. No. 6, No. 7, No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 1 or No. 6 in the foregoing radio frame.
  • the foregoing radio frame may be a wireless time division duplex TDD frame
  • the subframe set may include subframes 3 and 4 in the radio frame, or the subframe set may include 7 in the radio frame. No., No. 8 and No. 9 subframes.
  • the foregoing first subframe may be subframe No. 3 or No. 7 in the foregoing radio frame.
  • the subframe for transmitting the first channel may be a multimedia broadcast multicast single frequency network MBSFN subframe, and the first channel may be a physical multicast channel PMCH.
  • all Orthogonal Frequency Division Multiplexing OFDM symbols in the MBSFN subframe whose subcarrier interval is a preset value can be used to transmit the first channel.
  • the preset value may be any one of 2.5 kHz or less than or equal to 0.417 kHz.
  • processor 802 may also perform operations corresponding to the network device in the embodiment shown in FIG. 2 to FIG. 4a. For details, please refer to the description in the method embodiment, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, which can be used to store computer software instructions used by the communication device in the embodiment shown in FIG. 5, which includes a program for executing the terminal device in the above embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium, which can be used to store computer software instructions used by the communication device in the embodiment shown in FIG. 7, which includes a program for executing the program designed for the network device in the above embodiment.
  • the aforementioned computer-readable storage medium includes, but is not limited to, flash memory, hard disk, and solid state hard disk.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the terminal device in the above-mentioned embodiments of FIG. 2 to FIG. 4a.
  • the embodiments of the present application also provide a computer program product.
  • the computer product When the computer product is run by a computing device, it can execute the method designed for the network device in the above-mentioned embodiments of FIG. 2 to FIG. 4a.
  • An embodiment of the present application also provides a chip, including a processor and a memory, the memory includes a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory.
  • the computer program is used to implement the method in the above method embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from one website site, computer, server, or data center to another website site via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法及通信装置,该方法包括:终端设备接收来自网络设备的第一信息,第一信息可以用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧;终端设备根据该第一信息确定子帧集合中用于传输第一信道的起始子帧,该第一子帧包括于子帧集合,子帧集合包括同一个无线帧中的多个连续的子帧。通过实施本申请实施例,可以确定用于传输第一信道的起始子帧。

Description

一种数据处理方法及通信装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据处理方法及通信装置。
背景技术
在无线通信系统的帧结构中,一个无线帧可以包括多个子帧,且每个子帧的长度是固定不变的。例如,在通用移动通信技术的长期演进(long term evolution,LTE)系统中,一个无线帧包括10个子帧,每个子帧的长度为1ms。
随着互联网技术的快速发展,催生了大量新兴业务。当用于传输某种业务的信道需要至少两个连续的子帧,且一个无线帧中可以用于传输该业务的连续子帧的数量大于传输该业务的信道所需的连续子帧的数量时,会使得终端无法确定该无线帧中用于传输该业务的连续子帧的起始子帧。例如,用于传输业务1的信道需要2个连续子帧,且无线帧中的0号、1号和2号子帧这3个连续子帧可以用于传输业务1时,终端无法确定用于传输业务1的连续子帧的起始子帧是0号子帧还是1号子帧。
发明内容
本申请实施例提供了一种数据处理方法及通信装置,可以确定用于传输第一信道的起始子帧。
第一方面,本申请实施例提供了一种数据处理方法,该方法包括:终端设备接收来自网络设备的第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧;终端设备根据该第一信息确定子帧集合中用于传输第一信道的起始子帧,该第一子帧包括于子帧集合,子帧集合包括同一个无线帧中的多个连续的子帧。
在该技术方案中,终端设备可以根据第一信息确定子帧集合中用于传输第一信道的起始子帧,从而有利于提高接收第一信道的准确性和效率。
在一种实现方式中,第一信息可以确定第一子帧用于传输第一信道;终端设备根据第一信息确定子帧集合中用于传输第一信道的起始子帧的具体实施方式可以为:终端设备将第一子帧确定为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一信息可以确定第一子帧不用于传输第一信道;终端设备根据第一信息确定子帧集合中用于传输第一信道的起始子帧的具体实施方式可以为:终端设备将子帧集合中与第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。
在该技术方案中,在第一信息确定第一子帧不用于传输第一信道的情况下,终端设备可以将子帧集合中与该第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。通过这种方式,有利于提高接收第一信道的准确性和效率。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧,第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
第二方面,本申请实施例提供了另一种数据处理方法,该方法包括:网络设备生成第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧,第一子帧包括于子帧集合,子帧集合包括同一个无线帧中的多个连续的子帧;网络设备向终端设备发送该第一信息。
在该技术方案中,网络设备可以生成确定第一子帧是否用于传输第一信道的第一信息,并将第一信息发送给终端设备,通过这种方式,使得终端设备可以根据第一信息确定子帧集合中用于传输第一信道的起始子帧,从而有利于提高接收第一信道的准确性和效率。
在一种实现方式中,第一信息可以确定第一子帧用于传输第一信道;该方法还可以包括:网络设备将该第一子帧配置为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一信息可以确定第一子帧不用于传输第一信道;该方法还可以包括:网络设备将子帧集合中与该第一子帧相邻的下一个子帧配置为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧, 第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
第三方面,本申请实施例提供了一种通信装置,该通信装置可以为终端设备或用于终端设备的装置(例如芯片),该装置具有实现第一方面所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供了另一种通信装置,该通信装置可以为网络设备或用于网络设备的装置(例如芯片),该装置具有实现第二方面所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供又一种通信装置,该通信装置可以为终端设备或用于终端设备的装置(例如芯片)。该通信装置包括存储器和处理器,处理器通过总线与存储器连接,存储器中存储有程序指令,处理器调用存储器中存储的程序指令以实现第一方面所提供的数据处理方法。
第六方面,本申请实施例提供又一种通信装置,该通信装置可以为网络设备或用于网络设备的装置(例如芯片)。该通信装置包括存储器和处理器,处理器通过总线与存储器连接,存储器中存储有程序指令,处理器调用存储器中存储的程序指令以实现第二方面所提供的数据处理方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于储存为第三方面所述的通信装置所用的计算机程序指令,其包含用于执行上述第一方面所涉及的程序。
第八方面,本申请实施例提供一种计算机可读存储介质,用于储存为第四方面所述的通信装置所用的计算机程序指令,其包含用于执行上述第二方面所涉及的程序。
第九方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,所述程序被通信装置执行时,使得所述通信装置实现上述第一方面所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,该程序产品包括程序,所述程序被通信装置执行时,使得所述通信装置实现上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种通信系统的架构示意图;
图2是本申请实施例公开的一种数据处理方法的流程示意图;
图3a是本申请实施例公开的另一种数据处理方法的流程示意图;
图3b是本申请实施例公开的一种无线帧中子帧的配置方案示意图;
图3c是本申请实施例公开的另一种无线帧中子帧的配置方案示意图;
图4a是本申请实施例公开的又一种数据处理方法的流程示意图;
图4b是本申请实施例公开的又一种无线帧中子帧的配置方案示意图;
图4c是本申请实施例公开的又一种无线帧中子帧的配置方案示意图;
图5是本申请实施例公开的一种通信装置的结构示意图;
图6是本申请实施例公开的另一种通信装置的结构示意图;
图7是本申请实施例公开的又一种通信装置的结构示意图;
图8是本申请实施例公开的又一种通信装置的结构示意图。
具体实施方式
为了更好的理解本申请实施例公开的一种数据处理方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1是本申请实施例公开的一种通信系统的架构示意图。如图1所示,该通信系统包括网络设备101和终端设备102。
当传输第一信道需要至少两个连续的子帧,且一个无线帧中可以用于传输该第一信道的连续子帧的数量大于实际传输第一信道所需的连续子帧的数量时,网络设备101可以将子帧集合中的部分或者全部子帧配置为实际用于传输第一信道的子帧,并生成第一信息,然后将第一信息发送给终端设备102。其中,子帧集合可以包括同一个无线帧中的多个连续的子帧,子帧集合中的每个子帧理论上均可以被配置用于传输第一信道,子帧集合包括第一子帧,该第一信息可以用于确定第一子帧是否实际被配置用于传输第一信道。终端设备102接收到该第一信息之后,可以根据该第一信息确定子帧集合中实际用于传输第一信道的起始子帧。具体的,当第一子帧为子帧集合中的连续子帧中的第一个子帧,且第一子帧实际被配置用于传输第一信道时,终端设备可以将第一子帧确定为子帧集合中实际用于传输第一信道的起始子帧。
其中,本申请实施例中的网络设备101是终端设备102通过无线方式接入到该通信系统中的接入设备。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无 线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、新无线(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,图1中网络设备101将第一信息发送给一个终端设备仅用于举例,并不构成对本申请实施例的限定,在其他可行的实现方式中,网络设备101还可以将第一信息发送给其他终端设备,即本申请实施例公开的数据处理方法不仅可以应用于单播通信系统,还可以应用于广播或多播通信系统,或者,还可以应用于混合通信系统。在混合通信系统中既可以传输单播数据也可以传输广播或多播数据。
其中,混合通信系统可以为多媒体广播多播服务(multimedia broadcast multicast service,MBMS)/单播混合通信系统或者进一步增强的多媒体广播多播服务(further enhanced multimedia broadcast multicast service,FeMBMS)/单播混合通信系统,在MBMS/单播混合通信系统中既可以传输MBMS业务,也可以传输单播业务(如单播数据信息或单播控制信息),在FeMBMS/单播混合通信系统中既可以传输MBMS业务,也可以传输单播业务,FeMBMS/单播混合通信系统是一种特殊的MBMS/单播混合通信系统,需要满足如下两个条件中的至少一个:第一,该系统中的无线帧中的4号子帧(subframe)和/或9号子帧都配置为多媒体广播多播单频网(multimedia broadcast multicast service single frequency network,MBSFN)子帧;第二,该系统中的无线帧中存在不包含单播控制区域的子帧。其中,MBSFN子帧是用于传输MBMS业务的子帧,MBSFN子帧可以分成MBSFN区域和非MBSFN区域,MBSFN区域可以为MBSFN子帧中用于传输物理多播信道(physical multicast channel,PMCH)的传输资源,非MBSFN区域也可以称为单播控制区域,非MBSFN区域可以为用于传输非PMCH的传输资源。需要说明的是,MBSFN子帧中的非MBSFN区域的大小可以为0,即该MBSFN子帧的所有传输资源可以全部用于传输PMCH。本申请实施例中涉及的传输资源可以包括时域资源、频域资源、码道资源中的一种或多种,如正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
在本申请实施例中,第一信道可以为物理信道,具体的,第一信道可以为物理层下行共享信道(physical downlink shared channel,PDSCH)、物理层下行控制信道(physical downlink control channel,PDCCH)或者PMCH。PDSCH可以用于承载下行业务数据等;PDCCH可以用于承载下行调度信息(如信道分配和下行控制信息(downlink control information,DCI));PMCH可以用于传输MBMS业务数据。MBMS业务可以使用MBSFN通过相互同步的多个小区在相同的时域、频域和空域资源上联合发送MBMS信号,然后在空中自然形成多小区信号的合并。需要说明的是,前述非PMCH可以为PDSCH或者PDCCH。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的数据处理方法及通信装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种数据处理方法的流程示意图。其中,步骤201和步骤202的执行主体为网络设备,或者为网络设备中的芯片,步骤203的执行主体为终端设备,或者为终端设备中的芯片,以下以网络设备、终端设备为数据处理方法的执行主体为例进行说明。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201:网络设备生成第一信息,该第一信息用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧,该第一子帧包括于子帧集合,该子帧集合包括同一个无线帧中的多个连续的子帧。
在本申请实施例中,传输第一信道需要一个无线帧中的至少两个连续子帧,一个无线帧中的部分或者全部子帧均可以被配置用于传输第一信道,子帧集合中的所有子帧均可以被配置用于传输第一信道。具体的,网络设备可以将子帧集合中的所有子帧均配置为用于传输第一信道,可选的,网络设备可以仅将子帧集合中的部分连续子帧配置为用于传输第一信道。例如,一个无线帧包括10个子帧,该10个子帧从0~9编号,且该无线帧中只有1号~4号子帧可以被配置用于传输第一信道,且传输第一信道需要2个连续子帧时,子帧集合可以包括该无线帧中的1号~2号子帧,2号~3号子帧,3号~4号子帧,1号~3号子帧,2号~4号子帧或者1号~4号子帧。当子帧集合包括两个连续的子帧(如该无线帧中的1号~2号子帧,2号~3号子帧或3号~4号子帧)时,网络设备可以将该两个连续的子帧均实际配置为用于传输第一信道。当子帧集合包括三个或者四个连续的子帧(如该无线帧中的1号~3号子帧,2号~4号子帧或1号~4号子帧)时,网络设备可以将该三个或者四个连续的子帧中的两个连续子帧实际配置用于传输第一信道,子帧集合中并未被配置用于传输第一信道的子帧可以用于传输其他信道。
一个无线帧可以对应一个或多个子帧集合,子帧集合包括该无线帧中的多个连续的子帧,需要说明的是,不同子帧集合包括的子帧不同。例如,无线帧中只有1号~4号子帧可以被配置用于传输第一信道,且传输第一信道需要2个连续子帧时,该无线帧可以对应两个子帧集合,第一个子帧集合可以包括该无线帧中的1号~2号子帧,第二个子帧集合可以包括该无线帧中的3号~4号子帧。又如,无线帧中的1号~4号子帧以及6号~9号子帧可以被配置用于传输第一信道,且传输第一信道需要2个连续子帧时,该无线帧可以对应两个子帧集合,第一个子帧集合可以包括1号~4号子帧中的至少两个连续子帧(如1号~2号子帧,2号~3号子帧,3号~4号子帧,1号~3号子帧,2号~4号子帧或者1号~4号子帧);第二个子帧集合可以包括6号~9号子帧中的至少两个连续子帧(如6号~7号子帧,7号~8号子帧,8号~9号子帧,6号~8号子帧,7号~9号子帧或6号~9号子帧)。
在本申请实施例中,被配置用于传输第一信道的子帧可以为第二子帧,即若某子帧被配置为第二子帧,则该子帧实际用于传输第一信道。子帧集合中的每个子帧理论上均可以被配置为第二子帧,即子帧集合中的每个子帧理论上均可以用于传输第一信道,但是在实际情况下,子帧集合中的子帧还可以被配置为非第二子帧,即子帧集合中的子帧还可以用于传输除第一信道以外的其他信道。在本申请实施例中,子帧集合中的子帧可以被配置为第二子帧或者非第二子帧中的一种,仅当子帧集合中的某子帧被配置为第二子帧时,该子帧才实际用于传输第一信道。子帧集合可以包括多个连续的子帧,所述多个连续的子帧中 可以包括第一子帧,需要说明的是,多个连续的子帧是指多个子帧在同一个无线帧中的序号连续。其中,第一子帧可以是子帧集合中的多个连续子帧中的第一个子帧,例如,若子帧集合包括1号~4号子帧,则第一子帧可以是1号子帧。
网络设备在完成子帧集合中的子帧的配置之后,可以根据配置情况生成第一信息,该第一信息可以用于确定第一子帧是否实际用于传输第一信道,即该第一信息可以用于确定第一子帧是否实际被配置为第二子帧。需要说明的是,第一信息可以用于直接指示或者间接指示第一子帧是否实际用于传输第一信道。在一种实现方式中,网络设备也可以在还未完成子帧集合中的子帧的配置之前,生成第一信息,具体的,网络设备可以在确定子帧集合中的子帧的配置方案,但是还未完成配置之前,生成第一信息。其中,子帧集合中的子帧的配置方案可以指示该子帧集合中的各个子帧实际被配置为第二子帧还是非第二子帧,即子帧集合中的子帧的配置方案可以指示该子帧集合中的各个子帧实际是否用于传输第一信道。需要说明的是,在本申请实施例中,描述某子帧被配置为第二子帧,相当于该子帧被配置用于传输第一信道,同理,描述某子帧被配置用于传输第一信道,相当于该子帧被配置为第二子帧。
在一种实现方式中,第一信息除了可以指示第一子帧是否被配置为第二子帧,还可以指示该第一子帧所属的子帧集合中除该第一子帧以外的其他子帧是否被配置为第二子帧。在一种实现方式中,第一信息可以包括位图(bit-map),该位图可以用于指示子帧集合中的各个子帧实际是否被配置为第二子帧,位图中的每一个比特的取值可以表示对应的子帧实际是否被配置为第二子帧。例如,位图中的第一个比特的取值为“1”时,可以表示该第一个比特对应的子帧被配置为第二子帧;位图中的第二个比特的取值为“0”时,可以表示该第二个比特对应的子帧未被配置为第二子帧,即第二个比特对应的子帧被配置为非第二子帧。需要说明的是,位图中的一个比特对应子帧集合中的一个子帧,例如,子帧集合包括无线帧中的1号~4号子帧时,位图可以包括4个比特,其中,第一个比特的取值用于指示1号子帧是否被配置为第二子帧;同理,第二个比特的取值用于指示2号子帧是否被配置为第二子帧;第三个比特的取值用于指示3号子帧是否被配置为第二子帧;第四个比特的取值用于指示4号子帧是否被配置为第二子帧。
在本申请实施例中,第一信息可以用于指示一个无线帧对应的子帧集合中的子帧的配置情况,可选的,第一信息还可以用于指示连续两个或者连续两个以上无线帧对应的子帧集合中的子帧的配置情况。例如,当一个无线帧对应多个子帧集合(如子帧集合1和子帧集合2)时,第一信息具体可以用于指示子帧集合1和子帧集合2中的各个子帧是否被配置为第二子帧。当第一信息用于指示一个无线帧对应的多个子帧集合中的子帧的配置情况时,第一信息中的位图可以指示该无线帧中的每个子帧集合中的子帧的配置情况。在上个例子中,若子帧集合1和子帧集合2均包括4个子帧,则第一信息中的位图可以包括8个比特,该位图中的前4个比特依次用于指示子帧集合1中的4个子帧是否被配置为第二子帧;该位图中的第5个比特至第8个比特依次用于指示子帧集合2中的4个子帧是否被配置为第二子帧。
又如,第一信息用于指示第一无线帧和第二无线帧对应的子帧集合中的子帧的配置情况,且第一无线帧对应一个子帧集合(如子帧集合1),第二无线帧对应两个子帧集合(如 子帧集合2和子帧集合3),此时,第一信息具体可以用于指示子帧集合1、子帧集合2和子帧集合3中的各个子帧是否被配置为第二子帧,其中,第一无线帧和第二无线帧是连续的两个子帧。当第一信息用于指示连续两个或者连续两个以上无线帧对应的子帧集合中的子帧的配置情况时,第一信息中的位图可以指示连续两个或者连续两个以上无线帧对应的子帧集合中的子帧的配置情况。在上个例子中,若子帧集合1、子帧集合2和子帧集合3均包括4个子帧,则第一信息中的位图可以包括12个比特,该位图中的前4个比特依次用于指示子帧集合1中的4个子帧是否被配置为第二子帧;该位图中的第5个比特至第8个比特依次用于指示子帧集合2中的4个子帧是否被配置为第二子帧;该位图中的第9个比特至第12个比特依次用于指示子帧集合3中的4个子帧是否被配置为第二子帧。
在一种实现方式中,第一信道可以为PMCH或者其他信道,传输第一信道的子帧(即第二子帧)可以为MBSFN子帧或者其他类型的子帧,前述无线帧可以为无线频分双工(frequency division duplex,FDD)帧或者无线时分双工(time division duplex,TDD)帧。
需要说明的是,在不同的通信系统下传输的无线帧中可以被配置为第二子帧的子帧可以不同,还需要说明的是,不同类型的无线帧中可以被配置为第二子帧的子帧可以不同。具体的,当第一信道为PMCH且第二子帧为MBSFN时,在MBMS/单播混合通信系统下,即网络设备为MBMS/单播混合小区对应的网络设备,且无线帧为FDD帧时,该无线帧中的0号、4号、5号和9号子帧理论上均不能用于传输第一信道,即0号、4号、5号和9号子帧理论上均不能被配置为MBSFN子帧,也就是说,该无线帧中只有1号、2号、3号、6号、7号和8号子帧可以被配置为MBSFN子帧。在MBMS/单播混合通信系统下,且无线帧为TDD帧时,该无线帧中的0号、1号、2号、5号和6号子帧理论上均不能用于传输第一信道,即0号、1号、2号、5号和6号子帧理论上均不能被配置为MBSFN子帧,也就是说,该无线帧中只有3号、4号、7号、8号和9号子帧可以被配置为MBSFN子帧。在FeMBMS/单播混合通信系统下,即网络设备为FeMBMS/单播混合小区对应的网络设备,且无线帧为FDD帧时,该无线帧中的0号和5号子帧理论上均不能用于传输第一信道,即0号和5号子帧理论上均不能被配置为MBSFN子帧,也就是说,该无线帧中只有1号、2号、3号、4号、6号、7号、8号和9号子帧可以被配置为MBSFN子帧。
可选的,在MBMS/单播混合通信系统下,且无线帧为TDD帧时,该TDD帧中的6号子帧可以被配置为下行子帧或者特殊子帧。当该6号子帧被配置为下行子帧时,该6号子帧具体可以被配置为MBSFN子帧,此时,该TDD帧中的3号、4号、6号、7号、8号和9号子帧可以被配置为MBSFN子帧。特殊子帧可以由下行导频时隙(downlink pilot time slot,DwPTS)、上行导频时隙(uplink pilot time slot,UpPTS)和保护间隔(guard period,GP)三个部分组成,DwPTS可以传输下行的参考信号,也可以传输控制信息;UpPTS可以传输一些短的随机接入信道(random access channel,RACH)和信道探测参考信号(sounding reference signal,SRS)的信息;GP是上下行之间的保护间隔。
在MBMS/单播混合通信系统下,且无线帧为FDD帧,第二子帧为MBSFN子帧时,该无线帧中只有1号~3号、6号~8号子帧可以被配置为MBSFN子帧。若传输第一信道需要两个连续的子帧,则该无线帧可以对应1个或2个子帧集合,当无线帧对应1个子帧集合时,该子帧集合可以包括1号和2号子帧,2号和3号子帧,6号和7号子帧,7号和8 号子帧,1号~3号子帧或者6号~8号子帧;当无线帧对应两个子帧集合时,第一个子帧集合可以包括1号和2号子帧,2号和3号子帧或者1号~3号子帧,第二个子帧集合可以包括6号和7号子帧,7号和8号子帧或者6号~8号子帧。若传输第一信道需要三个连续的子帧,该无线帧可以对应1个或2个子帧集合,当无线帧对应1个子帧集合时,该子帧集合可以包括1号~3号子帧或者6号~8号子帧;当无线帧对应两个子帧集合时,第一个子帧集合可以包括1号~3号子帧,第二个子帧集合可以包括6号~8号子帧。
在MBMS/单播混合通信系统下,且无线帧为TDD帧,第二子帧为MBSFN子帧时,该无线帧中只有3号~4号、7号~9号子帧可以被配置为MBSFN子帧。若传输第一信道需要两个连续的子帧,则该无线帧可以对应1个或者2个子帧集合,当无线帧对应1个子帧集合时,该子帧集合可以包括3号和4号子帧,7号和8号子帧,8号和9号子帧或者7号~9号子帧;当无线帧对应两个子帧集合时,第一个子帧集合可以包括3号和4号子帧,第二个子帧集合可以包括7号和8号子帧,8号和9号子帧或者7号~9号子帧。若传输第一信道需要三个连续的子帧时,该无线帧可以对应1个子帧集合,该子帧集合可以包括7号~9号子帧。
在FeMBMS/单播混合通信系统下,且无线帧为FDD帧,第二子帧为MBSFN子帧时,该无线帧中只有1号~4号、6号~9号可以被配置为MBSFN子帧。若传输第一信道需要两个连续的子帧,则该无线帧可以对应1个、2个、3个或4个子帧集合,当无线帧对应1个子帧集合时,该子帧集合可以包括1号~4号和6号~9号子帧中的任意两个连续的子帧、任意三个连续的子帧或者任意四个连续的子帧。当无线帧对应2个子帧集合时,第一个子帧集合可以包括1号~4号和6号~9号子帧中的任意两个连续的子帧、任意三个连续的子帧或者任意四个连续的子帧中的一种,第二个子帧集合可以包括1号~4号和6号~9号子帧中的任意两个连续的子帧、任意三个连续的子帧或者任意四个连续的子帧中除去第一个子帧集合以外的其他子帧集合中的一种。无线帧对应3个子帧集合与对应2个子帧集合时的情况类似,在此不赘述。当无线帧对应4个子帧集合时,第一个子帧集合可以包括1号~2号子帧,第二个子帧集合可以包括3号~4号子帧,第三个子帧集合可以包括6号~7号子帧,第四个子帧集合可以包括8号~9号子帧。
在本申请实施例中,一个无线帧可以对应一个或多个子帧集合,每个子帧集合均包括一个第一子帧。具体的,当在MBMS/单播混合通信系统下,且无线帧为FDD帧时。若该FDD帧对应一个子帧集合,且该子帧集合包括1号~3号子帧时,第一子帧可以为该FDD帧中的1号子帧。若该FDD帧对应一个子帧集合,且该子帧集合包括6号~8号子帧时,第一子帧可以为该FDD帧中的6号子帧。当该FDD帧对应两个子帧集合,且第一个子帧集合包括1号~3号子帧,第二个子帧集合包括6号~8号子帧时,第一个子帧集合中的第一子帧可以为该FDD帧中的1号子帧,第二个子帧集合中的第一子帧可以为该FDD帧中的6号子帧。
同理,当在FeMBMS/单播混合通信系统下,且无线帧为FDD帧,若该FDD帧对应一个子帧集合,且该子帧集合包括1号~4号子帧时,第一子帧可以为该FDD帧中的1号子帧;若该FDD帧对应一个子帧集合,且该子帧集合包括6号~9号子帧时,第一子帧可以为该FDD帧中的6号子帧。当该FDD帧对应两个子帧集合,且第一个子帧集合包括1号 ~4号子帧,第二个子帧集合包括6号~9号子帧时,第一个子帧集合中的第一子帧可以为该FDD帧中的1号子帧,第二个子帧集合中的第一子帧可以为该FDD帧中的6号子帧。
同理,当在MBMS/单播混合通信系统下,且无线帧为TDD帧时,若该TDD帧对应一个子帧集合,且该子帧集合包括3号~4号子帧时,第一子帧可以为该TDD帧中的3号子帧;若该TDD帧对应一个子帧集合,且该子帧集合包括7号~9号子帧时,第一子帧可以为该TDD帧中的7号子帧;若该TDD帧对应一个子帧集合,且该子帧集合包括6号~9号子帧时,第一子帧可以为该TDD帧中的6号子帧。当该TDD帧对应两个子帧集合,且第一个子帧集合包括3号~4号子帧,第二个子帧集合包括7号~9号子帧时,第一个子帧集合中的第一子帧可以为该TDD帧中的3号子帧,第二个子帧集合中的第一子帧可以为该TDD帧中的7号子帧。
需要说明的是,不同子帧集合中包括的子帧不同,且不同子帧集合中不包括相同的子帧,也就是说,当无线帧对应多个子帧集合时,无线帧中的每个子帧最多存在于一个子帧集合中,不能存在于多个子帧集合中。
步骤S202:网络设备向终端设备发送该第一信息。
具体的,网络设备生成第一信息之后,可以将第一信息发送给终端设备,以便终端设备可以根据该第一信息确定子帧集合中用于传输第一信道的起始子帧。在一种实现方式中,当第一信道为PMCH时,子帧集合中用于传输第一信道的起始子帧可以指子帧集合中用于传输一个完整的PMCH符号的起始子帧。例如,若传输一个完整的PMCH符号需要3个连续的子帧时,起始子帧可以为该3个连续的子帧中的第一个子帧。需要说明的是,一个无线帧中可以传输一个或多个完整的PMCH符号,但是一个子帧集合包括的子帧最多可以传输一个完整的PMCH符号,换言之,一个无线帧中可以包括一个或多个起始子帧,一个子帧集合最多可以包括一个起始子帧。
在一种实现方式中,第一信息可以为高层指示信息,高层指示信息可以为在高层协议层中传输的信息,高层协议层可以指在开放式系统互联(open system interconnection,OSI)模型或者其他模型中的物理层以上的协议层中的至少一个协议层。具体的,高层协议层可以包括但不限于:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)中的一个或多个。
步骤S203:终端设备根据该第一信息确定子帧集合中用于传输第一信道的起始子帧。
具体的,终端设备接收到来自网络设备的第一信息之后,可以根据第一信息确定子帧集合中用于传输第一信道的起始子帧,从而有利于根据起始子帧准确接收第一信道。
当第一子帧为子帧集合包括的所有连续子帧中的第一个子帧,且第一信息确定第一子帧实际用于传输第一信道时,终端设备可以将第一子帧确定为该第一子帧所属的子帧集合中实际用于传输第一信道的起始子帧;若第一信息确定第一子帧不用于传输第一信道,则终端设备可以将第一子帧所属的子帧集合中除第一子帧以外的其他子帧确定为该第一子帧所属的子帧集合中实际用于传输第一信道的起始子帧,或者,终端设备可以确定第一子帧所属的子帧集合中不存在用于传输第一信道的起始子帧。
在一种实现方式中,子帧集合和第一子帧均可以由协议约定。在一种实现方式中,第一子帧还可以是子帧集合中除第一个子帧以外的其他子帧。在一种实现方式中,第一信息还可以包括子帧标识,该子帧标识用于标识第一子帧,终端设备根据第一信息可以确定子帧标识指示的第一子帧实际是否被配置用于传输第一信道。
在一种实现方式中,终端设备确定起始子帧之后,可以根据传输第一信道需要的连续子帧的数量确定实际传输第一信道的子帧。例如,若传输第一信道需要3个连续子帧,且起始子帧为1号子帧,则终端设备可以将1号~3号子帧确定为实际传输第一信道的子帧。在一种实现方式中,终端设备确定实际传输第一信道的子帧之后,可以在确定的实际传输第一信道的子帧对应的时频资源上接收第一信道。通过这种方式,可以避免无法确定起始子帧时,无法从正确的时频资源上接收第一信道的情况,从而有利于提高接收第一信道的准确性和效率。
在一种实现方式中,传输第一信道需要2个连续的子帧可以表示该2个连续子帧对应的所有传输资源均用于传输第一信道,或者可以表示该2个连续子帧对应的部分传输资源用于传输第一信道。当传输第一信道需要2个连续的子帧,且该2个连续子帧对应的所有传输资源均用于传输第一信道时,终端设备可以从该2个连续子帧中的起始子帧对应的传输资源的起始位置开始接收第一信道。
在一种实现方式中,用于传输第一信道的子帧(即第二子帧)可以包括第一区域和非第一区域,第一区域可以为该第二子帧中用于传输第一信道的传输资源,非第一区域可以为该第二子帧中不用于传输第一信道的传输资源。需要说明的是,第二子帧中的非第一区域的大小可以为0,即第二子帧的所有传输资源可以全部用于传输第一信道。当传输第一信道需要2个连续的子帧,且该2个连续子帧对应的部分传输资源均用于传输第一信道时,该2个连续子帧中的所有第一区域用于传输第一信道,相应的,终端设备可以从该2个连续子帧中的第一区域接收第一信道。需要说明的是,传输第一信道需要2个连续的子帧,且终端设备从该2个连续子帧中的第一区域接收第一信道仅用于举例,并不构成对本申请实施例的限定,在其他可行的实现方式中,当传输第一信道需要3个连续的子帧或者其他数量的连续子帧时,终端设备可以从该3个连续子帧(或者其他数量的连续子帧)中的第一区域接收第一信道。还需要说明的是,前述第一区域在第二子帧的时域上可以是连续的一个或多个OFDM符号,也可以是非连续的多个OFDM符号。前述第一区域在第二子帧的频域上可以是连续的一个或多个资源也可以是非连续的多个资源,具体的,可以是连续的一个或多个资源块(resource block,RB)或资源粒子(resource element,RE),也可以是非连续的多个RB或RE。当起始子帧中的第一区域中的第一个OFDM符号为该起始子帧中的第一个OFDM符号时,终端设备可以从该起始子帧的第一个OFDM符号开始接收第一信道;当起始子帧中的第一区域中的第一个OFDM符号不为该起始子帧中的第一个OFDM符号时,终端设备可以从该起始子帧中的第一区域中的第一个OFDM符号开始接收第一信道,即终端设备可以不从该起始子帧的第一个OFDM符号开始接收第一信道。其中,一个RB可以包括多个RE,RE(也称资源元素)是LTE物理资源中最小的资源单位。1个RE在时域可以表示1个OFDM符号,在频域可以表示1个子载波。
在一种实现方式中,子载波间隔(sub-carrier spacing,SCS)为预设值的第二子帧中的 所有OFDM符号均可以用于传输第一信道。当第二子帧为MBSFN子帧时,子载波间隔为预设值的MBSFN子帧中的所有OFDM符号均可以用于传输第一信道。在一种实现方式中,该预设值可以包括但不限于为2.5kHz或小于等于0.417kHz中的任意一个值。
需要说明的是,当MBSFN子帧满足以下条件中的任意一种时,可以表明该子帧中的所有OFDM符号均可以用于传输第一信道:子载波间隔小于或等于0.417kHz的MBSFN子帧;MBSFN子帧中的OFDM符号的循环前缀(cyclic prefix,CP)长度大于或等于300μs;MBSFN子帧中不包含CP的OFDM符号(或称为核心OFDM符号)的长度大于或等于2.4ms;MBSFN子帧中的OFDM符号的长度大于或等于2.7ms;20MHz带宽对应的快速傅里叶变换(fast fourier transform,FFT)大小大于或等于73728;10MHz带宽对应的FFT大小大于或等于36864。
在一种实现方式中,当无线帧对应一个子帧集合,且第一信息用于确定一个子帧(即第一子帧)是否用于传输第一信道时,第一信息还可以包括第一数值,第一数值为m时可以表示该第一子帧相邻的后面m个子帧均被配置为第二子帧,m可以为大于或等于0的整数。通过这种方式,终端设备接收到第一信息之后,可以根据第一信息快速地确定无线帧中的哪些子帧用于传输第一信道。例如,当无线帧中的1号子帧为第一子帧,且1号子帧被配置为第二子帧,第一数值为1,传输第一信道需要2个连续的第二子帧时,终端设备可以确定该无线帧中的1号和2号子帧用于传输第一信道,且1号子帧为起始子帧。又如,当无线帧中的1号子帧为第一子帧,且1号子帧未被配置为第二子帧,第一数值为2,传输第一信道需要2个连续的第二子帧时,终端设备可以确定该无线帧中的2号和3号子帧用于传输第一信道,且2号子帧为起始子帧。通过这种方式,在第一信息中携带较少比特的信息就可以使得终端设备快速地确定出传输第一信道的子帧和起始子帧。
在一种实现方式中,当无线帧对应多个子帧集合,且第一信息用于确定各个子帧集合中的第一子帧是否用于传输第一信道时,第一信息还可以包括多个第一数值。不同第一数值可以对应不同的子帧集合中的第一子帧,第一数值为m时可以表示对应的子帧集合中的第一子帧相邻的后面m个子帧均被配置为第二子帧,m可以为大于或等于0的整数。例如,当无线帧对应两个子帧集合,第一个子帧集合中的1号子帧为第一子帧,且1号子帧被配置为第二子帧,第一子帧集合对应的第一数值为1,第二个子帧集合中的6号子帧为第一子帧,且6号子帧未被配置为第二子帧,第二子帧集合对应的第一数值为2,传输第一信道需要2个连续的第二子帧时,终端设备可以确定该无线帧中的1号~2号子帧和7号~8号子帧均用于传输第一信道,且1号子帧为第一子帧集合中用于传输第一信道的起始子帧,7号子帧为第二子帧集合中用于传输第一信道的起始子帧。
通过实施本申请实施例,可以根据第一信息确定子帧集合中用于传输第一信道的起始子帧,从而有利于提高接收第一信道的准确性和效率。
请参见图3a,图3a是本申请实施例提供的另一种数据处理方法的流程示意图,该方法详细描述了网络设备如何配置第一信道的起始子帧,以及终端设备具体如何根据第一信息确定子帧集合中用于传输第一信道的起始子帧。其中,步骤301~步骤303的执行主体为网络设备,或者为网络设备中的芯片,步骤304的执行主体为终端设备,或者为终端设备中 的芯片,以下以网络设备、终端设备为数据处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S301:网络设备将第一子帧配置为子帧集合中用于传输第一信道的起始子帧,传输第一信道需要至少两个连续的子帧,该第一子帧包括于子帧集合,该子帧集合包括同一个无线帧中的多个连续的子帧。
具体的,网络设备可以将第一子帧配置为子帧集合中用于传输第一信道的起始子帧。当传输第一信道需要n个连续的子帧,且网络设备将第一子帧配置为子帧集合中用于传输第一信道的起始子帧时,表明该第一子帧以及与该第一子帧相邻的连续n-1个子帧均用于传输第一信道。其中,n可以为大于或等于2的整数,将第一子帧配置为子帧集合中用于传输第一信道的起始子帧相当于将第一子帧配置为第二子帧。
在一种实现方式中,若网络设备未将第一子帧配置为子帧集合中用于传输第一信道的起始子帧,则网络设备可以将该子帧集合中与该第一子帧相邻的下一个子帧配置为该子帧集合中用于传输第一信道的起始子帧。当传输第一信道需要2个连续的第二子帧时,以图3b所示的无线帧中子帧的配置方案示意图为例,图3b中小方块表示无线帧的一个子帧,小方块中的数字表示对应的子帧在所属无线帧中的编号,灰色填充的小方块表示该子帧理论上可以被配置为第二子帧,白色填充的小方块表示该子帧不可以被配置为第二子帧,灰色和斜线填充的小方块表示该子帧实际被配置为第二子帧。由图3b可知,无线帧中的1号~3号子帧可以被配置为第二子帧(即1号~3号子帧可以被配置用于传输第一信道),该无线帧对应的子帧集合包括1号~3号子帧,当子帧集合中的第一子帧为1号子帧,且1号子帧实际被配置为第二子帧时,网络设备可以将2号子帧也配置为第二子帧,以便后续可以在1号子帧和2号子帧上传输第一信道。此时,子帧集合中用于传输第一信道的起始子帧为1号子帧。当子帧集合中的第一子帧为1号子帧,且1号子帧未被配置为第二子帧时,如图3c所示,网络设备可以将2号和3号子帧配置为第二子帧,以便后续可以在2号子帧和3号子帧上传输第一信道。此时,子帧集合中用于传输第一信道的起始子帧为2号子帧。
在一种实现方式中,若网络设备未将第一子帧以及该第一子帧相邻的下一个子帧配置为子帧集合中用于传输第一信道的起始子帧,且该子帧集合中除了第一子帧以及该第一子帧相邻的下一个子帧以外的子帧的数量大于等于传输第一信道所需的连续子帧的数量时,网络设备可以将该第一子帧之后的第二个子帧配置为子帧集合中用于传输第一信道的起始子帧;若该子帧集合中除了第一子帧以及该第一子帧相邻的下一个子帧以外的子帧的数量小于传输第一信道所需的连续子帧的数量,则该子帧集合中不存在用于传输第一信道的起始子帧,即该子帧集合中的所有子帧实际均不用于传输第一信道。
步骤S302:网络设备生成第一信息,第一信息确定该第一子帧用于传输第一信道。
在本申请实施例中,网络设备可以根据是否将第一子帧配置为子帧集合中用于传输第一信道的起始子帧生成第一信息,第一信息用于确定第一子帧是否用于传输第一信道。具体的,若网络设备将第一子帧配置为子帧集合中用于传输第一信道的起始子帧,则网络设备生成的第一信息可以用于确定第一子帧用于传输第一信道;若网络设备未将第一子帧配置为子帧集合中用于传输第一信道的起始子帧,则网络设备生成的第一信息可以用于确定第一子帧不用于传输第一信道。
步骤S303:网络设备向终端设备发送该第一信息。
需要说明的是,步骤S303的执行过程可参见图2中步骤S202的具体描述,在此不赘述。
步骤S304:终端设备将前述第一子帧确定为子帧集合中用于传输第一信道的起始子帧。
在本申请实施例中,终端设备接收到来自网络设备的第一信息之后,可以根据第一信息确定子帧集合中用于传输第一信道的起始子帧,从而有利于根据起始子帧准确接收第一信道。具体的,若第一信息确定第一子帧用于传输第一信道,则终端设备可以将第一子帧确定为子帧集合中用于传输第一信道的起始子帧;若第一信息确定第一子帧不用于传输第一信道,则终端设备可以将子帧集合中与该第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一信息除了可以确定第一子帧是否用于传输第一信道以外,还可以用于指示该第一子帧所属的子帧集合中除该第一子帧以外的其他子帧是否用于传输第一信道。当传输第一信道需要n个连续的子帧时,若终端设备通过第一信息确定以第一子帧为起始子帧的n个连续子帧均被配置为用于传输第一信道,则终端设备可以将第一子帧确定为该第一子帧所属的子帧集合中用于传输第一信道的起始子帧。若终端设备通过第一信息确定第一子帧不用于传输第一信道,则终端设备可以通过第一信息确定以第一子帧相邻的下一个子帧为起始子帧的n个连续子帧是否均被配置为用于传输第一信道,若以第一子帧相邻的下一个子帧为起始子帧的n个连续子帧均被配置为用于传输第一信道,则终端设备可以将第一子帧相邻的下一个子帧确定为该第一子帧所属的子帧集合中用于传输第一信道的起始子帧。若第一子帧相邻的下一个子帧未被配置为用于传输第一信道,则终端设备可以通过第一信息确定以第一子帧后的第二个子帧为起始子帧的n个连续子帧是否均被配置为用于传输第一信道,若以第一子帧后的第二个子帧为起始子帧的n个连续子帧均被配置为用于传输第一信道,则将第一子帧后的第二个子帧确定为该第一子帧所属的子帧集合中用于传输第一信道的起始子帧。直至第一子帧所属的子帧集合中除了已被确定为不用于传输第一信道的子帧以外的其他子帧的数量小于n时,终端设备可以确定该子帧集合中不存在用于传输第一信道的起始子帧。其中,n可以为大于或等于2的整数。在一种实现方式中,终端设备可以通过第一信息中的位图确定子帧集合中的各个子帧是否被配置用于传输第一信道。
通过实施本申请实施例,若第一信息确定第一子帧用于传输第一信道,则终端设备可以将第一子帧确定为子帧集合中用于传输第一信道的起始子帧;若第一信息确定第一子帧不用于传输第一信道,则终端设备可以将子帧集合中与该第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。通过这种方式,有利于提高接收第一信道的准确性和效率。
请参见图4a,图4a是本申请实施例提供的又一种数据处理方法的流程示意图,该方法详细阐述了一个无线帧对应多个子帧集合的情况下,网络设备如何配置第一信道的起始子帧,以及终端设备如何根据第一信息确定各个子帧集合中用于传输第一信道的起始子帧。其中,步骤401和步骤402的执行主体为网络设备,或者为网络设备中的芯片,步骤403 的执行主体为终端设备,或者为终端设备中的芯片,以下以网络设备、终端设备为数据处理方法的执行主体为例进行说明。该方法可以包括但不限于如下步骤:
步骤S401:网络设备生成第一信息,该第一信息用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧,第一子帧的数量为多个,子帧集合的数量为多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中,子帧集合包括同一个无线帧中的多个连续的子帧。
在本申请实施例中,一个无线帧可以对应一个或多个子帧集合,每个子帧集合中均存在一个第一子帧,不同子帧集合中的第一子帧不同。以一个无线帧对应两个子帧集合为例进行说明,若该无线帧中理论上可以用于传输第一信道的子帧包括1号~3号子帧和6号~8号子帧,则该无线帧对应的第一个子帧集合可以包括1号~3号子帧,该无线帧对应的第二个子帧集合可以包括6号~8号子帧。其中,第一个子帧集合中的第一子帧可以为1号子帧,第二个子帧集合中的第一子帧可以为6号子帧。
步骤S402:网络设备向终端设备发送该第一信息。
需要说明的是,步骤S402的执行过程可参见图2中步骤S202的具体描述,在此不赘述。
步骤S403:若第一信息确定第一子帧用于传输第一信道,则终端设备将该第一子帧确定为对应的子帧集合中用于传输第一信道的起始子帧;若第一信息确定第一子帧不用于传输第一信道,则终端设备将该第一子帧对应的子帧集合中与该第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。
在本申请实施例中,当无线帧对应多个子帧集合时,终端设备接收到来自网络设备的第一信息之后,可以根据第一信息确定各个子帧集合中用于传输第一信道的起始子帧。具体的,若第一信息确定第一个子帧集合中的第一子帧用于传输第一信道,则终端设备可以将该第一子帧确定为第一个子帧集合中用于传输第一信道的起始子帧;若第一信息确定第二个子帧集合中的第一子帧不用于传输第一信道,则终端设备可以将第二个子帧集合中与该第一子帧相邻的下一个子帧确定为第二个子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一信息可以包括位图,该位图可以指示无线帧中的每个子帧集合中的子帧是否实际被配置用于传输第一信道。当传输第一信道需要n个连续的子帧时,终端设备在确定第一个子帧集合中的第一子帧实际被配置用于传输第一信道之后,还可以通过第一信息中的位图确定第一个子帧集合中与第一子帧相邻的n-1个子帧是否实际被配置用于传输第一信道。若第一个子帧集合中与第一子帧相邻的n-1个子帧实际均被配置用于传输第一信道,则终端设备可以将该第一子帧确定为第一个子帧集合中用于传输第一信道的起始子帧。同理,终端设备在确定第二个子帧集合中的第一子帧实际未被配置用于传输第一信道之后,还可以通过第一信息中的位图确定第二个子帧集合中与第一子帧相邻的下一个子帧(如第三子帧)以及与第三子帧相邻的n-1个子帧是否实际被配置用于传输第一信道。若第三子帧以及与第三子帧相邻的n-1个子帧实际均被配置用于传输第一信道,则终端设备可以将该第三子帧确定为第二个子帧集合中用于传输第一信道的起始子帧。其中,所述n-1个子帧的编号大于第三子帧的编号。
例如,在FeMBMS/单播混合通信系统下,且无线帧为FDD帧,该无线帧中只有1号 ~4号、6号~9号子帧可以被配置为第二子帧。若传输第一信道需要三个连续的第二子帧,且该无线帧对应2个子帧集合,第一个子帧集合包括该无线帧中的1号~4号子帧,第二个子帧集合包括该无线帧中的6号~9号子帧。第一信息中的位图可以包括8个比特,该8个比特中的每个比特的取值依次表示该无线帧中只有1号~4号、6号~9号子帧实际是否被配置为第二子帧,该位图中每个比特的取值都可以为“0”或“1”,当取值为“0”时,可以表示该比特对应的子帧未被配置为第二子帧,当取值为“1”时,可以表示该比特对应的子帧被配置为第二子帧。若第一个子帧集合中的第一子帧为1号子帧,第二个子帧集合中的第一子帧为6号子帧,且1号和6号子帧在位图中的取值均为“0”时,该无线帧中的子帧的配置方案可以包括但不限于图4b所示的三种方案。图4b中小方块表示无线帧的一个子帧,小方块中的数字表示对应的子帧在所属无线帧中的编号,灰色填充的小方块表示该子帧理论上可以被配置为第二子帧,白色填充的小方块表示该子帧不可以被配置为第二子帧,灰色和斜线填充的小方块表示该子帧实际被配置为第二子帧。
由图4b所示的第一种方案可知,第一个子帧集合和第二个子帧集合中的第一子帧(即1号和6号子帧)均未被配置为第二子帧,且第一个子帧集合中与第一子帧(即1号子帧)相邻的3个子帧(即2号~4号子帧)均被配置为第二子帧,第二个子帧集合中与第一子帧(即6号子帧)相邻的3个子帧(即7号~9号子帧)均被配置为第二子帧。此时,第一信息中的位图的取值为“01110111”,终端设备可以将2号子帧确定为第一个子帧集合中用于传输第一信道的起始子帧,并将7号子帧确定为第二个子帧集合中用于传输第一信道的起始子帧。在图4b所示的第二种方案中,第一个子帧集合中的子帧的配置情况与图4b中的第一种方案中的第一个子帧集合中的子帧的配置情况相同,在此不赘述;第二个子帧集合中的第一子帧(即6号子帧)以及与第一子帧相邻的2个子帧(即7号~8号子帧)均未被配置为第二子帧,此时,第一信息中的位图的取值为“01110000”,第二个子帧集合中不存在用于传输第一信道的起始子帧,即第二个子帧集合中的所有子帧实际均不用于传输第一信道,换言之,该无线帧中仅存在一个用于传输第一信道起始子帧(即2号子帧)。在图4b所示的第三种方案中,第二个子帧集合中的子帧的配置情况与图4b中的第一种方案中的第二个子帧集合中的子帧的配置情况相同,在此不赘述;第一个子帧集合中的第一子帧(即1号子帧)以及与第一子帧相邻的2个子帧(即2号~3号子帧)均未被配置为第二子帧,此时,第一信息中的位图的取值为“00000111”,第一个子帧集合中不存在用于传输第一信道的起始子帧,即第一个子帧集合中的所有子帧实际均不用于传输第一信道,换言之,该无线帧中仅存在一个用于传输第一信道起始子帧(即7号子帧)。
又如,当1号和6号子帧在位图中的取值分别均为“0”和“1”,其他条件与上例中的其他条件相同时,无线帧中的子帧的配置方案可以包括但不限于图4c所示的两种方案。图4c中的第一种方案对应的位图的取值为“01111000”,由于第一个子帧集合中与第一子帧(即1号子帧)相邻的3个子帧(即2号~4号子帧)均被配置为第二子帧,且第二个子帧集合中的第一子帧(即6号子帧)以及与第一子帧相邻的2个子帧(即7号~8号子帧)并非均被配置为第二子帧。此时,终端设备可以将2号子帧确定为第一个子帧集合中用于传输第一信道的起始子帧,由于传输第一信道至少需要3个连续的第二子帧,但是第二子帧集合中只有一个子帧被配置为第二子帧,因此第二个子帧集合中不存在用于传输第一信道的起 始子帧,6号子帧虽然被配置为第二子帧,但是网络设备可以不在6号子帧对应的时频资源上发送第一信道。图4c中的第二种方案对应的位图的取值为“00001110”,由于第一个子帧集合中的第一子帧(即1号子帧)以及与第一子帧相邻的2个子帧(即2号~3号子帧)均未被配置为第二子帧,且第二个子帧集合中与第一子帧(即6号子帧)以及与第一子帧相邻的2个子帧(即7号~8号子帧)均被配置为第二子帧,此时,终端设备可以将6号子帧确定为第二个子帧集合中用于传输第一信道的起始子帧,第一个子帧集合中不存在用于传输第一信道的子帧。在一种实现方式中,图4c中的第二种方案对应的位图的取值还可以为“00001111”,即9号子帧也可以被配置为第二子帧,这样无线帧中存在4个连续的第二子帧,此时,网络设备也可以将7号子帧确定为第一子帧,进一步的,在7号~9号子帧上传输第一信道。也就是说,网络设备可以根据需要选择在6号~8号子帧或者7号~9号子帧上传输第一信道,通过这种方式,可以更加灵活的在无线帧中传输第一信道。
通过实施本申请实施例,在无线帧对应多个子帧集合的情况下,终端设备可以根据第一信息确定各个子帧集合中用于传输第一信道的起始子帧,从而有利于提高接收第一信道的准确性和效率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图5,图5是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备或用于终端设备的装置(例如芯片),通信装置50用于执行图2-图4a对应的方法实施例中终端设备所执行的步骤,通信装置50可以包括:
通信模块501,用于接收来自网络设备的第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输述第一信道需要至少两个连续的子帧;
处理模块502,用于根据该第一信息确定子帧集合中用于传输第一信道的起始子帧,第一子帧包括于子帧集合,该子帧集合包括同一个无线帧中的多个连续的子帧。
在一种实现方式中,该第一信息可以确定第一子帧用于传输第一信道;处理模块502用于根据该第一信息确定子帧集合中用于传输第一信道的起始子帧时,具体可以用于:将第一子帧确定为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,该第一信息可以确定第一子帧不用于传输第一信道;处理模块502用于根据该第一信息确定子帧集合中用于传输第一信道的起始子帧时,具体可以用于:将子帧集合中与第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧,第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
需要说明的是,图5对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2-图4a所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图5中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图6,图6是本申请实施例提供的另一种通信装置的结构示意图,该通信装置可以为终端设备或用于终端设备的装置(例如芯片),该通信装置60可以包括通信接口601、处理器602和存储器603,通信接口601、处理器602和存储器603可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图5所示的通信模块501和处理模块502所实现的相关功能可以通过同一个处理器602来实现,也可以通过多个不同的处理器602来实现。
通信接口601可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口601可以用于接收来自网络设备的第一信息。通信接口601可以为收发器。
处理器602被配置为执行图2-图4a所述方法中终端设备相应的功能。该处理器602可以包括一个或多个处理器,例如该处理器602可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器602是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器603用于存储程序代码等。存储器603可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器603也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器603还可以包括上述种类的存储器的组合。
处理器602可以调用存储器603中存储的程序代码以执行以下操作:
调用通信接口601接收来自网络设备的第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输述第一信道需要至少两个连续的子帧;
根据该第一信息确定子帧集合中用于传输第一信道的起始子帧,第一子帧包括于子帧集合,子帧集合包括同一个无线帧中的多个连续的子帧。
在一种实现方式中,该第一信息可以确定第一子帧用于传输第一信道;处理器602用于根据第一信息确定子帧集合中用于传输第一信道的起始子帧时,具体可以执行以下操作:将该第一子帧确定为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,该第一信息可以确定第一子帧不用于传输第一信道;处理器602 用于根据第一信息确定子帧集合中用于传输第一信道的起始子帧时,具体可以执行以下操作:将子帧集合中与该第一子帧相邻的下一个子帧确定为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧,第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
进一步地,处理器602还可以执行图2-图4a所示实施例中终端设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
请参见图7,图7是本申请实施例提供的又一种通信装置的结构示意图,该通信装置可以为网络设备或用于网络设备的装置(例如芯片),通信装置70用于执行图2-图4a对应的方法实施例中网络设备所执行的步骤,通信装置70可以包括:
处理模块701,用于生成第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧,该第一子帧包括于子帧集合,该子帧集合包括同一个无线帧中的多个连续的子帧;
通信模块702,用于向终端设备发送该第一信息。
在一种实现方式中,该第一信息可以确定第一子帧用于传输第一信道;处理模块701还可以用于:将该第一子帧配置为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,该第一信息可以确定第一子帧不用于传输第一信道;处理模块701还可以用于:将子帧集合中与该第一子帧相邻的下一个子帧配置为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧,第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
需要说明的是,图7对应的实施例中未提及的内容以及各个模块执行步骤的具体实现方式可参见图2-图4a所示实施例以及前述内容,这里不再赘述。
在一种实现方式中,图7中的各个模块所实现的相关功能可以结合处理器与通信接口来实现。参见图8,图8是本申请实施例提供的又一种通信装置的结构示意图,该通信装置可以为网络设备或用于网络设备的装置(例如芯片),该通信装置80可以包括通信接口801、处理器802和存储器803,通信接口801、处理器802和存储器803可以通过一条或多条通信总线相互连接,也可以通过其它方式相连接。图7所示的处理模块701和通信模块702所实现的相关功能可以通过同一个处理器802来实现,也可以通过多个不同的处理器802来实现。
通信接口801可以用于发送数据和/或信令,以及接收数据和/或信令。应用在本申请实施例中,通信接口801可以用于向终端设备发送第一信息。通信接口801可以为收发器。
处理器802被配置为执行图2-图4a所述方法中网络设备相应的功能。该处理器802可以包括一个或多个处理器,例如该处理器802可以是一个或多个中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。在处理器802是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
存储器803用于存储程序代码等。存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器803也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。
处理器802可以调用存储器803中存储的程序代码以执行以下操作:
生成第一信息,该第一信息可以用于确定第一子帧是否用于传输第一信道,传输第一信道需要至少两个连续的子帧,该第一子帧包括于子帧集合,该子帧集合包括同一个无线帧中的多个连续的子帧;
调用通信接口801向终端设备发送该第一信息。
在一种实现方式中,该第一信息可以确定第一子帧用于传输第一信道;处理器802还 可以执行以下操作:将该第一子帧配置为子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,该第一信息可以确定第一子帧不用于传输第一信道;处理器802还可以执行以下操作:将子帧集合中与该该第一子帧相邻的下一个子帧配置为该子帧集合中用于传输第一信道的起始子帧。
在一种实现方式中,第一子帧的数量可以为一个或多个,子帧集合的数量可以为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
在一种实现方式中,前述无线帧可以是无线频分双工FDD帧,子帧集合可以包括该无线帧中的1号、2号和3号子帧,或者,子帧集合包括该无线帧中的6号、7号和8号子帧。
在一种实现方式中,前述无线帧可以是FDD帧,子帧集合可以包括该无线帧中的1号、2号、3号和4号子帧,或者,子帧集合可以包括该无线帧中的6号、7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的1号或6号子帧。
在一种实现方式中,前述无线帧可以是无线时分双工TDD帧,子帧集合可以包括该无线帧中的3号和4号子帧,或者,子帧集合可以包括该无线帧中的7号、8号和9号子帧。
在一种实现方式中,前述第一子帧可以为前述无线帧中的3号或7号子帧。
在一种实现方式中,传输第一信道的子帧可以为多媒体广播多播单频网MBSFN子帧,第一信道可以为物理多播信道PMCH。
在一种实现方式中,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均可以用于传输第一信道。
在一种实现方式中,预设值可以为2.5kHz或小于等于0.417kHz中的任意一个值。
进一步地,处理器802还可以执行图2-图4a所示实施例中网络设备对应的操作,具体可参见方法实施例中的描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图5所示实施例中通信装置所用的计算机软件指令,其包含用于执行上述实施例中为终端设备所设计的程序。
本申请实施例还提供一种计算机可读存储介质,可以用于存储图7所示实施例中通信装置所用的计算机软件指令,其包含用于执行上述实施例中为网络设备所设计的程序。
上述计算机可读存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2-图4a实施例中为终端设备所设计的方法。
本申请实施例还提供一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图2-图4a实施例中为网络设备所设计的方法。
在本申请实施例中还提供一种芯片,包括处理器和存储器,该存储器用包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述方法实施例中的方法。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员 可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种数据处理方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的第一信息,所述第一信息用于确定第一子帧是否用于传输第一信道,传输所述第一信道需要至少两个连续的子帧;
    所述终端设备根据所述第一信息确定子帧集合中用于传输所述第一信道的起始子帧,所述第一子帧包括于所述子帧集合,所述子帧集合包括同一个无线帧中的多个连续的子帧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息确定所述第一子帧用于传输所述第一信道;所述终端设备根据所述第一信息确定子帧集合中用于传输所述第一信道的起始子帧,包括:
    所述终端设备将所述第一子帧确定为所述子帧集合中用于传输所述第一信道的起始子帧。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信息确定所述第一子帧不用于传输所述第一信道;所述终端设备根据所述第一信息确定子帧集合中用于传输所述第一信道的起始子帧,包括:
    所述终端设备将所述子帧集合中与所述第一子帧相邻的下一个子帧确定为所述子帧集合中用于传输所述第一信道的起始子帧。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第一子帧的数量为一个或多个,所述子帧集合的数量为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述无线帧是无线频分双工FDD帧,所述子帧集合包括所述无线帧中的1号、2号和3号子帧,或者,所述子帧集合包括所述无线帧中的6号、7号和8号子帧。
  6. 根据权利要求1~4任一项所述的方法,其特征在于,所述无线帧是FDD帧,所述子帧集合包括所述无线帧中的1号、2号、3号和4号子帧,或者,所述子帧集合包括所述无线帧中的6号、7号、8号和9号子帧。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一子帧为所述无线帧中的1号或6号子帧。
  8. 根据权利要求1~4任一项所述的方法,其特征在于,所述无线帧是无线时分双工TDD帧,所述子帧集合包括所述无线帧中的3号和4号子帧,或者,所述子帧集合包括所述无线帧中的7号、8号和9号子帧。
  9. 根据权利要求8所述的方法,其特征在于,所述第一子帧为所述无线帧中的3号或7号子帧。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,传输所述第一信道的子帧为多媒体广播多播单频网MBSFN子帧,所述第一信道为物理多播信道PMCH。
  11. 根据权利要求10所述的方法,其特征在于,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均用于传输所述第一信道。
  12. 根据权利要求11所述的方法,其特征在于,所述预设值为2.5kHz或小于等于0.417kHz中的任意一个值。
  13. 一种数据处理方法,其特征在于,所述方法包括:
    网络设备生成第一信息,所述第一信息用于确定第一子帧是否用于传输第一信道,传输所述第一信道需要至少两个连续的子帧,所述第一子帧包括于子帧集合,所述子帧集合包括同一个无线帧中的多个连续的子帧;
    所述网络设备向终端设备发送所述第一信息。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信息确定所述第一子帧用于传输所述第一信道;所述方法还包括:
    所述网络设备将所述第一子帧配置为所述子帧集合中用于传输所述第一信道的起始子帧。
  15. 根据权利要求13所述的方法,其特征在于,所述第一信息确定所述第一子帧不用于传输所述第一信道;所述方法还包括:
    所述网络设备将所述子帧集合中与所述第一子帧相邻的下一个子帧配置为所述子帧集合中用于传输所述第一信道的起始子帧。
  16. 根据权利要求13~15任一项所述的方法,其特征在于,所述第一子帧的数量为一个或多个,所述子帧集合的数量为一个或多个,第一子帧与子帧集合一一对应,每个第一子帧包括于对应的子帧集合中。
  17. 根据权利要求13~16任一项所述的方法,其特征在于,所述无线帧是无线频分双工FDD帧,所述子帧集合包括所述无线帧中的1号、2号和3号子帧,或者,所述子帧集合包括所述无线帧中的6号、7号和8号子帧。
  18. 根据权利要求13~16任一项所述的方法,其特征在于,所述无线帧是FDD帧,所述子帧集合包括所述无线帧中的1号、2号、3号和4号子帧,或者,所述子帧集合包括所述无线帧中的6号、7号、8号和9号子帧。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一子帧为所述无线帧中的1号或6号子帧。
  20. 根据权利要求13~16任一项所述的方法,其特征在于,所述无线帧是无线时分双工TDD帧,所述子帧集合包括所述无线帧中的3号和4号子帧,或者,所述子帧集合包括所述无线帧中的7号、8号和9号子帧。
  21. 根据权利要求20所述的方法,其特征在于,所述第一子帧为所述无线帧中的3号或7号子帧。
  22. 根据权利要求13~21任一项所述的方法,其特征在于,传输所述第一信道的子帧为多媒体广播多播单频网MBSFN子帧,所述第一信道为物理多播信道PMCH。
  23. 根据权利要求22所述的方法,其特征在于,子载波间隔为预设值的MBSFN子帧中的所有正交频分复用OFDM符号均用于传输所述第一信道。
  24. 根据权利要求23所述的方法,其特征在于,所述预设值为2.5kHz或小于等于0.417kHz中的任意一个值。
  25. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器调用所述存储器中存储的程序指令以使得所述通信装置执行如权利要求1-12任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器中存储有程序指令,所述处理器调用所述存储器中存储的程序指令以使得所述通信装置执行如权利要求13~24任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被通信装置执行时使所述通信装置执行如权利要求1~12任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被通信装置执行时使所述通信装置执行如权利要求13~24任一项所述的方法。
PCT/CN2019/097530 2019-07-24 2019-07-24 一种数据处理方法及通信装置 WO2021012218A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/097530 WO2021012218A1 (zh) 2019-07-24 2019-07-24 一种数据处理方法及通信装置
CN201980097852.8A CN114026935A (zh) 2019-07-24 2019-07-24 一种数据处理方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097530 WO2021012218A1 (zh) 2019-07-24 2019-07-24 一种数据处理方法及通信装置

Publications (1)

Publication Number Publication Date
WO2021012218A1 true WO2021012218A1 (zh) 2021-01-28

Family

ID=74192962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097530 WO2021012218A1 (zh) 2019-07-24 2019-07-24 一种数据处理方法及通信装置

Country Status (2)

Country Link
CN (1) CN114026935A (zh)
WO (1) WO2021012218A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
CN107889242A (zh) * 2016-09-30 2018-04-06 中国移动通信有限公司研究院 一种传输方法、移动通信终端及网络侧设备
CN105191416B (zh) * 2014-01-29 2019-03-01 华为技术有限公司 物理信道增强传输方法、通信设备、用户设备及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191416B (zh) * 2014-01-29 2019-03-01 华为技术有限公司 物理信道增强传输方法、通信设备、用户设备及基站
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
CN107889242A (zh) * 2016-09-30 2018-04-06 中国移动通信有限公司研究院 一种传输方法、移动通信终端及网络侧设备

Also Published As

Publication number Publication date
CN114026935A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US11503643B2 (en) Random access method and device
TWI670982B (zh) 一種短傳輸時間間隔的監聽指示及監聽方法、裝置
WO2018188652A1 (zh) 随机接入及响应方法、终端设备、网络设备
EP3703443B1 (en) Resource determinination
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
WO2019192345A1 (zh) 一种时域资源分配方法及装置
EP4280510A1 (en) Dmrs bundling window determination method and apparatus, and storage medium
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
US11515988B2 (en) Method and device for determining initial positions of downlink data channel
WO2019086012A1 (zh) 一种通信方法及装置
WO2021204107A1 (zh) 一种通信方法及装置
JP7402327B2 (ja) 情報表示方法及び装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2019047632A1 (zh) 用于传输下行数据的资源的确定和配置方法、终端和基站
WO2013178177A2 (zh) Ue类型上报、资源分配方法及装置、ue、基站
EP3648527B1 (en) Method, device, and system for transmitting downlink control information
US20230362902A1 (en) Transmission timing determining method and apparatus
CN109152024B (zh) 一种指示方法、处理方法及装置
WO2017167252A1 (zh) 一种信息传输方法、终端及基站
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
US11653363B2 (en) Method and device for transmitting downlink channel
WO2016070711A1 (zh) 物理下行信道的处理方法及装置
WO2020029229A1 (en) Method and apparatus for indicating slot format information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938838

Country of ref document: EP

Kind code of ref document: A1