WO2021010371A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2021010371A1
WO2021010371A1 PCT/JP2020/027213 JP2020027213W WO2021010371A1 WO 2021010371 A1 WO2021010371 A1 WO 2021010371A1 JP 2020027213 W JP2020027213 W JP 2020027213W WO 2021010371 A1 WO2021010371 A1 WO 2021010371A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
electric machine
rotary electric
soft magnetic
plate material
Prior art date
Application number
PCT/JP2020/027213
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 真
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021010371A1 publication Critical patent/WO2021010371A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • This disclosure relates to a rotary electric machine.
  • a rotary electric machine for example, a fixing member having a cylindrical portion, a stator in which a winding is wound around a stator core fixed inside the fixing member, and a stator inside in the radial direction of the stator core.
  • a stator core of such a rotary electric machine is generally held by press fitting or press fitting to the inner peripheral surface of the fixing member.
  • a plate material made of permendur having a high saturation magnetic flux density significantly deteriorates magnetic properties such as magnetic permeability when a large compressive force is applied. For example, if it is fixed by pressure contact with a fixing member simply by shrink fitting or press fitting, a large compressive force is applied, the magnetic characteristics are significantly deteriorated, and there is a problem that a highly efficient rotary electric machine cannot be obtained.
  • the purpose of this disclosure is to provide a rotary electric machine that enables high efficiency.
  • the rotary electric machine faces a stator in which a plurality of windings are wound around a stator core, a fixing member to which the stator core is fixed, and the stator core. Includes rotors arranged and rotatably supported.
  • the stator core includes a soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more. The stator core is provided so that a tensile force is applied to the soft magnetic plate material.
  • the stator core contains a soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more, for example, a general soft magnetic plate material such as a silicon steel plate having a saturation magnetic flux density of less than 2.0 tesla. It is possible to obtain a rotating electric machine with higher efficiency than the one configured with only.
  • a soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more is significantly improved in magnetic properties such as magnetic permeability when a tensile force is applied. From this, it is possible to improve the magnetic characteristics of the stator core by providing the stator core so that a tensile force is applied to the soft magnetic plate material. Therefore, it is possible to obtain a highly efficient rotary electric machine.
  • FIG. 1 is a cross-sectional view of a rotary electric machine according to an embodiment.
  • FIG. 2 is a partial plan view of the stator in one embodiment.
  • FIG. 3 is a partial plan view of the rotor in one embodiment.
  • FIG. 4 is a circuit diagram showing a circuit configuration in one embodiment.
  • FIG. 5 is a partial cross-sectional view of the rotary electric machine according to the embodiment.
  • FIG. 6 is a plan view of the stator in one embodiment.
  • FIG. 7 is a plan view of the housing (fixing member) in one embodiment.
  • FIG. 8 is a magnetic field strength-magnetic flux density characteristic diagram of the soft magnetic plate material obtained from the experimental results.
  • FIG. 9 is a plan view of the stator in another example.
  • FIG. 10 is a partial plan view of the stator in another example.
  • FIG. 11 is a partial cross-sectional view of a rotary electric machine in another example.
  • FIG. 12 is a partial cross-sectional view of the stator in another example.
  • the rotary electric machine 11 has a pair of housings 12 and 13 facing in the axial direction as fixing members, a substantially cylindrical stator 14 fixed to the housings 12 and 13, and a stator 14. It includes a rotor 15 rotatably supported inside in the radial direction.
  • the housings 12 and 13 have substantially disk-shaped disk portions 12a and 13a and cylindrical portions 12b and 13b extending in the axial direction from the outer edges of the disk portions 12a and 13a, and are at the tip portions of the cylindrical portions 12b and 13b.
  • the stator 14 is fixed while sandwiching the stator 14.
  • the stator 14 has a plurality of windings 17 wound around the stator core 16.
  • the stator core 16 has an annular yoke portion 16a and a plurality of tooth portions 16b extending inward in the radial direction from the yoke portion 16a and arranged along the circumferential direction.
  • the winding 17 is a conductor 17a made of copper, aluminum, or the like with an enamel coating 17b applied.
  • the windings 17 are arranged in parallel between the tooth portions 16b in the radial direction, and are held in such a manner that they are covered with the insulating paper 18.
  • the rotor 15 has a rotating shaft 20 rotatably supported by a pair of bearings 19 fixed to the shaft centers of the pair of housings 12 and 13, and a rotation fixed to the rotating shaft 20.
  • a child core 21 and a permanent magnet 22 fixed to the outer surface of the rotor core 21 are provided.
  • the permanent magnet 22 is arranged so as to face the stator core 16 in the radial direction.
  • a neodymium magnet and a Halbach array are adopted for the permanent magnet 22 of the present embodiment.
  • the arrow shown in FIG. 3 indicates the magnetization direction of the permanent magnet 22, the base point side of the arrow corresponds to the S pole, and the end point side of the arrow corresponds to the N pole.
  • U-phase, V-phase, and W-phase windings 17 are Y-connected, and a control device 31 is connected to the terminals of the windings 17 of each phase. ing.
  • the control device 31 is 1) one or more processors that execute various processes according to a computer program (software), 2) an integrated circuit (ASIC) for a specific application, or the like that executes at least a part of the various processes. It can be configured as a circuitry containing one or more dedicated hardware circuits, or 3) combinations thereof.
  • the processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores a program code or an instruction configured to cause the CPU to execute a process.
  • Memory or computer-readable media includes any available medium accessible by a general purpose or dedicated computer.
  • the control device 31 includes a three-phase inverter circuit 32 for generating three-phase drive power having a phase difference of 120 degrees from the DC power of the DC power source E.
  • the three-phase inverter circuit 32 is a bridge circuit having three pairs of MOSFETs 33a, 33b, 33c, 33d, 33e, 33f connected in series between the high potential side power supply line L1 connected to the DC power supply E and the ground line GND. It is composed of. Reflux diodes D1 to D6 are connected to each of the MOSFETs 33a, 33b, 33c, 33d, 33e, and 33f, respectively.
  • the output terminal Su between the U-phase MOSFETs 33a and 33b is connected to the terminal of the U-phase winding 17, and the output terminal Sv between the V-phase MOSFETs 33c and 33d is connected to the terminal of the V-phase winding 17.
  • the output terminal Sw between the W-phase MOSFETs 33e and 33f is connected to the terminal of the W-phase winding 17.
  • control device 31 includes a current command unit 34, and the current command unit 34 receives, for example, a command signal S from a higher-level control unit (not shown) and a rotation detection signal P of the rotor 15, respectively, of the MOSFETs 33a and 33b. Control signals are output to the gates Ga to Gf of 33c, 33d, 33e, and 33f to perform PWM control.
  • the stator core 16 of the present embodiment is formed by laminating a soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more.
  • the stator core 16 is provided so that a tensile force is applied to the soft magnetic plate material 41.
  • a plate material having a permendur having a saturation magnetic flux density of about 2.3 Tesla is adopted as the soft magnetic plate material 41 constituting the stator core 16.
  • An insulating member made of a polyamide film, polymer paper, or the like is sandwiched between the soft magnetic plate members 41.
  • the stator core 16 has a plurality of iron core holes 16c that penetrate in the axial direction and are arranged along the circumferential direction.
  • the iron core hole 16c is formed in a bulging portion 16d that bulges outward in the radial direction from the yoke portion 16a of the stator core 16.
  • Eight bulging portions 16d and iron core holes 16c of the present embodiment are formed at equal angular intervals in the circumferential direction.
  • the housings 12 and 13 have a plurality of fixing holes 12c and 13c that penetrate in the axial direction and are arranged along the circumferential direction.
  • Eight fixing holes 12c and 13c are formed in the disk portions 12a and 13a of the housings 12 and 13 at equal angular intervals in the circumferential direction.
  • the stator core 16 is fixed to the housings 12 and 13 by the fixing holes 12c and 13c and the through bolts 42 inserted into the iron core holes 16c.
  • the through bolt 42 of the present embodiment penetrates one fixing hole 12c and the iron core hole 16c and is screwed into a female screw formed on the inner surface of the other fixing hole 13c to form the stator core 16. It is fixed to the housings 12 and 13.
  • the through bolt 42 of the present embodiment is made of a material containing a metal having an elastic modulus higher than that of steel having an elastic modulus of about 200 GPa, and specifically, is made of molybdenum having an elastic modulus of about 320 GPa.
  • a tensile force is applied to the stator core 16 and the soft magnetic plate material 41.
  • the through bolt 42 is inserted into the fixing holes 12c and 13c and the iron core hole 16c, and the housings 12 and 13 return to room temperature. Since the fixed hole radius R2 is larger than the iron core hole radius R1, a tensile force is applied to the soft magnetic plate material 41.
  • stator 14 When a three-phase drive current is supplied from the control device 31 to the winding 17 of the stator 14, a rotating magnetic field is generated in the stator 14 to rotationally drive the rotor 15.
  • a strong neodymium magnet is used for the permanent magnet 22, but a soft magnetic plate 41, which is a plate made of permendur having a saturation magnetic flux density of 2.0 tesla or more, is used as the material of the stator core 16. Therefore, magnetic saturation can be avoided, a flow of magnetic flux without stagnation can be ensured, and the rotor 15 is rotationally driven with high efficiency.
  • the stator core 16 includes a soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more, for example, only a general soft magnetic plate material such as a silicon steel plate having a saturation magnetic flux density of less than 2.0 tesla. It is possible to obtain a rotary electric machine 11 having higher efficiency than that configured in.
  • the soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more is significantly improved in magnetic properties such as magnetic permeability when a tensile force is applied.
  • the characteristic X1 of the soft magnetic plate material 41 to which the compressive force is applied is based on the characteristic X2 of the soft magnetic plate material 41 to which the compressive force is not applied.
  • the magnetic flux density is significantly reduced, and the characteristic X3 of the soft magnetic plate material 41 to which a tensile force is applied indicates that the magnetic flux density is significantly improved as compared with the characteristic X2. Therefore, by providing the stator core so that a tensile force is applied to the soft magnetic plate material 41, it is possible to improve the magnetic characteristics of the stator core 16. Therefore, it is possible to obtain a highly efficient rotary electric machine 11.
  • the iron core hole radius R1 which is the distance between the axis center Z of the rotor 15 and the axis center of the iron core hole 16c is the rotor. It is set smaller than the fixed hole radius R2, which is the distance between the shaft center Z of 15 and the shaft centers of the fixing holes 12c and 13c. Therefore, in a state where the stator core 16 is fixed to the housings 12 and 13 by the through bolts 42 inserted into the fixing holes 12c and 13c and the iron core holes 16c, the core holes 16c of the stator core 16 are pulled outward in the radial direction.
  • the through bolt 42 contains a metal having a higher elastic modulus than steel having an elastic modulus of about 200 GPa and is made of molybdenum in the present embodiment, the through bolt 42 is made of steel as compared with the one made of steel. It is possible to apply a strong tensile force to the soft magnetic plate material 41, and it is possible to maintain a strong tensile force.
  • the stator core 16 is provided so as to apply a tensile force to the soft magnetic plate material 41 by the through bolt 42 in a state of being fixed to the housings 12 and 13, but the present invention is not limited to this and is fixed. If the saturation magnetic flux density of the soft magnetic plate material constituting the child core is 2.0 tesla or more and the stator core is provided so that a tensile force is applied to the soft magnetic plate material, the above embodiment is changed to another configuration. You may.
  • the stator core 51 includes an annular yoke member 52 and a teeth member 53.
  • the teeth member 53 is engaged with the yoke member 52 and extends radially inward from the yoke member 52, and the plurality of teeth portions 53a arranged along the circumferential direction and the radial inner ends of the teeth portions 53a are arranged in the circumferential direction. It has a connecting portion 53b to be connected.
  • the yoke member 52 and the tooth member 53 are engaged with each other so that a tensile force is applied to the soft magnetic plate member 54.
  • the tooth member 53 is formed by laminating a soft magnetic plate material 54 such as permendur having a saturation magnetic flux density of 2.0 tesla or more.
  • the yoke member 52 of this example is made by laminating a general soft magnetic plate material such as a silicon steel plate.
  • a plurality of tab tail recesses 52a are formed inside the yoke member 52 in the radial direction at equal angular intervals in the circumferential direction.
  • a tab tail convex portion 53c is formed which engages so as to be fitted into the corresponding tab tail concave portion 52a so as to restrict the movement in the radial direction.
  • the tab tail concave portion 52a and the tab tail convex portion 53c have a substantially trapezoidal shape when viewed from the axial direction, and the tab tail convex portion 53c from the tab tail concave portion 52a is formed by engaging the inclined surfaces inclined in the radial direction with each other. Movement inward in the radial direction is restricted.
  • the dimensions of the yoke member 52 and the tooth member 53 are set so that a tensile force is applied to the soft magnetic plate member 54 constituting the tooth member 53 in a state where the tab tail concave portion 52a and the tab tail convex portion 53c are engaged with each other. Has been done.
  • each tooth portion 53a is assembled to the yoke member 52 by fitting the tab tail convex portion 53c into the tab tail concave portion 52a while pulling each tooth portion 53a including the tab tail convex portion 53c radially outward.
  • Each dimension is set so that a tensile force is applied to the soft magnetic plate member 54 constituting the tooth member 53 in this assembled state.
  • the tooth member 53 is made of a soft magnetic plate material 54 such as permendur having a saturation magnetic flux density of 2.0 tesla or more
  • the yoke member 52 is made of a general soft magnetic plate material such as a silicon steel plate. .. Therefore, in this example, the soft magnetic plate material 54 having a saturation magnetic flux density of 2.0 tesla or more, which tends to be expensive, can be efficiently used for the teeth portion 53a to improve the efficiency of the rotary electric machine.
  • the yoke member 52 may be made of a soft magnetic plate material other than a general soft magnetic plate material such as a silicon steel plate, or may be formed by laminating a soft magnetic plate material such as permendur.
  • the stator core 61 has a cylindrical portion 61a and a plurality of teeth portions 61b extending radially outward from the cylindrical portion 61a and arranged along the circumferential direction, and has a saturation magnetic flux density of 2.0.
  • a soft magnetic plate material 62 such as permendur of Tesla or higher is laminated.
  • the cylindrical portion 61a of the stator core 61 is fixed to the outer periphery of the center piece 63 as a fixing member in a press-fitted state so that a tensile force is applied to the soft magnetic plate member 62.
  • the rotary electric machine 64 of this example is an outer rotor type, and the rotor yoke 66 and the rotor 67 having a permanent magnet 22 can rotate outside the stator 65 having the stator core 61 and the winding 17 in the radial direction. It is provided in.
  • the soft magnetic plate material 41 in which the stator core 16 is laminated may be fixed in any axial direction.
  • the stator core 16 has a through hole 71 penetrating in the axial direction, and the magnetic powder 72 is filled in the through hole 71 in a compressed state to form a soft magnetic plate material.
  • 41 may be fixed in the axial direction.
  • the magnetic powder 72 preferably has an insulating film for each powder. In this way, it is possible to reduce the eddy current loss and improve the magnetic characteristics as compared with the case of fixing in the axial direction by, for example, caulking or welding. That is, when the soft magnetic plate members 41 are fixed to each other in the axial direction by, for example, caulking or welding, there is a possibility that an eddy current path is formed or the magnetic characteristics are deteriorated due to the application of compressive force.
  • the soft magnetic plate material 41 is a pressed product, unevenness may occur on the inner surface of the through hole 71 due to burrs or sagging, but since the magnetic powder 72 also enters the gaps between them, it is soft.
  • the magnetic plate material 41 is firmly fixed in the axial direction. Further, when the magnetic powder 72 also enters the gaps between the irregularities, the gaps are less likely to become magnetic resistance, and the magnetic characteristics of the stator core 16 are improved.
  • the through bolt 42 is inserted into the fixing holes 12c and 13c and the iron core hole 16c in a state where the housings 12 and 13 are cooled and contracted, and when the housings 12 and 13 return to room temperature, the fixing hole radius R2 becomes the iron core.
  • a tensile force is applied to the soft magnetic plate material 41 by making the hole radius larger than R1, but the through bolt 42 may be inserted by another method.
  • the through bolt 42 penetrates one fixing hole 12c and the iron core hole 16c and is screwed into the female screw formed on the inner surface of the other fixing hole 13c to form the stator core 16. It is assumed that the housings 12 and 13 are fixed, but the present invention is not limited to this.
  • a female screw is not formed on the inner surface of the fixing hole 13c, and a nut may be used for fastening and fixing.
  • the through bolt is made of molybdenum, but the present invention is not limited to this, and for example, the through bolt may be made of tungsten having an elastic modulus of about 340 GPa. Even in this way, the same effect as the effect (3) of the above embodiment can be obtained. Further, of course, the through bolt may be made of general steel.
  • the soft magnetic plate material 41 is a plate material having a permendur having a saturation magnetic flux density of about 2.3 tesla, but the present invention is not limited to this, and the saturation magnetic flux density is 2.0 tesla or more. It may be changed to a plate material of another material.
  • the permanent magnet 22 is assumed to be a neodymium magnet, but the present invention is not limited to this, and for example, other rare earth magnets or ferrite magnets may be used. Further, in the above embodiment, the permanent magnet 22 adopts the Halbach array, but the arrangement is not limited to this, and other arrangements may be used. Further, the permanent magnet 22 may be provided by being embedded in the rotor core 21. That is, the rotor 15 may be a surface magnet type or an embedded magnet type.
  • control device 31 of the above embodiment may be changed to another configuration, and may be, for example, a control device using an IGBT instead of the MOSFETs 33a, 33b, 33c, 33d, 33e, 33f.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotary electric machine (11, 64) comprises: a stator (14, 65) including a stator core (16, 51, 61) with a plurality of winding wires (17) wound thereon; a fixing member (12, 13, 63) to which the stator core is fixed; and a rotor (15, 67) disposed opposite the stator core and rotatably supported. The stator core includes a soft magnetic plate material (41, 54, 62) having a saturated magnetic flux density of not less than 2.0 Tesla. The stator core is provided in such a way that the soft magnetic plate material is subjected to a tensile force.

Description

回転電機Rotating electric machine 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月16日に出願された日本出願番号2019-130937号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-130937 filed on July 16, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、回転電機に関するものである。 This disclosure relates to a rotary electric machine.
 従来、回転電機としては、例えば、円筒部を有する固定部材と、該固定部材の内側に固定された固定子鉄心に巻線が巻装されてなる固定子と、固定子鉄心の径方向内側で回転可能に支持された回転子とを備えたものがある(例えば、特許文献1参照)。このような回転電機の固定子鉄心は、一般的に焼き嵌めや圧入によって固定部材の内周面に圧接して保持される。 Conventionally, as a rotary electric machine, for example, a fixing member having a cylindrical portion, a stator in which a winding is wound around a stator core fixed inside the fixing member, and a stator inside in the radial direction of the stator core. Some are provided with a rotatably supported rotor (see, for example, Patent Document 1). The stator core of such a rotary electric machine is generally held by press fitting or press fitting to the inner peripheral surface of the fixing member.
特開2015-186322号公報JP 2015-186322A
 近年では、回転子の永久磁石を強力なネオジム磁石等としつつ、固定子鉄心の素材として一般的なケイ素鋼板よりも飽和磁束密度の高いパーメンジュールよりなる板材等を用いることで、回転電機の高効率化、ひいては大出力化を図ることが考えられている。 In recent years, while using permanent magnets for rotors as strong neodymium magnets, etc., by using permendur plates, etc., which have a higher saturation magnetic flux density than general silicon steel plates, as materials for stator cores, It is considered to improve efficiency and eventually increase output.
 しかしながら、飽和磁束密度の高いパーメンジュールよりなる板材等は、大きな圧縮力が掛かると透磁率等の磁気特性が大幅に低下することが知られている。例えば、単に焼き嵌めや圧入によって固定部材に圧接して固定されると、大きな圧縮力が掛かり、磁気特性が大幅に低下して、高効率の回転電機が得られないという問題がある。 However, it is known that a plate material made of permendur having a high saturation magnetic flux density significantly deteriorates magnetic properties such as magnetic permeability when a large compressive force is applied. For example, if it is fixed by pressure contact with a fixing member simply by shrink fitting or press fitting, a large compressive force is applied, the magnetic characteristics are significantly deteriorated, and there is a problem that a highly efficient rotary electric machine cannot be obtained.
 本開示の目的は、高効率化を可能とした回転電機を提供することにある。 The purpose of this disclosure is to provide a rotary electric machine that enables high efficiency.
 本開示の第1の態様において、回転電機は、固定子鉄心に複数の巻線が巻装されてなる固定子と、前記固定子鉄心が固定される固定部材と、前記固定子鉄心と対向して配置され回転可能に支持された回転子とを含む。前記固定子鉄心は、飽和磁束密度が2.0テスラ以上の軟磁性板材を含む。前記固定子鉄心は、前記軟磁性板材に引っ張り力が掛かるように設けられる。 In the first aspect of the present disclosure, the rotary electric machine faces a stator in which a plurality of windings are wound around a stator core, a fixing member to which the stator core is fixed, and the stator core. Includes rotors arranged and rotatably supported. The stator core includes a soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more. The stator core is provided so that a tensile force is applied to the soft magnetic plate material.
 同構成によれば、固定子鉄心は、飽和磁束密度が2.0テスラ以上の軟磁性板材を含むため、例えば、飽和磁束密度が2.0テスラ未満のケイ素鋼板等の一般的な軟磁性板材のみにて構成したものに比べて高効率の回転電機を得ることが可能となる。そして、飽和磁束密度が2.0テスラ以上の軟磁性板材は、引っ張り力が掛かると透磁率等の磁気特性が大幅に向上する。このことから、前記軟磁性板材に引っ張り力が掛かるように固定子鉄心が設けられることで、固定子鉄心の磁気特性の向上を図ることができる。よって、高効率の回転電機を得ることが可能となる。 According to the same configuration, since the stator core contains a soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more, for example, a general soft magnetic plate material such as a silicon steel plate having a saturation magnetic flux density of less than 2.0 tesla. It is possible to obtain a rotating electric machine with higher efficiency than the one configured with only. A soft magnetic plate material having a saturation magnetic flux density of 2.0 tesla or more is significantly improved in magnetic properties such as magnetic permeability when a tensile force is applied. From this, it is possible to improve the magnetic characteristics of the stator core by providing the stator core so that a tensile force is applied to the soft magnetic plate material. Therefore, it is possible to obtain a highly efficient rotary electric machine.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参酌しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、一実施形態における回転電機の断面図であり、 図2は、一実施形態における固定子の一部平面図であり、 図3は、一実施形態における回転子の一部平面図であり、 図4は、一実施形態における回路構成を示す回路図であり、 図5は、一実施形態における回転電機の一部断面図であり、 図6は、一実施形態における固定子の平面図であり、 図7は、一実施形態におけるハウジング(固定部材)の平面図であり、 図8は、実験結果より得た軟磁性板材の磁界強度-磁束密度特性図であり、 図9は、別例における固定子の平面図であり、 図10は、別例における固定子の一部平面図であり、 図11は、別例における回転電機の一部断面図であり、 図12は、別例における固定子の一部断面図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a cross-sectional view of a rotary electric machine according to an embodiment. FIG. 2 is a partial plan view of the stator in one embodiment. FIG. 3 is a partial plan view of the rotor in one embodiment. FIG. 4 is a circuit diagram showing a circuit configuration in one embodiment. FIG. 5 is a partial cross-sectional view of the rotary electric machine according to the embodiment. FIG. 6 is a plan view of the stator in one embodiment. FIG. 7 is a plan view of the housing (fixing member) in one embodiment. FIG. 8 is a magnetic field strength-magnetic flux density characteristic diagram of the soft magnetic plate material obtained from the experimental results. FIG. 9 is a plan view of the stator in another example. FIG. 10 is a partial plan view of the stator in another example. FIG. 11 is a partial cross-sectional view of a rotary electric machine in another example. FIG. 12 is a partial cross-sectional view of the stator in another example.
 以下、回転電機の一実施形態を図1~図8に従って説明する。 Hereinafter, an embodiment of the rotary electric machine will be described with reference to FIGS. 1 to 8.
 図1に示すように、回転電機11は、固定部材としての軸方向に対向する一対のハウジング12,13と、ハウジング12,13に固定された略円筒状の固定子14と、固定子14の径方向内側で回転可能に支持された回転子15とを備える。 As shown in FIG. 1, the rotary electric machine 11 has a pair of housings 12 and 13 facing in the axial direction as fixing members, a substantially cylindrical stator 14 fixed to the housings 12 and 13, and a stator 14. It includes a rotor 15 rotatably supported inside in the radial direction.
 ハウジング12,13は、略円盤状の円盤部12a,13aと、該円盤部12a,13aの外縁から軸方向に延びる円筒部12b,13bとを有し、該円筒部12b,13bの先端部で固定子14を挟みつつ固定子14を固定する。 The housings 12 and 13 have substantially disk-shaped disk portions 12a and 13a and cylindrical portions 12b and 13b extending in the axial direction from the outer edges of the disk portions 12a and 13a, and are at the tip portions of the cylindrical portions 12b and 13b. The stator 14 is fixed while sandwiching the stator 14.
 図1及び図2に示すように、固定子14は、固定子鉄心16に複数の巻線17が巻装されてなる。詳しくは、図2に示すように、固定子鉄心16は、環状のヨーク部16aと該ヨーク部16aから径方向内側に延びるとともに周方向に沿って並ぶ複数のティース部16bとを有する。巻線17は、銅やアルミ等からなる導体17aにエナメル被膜17bが施されたものである。そして、巻線17は、ティース部16b同士の間に径方向に並設されつつ、それらが絶縁紙18に覆われた態様で保持されている。 As shown in FIGS. 1 and 2, the stator 14 has a plurality of windings 17 wound around the stator core 16. Specifically, as shown in FIG. 2, the stator core 16 has an annular yoke portion 16a and a plurality of tooth portions 16b extending inward in the radial direction from the yoke portion 16a and arranged along the circumferential direction. The winding 17 is a conductor 17a made of copper, aluminum, or the like with an enamel coating 17b applied. The windings 17 are arranged in parallel between the tooth portions 16b in the radial direction, and are held in such a manner that they are covered with the insulating paper 18.
 図1に示すように、回転子15は、一対のハウジング12,13の軸中心に固定された一対の軸受19によって回転可能に支持された回転軸20と、該回転軸20に固定された回転子鉄心21と、該回転子鉄心21の外表面に固定された永久磁石22とを備える。該永久磁石22は、固定子鉄心16と径方向に対向して配置されている。 As shown in FIG. 1, the rotor 15 has a rotating shaft 20 rotatably supported by a pair of bearings 19 fixed to the shaft centers of the pair of housings 12 and 13, and a rotation fixed to the rotating shaft 20. A child core 21 and a permanent magnet 22 fixed to the outer surface of the rotor core 21 are provided. The permanent magnet 22 is arranged so as to face the stator core 16 in the radial direction.
 図3に示すように、本実施形態の永久磁石22には、ネオジム磁石が採用されるとともに、ハルバッハ配列が採用されている。なお、図3に図示された矢印は、永久磁石22の磁化方向を示しており、矢印の基点側がS極に該当し、矢印の終点側がN極に該当している。 As shown in FIG. 3, a neodymium magnet and a Halbach array are adopted for the permanent magnet 22 of the present embodiment. The arrow shown in FIG. 3 indicates the magnetization direction of the permanent magnet 22, the base point side of the arrow corresponds to the S pole, and the end point side of the arrow corresponds to the N pole.
 図4に示すように、前記複数の巻線17は、U相、V相、W相の巻線17がY結線されており、各相の巻線17の端子には制御装置31が接続されている。 As shown in FIG. 4, in the plurality of windings 17, U-phase, V-phase, and W-phase windings 17 are Y-connected, and a control device 31 is connected to the terminals of the windings 17 of each phase. ing.
 制御装置31は、1)コンピュータプログラム(ソフトウェア)に従って各種処理を実行する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する、特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは3)それらの組み合わせ、を含む回路(circuitry)として構成し得る。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 The control device 31 is 1) one or more processors that execute various processes according to a computer program (software), 2) an integrated circuit (ASIC) for a specific application, or the like that executes at least a part of the various processes. It can be configured as a circuitry containing one or more dedicated hardware circuits, or 3) combinations thereof. The processor includes a CPU and a memory such as a RAM and a ROM, and the memory stores a program code or an instruction configured to cause the CPU to execute a process. Memory or computer-readable media includes any available medium accessible by a general purpose or dedicated computer.
 制御装置31は、直流電源Eの直流電力から120度位相の異なる三相の駆動電力を生成するための三相インバータ回路32を備えている。三相インバータ回路32は、直流電源Eに接続された高電位側電源線L1とグランド線GNDとの間に直列接続された3対のMOSFET33a,33b,33c,33d,33e,33fを有するブリッジ回路で構成されている。なお、各MOSFET33a,33b,33c,33d,33e,33fには、それぞれ還流ダイオードD1~D6が接続されている。 The control device 31 includes a three-phase inverter circuit 32 for generating three-phase drive power having a phase difference of 120 degrees from the DC power of the DC power source E. The three-phase inverter circuit 32 is a bridge circuit having three pairs of MOSFETs 33a, 33b, 33c, 33d, 33e, 33f connected in series between the high potential side power supply line L1 connected to the DC power supply E and the ground line GND. It is composed of. Reflux diodes D1 to D6 are connected to each of the MOSFETs 33a, 33b, 33c, 33d, 33e, and 33f, respectively.
 そして、U相用のMOSFET33a,33b間の出力端子SuはU相の巻線17の端子に接続され、V相用のMOSFET33c,33d間の出力端子SvはV相の巻線17の端子に接続され、W相用のMOSFET33e,33f間の出力端子SwはW相の巻線17の端子に接続されている。 The output terminal Su between the U-phase MOSFETs 33a and 33b is connected to the terminal of the U-phase winding 17, and the output terminal Sv between the V- phase MOSFETs 33c and 33d is connected to the terminal of the V-phase winding 17. The output terminal Sw between the W- phase MOSFETs 33e and 33f is connected to the terminal of the W-phase winding 17.
 また、制御装置31は、電流指令部34を備え、電流指令部34は、例えば、図示しない上位の制御部からの指令信号S及び回転子15の回転検出信号Pに応じて各MOSFET33a,33b,33c,33d,33e,33fのゲートGa~Gfに制御信号を出力し、PWM制御を行う。 Further, the control device 31 includes a current command unit 34, and the current command unit 34 receives, for example, a command signal S from a higher-level control unit (not shown) and a rotation detection signal P of the rotor 15, respectively, of the MOSFETs 33a and 33b. Control signals are output to the gates Ga to Gf of 33c, 33d, 33e, and 33f to perform PWM control.
 ここで、図1及び図5に示すように、本実施形態の固定子鉄心16は、飽和磁束密度が2.0テスラ以上の軟磁性板材41が積層されてなる。固定子鉄心16は、軟磁性板材41に引っ張り力が掛かるように設けられる。 Here, as shown in FIGS. 1 and 5, the stator core 16 of the present embodiment is formed by laminating a soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more. The stator core 16 is provided so that a tensile force is applied to the soft magnetic plate material 41.
 詳述すると、まず固定子鉄心16を構成する軟磁性板材41は、飽和磁束密度が約2.3テスラのパーメンジュールよりなる板材が採用されている。そして、軟磁性板材41同士の間には、ポリアミドフィルムや高分子紙等からなる絶縁部材が挟持されている。 More specifically, first, as the soft magnetic plate material 41 constituting the stator core 16, a plate material having a permendur having a saturation magnetic flux density of about 2.3 Tesla is adopted. An insulating member made of a polyamide film, polymer paper, or the like is sandwiched between the soft magnetic plate members 41.
 図5に示すように、固定子鉄心16は、軸方向に貫通するとともに周方向に沿って並ぶ複数の鉄心孔16cを有する。鉄心孔16cは、固定子鉄心16のヨーク部16aから径方向外側に膨出した膨出部16dに形成されている。本実施形態の膨出部16d及び鉄心孔16cは、周方向に等角度間隔で8つ形成されている。 As shown in FIG. 5, the stator core 16 has a plurality of iron core holes 16c that penetrate in the axial direction and are arranged along the circumferential direction. The iron core hole 16c is formed in a bulging portion 16d that bulges outward in the radial direction from the yoke portion 16a of the stator core 16. Eight bulging portions 16d and iron core holes 16c of the present embodiment are formed at equal angular intervals in the circumferential direction.
 また、図7に示すように、ハウジング12,13は、軸方向に貫通するとともに周方向に沿って並ぶ複数の固定孔12c,13cを有する。固定孔12c,13cは、ハウジング12,13の円盤部12a,13aに、周方向に等角度間隔で8つ形成されている。 Further, as shown in FIG. 7, the housings 12 and 13 have a plurality of fixing holes 12c and 13c that penetrate in the axial direction and are arranged along the circumferential direction. Eight fixing holes 12c and 13c are formed in the disk portions 12a and 13a of the housings 12 and 13 at equal angular intervals in the circumferential direction.
 そして、図1に示すように、固定子鉄心16は、前記固定孔12c,13c及び前記鉄心孔16cに挿通されるスルーボルト42によってハウジング12,13に固定されている。なお、本実施形態のスルーボルト42は、一方の固定孔12c及び鉄心孔16cを貫通して、他方の固定孔13cの内面に成形された雌ネジに螺合されることで固定子鉄心16をハウジング12,13に固定している。また、本実施形態のスルーボルト42は、弾性係数が約200GPaの鉄鋼よりも高い弾性係数の金属を含む素材よりなり、具体的には、弾性係数が約320GPaのモリブデンよりなる。 Then, as shown in FIG. 1, the stator core 16 is fixed to the housings 12 and 13 by the fixing holes 12c and 13c and the through bolts 42 inserted into the iron core holes 16c. The through bolt 42 of the present embodiment penetrates one fixing hole 12c and the iron core hole 16c and is screwed into a female screw formed on the inner surface of the other fixing hole 13c to form the stator core 16. It is fixed to the housings 12 and 13. Further, the through bolt 42 of the present embodiment is made of a material containing a metal having an elastic modulus higher than that of steel having an elastic modulus of about 200 GPa, and specifically, is made of molybdenum having an elastic modulus of about 320 GPa.
 そして、図5~図7に示すように、固定子鉄心16とハウジング12,13とが固定されていない状態において、回転子15の軸中心Zと鉄心孔16cの軸中心との間の距離である鉄心孔半径R1は、回転子15の軸中心Zと固定孔12c,13cの軸中心との間の距離である固定孔半径R2よりも小さく設定されている。そして、固定孔12c,13c及び鉄心孔16cに挿通されるスルーボルト42によって固定子鉄心16がハウジング12,13に固定された状態では、固定子鉄心16は鉄心孔16cが径方向外側に引っ張られることになり、固定子鉄心16、ひいては軟磁性板材41に引っ張り力が掛かった状態とされている。なお、本実施形態では、アルミ系材料よりなるハウジング12,13を冷やして縮ませた状態でスルーボルト42を固定孔12c,13c及び鉄心孔16cに挿通させ、ハウジング12,13が常温に戻ると固定孔半径R2が鉄心孔半径R1より大きくなることで軟磁性板材41に引っ張り力が掛かるようにしている。 Then, as shown in FIGS. 5 to 7, in a state where the stator core 16 and the housings 12 and 13 are not fixed, the distance between the axis center Z of the rotor 15 and the axis center of the iron core hole 16c A certain iron core hole radius R1 is set to be smaller than the fixed hole radius R2, which is the distance between the axial center Z of the rotor 15 and the axial centers of the fixing holes 12c and 13c. Then, in a state where the stator core 16 is fixed to the housings 12 and 13 by the through bolts 42 inserted into the fixing holes 12c and 13c and the iron core holes 16c, the core holes 16c of the stator core 16 are pulled outward in the radial direction. Therefore, it is said that a tensile force is applied to the stator core 16 and the soft magnetic plate material 41. In the present embodiment, when the housings 12 and 13 made of an aluminum-based material are cooled and shrunk, the through bolt 42 is inserted into the fixing holes 12c and 13c and the iron core hole 16c, and the housings 12 and 13 return to room temperature. Since the fixed hole radius R2 is larger than the iron core hole radius R1, a tensile force is applied to the soft magnetic plate material 41.
 次に、上記のように構成された回転電機11の作用について説明する。 Next, the operation of the rotary electric machine 11 configured as described above will be described.
 制御装置31から固定子14の巻線17に三相の駆動電流が供給されると、固定子14にて回転磁界が発生されて回転子15が回転駆動される。そして、永久磁石22は、強力なネオジム磁石が採用されているが、固定子鉄心16の素材として飽和磁束密度が2.0テスラ以上のパーメンジュールよりなる板材である軟磁性板材41が用いられているため、磁気飽和を回避でき、滞りない磁束の流れを確保でき、回転子15が高効率で回転駆動される。 When a three-phase drive current is supplied from the control device 31 to the winding 17 of the stator 14, a rotating magnetic field is generated in the stator 14 to rotationally drive the rotor 15. A strong neodymium magnet is used for the permanent magnet 22, but a soft magnetic plate 41, which is a plate made of permendur having a saturation magnetic flux density of 2.0 tesla or more, is used as the material of the stator core 16. Therefore, magnetic saturation can be avoided, a flow of magnetic flux without stagnation can be ensured, and the rotor 15 is rotationally driven with high efficiency.
 次に、上記実施形態の利点を以下に記載する。 Next, the advantages of the above embodiment will be described below.
 (1)固定子鉄心16は、飽和磁束密度が2.0テスラ以上の軟磁性板材41を含むため、例えば、飽和磁束密度が2.0テスラ未満のケイ素鋼板等の一般的な軟磁性板材のみにて構成したものに比べて高効率の回転電機11を得ることが可能となる。そして、飽和磁束密度が2.0テスラ以上の軟磁性板材41は、引っ張り力が掛かると透磁率等の磁気特性が大幅に向上する。なお、図8は、実験結果より得た磁界強度-磁束密度特性図であって、圧縮力が掛かった軟磁性板材41の特性X1は、圧縮力の掛かっていない軟磁性板材41の特性X2よりも磁束密度が大幅に低下し、引っ張り力が掛かった軟磁性板材41の特性X3は、前記特性X2よりも磁束密度が大幅に向上していることを示している。このことから、軟磁性板材41に引っ張り力が掛かるように固定子鉄心が設けられることで、固定子鉄心16の磁気特性の向上を図ることができる。よって、高効率の回転電機11を得ることが可能となる。 (1) Since the stator core 16 includes a soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more, for example, only a general soft magnetic plate material such as a silicon steel plate having a saturation magnetic flux density of less than 2.0 tesla. It is possible to obtain a rotary electric machine 11 having higher efficiency than that configured in. The soft magnetic plate material 41 having a saturation magnetic flux density of 2.0 tesla or more is significantly improved in magnetic properties such as magnetic permeability when a tensile force is applied. FIG. 8 is a magnetic field strength-magnetic flux density characteristic diagram obtained from the experimental results, and the characteristic X1 of the soft magnetic plate material 41 to which the compressive force is applied is based on the characteristic X2 of the soft magnetic plate material 41 to which the compressive force is not applied. However, the magnetic flux density is significantly reduced, and the characteristic X3 of the soft magnetic plate material 41 to which a tensile force is applied indicates that the magnetic flux density is significantly improved as compared with the characteristic X2. Therefore, by providing the stator core so that a tensile force is applied to the soft magnetic plate material 41, it is possible to improve the magnetic characteristics of the stator core 16. Therefore, it is possible to obtain a highly efficient rotary electric machine 11.
 (2)ハウジング12,13と固定子鉄心16とが固定されていない状態において、回転子15の軸中心Zと鉄心孔16cの軸中心との間の距離である鉄心孔半径R1は、回転子15の軸中心Zと固定孔12c,13cの軸中心との間の距離である固定孔半径R2よりも小さく設定される。よって、固定孔12c,13c及び鉄心孔16cに挿通されるスルーボルト42によって固定子鉄心16がハウジング12,13に固定された状態では、固定子鉄心16は鉄心孔16cが径方向外側に引っ張られて、固定子鉄心16、ひいては軟磁性板材41には引っ張り力が掛かることになる。このように構成することで、容易且つ確実に軟磁性板材41に引っ張り力を掛けた状態を維持することができる。 (2) In a state where the housings 12 and 13 and the stator core 16 are not fixed, the iron core hole radius R1 which is the distance between the axis center Z of the rotor 15 and the axis center of the iron core hole 16c is the rotor. It is set smaller than the fixed hole radius R2, which is the distance between the shaft center Z of 15 and the shaft centers of the fixing holes 12c and 13c. Therefore, in a state where the stator core 16 is fixed to the housings 12 and 13 by the through bolts 42 inserted into the fixing holes 12c and 13c and the iron core holes 16c, the core holes 16c of the stator core 16 are pulled outward in the radial direction. As a result, a tensile force is applied to the stator core 16 and the soft magnetic plate material 41. With such a configuration, it is possible to easily and surely maintain a state in which a tensile force is applied to the soft magnetic plate material 41.
 (3)スルーボルト42は、弾性係数が約200GPaの鉄鋼よりも弾性係数の高い金属を含むものであり、本実施形態ではモリブデンよりなるため、スルーボルト42は、鉄鋼よりなるものに比べて、軟磁性板材41に強い引っ張り力を掛けることが可能となるとともに、強い引っ張り力を維持することができる。 (3) Since the through bolt 42 contains a metal having a higher elastic modulus than steel having an elastic modulus of about 200 GPa and is made of molybdenum in the present embodiment, the through bolt 42 is made of steel as compared with the one made of steel. It is possible to apply a strong tensile force to the soft magnetic plate material 41, and it is possible to maintain a strong tensile force.
 上記実施形態は以下のように変更して実施することができる。また、本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 The above embodiment can be modified and implemented as follows. Further, the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記実施形態では、固定子鉄心16は、ハウジング12,13に固定された状態でスルーボルト42によって軟磁性板材41に引っ張り力が掛かるように設けられるとしたが、これに限定されず、固定子鉄心を構成する軟磁性板材の飽和磁束密度が2.0テスラ以上であり、この軟磁性板材に引っ張り力が掛かるように固定子鉄心を設けられれば、上記実施形態を他の構成に変更してもよい。 -In the above embodiment, the stator core 16 is provided so as to apply a tensile force to the soft magnetic plate material 41 by the through bolt 42 in a state of being fixed to the housings 12 and 13, but the present invention is not limited to this and is fixed. If the saturation magnetic flux density of the soft magnetic plate material constituting the child core is 2.0 tesla or more and the stator core is provided so that a tensile force is applied to the soft magnetic plate material, the above embodiment is changed to another configuration. You may.
 例えば、図9及び図10に示すように変更してもよい。すなわち、この例では、固定子鉄心51は、環状のヨーク部材52と、ティース部材53とからなる。ティース部材53は、ヨーク部材52に係合されてヨーク部材52から径方向内側に延びるとともに周方向に沿って並ぶ複数のティース部53a及び該ティース部53aの径方向内側端部同士を周方向に連結する連結部53bを有する。そして、ヨーク部材52とティース部材53とは、軟磁性板材54に引っ張り力が掛かるように係合されている。具体的には、まず、この例ではティース部材53は、飽和磁束密度が2.0テスラ以上のパーメンジュール等の軟磁性板材54が積層されてなる。なお、この例のヨーク部材52は、ケイ素鋼板等の一般的な軟磁性板材が積層されてなる。そして、ヨーク部材52の径方向内側には、複数のタブテール凹部52aが周方向に等角度間隔で形成されている。ティース部53aの各々の径方向外側には、対応するタブテール凹部52aに嵌まることにより径方向内側への移動が規制されるように係合するタブテール凸部53cが形成されている。なお、タブテール凹部52aとタブテール凸部53cは、軸方向から見て略台形形状であって、径方向に対して傾斜した傾斜面が互いに係合することでタブテール凹部52aからのタブテール凸部53cの径方向内側への移動が規制されるものである。そして、ヨーク部材52とティース部材53とは、タブテール凹部52aとタブテール凸部53cとが係合した状態で、ティース部材53を構成する軟磁性板材54に引っ張り力が掛かるように、各寸法が設定されている。すなわち、この例では、タブテール凸部53cを含む各ティース部53aを径方向外側に引っ張りながらタブテール凸部53cをタブテール凹部52aに嵌めることで、各ティース部53aがヨーク部材52に組み付けられる。この組付け状態でティース部材53を構成する軟磁性板材54に引っ張り力が掛かるように各寸法が設定されている。 For example, it may be changed as shown in FIGS. 9 and 10. That is, in this example, the stator core 51 includes an annular yoke member 52 and a teeth member 53. The teeth member 53 is engaged with the yoke member 52 and extends radially inward from the yoke member 52, and the plurality of teeth portions 53a arranged along the circumferential direction and the radial inner ends of the teeth portions 53a are arranged in the circumferential direction. It has a connecting portion 53b to be connected. The yoke member 52 and the tooth member 53 are engaged with each other so that a tensile force is applied to the soft magnetic plate member 54. Specifically, first, in this example, the tooth member 53 is formed by laminating a soft magnetic plate material 54 such as permendur having a saturation magnetic flux density of 2.0 tesla or more. The yoke member 52 of this example is made by laminating a general soft magnetic plate material such as a silicon steel plate. A plurality of tab tail recesses 52a are formed inside the yoke member 52 in the radial direction at equal angular intervals in the circumferential direction. On each radial outer side of the tooth portion 53a, a tab tail convex portion 53c is formed which engages so as to be fitted into the corresponding tab tail concave portion 52a so as to restrict the movement in the radial direction. The tab tail concave portion 52a and the tab tail convex portion 53c have a substantially trapezoidal shape when viewed from the axial direction, and the tab tail convex portion 53c from the tab tail concave portion 52a is formed by engaging the inclined surfaces inclined in the radial direction with each other. Movement inward in the radial direction is restricted. The dimensions of the yoke member 52 and the tooth member 53 are set so that a tensile force is applied to the soft magnetic plate member 54 constituting the tooth member 53 in a state where the tab tail concave portion 52a and the tab tail convex portion 53c are engaged with each other. Has been done. That is, in this example, each tooth portion 53a is assembled to the yoke member 52 by fitting the tab tail convex portion 53c into the tab tail concave portion 52a while pulling each tooth portion 53a including the tab tail convex portion 53c radially outward. Each dimension is set so that a tensile force is applied to the soft magnetic plate member 54 constituting the tooth member 53 in this assembled state.
 このようにしても、軟磁性板材54に引っ張り力が掛かった状態維持され、固定子鉄心51の磁気特性の向上を図ることができ、高効率の回転電機を得ることが可能となる。また、この例では、ティース部材53は、飽和磁束密度が2.0テスラ以上のパーメンジュール等の軟磁性板材54からなり、ヨーク部材52は、ケイ素鋼板等の一般的な軟磁性板材からなる。そのため、この例では、飽和磁束密度が2.0テスラ以上の高価となり易い軟磁性板材54をティース部53aに効率良く用いて回転電機の高効率化を図ることができる。なお、勿論、ヨーク部材52は、ケイ素鋼板等の一般的な軟磁性板材以外の軟磁性板材から構成してもよく、例えばパーメンジュール等の軟磁性板材を積層して構成してもよい。 Even in this way, the state in which a tensile force is applied to the soft magnetic plate material 54 is maintained, the magnetic characteristics of the stator core 51 can be improved, and a highly efficient rotary electric machine can be obtained. Further, in this example, the tooth member 53 is made of a soft magnetic plate material 54 such as permendur having a saturation magnetic flux density of 2.0 tesla or more, and the yoke member 52 is made of a general soft magnetic plate material such as a silicon steel plate. .. Therefore, in this example, the soft magnetic plate material 54 having a saturation magnetic flux density of 2.0 tesla or more, which tends to be expensive, can be efficiently used for the teeth portion 53a to improve the efficiency of the rotary electric machine. Of course, the yoke member 52 may be made of a soft magnetic plate material other than a general soft magnetic plate material such as a silicon steel plate, or may be formed by laminating a soft magnetic plate material such as permendur.
 また、例えば、図11に示す構成を採用してもよい。すなわち、この例では、固定子鉄心61は、円筒部61aと該円筒部61aから径方向外側に延びるとともに周方向に沿って並ぶ複数のティース部61bとを有し、飽和磁束密度が2.0テスラ以上のパーメンジュール等の軟磁性板材62が積層されてなる。そして、固定子鉄心61の円筒部61aは、軟磁性板材62に引っ張り力が掛かるように、固定部材としてのセンターピース63の外周に圧入状態で固定されている。なお、この例の回転電機64は、アウターロータ型であって、前記固定子鉄心61及び巻線17を有する固定子65の径方向外側にロータヨーク66と永久磁石22を有する回転子67が回転可能に設けられている。 Further, for example, the configuration shown in FIG. 11 may be adopted. That is, in this example, the stator core 61 has a cylindrical portion 61a and a plurality of teeth portions 61b extending radially outward from the cylindrical portion 61a and arranged along the circumferential direction, and has a saturation magnetic flux density of 2.0. A soft magnetic plate material 62 such as permendur of Tesla or higher is laminated. The cylindrical portion 61a of the stator core 61 is fixed to the outer periphery of the center piece 63 as a fixing member in a press-fitted state so that a tensile force is applied to the soft magnetic plate member 62. The rotary electric machine 64 of this example is an outer rotor type, and the rotor yoke 66 and the rotor 67 having a permanent magnet 22 can rotate outside the stator 65 having the stator core 61 and the winding 17 in the radial direction. It is provided in.
 このようにしても、軟磁性板材62に引っ張り力が掛かった状態が維持され、固定子鉄心61の磁気特性の向上を図ることができ、高効率の回転電機64を得ることが可能となる。 Even in this way, the state in which the pulling force is applied to the soft magnetic plate material 62 is maintained, the magnetic characteristics of the stator core 61 can be improved, and a highly efficient rotary electric machine 64 can be obtained.
 ・上記実施形態では、特に言及していないが、固定子鉄心16の積層された軟磁性板材41が軸方向にどのように固定されていてもよい。 -Although not particularly mentioned in the above embodiment, the soft magnetic plate material 41 in which the stator core 16 is laminated may be fixed in any axial direction.
 例えば、図12に示すように、固定子鉄心16は軸方向に貫通する貫通孔71を有し、該貫通孔71内に磁性粉体72が圧縮された状態で充填されることで軟磁性板材41が軸方向に固定されてもよい。なお、磁性粉体72は粉毎に絶縁皮膜を有することが好ましい。このようにすると、例えば、かしめや溶接で軸方向に固定する場合に比べて、渦電流損の低減や磁気特性の向上を図ることができる。すなわち、軟磁性板材41同士を、例えば、かしめや溶接で軸方向に固定する場合では、渦電流の経路が形成されたり、圧縮力が掛かることで磁気特性が低下したりする虞があるが、これらを回避することができる。また、例えば、特に軟磁性板材41がプレス品である場合等では、貫通孔71の内面にバリやダレによって凹凸が生じることがあるが、それらの隙間にも磁性粉体72が入り込むため、軟磁性板材41が軸方向に強固に固定される。また、前記凹凸の隙間にも磁性粉体72が入り込むことで、前記隙間が磁気抵抗となり難くなり固定子鉄心16の磁気特性が向上する。 For example, as shown in FIG. 12, the stator core 16 has a through hole 71 penetrating in the axial direction, and the magnetic powder 72 is filled in the through hole 71 in a compressed state to form a soft magnetic plate material. 41 may be fixed in the axial direction. The magnetic powder 72 preferably has an insulating film for each powder. In this way, it is possible to reduce the eddy current loss and improve the magnetic characteristics as compared with the case of fixing in the axial direction by, for example, caulking or welding. That is, when the soft magnetic plate members 41 are fixed to each other in the axial direction by, for example, caulking or welding, there is a possibility that an eddy current path is formed or the magnetic characteristics are deteriorated due to the application of compressive force. These can be avoided. Further, for example, especially when the soft magnetic plate material 41 is a pressed product, unevenness may occur on the inner surface of the through hole 71 due to burrs or sagging, but since the magnetic powder 72 also enters the gaps between them, it is soft. The magnetic plate material 41 is firmly fixed in the axial direction. Further, when the magnetic powder 72 also enters the gaps between the irregularities, the gaps are less likely to become magnetic resistance, and the magnetic characteristics of the stator core 16 are improved.
 ・上記実施形態では、ハウジング12,13を冷やして縮ませた状態でスルーボルト42を固定孔12c,13c及び鉄心孔16cに挿通させ、ハウジング12,13が常温に戻ると固定孔半径R2が鉄心孔半径R1より大きくなることで軟磁性板材41に引っ張り力が掛かるようにしたが、他の方法でスルーボルト42を挿通させてもよい。 In the above embodiment, the through bolt 42 is inserted into the fixing holes 12c and 13c and the iron core hole 16c in a state where the housings 12 and 13 are cooled and contracted, and when the housings 12 and 13 return to room temperature, the fixing hole radius R2 becomes the iron core. A tensile force is applied to the soft magnetic plate material 41 by making the hole radius larger than R1, but the through bolt 42 may be inserted by another method.
 ・上記実施形態では、スルーボルト42は、一方の固定孔12c及び鉄心孔16cを貫通して、他方の固定孔13cの内面に成形された雌ネジに螺合されることで固定子鉄心16をハウジング12,13に固定するとしたが、これに限定されず、例えば、固定孔13cの内面に雌ネジが成形されておらず、ナットを用いて締結固定するようにしてもよい。 In the above embodiment, the through bolt 42 penetrates one fixing hole 12c and the iron core hole 16c and is screwed into the female screw formed on the inner surface of the other fixing hole 13c to form the stator core 16. It is assumed that the housings 12 and 13 are fixed, but the present invention is not limited to this. For example, a female screw is not formed on the inner surface of the fixing hole 13c, and a nut may be used for fastening and fixing.
 ・上記実施形態では、スルーボルトはモリブデンよりなるとしたが、これに限定されず、例えば、弾性係数が約340GPaのタングステンよりなるものとしてもよい。このようにしても、上記実施形態の効果(3)と同様の効果を得ることができる。また、もちろん、スルーボルトは一般的な鉄鋼よりなるものとしてもよい。 -In the above embodiment, the through bolt is made of molybdenum, but the present invention is not limited to this, and for example, the through bolt may be made of tungsten having an elastic modulus of about 340 GPa. Even in this way, the same effect as the effect (3) of the above embodiment can be obtained. Further, of course, the through bolt may be made of general steel.
 ・上記実施形態では、軟磁性板材41は飽和磁束密度が約2.3テスラのパーメンジュールよりなる板材が採用されるとしたが、これに限定されず、飽和磁束密度が2.0テスラ以上の他の素材の板材に変更してもよい。 -In the above embodiment, the soft magnetic plate material 41 is a plate material having a permendur having a saturation magnetic flux density of about 2.3 tesla, but the present invention is not limited to this, and the saturation magnetic flux density is 2.0 tesla or more. It may be changed to a plate material of another material.
 ・上記実施形態では、永久磁石22は、ネオジム磁石が採用されているとしたが、これに限定されず、例えば、他の希土類磁石やフェライト磁石としてもよい。また、上記実施形態では、永久磁石22は、ハルバッハ配列が採用されているとしたが、これに限定されず、他の配列としてもよい。また、永久磁石22は、回転子鉄心21に埋め込まれて設けられたものとしてもよい。すなわち、回転子15は、表面磁石型でも埋め込み磁石型でもよい。 -In the above embodiment, the permanent magnet 22 is assumed to be a neodymium magnet, but the present invention is not limited to this, and for example, other rare earth magnets or ferrite magnets may be used. Further, in the above embodiment, the permanent magnet 22 adopts the Halbach array, but the arrangement is not limited to this, and other arrangements may be used. Further, the permanent magnet 22 may be provided by being embedded in the rotor core 21. That is, the rotor 15 may be a surface magnet type or an embedded magnet type.
 ・上記実施形態の制御装置31は、他の構成に変更してもよく、例えば、MOSFET33a,33b,33c,33d,33e,33fに換えてIGBTを用いた制御装置としてもよい。 -The control device 31 of the above embodiment may be changed to another configuration, and may be, for example, a control device using an IGBT instead of the MOSFETs 33a, 33b, 33c, 33d, 33e, 33f.
 ・本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 -Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (7)

  1.  固定子鉄心(16,51,61)に複数の巻線(17)が巻装されてなる固定子(14,65)と、
     前記固定子鉄心が固定される固定部材(12,13,63)と、
     前記固定子鉄心と対向して配置され回転可能に支持された回転子(15,67)と
     を備えた回転電機(11,64)であって、
     前記固定子鉄心は、飽和磁束密度が2.0テスラ以上の軟磁性板材(41,54,62)を含み、
     前記固定子鉄心は、前記軟磁性板材に引っ張り力が掛かるように設けられた回転電機。
    A stator (14, 65) in which a plurality of windings (17) are wound around a stator core (16, 51, 61), and a stator (14, 65).
    Fixing members (12, 13, 63) to which the stator core is fixed, and
    A rotary electric machine (11,64) provided with a rotor (15,67) rotatably supported and arranged to face the stator core.
    The stator core contains a soft magnetic plate material (41, 54, 62) having a saturation magnetic flux density of 2.0 tesla or more.
    The stator core is a rotary electric machine provided so as to apply a tensile force to the soft magnetic plate material.
  2.  前記固定部材(12,13)は、軸方向に貫通するとともに周方向に沿って並ぶ複数の固定孔(12c,13c)を有し、
     前記固定子鉄心(16)は、軸方向に貫通するとともに周方向に沿って並ぶ複数の鉄心孔(16c)を有し、
     前記固定子鉄心(16)は、前記固定孔及び前記鉄心孔に挿通されるスルーボルト(42)によって前記固定部材に固定されるものであり、
     前記固定子鉄心と前記固定部材とが固定されていない状態において、前記回転子の軸中心と前記鉄心孔の軸中心との間の距離である鉄心孔半径(R1)は、前記回転子の軸中心と前記固定孔の軸中心との間の距離である固定孔半径(R2)よりも小さく設定された請求項1に記載の回転電機。
    The fixing members (12, 13) have a plurality of fixing holes (12c, 13c) penetrating in the axial direction and lining up along the circumferential direction.
    The stator core (16) has a plurality of iron core holes (16c) penetrating in the axial direction and arranged along the circumferential direction.
    The stator core (16) is fixed to the fixing member by the fixing hole and a through bolt (42) inserted into the iron core hole.
    In a state where the stator core and the fixing member are not fixed, the core hole radius (R1), which is the distance between the axial center of the rotor and the axial center of the iron core hole, is the axis of the rotor. The rotary electric machine according to claim 1, wherein the rotary electric machine is set to be smaller than the fixed hole radius (R2), which is the distance between the center and the axial center of the fixed hole.
  3.  前記スルーボルトは、鉄鋼よりも弾性係数の高い金属を含むことを特徴とする請求項2に記載の回転電機。 The rotary electric machine according to claim 2, wherein the through bolt contains a metal having a higher elastic modulus than steel.
  4.  前記固定子鉄心(51)は、環状のヨーク部材(52)と、前記ヨーク部材に係合されて該ヨーク部材から径方向に延びるとともに周方向に沿って並ぶ複数のティース部(53a)及び該ティース部同士を周方向に連結する連結部(53b)を有するティース部材(53)とを含み、
     前記ヨーク部材と前記ティース部材とは、前記軟磁性板材(54)に引っ張り力が掛かるように係合された請求項1に記載の回転電機。
    The stator core (51) includes an annular yoke member (52), a plurality of teeth portions (53a) that are engaged with the yoke member, extend radially from the yoke member, and are arranged along the circumferential direction. Includes a teeth member (53) having a connecting portion (53b) that connects the teeth portions in the circumferential direction.
    The rotary electric machine according to claim 1, wherein the yoke member and the tooth member are engaged with each other so that a tensile force is applied to the soft magnetic plate material (54).
  5.  前記ティース部材は、積層された飽和磁束密度が2.0テスラ以上の複数の前記軟磁性板材を含む請求項4に記載の回転電機。 The rotary electric machine according to claim 4, wherein the teeth member includes a plurality of the soft magnetic plate materials having a laminated saturation magnetic flux density of 2.0 tesla or more.
  6.  前記固定子鉄心(61)は、円筒部(61a)と該円筒部から径方向外側に延びるとともに周方向に沿って並ぶ複数のティース部(61b)とを有し、
     前記固定子鉄心の円筒部は、前記軟磁性板材(62)に引っ張り力が掛かるように、前記固定部材(63)の外周に圧入状態で固定された請求項1に記載の回転電機。
    The stator core (61) has a cylindrical portion (61a) and a plurality of teeth portions (61b) extending radially outward from the cylindrical portion and arranged along the circumferential direction.
    The rotary electric machine according to claim 1, wherein the cylindrical portion of the stator core is fixed to the outer periphery of the fixing member (63) in a press-fitted state so that a tensile force is applied to the soft magnetic plate material (62).
  7.  前記固定子鉄心は、軸方向に貫通する貫通孔(71)を有し、該貫通孔内に磁性粉体(72)が圧縮された状態で充填されることで前記軟磁性板材が軸方向に固定され、
     前記磁性粉体は粉毎に絶縁皮膜を有する請求項1から請求項6のいずれか1項に記載の回転電機。
    The stator core has a through hole (71) penetrating in the axial direction, and the soft magnetic plate material is axially filled by filling the through hole with the magnetic powder (72) in a compressed state. Fixed,
    The rotary electric machine according to any one of claims 1 to 6, wherein the magnetic powder has an insulating film for each powder.
PCT/JP2020/027213 2019-07-16 2020-07-13 Rotary electric machine WO2021010371A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130937 2019-07-16
JP2019130937A JP7351123B2 (en) 2019-07-16 2019-07-16 rotating electric machine

Publications (1)

Publication Number Publication Date
WO2021010371A1 true WO2021010371A1 (en) 2021-01-21

Family

ID=74210777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027213 WO2021010371A1 (en) 2019-07-16 2020-07-13 Rotary electric machine

Country Status (2)

Country Link
JP (1) JP7351123B2 (en)
WO (1) WO2021010371A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944204A (en) * 1972-09-06 1974-04-25
JP2003079113A (en) * 2001-08-30 2003-03-14 Nippon Steel Corp Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JP2003111369A (en) * 2000-05-30 2003-04-11 Hitachi Metals Ltd Thin-model permanent magnet type generator and diskette fitted with the same
JP2004229404A (en) * 2003-01-22 2004-08-12 Genesis:Kk Reluctance motor and magnet of stator for reluctance motor
JP2006223015A (en) * 2005-02-08 2006-08-24 Jfe Steel Kk Motor with excellent iron core magnet characteristic and manufacturing method therefor
JP2009254109A (en) * 2008-04-04 2009-10-29 Kobe Steel Ltd Stator and method of manufacturing the sator
JP2010124517A (en) * 2008-11-17 2010-06-03 Shuwa Co Ltd Sr motor
JP2010178598A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine
JP2010178590A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2013062892A (en) * 2011-09-12 2013-04-04 Fuji Electric Co Ltd Rotary electric machine and method for manufacturing the same
JP2016005301A (en) * 2014-06-13 2016-01-12 三菱電機株式会社 Motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944204A (en) * 1972-09-06 1974-04-25
JP2003111369A (en) * 2000-05-30 2003-04-11 Hitachi Metals Ltd Thin-model permanent magnet type generator and diskette fitted with the same
JP2003079113A (en) * 2001-08-30 2003-03-14 Nippon Steel Corp Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JP2004229404A (en) * 2003-01-22 2004-08-12 Genesis:Kk Reluctance motor and magnet of stator for reluctance motor
JP2006223015A (en) * 2005-02-08 2006-08-24 Jfe Steel Kk Motor with excellent iron core magnet characteristic and manufacturing method therefor
JP2009254109A (en) * 2008-04-04 2009-10-29 Kobe Steel Ltd Stator and method of manufacturing the sator
JP2010124517A (en) * 2008-11-17 2010-06-03 Shuwa Co Ltd Sr motor
JP2010178598A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine
JP2010178590A (en) * 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2013062892A (en) * 2011-09-12 2013-04-04 Fuji Electric Co Ltd Rotary electric machine and method for manufacturing the same
JP2016005301A (en) * 2014-06-13 2016-01-12 三菱電機株式会社 Motor

Also Published As

Publication number Publication date
JP2021016280A (en) 2021-02-12
JP7351123B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
US9252634B2 (en) Synchronous motor
US20090224628A1 (en) Twin rotor type motor
US10340780B2 (en) Transverse flux machine
WO2017183162A1 (en) Electric motor and air conditioner
US8937417B2 (en) Rotating electric machine and wind power generation system
US9356479B2 (en) Hybrid excitation rotating electrical machine
JPH1080116A (en) Reluctance motor
US20160301269A1 (en) Rotary electric machine rotor
JP6406355B2 (en) Double stator type rotating machine
JPWO2022019074A5 (en)
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2018198534A (en) Rotary electric machine
JP2007215397A (en) Motor and device mounted therewith
WO2021010371A1 (en) Rotary electric machine
JP2006074909A (en) Multishaft motor
JP5287241B2 (en) motor
JP2019037084A (en) Double-rotor three-phase electric motor
JP2021016255A (en) Rotary electric machine and method of manufacturing rotary electric machine
KR102189243B1 (en) stator using cartridge and BLDC motor comprising the same
JP4701921B2 (en) Stator structure of axial gap type rotating electrical machine
JP2006158147A (en) Alternator for vehicles
JP2017060274A (en) Permanent magnet rotary electric machine
US20240186849A1 (en) Rotor of rotary electric machine and method for manufacturing rotor
JP2005245120A (en) Electric motor
JP2020115728A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841534

Country of ref document: EP

Kind code of ref document: A1