WO2021012144A1 - 减反射玻璃及其制备方法与应用 - Google Patents

减反射玻璃及其制备方法与应用 Download PDF

Info

Publication number
WO2021012144A1
WO2021012144A1 PCT/CN2019/097038 CN2019097038W WO2021012144A1 WO 2021012144 A1 WO2021012144 A1 WO 2021012144A1 CN 2019097038 W CN2019097038 W CN 2019097038W WO 2021012144 A1 WO2021012144 A1 WO 2021012144A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
acid solution
incident light
hilly
range
Prior art date
Application number
PCT/CN2019/097038
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
Original Assignee
重庆鑫景特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆鑫景特种玻璃有限公司 filed Critical 重庆鑫景特种玻璃有限公司
Priority to EP19938923.0A priority Critical patent/EP4005990A4/en
Priority to PCT/CN2019/097038 priority patent/WO2021012144A1/zh
Publication of WO2021012144A1 publication Critical patent/WO2021012144A1/zh
Priority to US17/583,169 priority patent/US20220146714A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of glass products, and specifically relates to an anti-reflection glass and a preparation method and application thereof.
  • the glass industry has been making continuous improvements in order to reduce the light reflection phenomenon of glass and increase the light transmittance.
  • one type is to reduce the glass by laminating a functional film on the surface of the glass body.
  • the reflectance of the glass and the improvement of the light transmittance of the glass are representative, such as by coating a multilayer oxide film on the surface of the glass or forming an optical resin functional layer with a microstructure.
  • this method increases the overall thickness of the glass, on the one hand, it affects the transmittance of light.
  • the maximum reflectivity of the antireflection coating that uses alternate deposition of titanium oxide and silicon dioxide thin films can only be reduced to 2%, and the glass with traditional anti-reflection coating cannot clearly display patterns and texts under strong light, and glare will appear; on the other hand, since the anti-reflection coating is formed on the glass surface afterwards, it is combined with the glass surface
  • the strength is not high, and it is easy to fall off during long-term use, so as the use time extends, the anti-reflection effect of the anti-reflection coating gradually loses.
  • the uniformity of the coating cannot be controlled by the deposition coating. Large-size coating also requires special customized equipment, and its manufacturing cost is very expensive, which greatly restricts the popularity of reducing glass light reflection technology and the satisfaction of various fields.
  • the other type is to directly modify the glass surface, such as processing the glass surface, such as wet etching, plasma etching technology, focused ion beam processing technology and laser processing technology.
  • processing the glass surface such as wet etching, plasma etching technology, focused ion beam processing technology and laser processing technology.
  • the anti-reflection and anti-reflection effects of the anti-reflection and anti-reflection glass obtained by the existing methods are still not ideal, and there are disadvantages such as difficult control or high cost.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide an anti-reflection glass to solve the technical problems of unsatisfactory or unstable anti-reflection and antireflection effects of the existing anti-reflection glass.
  • Another object of the present invention is to provide a method for preparing the anti-reflective glass of the present invention, and to solve the technical problems of difficult control or high cost of the existing anti-reflective glass preparation methods.
  • the anti-reflection glass includes a glass substrate, at least one surface of the glass substrate has an undulating hilly topography layer, the hilly topography layer is integrated with the glass substrate, and the hilly topography layer is formed along the Z axis It is composed of several hilly and convex microstructures in different directions, the hilly and convex microstructures are irregularly distributed; the hilly topography layer includes RSm ranging from 38 ⁇ m to 300 ⁇ m, Rz ranging from 0.075 ⁇ m to 9.2 ⁇ m, and Rp ranging from 0.007 ⁇ m
  • the hilly topography of ⁇ 3.3 ⁇ m reduces glare and reduces the reflection area; the hilly topography reduces the glare or reduces the reflectivity of the reflection area in a range of 0.1% to 2.5%.
  • a method for preparing anti-reflection glass includes the following steps:
  • the surface to be etched of the glass substrate is pretreated without any masking, masking or etching resistance
  • the surface to be etched of the glass substrate is directly subjected to surface etching treatment through a wet acid solution.
  • the application of the anti-reflection glass of the present invention in display glass cover plates of electronic products, solar photovoltaic glass substrates, and glass substrates of LED light-emitting devices is provided.
  • At least one surface of the anti-reflection glass of the present invention has an undulating hilly topography layer structure, and by controlling the microstructure characteristics in the hilly topography layer, the reflection of the anti-reflection glass is significantly reduced.
  • the light reflectivity can be reduced to 0.1% to 2.5%, on the one hand, the light transmittance can be significantly enhanced and the perspective effect can be improved, and on the other hand, the glare can be effectively avoided.
  • the preparation method of the anti-reflection glass of the present invention adopts wet etching directly on the surface of the glass substrate, which effectively simplifies the etching process, and the conditions are easy to control, and effectively ensure that the surface of the glass formed by etching has an undulating hilly morphology
  • the layer structure has stable optical performance and high efficiency, which effectively reduces the preparation cost of the anti-reflection glass.
  • the anti-reflection glass of the present invention has excellent optical properties, it can increase the light transmittance of the corresponding product, improve the perspective effect of the product, and reduce or avoid glare after it is applied to the corresponding product.
  • Figure 1 is an atomic force microscope photograph of anti-reflection glass according to an embodiment of the present invention.
  • FIG. 2 is a three-dimensional atomic force microscope photograph of the anti-reflection glass of the embodiment of the present invention shown in FIG. 1.
  • FIG. 2 is a three-dimensional atomic force microscope photograph of the anti-reflection glass of the embodiment of the present invention shown in FIG. 1.
  • Chemically strengthened glass It is a chemically toughened glass that has been processed by high-temperature ion exchange technology.
  • the large alkali metal ions replace the small alkali metal ions in the glass, resulting in a difference in exchange ion volume, and a high to low compressive stress is generated in the surface layer of the plain glass, which hinders and delays the growth of glass microcracks, and achieves improved The purpose of glass mechanical strength.
  • Physically strengthened glass also known as physical tempered glass, also known as tempered tempered glass.
  • physical tempered glass also known as tempered tempered glass.
  • the internal stress is eliminated through its own deformation, and then the glass is removed from the heating furnace, and then high-pressure cold air is blown to both sides of the glass with a multi-head nozzle , Make it cool to room temperature quickly and evenly, and then make toughened glass.
  • RSm, Rz, Rp, and Ra are indicators for evaluating the surface roughness. In the embodiment of the present invention, they are specifically evaluating the surface roughness of the hilly topography layer. Among them, RSm represents the average width of the profile, Rz represents the average peak-valley depth, Rp represents the average profile peak height, and Ra represents the arithmetic average roughness.
  • an embodiment of the present invention provides an anti-reflection glass. At least one surface of the anti-reflective glass has a microstructure.
  • An atomic force microscope (AFM) photo of the anti-reflective glass with a microstructured surface is shown in Figure 1-2.
  • the surface has an undulating hilly morphology, and the microstructure of the undulating hilly morphology constitutes a hilly morphology layer. Therefore, the anti-reflective glass includes a glass substrate with an undulating hilly topography layer on at least one surface of the glass substrate, and the hilly topography layer is composed of several hilly convex microstructures along the Z-axis direction.
  • the microstructure of the hilly hills is irregularly distributed.
  • a single raised microstructure presents a tower-shaped structure, and the bottoms of adjacent hilly raised microstructures are connected to each other.
  • the microstructures of the hills and protrusions are of different sizes, and the shapes are similar but not completely the same.
  • the hilly topography layer contained in the anti-reflection glass includes hilly topography reducing reflection areas and/or hilly topography reducing glare and reducing reflection areas.
  • the RSm range of the glare reduction and reflection reduction area of the hilly topography is 38 ⁇ m ⁇ 300 ⁇ m, preferably 38 ⁇ m ⁇ 250 ⁇ m, the Rz range is 0.075 ⁇ m ⁇ 9.2 ⁇ m, preferably 0.1 ⁇ m ⁇ 9.2 ⁇ m, and the Rp range is 0.007 ⁇ m to 3.3 ⁇ m, preferably 0.015 ⁇ m to 3.3 ⁇ m.
  • the hilly topography of this topographic feature reduces glare and reduces the moderate haze of the reflection area, which can effectively avoid glare. If measured, the hilly topography reduces glare or reduces the reflectivity of the reflection area in a range of 0.1% ⁇ 2.5%, preferably 0.5% to 2.0%, more preferably 0.5% to 1.5%.
  • the surface roughness Ra of the hilly topography layer of the anti-reflection glass is 9 nm-15 nm.
  • the optical performance test of the anti-reflection glass in the above embodiments shows that, in one embodiment, when the two surfaces of the anti-reflection glass have the hilly topography layer at the same time, and the thickness of the anti-reflection glass is Less than 1.1mm, when the incident light directed to the hilly topography layer is 550nm, the measured light transmittance of the incident light in the hilly topography layer is 98% to 99.9%; when it is directed toward the hilly topography When the incident light of the layer is 375nm, the measured light transmittance of the incident light is 97% to 99.9%; when the incident light to the hilly topography layer is 325-375nm, the average light transmittance of the incident light is measured The excess rate is 93% to 99.9%.
  • the incident light directed to the surface of the hilly topography layer when it is 550nm, the measured transmittance range of incident light is 94%-95.9%; when the incident light to the surface of the hilly topography layer is 375nm, the measured transmittance range of incident light is 93%-95.9 %; When the incident light directed to the surface of the hilly topography layer is 325-375nm, the measured average transmittance range of the incident light is 89%-95.9%.
  • the anti-reflective glass is glass-ceramic, and its two surfaces have the hilly topography layer and the thickness is less than 1.1 mm
  • the incident light to the hilly topography layer is 200 At -325nm
  • the average light transmittance of incident light measured is 94% to 99.9%.
  • the anti-reflection glass is glass-ceramic, and only one surface has the hilly topography layer and its thickness is less than 1.1mm, and the incident light to the surface of the hilly topography layer is 200-325nm, measure The average transmittance range of incident light is 90%-95.9%.
  • the anti-reflective glass is an alkali glass or an alkali-free glass, and its two surfaces simultaneously have the hilly topography layer and the thickness is less than 1.1 mm, it is directed toward the hilly topography layer
  • the measured light transmittance of the incident light is 95% to 99.9%
  • the measured light transmittance of the incident light is greater than 94% For example, it is 94%-99.9%
  • the measured average light transmittance of the incident light is 90%-99.9%.
  • the anti-reflection glass is alkali glass or alkali-free glass, and only one surface has the hilly topography layer and the thickness is less than 1.1mm, and the incident light to the surface of the hilly topography layer is 550nm
  • the measured transmittance range of incident light is 91%-95.9%; when the incident light directed to the surface of the hilly topography layer is 375nm, the measured transmittance range of incident light is 90%-95.9%;
  • the measured average transmittance of the incident light ranges from 86% to 95.9%.
  • the anti-reflective glass is quartz glass, and its two surfaces simultaneously have the hilly topography layer and the thickness is less than 1.1 mm
  • the incident light to the hilly topography layer is 200- At 325nm
  • the measured transmittance of incident light is greater than 90% to 99.9%.
  • the anti-reflective glass is quartz glass, and only one surface has the hilly topography layer and its thickness is less than 1.1mm.
  • the incident light to the surface of the hilly topography layer is 200-325nm, the incident light The transmittance range is 86%-95.9%.
  • the anti-reflection glass can significantly reduce the reflectivity of incident light and significantly increase the light transmittance This significantly improves its perspective effect and effectively avoids glare.
  • the hilly topography layer and the glass substrate are integrated, that is, the glass substrate and the hilly topography layer are fixedly connected as a whole.
  • the glass matrix of the anti-reflection glass and the hilly topography layer (of course also include the hilly convex microstructure formed in the hilly topography layer) have the same chemical composition, that is, they are completely the same.
  • the hilly topography layer may be directly formed by etching the glass body of the anti-reflection glass.
  • the hilly topography layer of the anti-reflection glass can effectively form a whole with the glass substrate, so that the undulating hilly topography layer can be firmly combined with the glass substrate, and can remain stable for a long time, thereby making the
  • the optical performance of the anti-reflection glass remains stable, and there is no need to add an additional anti-reflection coating, thereby effectively reducing the light reflectivity and increasing the light transmittance, while avoiding the increase in the thickness of the anti-reflection glass, thereby improving the reduction
  • the light transmittance of reflective glass significantly improves its optical performance. Therefore, the anti-reflection glass effectively overcomes the existing shortcomings of additional anti-reflection coatings.
  • the anti-reflection glass in the foregoing embodiments may be any one of glass that has not been chemically strengthened or physically tempered, chemically strengthened glass, or physically tempered glass.
  • the aforementioned anti-reflection glass can significantly reduce the reflectivity of incident light, and significantly increase the light transmittance, thereby significantly improving its perspective effect and effectively avoiding glare.
  • the embodiment of the present invention also provides a method for preparing the anti-reflection glass described above.
  • the method for preparing the anti-reflection glass includes the following steps:
  • the surface to be etched of the glass substrate is pretreated without any masking, masking or etching resistance
  • the surface to be etched of the glass substrate is directly subjected to surface etching treatment through a wet acid solution.
  • the undulating hill morphology formed on the surface of the etched glass and the distribution and size of the hilly convex microstructure in the hill morphology can be effectively controlled and optimized. Wait,
  • the method for preparing the anti-reflection glass includes the following steps:
  • Step S0 obtaining a glass substrate of a certain size without chemical strengthening or physical tempering, and cleaning the glass substrate;
  • Step S1 performing single-sided protection treatment on the glass substrate or no protection, using the acid solution to perform surface etching treatment on the surface to be etched on the glass substrate;
  • Step S2 the glass after the surface etching treatment is cleaned or directly cleaned after removing the single-sided protection measures.
  • the glass substrate that is not chemically strengthened or physically tempered in the step S0 may be glass, chemically strengthened glass, or physical tempered glass that is not chemically strengthened or physically tempered as described in the anti-reflection glass described above. Any kind of glass.
  • the cleaning treatment of the glass substrate may be performed in accordance with a conventional cleaning method for glass to remove impurities adhering to the surface of the glass substrate.
  • the single-sided protection treatment in the step S1 includes coating with an anti-corrosion film or silk screen/spraying anti-corrosion ink or coating/screen printing anti-corrosion glue.
  • the non-etched area of the glass substrate is protected by the single-sided protection treatment, and the glass surface of the area is isolated from contact with the acid solution.
  • the surface etching treatment in the step S1 includes a trough immersion treatment in which the glass substrate is placed vertically, a spray treatment in which the glass substrate passes horizontally, or a immersion treatment in which the glass substrate passes horizontally.
  • the trough immersion treatment time for the glass substrate placed vertically is 2 min to 95 min, preferably 2 min to 45 min;
  • the spray treatment time for the glass substrate to pass horizontally is 0.5 min to 75 min , Preferably 0.5 min to 35 min;
  • the soaking treatment time range for the glass substrate to pass horizontally is 1 min to 85 min, preferably 1 min to 40 min.
  • the acid solution includes at least fluoride ions, and at least one of a nitrate compound or a sulfate compound, and the fluoride ions occupy a range of 0.1%-40% by mass of the acid solution.
  • the mass percentage of the nitrate compound in the acid solution ranges from 0.1% to 60%, and the mass percentage of the sulfate compound in the acid solution ranges from 0.1% to 65%.
  • the acid solution includes at least one of hydrogen fluoride and ammonium fluoride, ammonium hydrogen fluoride, nitric acid, sulfuric acid, phosphoric acid, and hydrochloric acid, and the ratio of the acid solution to hydrogen fluoride accounts for 0.2% by mass of the acid solution.
  • the range of the mass percentage of the ammonium fluoride in the acid solution is between 0.2% and 60%, the range of the mass percentage of the ammonium bifluoride in the acid solution is between 0.2% and 50%, and the range of the mass percentage of the nitric acid in the acid solution is 0.2 % ⁇ 70%, the mass percentage of the sulfuric acid in the acid solution ranges from 0.2% to 80%, the mass percentage of the phosphoric acid in the acid solution ranges from 0.2% to 65%, and the mass percentage of the hydrochloric acid in the acid solution ranges from 0.2% to 75%.
  • the mass percentage of the hydrogen fluoride in the acid solution ranges from 0.2% to 10%, preferably 0.2%
  • the range of the mass percentage of the ammonium fluoride in the acid solution is 0.2%-15%
  • the range of the mass percentage of the ammonium bifluoride in the acid solution is 0.2%-12%
  • the range of the mass percentage of nitric acid in the acid solution is 0.2 %
  • the sulfuric acid accounts for 0.2% to 40% by mass of the acid solution
  • the phosphoric acid accounts for 0.2% to 10%, preferably 0.2% to 5%
  • the hydrochloric acid accounts for the acid solution
  • the mass percentage ranges from 0.2% to 45%.
  • the acid solution contains at least three of hydrogen fluoride and ammonium fluoride, ammonium hydrogen fluoride, nitric acid, sulfuric acid, phosphoric acid, and hydrochloric acid, and the mass percentage of the hydrogen fluoride in the acid solution ranges from 0.2% to 15%.
  • the mass percentage of the ammonium fluoride in the acid solution ranges from 0.2% to 22%
  • the mass percentage of the ammonium bifluoride in the acid solution ranges from 0.2% to 16%
  • the mass percentage of the nitric acid in the acid solution ranges from 0.2% to 25%.
  • the mass percentage of the sulfuric acid in the acid solution ranges from 0.2% to 25%, the mass percentage of the phosphoric acid to the acid solution ranges from 0.2% to 8%, and the mass percentage of the hydrochloric acid to the acid solution ranges from 0.2% to 10%. Is water.
  • the ratio of the acid solution to the ratio of hydrogen fluoride to the mass percentage of the acid solution ranges from 0.2% to 10%
  • the ammonium fluoride occupies a range of 0.2% to 18% by mass of the acid solution
  • the ammonium bifluoride occupies a range of 0.2% to 13% by weight of the acid solution
  • the nitric acid occupies a range of 0.2% to 5% by mass of the acid solution.
  • the sulfuric acid accounts for 0.2% to 12% by mass of the acid solution
  • the phosphoric acid accounts for 0.2% to 5% by mass
  • the hydrochloric acid content is 0.2 to 6%
  • the rest is water.
  • the effective etching of the surface to be etched of the glass substrate is realized , So that the surface to be etched is etched into the undulating hilly topography layer contained in the anti-reflection glass as described above, as shown in FIG. 1-2.
  • the etched glass that is, the anti-reflective glass described above, makes the anti-reflective glass formed by etching have a specific micro-structured surface, thereby giving the anti-reflective glass a low light reflectivity, which is effective Avoid glare, and can improve its perspective effect.
  • the preparation method effectively simplifies the etching process, and the conditions are easy to control, effectively ensuring that the surface of the glass formed by etching has undulating hills, and the optical performance is stable, and the efficiency is high, which effectively reduces the anti-reflection Glass preparation cost.
  • the anti-reflection glass has low light reflectivity and high light transmittance, and its preparation method can effectively control the prepared anti-reflection glass Has stable optical performance. Therefore, the above-mentioned anti-reflection glass can be used in display glass cover plates, solar photovoltaic glass substrates, and glass substrates of LED light-emitting devices of electronic products, thereby improving the light transmittance of corresponding products and improving the perspective effect of products. Reduce or avoid glare.
  • Examples 1-12 respectively provide an anti-reflection glass and a preparation method thereof.
  • the anti-reflective glass includes a glass substrate, formed on at least one surface of the glass substrate with an undulating hilly topography layer, the hilly topography layer is shown in FIG. 1, the hilly topography layer is formed along Z A plurality of hilly protrusion microstructures in the axial direction are formed, and the hilly protrusion microstructures are irregularly distributed; wherein, a single protrusion microstructure presents a tower-shaped structure, and the bottoms of adjacent hilly protrusion microstructures are connected to each other. Moreover, the microstructures of the hills and protrusions are of different sizes, and the shapes are similar but not completely the same.
  • the preparation method of the anti-reflection glass is as follows:
  • Step S0 obtaining a glass substrate of a certain size, and cleaning the glass substrate;
  • Step S1 using the acid solution to perform surface etching treatment on the surface to be etched on the glass substrate;
  • step S2 the glass substrate after the surface etching treatment is cleaned or directly cleaned after removing the single-sided protection measures.
  • the glass substrate, the surface treatment to be etched, the acid solution, the surface etching treatment method and conditions, and the relevant characteristic parameters of the anti-reflection glass formed by etching in each embodiment are as shown in Table 1 below. It can be seen from the relevant data in Table 1 that the corresponding surface morphology characteristics and related optical properties of the anti-reflection glass provided in the foregoing embodiments show that the optical surface with microstructures of the anti-reflection glass of the embodiment of the present invention has low light reflectivity. Significantly improve the light transmittance, thereby significantly improving its perspective effect, and the optical performance is stable.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

提供一种减反射玻璃及其制备方法与应用。该减反射玻璃包括玻璃基体,在玻璃基体的至少一个表面具有起伏的丘陵形貌层,该丘陵形貌层与玻璃基体为一整体,丘陵形貌层是由沿Z轴方向的若干丘陵凸起微结构构成,丘陵凸起微结构为非规则分布。该减反射玻璃所具有起伏丘陵形貌的表面能够显著降低光反射率,并显著增强光的透过率,提高其透视效果;其制备方法有效简化了刻蚀工艺,而且条件易控,有效保证了刻蚀形成的玻璃表面具有起伏的丘陵形貌,而且光学性能稳定。

Description

减反射玻璃及其制备方法与应用 技术领域
本发明属于玻璃制品技术领域,具体涉及一种减反射玻璃及其制备方法与应用。
背景技术
玻璃行业的发展与国民经济的许多行业都存在着联系,玻璃行业对推动整个国民经济的发展都起着积极作用。因此“十一五”规划中也对玻璃产业的发展提出了具体要求。也颁布了各项法律法规来规范玻璃行业的健康发展。玻璃由于其本身具有透明性、耐高温等特点,因此,玻璃在日常生活中得到了广泛的应用。比如,玻璃在保护装置、装潢、光学器材等领域得到了广泛的应用。
由于两种介质界面折射率发生突变,光在两种介质内传播速度不一致,因而发生反射是造成能量损失的主要原因。由于玻璃的透光特性,当光照射玻璃表面时,光也会发生折射的同时,也会发生反射现象。而入射光发生反射现象时,必然降低了光的透过率。虽然在某些应用场景需要提高光的反射率,但是玻璃应用于透明保护产品中时,则光的反射是不利因素,不仅会造成光的透过率降低,从而影响了玻璃的透视效果和清晰度;而且此种应用场景光的反射现象还会造成眩光现象,从而会引起观察者的视觉不适或视觉操作绩效下降。而且随着玻璃在电子产品如通信产品和太阳电池等领域应用的不断加强,对降低玻璃的光反射现象和提高光透过率的要求越来越高。
目前,玻璃行业为了降低玻璃的光反射现象和提高光透过率也一直在做不断的改进,如目前公开了技术当中,一类是通过在玻璃本体表面贴合功能膜层,以实现降低玻璃的反射率和提高玻璃的光透过率,具有代表性的是如通过在玻璃表面镀多层氧化物薄膜或者形成具有微结构的光学树脂功能层。但是这种方法由于增大了玻璃总体厚度,一方面影响了光的透光性,如目前公开的采用氧化钛和二氧化硅薄膜交替沉积镀膜的增透膜的最大反射率只能达到下降到2%,且镀传统增透膜的玻璃在强光下无法清晰的显示图案和文字,会出现眩光现象;另一方面,由于该增透膜是通过事后形成于玻璃表面,其与玻璃表面结合强度不高,在长期使用过程中易脱落,从而随着使用时间的延长,该增透膜的增透效果逐渐丧失,对于大于1*1米大尺寸表面采用沉积镀膜无法控制镀膜的均匀性,大尺寸镀膜还需要专用定制设备,其制造成本非常昂贵,大大制约了降低玻璃的光反射技术的普及性和各领域诉求的满足。
另一类是直接对玻璃表面进行改造处理,如对玻璃表面采用加工处理,如包括湿法刻蚀、等离子刻蚀技术、聚焦离子束加工技术和激光加工技术等。但是现有的该些方法加工获得的增透玻璃的抗反射和增透效果依然不理想,而且存在难控制或成本高等不足。
技术问题
本发明的目的在于克服现有技术的所述不足,提供一种减反射玻璃,以解决现有化减反射玻璃存在抗反射和增透效果不理想或不稳定的技术问题。
本发明的另一目的在于提供本发明减反射玻璃的一种制备方法,以及解决现有减反射玻璃制备方法存在的工艺条件难控制或成本高的技术问题。
技术解决方案
为了实现所述发明目的,本发明一方面,提供了一种减反射玻璃。所述减反射玻璃包括玻璃基体,在所述玻璃基体的至少一个表面具有起伏的丘陵形貌层,所述丘陵形貌层与玻璃基体为一整体,所述丘陵形貌层是由沿Z轴方向的若干丘陵凸起微结构构成,所述丘陵凸起微结构为非规则分布;所述丘陵形貌层包含RSm范围为38μm~300μm、Rz范围为0.075μm~9.2μm、Rp范围为0.007μm~3.3μm的丘陵形貌减少眩光和减少反射区域;所述丘陵形貌减少眩光或减少反射区域的反射率范围为0.1%~2.5%。
本发明另一方面,提供了一种减反射玻璃的制备方法。所述减反射玻璃的制备方法包括如下步骤:
将玻璃基材的待刻蚀表面经不具备任何遮蔽、掩模或蚀刻阻抗预处理后,通过湿式酸溶液直接对所述玻璃基材的所述待刻蚀表面进行表面蚀刻处理。
本发明又一方面,提供了本发明减反射玻璃在电子产品的显示玻璃盖板、太阳能光伏玻璃基板、LED发光器件玻璃基板中的应用。
有益效果
与现有技术相比,本发明减反射玻璃的至少一表面具有起伏的丘陵形貌层结构,而且通过控制所述丘陵形貌层中的微结构特性,显著 降低了所述减反射玻璃的反射率,如可以将光反射率降低至0.1%~2.5%,一方面有效显著增强了光的透过率,提高了其透视效果,另一方面还能有效避免眩光现象。
本发明减反射玻璃的制备方法采用直接对玻璃基材的表面进行湿法刻蚀,有效简化了刻蚀工艺,而且条件易控,有效保证了刻蚀形成的玻璃表面形成具有起伏的丘陵形貌层结构,而且光学性能稳定,而且效率高,有效降低了所述减反射玻璃制备成本。
由于本发明减反射玻璃具有优异的光学性能,因此,将其在相应产品中应用后,能够提高相应产品的光透过率,提高产品的透视效果,降低或避免眩光现象。
附图说明
图1为本发明实施例减反射玻璃的原子力显微镜照片;
图2为图1所示本发明实施例减反射玻璃的原子力显微镜三维照片。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下文相关专用名称的解释:
化学强化玻璃:是经过高温离子交换工艺处理后的化学钢化玻璃。在高温熔盐中大碱金属离子取代玻璃中的小碱金属离子从而产生交换离子体积差,在素玻璃的表层中产生由高到低的压应力,阻碍和延 缓玻璃微裂纹的扩展,达到提高玻璃机械强度的目的。
物理强化玻璃:又称为物理钢化玻璃,也称为淬火钢化玻璃。是将普通平板玻璃在加热炉中加热到接近玻璃的软化温度(600℃)时,通过自身的形变消除内部应力,然后将玻璃移出加热炉,再用多头喷嘴将高压冷空气吹向玻璃的两面,使其迅速且均匀地冷却至室温,即可制得钢化玻璃。
RSm、Rz、Rp、Ra为评价表面粗糙度的指标,在本发明实施例中,具体是为评价丘陵形貌层表面粗糙度。其中,RSm表示轮廓的平均宽度,Rz表示平均峰谷深度,Rp表示平均轮廓波峰高度,Ra表示算术平均粗糙度。
一方面,本发明实施例提供了一种减反射玻璃。所述减反射玻璃的至少一个表面具有微结构,所示减反射玻璃的具有微结构表面的原子力显微镜(AFM)照片如图1-2所示,所述减反射玻璃的具有所述微结构的所述表面为起伏的丘陵形貌,所述起伏的丘陵形貌的微结构构成丘陵形貌层。因此,所述减反射玻璃包括玻璃基体,在所述玻璃基体的至少一个表面具有起伏的丘陵形貌层,所述丘陵形貌层是由沿Z轴方向的若干丘陵凸起微结构构成,所述丘陵凸起微结构为非规则分布。
进一步地,由图1-2所示AFM照片可知,单个凸起微结构呈现塔形结构,相邻所述丘陵凸起微结构的底部互相连接。而且所述丘陵凸起微结构的大小不一,形貌相似但也不完全相同。另外,所述减反射玻璃所含的所述丘陵形貌层包括丘陵形貌减少反射区域和/或丘陵 形貌减少眩光和减少反射区域。
经检测得知,所述丘陵形貌减少眩光和减少反射区域的RSm范围为38μm~300μm、优选为38μm~250μm,Rz范围为0.075μm~9.2μm、优选为0.1μm~9.2μm,Rp范围为0.007μm~3.3μm、优选为0.015μm~3.3μm。该形貌特征的所述丘陵形貌减少眩光和减少反射区域适度的雾度,能够有效避免眩光现象,如测得且所述丘陵形貌减少眩光或减少反射区域的反射率范围为0.1%~2.5%,优选在0.5%~2.0%,更优选0.5%~1.5%。
而且经检测得知,所述减反射玻璃的所述丘陵形貌层表面的粗糙度Ra为9nm-15nm。
对上文各实施例中所述减反射玻璃光学性能测试得知,一实施例中,当所述减反射玻璃的两个表面同时具有所述丘陵形貌层,且所述减反射玻璃的厚度小于1.1mm,射向所述丘陵形貌层的入射光为550nm时,测得入射光在所述丘陵形貌层的光透过率为98%~99.9%;当射向所述丘陵形貌层的入射光为375nm时,测得入射光的光透过率为97%~99.9%;当射向所述丘陵形貌层的入射光为325-375nm时,测得入射光的平均光透过率为93%~99.9%。
或者在一实施例中,当所述减反射玻璃的仅有一个表面具有所述丘陵形貌层,且所述减反射玻璃的厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为550nm时,测得入射光的透过率范围为94%~95.9%;射向所述丘陵形貌层表面的入射光为375nm时,测得入射光的透过率范围为93%~95.9%;射向所述丘陵形貌层表面的入射光为 325-375nm时,测得入射光的平均透过率范围为89%~95.9%。
在进一步实施例中,当所述减反射玻璃为微晶玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层的入射光为200-325nm时,测得入射光的平均光透过率为94%~99.9%。或所述减反射玻璃为微晶玻璃,且其仅有一个表面具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,测得入射光的平均透过率范围为90%~95.9%。
在进一步实施例中,当所述减反射玻璃为有碱玻璃或无碱玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层的入射光为550nm时,测得入射光的光透过率为95%~99.9%;当射向所述丘陵形貌层的入射光为375nm时,测得入射光的光透过率大于94%,如为94%~99.9%;当射向所述丘陵形貌层的入射光为325-375nm时,测得入射光的平均光透过率为90%~99.9%。或所述减反射玻璃为有碱玻璃或无碱玻璃,且其仅有一个表面具有所述丘陵形貌层且厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为550nm时,测得入射光的透过率范围为91%~95.9%;射向所述丘陵形貌层表面的入射光为375nm时,测得入射光的透过率范围为90%~95.9%;射向所述丘陵形貌层表面的入射光为325-375nm时,测得入射光的平均透过率范围为86%~95.9%。
在进一步实施例中,当所述减反射玻璃为石英玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层的入射光为200-325nm时,测得入射光的透过率大于90%~99.9%。 或所述减反射玻璃为石英玻璃,且其仅有一个表面具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,入射光的透过率范围为86%~95.9%。
由上述对所述减反射玻璃的表面微观结果的观察和测量以及对所述减反射玻璃的光学性能的检测得知,所述减反射玻璃能够显著降低入射光的反射率,显著提高光透光率从而显著提高了其透视效果,有效避免眩光现象。
另外,上述各实施例中的所述丘陵形貌层与玻璃基体为一整体,也即是玻璃基体与所述丘陵形貌层固定连接为以整体,优选的,一实施例中,上述各实施例中所述减反射玻璃的玻璃基体与所述丘陵形貌层(当然也包括形成于所述丘陵形貌层中的丘陵凸起微结构)的化学组成一致,也即是完全相同。具体的所述丘陵形貌层可以是由所述减反射玻璃的玻璃本体直接刻蚀形成。这样,所述减反射玻璃的所述丘陵形貌层能够有效与所述玻璃基体形成一整体,从而使得呈起伏所述丘陵形貌层与玻璃基体结合牢固,能够长时间保持稳定,从而使得所述减反射玻璃的光学性能保持稳定,而且不用额外增加增透膜,从而在有效降低光反射率增加光透光率的同时,避免了所述减反射玻璃的厚度增加,从而提高了所述减反射玻璃的光透光率,显著提高其光学性能。因此,所述减反射玻璃有效克服了现有额外增加增透膜存在的不足。
其次,上述各实施例中减反射玻璃可以是为未经化学强化或物理钢化处理的玻璃、化学强化玻璃或物理钢化玻璃中的任一种。
因此,上述所述减反射玻璃能够显著降低入射光的反射率,显著提高光透光率,从而显著提高了其透视效果,有效避免眩光现象。
另一方面,本发明实施例还提供了上文所述减反射玻璃的一种制备方法。所述减反射玻璃制备方法包括如下步骤:
将玻璃基材的待刻蚀表面经不具备任何遮蔽、掩模或蚀刻阻抗预处理后,通过湿式酸溶液直接对所述玻璃基材的所述待刻蚀表面进行表面蚀刻处理。
其中,通过控制所述酸溶液和所述刻蚀处理的工艺条件可以有效控制和优化被刻蚀玻璃表面形成起伏的丘陵形貌以及所述丘陵形貌中的丘陵凸起微结构的分布和尺寸等,
一实施例中,所述减反射玻璃制备方法包括如下步骤:
步骤S0,获取一定尺寸的未经化学强化或物理钢化的玻璃基材,将玻璃基材进行清洗处理;
步骤S1,对所述玻璃基材进行单面保护处理或不保护,采用所述酸溶液对所述玻璃基材是所述待刻蚀表面进行表面蚀刻处理;
步骤S2,对所述表面蚀刻处理后的玻璃去除单面保护措施后清洗处理或直接清洗处理。
其中,所述步骤S0中的未经化学强化或物理钢化的玻璃基材可以是如上文所述减反射玻璃中所述的为未经化学强化或物理钢化处理的玻璃、化学强化玻璃或物理钢化玻璃中的任一种。对所述玻璃基材的清洗处理可以按照玻璃常规的清洗方法进行清洗,以除去所述玻璃基材表面粘附的杂质。
一实施例中,所述步骤S1中所述的所述单面保护处理包括覆抗腐蚀膜或丝印/喷涂抗腐蚀油墨或涂布/丝印抗腐蚀胶水。通过所述单面保护处理实现对所述玻璃基材非刻蚀区域进行保护,隔绝该区域的玻璃表面与所述酸溶液接触。
一实施例中,所述步骤S1中的所述表面蚀刻处理包括玻璃基材立式放置的槽式浸泡处理或玻璃基材水平通过的喷淋处理或玻璃基材水平通过的浸泡处理。在具体实施例中,所述玻璃基材立式放置的槽式浸泡处理时间范围为2min~95min,优选为2min~45min;所述玻璃基材水平通过的喷淋处理时间范围为0.5min~75min,优选为0.5min~35min;所述玻璃基材水平通过的浸泡处理时间范围为1min~85min,优选为1min~40min。
在上述各实施例中,所述酸溶液至少包括氟离子,以及硝酸根化合物或硫酸根化合物中的至少一种,且所述氟离子占酸溶液质量百分比范围为0.1%~40%,所述硝酸根化合物占酸溶液质量百分比范围为0.1%~60%,所述硫酸根化合物占酸溶液质量百分比范围为0.1%~65%。
另一实施例中,所述酸溶液包括氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少一种,且所述酸溶液配比氟化氢占酸溶液质量百分比范围为0.2%~55%,所述氟化铵占酸溶液质量百分比范围为0.2%~60%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~50%,所述硝酸占酸溶液质量百分比范围为0.2%~70%,所述硫酸占酸溶液质量百分比范围为0.2%~80%,所述磷酸占酸溶液质量百分比 范围为0.2%~65%,所述盐酸占酸溶液质量百分比范围为0.2%~75%。
优选,当所述酸溶液包括氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少一种时,所述氟化氢占酸溶液质量百分比范围为0.2%~10%,优选0.2%~5%,所述氟化铵占酸溶液质量百分比范围为0.2%~15%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~12%,所述硝酸占酸溶液质量百分比范围为0.2%~25%,所述硫酸占酸溶液质量百分比范围为0.2%~40%,所述磷酸占酸溶液质量百分比范围为0.2%~10%,优选0.2%~5%,所述盐酸占酸溶液质量百分比范围为0.2%~45%。
另一实施例中,所述酸溶液包含氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少三种,且所述氟化氢占酸溶液质量百分比范围为0.2%~15%,所述氟化铵占酸溶液质量百分比范围为0.2%~22%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~16%,所述硝酸占酸溶液质量百分比范围为0.2%~25%,所述硫酸占酸溶液质量百分比范围为0.2%~25%,所述磷酸占酸溶液质量百分比范围为0.2%~8%,所述盐酸占酸溶液质量百分比范围为0.2%~10%,其他的为水。
优选,当所述酸溶液包含氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少三种时,所述酸溶液配比氟化氢占酸溶液质量百分比范围为0.2%~10%,所述氟化铵占酸溶液质量百分比范围为0.2%~18%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~13%,所述硝酸占酸溶液质量百分比范围为0.2%~5%,所述硫酸占酸溶液 质量百分比范围为0.2%~12%,所述磷酸占酸溶液质量百分比范围为0.2%~5%,所述盐酸含量0.2~6%,其他的为水。
通过对所述酸溶液的上述配方控制和优化,并结合所述酸溶液对所述刻蚀处理的条件进行控制和优化,实现对所述玻璃基材的所述待刻蚀表面进行有效刻蚀,从而使得所述待刻蚀表面被刻蚀成为如上文所述减反射玻璃所含的所述起伏丘陵形貌层,如图1-2所示。从而使得被刻蚀玻璃,也即是上文所述减反射玻璃,使得刻蚀形成的所述减反射玻璃具有特定的微结构表面,从而赋予所述减反射玻璃具有低的光反射率,有效避免眩光现象,而且能够提高了其透视效果。另外,所述制备方法有效简化了刻蚀工艺,而且条件易控,有效保证了刻蚀形成的玻璃表面具有起伏的丘陵形貌,而且光学性能稳定,而且效率高,有效降低了所述减反射玻璃制备成本。
再一方面,基于上文所述减反射玻璃及其制备方法,所述减反射玻璃具有低的光反射率和高的光透过率,而且其制备方法能够有效控制制备的所述减反射玻璃具有稳定的光学性能。因此,上文所述减反射玻璃可以被用于电子产品的显示玻璃盖板、太阳能光伏玻璃基板、LED发光器件玻璃基板中,从而能够提高相应产品的光透过率,提高产品的透视效果,降低或避免眩光现象。
实施例1-12
本实施例1-12分别提供了一种减反射玻璃及其制备方法。所述减反射玻璃包括玻璃基体,形成于所述玻璃基体的至少一表面上具有起伏的丘陵形貌层,所述丘陵形貌层如图1所示,所述丘陵形貌层是 由沿Z轴方向的若干丘陵凸起微结构构成,所述丘陵凸起微结构为非规则分布;其中,单个凸起微结构呈现塔形结构,相邻所述丘陵凸起微结构的底部互相连接。而且所述丘陵凸起微结构的大小不一,形貌相似但也不完全相同。
所述减反射玻璃的制备方法如下:
步骤S0,获取一定尺寸的玻璃基材,将所述玻璃基材进行清洗处理;
步骤S1,采用所述酸溶液对所述玻璃基材是所述待刻蚀表面进行表面蚀刻处理;
步骤S2,对所述表面蚀刻处理后的玻璃基材去除单面保护措施后清洗干净或直接清洗干净。
具体地,各实施例中玻璃基材、待刻蚀表面处理、所述酸溶液、表面蚀刻处理方式和条件以及被刻蚀形成的减反射玻璃相关特性参数均如下述表1中所示。由表1中相关数据可知,上述各实施例提供的减反射玻璃的相应表面形貌特性和相关光学性能可知,本发明实施例减反射玻璃的具有微结构的光学表面具有低的光反射率,显著提高光透光率,从而显著提高了其透视效果,而且光学性能稳定。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
表1
Figure PCTCN2019097038-appb-000001
Figure PCTCN2019097038-appb-000002
Figure PCTCN2019097038-appb-000003

Claims (22)

  1. 一种减反射玻璃,其特征在于:所述减反射玻璃包括玻璃基体,在所述玻璃基体的至少一个表面具有起伏的丘陵形貌层,所述丘陵形貌层与玻璃基体为一整体,所述丘陵形貌层是由沿Z轴方向的若干丘陵凸起微结构构成,所述丘陵凸起微结构为非规则分布;所述丘陵形貌层包含RSm范围为38μm~300μm、Rz范围为0.075μm~9.2μm、Rp范围为0.007μm~3.3μm的丘陵形貌减少眩光和减少反射区域;所述丘陵形貌减少眩光或减少反射区域的反射率范围为0.1%~2.5%。
  2. 根据权利要求1所述的减反射玻璃,其特征在于:单个所述凸起微结构呈现塔形结构,相邻所述丘陵凸起微结构的底部互相连接。
  3. 根据权利要求1-2任一项所述的减反射玻璃,其特征在于:所述丘陵形貌层的化学组成与所述玻璃基体完全一致。
  4. 根据权利要求1所述的减反射玻璃,其特征在于:所述丘陵形貌层包含RSm范围为38μm~250μm、Rz范围为0.1μm~9.2μm、Rp范围为0.015μm~3.3μm的所述丘陵形貌减少眩光和减少反射区域;所述丘陵形貌减少眩光或减少反射区域的反射率范围为0.1%~2.0%。
  5. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述丘陵形貌层的Ra范围为9nm-15nm。
  6. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述减反射玻璃的两个表面同时具有所述丘陵形貌层,且所述减反射玻璃的厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为550nm 时,入射光的透过率范围为98%~99.9%;射向所述丘陵形貌层表面的入射光为375nm时,入射光的透过率范围为97%~99.9%;射向所述丘陵形貌层表面的入射光为325-375nm时,入射光的平均透过率范围为93%~99.9%;
    所述减反射玻璃的仅有一个表面具有所述丘陵形貌层,且所述减反射玻璃的厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为550nm时,入射光的透过率范围为94%~95.9%;射向所述丘陵形貌层表面的入射光为375nm时,入射光的透过率范围为93%~95.9%;射向所述丘陵形貌层表面的入射光为325-375nm时,入射光的平均透过率范围为89%~95.9%。
  7. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述减反射玻璃为微晶玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,入射光的平均透过率范围为94%~99.9%;
    所述减反射玻璃为微晶玻璃,且其仅有一个表面具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,入射光的平均透过率范围为90%~95.9%。
  8. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述减反射玻璃为有碱玻璃或无碱玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光 为550nm时,入射光的透过率范围为95%~99.9%;射向所述丘陵形貌层表面的入射光为375nm时,入射光的透过率范围为94%~99.9%;射向所述丘陵形貌层表面的入射光为325-375nm时,入射光的平均透过率范围为90%~99.9%;
    所述减反射玻璃为有碱玻璃或无碱玻璃,且其仅有一个表面具有所述丘陵形貌层且厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为550nm时,入射光的透过率范围为91%~95.9%;射向所述丘陵形貌层表面的入射光为375nm时,入射光的透过率范围为90%~95.9%;射向所述丘陵形貌层表面的入射光为325-375nm时,入射光的平均透过率范围为86%~95.9%。
  9. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述减反射玻璃为石英玻璃,且其两个表面同时具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,入射光的透过率范围为90%~99.9%;
    所述减反射玻璃为石英玻璃,且其仅有一个表面具有所述丘陵形貌层和其厚度小于1.1mm,射向所述丘陵形貌层表面的入射光为200-325nm时,入射光的透过率范围为86%~95.9%。
  10. 根据权利要求1-2、4任一项所述的减反射玻璃,其特征在于:所述减反射玻璃为未经化学强化或物理钢化处理的玻璃、化学强化玻璃或物理钢化玻璃中的任一种。
  11. 一种减反射玻璃的制备方法,其特征在于,包括如下步骤:
    将玻璃基材的待刻蚀表面经不具备任何遮蔽、掩模或蚀刻阻抗预处理后,通过湿式酸溶液直接对所述玻璃基材的所述待刻蚀表面进行表面蚀刻处理。
  12. 根据权利要求11所述的制备方法,其特征在于:所述酸溶液至少包括氟离子,以及水、硝酸根化合物或硫酸根化合物中的至少一种,且所述氟离子占酸溶液质量百分比范围为0.1%~40%,所述硝酸根化合物占酸溶液质量百分比范围为0.1%~60%,所述硫酸根化合物占酸溶液质量百分比范围为0.1%~65%。
  13. 根据权利要求11所述的制备方法,其特征在于:所述酸溶液包括氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少一种,且所述氟化氢占酸溶液质量百分比范围为0.2%~55%,所述氟化铵占酸溶液质量百分比范围为0.2%~60%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~50%,所述硝酸占酸溶液质量百分比范围为0.2%~70%,所述硫酸占酸溶液质量百分比范围为0.2%~80%,所述磷酸占酸溶液质量百分比范围为0.2%~65%,所述盐酸占酸溶液质量百分比范围为0.2%~75%。
  14. 根据权利要求13所述的制备方法,其特征在于:所述氟化氢占酸溶液质量百分比范围为0.2%~10%,所述氟化铵占酸溶液质量百分比范围为0.2%~15%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~12%,所述硝酸占酸溶液质量百分比范围为0.2%~25%,所述硫酸占酸溶液质量百分比范围为0.2%~40%,所述磷酸占酸溶液质量 百分比范围为0.2%~10%,所述盐酸占酸溶液质量百分比范围为0.2%~45%。
  15. 根据权利要求11所述的制备方法,其特征在于:所述酸溶液包含氟化氢及氟化铵、氟化氢铵、硝酸、硫酸、磷酸、盐酸中的至少三种,且所述氟化氢占酸溶液质量百分比范围为0.2%~15%,所述氟化铵占酸溶液质量百分比范围为0.2%~22%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~16%,所述硝酸占酸溶液质量百分比范围为0.2%~25%,所述硫酸占酸溶液质量百分比范围为0.2%~25%,所述磷酸占酸溶液质量百分比范围为0.2%~8%,所述盐酸占酸溶液质量百分比范围为0.2%~10%,其他的为水。
  16. 根据权利要求15所述的制备方法,其特征在于:所述酸溶液配比氟化氢占酸溶液质量百分比范围为0.2%~10%,所述氟化铵占酸溶液质量百分比范围为0.2%~18%,所述氟化氢铵占酸溶液质量百分比范围为0.2%~13%,所述硝酸占酸溶液质量百分比范围为0.2%~5%,所述硫酸占酸溶液质量百分比范围为0.2%~12%,所述磷酸占酸溶液质量百分比范围为0.2%~5%,所述盐酸含量0.2~6%,其他的为水。
  17. 根据权利要求11-16任一项所述的制备方法,其特征在于:所述减反射玻璃的制备方法工艺步骤包括:
    步骤S0,获取一定尺寸的未经化学强化或物理钢化的玻璃基材,将所述玻璃基材进行清洗处理;
    步骤S1,对所述玻璃基材进行单面保护处理或不保护,采用所 述酸溶液对所述玻璃基材是所述待刻蚀表面进行表面蚀刻处理;
    步骤S2,对所述表面蚀刻处理后的玻璃去除单面保护措施后清洗处理或直接清洗处理。
  18. 根据权利要求17所述的制备方法,其特征在于:所述步骤S1中的所述单面保护处理包括覆抗腐蚀膜或丝印/喷涂抗腐蚀油墨或涂布/丝印抗腐蚀胶水。
  19. 根据权利要求17所述的制备方法,其特征在于:所述步骤S1中的所述表面蚀刻处理包括玻璃基材立式放置的槽式浸泡处理或玻璃基材水平通过的喷淋处理或玻璃基材水平通过的浸泡处理;
  20. 根据权利要求19所述的制备方法,其特征在于:所述玻璃基材立式放置的槽式浸泡处理时间范围为2min~95min,所述玻璃基材水平通过的喷淋处理时间范围为0.5min~75min,所述玻璃基材水平通过的浸泡处理时间范围为1min~85min。
  21. 根据权利要求19所述的制备方法,其特征在于:所述玻璃基材立式放置的槽式浸泡处理时间范围为2min~45min,所述玻璃基材水平通过的喷淋处理时间范围为0.5min~35min,所述玻璃基材水平通过的浸泡处理时间范围为1min~40min。
  22. 根据权利要求1-10任一项所述的减反射玻璃或由权利要求11-21任一项所述的制备方法制备的减反射玻璃在电子产品的显示玻璃盖板、太阳能光伏玻璃基板、LED发光器件玻璃基板中的应用。
PCT/CN2019/097038 2019-07-22 2019-07-22 减反射玻璃及其制备方法与应用 WO2021012144A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19938923.0A EP4005990A4 (en) 2019-07-22 2019-07-22 ANTI-REFLECTIVE GLASS AND PROCESS FOR ITS MANUFACTURE AND USE THEREOF
PCT/CN2019/097038 WO2021012144A1 (zh) 2019-07-22 2019-07-22 减反射玻璃及其制备方法与应用
US17/583,169 US20220146714A1 (en) 2019-07-22 2022-01-24 Anti-reflective glass, and preparation method therefor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/097038 WO2021012144A1 (zh) 2019-07-22 2019-07-22 减反射玻璃及其制备方法与应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/583,169 Continuation US20220146714A1 (en) 2019-07-22 2022-01-24 Anti-reflective glass, and preparation method therefor and application thereof

Publications (1)

Publication Number Publication Date
WO2021012144A1 true WO2021012144A1 (zh) 2021-01-28

Family

ID=74192630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097038 WO2021012144A1 (zh) 2019-07-22 2019-07-22 减反射玻璃及其制备方法与应用

Country Status (3)

Country Link
US (1) US20220146714A1 (zh)
EP (1) EP4005990A4 (zh)
WO (1) WO2021012144A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349359A (zh) * 2021-12-27 2022-04-15 盐城牧东光电科技有限公司 一种低反射高透光性盖板及其制作工艺

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314522A (zh) * 2008-06-12 2008-12-03 东华大学 一种防眩光玻璃的制备方法
EP2287120A1 (en) * 2009-07-16 2011-02-23 AGC Glass Europe Decorative glass article
CN102448904A (zh) * 2009-03-31 2012-05-09 康宁股份有限公司 具有防眩光表面的玻璃及其制备方法
CN102887647A (zh) * 2012-10-11 2013-01-23 郑州恒昊玻璃技术有限公司 用高硼硅、高铝硅玻璃生产防眩光玻璃的工艺
CN103626400A (zh) * 2012-08-29 2014-03-12 悦城科技股份有限公司 无眩光低反射玻璃面的制造方法
JP2015096462A (ja) * 2008-08-18 2015-05-21 日本電気硝子株式会社 タッチパネル用ガラスの製造方法
CN105152542A (zh) * 2015-10-19 2015-12-16 上海光和光学制造股份有限公司 一种防眩玻璃的制备方法
CN105366961A (zh) * 2014-08-12 2016-03-02 武藏野精细玻璃株式会社 防眩光玻璃的制造方法
CN106470954A (zh) * 2014-07-09 2017-03-01 旭硝子欧洲玻璃公司 低闪光的玻璃板
CN107074626A (zh) * 2015-01-14 2017-08-18 中央硝子株式会社 显示装置用的防眩性玻璃板物品及其制法
CN108516693A (zh) * 2018-06-22 2018-09-11 佛山市庆通玻璃科技有限公司 一种无干涉闪点防眩光玻璃及蚀刻液配备方法及生产工艺
CN109437578A (zh) * 2018-11-23 2019-03-08 佛山市庆通玻璃科技有限公司 一种具有反光闪亮点的玻璃及该玻璃的生产工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1020793A3 (fr) * 2012-07-18 2014-05-06 Agc Glass Europe Feuille de verre depolie.
JP2015013777A (ja) * 2013-07-05 2015-01-22 旭硝子株式会社 着色ガラス

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314522A (zh) * 2008-06-12 2008-12-03 东华大学 一种防眩光玻璃的制备方法
JP2015096462A (ja) * 2008-08-18 2015-05-21 日本電気硝子株式会社 タッチパネル用ガラスの製造方法
CN102448904A (zh) * 2009-03-31 2012-05-09 康宁股份有限公司 具有防眩光表面的玻璃及其制备方法
EP2287120A1 (en) * 2009-07-16 2011-02-23 AGC Glass Europe Decorative glass article
CN103626400A (zh) * 2012-08-29 2014-03-12 悦城科技股份有限公司 无眩光低反射玻璃面的制造方法
CN102887647A (zh) * 2012-10-11 2013-01-23 郑州恒昊玻璃技术有限公司 用高硼硅、高铝硅玻璃生产防眩光玻璃的工艺
CN106470954A (zh) * 2014-07-09 2017-03-01 旭硝子欧洲玻璃公司 低闪光的玻璃板
CN105366961A (zh) * 2014-08-12 2016-03-02 武藏野精细玻璃株式会社 防眩光玻璃的制造方法
CN107074626A (zh) * 2015-01-14 2017-08-18 中央硝子株式会社 显示装置用的防眩性玻璃板物品及其制法
CN105152542A (zh) * 2015-10-19 2015-12-16 上海光和光学制造股份有限公司 一种防眩玻璃的制备方法
CN108516693A (zh) * 2018-06-22 2018-09-11 佛山市庆通玻璃科技有限公司 一种无干涉闪点防眩光玻璃及蚀刻液配备方法及生产工艺
CN109437578A (zh) * 2018-11-23 2019-03-08 佛山市庆通玻璃科技有限公司 一种具有反光闪亮点的玻璃及该玻璃的生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Geometrical product specifications (GPS) -- Surface texture: Profile method -- Terms, definitions and surface texture parameters", NATIONAL STANDARDS OF THE PEOPLE'S REPUBLIC OF CHINA GB/T 3505-2009; ISO 4287:1997, 16 March 2009 (2009-03-16), CN, pages 1 - 17, XP009534117 *
See also references of EP4005990A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349359A (zh) * 2021-12-27 2022-04-15 盐城牧东光电科技有限公司 一种低反射高透光性盖板及其制作工艺
CN114349359B (zh) * 2021-12-27 2023-06-09 盐城牧东光电科技有限公司 一种低反射高透光性盖板及其制作工艺

Also Published As

Publication number Publication date
EP4005990A4 (en) 2023-04-26
US20220146714A1 (en) 2022-05-12
EP4005990A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP5890760B2 (ja) 光散乱機能および反射抑制機能を有する光入射面を備えたガラス板
CN105408774B (zh) 具有梯度层的耐划痕制品
JP5998030B2 (ja) 太陽電池用又はディスプレイ用ガラスとその製造方法
KR101770862B1 (ko) 방현 표면 처리 방법 및 그의 제품
JP6146746B2 (ja) アンチグレア面を有するガラス製品の形成方法
US20150174625A1 (en) Articles with monolithic, structured surfaces and methods for making and using same
US20150191394A1 (en) Cover glass and method for producing cover glass
TW201834992A (zh) 具有低閃光的紋理化玻璃表面及其製造方法
TWI698403B (zh) 包含光提取特徵之玻璃物件以及製造彼之方法
WO2012141310A1 (ja) 表面処理されたガラス基体の製造方法
TW201934515A (zh) 具抗刮擦性的紋理化基於玻璃之製品及其製作方法
JP2015511918A5 (zh)
JP6395723B2 (ja) ガラス板の製造方法及びガラス板
JP2009120835A (ja) 透明基材の可視光及び太陽光の透光率が低下しない透明アクアベースナノゾル・ゲルコーティング剤組成物およびそのコーティング方法
CN107140840A (zh) 一种采用溶液化学法制备防眩光镀膜玻璃的方法
CN110357444B (zh) 减反射玻璃及其制备方法与应用
WO2021012144A1 (zh) 减反射玻璃及其制备方法与应用
TW201938505A (zh) 防眩光玻璃片
CN106835043A (zh) 一种透明超疏水薄膜、其制备方法及用途
Yamaguchi et al. Anti-reflective coatings of flowerlike alumina on various glass substrates by the sol–gel process with the hot water treatment
CN108529872B (zh) 化学强化玻璃和化学强化玻璃的制造方法
CN113636760B (zh) 一种防雾自清洁玻璃及其制备方法
CN211522032U (zh) 减反射玻璃
JP2020132508A (ja) 凹凸形状付きガラス基体およびその製造方法
Zhang et al. Enhancing anti-reflective properties of electronic glass through two-step chemical etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019938923

Country of ref document: EP

Effective date: 20220222