WO2021010605A1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
WO2021010605A1
WO2021010605A1 PCT/KR2020/008043 KR2020008043W WO2021010605A1 WO 2021010605 A1 WO2021010605 A1 WO 2021010605A1 KR 2020008043 W KR2020008043 W KR 2020008043W WO 2021010605 A1 WO2021010605 A1 WO 2021010605A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
solvent
lithium
sulfur
Prior art date
Application number
PCT/KR2020/008043
Other languages
French (fr)
Korean (ko)
Inventor
송명준
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200073784A external-priority patent/KR20210009272A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP20840658.7A priority Critical patent/EP3951931A4/en
Priority to CN202080028671.2A priority patent/CN113692665A/en
Priority to JP2021563684A priority patent/JP7427025B2/en
Priority to BR112021020560A priority patent/BR112021020560A2/en
Priority to US17/605,761 priority patent/US20220231342A1/en
Publication of WO2021010605A1 publication Critical patent/WO2021010605A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium secondary battery.
  • lithium-ion As the application area of secondary batteries expands to electric vehicles (EV) or energy storage systems (ESS), lithium-ion has a relatively low energy storage density ( ⁇ 250 Wh/kg) compared to its weight. Ion secondary batteries have limitations in their application to these products. In contrast, lithium-sulfur secondary batteries are in the spotlight as a next-generation secondary battery technology because they can theoretically realize a high energy storage density ( ⁇ 2,600 Wh/kg) to weight.
  • the lithium-sulfur secondary battery is a battery system using a sulfur-based material having a sulfur-sulfur bond as a positive electrode active material and lithium metal as a negative electrode active material.
  • This lithium-sulfur secondary battery has the advantage that sulfur, which is the main material of the positive electrode active material, has an abundance of resources worldwide, is non-toxic, and has a low weight per atom.
  • lithium which is a negative electrode active material
  • a sulfur-based material which is a positive electrode active material
  • the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into lithium cation form.
  • the sulfur reduction reaction is a process in which a sulfur-sulfur bond accepts two electrons and is converted into a sulfur anion form. The lithium cation generated by the oxidation reaction of lithium is transferred to the positive electrode through the electrolyte, and forms a salt by combining with the sulfur anion generated by the reduction reaction of sulfur.
  • Sulfur which is a positive active material, has low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid-state form.
  • Existing lithium-sulfur secondary batteries induce a liquid-state reaction and improve reactivity by generating an intermediate polysulfide in the form of Li 2 S x to improve the reactivity of sulfur.
  • an ether solvent such as dioxolane and dimethoxyethane having high solubility in lithium polysulfide is used as a solvent for the electrolyte solution.
  • the existing lithium-sulfur secondary battery builds a catholyte-type lithium-sulfur secondary battery system to improve reactivity.
  • Korean Patent Laid-Open No. 2016-0037084 uses a carbon nanotube aggregate of a three-dimensional structure coated with graphene with a carbon material to block the melting of lithium polysulfide and improve the conductivity of the sulfur-carbon nanotube composite. It discloses that it can be improved.
  • Korean Patent Registration No.1379716 uses a graphene composite containing sulfur prepared by treating graphene with hydrofluoric acid to form pores on the surface of graphene and growing sulfur particles in the pores as a positive electrode active material. It is disclosed that lithium polysulfide elution can be suppressed to minimize a decrease in capacity of the battery.
  • a lithium-sulfur secondary battery including a graphene composite positive electrode containing sulfur and a manufacturing method thereof
  • the present inventors manufactured a lithium secondary battery using an electrolyte solution including a positive electrode slurry with a particle size adjusted and a solvent having a dipole moment less than a certain value, and that the lithium secondary battery thus manufactured exhibits improved life characteristics. Confirmed.
  • an object of the present invention is to provide a lithium secondary battery with improved life characteristics.
  • the present invention is a positive electrode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material,
  • the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 ⁇ m
  • the electrolyte solution contains a solvent and a lithium salt
  • the solvent is,
  • a first solvent having a DV 2 factor value of 1.75 or less represented by Equation 1 below;
  • lithium secondary battery comprising a second solvent that is a fluorinated ether-based solvent:
  • DV is the dipole moment per unit volume (D ⁇ mol/L)
  • is the viscosity of the solvent (cP, 25°C)
  • is 100 (constant).
  • the lithium secondary battery of the present invention includes a positive electrode including a positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 ⁇ m; And an electrolytic solution including a first solvent having a DV 2 factor of 1.75 or less and a second solvent that is a fluorinated ether-based solvent; when it contains, there is an effect of improving high energy density and lifespan characteristics.
  • lithium-sulfur secondary batteries have a high discharge capacity and energy density among many secondary batteries, and sulfur used as a positive electrode active material has abundant reserves and is inexpensive, so the manufacturing cost of the battery can be lowered, and it is environmentally friendly. As a result, it is in the spotlight as a next-generation secondary battery.
  • the loss of sulfur occurs due to the inability to suppress the elution of lithium polysulfide as described above, and the amount of sulfur participating in the electrochemical reaction rapidly decreases. And not all of the theoretical energy density.
  • the eluted lithium polysulfide in addition to being suspended or precipitated in the electrolyte, reacts directly with lithium metal, which is the negative electrode, and is fixed in the form of Li 2 S on the surface of the negative electrode, thereby corroding the lithium metal negative electrode, and initial capacity and cycle after a certain cycle. It causes a problem of rapidly deteriorating properties.
  • the porosity (or porosity) of the positive electrode active material layer is low, the loading amount of sulfur as the positive electrode active material is high, and the particle size (based on D 50 ) is 15.
  • the conditions related to the electrolyte are specified to have a high energy density compared to the existing lithium-sulfur secondary battery when actually implemented, A lithium-sulfur secondary battery having excellent properties can be provided.
  • the present invention is an anode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
  • the positive electrode includes a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material,
  • the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 ⁇ m
  • the electrolyte solution contains a solvent and a lithium salt
  • the solvent is,
  • a first solvent having a DV 2 factor value of 1.75 or less represented by Equation 1 below;
  • It relates to a lithium secondary battery comprising a second solvent which is a fluorinated ether solvent.
  • DV is the dipole moment per unit volume (D ⁇ mol/L)
  • is the viscosity of the solvent (cP, 25°C)
  • is 100 (constant).
  • the lithium secondary battery may preferably be a lithium-sulfur secondary battery.
  • the positive electrode for a lithium secondary battery of the present invention includes a positive electrode slurry containing a sulfur-carbon composite, a binder, and a conductive material, and the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 ⁇ m.
  • the positive electrode for a lithium secondary battery of the present invention includes a positive electrode current collector; And a positive electrode active material layer formed on at least one surface of the positive electrode current collector, wherein the positive electrode active material layer may be formed of a positive electrode slurry having a particle size of 15 to 50 ⁇ m (based on D 50 ).
  • the particle size of the positive electrode slurry refers to the particle size of the positive electrode slurry itself finally obtained by mixing a sulfur-carbon composite, a binder, and a conductive material in a solvent.
  • the particle size of the positive electrode slurry may depend on the particle size of the sulfur-carbon composite contained therein, but the particle size of the sulfur-carbon composite decreases due to the process of mixing for dispersion during the manufacturing process of the positive electrode slurry.
  • the particle size of the slurry and the particle size of the sulfur-carbon composite are distinct.
  • the particle size (based on D 50 ) of the positive electrode slurry including the sulfur-carbon composite, the binder, and the conductive material may be 15 to 50 ⁇ m, preferably more than 15 ⁇ m and 30 ⁇ m or less, and more preferably 17 to 30 ⁇ m.
  • the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 ⁇ m, life characteristics of a lithium-sulfur secondary battery including the same may be improved.
  • the particle size of the positive electrode slurry (based on D 50 ) is less than 15 ⁇ m, adhesion to the positive electrode current collector decreases, and there is a problem of being separated from the positive electrode current collector, and an overvoltage occurs when the lithium-sulfur secondary battery is driven, resulting in a decrease in lifespan characteristics. I can.
  • the particle size (based on D 50 ) of the positive electrode slurry exceeds 50 ⁇ m, the particle size distribution of the particles present in the positive electrode active material layer increases, thereby increasing the non-uniformity of the positive electrode active material layer, which may cause battery performance degradation.
  • the particles of the sulfur-carbon composite may be too large to cause scratches, which may cause difficulties in manufacturing the positive electrode.
  • the sulfur-carbon composite is a cathode active material for a lithium secondary battery, and includes sulfur and carbon nanotubes, and more specifically, is a sulfur-carbon composite in which sulfur is uniformly supported inside and outside the carbon nanotubes.
  • the carbon nanotubes may be entangled type carbon nanotubes having a particle size (based on D 50 ) of 15 to 50 ⁇ m.
  • the entangled type refers to a form made of one particle by lumping together entangled carbon nanotubes, and is also referred to as a non-bundle type.
  • the particle shape means a particle whose specific shape is not determined.
  • the particle size of the entangled carbon nanotubes in the form of particles is controlled through a milling process, the particle size of the sulfur-carbon composite including the same and the particle size of the positive electrode slurry can be controlled.
  • the sulfur may be one or more selected from the group consisting of inorganic sulfur (S 8 ), Li 2 S n (n ⁇ 1) and organic sulfur compounds, preferably inorganic sulfur (S 8 ).
  • the sulfur-carbon composite may include the sulfur and carbon nanotubes in a weight ratio of 55:45 to 90:10. When the weight ratio of the sulfur and the carbon material contained in the sulfur-carbon composite is satisfied, the capacity of the battery can be improved and the conductivity can be maintained.
  • the sulfur-carbon composite may be prepared by mixing the carbon nanotubes and sulfur, and then impregnating the sulfur into the carbon nanotubes through a melt diffusion method.
  • the sulfur-carbon composite may be included in an amount of 60 to 95% by weight, preferably 65 to 95% by weight, more preferably 70 to 90% by weight, based on the total weight of the positive electrode slurry. If the sulfur-carbon composite is less than 60% by weight, battery performance may deteriorate, and if it exceeds 95% by weight, the content of conductive materials or binders other than the positive electrode active material is relatively reduced, resulting in a decrease in properties such as conductivity or durability. .
  • the conductive material is not particularly limited, but may include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may be a conductive material such as a polyphenylene derivative.
  • the conductive material may be in an amount of 0.05% to 5% by weight based on the total weight of the positive electrode slurry.
  • the binder is SBR (Styrene-Butadiene Rubber)/CMC (Carboxymethyl Cellulose), poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated Polyethylene oxide, cross-linked polyethylene oxide, polyvinyl ether, poly(methyl methacrylate), polyvinylidene fluoride, a copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly(ethyl) Acrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, polyacrylic acid, derivatives, blends, copolymers and the like thereof may be used.
  • SBR Styrene-Butadiene Rubber
  • CMC Carboxymethyl Cellulose
  • polyvinyl alcohol polyethylene oxide
  • the content of the binder may be 1 to 20% by weight, preferably 3 to 18% by weight, more preferably 5 to 15% by weight based on the total weight of the positive electrode slurry. If it is less than the above range, the bonding force between the positive electrode active material or between the positive electrode active material and the current collector may be reduced, thereby deteriorating electrode stability. In addition, suppression of polysulfide elution due to the interaction between polysulfide and specific functional groups of the polymer chain used as a binder can be expected. If it exceeds the above range, the battery capacity may decrease.
  • the positive electrode slurry is prepared as a slurry having a particle size of 15 to 50 ⁇ m (based on D 50 ) by mixing a sulfur-carbon composite, a conductive material, and a binder in a solvent, and after applying the slurry having the particle size on a current collector Drying and selectively rolling may be performed to prepare a positive electrode having a positive electrode active material layer formed thereon.
  • a solvent for preparing the sulfur-carbon composite, the conductive material, and the binder in a slurry state may include acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc., but is not limited thereto.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, and calcined carbon. , Or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.
  • the anode is classified by an SC factor value represented by Equation 2 below.
  • P is the porosity (%) of the positive electrode active material layer in the positive electrode
  • L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg/cm 3 )
  • is 10 (constant).
  • the lithium secondary battery according to the present invention preferably a lithium-sulfur secondary battery, implements a high energy density by organic bonding of the above-described positive electrode as well as a negative electrode, a separator, and an electrolyte, and according to a specific embodiment of the present invention, lithium
  • the SC factor value may be greater than 0.45, preferably greater than 0.5.
  • the upper limit of the SC factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the SC factor value may be 4.5 or less.
  • the SC factor value is more than 0.45, in the case of a conventional lithium-sulfur secondary battery, performance such as energy density of the battery is deteriorated in actual implementation, but in the case of the lithium-sulfur secondary battery according to the present invention, The performance of the battery is maintained without deterioration.
  • the electrolyte is a non-aqueous electrolyte containing a lithium salt, and includes a lithium salt and a solvent.
  • the electrolyte solution has a density of less than 1.5 g/cm 3 .
  • the electrolyte has a density of 1.5 g/cm 3 or more, it is difficult to achieve a high energy density of a lithium secondary battery, preferably a lithium-sulfur secondary battery, due to an increase in weight of the electrolyte.
  • the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium tetraphenylborate, and lithium imide.
  • the lithium salt may be a lithium imide such as LiTFSI.
  • the concentration of the lithium salt is 0.1 to 8.0 M, depending on various factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, working temperature and other factors known in the lithium secondary battery field. , Preferably 0.5 to 5.0 M, more preferably 1.0 to 3.0 M may be. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered and battery performance may be deteriorated. If the concentration of the lithium salt is less than the above range, the viscosity of the electrolyte may increase and the mobility of lithium ions (Li + ) may decrease. It is desirable to select an appropriate concentration.
  • the solvent includes a first solvent and a second solvent.
  • the first solvent is characterized by having the highest dipole moment per unit volume among the constituents contained in the solvent at least 1% by weight, and thus has a high dipole moment and a low viscosity.
  • a solvent having a high dipole moment is used, it has an effect of improving the solid state reactivity of sulfur, and this effect can be excellently expressed when the solvent itself has a low viscosity.
  • the first solvent is classified by a DV 2 factor represented by Equation 1 below.
  • DV is the dipole moment per unit volume (debye(D) ⁇ mol/L)
  • is the viscosity of the solvent (cP, 25°C)
  • is 100 (constant).
  • the DV 2 factor value may be 1.75 or less, preferably 1.5 or less.
  • the lower limit of the DV 2 factor value is not particularly limited, but considering an embodiment of an actual lithium secondary battery, preferably a lithium-sulfur secondary battery, the DV 2 factor value may be 0.1 or more. .
  • a solvent having a DV 2 factor of 1.5 or less, such as the first solvent when applied to a lithium-sulfur secondary battery including a surface-modified sulfur-carbon composite as described above, it is possible to improve battery performance, such as improving life characteristics. It can be advantageous.
  • the type is not particularly limited, but propionitrile, dimethylacetamide, dimethylformamide, gamma- It may be one or more selected from the group consisting of butyrolactone (Gamma-Butyrolactone), triethylamine (Triethylamine) and 1-iodopropane (1-iodopropane).
  • the first solvent may contain 1 to 50% by weight, preferably 5 to 40% by weight, and more preferably 10 to 30% by weight, based on the solvent constituting the electrolyte.
  • the solvent according to the present invention contains the first solvent within the above-described weight% range, as described above, a positive electrode slurry having a low porosity, a high loading amount of sulfur, and a particle size (based on D 50 ) of 15 to 50 ⁇ m
  • it may be advantageous in improving battery performance, such as improving life characteristics.
  • the lithium secondary battery of the present invention may be further classified by an NS factor obtained by combining the SC factor and the DV 2 factor.
  • the NS factor is represented by Equation 3 below.
  • the SC factor is the same as the value defined by Equation 2
  • the DV 2 factor is the same as the value defined by Equation 1 above.
  • the value of the NS factor may be 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less.
  • the lower limit of the value of the NS factor is not particularly limited, but considering an embodiment of an actual lithium secondary battery, preferably a lithium-sulfur secondary battery, the NS factor value may be 0.1 or more. When the NS factor value is adjusted within the above range, the effect of improving the performance of the lithium-sulfur secondary battery may be more excellent.
  • the second solvent is a fluorinated ether solvent.
  • a solvent such as dimethoxyethane and dimethylcarbonate has been used as a diluent to adjust the viscosity of the electrolyte.
  • high loading as in the present invention , It is not possible to drive a battery including a positive electrode having a low porosity and a particle size of the positive electrode slurry within a certain range.
  • the second solvent is added together with the first solvent to drive the anode according to the present invention.
  • the second solvent is a fluorinated ether solvent generally used in the relevant technical field, the type is not particularly limited, but 1H,1H,2'H,3H-decafluorodipropyl ether (1H,1H,2' H,3H-Decafluorodipropyl ether), difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl trifluoro Methyl ether (1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether (1,1,2,3,3,3- Hexafluoropropyl difluoromethyl ether), pentafluoroethyl 2,2,2-trifluoroethyl ether and 1H,1H,2′H
  • the second solvent may contain 50 to 99% by weight, preferably 60 to 95% by weight, and more preferably 70 to 90% by weight, based on the solvent constituting the electrolyte.
  • the solvent according to the present invention contains a second solvent within the range of 50 to 99% by weight described above, like the first solvent, the positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 ⁇ m as described above is included.
  • it may be advantageous in improving battery performance, such as improving life characteristics.
  • the second solvent When mixing the first solvent and the second solvent, the second solvent may be included in the electrolyte in an amount equal to or greater than the first solvent in consideration of an effect of improving the performance of the battery.
  • the solvent may contain a first solvent and a second solvent in a weight ratio of 1:1 to 1:9, preferably 3:7 to 1:9 (first solvent: second solvent). I can.
  • the non-aqueous electrolyte solution for a lithium-sulfur battery of the present invention may further include nitric acid or nitrous acid-based compounds as an additive.
  • the nitric acid or nitrous acid-based compound has an effect of forming a stable film on the lithium electrode and improving charging/discharging efficiency.
  • the nitric acid or nitrous acid-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and oc
  • the non-aqueous electrolyte may further include other additives for the purpose of improving charging/discharging properties and flame retardancy.
  • the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dione, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) and the like.
  • FEC fluoroethylene carbonate
  • PRS propene sultone
  • VC vinylene carbonate
  • the negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector; And a negative active material layer formed on at least one surface of the current collector.
  • the negative active material layer includes a negative active material, a binder, and a conductive material.
  • a material capable of reversibly intercalating or deintercalating lithium ions (Li + ) a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium alloy
  • the material capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the binder, the conductive material, and the negative electrode current collector may be the same as the material used in the positive electrode.
  • the separator is a physical separator having a function of physically separating an electrode, and if it is used as a conventional separator, it can be used without special limitation. In particular, it is preferable that the separator has low resistance against ion migration of the electrolyte and has excellent electrolyte moisture-repelling ability. Do.
  • the separator separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode.
  • a separator has a porosity of 30 to 50%, and may be made of a non-conductive or insulating material.
  • a porous polymer film for example, an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, etc.
  • a porous polymer film for example, an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, etc.
  • nonwoven fabrics made of high melting point glass fibers or the like can be used.
  • a porous polymer film is preferably used.
  • an ethylene homopolymer (polyethylene) polymer film is used as a separator, and a polyimide nonwoven fabric is used as a buffer layer.
  • the polyethylene polymer film preferably has a thickness of 10 to 25 ⁇ m and a porosity of 40 to 50%.
  • the lithium secondary battery of the present invention preferably a lithium-sulfur secondary battery, is prepared by placing a separator between a positive electrode and a negative electrode to form an electrode assembly, and the electrode assembly is placed in a cylindrical battery case or a prismatic battery case, and then an electrolyte is injected. can do.
  • an electrolyte is injected. can do.
  • it may be impregnated with an electrolyte, and the resulting product may be sealed by putting it in a battery case.
  • the lithium secondary battery preferably lithium-sulfur secondary battery according to the present invention is classified by the ED factor value represented by Equation 4 below.
  • V is the nominal discharge voltage (V) for Li/Li +
  • D is the density of the electrolyte (g/cm 3 )
  • C is the discharge capacity (mAh/g) when discharging at a 0.1C rate
  • SC factor I is the same as the value defined by Equation 2 above. The higher the value of the ED factor, the higher the energy density can be realized in the actual lithium-sulfur secondary battery.
  • the ED factor value may be 850 or more, preferably 870 or more, and more preferably 891 or more.
  • the upper limit of the ED factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the ED factor value may be 10,000 or less.
  • the range of the ED factor value means that the lithium-sulfur secondary battery according to the present invention can realize an improved energy density than the conventional lithium-sulfur secondary battery.
  • the present invention provides a battery module including the lithium secondary battery as a unit cell.
  • the battery module can be used as a power supply for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was manufactured using a ball mill to prepare an entangled type carbon nanotube having a reduced particle size (based on D 50 ).
  • the weight ratio of sulfur and entangled carbon nanotubes in the sulfur-carbon composite was 70:30.
  • a positive electrode slurry having a concentration of 20% based on the solid content was prepared.
  • the particle size of the positive electrode slurry was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 27 ⁇ m.
  • the positive electrode slurry was coated on an aluminum current collector to form a positive electrode active material layer, followed by drying and rolling to prepare a positive electrode.
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA- ⁇ HITE equipment) in the manufactured positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.54 mg/cm 3 Was.
  • the SC factor value calculated based on this was 0.757.
  • a polyethylene separator having a thickness of 20 ⁇ m and a porosity of 45% was interposed between the positive electrode and the negative electrode.
  • a lithium foil having a thickness of 60 ⁇ m was used as the negative electrode.
  • the electrolyte is prepared by dissolving lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) having a concentration of 3 M in an organic solvent, and the organic solvent is propionitrile (first solvent) and 1H,1H,
  • first solvent propionitrile
  • second solvent solvent obtained by mixing 2'H,3H-decafluorodipropyl ether (second solvent) in a 3:7 weight ratio (w/w) was used.
  • the dipole moment per unit volume in the first solvent was 97.1 D ⁇ mol/L
  • the viscosity of the solvent measured by using a BROOKFIELD AMETEK LVDV2T-CP viscometer was 0.38 cP (25° C.).
  • the DV 2 factor value calculated based on this was 0.39. Charging and discharging of the manufactured battery was performed at 45°C.
  • An entangled-type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was used with a ball mill to increase the ball mill time compared to Example 1, so that the particle size (based on D 50 ) was reduced compared to Example 1.
  • a type of carbon nanotube was prepared.
  • Example 2 The particle size of the positive electrode slurry of Example 2 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 24 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA- ⁇ HITE equipment) in the manufactured positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.54 mg/cm 3 Was.
  • the SC factor value calculated based on this was 0.757.
  • An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was used in a ball mill to increase the ball mill time compared to Example 2, so that the particle size (based on D 50 ) was reduced compared to Example 2.
  • a type of carbon nanotube was prepared.
  • Example 3 The particle size of the positive electrode slurry of Example 3 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 18 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA- ⁇ HITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.35 mg/cm 3 .
  • the SC factor value calculated based on this was 0.725.
  • An entangled-type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was used in a ball mill to increase the ball mill time compared to Example 3, so that the particle size (based on D 50 ) was reduced compared to Example 3
  • a type of carbon nanotube was prepared.
  • Example 4 The particle size of the positive electrode slurry of Example 4 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 15 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA- ⁇ HITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.6 mg/cm 3 Was.
  • the SC factor value calculated based on this was 0.767.
  • An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was used in a ball mill to increase the ball mill time compared to Example 4, so that the particle size (based on D 50 ) was reduced compared to Example 4.
  • a type of carbon nanotube was prepared.
  • Example 2 Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery.
  • the particle size of the positive electrode slurry of Comparative Example 1 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 11 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA- ⁇ HITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.73 mg/cm 3 . Based on this, the calculated SC factor value was 0.788.
  • An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was used in a ball mill to increase the ball mill time compared to Example 4, resulting in a reduced particle size (based on D 50 ) than in Example 4.
  • An entangle-type carbon nanotube was prepared.
  • Example 2 Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery.
  • the particle size of the positive electrode slurry of Comparative Example 2 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 8 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA- ⁇ HITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.37 mg/cm 3 . Based on this, the calculated SC factor value was 0.728.
  • An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 ⁇ m was ball milled at the same time as in Example 4, and the entangled type carbon nanotube having the same particle size (based on D 50 ) as in Example 4 The tube was prepared.
  • Example 3 Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery.
  • the particle size of the positive electrode slurry of Comparative Example 3 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 15 ⁇ m.
  • PSD particle size analyzer
  • the porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA- ⁇ HITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 2.7 mg/cm 3 .
  • the SC factor value calculated based on this was 0.45.
  • Example 1 Particle size of positive electrode slurry (D 50 , ⁇ m) SC factor DV 2 factor NS factor ED factor
  • Example 1 27 0.757 0.39 0.515 1433.185
  • Example 2 24 0.757 0.39 0.515 1422.955
  • Example 3 18 0.725 0.39 0.538 1434.375
  • Example 4 15 0.767 0.39 0.508 1392.043 Comparative Example 1 11 0.788 0.39 0.495 1359.417 Comparative Example 2 8 0.728 0.39 0.535 992.8758 Comparative Example 3 15 0.45 0.39 0.866 822.1622
  • the lithium-sulfur secondary batteries of Examples 1 to 4 having a particle size (based on D 50 ) of 15 to 50 ⁇ m of the positive electrode slurry exhibited excellent results in life characteristics.
  • the positive electrode slurry had a particle size (based on D 50 ) of 15 ⁇ m, and the lifespan characteristics were not superior to those of Examples 1 to 3, but the results were superior to that of Comparative Example 1. Therefore, it can be seen that the particle size (based on D 50 ) of the positive electrode slurry has a critical significance at 15 ⁇ m.
  • Comparative Examples 1 and 2 the particle size (based on D 50 ) of the positive electrode slurry was less than 15 ⁇ m, and it can be seen that the ED factor rapidly decreased as the cycle was repeated.
  • the SC factor value is 0.45 or less, and it can be seen that the ED factor shows a low energy density of 800 levels during the charge/discharge cycle.
  • the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 ⁇ m, the battery life characteristics are excellent.

Abstract

The present invention relates to a lithium secondary battery, and more specifically, to a lithium secondary battery comprising a positive electrode slurry having a particle size (based on D50) of 15-50 µm, wherein a condition for an electrolyte is specified, and thus high energy density and a long lifespan compared to conventional lithium secondary batteries may be implemented.

Description

리튬 이차전지Lithium secondary battery
본 출원은 2019년 07월 16일자 한국 특허 출원 제10-2019-0085623호 및 2020년 06월 17일자 한국 특허 출원 제10-2020-0073784호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the interests of priority based on Korean patent application No. 10-2019-0085623 filed on July 16, 2019 and Korean patent application No. 10-2020-0073784 filed on June 17, 2020, and All contents disclosed in the literature are included as part of this specification.
본 발명은 리튬 이차전지에 관한 것이다.The present invention relates to a lithium secondary battery.
이차전지의 응용 영역이 전기 자동차(electric vehicle; EV)나 에너지 저장 장치(energy storage system; ESS) 등으로 확대됨에 따라, 상대적으로 낮은 무게 대비 에너지 저장 밀도(~250 Wh/㎏)를 갖는 리튬-이온 이차전지는 이러한 제품에 대한 적용의 한계가 있다. 이와 달리, 리튬-황 이차전지는 이론상으로 높은 무게 대비 에너지 저장 밀도(~2,600 Wh/kg)를 구현할 수 있기 때문에, 차세대 이차전지 기술로 각광을 받고 있다.As the application area of secondary batteries expands to electric vehicles (EV) or energy storage systems (ESS), lithium-ion has a relatively low energy storage density (~250 Wh/kg) compared to its weight. Ion secondary batteries have limitations in their application to these products. In contrast, lithium-sulfur secondary batteries are in the spotlight as a next-generation secondary battery technology because they can theoretically realize a high energy storage density (~2,600 Wh/kg) to weight.
리튬-황 이차전지는 황-황 결합(sulfur-sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지 시스템이다. 이러한 리튬-황 이차전지는 양극 활물질의 주재료인 황이 전 세계적으로 자원량이 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.The lithium-sulfur secondary battery is a battery system using a sulfur-based material having a sulfur-sulfur bond as a positive electrode active material and lithium metal as a negative electrode active material. This lithium-sulfur secondary battery has the advantage that sulfur, which is the main material of the positive electrode active material, has an abundance of resources worldwide, is non-toxic, and has a low weight per atom.
리튬-황 이차전지는 방전 시에 음극 활물질인 리튬이 전자를 내어놓고 이온화되면서 산화되며, 양극 활물질인 황 계열 물질이 전자를 받아들여 환원된다. 이 때, 리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이다. 또한, 황의 환원반응은 황-황 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다. 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성한다. 구체적으로, 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 이는 환원반응에 의해 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되며, 이러한 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 최종적으로 생성되게 된다.In a lithium-sulfur secondary battery, lithium, which is a negative electrode active material, is oxidized while ionizing and releasing electrons during discharge, and a sulfur-based material, which is a positive electrode active material, accepts electrons and is reduced. At this time, the oxidation reaction of lithium is a process in which lithium metal releases electrons and is converted into lithium cation form. In addition, the sulfur reduction reaction is a process in which a sulfur-sulfur bond accepts two electrons and is converted into a sulfur anion form. The lithium cation generated by the oxidation reaction of lithium is transferred to the positive electrode through the electrolyte, and forms a salt by combining with the sulfur anion generated by the reduction reaction of sulfur. Specifically, sulfur before discharge has a cyclic S 8 structure, which is converted into lithium polysulfide (Li 2 S x , x = 8, 6, 4, 2) by a reduction reaction, and this lithium polysulfide When is completely reduced, lithium sulfide (Li 2 S) is finally produced.
양극 활물질인 황은 낮은 전기 전도성으로 인해, 고상(solid-state) 형태에서는 전자 및 리튬 이온과의 반응성을 확보하기가 어렵다. 기존 리튬-황 이차전지는 이러한 황의 반응성을 개선하기 위해 Li2Sx 형태의 중간 폴리설파이드(intermediate polysulfide)를 생성하여 액상(liquid-state) 반응을 유도하고 반응성을 개선한다. 이 경우, 전해액의 용매로 리튬 폴리설파이드에 대해 용해성이 높은 디옥솔란(dioxolane), 디메톡시에탄(dimethoxyethane) 등의 에테르계 용매가 사용된다. 또한, 기존 리튬-황 이차전지는 반응성을 개선하기 위해 캐솔라이트(catholyte) 타입의 리튬-황 이차전지 시스템을 구축하는데, 이 경우 전해액에 쉽게 녹는 리튬 폴리설파이드의 특성으로 인해 전해액의 함량에 따라 황의 반응성 및 수명 특성이 영향을 받게 된다. 또한, 높은 에너지 밀도를 구축하기 위해서는 낮은 함량의 전해액을 주액해야 하나, 전해액 함량이 감소함에 따라 전해액 내 리튬 폴리설파이드의 농도가 증가하게 되어, 활물질의 유동성 감소 및 부반응 증가로 인해 정상적인 전지의 구동이 어렵다.Sulfur, which is a positive active material, has low electrical conductivity, so it is difficult to secure reactivity with electrons and lithium ions in a solid-state form. Existing lithium-sulfur secondary batteries induce a liquid-state reaction and improve reactivity by generating an intermediate polysulfide in the form of Li 2 S x to improve the reactivity of sulfur. In this case, an ether solvent such as dioxolane and dimethoxyethane having high solubility in lithium polysulfide is used as a solvent for the electrolyte solution. In addition, the existing lithium-sulfur secondary battery builds a catholyte-type lithium-sulfur secondary battery system to improve reactivity. In this case, due to the characteristic of lithium polysulfide, which is easily soluble in the electrolyte, the amount of sulfur Reactivity and lifetime characteristics will be affected. In addition, in order to build a high energy density, a low content of electrolyte must be injected, but as the electrolyte content decreases, the concentration of lithium polysulfide in the electrolyte increases, so that normal operation of the battery is difficult due to a decrease in fluidity of the active material and an increase in side reactions it's difficult.
이러한 리튬 폴리설파이드의 용출은 전지의 용량 및 수명 특성에 악영향을 미치는 바, 리튬 폴리설파이드의 용출을 억제하기 위한 다양한 기술이 제안되었다.Since the elution of lithium polysulfide adversely affects the capacity and life characteristics of the battery, various techniques have been proposed for suppressing the elution of lithium polysulfide.
일례로, 대한민국 공개특허 제2016-0037084호는 탄소재로 그래핀으로 코팅한 3차원 구조의 탄소나노튜브 응집체를 사용함으로써 리튬 폴리설파이드가 녹아나오는 것을 차단하고, 황-탄소나노튜브 복합체의 도전성을 향상시킬 수 있음을 개시하고 있다.For example, Korean Patent Laid-Open No. 2016-0037084 uses a carbon nanotube aggregate of a three-dimensional structure coated with graphene with a carbon material to block the melting of lithium polysulfide and improve the conductivity of the sulfur-carbon nanotube composite. It discloses that it can be improved.
또한, 대한민국 등록특허 제1379716호는 그래핀에 불산을 처리하여 그래핀 표면에 기공을 형성하고, 상기 기공에 유황 입자를 성장시키는 방법을 통해 제조된 유황을 포함하는 그래핀 복합체를 양극 활물질로 사용함을 통해 리튬 폴리 설파이드 용출을 억제하여 전지의 용량 감소를 최소화할 수 있음을 개시하고 있다.In addition, Korean Patent Registration No.1379716 uses a graphene composite containing sulfur prepared by treating graphene with hydrofluoric acid to form pores on the surface of graphene and growing sulfur particles in the pores as a positive electrode active material. It is disclosed that lithium polysulfide elution can be suppressed to minimize a decrease in capacity of the battery.
이들 특허들은 양극 활물질로 사용되는 황-탄소 복합체의 구조 또는 소재를 달리함으로써 리튬 폴리설파이드의 용출을 방지하여 리튬-황 이차전지의 성능 저하 문제를 어느 정도 개선하였으나 그 효과가 충분치 않다. 따라서, 고에너지 밀도의 리튬-황 이차전지를 구축하기 위해서는 고로딩, 저기공도의 전극을 구동할 수 있는 전지 시스템을 필요로 하고, 해당 기술 분야에서는 이러한 전지 시스템에 대한 연구가 지속적으로 수행되고 있다.These patents prevented the elution of lithium polysulfide by varying the structure or material of the sulfur-carbon composite used as the positive electrode active material to some extent improve the performance degradation problem of the lithium-sulfur secondary battery, but the effect is not sufficient. Therefore, in order to build a lithium-sulfur secondary battery with high energy density, a battery system capable of driving an electrode with high loading and low porosity is required, and research on such a battery system is continuously conducted in the relevant technical field. .
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 공개특허 제10-2016-0037084호(2016.04.05), 황-탄소 나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함하는 리튬-황 이차전지Republic of Korea Patent Publication No. 10-2016-0037084 (2016.04.05), sulfur-carbon nanotube composite, method for manufacturing the same, cathode active material for lithium-sulfur battery including the same, and lithium-sulfur secondary battery including the same
대한민국 등록특허 제10-1379716호(2014.03.25), 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조방법Republic of Korea Patent Registration No. 10-1379716 (2014.03.25), a lithium-sulfur secondary battery including a graphene composite positive electrode containing sulfur and a manufacturing method thereof
이에, 본 발명자들은 입도가 조절된 양극 슬러리 및 일정 수치 미만의 쌍극자 모멘트를 가지는 용매를 포함하는 전해액을 이용하여 리튬 이차전지를 제조하였으며, 이와 같이 제조된 리튬 이차전지가 개선된 수명 특성을 나타낸다는 것을 확인하였다.Accordingly, the present inventors manufactured a lithium secondary battery using an electrolyte solution including a positive electrode slurry with a particle size adjusted and a solvent having a dipole moment less than a certain value, and that the lithium secondary battery thus manufactured exhibits improved life characteristics. Confirmed.
따라서, 본 발명은 수명 특성이 개선된 리튬 이차전지를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a lithium secondary battery with improved life characteristics.
상기 목적을 달성하기 위하여,To achieve the above object,
본 발명은 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로서,The present invention is a positive electrode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
상기 양극은 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 포함하며,The positive electrode includes a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material,
상기 양극 슬러리의 입도(D50 기준)는 15 내지 50 ㎛이며,The particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm,
상기 전해액은 용매 및 리튬염을 포함하며,The electrolyte solution contains a solvent and a lithium salt,
상기 용매는,The solvent is,
하기 수학식 1로 표시되는 DV2 factor 값이 1.75 이하인 제1 용매; 및A first solvent having a DV 2 factor value of 1.75 or less represented by Equation 1 below; And
불소화된 에테르계 용매인 제2 용매를 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다:It provides a lithium secondary battery comprising a second solvent that is a fluorinated ether-based solvent:
[수학식 1][Equation 1]
Figure PCTKR2020008043-appb-I000001
Figure PCTKR2020008043-appb-I000001
여기서 DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP, 25 ℃)이며, γ는 100(상수)이다.Where DV is the dipole moment per unit volume (D·mol/L), μ is the viscosity of the solvent (cP, 25°C), and γ is 100 (constant).
본 발명의 리튬 이차전지는 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 포함하는 양극; 및 DV2 factor 값이 1.75 이하인 제1 용매 및 불소화된 에테르계 용매인 제2 용매를 포함하는 전해액;을 포함하는 경우, 고에너지 밀도 및 수명 특성을 향상시키는 효과가 있다.The lithium secondary battery of the present invention includes a positive electrode including a positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 μm; And an electrolytic solution including a first solvent having a DV 2 factor of 1.75 or less and a second solvent that is a fluorinated ether-based solvent; when it contains, there is an effect of improving high energy density and lifespan characteristics.
도 1은 실험예 1의 리튬-황 이차전지의 사이클 횟수에 따른 ED factor 값을 나타낸 그래프이다.1 is a graph showing the ED factor value according to the number of cycles of the lithium-sulfur secondary battery of Experimental Example 1.
이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventor may appropriately define the concept of terms in order to describe his own invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as'include' or'have' are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility.
본 명세서에서 사용되고 있는 용어 “폴리설파이드”는 “폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2)” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.The term "polysulfide" used herein, "polysulfide ions (S x 2-, x = 8 , 6, 4, 2)" and "lithium polysulfide (Li 2 S x, or LiS x -, x = 8 , 6, 4, 2)”.
본 명세서에 기재된 물성에 대하여, 측정 조건 및 방법이 구체적으로 기재되어 있지 않은 경우, 상기 물성은 해당 기술 분야에서 통상의 기술자에 의해 일반적으로 사용되는 측정 조건 및 방법에 따라 측정된다.For the physical properties described in the present specification, if the measurement conditions and methods are not specifically described, the physical properties are measured according to the measurement conditions and methods generally used by those skilled in the art.
리튬 이차전지 중에서도 리튬-황 이차전지는 여러 이차전지 중에서 높은 방전용량 및 에너지 밀도를 가지며, 양극 활물질로 사용되는 황은 매장량이 풍부하여 가격이 저렴하므로 전지의 제조단가를 낮출 수 있고, 환경친화적이라는 이점으로 인해 차세대 이차전지로 각광받고 있다.Among lithium secondary batteries, lithium-sulfur secondary batteries have a high discharge capacity and energy density among many secondary batteries, and sulfur used as a positive electrode active material has abundant reserves and is inexpensive, so the manufacturing cost of the battery can be lowered, and it is environmentally friendly. As a result, it is in the spotlight as a next-generation secondary battery.
그러나, 기존 리튬-황 이차전지 시스템의 경우 전술한 바의 리튬 폴리설파이드 용출을 억제하지 못해 황의 손실이 발생하며, 이로 인해 전기화학 반응에 참여하는 황의 양이 급격히 감소하여 실제 구동에 있어서는 이론 방전용량 및 이론 에너지 밀도 전부를 구현하지 못한다. 특히, 이렇게 용출된 리튬 폴리설파이드는 전해액 중에 부유 또는 침전되는 것 이외에도, 음극인 리튬 금속과 직접 반응하여 음극 표면에 Li2S 형태로 고착됨에 따라 리튬 금속 음극을 부식시키고 일정 사이클 이후 초기 용량 및 사이클 특성이 급격히 저하되는 문제를 발생시킨다.However, in the case of the existing lithium-sulfur secondary battery system, the loss of sulfur occurs due to the inability to suppress the elution of lithium polysulfide as described above, and the amount of sulfur participating in the electrochemical reaction rapidly decreases. And not all of the theoretical energy density. In particular, the eluted lithium polysulfide, in addition to being suspended or precipitated in the electrolyte, reacts directly with lithium metal, which is the negative electrode, and is fixed in the form of Li 2 S on the surface of the negative electrode, thereby corroding the lithium metal negative electrode, and initial capacity and cycle after a certain cycle. It causes a problem of rapidly deteriorating properties.
종래 기술에서는 리튬 폴리설파이드의 용출을 억제할 수 있는 물질을 첨가제 또는 보호층 형태로 양극이나 분리막에 도입, 양극 활물질의 구조 또는 소재 변경, 전해질의 조성 변경 등의 방법이 제안되었으나, 리튬 폴리설파이드의 용출 개선 효과가 미미하였을 뿐만 아니라 양극 활물질인 황을 넣을 수 있는 양(즉, 로딩량)에 제한이 있고, 전지의 안정성에 심각한 문제를 야기하거나 공정 측면에서 비효율적이라는 단점이 있다.In the prior art, methods such as introducing a material capable of inhibiting the elution of lithium polysulfide into a positive electrode or separator in the form of an additive or protective layer, changing the structure or material of the positive electrode active material, and changing the composition of the electrolyte have been proposed. Not only the dissolution improvement effect was insignificant, but also the amount of sulfur, which is the positive electrode active material, is limited (ie, the loading amount), and it causes serious problems in the stability of the battery or is inefficient in terms of the process.
이에 본 발명에서는 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지에 있어서, 양극 활물질층의 공극률(또는 기공도)이 낮고, 양극 활물질인 황의 로딩량이 높으며 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 포함하는 양극을 포함한다.Accordingly, in the present invention, in a lithium-sulfur secondary battery including a positive electrode, a negative electrode, a separator, and an electrolyte, the porosity (or porosity) of the positive electrode active material layer is low, the loading amount of sulfur as the positive electrode active material is high, and the particle size (based on D 50 ) is 15. And a positive electrode including a positive electrode slurry having a thickness of 50 μm.
일반적으로 양극의 공극률을 낮추고, 양극 활물질의 함량을 높이는 경우, 이를 포함하는 이차전지의 에너지 밀도가 증가한다. 그러나, 리튬-황 이차전지에서 양극의 공극률을 최소한으로 낮추고, 황의 함량을 최대한으로 높이면 단위 황 함량당 전해액의 비율이 감소할 뿐만 아니라 리튬 폴리설파이드의 용해 및 셔틀 현상에 따른 문제가 여전히 남아있어 해당 양극을 리튬-황 이차전지에 적용하는 경우, 목표한 성능을 구현하기 어렵다.In general, when the porosity of the positive electrode is lowered and the content of the positive electrode active material is increased, the energy density of a secondary battery including the same increases. However, in a lithium-sulfur secondary battery, if the porosity of the positive electrode is reduced to a minimum and the content of sulfur is increased to the maximum, the proportion of electrolyte per unit sulfur content decreases, as well as problems due to the dissolution and shuttle phenomenon of lithium polysulfide remain. When the positive electrode is applied to a lithium-sulfur secondary battery, it is difficult to achieve the target performance.
따라서, 본 발명에서는 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 사용하면서, 전해액과 관련된 조건을 특정하여 실제로 구현시에 기존의 리튬-황 이차전지에 비해 고에너지 밀도를 가지며, 수명 특성이 우수한 리튬-황 이차전지를 제공할 수 있다.Therefore, in the present invention, while using a positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 μm, the conditions related to the electrolyte are specified to have a high energy density compared to the existing lithium-sulfur secondary battery when actually implemented, A lithium-sulfur secondary battery having excellent properties can be provided.
즉, 본 발명은 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로서,That is, the present invention is an anode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
상기 양극은 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 포함하며,The positive electrode includes a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material,
상기 양극 슬러리의 입도(D50 기준)는 15 내지 50 ㎛이며,The particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm,
상기 전해액은 용매 및 리튬염을 포함하며,The electrolyte solution contains a solvent and a lithium salt,
상기 용매는,The solvent is,
하기 수학식 1로 표시되는 DV2 factor 값이 1.75 이하인 제1 용매; 및A first solvent having a DV 2 factor value of 1.75 or less represented by Equation 1 below; And
불소화된 에테르계 용매인 제2 용매를 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다.It relates to a lithium secondary battery comprising a second solvent which is a fluorinated ether solvent.
[수학식 1][Equation 1]
Figure PCTKR2020008043-appb-I000002
Figure PCTKR2020008043-appb-I000002
여기서 DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP, 25 ℃)이며, γ는 100(상수)이다.Where DV is the dipole moment per unit volume (D·mol/L), μ is the viscosity of the solvent (cP, 25°C), and γ is 100 (constant).
본 발명에서 상기 리튬 이차전지는 바람직하게는 리튬-황 이차전지일 수 있다.In the present invention, the lithium secondary battery may preferably be a lithium-sulfur secondary battery.
양극anode
본 발명의 리튬 이차전지용 양극은 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 포함하며, 상기 양극 슬러리의 입도(D50 기준)는 15 내지 50 ㎛이다.The positive electrode for a lithium secondary battery of the present invention includes a positive electrode slurry containing a sulfur-carbon composite, a binder, and a conductive material, and the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm.
구체적으로, 본 발명의 리튬 이차전지용 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함하며, 상기 양극 활물질층은 15 내지 50μm의 입도(D50 기준)를 갖는 양극 슬러리로 형성된 것일 수 있다.Specifically, the positive electrode for a lithium secondary battery of the present invention includes a positive electrode current collector; And a positive electrode active material layer formed on at least one surface of the positive electrode current collector, wherein the positive electrode active material layer may be formed of a positive electrode slurry having a particle size of 15 to 50 μm (based on D 50 ).
본 발명에 있어서, 상기 양극 슬러리의 입도는 황-탄소 복합체, 바인더 및 도전재를 용매 상에서 혼합하여 최종적으로 얻어진 양극 슬러리 자체의 입자 크기를 의미한다. 일반적으로, 양극 슬러리의 입도는 이에 포함된 황-탄소 복합체의 입도에 의존할 수 있으나, 양극 슬러리의 제조 공정 시에 분산을 위해 혼합하는 공정에 의해 황-탄소 복합체의 입도는 감소하게 되므로, 양극 슬러리의 입도와 황-탄소 복합체의 입도는 구별되는 것이다.In the present invention, the particle size of the positive electrode slurry refers to the particle size of the positive electrode slurry itself finally obtained by mixing a sulfur-carbon composite, a binder, and a conductive material in a solvent. In general, the particle size of the positive electrode slurry may depend on the particle size of the sulfur-carbon composite contained therein, but the particle size of the sulfur-carbon composite decreases due to the process of mixing for dispersion during the manufacturing process of the positive electrode slurry. The particle size of the slurry and the particle size of the sulfur-carbon composite are distinct.
상기 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리의 입도(D50 기준)는 15 내지 50 ㎛, 바람직하게는 15 ㎛ 초과 30 ㎛ 이하, 더욱 바람직하게는 17 내지 30 ㎛일 수 있다. The particle size (based on D 50 ) of the positive electrode slurry including the sulfur-carbon composite, the binder, and the conductive material may be 15 to 50 µm, preferably more than 15 µm and 30 µm or less, and more preferably 17 to 30 µm.
상기 양극 슬러리의 입도(D50 기준)가 15 내지 50 ㎛임에 따라, 이를 포함하는 리튬-황 이차전지의 수명 특성을 향상시킬 수 있다.As the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm, life characteristics of a lithium-sulfur secondary battery including the same may be improved.
상기 양극 슬러리의 입도(D50 기준)가 15 ㎛ 미만이면 양극 집전체에 대한 접착력이 떨어져 양극 집전체로부터 탈리되는 문제가 있고, 리튬-황 이차전지의 구동시 과전압이 발생하여 수명 특성이 저하될 수 있다. 이와 반대로, 상기 양극 슬러리의 입도(D50 기준)가 50 ㎛를 초과하면 양극 활물질층에 존재하는 입자들의 입도 분포가 넓어져서 양극 활물질층의 불균일성이 높아지며, 이는 전지 성능 저하를 야기할 수 있다. 또한, 양극 제조시 황-탄소 복합체의 입자가 너무 커서 긁힘이 발생할 수 있어 양극 제조에 어려움이 따를 수 있다.If the particle size of the positive electrode slurry (based on D 50 ) is less than 15 µm, adhesion to the positive electrode current collector decreases, and there is a problem of being separated from the positive electrode current collector, and an overvoltage occurs when the lithium-sulfur secondary battery is driven, resulting in a decrease in lifespan characteristics. I can. On the contrary, when the particle size (based on D 50 ) of the positive electrode slurry exceeds 50 μm, the particle size distribution of the particles present in the positive electrode active material layer increases, thereby increasing the non-uniformity of the positive electrode active material layer, which may cause battery performance degradation. In addition, when manufacturing the positive electrode, the particles of the sulfur-carbon composite may be too large to cause scratches, which may cause difficulties in manufacturing the positive electrode.
상기 황-탄소 복합체는 리튬 이차전지용 양극 활물질로, 황 및 탄소나노튜브를 포함하며, 보다 구체적으로 탄소나노튜브의 내부 및 외부에 황이 균일하게 담지된 형태의 황-탄소 복합체이다.The sulfur-carbon composite is a cathode active material for a lithium secondary battery, and includes sulfur and carbon nanotubes, and more specifically, is a sulfur-carbon composite in which sulfur is uniformly supported inside and outside the carbon nanotubes.
또한, 상기 탄소나노튜브는 입도(D50 기준)가 15 내지 50 ㎛인 입자 형태의 인탱글 타입(entangled type)의 탄소나노튜브일 수 있다. 상기 인탱글 타입이란 얼기설기 얽힌 탄소나노튜브가 뭉쳐져서 하나의 입자로 만들어진 형태를 의미하며, 비번들 타입(non-bundle type)이라고도 한다. 여기서 입자 형태란 특정한 형태가 정해지지 않은 입자를 의미한다.In addition, the carbon nanotubes may be entangled type carbon nanotubes having a particle size (based on D 50 ) of 15 to 50 μm. The entangled type refers to a form made of one particle by lumping together entangled carbon nanotubes, and is also referred to as a non-bundle type. Here, the particle shape means a particle whose specific shape is not determined.
상기 입자 형태의 인탱글 타입의 탄소나노튜브를 밀링(millimg) 공정을 통해 입도를 제어함에 따라, 이를 포함하는 황-탄소 복합체의 입도 및 양극 슬러리의 입도도 제어할 수 있다.As the particle size of the entangled carbon nanotubes in the form of particles is controlled through a milling process, the particle size of the sulfur-carbon composite including the same and the particle size of the positive electrode slurry can be controlled.
상기 황은 무기 황(S8), Li2Sn(n≥1) 및 유기황 화합물로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 바람직하게는 무기 황(S8)을 사용할 수 있다.The sulfur may be one or more selected from the group consisting of inorganic sulfur (S 8 ), Li 2 S n (n≥1) and organic sulfur compounds, preferably inorganic sulfur (S 8 ).
상기 황-탄소 복합체는 상기 황과 탄소나노튜브를 55:45 내지 90:10의 중량비로 포함할 수 있다. 상기 황-탄소 복합체에 포함된 황과 탄소재의 중량비를 만족할 경우, 전지의 용량을 향상시키는 동시에 도전성을 유지할 수 있다.The sulfur-carbon composite may include the sulfur and carbon nanotubes in a weight ratio of 55:45 to 90:10. When the weight ratio of the sulfur and the carbon material contained in the sulfur-carbon composite is satisfied, the capacity of the battery can be improved and the conductivity can be maintained.
또한, 상기 황-탄소 복합체는 탄소나노튜브 및 황을 혼합한 후 용융 환산법(melt diffusion) 방식을 통해 상기 황을 탄소나노튜브에 함침시켜 황-탄소 복합체를 제조할 수 있다.In addition, the sulfur-carbon composite may be prepared by mixing the carbon nanotubes and sulfur, and then impregnating the sulfur into the carbon nanotubes through a melt diffusion method.
상기 황-탄소 복합체는 상기 양극 슬러리 전체 중량을 기준으로 60 내지 95 중량%, 바람직하게는 65 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%로 포함될 수 있다. 황-탄소 복합체가 60 중량% 미만이면 전지 성능이 저하될 수 있고, 95 중량%를 초과하면 양극 활물질 이외의 도전재 또는 바인더의 함량이 상대적으로 감소하여 도전성 또는 내구성과 같은 특성이 저하될 수 있다.The sulfur-carbon composite may be included in an amount of 60 to 95% by weight, preferably 65 to 95% by weight, more preferably 70 to 90% by weight, based on the total weight of the positive electrode slurry. If the sulfur-carbon composite is less than 60% by weight, battery performance may deteriorate, and if it exceeds 95% by weight, the content of conductive materials or binders other than the positive electrode active material is relatively reduced, resulting in a decrease in properties such as conductivity or durability. .
상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 슬러리 전체 중량을 기준으로 0.05 중량% 내지 5 중량%의 함량일 수 있다.The conductive material is not particularly limited, but may include graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; It may be a conductive material such as a polyphenylene derivative. The conductive material may be in an amount of 0.05% to 5% by weight based on the total weight of the positive electrode slurry.
본 발명에 따른 리튬 이차전지용 양극에 있어서, 상기 바인더는 SBR(Styrene-Butadiene Rubber)/CMC (Carboxymethyl Cellulose), 폴리(비닐 아세테이트), 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리비닐피롤리돈, 알킬레이티드 폴리에틸렌옥사이드, 가교결합된 폴리에틸렌옥사이드, 폴리비닐에테르, 폴리(메틸메타크릴레이트), 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌과 폴리비닐리덴플루오라이드의 코폴리머(상품명: Kynar), 폴리(에틸아크릴레이트), 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리스티렌, 폴리아크릴산, 이들의 유도체, 블랜드, 코폴리머 등이 사용될 수 있다.In the positive electrode for a lithium secondary battery according to the present invention, the binder is SBR (Styrene-Butadiene Rubber)/CMC (Carboxymethyl Cellulose), poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, alkylated Polyethylene oxide, cross-linked polyethylene oxide, polyvinyl ether, poly(methyl methacrylate), polyvinylidene fluoride, a copolymer of polyhexafluoropropylene and polyvinylidene fluoride (trade name: Kynar), poly(ethyl) Acrylate), polytetrafluoroethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, polyacrylic acid, derivatives, blends, copolymers and the like thereof may be used.
또한, 상기 바인더의 함량은 상기 양극 슬러리 전체 중량을 기준으로 1 내지 20중량%, 바람직하게는 3 내지 18 중량%, 보다 바람직하게는 5 내지 15 중량%일 수 있다. 상기 범위 미만이면 양극 활물질간 또는 양극 활물질과 집전체간 결착력이 감소하게 되어 전극 안정성이 저하될 수 있다. 또한 폴리설파이드와 바인더로 사용되는 고분자 사슬의 특정 작용기 간 상호작용에 의한 폴리설파이드 용출 억제 또한 기대할 수 있다. 상기 범위 초과이면 전지 용량이 저하될 수 있다.In addition, the content of the binder may be 1 to 20% by weight, preferably 3 to 18% by weight, more preferably 5 to 15% by weight based on the total weight of the positive electrode slurry. If it is less than the above range, the bonding force between the positive electrode active material or between the positive electrode active material and the current collector may be reduced, thereby deteriorating electrode stability. In addition, suppression of polysulfide elution due to the interaction between polysulfide and specific functional groups of the polymer chain used as a binder can be expected. If it exceeds the above range, the battery capacity may decrease.
상기 양극 슬러리는 황-탄소 복합체, 도전재 및 바인더를 용매 상에서 혼합하여 15 내지 50 ㎛의 입도(D50 기준)를 갖는 슬러리 상태로 제조한 것이며, 상기 입도를 갖는 슬러리를 집전체 위에 도포한 후 건조 및 선택적으로 압연하여 양극 활물질층이 형성된 양극을 제조할 수 있다.The positive electrode slurry is prepared as a slurry having a particle size of 15 to 50 μm (based on D 50 ) by mixing a sulfur-carbon composite, a conductive material, and a binder in a solvent, and after applying the slurry having the particle size on a current collector Drying and selectively rolling may be performed to prepare a positive electrode having a positive electrode active material layer formed thereon.
이 때 상기 황-탄소 복합체, 도전재 및 바인더를 슬러리 상태로 제조하기 위한 용매로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있으나, 이에 한정되는 것은 아니다.In this case, a solvent for preparing the sulfur-carbon composite, the conductive material, and the binder in a slurry state may include acetonitrile, methanol, ethanol, tetrahydrofuran, water, isopropyl alcohol, etc., but is not limited thereto.
본 발명에 따른 리튬 이차전지용 양극에 있어서, 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.In the positive electrode for a lithium secondary battery according to the present invention, the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, and calcined carbon. , Or a surface-treated aluminum or stainless steel surface with carbon, nickel, titanium, silver, or the like may be used. In this case, the positive electrode current collector may be in various forms such as a film, sheet, foil, net, porous material, foam, non-woven fabric having fine irregularities formed on the surface so as to increase adhesion to the positive electrode active material.
본 발명에 있어서, 상기 양극은 하기 수학식 2로 표시되는 SC factor 값에 의해 구분된다.In the present invention, the anode is classified by an SC factor value represented by Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2020008043-appb-I000003
Figure PCTKR2020008043-appb-I000003
여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/cm3)이며, α는 10(상수)이다. Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg/cm 3 ), and α is 10 (constant).
본 발명에 따른 리튬 이차전지, 바람직하게는 리튬-황 이차전지는 상술한 양극뿐만 아니라 음극, 분리막 및 전해질 등의 유기적인 결합에 의해 고에너지 밀도를 구현하며, 본 발명의 구체예에 따르면, 리튬 이차전지, 바람직하게는 리튬-황 이차전지가 고에너지 밀도를 구현하기 위해, 상기 SC factor 값은 0.45 초과, 바람직하게는 0.5 이상일 수 있다. 본 발명에 있어서, 상기 SC factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 SC factor 값은 4.5 이하일 수 있다. 상기 SC factor 값이 0.45 초과인 경우, 기존의 리튬-황 이차전지의 경우에는 실제 구현 시 전지의 에너지 밀도 등의 성능이 저하되지만, 본 발명에 따른 리튬-황 이차전지의 경우에는 실제 구현 시에도 전지의 성능이 저하되지 않고 유지된다.The lithium secondary battery according to the present invention, preferably a lithium-sulfur secondary battery, implements a high energy density by organic bonding of the above-described positive electrode as well as a negative electrode, a separator, and an electrolyte, and according to a specific embodiment of the present invention, lithium In order for a secondary battery, preferably a lithium-sulfur secondary battery, to achieve a high energy density, the SC factor value may be greater than 0.45, preferably greater than 0.5. In the present invention, the upper limit of the SC factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the SC factor value may be 4.5 or less. When the SC factor value is more than 0.45, in the case of a conventional lithium-sulfur secondary battery, performance such as energy density of the battery is deteriorated in actual implementation, but in the case of the lithium-sulfur secondary battery according to the present invention, The performance of the battery is maintained without deterioration.
전해액Electrolyte
본 발명에서 상기 전해액은 리튬염을 함유하는 비수계 전해액으로, 리튬염과 용매를 포함한다. 상기 전해액은 1.5 g/cm3 미만의 밀도를 가진다. 상기 전해액이 1.5 g/cm3 이상의 밀도를 가지는 경우, 전해액의 무게 증가로 인해 리튬 이차전지, 바람직하게는 리튬-황 이차전지의 고에너지 밀도를 구현하기 어렵다.In the present invention, the electrolyte is a non-aqueous electrolyte containing a lithium salt, and includes a lithium salt and a solvent. The electrolyte solution has a density of less than 1.5 g/cm 3 . When the electrolyte has a density of 1.5 g/cm 3 or more, it is difficult to achieve a high energy density of a lithium secondary battery, preferably a lithium-sulfur secondary battery, due to an increase in weight of the electrolyte.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다. 본 발명의 일 구체예에 있어서, 상기 리튬염은 LiTFSI 등과 같은 리튬 이미드가 바람직할 수 있다.The lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carboxylic acid, lithium tetraphenylborate, and lithium imide. In one embodiment of the present invention, the lithium salt may be a lithium imide such as LiTFSI.
상기 리튬염의 농도는, 전해액 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 내지 8.0 M, 바람직하게는 0.5 내지 5.0 M, 더욱 바람직하게는 1.0 내지 3.0 M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해액의 전도도가 낮아져서 전지 성능이 저하될 수 있고, 상기 범위 초과이면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.The concentration of the lithium salt is 0.1 to 8.0 M, depending on various factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, working temperature and other factors known in the lithium secondary battery field. , Preferably 0.5 to 5.0 M, more preferably 1.0 to 3.0 M may be. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered and battery performance may be deteriorated. If the concentration of the lithium salt is less than the above range, the viscosity of the electrolyte may increase and the mobility of lithium ions (Li + ) may decrease. It is desirable to select an appropriate concentration.
상기 용매는 제1 용매 및 제2 용매를 포함한다. 상기 제1 용매는 용매에서 1 중량% 이상 포함된 구성성분 중 가장 높은 단위 부피당 쌍극자 모멘트(dipole moment)를 갖는 것이며, 따라서 높은 쌍극자 모멘트(dipole moment) 및 낮은 점도를 갖는 것을 특징으로 한다. 쌍극자 모멘트가 높은 용매를 사용하는 경우, 황의 고상 반응성을 개선하는 효과를 가지는데, 이러한 효과는 용매 자체가 낮은 점도를 가질 때에 우수하게 발현될 수 있다. 본 발명에서 제1 용매는 하기 수학식 1로 표시되는 DV2 factor에 의해 구분된다.The solvent includes a first solvent and a second solvent. The first solvent is characterized by having the highest dipole moment per unit volume among the constituents contained in the solvent at least 1% by weight, and thus has a high dipole moment and a low viscosity. When a solvent having a high dipole moment is used, it has an effect of improving the solid state reactivity of sulfur, and this effect can be excellently expressed when the solvent itself has a low viscosity. In the present invention, the first solvent is classified by a DV 2 factor represented by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2020008043-appb-I000004
Figure PCTKR2020008043-appb-I000004
여기서, DV는 단위 부피당 쌍극자 모멘트(debye(D)·mol/L)이고, μ는 용매의 점도(cP, 25 ℃)이며, γ는 100(상수)이다. Here, DV is the dipole moment per unit volume (debye(D)·mol/L), μ is the viscosity of the solvent (cP, 25°C), and γ is 100 (constant).
본 발명의 구체예에 따르면, 상기 DV2 factor 값은 1.75 이하, 바람직하게는 1.5 이하일 수 있다. 본 발명에 있어서, 상기 DV2 factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬 이차전지, 바람직하게는 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 DV2 factor 값은 0.1 이상일 수 있다. 제1 용매와 같이 DV2 factor 값이 1.5 이하인 용매를 혼합하는 경우, 전술한 바와 같은 표면 개질된 황-탄소 복합체를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다.According to an embodiment of the present invention, the DV 2 factor value may be 1.75 or less, preferably 1.5 or less. In the present invention, the lower limit of the DV 2 factor value is not particularly limited, but considering an embodiment of an actual lithium secondary battery, preferably a lithium-sulfur secondary battery, the DV 2 factor value may be 0.1 or more. . When mixing a solvent having a DV 2 factor of 1.5 or less, such as the first solvent, when applied to a lithium-sulfur secondary battery including a surface-modified sulfur-carbon composite as described above, it is possible to improve battery performance, such as improving life characteristics. It can be advantageous.
본 발명에서 제1 용매는 상술한 DV2 factor 값의 범위에 포함되면, 그 종류는 특별히 한정되지 않으나, 프로피오니트릴(Propionitrile), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 감마-부티로락톤(Gamma-Butyrolactone), 트리에틸아민(Triethylamine) 및 1-아이오도프로판(1-iodopropane)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. In the present invention, if the first solvent is included in the range of the DV 2 factor, the type is not particularly limited, but propionitrile, dimethylacetamide, dimethylformamide, gamma- It may be one or more selected from the group consisting of butyrolactone (Gamma-Butyrolactone), triethylamine (Triethylamine) and 1-iodopropane (1-iodopropane).
본 발명의 구체예에 따르면, 상기 제1 용매는 전해액을 구성하는 용매를 기준으로 1 내지 50 중량%, 바람직하게는 5 내지 40 중량%, 보다 바람직하게는 10 내지 30 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 중량% 범위 내에서 제1 용매를 포함하는 경우, 전술한 바와 같이 기공도가 낮고, 황의 로딩양이 높으며, 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 포함하는 리튬-황 이차전지에 적용되었을 때 수명 특성 개선과 같은 전지 성능 개선에 유리할 수 있다.According to an embodiment of the present invention, the first solvent may contain 1 to 50% by weight, preferably 5 to 40% by weight, and more preferably 10 to 30% by weight, based on the solvent constituting the electrolyte. When the solvent according to the present invention contains the first solvent within the above-described weight% range, as described above, a positive electrode slurry having a low porosity, a high loading amount of sulfur, and a particle size (based on D 50 ) of 15 to 50 μm When applied to a lithium-sulfur secondary battery including a, it may be advantageous in improving battery performance, such as improving life characteristics.
본 발명의 리튬 이차전지는 상기 SC factor와 상기 DV2 factor를 조합한 NS factor에 의해 추가적으로 구분될 수 있다. 상기 NS factor는 하기 수학식 3으로 표시된다.The lithium secondary battery of the present invention may be further classified by an NS factor obtained by combining the SC factor and the DV 2 factor. The NS factor is represented by Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2020008043-appb-I000005
Figure PCTKR2020008043-appb-I000005
여기서, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 1에 의해 정의된 값과 동일하다. Here, the SC factor is the same as the value defined by Equation 2, and the DV 2 factor is the same as the value defined by Equation 1 above.
본 발명의 구체예에 따르면, 상기 NS factor 값은 3.5 이하, 바람직하게는 3.0 이하, 보다 바람직하게는 2.7 이하일 수 있다. 본 발명에 있어서, 상기 NS factor 값의 하한은 특별하게 제한되지 않지만, 실제 리튬 이차전지, 바람직하게는 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 NS factor 값은 0.1 이상일 수 있다. 상기 NS factor 값을 상기 범위 내로 조절하는 경우, 리튬-황 이차전지의 성능 개선 효과가 보다 우수할 수 있다.According to an embodiment of the present invention, the value of the NS factor may be 3.5 or less, preferably 3.0 or less, and more preferably 2.7 or less. In the present invention, the lower limit of the value of the NS factor is not particularly limited, but considering an embodiment of an actual lithium secondary battery, preferably a lithium-sulfur secondary battery, the NS factor value may be 0.1 or more. When the NS factor value is adjusted within the above range, the effect of improving the performance of the lithium-sulfur secondary battery may be more excellent.
본 발명에서 제2 용매는 불소화된 에테르계 용매이다. 기존에는 전해액의 점도를 조절하기 위하여, 희석제(diluent)로 디메톡시에탄(dimethoxyethane), 디메틸카보네이트(dimethylcarbonate) 등의 용매가 사용되었는데, 이와 같은 용매를 희석제로 사용하는 경우, 본 발명과 같이 고로딩, 저기공도이면서 양극 슬러리의 입도가 일정 범위에 해당하는 양극을 포함하는 전지를 구동할 수가 없다. In the present invention, the second solvent is a fluorinated ether solvent. Conventionally, a solvent such as dimethoxyethane and dimethylcarbonate has been used as a diluent to adjust the viscosity of the electrolyte. When using such a solvent as a diluent, high loading as in the present invention , It is not possible to drive a battery including a positive electrode having a low porosity and a particle size of the positive electrode slurry within a certain range.
따라서, 본 발명에서 제2 용매는 제1 용매와 함께 본 발명에 따른 양극을 구동하기 위해 첨가된다. 상기 제2 용매는 해당 기술 분야에서 일반적으로 사용되는 불소화된 에테르계 용매이면, 그 종류는 특별히 한정되지 않으나, 1H,1H,2′H,3H-데카플루오로디프로필 에테르(1H,1H,2′H,3H-Decafluorodipropyl ether), 디플루오로메틸 2,2,2-트리플루오로에틸 에테르(Difluoromethyl 2,2,2-trifluoroethyl ether), 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르(1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르(1,1,2,3,3,3-Hexafluoropropyl difluoromethyl ether), 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르(Pentafluoroethyl 2,2,2-trifluoroethyl ether) 및 1H,1H,2′H-퍼플루오로디프로필 에테르(1H,1H,2′H-Perfluorodipropyl ether)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. Therefore, in the present invention, the second solvent is added together with the first solvent to drive the anode according to the present invention. If the second solvent is a fluorinated ether solvent generally used in the relevant technical field, the type is not particularly limited, but 1H,1H,2'H,3H-decafluorodipropyl ether (1H,1H,2' H,3H-Decafluorodipropyl ether), difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2-tetrafluoroethyl trifluoro Methyl ether (1,2,2,2-Tetrafluoroethyl trifluoromethyl ether), 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether (1,1,2,3,3,3- Hexafluoropropyl difluoromethyl ether), pentafluoroethyl 2,2,2-trifluoroethyl ether and 1H,1H,2′H-perfluorodipropyl ether (1H,1H, 2′H-Perfluorodipropyl ether) may be one or more selected from the group consisting of.
본 발명의 구체예에 따르면, 상기 제2 용매는 전해액을 구성하는 용매를 기준으로 50 내지 99 중량%, 바람직하게는 60 내지 95 중량%, 보다 바람직하게는 70 내지 90 중량%가 포함될 수 있다. 본 발명에 따른 용매가 상술한 50 내지 99 중량% 범위 내에서 제2 용매를 포함하는 경우, 제1 용매와 마찬가지로 전술한 바와 같은 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 포함하는 리튬-황 전지에 적용되었을 때 수명특성 개선과 같은 전지 성능 개선에 유리할 수 있다.According to an embodiment of the present invention, the second solvent may contain 50 to 99% by weight, preferably 60 to 95% by weight, and more preferably 70 to 90% by weight, based on the solvent constituting the electrolyte. When the solvent according to the present invention contains a second solvent within the range of 50 to 99% by weight described above, like the first solvent, the positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 μm as described above is included. When applied to a lithium-sulfur battery, it may be advantageous in improving battery performance, such as improving life characteristics.
상기 제1 용매와 제2 용매를 혼합 시, 전지의 성능 개선 효과를 고려하여 제2 용매는 제1 용매와 동일하거나 그 이상의 양이 전해액에 포함될 수 있다. 본 발명의 구체예에 따르면, 상기 용매는 1:1 내지 1:9, 바람직하게는 3:7 내지 1:9 중량비(제1 용매:제2 용매)로 제1 용매 및 제2 용매를 포함할 수 있다.When mixing the first solvent and the second solvent, the second solvent may be included in the electrolyte in an amount equal to or greater than the first solvent in consideration of an effect of improving the performance of the battery. According to an embodiment of the present invention, the solvent may contain a first solvent and a second solvent in a weight ratio of 1:1 to 1:9, preferably 3:7 to 1:9 (first solvent: second solvent). I can.
본 발명의 리튬-황 전지용 비수계 전해액은 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 리튬 전극에 안정적인 피막을 형성하고 충·방전 효율을 향상시키는 효과가 있다. 이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물; 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.The non-aqueous electrolyte solution for a lithium-sulfur battery of the present invention may further include nitric acid or nitrous acid-based compounds as an additive. The nitric acid or nitrous acid-based compound has an effect of forming a stable film on the lithium electrode and improving charging/discharging efficiency. The nitric acid or nitrous acid-based compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ), and ammonium nitrite (NH 4 NO 2 ); Organic nitric acids such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite, and octyl nitrite Or nitrous acid compounds; Organic nitro compounds such as nitromethane, nitropropane, nitrobutane, nitrobenzene, dinitrobenzene, nitropyridine, dinitropyridine, nitrotoluene, and dinitrotoluene; And one selected from the group consisting of a combination thereof, and lithium nitrate is preferably used.
또한, 상기 비수계 전해액은 충·방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.In addition, the non-aqueous electrolyte may further include other additives for the purpose of improving charging/discharging properties and flame retardancy. Examples of the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dione, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) and the like.
음극cathode
본 발명의 리튬 이차전지용 음극은 음극 집전체; 및 상기 집전체의 적어도 일면에 형성된 음극 활물질층;을 포함할 수 있다.The negative electrode for a lithium secondary battery of the present invention includes a negative electrode current collector; And a negative active material layer formed on at least one surface of the current collector.
상기 음극 활물질 층은 음극 활물질, 바인더 및 도전재를 포함한다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. The negative active material layer includes a negative active material, a binder, and a conductive material. As the negative active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or lithium alloy You can use The material capable of reversibly occluding or releasing lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.A material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
상기 바인더, 도전재 및 음극 집전체는 상술한 양극에서 사용된 물질과 동일할 수 있다.The binder, the conductive material, and the negative electrode current collector may be the same as the material used in the positive electrode.
분리막Separator
본 발명에서 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로, 통상의 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.In the present invention, the separator is a physical separator having a function of physically separating an electrode, and if it is used as a conventional separator, it can be used without special limitation. In particular, it is preferable that the separator has low resistance against ion migration of the electrolyte and has excellent electrolyte moisture-repelling ability. Do.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30 내지 50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다.In addition, the separator separates or insulates the positive electrode and the negative electrode from each other and enables transport of lithium ions between the positive electrode and the negative electrode. Such a separator has a porosity of 30 to 50%, and may be made of a non-conductive or insulating material.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독 중합체, 프로필렌 단독 중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하기로 다공성 고분자 필름을 사용한다.Specifically, a porous polymer film, for example, an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, etc., are used. In addition, nonwoven fabrics made of high melting point glass fibers or the like can be used. Among these, a porous polymer film is preferably used.
만일 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.If a polymer film is used as both the buffer layer and the separator, the impregnation amount of the electrolyte solution and the ion conduction characteristics decrease, and the effect of reducing the overvoltage and improving the capacity characteristics becomes insignificant. Conversely, when all non-woven materials are used, mechanical stiffness cannot be secured, resulting in a battery short circuit. However, when a film-type separator and a polymer nonwoven buffer layer are used together, it is possible to secure mechanical strength as well as an effect of improving battery performance due to the adoption of the buffer layer.
본 발명의 바람직한 일 구체예에 따르면 에틸렌 단독 중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용한다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25 ㎛, 기공도가 40 내지 50 %인 것이 바람직하다.According to a preferred embodiment of the present invention, an ethylene homopolymer (polyethylene) polymer film is used as a separator, and a polyimide nonwoven fabric is used as a buffer layer. In this case, the polyethylene polymer film preferably has a thickness of 10 to 25 µm and a porosity of 40 to 50%.
본 발명의 리튬 이차전지, 바람직하게는 리튬-황 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수 있다.The lithium secondary battery of the present invention, preferably a lithium-sulfur secondary battery, is prepared by placing a separator between a positive electrode and a negative electrode to form an electrode assembly, and the electrode assembly is placed in a cylindrical battery case or a prismatic battery case, and then an electrolyte is injected. can do. Alternatively, after laminating the electrode assembly, it may be impregnated with an electrolyte, and the resulting product may be sealed by putting it in a battery case.
본 발명에 따른 리튬 이차전지, 바람직하게는 리튬-황 이차전지는 하기 수학식 4로 표시되는 ED factor 값에 의해 구분된다.The lithium secondary battery, preferably lithium-sulfur secondary battery according to the present invention is classified by the ED factor value represented by Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2020008043-appb-I000006
Figure PCTKR2020008043-appb-I000006
여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/cm3)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하다. 상기 ED factor는 그 값이 높을수록 실제 리튬-황 이차전지에서 높은 에너지 밀도를 구현할 수 있다. Where V is the nominal discharge voltage (V) for Li/Li + , D is the density of the electrolyte (g/cm 3 ), C is the discharge capacity (mAh/g) when discharging at a 0.1C rate, and SC factor Is the same as the value defined by Equation 2 above. The higher the value of the ED factor, the higher the energy density can be realized in the actual lithium-sulfur secondary battery.
본 발명의 구체예에 따르면, 상기 ED factor 값은 850 이상, 바람직하게는 870 이상, 더욱 바람직하게는 891 이상 일 수 있다. 본 발명에 있어서, 상기 ED factor 값의 상한은 특별하게 제한되지 않지만, 실제 리튬-황 이차전지의 구현예를 고려해 볼 때, 상기 ED factor 값은 10,000 이하일 수 있다. 상기 ED factor 값의 범위는 본 발명에 따른 리튬-황 이차전지가 기존의 리튬-황 이차전지보다 더 향상된 에너지 밀도를 구현할 수 있음을 의미한다.According to an embodiment of the present invention, the ED factor value may be 850 or more, preferably 870 or more, and more preferably 891 or more. In the present invention, the upper limit of the ED factor value is not particularly limited, but considering an embodiment of an actual lithium-sulfur secondary battery, the ED factor value may be 10,000 or less. The range of the ED factor value means that the lithium-sulfur secondary battery according to the present invention can realize an improved energy density than the conventional lithium-sulfur secondary battery.
또한, 본 발명은 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공한다.In addition, the present invention provides a battery module including the lithium secondary battery as a unit cell.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스 전원으로 사용될 수 있다.The battery module can be used as a power supply for medium and large devices that require high temperature stability, long cycle characteristics, and high capacity characteristics.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle; EV), 하이브리드 전기자동 차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle; PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.Examples of the medium and large-sized devices include a power tool that is powered by an omniscient motor and moves; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, a preferred embodiment is presented to aid the understanding of the present invention, but the following examples are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It is natural that such modifications and modifications fall within the appended claims.
<리튬-황 이차전지 제조><Manufacture of lithium-sulfur secondary battery>
실시예Example 1. One.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 입도(D50 기준)가 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 µm was manufactured using a ball mill to prepare an entangled type carbon nanotube having a reduced particle size (based on D 50 ).
상기 입도(D50 기준)가 감소된 인탱글 타입의 탄소나노튜브 및 황을 혼합한 후, 상기 혼합물을 155 ℃의 온도로 30 분 동안 용융 확산법(melt diffusion)을 이용하여 황-탄소 복합체를 제조하였다.After mixing the entangled carbon nanotubes with reduced particle size (based on D 50 ) and sulfur, the mixture was melted at a temperature of 155° C. for 30 minutes to prepare a sulfur-carbon composite. .
상기 황-탄소 복합체의 황과 인탱글 타입의 탄소나노튜브의 중량비는 70:30이었다.The weight ratio of sulfur and entangled carbon nanotubes in the sulfur-carbon composite was 70:30.
상기 황-탄소 복합체 90 중량%, 바인더로서 스티렌부타디엔고무/카르복시메틸셀룰로오즈(SBR/CMC 7:3의 중량비) 5 중량% 및 도전재로서 덴카블랙 5 중량%를 혼합하고, 물에 용해시켜 농도(고형분 함량을 기준으로 한 농도 20%)인 양극 슬러리를 제조하였다. 상기 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 27 ㎛이었다.90% by weight of the sulfur-carbon complex, 5% by weight of styrene butadiene rubber/carboxymethylcellulose as a binder (weight ratio of SBR/CMC 7:3) and 5% by weight of denka black as a conductive material were mixed, dissolved in water, and the concentration ( A positive electrode slurry having a concentration of 20% based on the solid content) was prepared. The particle size of the positive electrode slurry was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 27 μm.
상기 양극 슬러리를 알루미늄 집전체 상에 코팅하여 양극 활물질층을 형성하고, 건조 및 압연하여 양극을 제조하였다. 제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.54 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.757이었다.The positive electrode slurry was coated on an aluminum current collector to form a positive electrode active material layer, followed by drying and rolling to prepare a positive electrode. The porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA-μHITE equipment) in the manufactured positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.54 mg/cm 3 Was. The SC factor value calculated based on this was 0.757.
상기 양극과 음극을 대면하도록 위치시킨 후, 두께 20 ㎛ 및 기공도 45 %의 폴리에틸렌 분리막을 상기 양극과 음극 사이에 개재하였다. 이때 상기 음극으로는 60 ㎛ 두께의 리튬 호일을 사용하였다.After positioning the positive electrode and the negative electrode to face each other, a polyethylene separator having a thickness of 20 μm and a porosity of 45% was interposed between the positive electrode and the negative electrode. At this time, a lithium foil having a thickness of 60 μm was used as the negative electrode.
그 후, 케이스 내부로 전해액을 주입하여 리튬-황 이차전지를 제조하였다.After that, an electrolyte was injected into the case to prepare a lithium-sulfur secondary battery.
이때 상기 전해액은, 유기 용매에 3 M 농도의 리튬 비스(트리플루오르메틸 설포닐)이미드(LiTFSI)를 용해시켜 제조한 것이며, 상기 유기 용매는 프로피오니트릴(제1 용매)과 1H,1H,2′H,3H-데카플루오로디프로필 에테르(제2 용매)를 3:7 중량비(w/w)로 혼합한 용매를 사용하였다. 상기 제1 용매에서 단위 부피당 쌍극자 모멘트는 97.1 D·mol/L이었고, BROOKFIELD AMETEK사 LVDV2T-CP점도계를 이용하여 측정한 용매의 점도는 0.38 cP(25 ℃)이었다. 이를 기초로 계산된 DV2 factor 값은 0.39이었다. 제조된 전지의 충·방전은 45 ℃에서 진행하였다.At this time, the electrolyte is prepared by dissolving lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) having a concentration of 3 M in an organic solvent, and the organic solvent is propionitrile (first solvent) and 1H,1H, A solvent obtained by mixing 2'H,3H-decafluorodipropyl ether (second solvent) in a 3:7 weight ratio (w/w) was used. The dipole moment per unit volume in the first solvent was 97.1 D·mol/L, and the viscosity of the solvent measured by using a BROOKFIELD AMETEK LVDV2T-CP viscometer was 0.38 cP (25° C.). The DV 2 factor value calculated based on this was 0.39. Charging and discharging of the manufactured battery was performed at 45°C.
실시예 2.Example 2.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 실시예 1 대비 볼밀 시간을 늘려 입도(D50 기준)가 실시예 1 보다 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled-type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 µm was used with a ball mill to increase the ball mill time compared to Example 1, so that the particle size (based on D 50 ) was reduced compared to Example 1. A type of carbon nanotube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 실시예 2의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 24 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Example 2 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 24 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.54 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.757이었다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA-μHITE equipment) in the manufactured positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.54 mg/cm 3 Was. The SC factor value calculated based on this was 0.757.
실시예 3.Example 3.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 실시예 2 대비 볼밀 시간을 늘려 입도(D50 기준)가 실시예 2 보다 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 µm was used in a ball mill to increase the ball mill time compared to Example 2, so that the particle size (based on D 50 ) was reduced compared to Example 2. A type of carbon nanotube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 실시예 3의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 18 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Example 3 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 18 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.35 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.725이었다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.35 mg/cm 3 . The SC factor value calculated based on this was 0.725.
실시예 4.Example 4.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 실시예 3 대비 볼밀 시간을 늘려 입도(D50 기준)가 실시예 3 보다 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled-type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 μm was used in a ball mill to increase the ball mill time compared to Example 3, so that the particle size (based on D 50 ) was reduced compared to Example 3 A type of carbon nanotube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 실시예 4의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 15 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Example 4 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 15 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.6 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.767이었다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and the electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.6 mg/cm 3 Was. The SC factor value calculated based on this was 0.767.
비교예 1.Comparative Example 1.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 실시예 4 대비 볼밀 시간을 늘려 입도(D50 기준)가 실시예 4 보다 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 µm was used in a ball mill to increase the ball mill time compared to Example 4, so that the particle size (based on D 50 ) was reduced compared to Example 4. A type of carbon nanotube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 비교예 1의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 11 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Comparative Example 1 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 11 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.73 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.788이었다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.73 mg/cm 3 . Based on this, the calculated SC factor value was 0.788.
비교예 2.Comparative Example 2.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 볼 밀을 이용하여 실시예 4 대비 볼 밀 시간을 늘려 입도(D50 기준)가 실시예 4 보다 감소된 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 μm was used in a ball mill to increase the ball mill time compared to Example 4, resulting in a reduced particle size (based on D 50 ) than in Example 4. An entangle-type carbon nanotube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 비교예 2의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 8 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Comparative Example 2 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 8 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 4.37 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.728이었다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 4.37 mg/cm 3 . Based on this, the calculated SC factor value was 0.728.
비교예 3.Comparative Example 3.
입도(D50 기준)가 100 내지 150 ㎛인 인탱글 타입(entangled type)의 탄소나노튜브를 실시예 4와 동일한 시간으로 볼 밀하여 입도(D50 기준)가 실시예 4 와 동일한 인탱글 타입의 탄소나노튜브를 제조하였다.An entangled type carbon nanotube having a particle size (based on D 50 ) of 100 to 150 µm was ball milled at the same time as in Example 4, and the entangled type carbon nanotube having the same particle size (based on D 50 ) as in Example 4 The tube was prepared.
이후 과정은 상기 실시예 1과 동일하게 실시하여 리튬-황 이차전지를 제조하였다. 비교예 3의 양극 슬러리의 입도를 PSA(particle size analyzer)를 이용하여 측정하였으며, 양극 슬러리의 입도(D50 기준)는 15 ㎛이었다.Subsequent processes were carried out in the same manner as in Example 1 to prepare a lithium-sulfur secondary battery. The particle size of the positive electrode slurry of Comparative Example 3 was measured using a particle size analyzer (PSA), and the particle size (based on D 50 ) of the positive electrode slurry was 15 μm.
제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 60 %이었고, 양극 활물질 층의 단위 면적당 황의 질량은 2.7 mg/cm3 이었다. 이를 기초로 계산된 SC factor 값은 0.45였다.The porosity of the positive electrode active material layer calculated by measuring the electrode weight and electrode thickness (using TESA-μHITE equipment) in the prepared positive electrode was 60%, and the mass of sulfur per unit area of the positive electrode active material layer was 2.7 mg/cm 3 . The SC factor value calculated based on this was 0.45.
실시예 1 내지 4 및 비교예 1 내지 3의 조건을 정리하여 하기 표 1에 나타내었다.The conditions of Examples 1 to 4 and Comparative Examples 1 to 3 are summarized and shown in Table 1 below.
양극 슬러리의 입도(D50, ㎛)Particle size of positive electrode slurry (D 50 , ㎛) SC factorSC factor DV2 factorDV 2 factor NS factorNS factor ED factorED factor
실시예 1Example 1 27 27 0.7570.757 0.390.39 0.5150.515 1433.1851433.185
실시예 2Example 2 24 24 0.7570.757 0.390.39 0.5150.515 1422.9551422.955
실시예 3Example 3 18 18 0.7250.725 0.390.39 0.5380.538 1434.3751434.375
실시예 4Example 4 15 15 0.7670.767 0.390.39 0.5080.508 1392.0431392.043
비교예 1Comparative Example 1 11 11 0.7880.788 0.390.39 0.4950.495 1359.4171359.417
비교예 2Comparative Example 2 88 0.7280.728 0.390.39 0.5350.535 992.8758992.8758
비교예 3Comparative Example 3 1515 0.450.45 0.390.39 0.8660.866 822.1622822.1622
실험예 1. 전지 성능 평가Experimental Example 1. Battery performance evaluation
충·방전 측정 장치(LAND CT-2001A, 우한(Wuhan), 중국)를 이용하여 초기 5 사이클 동안 0.1 C의 전류밀도로 충전-방전을 진행하고, 그 이후 0.1 C 충전과 0.3 C 방전을 실시하면서, 실시예 1 내지 4 및 비교예 1 내지 3에 따른 리튬-황 이차전지의 ED factor 값을 측정하였다. 이때 얻어진 결과는 도 1에 나타내었다.Charge-discharge at a current density of 0.1 C during the initial 5 cycles using a charge/discharge measuring device (LAND CT-2001A, Wuhan, China), and then charge and discharge 0.1 C and discharge 0.3 C. , ED factor values of lithium-sulfur secondary batteries according to Examples 1 to 4 and Comparative Examples 1 to 3 were measured. The results obtained at this time are shown in FIG. 1.
도 1의 결과에서, 양극 슬러리의 입도(D50 기준)가 15 내지 50 ㎛인 실시예 1 내지 4의 리튬-황 이차전지는 수명 특성이 우수한 결과를 보였다. 실시예 4는 양극 슬러리의 입도(D50 기준)가 15 ㎛로, 실시예 1 내지 3 보다 수명 특성이 우수하지 못하였지만, 비교예 1 보다는 우수한 결과를 보였다. 따라서, 양극 슬러리의 입도(D50 기준)는 15 ㎛에서 임계적 의의를 갖는 것을 알 수 있다.In the results of FIG. 1, the lithium-sulfur secondary batteries of Examples 1 to 4 having a particle size (based on D 50 ) of 15 to 50 μm of the positive electrode slurry exhibited excellent results in life characteristics. In Example 4, the positive electrode slurry had a particle size (based on D 50 ) of 15 µm, and the lifespan characteristics were not superior to those of Examples 1 to 3, but the results were superior to that of Comparative Example 1. Therefore, it can be seen that the particle size (based on D 50 ) of the positive electrode slurry has a critical significance at 15 μm.
비교예 1 및 2는 양극 슬러리의 입도(D50 기준)가 15 ㎛ 미만인 것으로, 사이클이 반복될수록 ED factor가 급격히 감소하는 것을 알 수 있다. 또한, 비교예 3은 SC factor 값이 0.45 이하인 것으로, 충·방전 사이클 동안 ED factor가 800 수준으로 낮은 에너지 밀도를 나타냄을 확인할 수 있다. In Comparative Examples 1 and 2, the particle size (based on D 50 ) of the positive electrode slurry was less than 15 μm, and it can be seen that the ED factor rapidly decreased as the cycle was repeated. In addition, in Comparative Example 3, the SC factor value is 0.45 or less, and it can be seen that the ED factor shows a low energy density of 800 levels during the charge/discharge cycle.
따라서, 양극 슬러리의 입도(D50 기준)가 15 내지 50 ㎛이면 전지의 수명 특성이 우수한 것을 알 수 있다.Therefore, it can be seen that when the particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm, the battery life characteristics are excellent.

Claims (14)

  1. 양극; 음극; 이들 사이에 개재된 분리막; 및 전해액을 포함하는 리튬 이차전지로서,anode; cathode; A separator interposed therebetween; And as a lithium secondary battery comprising an electrolyte,
    상기 양극은 황-탄소 복합체, 바인더 및 도전재를 포함하는 양극 슬러리를 포함하며,The positive electrode includes a positive electrode slurry including a sulfur-carbon composite, a binder, and a conductive material,
    상기 양극 슬러리의 입도(D50 기준)는 15 내지 50 ㎛이며,The particle size (based on D 50 ) of the positive electrode slurry is 15 to 50 μm,
    상기 전해액은 용매 및 리튬염을 포함하며,The electrolyte solution contains a solvent and a lithium salt,
    상기 용매는,The solvent is,
    하기 수학식 1로 표시되는 DV2 factor 값이 1.75 이하인 제1 용매; 및A first solvent having a DV 2 factor value of 1.75 or less represented by Equation 1 below; And
    불소화된 에테르계 용매인 제2 용매를 포함하는 것을 특징으로 하는 리튬 이차전지:A lithium secondary battery comprising a second solvent which is a fluorinated ether solvent:
    [수학식 1][Equation 1]
    Figure PCTKR2020008043-appb-I000007
    Figure PCTKR2020008043-appb-I000007
    여기서 DV는 단위 부피당 쌍극자 모멘트(D·mol/L)이고, μ는 용매의 점도(cP, 25 ℃)이며, γ는 100(상수)이다.Where DV is the dipole moment per unit volume (D·mol/L), μ is the viscosity of the solvent (cP, 25°C), and γ is 100 (constant).
  2. 제1항에 있어서, 상기 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일면에 형성된 양극 활물질층;을 포함하며, 상기 양극 활물질층은 입도(D50 기준)가 15 내지 50 ㎛인 양극 슬러리를 포함하는 것을 특징으로 하는 리튬 이차전지.According to claim 1, The positive electrode is a positive electrode current collector; And a positive electrode active material layer formed on at least one surface of the positive electrode current collector, wherein the positive electrode active material layer comprises a positive electrode slurry having a particle size (based on D 50 ) of 15 to 50 μm.
  3. 제1항에 있어서, 상기 황-탄소 복합체는 황 및 탄소나노튜브를 포함하는 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the sulfur-carbon composite contains sulfur and carbon nanotubes.
  4. 제1항에 있어서, 상기 탄소나노튜브는 입도(D50 기준)가 15 내지 50 ㎛인 입자 형태의 인탱글 타입(entangled type)인 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the carbon nanotubes have a particle size (based on D 50 ) of 15 to 50 μm in a particle shape entangled type.
  5. 제1항에 있어서, 상기 제1 용매의 DV2 factor 값은 1.5 이하인 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein a DV 2 factor value of the first solvent is 1.5 or less.
  6. 제1항에 있어서, 상기 양극은 하기 수학식 2로 표시되는 SC factor 값이 0.45 초과인 것을 특징으로 하는 리튬 이차전지:The lithium secondary battery according to claim 1, wherein the positive electrode has an SC factor value of 0.45 or more represented by Equation 2 below:
    [수학식 2][Equation 2]
    Figure PCTKR2020008043-appb-I000008
    Figure PCTKR2020008043-appb-I000008
    여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질층의 단위 면적당 황의 질량(mg/cm2)이며, α는 10(상수)이다.Here, P is the porosity (%) of the positive electrode active material layer in the positive electrode, L is the mass of sulfur per unit area of the positive electrode active material layer in the positive electrode (mg/cm 2 ), and α is 10 (constant).
  7. 제1항에 있어서, 상기 리튬 이차전지는 하기 수학식 3으로 표시되는 NS factor 값이 3.5 이하인 것을 특징으로 하는 리튬 이차전지:The lithium secondary battery according to claim 1, wherein the lithium secondary battery has an NS factor value of 3.5 or less represented by Equation 3 below:
    [수학식 3][Equation 3]
    Figure PCTKR2020008043-appb-I000009
    Figure PCTKR2020008043-appb-I000009
    여기서, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하고, DV2 factor는 상기 수학식 1에 의해 정의된 값과 동일하다.Here, the SC factor is the same as the value defined by Equation 2, and the DV 2 factor is the same as the value defined by Equation 1 above.
  8. 제1항에 있어서, 상기 리튬 이차전지는 하기 수학식 4로 표시되는 ED factor 값이 850 이상인 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the lithium secondary battery has an ED factor value of 850 or more represented by Equation 4 below.
    [수학식 4][Equation 4]
    Figure PCTKR2020008043-appb-I000010
    Figure PCTKR2020008043-appb-I000010
    여기서, V는 Li/Li+에 대한 방전 공칭 전압(V)이고, D는 전해액의 밀도(g/cm3)이고, C는 0.1C rate로 방전 시 방전 용량(mAh/g)이며, SC factor는 상기 수학식 2에 의해 정의된 값과 동일하다.Where V is the nominal discharge voltage (V) for Li/Li + , D is the density of the electrolyte (g/cm 3 ), C is the discharge capacity (mAh/g) when discharging at a 0.1C rate, and SC factor Is the same as the value defined by Equation 2 above.
  9. 제1항에 있어서, 상기 제1 용매는 프로피오니트릴, 디메틸아세트아미드, 디메틸포름아미드, 감마-부티로락톤, 트리에틸아민 및 1-아이오도프로판으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차전지.The method of claim 1, wherein the first solvent is at least one selected from the group consisting of propionitrile, dimethylacetamide, dimethylformamide, gamma-butyrolactone, triethylamine, and 1-iodopropane. Lithium secondary battery.
  10. 제1항에 있어서, 상기 제2 용매는 1H,1H,2′H,3H-데카플루오로디프로필 에테르, 디플루오로메틸 2,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,2,3,3,3-헥사플루오로프로필 디플루오로메틸 에테르, 펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르 및 1H,1H,2'H-퍼플루오로디프로필 에테르로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차전지.The method of claim 1, wherein the second solvent is 1H,1H,2'H,3H-decafluorodipropyl ether, difluoromethyl 2,2,2-trifluoroethyl ether, 1,2,2,2 -Tetrafluoroethyl trifluoromethyl ether, 1,1,2,3,3,3-hexafluoropropyl difluoromethyl ether, pentafluoroethyl 2,2,2-trifluoroethyl ether and 1H ,1H,2'H-perfluorodipropyl ether, characterized in that at least one selected from the group consisting of a lithium secondary battery.
  11. 제1항에 있어서, 상기 용매는 제1 용매를 1 내지 50 중량%로 포함하는 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the solvent comprises 1 to 50% by weight of the first solvent.
  12. 제1항에 있어서, 상기 용매는 제2 용매를 50 내지 99 중량%로 포함하는 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the solvent contains 50 to 99% by weight of the second solvent.
  13. 제1항에 있어서, 상기 용매는 1:1 내지 1:9의 중량비로 제1 용매 및 제2 용매를 포함하는 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the solvent comprises a first solvent and a second solvent in a weight ratio of 1:1 to 1:9.
  14. 제1항에 있어서, 상기 리튬 이차전지는 리튬-황 이차전지인 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 1, wherein the lithium secondary battery is a lithium-sulfur secondary battery.
PCT/KR2020/008043 2019-07-16 2020-06-22 Lithium secondary battery WO2021010605A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20840658.7A EP3951931A4 (en) 2019-07-16 2020-06-22 Lithium secondary battery
CN202080028671.2A CN113692665A (en) 2019-07-16 2020-06-22 Lithium secondary battery
JP2021563684A JP7427025B2 (en) 2019-07-16 2020-06-22 lithium secondary battery
BR112021020560A BR112021020560A2 (en) 2019-07-16 2020-06-22 Lithium secondary battery
US17/605,761 US20220231342A1 (en) 2019-07-16 2020-06-22 Lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0085623 2019-07-16
KR20190085623 2019-07-16
KR1020200073784A KR20210009272A (en) 2019-07-16 2020-06-17 Lithium secondary battery
KR10-2020-0073784 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021010605A1 true WO2021010605A1 (en) 2021-01-21

Family

ID=74210466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008043 WO2021010605A1 (en) 2019-07-16 2020-06-22 Lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2021010605A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463437B1 (en) * 2002-04-12 2004-12-23 조수연 A Carbon-Sulfur composite for the anode of Lithium Sulfur Battery and the method thereof
KR101379716B1 (en) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 lithium-sulfur secondary battery having electrode which is constructed with graphene composite including sulfur and a forming method thereof
KR20160037084A (en) 2014-09-26 2016-04-05 주식회사 엘지화학 Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same
KR20160118597A (en) * 2015-04-02 2016-10-12 현대자동차주식회사 An anode of all-solid state lithium-sulfur battery using graphene oxide and a method for production thereof
KR20170003534A (en) * 2014-03-13 2017-01-09 블루 솔루션즈 Lithium-sulfur battery
KR20170084453A (en) * 2016-01-12 2017-07-20 주식회사 엘지화학 Non-Aqueous Slurry Composition, Cathode Thereof, And Lithium Sulfur Batteries Comprising The Same
KR101978130B1 (en) * 2014-10-23 2019-05-14 가부시키가이샤 도요다 지도숏키 Electrolyte
KR20190085623A (en) 2018-01-11 2019-07-19 (주)고백기술 Automatic information delivery method and the system for particular message delivery
KR20200073784A (en) 2018-12-14 2020-06-24 주식회사 케이티 Server, device and method for providing virtual reality service

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463437B1 (en) * 2002-04-12 2004-12-23 조수연 A Carbon-Sulfur composite for the anode of Lithium Sulfur Battery and the method thereof
KR101379716B1 (en) 2012-03-21 2014-03-31 에스케이 테크놀로지 이노베이션 컴퍼니 lithium-sulfur secondary battery having electrode which is constructed with graphene composite including sulfur and a forming method thereof
KR20170003534A (en) * 2014-03-13 2017-01-09 블루 솔루션즈 Lithium-sulfur battery
KR20160037084A (en) 2014-09-26 2016-04-05 주식회사 엘지화학 Surfur-carbonnanotube complex, method of preparing the same, cathode active material for lithium-sulfur battery including the same and lithium-sulfur battery including the same
KR101978130B1 (en) * 2014-10-23 2019-05-14 가부시키가이샤 도요다 지도숏키 Electrolyte
KR20160118597A (en) * 2015-04-02 2016-10-12 현대자동차주식회사 An anode of all-solid state lithium-sulfur battery using graphene oxide and a method for production thereof
KR20170084453A (en) * 2016-01-12 2017-07-20 주식회사 엘지화학 Non-Aqueous Slurry Composition, Cathode Thereof, And Lithium Sulfur Batteries Comprising The Same
KR20190085623A (en) 2018-01-11 2019-07-19 (주)고백기술 Automatic information delivery method and the system for particular message delivery
KR20200073784A (en) 2018-12-14 2020-06-24 주식회사 케이티 Server, device and method for providing virtual reality service

Similar Documents

Publication Publication Date Title
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2019112167A1 (en) Negative electrode for lithium metal battery and lithium metal battery comprising same
WO2019182364A1 (en) Separator having a coating layer of lithium-containing composite, lithium secondary battery comprising same, and method for manufacturing same secondary battery
WO2015065102A1 (en) Lithium secondary battery
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2021010625A1 (en) Lithium-sulfur secondary battery
WO2020076091A1 (en) Method for manufacturing negative electrode for lithium secondary battery
KR20200047365A (en) Lithium-sulfur secondary battery
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2018004110A1 (en) Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2021010626A1 (en) Lithium-sulfur secondary battery
WO2020105980A1 (en) Lithium-sulfur secondary battery
WO2018004103A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2020159263A1 (en) Method for manufacturing anode for secondary battery
WO2023008783A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2021010605A1 (en) Lithium secondary battery
WO2018093092A1 (en) Anode active material and preparation method therefor
WO2021177723A1 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery including same
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2021241959A1 (en) Free-standing film-type positive electrode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2022092701A1 (en) Lithium-sulfur secondary battery comprising cyclic carbonate-containing electrolyte
WO2020085811A1 (en) Lithium-sulfur secondary battery
WO2020060132A1 (en) Sulfur-carbon composite manufacturing method, sulfur-carbon composite manufactured thereby, cathode comprising same sulfur-carbon composite, and lithium secondary battery comprising same cathode
WO2020209685A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery including same
EP3951931A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563684

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020560

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020840658

Country of ref document: EP

Effective date: 20211105

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021020560

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211014