WO2021010085A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2021010085A1
WO2021010085A1 PCT/JP2020/023942 JP2020023942W WO2021010085A1 WO 2021010085 A1 WO2021010085 A1 WO 2021010085A1 JP 2020023942 W JP2020023942 W JP 2020023942W WO 2021010085 A1 WO2021010085 A1 WO 2021010085A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
positive electrode
secondary battery
lithium
Prior art date
Application number
PCT/JP2020/023942
Other languages
French (fr)
Japanese (ja)
Inventor
美樹男 渡邉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021532738A priority Critical patent/JPWO2021010085A1/ja
Publication of WO2021010085A1 publication Critical patent/WO2021010085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to a secondary battery equipped with an electrolytic solution together with a positive electrode and a negative electrode that occlude and release lithium.
  • This secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode. Since the configuration of the secondary battery affects the battery characteristics, various studies have been made on the configuration of the secondary battery.
  • the capacity of the negative electrode obtained when the lithium is occluded and released is the capacity of the positive electrode. Is set to be smaller than (see, for example, Patent Document 1).
  • a carbon coat layer is inserted between the current collector and the active material in the electrode (see, for example, Patent Document 2).
  • the surface of the carbon coat layer on the side in contact with the active material is provided with irregularities due to the carbon material.
  • This technology was made in view of such problems, and its purpose is to provide a secondary battery capable of obtaining excellent battery characteristics.
  • the secondary battery of the embodiment of the present technology contains a positive electrode active material that stores and releases lithium, and a positive electrode that obtains a positive electrode storage and release capacity when lithium is stored and released in the positive electrode active material, and a negative electrode current collection.
  • the body, a base layer provided on the negative electrode current collector and containing a carbon material, and a negative electrode active material provided on the base layer and storing and releasing lithium, and the negative electrode active material is carbon-based.
  • carbon material is a general term for materials containing carbon as a constituent element.
  • carbon-based active material is a general term for materials (active materials) capable of occluding and releasing lithium and containing carbon as a constituent element.
  • silicon-based active material is a general term for materials (active materials) capable of occluding and releasing lithium and containing silicon as a constituent element.
  • materials corresponding to “silicon-based active materials” shall be excluded from “carbon-based active materials”.
  • the negative electrode includes a negative electrode current collector, a base layer containing a carbon material, and a negative electrode active material layer containing a carbon-based active material and a silicon-based active material. Since the negative electrode storage / discharge capacity of the negative electrode is smaller than the positive electrode storage / discharge capacity of the positive electrode, excellent battery characteristics can be obtained.
  • effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • FIG. 1 It is a perspective view which shows the structure of the secondary battery (laminate film type) in one Embodiment of this technique. It is sectional drawing which shows the structure of the wound electrode body shown in FIG. It is a top view which shows each structure of the positive electrode and the negative electrode shown in FIG. It is sectional drawing which shows the structure of another secondary battery (cylindrical type) in one Embodiment of this technique. It is a perspective view which shows the structure of the secondary battery (laminate film type) of the modification 1.
  • FIG. It is sectional drawing which shows the structure of the laminated electrode body shown in FIG. It is a block diagram which shows the structure of the application example (battery pack: cell) of a secondary battery.
  • Secondary battery 1-1 Laminate film type 1-1-1. Configuration 1-1-2. Operation (operation principle) 1-1-3. Manufacturing method 1-1-4. Action and effect 1-2. Cylindrical type 1-2-1. Configuration 1-2-2. Operation (operation principle) 1-2-3. Manufacturing method 1-2-4. Action and effect 2. Modification example 3. Applications of secondary batteries 3-1. Battery pack (cell) 3-2. Battery pack (assembled battery) 3-3. Electric vehicle 3-4. Other
  • the secondary battery described here is a secondary battery in which the battery capacity can be obtained by utilizing the occlusion and release of lithium and the battery capacity can be obtained by utilizing the precipitation and dissolution of lithium, and the electrolytic solution together with the positive electrode and the negative electrode. It has.
  • this secondary battery lithium is occluded in an ionic state and released in an ionic state. Further, in a secondary battery, lithium is precipitated in a metallic state and dissolved in an ionic state.
  • the detailed operating principle (charging / discharging principle) of the secondary battery will be described later.
  • Laminate film type First, a laminated film type secondary battery using a flexible or flexible film 20 as an exterior member for accommodating a battery element will be described.
  • FIG. 1 shows a perspective configuration of a laminated film type secondary battery.
  • FIG. 2 shows the cross-sectional configuration of the wound electrode body 10 shown in FIG.
  • FIG. 3 shows the planar configurations of the positive electrode 11 and the negative electrode 12 shown in FIG.
  • FIG. 1 shows a state in which the wound electrode body 10 and the film 20 are separated from each other.
  • FIG. 2 shows only a part of the wound electrode body 10.
  • FIG. 3 shows a state in which the positive electrode 11 and the negative electrode 12 are separated from each other.
  • a winding type battery element (winding electrode body 10) is housed inside a bag-shaped film 20, and a positive electrode lead is housed in the winding electrode body 10. 14 and the negative electrode lead 15 are connected. Each of the positive electrode lead 14 and the negative electrode lead 15 is led out in the same direction from the inside to the outside of the film 20.
  • the film 20 is a single film-like member that can be folded in the direction of the arrow R (dashed line) shown in FIG.
  • the film 20 is provided with a recessed portion 20U (so-called deep drawing portion) for accommodating the wound electrode body 10.
  • the film 20 is a three-layer laminated film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the film 20 is folded, it is among the fusion layers.
  • the outer peripheral edges of the film are fused to each other.
  • the fused layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metallic material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the number of layers of the film 20 which is a laminated film is not limited to three, it may be one layer, two layers, or four or more layers.
  • the adhesion film 21 is inserted between the film 20 and the positive electrode lead 14, and the adhesion film 22 is inserted between the film 20 and the negative electrode lead 15.
  • the adhesion films 21 and 22 are members for preventing the intrusion of outside air, and include any one or more of a polyolefin resin having adhesion to each of the positive electrode lead 14 and the negative electrode lead 15. There is.
  • the polyolefin resin is polyethylene, polypropylene, modified polyethylene, modified polypropylene and the like. However, one or both of the adhesion films 21 and 22 may be omitted.
  • the wound electrode body 10 includes a positive electrode 11, a negative electrode 12, a separator 13, and an electrolytic solution which is a liquid electrolyte.
  • the wound electrode body 10 is a structure in which a positive electrode 11 and a negative electrode 12 are laminated with each other via a separator 13, and then the positive electrode 11, the negative electrode 12 and the separator 13 are wound.
  • the electrolytic solution is impregnated in each of the positive electrode 11, the negative electrode 12, and the separator 13.
  • the positive electrode 11 includes a positive electrode current collector 11A and two positive electrode active material layers 11B provided on both sides of the positive electrode current collector 11A.
  • the positive electrode active material layer 11B may be provided on only one side of the positive electrode current collector 11A.
  • the positive electrode current collector 11A contains any one or more of conductive materials such as aluminum, nickel and stainless steel.
  • the positive electrode active material layer 11B contains any one or more of the positive electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state. However, the positive electrode active material layer 11B may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the type of the positive electrode active material is not particularly limited, but is a lithium-containing compound such as a lithium-containing transition metal compound.
  • This lithium-containing transition metal compound contains one or more kinds of transition metal elements together with lithium, and may further contain one kind or two or more kinds of other elements.
  • the type of the other element is not particularly limited as long as it is an arbitrary element (excluding the transition metal element). Among them, the other elements are preferably elements belonging to groups 2 to 15 in the long periodic table.
  • the lithium-containing transition metal compound may be an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound, or the like.
  • oxides are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 , Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and Li Mn 2 O 4 .
  • Specific examples of the phosphoric acid compound include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber, polymer compounds, and the like.
  • Synthetic rubbers include styrene-butadiene rubbers, fluororubbers and ethylene propylene dienes.
  • Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
  • the positive electrode conductive agent contains any one or more of the conductive materials such as carbon material.
  • the carbon materials include graphite, carbon black, acetylene black and ketjen black.
  • the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as it has conductivity.
  • the positive electrode active material layer 11B is provided on a part of the positive electrode current collector 11A. Therefore, the portion of the positive electrode current collector 11A where the positive electrode active material layer 11B is not provided is not covered by the positive electrode active material layer 11B and is exposed.
  • the positive electrode current collector 11A extends in the longitudinal direction (X-axis direction) and includes a covering portion 11AX and a pair of uncovered portions 11AY.
  • the covering portion 11AX is located at the central portion of the positive electrode current collector 11A in the longitudinal direction, and is a portion where the positive electrode active material layer 11B is formed.
  • the pair of uncoated portions 11AY are located at one end and the other end of the positive electrode current collector 11A in the longitudinal direction, and are portions where the positive electrode active material layer 11B is not formed.
  • the coated portion 11AX is covered with the positive electrode active material layer 11B, whereas the pair of uncoated portions 11ZY are not covered with the positive electrode active material layer 11B and are exposed.
  • the positive electrode active material layer 11B is lightly shaded.
  • the negative electrode 12 is provided on the negative electrode current collector 12A, the base layer 12B provided on the negative electrode current collector 12A (both sides), and on the base layer 12B (surface). It contains the negative electrode active material layer 12C obtained. However, each of the base layer 12B and the negative electrode active material layer 12C may be provided on only one side of the negative electrode current collector 12A.
  • the negative electrode current collector 12A contains any one or more of conductive materials such as copper, aluminum, nickel and stainless steel.
  • the base layer 12B is interposed between the negative electrode current collector 12A and the negative electrode active material layer 12C.
  • the base layer 12B improves the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A while ensuring the conductivity between the negative electrode current collector 12A and the negative electrode active material layer 12C.
  • the negative electrode current collector 12A and the negative electrode active material layer 12C are electrically connected to each other, and the negative electrode active material layer 12C is less likely to be separated from the negative electrode current collector 12A during charging and discharging.
  • the negative electrode active material layer 12C is formed by a coating method, that is, the negative electrode active material layer 12C is formed on the surface of the base layer 12B by using a negative electrode mixture slurry containing a negative electrode binder together with the negative electrode active material.
  • the adhesion of the negative electrode active material layer 12C to the base layer 12B is dramatically improved rather than the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A.
  • the adhesion of the negative electrode binder to the base layer 12B is significantly higher than the adhesion of the negative electrode binder to the negative electrode current collector 12A.
  • the negative electrode active material layer 12C is significantly less likely to be separated from the negative electrode current collector 12A during charging and discharging.
  • This base layer 12B contains any one or more of the carbon materials. As described above, the carbon material described here is a general term for materials containing carbon as a constituent element. However, the base layer 12B may further contain a base binder or the like. The details regarding the base binder are the same as the details regarding the negative electrode binder described later.
  • carbon materials are carbon black, acetylene black, ketjen black, and the like. This is because the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A is sufficiently high.
  • This carbon material is a powder (plural particles).
  • the BET specific surface area of the plurality of particulate carbon materials is not particularly limited, but is preferably 30 m 2 / g to 300 m 2 / g. This is because the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A is further improved, so that the negative electrode active material layer 12C is more difficult to peel off from the negative electrode current collector 12A.
  • the BET specific surface area is smaller than 30 m 2 / g, the unevenness provided on the surface of the base layer 12B is too small, so that the adhesion of the base layer 12B to the negative electrode active material layer 12C may decrease. ..
  • the BET specific surface area is larger than 300 m 2 / g, the unevenness provided on the surface of the base layer 12B is too large, so that the adhesion of the base layer 12B to the negative electrode current collector 12A may decrease.
  • the BET specific surface area is 30 m 2 / g to 300 m 2 / g, the adhesion of the base layer 12B to each of the negative electrode current collector 12A and the negative electrode active material layer 12C is ensured.
  • the negative electrode active material layer 12C is remarkably difficult to be separated from the negative electrode current collector 12A by using the stratum 12B.
  • the crystallinity of the carbon material is not particularly limited. Above all, the carbon material preferably has low crystallinity. This is because the amount of lithium intercalated (reaction amount) with respect to the base layer 12B is reduced, so that even if the base layer 12B is used, lithium can be easily and stably occluded and released in the negative electrode active material layer 12C.
  • a Raman spectrum (Raman shift (cm -1 ) on the horizontal axis and spectral intensity on the vertical axis) is obtained by analyzing the carbon material using Raman spectroscopy.
  • the peak intensity IG of the G band is detected near 1580 cm -1, as measured with a peak intensity ID of D band is detected near 1360 cm -1
  • the ratio of the peak intensity ID for the peak intensity IG ( Peak intensity ratio) ID / IG is preferably 1.0 or more.
  • the negative electrode 12 is taken out by disassembling the secondary battery.
  • the base layer 12B is taken out by disassembling the negative electrode 12.
  • the base layer 12B is peeled off from each of the negative electrode current collector 12A and the negative electrode active material layer 12C.
  • the base layer 12B is put into the organic solvent, and then the organic solvent is stirred.
  • the soluble component (base binder and the like) in the base layer 12B is dissolved, so that the insoluble component (carbon material) in the base layer 12B is recovered.
  • the type of the organic solvent is not particularly limited as long as it can dissolve a soluble component such as a base binder.
  • the negative electrode active material layer 12C contains any one or more of negative electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state. However, the negative electrode active material layer 12C may further contain a negative electrode binder, a negative electrode conductive agent, and the like. The details regarding each of the negative electrode binder and the negative electrode conductive agent are the same as the details regarding each of the positive electrode binder and the positive electrode conductive agent described above.
  • the negative electrode active material contains two types of materials (carbon-based active material and silicon-based active material) capable of occluding and releasing lithium in an ionic state.
  • the carbon-based active material is a general term for materials (active materials) capable of occluding and releasing lithium and containing carbon as a constituent element.
  • the silicon-based active material is a general term for materials (active materials) that can occlude and release lithium and also contain silicon as a constituent element, and can form an alloy with the lithium.
  • materials corresponding to silicon-based active materials shall be excluded from carbon-based active materials.
  • the negative electrode active material contains a carbon-based active material and a silicon-based active material because the negative electrode 12 (negative electrode active material layer 12C) expands and contracts during charging and discharging while ensuring a high theoretical capacity (battery capacity). This is because it is suppressed.
  • the carbon-based active material has the advantage that it does not easily expand and contract during charging and discharging, but has the concern that the theoretical capacity is low.
  • the silicon-based active material has an advantage of having a high theoretical capacity, but has a concern that it easily expands and contracts during charging and discharging. Therefore, by using the carbon-based active material and the silicon-based active material in combination, the carbon-based active material suppresses the expansion and contraction of the negative electrode active material layer 12C during charging and discharging, while the silicon-based active material has a higher battery capacity. can get.
  • the carbon-based active material contains any one or more of graphitizable carbon, non-graphitizable carbon, and graphite.
  • This graphite may be natural graphite, artificial graphite, or both.
  • the carbon-based active material preferably contains graphite. This is because a sufficient battery capacity can be stably obtained.
  • the silicon-based active material may be a simple substance of silicon, an alloy of silicon, a compound of silicon, or a mixture of two or more of them.
  • the silicon-based active materials are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO x (0 ⁇ x ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ ) 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like, or any one or more of them are contained.
  • the silicon-based active material preferably contains silicon oxide represented by SiO x (0 ⁇ x ⁇ 2), and more preferably contains SiO. This is because the irreversible capacity is reduced, so that a high battery capacity can be stably obtained.
  • the mixing ratio (weight ratio) of the carbon-based active material and the silicon-based active material is not particularly limited. Above all, the mixing ratio of the carbon-based active material is preferably larger than the mixing ratio of the silicon-based active material. Since the proportion of carbon-based active material that does not easily expand and contract during charging and discharging is larger than the proportion of silicon-based active material that easily expands and contracts during charging and discharging, the entire negative electrode active material expands and contracts during charging and discharging. This is because it becomes difficult to shrink.
  • the negative electrode active material layer 12C is provided on the entire negative electrode current collector 12A. Therefore, the entire negative electrode current collector 12A is not exposed and is covered with the negative electrode active material layer 12C.
  • the negative electrode current collector 12A extends in the longitudinal direction (X-axis direction), and the negative electrode active material layer 12C includes a pair of non-opposing portions 12CZ.
  • the pair of non-opposing portions 12CZ are portions facing the pair of uncovered portions 11AY. That is, since the pair of non-opposing portions 12CZ are portions that do not face the positive electrode active material layer 11B, they are not involved in the charge / discharge reaction.
  • the negative electrode active material layer 12C is darkly shaded.
  • the BET specific surface area of the carbon material described above is examined ex post facto, that is, after the secondary battery is completed (in use), it is shown in FIG. 3 as a negative electrode active material layer 12C for recovering the carbon material. It is preferable to use the non-opposing portion 12CZ. This is because the non-opposing portion 12CZ hardly participates in the charge / discharge reaction, so that the state of the carbon material (BET specific surface area) is easily maintained as it was when the negative electrode 12 was formed without being affected by the charge / discharge reaction. As a result, the BET specific surface area of the carbon material can be examined stably and with good reproducibility even when the secondary battery has been used.
  • the separator 13 is interposed between the positive electrode 11 and the negative electrode 12.
  • the separator 13 is an insulating porous film that allows lithium to pass through while preventing a short circuit due to contact between the positive electrode 11 and the negative electrode 12, and may be a single-layer film composed of one type of porous film. It may be a multilayer film in which more than one kind of porous film is laminated on each other.
  • This porous membrane contains any one or more of polymer compounds such as polytetrafluoroethylene, polypropylene and polyethylene.
  • the electrolyte contains a solvent and an electrolyte salt.
  • the type of the solvent may be only one type or two or more types, and the type of the electrolyte salt may be only one type or two or more types.
  • solvent contains a non-aqueous solvent (organic solvent), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • Non-aqueous solvents are esters, ethers, and the like, and more specifically, carbonic acid ester compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • Carbonate ester compounds include cyclic carbonates and chain carbonates. Cyclic carbonates include ethylene carbonate and propylene carbonate, and chain carbonates include dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate. Carboxylate ester compounds include ethyl acetate, ethyl propionate and ethyl trimethyl acetate. Lactone compounds include ⁇ -butyrolactone and ⁇ -valerolactone. Ethers include 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane and the like, in addition to the above-mentioned lactone compounds.
  • the non-aqueous solvent is an unsaturated cyclic carbonate ester, a halogenated carbonate ester, a sulfonic acid ester, a phosphoric acid ester, an acid anhydride, a nitrile compound, an isocyanate compound, or the like. This is because the chemical stability of the electrolytic solution is improved.
  • the unsaturated cyclic carbonate is vinylene carbonate, vinyl acetate ethylene, methylene carbonate, or the like.
  • Halogenated carbonic acid esters include ethylene fluorocarbonate and ethylene difluorocarbonate.
  • the sulfonic acid ester is 1,3-propane sultone or the like.
  • the phosphoric acid ester is trimethyl phosphate or the like.
  • Acid anhydrides include cyclic carboxylic acid anhydrides, cyclic disulfonic acid anhydrides and cyclic carboxylic acid sulfonic acid anhydrides.
  • Cyclic carboxylic acid anhydrides include succinic anhydride, glutaric anhydride and maleic anhydride.
  • Cyclic disulfonic acid anhydrides include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • Cyclic carboxylic acid sulfonic acid anhydrides include sulfobenzoic acid anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • Nitrile compounds include acetonitrile and succinonitrile.
  • the isocyanate compound is hexamethylene diisocyanate or the like.
  • the electrolyte salt is any one or more of light metal salts such as lithium salt.
  • This lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and bis (fluorosulfonyl) imide lithium (LiN (FSO)).
  • the content of the electrolyte salt is not particularly limited, but is 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the positive electrode lead 14 is connected to the positive electrode 11 (positive electrode current collector 11A), and the negative electrode lead 15 is connected to the negative electrode 12 (negative electrode current collector 12A).
  • the positive electrode lead 14 contains any one or more of the conductive materials such as aluminum, and the negative electrode lead 15 is any one of the conductive materials such as copper, nickel and stainless steel. Includes type or two or more types.
  • the shapes of the positive electrode lead 14 and the negative electrode lead 15 are thin plate-like and mesh-like, respectively.
  • the positive electrode 11 contains a positive electrode active material that occludes and releases lithium
  • the negative electrode 12 contains a negative electrode active material that occludes and releases lithium.
  • a capacity positive electrode occlusion / release capacity
  • a capacity negative electrode
  • (Occlusion release capacity) is obtained.
  • the negative electrode storage / release capacity is set to be smaller than the positive electrode storage / discharge capacity.
  • the overcharge voltage described here is the open circuit voltage when the secondary battery reaches the overcharge state, and is one of the guidelines set by the Japan Storage Battery Industry Association (Battery Industry Association), "Lithium Ion”. It means a voltage higher than the open circuit voltage of a “fully charged” secondary battery described (defined) on page 6 of the “Guidelines for Secondary Battery Safety Evaluation Criteria” (SBA G1101). In other words, it means a voltage higher than the open circuit voltage after being charged using the charging method, the standard charging method, or the recommended charging method used in determining the nominal capacity of each secondary battery.
  • This upper limit voltage is an upper limit value of a voltage capable of advancing a normal charging reaction, and is determined according to the type of positive electrode active material.
  • the place where lithium is deposited is not particularly limited, but is the surface of a negative electrode active material that occludes and releases lithium.
  • the battery capacity that is, the total capacity of the negative electrode 12 is the capacity obtained when lithium is occluded and released in the above-mentioned negative electrode active material and the capacity obtained when lithium is deposited and dissolved in the negative electrode 12 ( It is the sum of the negative electrode precipitation and dissolution capacity).
  • the total capacity of the negative electrode 12 is represented by the sum of the negative electrode occlusion / release capacity and the negative electrode precipitation / dissolution capacity. That is, it is a high energy density that the battery capacity can be obtained by utilizing the lithium occlusion / release phenomenon and the lithium precipitation / dissolution phenomenon. This is because the cycle characteristics and the quick charge characteristics are improved at the same time.
  • the negative electrode active material capable of occluding and releasing lithium generally has a large surface property, so that when lithium is deposited, it is present on the surface of the negative electrode active material. Lithium is likely to be deposited uniformly.
  • a negative electrode active material capable of storing and releasing lithium when used, lithium is deposited not only on the surface of the negative electrode active material but also between a plurality of negative electrode active materials (gap). The volume change of the negative electrode active material layer 12C (the entire negative electrode active material) is reduced.
  • the precipitation and dissolution of lithium by the negative electrode active material capable of occluding and releasing lithium also contributes to the charge / discharge capacity, so that the amount of lithium precipitation (and the amount of lithium precipitation (and) can be obtained in spite of the high battery capacity. The amount of dissolution) is reduced. Fourth, since lithium is occluded in the negative electrode active material which can occlude and release lithium in the initial stage of charging, rapid charging becomes possible.
  • the charge capacity exceeds the charge capacity capacity of the negative electrode active material, so lithium begins to precipitate on the surface of the negative electrode active material. In this case, lithium continues to precipitate on the surface of the negative electrode active material until charging is completed. As a result, the negative electrode precipitation / dissolution capacity is obtained in the negative electrode 12.
  • the lithium stored in the negative electrode active material is released, and the lithium is occluded in the positive electrode 11 (positive electrode active material) via the electrolytic solution.
  • the positive electrode active material is mixed with a positive electrode binder, a positive electrode conductive agent, and the like, if necessary, to obtain a positive electrode mixture.
  • a paste-like positive electrode mixture slurry is prepared by adding the positive electrode mixture to a dispersion solvent such as an organic solvent.
  • the positive electrode active material layer 11B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 11A.
  • the positive electrode active material layer 11B may be compression-molded using a roll press or the like. In this case, the positive electrode active material layer 11B may be heated, or compression molding may be repeated a plurality of times. As a result, the positive electrode active material layers 11B are formed on both sides of the positive electrode current collector 11A, so that the positive electrode 11 is produced.
  • a negative electrode active material containing a carbon-based active material and a silicon-based active material is mixed with a negative electrode binder, a negative electrode conductive agent, and the like, if necessary, to obtain a negative electrode mixture.
  • the amount of the negative electrode active material (carbon-based active material and silicon-based active material) is adjusted with respect to the amount of the positive electrode active material so that the negative electrode storage / release capacity is smaller than the positive electrode storage / discharge capacity.
  • a paste-like negative electrode mixture slurry is prepared by adding the negative electrode mixture to a dispersion solvent such as an organic solvent.
  • the negative electrode active material layer 12C is formed by applying the negative electrode mixture slurry to the surface of the base layer 12B.
  • the negative electrode active material layer 12C may be compression-molded using a roll press or the like as in the case where the positive electrode active material layer 11B is formed.
  • the base layer 12B and the negative electrode active material layer 12C are formed on both sides of the negative electrode current collector 12A, so that the negative electrode 12 is produced.
  • the electrolyte salt is added to a solvent such as an organic solvent. As a result, the electrolyte salt is dispersed or dissolved in the solvent, so that an electrolytic solution is prepared.
  • the positive electrode lead 14 is connected to the positive electrode 11 (positive electrode current collector 11A) by a welding method or the like, and the negative electrode lead 15 is connected to the negative electrode 12 (negative electrode current collector 12A) by a welding method or the like.
  • the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13, and then the positive electrode 11, the negative electrode 12, and the separator 13 are wound to produce a wound body.
  • the wound body is housed inside the recess 20U, the film 20 is folded, and then the outer peripheral edges of the two sides of the film 20 (fused layer) are attached to each other by using a heat fusion method or the like.
  • the winding body is housed inside the bag-shaped film 20.
  • the outer peripheral edges of the remaining one side of the film 20 (fused layer) are adhered to each other by a heat fusion method or the like.
  • the adhesive film 21 is inserted between the film 20 and the positive electrode lead 14, and the adhesive film 22 is inserted between the film 20 and the negative electrode lead 15.
  • the wound body is impregnated with the electrolytic solution, so that the wound electrode body 10 is manufactured. Therefore, since the wound electrode body 10 is enclosed inside the bag-shaped film 20, the laminated film type secondary battery is completed.
  • the negative electrode 12 contains a negative electrode current collector 12A, a base layer 12B (carbon material) and a negative electrode active material layer 12C (carbon-based active material and silicon-based active material).
  • the negative electrode storage / release capacity of the negative electrode 12 is smaller than the positive electrode storage / release capacity of the positive electrode 11.
  • the negative electrode active material layer 12C contains the carbon-based active material and the silicon-based active material, the negative electrode active material layer 12C expands and expands during charging and discharging while ensuring a high battery capacity. It becomes difficult to shrink.
  • the base layer 12B is interposed between the negative electrode current collector 12A and the negative electrode active material layer 12C, even if the negative electrode active material layer 12C expands and contracts during charging and discharging, the negative electrode active material The layer 12C is less likely to peel off from the negative electrode current collector 12A.
  • the negative electrode active material layer 12C expands violently due to the silicon-based active material reaching a state of being fully charged or higher as the charging progresses, the negative electrode active material layer 12C Is sufficiently difficult to peel off from the negative electrode current collector 12A.
  • the negative electrode storage / discharge capacity is smaller than the positive electrode storage / discharge capacity, a high energy density can be obtained and the cycle characteristics and the like can be improved. Therefore, excellent battery characteristics can be obtained.
  • the negative electrode active material layer 12C is the negative electrode current collector 12A by utilizing the base layer 12B during charging and discharging. Since it is more difficult to peel off from the surface, a higher effect can be obtained.
  • the peak intensity ratio ID / IG of the carbon material measured by Raman spectroscopy is 1.0 or more, lithium can be sufficiently and stably occluded in the negative electrode active material layer 12C even if the base layer 12B is used. Since it is easily released, a higher effect can be obtained.
  • the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A becomes sufficiently high, so that a higher effect can be obtained.
  • the carbon-based active material contains graphite and the silicon-based active material contains silicon oxide represented by SiO x (0 ⁇ x ⁇ 2)
  • SiO x (0 ⁇ x ⁇ 2)
  • the irreversible capacity is reduced and the battery capacity is high. Since it can be obtained stably, a higher effect can be obtained.
  • the silicon-based active material contains SiO, the irreversible capacity is sufficiently reduced, so that a higher effect can be obtained.
  • the lithium storage and release can be utilized by using the positive electrode 11 and the negative electrode 12 that occlude and release lithium. Not only the battery capacity can be obtained, but also the precipitation and dissolution of lithium can be used to obtain the battery capacity. Therefore, a high battery capacity can be stably obtained, and a higher effect can be obtained.
  • the total capacity (battery capacity) of the negative electrode 12 is the sum of the negative electrode occlusion / discharge capacity and the negative electrode precipitation / dissolution capacity, a high battery capacity can be stably obtained as described above, and a higher effect can be obtained. Can be done.
  • FIG. 4 shows a cross-sectional configuration of a cylindrical secondary battery.
  • the components of the laminated film type secondary battery (FIG. 2) already described will be cited from time to time.
  • a pair of insulating plates 42, 43 and a winding type battery element (winding electrode body 30) are provided inside the cylindrical battery can 41.
  • a positive electrode lead 34 and a negative electrode lead 35 are connected to the wound electrode body 30.
  • the battery can 41 has a hollow structure in which one end is closed and the other end is open, and any one or more of metal materials such as iron, aluminum and alloys thereof can be used. Includes.
  • the surface of the battery can 41 may be plated with nickel or the like.
  • the insulating plates 42 and 43 are arranged so as to sandwich the wound electrode body 30 with each other, and extend in a direction intersecting the winding peripheral surface of the wound electrode body 30.
  • a battery lid 44, a safety valve mechanism 45, and a heat-sensitive resistance element (PTC element) 46 are crimped to the open end of the battery can 41 via an insulating gasket 47. Therefore, the open end of the battery can 41 is sealed.
  • the battery lid 44 contains the same material as the material for forming the battery can 41.
  • the safety valve mechanism 45 and the PTC element 46 are provided inside the battery lid 44, and the safety valve mechanism 45 is electrically connected to the battery lid 44 via the PTC element 46.
  • the disk plate 45A is inverted, so that the battery lid 44 and the wound electrode body 30 are electrically connected. Be disconnected.
  • the resistance of the PTC element 46 increases as the temperature rises. Asphalt or the like may be applied to the surface of the gasket 47.
  • the wound electrode body 30 includes a positive electrode 31, a negative electrode 32, a separator 33, and an electrolytic solution.
  • the wound electrode body 30 is a structure in which the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, and then the positive electrode 31, the negative electrode 32 and the separator 33 are wound.
  • the electrolytic solution is impregnated in each of the positive electrode 31, the negative electrode 32 and the separator 33.
  • the positive electrode lead 34 is connected to the positive electrode 31 (positive electrode current collector 31A), and the negative electrode lead 35 is connected to the negative electrode 32 (negative electrode current collector 32A).
  • a center pin 36 is inserted in the space provided at the winding center of the winding electrode body 30. However, the center pin 36 may be omitted.
  • the positive electrode lead 34 contains any one or more of the conductive materials such as aluminum, and is electrically connected to the battery lid 44 via the safety valve mechanism 45.
  • the negative electrode lead 35 contains any one or more of conductive materials such as copper, nickel and stainless steel (SUS), and is electrically connected to the battery can 41.
  • the shapes of the positive electrode lead 34 and the negative electrode lead 35 are thin plate-like and mesh-like.
  • the positive electrode 31 includes a positive electrode current collector 31A and a positive electrode active material layer 31B
  • the negative electrode 32 includes a negative electrode current collector 32A, a base layer 32B, and a negative electrode active material layer 32C.
  • the configurations of the positive electrode current collector 31A, the positive electrode active material layer 31B, the negative electrode current collector 32A, the base layer 32B, and the negative electrode active material layer 32C are the positive electrode current collector 11A, the positive electrode active material layer 11B, and the negative electrode current collector 12A.
  • the configurations of the base layer 12B and the negative electrode active material layer 12C are the same. That is, the negative electrode active material layer 32C contains a negative electrode active material (carbon-based active material and silicon-based active material).
  • the configuration of the separator 33 is the same as that of the separator 13.
  • the negative electrode storage / release capacity of the negative electrode 32 is set to be smaller than the positive electrode storage / discharge capacity of the positive electrode 31.
  • the negative electrode active material is in a state where the open circuit voltage is lower than the overcharge voltage, more specifically, in a part of the range where the open circuit voltage is 0 V to the upper limit voltage. Lithium is deposited on the surface of the. Therefore, the total capacity (battery capacity) of the negative electrode 12 is the sum of the negative electrode occlusion / discharge capacity and the negative electrode precipitation / dissolution capacity.
  • lithium is released from the positive electrode 31 and the lithium is occluded in the negative electrode 32 via the electrolytic solution, so that the negative electrode storage / release capacity can be obtained in the negative electrode 32. Further, as charging progresses further, lithium is deposited on the surface of the negative electrode active material, so that the negative electrode precipitation dissolution capacity can be obtained at the negative electrode 32.
  • lithium precipitated on the surface of the negative electrode active material is eluted in the electrolytic solution, and the lithium is occluded in the positive electrode 31. Further, as the discharge progresses, the lithium stored in the negative electrode active material is released, and the lithium is occluded in the positive electrode 31 via the electrolytic solution.
  • the positive electrode 31 is manufactured by the same procedure as the procedure for manufacturing the positive electrode 11, and the negative electrode 32 is manufactured by the same procedure as the procedure for manufacturing the negative electrode 12. That is, when the positive electrode 31 is manufactured, the positive electrode active material layers 31B are formed on both sides of the positive electrode current collector 31A, and when the negative electrode 32 is manufactured, the base layers 32B and the base layers 32B and The negative electrode active material layer 32C is formed.
  • the positive electrode lead 34 is connected to the positive electrode 31 (positive electrode current collector 31A) by a welding method or the like, and the negative electrode lead 35 is connected to the negative electrode 32 (negative electrode current collector 32A) by a welding method or the like.
  • the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, and then the positive electrode 31, the negative electrode 32, and the separator 33 are wound to form a wound body.
  • the center pin 36 is inserted into the space provided at the winding center of the winding body.
  • the winding body is stored together with the insulating plates 42 and 43 inside the battery can 41.
  • the positive electrode lead 34 is connected to the safety valve mechanism 45 by a welding method or the like
  • the negative electrode lead 35 is connected to the battery can 41 by a welding method or the like.
  • the electrolytic solution is injected into the inside of the battery can 41.
  • the positive electrode 31, the negative electrode 32, and the separator 33 are impregnated with the electrolytic solution, so that the wound electrode body 30 is formed.
  • the negative electrode 32 has the same configuration as that of the negative electrode 12, and the negative electrode storage / discharge capacity of the negative electrode 32 is smaller than the positive electrode storage / discharge capacity of the positive electrode 31. Therefore, excellent battery characteristics can be obtained for the same reason as described with respect to the laminated film type secondary battery.
  • FIGS. 1 and 2 a winding type battery element (winding electrode body 10) was used. However, as shown in FIG. 5 corresponding to FIG. 1 and FIG. 6 corresponding to FIG. 2, a laminated battery element (laminated electrode body 50) may be used instead of the wound electrode body 10.
  • the laminated electrode body 50 (positive electrode body 50 (positive electrode body)) is used instead of the wound electrode body 10 (positive electrode body 11, negative electrode 12 and separator 13), positive electrode lead 14 and negative electrode lead 15. It has the same configuration as the laminated film type secondary battery shown in FIGS. 1 and 2 except that the 51, the negative electrode 52 and the separator 53), the positive electrode lead 54 and the negative electrode lead 55 are provided. There is.
  • the configurations of the positive electrode 51, the negative electrode 52, the separator 53, the positive electrode lead 54, and the negative electrode lead 55 are each of the positive electrode 11, the negative electrode 12, the separator 13, the positive electrode lead 14, and the negative electrode lead 15, except as described below. Similar to the configuration.
  • the positive electrode 51 and the negative electrode 52 are alternately laminated via the separator 53.
  • the number of layers of the positive electrode 51, the negative electrode 52, and the separator 53 is not particularly limited, but here, the plurality of positive electrodes 51 and the plurality of negative electrodes 52 are laminated to each other via the plurality of separators 53.
  • the electrolytic solution is impregnated in each of the positive electrode 51, the negative electrode 52, and the separator 53, and the structure of the electrolytic solution is as described above.
  • the positive electrode 51 includes a positive electrode current collector 51A and a positive electrode active material layer 51B
  • the negative electrode 52 includes a negative electrode current collector 52A, a base layer 52B, and a negative electrode active material layer 52C.
  • the positive electrode current collector 51A includes the protruding portion 51AT in which the positive electrode active material layer 51B is not formed, and the negative electrode current collector 52A includes the negative electrode active material layer. It includes a protrusion 52AT in which the 52C is not formed.
  • the protruding portion 52AT is arranged at a position that does not overlap with the protruding portion 51AT.
  • the plurality of protrusions 51AT are joined to each other to form one lead-shaped joint 51Z, and the plurality of protrusions 52AT are joined to each other to form one lead-like joint 51Z.
  • the joint portion 52Z is formed.
  • the positive electrode lead 54 is connected to the joint portion 51Z
  • the negative electrode lead 55 is connected to the joint portion 52Z.
  • the laminated electrode body 50 (positive electrode lead 54 and negative electrode lead 55) is used instead of the wound electrode body 10 (positive electrode lead 14 and negative electrode lead 15).
  • the method is the same as the method for manufacturing the laminated film type secondary battery shown in FIGS. 1 and 2, except that the above is produced.
  • the negative electrode 52 in which the base layer 52B and the negative electrode active material layer 52C are formed on both sides of the portion 52AT After producing the negative electrode 52 in which the base layer 52B and the negative electrode active material layer 52C are formed on both sides of the portion 52AT), the plurality of positive electrodes 51 and the plurality of negative electrodes 52 are laminated with each other via the plurality of separators 53. As a result, a laminated body is formed.
  • the joint portion 51Z is formed by joining the plurality of projecting portions 51AT to each other by using a welding method or the like
  • the joining portion 52Z is formed by joining the plurality of projecting portions 52AT to each other by using a welding method or the like.
  • the positive electrode lead 54 is connected to the protruding portion 51AT by using a welding method or the like
  • the negative electrode lead 55 is connected to the protruding portion 52AT by using a welding method or the like.
  • the electrolytic solution is injected into the bag-shaped film 20 in which the laminate is housed, and then the film 20 is sealed. As a result, the laminated body is impregnated with the electrolytic solution, so that the laminated electrode body 50 is produced.
  • laminated electrode body 50 Even when the laminated electrode body 50 is used, the same effect as when the wound electrode body 10 is used can be obtained.
  • a laminated battery element laminated electrode body 50 may be applied to the cylindrical secondary batteries shown in FIGS. 2 and 4.
  • the number of positive electrode leads 54 and the number of negative electrode leads 55 are not particularly limited. That is, the number of positive electrode leads 54 is not limited to one, and may be two or more, and the number of negative electrode leads 55 is not limited to one, and may be two or more. The same effect can be obtained even when the number of positive electrode leads 54 and the number of negative electrode leads 55 are changed. Although not specifically shown here, the number of positive electrode leads 34 and the number of negative electrode leads 35 may be changed in the cylindrical secondary batteries shown in FIGS. 2 and 4.
  • the laminated type separator includes the above-mentioned porous film base material layer and the polymer compound layer provided on one side or both sides of the base material layer. This is because the adhesion of the separator to each of the positive electrode 11 and the negative electrode 12 is improved, so that the positional deviation of the wound electrode body 10 is less likely to occur. As a result, the secondary battery is less likely to swell even if a decomposition reaction of the electrolytic solution occurs.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
  • the base material layer and the polymer compound layer may contain any one or more of a plurality of inorganic particles and a plurality of resin particles. This is because the heat resistance and safety of the secondary battery are improved because a plurality of inorganic particles and the like dissipate heat when the secondary battery generates heat.
  • the type of the inorganic particles is not particularly limited, and includes aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia), and zirconium oxide (zirconia).
  • a precursor solution containing a polymer compound, an organic solvent, etc. is prepared, and then the precursor solution is applied to one or both sides of the base material layer.
  • a laminated separator may be applied to the cylindrical secondary battery shown in FIGS. 2 and 4.
  • the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13 and the electrolyte layer, and then the positive electrode 11, the negative electrode 12, the separator 13 and the electrolyte layer are wound. ..
  • This electrolyte layer is interposed between the positive electrode 11 and the separator 13 and is interposed between the negative electrode 12 and the separator 13.
  • the electrolyte layer contains a polymer compound together with the electrolytic solution, and the electrolytic solution is held by the polymer compound in the electrolyte layer.
  • the composition of the electrolytic solution is as described above.
  • the polymer compound contains polyvinylidene fluoride and the like.
  • the electrolyte layer may be applied to the cylindrical secondary battery shown in FIGS. 2 and 4.
  • Secondary batteries are mainly used for machines, devices, appliances, devices and systems (aggregates of multiple devices, etc.) in which the secondary battery can be used as a power source for driving or a power storage source for storing power. If so, it is not particularly limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of another power source.
  • the auxiliary power supply may be a power supply used in place of the main power supply, or may be a power supply that can be switched from the main power supply as needed.
  • the type of main power source is not limited to the secondary battery.
  • Secondary batteries Specific examples of applications for secondary batteries are as follows.
  • Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs and portable information terminals.
  • It is a portable living appliance such as an electric shaver.
  • a storage device such as a backup power supply and a memory card.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is installed in notebook computers as a removable power source. Medical electronic devices such as pacemakers and hearing aids.
  • It is an electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is a power storage system such as a household battery system that stores power in case of an emergency.
  • the battery structure of the secondary battery may be the above-mentioned laminated film type or cylindrical type, or may be another battery structure other than these. Further, a plurality of secondary batteries may be used as the battery pack, the battery module, and the like.
  • the battery pack and the battery module are applied to relatively large equipment such as electric vehicles, electric power storage systems and electric tools.
  • a single battery or an assembled battery may be used.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a vehicle (hybrid vehicle or the like) that also has a drive source other than the secondary battery as described above.
  • a power storage system is a system that uses a secondary battery as a power storage source. In a household electric power storage system, since electric power is stored in a secondary battery which is an electric power storage source, it is possible to use the electric power for household electric products and the like.
  • the configuration of the application example described below is just an example, and can be changed as appropriate.
  • the type of the secondary battery used in the following application examples is not particularly limited, and may be a laminated film type or a cylindrical type.
  • FIG. 7 shows a block configuration of a battery pack using a cell.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
  • this battery pack includes a power supply 61 and a circuit board 62.
  • the circuit board 62 is connected to the power supply 61 and includes a positive electrode terminal 63, a negative electrode terminal 64, and a temperature detection terminal (so-called T terminal) 65.
  • the power supply 61 includes one secondary battery.
  • the positive electrode lead is connected to the positive electrode terminal 63
  • the negative electrode lead is connected to the negative electrode terminal 64. Since this power supply 61 can be connected to the outside via the positive electrode terminal 63 and the negative electrode terminal 64, it can be charged and discharged through the positive electrode terminal 63 and the negative electrode terminal 64.
  • the circuit board 62 includes a control unit 66, a switch 67, a PTC element 68, and a temperature detection unit 69. However, the PTC element 68 may be omitted.
  • the control unit 66 includes a central processing unit (CPU: Central Processing Unit), a memory, and the like, and controls the operation of the entire battery pack.
  • the control unit 66 detects and controls the usage state of the power supply 61 as needed.
  • the control unit 66 disconnects the switch 67 so that the charging current does not flow in the current path of the power supply 61. To do so. Further, when a large current flows during charging or discharging, the control unit 66 cuts off the charging current by disconnecting the switch 67.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the switch 67 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 61 is connected to an external device according to an instruction from the control unit 66.
  • This switch 67 includes a field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor) using a metal oxide semiconductor, and the charge / discharge current is detected based on the ON resistance of the switch 67. ..
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the temperature detection unit 69 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 61 using the temperature detection terminal 65, and outputs the measurement result of the temperature to the control unit 66.
  • the temperature measurement result measured by the temperature detection unit 69 is used when the control unit 66 performs charge / discharge control when abnormal heat generation occurs, or when the control unit 66 performs correction processing when calculating the remaining capacity.
  • FIG. 8 shows a block configuration of a battery pack using an assembled battery.
  • the components of the battery pack (FIG. 7) using a cell will be quoted from time to time.
  • this battery pack includes a positive electrode terminal 81 and a negative electrode terminal 82.
  • the battery pack contains a control unit 71, a power supply 72, a switch 73, a current measurement unit 74, a temperature detection unit 75, a voltage detection unit 76, and a switch control unit inside the housing 70. It includes 77, a memory 78, a temperature detection element 79, and a current detection resistor 80.
  • the power supply 72 includes an assembled battery in which two or more secondary batteries are connected to each other, and the connection form of the two or more secondary batteries is not particularly limited. Therefore, the connection method may be in series, in parallel, or a mixed type of both. As an example, the power supply 72 includes six secondary batteries connected to each other so as to be in two parallels and three series.
  • the configuration of the control unit 71, the switch 73, the temperature detection unit 75, and the temperature detection element 79 is the same as the configuration of the control unit 66, the switch 67, and the temperature detection unit 69 (temperature detection element).
  • the current measuring unit 74 measures the current using the current detection resistor 80, and outputs the measurement result of the current to the control unit 71.
  • the voltage detection unit 76 measures the battery voltage of the power source 72 (secondary battery) and supplies the measurement result of the analog-to-digital converted voltage to the control unit 71.
  • the switch control unit 77 controls the operation of the switch 73 according to the signals input from the current measurement unit 74 and the voltage detection unit 76.
  • the switch control unit 77 disconnects the switch 73 (charge control switch) so that the charge current does not flow in the current path of the power supply 72. ..
  • the switch control unit 77 cuts off the charging current or the discharging current when a large current flows during charging or discharging.
  • control unit 71 may also function as the switch control unit 77.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited, but are the same as those described for the battery pack using a cell.
  • the memory 78 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory) which is a non-volatile memory, and the memory 78 includes a numerical value calculated by the control unit 71 and a secondary battery measured in the manufacturing process. Information (initial resistance, full charge capacity, remaining capacity, etc.) is stored.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the positive electrode terminal 81 and the negative electrode terminal 82 are terminals connected to an external device (such as a notebook personal computer) that operates using the battery pack and an external device (such as a charger) that is used to charge the battery pack. is there.
  • the power supply 72 (secondary battery) can be charged and discharged via the positive electrode terminal 81 and the negative electrode terminal 82.
  • FIG. 9 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • this electric vehicle includes a control unit 84, an engine 85, a power supply 86, a motor 87, a differential device 88, a generator 89, and a transmission 90 inside the housing 83. It also includes a clutch 91, inverters 92 and 93, and various sensors 94. Further, the electric vehicle includes a front wheel drive shaft 95 and a pair of front wheels 96 connected to the differential device 88 and the transmission 90, and a rear wheel drive shaft 97 and a pair of rear wheels 98.
  • the engine 85 is a main power source such as a gasoline engine.
  • the driving force (rotational force) of the engine 85 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units. Since the rotational force of the engine 85 is transmitted to the generator 89, the generator 89 uses the rotational force to generate AC power, and the AC power is converted into DC power via the inverter 93. Therefore, the DC power is stored in the power source 86.
  • the motor 87 which is a conversion unit
  • the electric power (DC power) supplied from the power source 86 is converted into AC power via the inverter 92, and the AC power is used to convert the motor. 87 is driven.
  • the driving force (rotational force) converted from the electric power by the motor 87 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units.
  • the motor 87 may generate AC power by using the rotational force. Since this AC power is converted into DC power via the inverter 92, the DC regenerative power is stored in the power supply 86.
  • the control unit 84 includes a CPU and the like, and controls the operation of the entire electric vehicle.
  • the power supply 86 includes one or more secondary batteries and is connected to an external power source. In this case, the power supply 86 may store electric power by being supplied with electric power from an external power source.
  • the various sensors 94 are used to control the rotation speed of the engine 85 and to control the opening degree (throttle opening degree) of the throttle valve.
  • the various sensors 94 include any one type or two or more types of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 86 and the motor 87 without using the engine 85.
  • the secondary battery is applicable to the power storage system.
  • This power storage system includes a control unit, a power source including one or more secondary batteries, a smart meter, and a power hub inside a house such as a general house or a commercial building.
  • the power supply is connected to electrical equipment such as a refrigerator installed inside the house, and can also be connected to an electric vehicle such as a hybrid vehicle parked outside the house.
  • the power supply is connected to a private power generator such as a solar power generator installed in a house via a power hub, and is also connected to a centralized power system such as an external thermal power plant via a smart meter and a power hub. Has been done.
  • the secondary battery can be applied to electric tools such as electric drills and electric saws.
  • This power tool includes a control unit and a power supply including one or more secondary batteries inside a housing to which a movable portion such as a drill portion and a saw blade portion is attached.
  • FIG. 10 shows a cross-sectional configuration of a secondary battery (coin type) for testing.
  • a coin-type secondary battery After producing a coin-type secondary battery, the battery characteristics of the secondary battery were evaluated.
  • the test pole 101 is housed inside the outer cup 104, and the counter electrode 103 is housed inside the outer can 102.
  • the test pole 101 and the counter electrode 103 are laminated to each other via the separator 105, and the outer can 102 and the outer cup 104 are crimped to each other via the gasket 106.
  • the electrolytic solution is impregnated in each of the test electrode 101, the counter electrode 103 and the separator 105.
  • a negative electrode was produced as a test electrode 101.
  • a base binder 1 part by mass of styrene butadiene rubber and 1 part by mass of carboxymethyl cellulose
  • the BET specific surface area (m 2 / g) of this carbon material is as shown in Table 1.
  • a base mixture was added to an aqueous solvent (pure water), and then the aqueous solvent was stirred to prepare a paste-like base mixture slurry.
  • a negative electrode mixture was prepared by mixing 2 parts by mass of carboxymethyl cellulose (1 part by mass) and 8 parts by mass of a negative electrode conductive agent (carbon black).
  • the negative electrode mixture was added to the aqueous solvent (pure water), and then the aqueous solvent was stirred to prepare a paste-like negative electrode mixture slurry.
  • a negative electrode mixture slurry was applied to the surface of the base layer using a coating device, and then the negative electrode mixture slurry was dried to form a negative electrode active material layer.
  • test electrode 101 was prepared by the same procedure except that the base layer was not formed. Further, for comparison, the test electrode 101 was prepared by the same procedure except that only one of the carbon-based active material and the silicon-based active material was used as the negative electrode active material. Further, for comparison, the test electrode 101 was prepared by the same procedure except that the base layer was not formed and only the carbon-based active material was used as the negative electrode active material.
  • a positive electrode was produced as the counter electrode 103.
  • the positive electrode active material lithium cobalt oxide (LiCoO 2 )
  • 3 parts by mass of the positive electrode binder vinylene fluoride
  • 2 parts by mass of the positive electrode conductive agent carbon black
  • Positive electrode mixture was added to an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry.
  • the electrolyte salt lithium hexafluorophosphate
  • the solvent ethylene carbonate and ethylmethyl carbonate
  • the content of the electrolyte salt was 1 mol / kg with respect to the solvent.
  • test pole 101 was housed inside the outer cup 104, and the counter electrode 103 was housed inside the outer can 102.
  • the test pole 101 housed inside the outer cup 104 and the counter electrode 103 housed inside the outer can 102 were laminated with each other via the separator 105 impregnated with the electrolytic solution.
  • a part of the electrolytic solution impregnated in the separator 105 was impregnated in each of the test electrode 101 and the counter electrode 103.
  • the outer can 102 and the outer cup 104 were crimped to each other via the gasket 106 in a state where the test pole 101 and the counter electrode 103 were laminated with each other via the separator 105. Therefore, the test pole 101, the counter electrode 103, the separator 105, and the electrolytic solution were sealed by the outer can 102 and the outer cup 104, so that the coin-type secondary battery was completed.
  • a constant current charge was performed until the voltage reached 4.25 V at a current of 0.5 C, and then a constant voltage charge was performed until the current reached 0.05 C at the voltage of 4.25 V.
  • constant current discharge was performed at a current of 0.5 C until the voltage reached 3.0 V.
  • 0.5C is a current value that can completely discharge the battery capacity (theoretical capacity) in 2 hours
  • 0.05C is a current value that can completely discharge the above-mentioned battery capacity in 20 hours.
  • the negative electrode active material one or both of the carbon-based active material and the silicon-based active material
  • the negative electrode storage / release capacity was set to be smaller than the positive electrode storage / release capacity.
  • the battery characteristics (cycle characteristics) of the secondary battery fluctuated greatly depending on the presence or absence of the base layer.
  • the base layer has a function of increasing the capacity retention rate, in other words, the base layer expands the negative electrode active material and The function of sufficiently suppressing the decrease in the capacity retention rate due to shrinkage cannot be obtained when only the carbon-based active material is used, and is obtained only when both the carbon-based active material and the silicon-based active material are used. Is a special advantage.
  • Example 2-1 to 2-5 As shown in Table 2, a secondary battery was produced and the battery characteristics were evaluated by the same procedure except that the BET specific surface area of the carbon material was changed. In this case, the BET specific surface area was changed by using a plurality of types of carbon materials (carbon black) having different BET specific surface areas.
  • the negative electrode contains a negative electrode current collector, an underlayer (carbon material) and a negative electrode active material layer (carbon-based active material and silicon-based active material), and the negative electrode is stored in the negative electrode.
  • the discharge capacity was smaller than the positive electrode storage and discharge capacity of the positive electrode, the cycle characteristics were improved. Therefore, excellent battery characteristics have been obtained in a secondary battery in which the battery capacity can be obtained by utilizing the lithium storage / release phenomenon and the lithium precipitation / dissolution phenomenon.
  • the battery structure of the secondary battery is a laminated film type, a cylindrical type, or a coin type has been described, but since the battery structure is not particularly limited, other battery structures such as a square type may be used.
  • the element structure of the battery element is a winding type or a laminated type has been described, but since the element structure of the battery element is not particularly limited, the electrodes (positive electrode and negative electrode) are folded in a zigzag pattern. Other element structures such as a folding type may be used.
  • the electrode reactant is not particularly limited.
  • the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium.
  • the electrode reactant may be another light metal such as aluminum.

Abstract

A secondary battery according to the present invention is provided with: a positive electrode which contains a positive electrode active material that absorbs and desorbs lithium, and which achieves a positive electrode adsorption/desorption capacity when lithium is absorbed and desorbed at the positive electrode active material; a negative electrode which comprises a negative electrode collector, a base layer that is provided on the negative electrode collector and contains a carbon material, and a negative electrode active material layer that is provided on the base layer and contains a negative electrode active material which absorbs and desorbs lithium and contains a carbon-based active material and a silicon-based active material, said negative electrode active material achieving a negative electrode adsorption/desorption capacity, which is lower than the positive electrode adsorption/desorption capacity, when lithium is absorbed and desorbed at the negative electrode active material; and an electrolyte solution.

Description

二次電池Rechargeable battery
 本技術は、リチウムを吸蔵および放出する正極および負極と共に電解液を備えた二次電池に関する。 This technology relates to a secondary battery equipped with an electrolytic solution together with a positive electrode and a negative electrode that occlude and release lithium.
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源として、二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液を備えている。二次電池の構成は、電池特性に影響を及ぼすため、その二次電池の構成に関しては、様々な検討がなされている。 Due to the widespread use of various electronic devices such as mobile phones, the development of secondary batteries is underway as a power source that is compact and lightweight and can obtain high energy density. This secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode. Since the configuration of the secondary battery affects the battery characteristics, various studies have been made on the configuration of the secondary battery.
 具体的には、充放電サイクル特性を改善するために、正極および負極のそれぞれがリチウムを吸蔵および放出する二次電池において、そのリチウムを吸蔵および放出する際に得られる負極の容量が正極の容量よりも小さくなるように設定されている(例えば、特許文献1参照。)。 Specifically, in order to improve the charge / discharge cycle characteristics, in a secondary battery in which the positive electrode and the negative electrode each occlude and release lithium, the capacity of the negative electrode obtained when the lithium is occluded and released is the capacity of the positive electrode. Is set to be smaller than (see, for example, Patent Document 1).
 また、内部抵抗を低下させるために、電極において集電体と活材との間にカーボンコート層が挿入されている(例えば、特許文献2参照。)。この場合には、活材と接触する側におけるカーボンコート層の表面に、炭素材料による凹凸が設けられている。 Further, in order to reduce the internal resistance, a carbon coat layer is inserted between the current collector and the active material in the electrode (see, for example, Patent Document 2). In this case, the surface of the carbon coat layer on the side in contact with the active material is provided with irregularities due to the carbon material.
特許第3956384号明細書Japanese Patent No. 3965384 特開2015-088333号公報JP-A-2015-088333
 二次電池の電池特性を改善するために様々な検討がなされているが、その電池特性は未だ十分でないため、改善の余地がある。 Various studies have been made to improve the battery characteristics of secondary batteries, but there is room for improvement because the battery characteristics are still insufficient.
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能な二次電池を提供することにある。 This technology was made in view of such problems, and its purpose is to provide a secondary battery capable of obtaining excellent battery characteristics.
 本技術の一実施形態の二次電池は、リチウムを吸蔵および放出する正極活物質を含み、その正極活物質においてリチウムを吸蔵および放出する際に正極吸蔵放出容量が得られる正極と、負極集電体と、その負極集電体の上に設けられると共に炭素材料を含む下地層と、その下地層の上に設けられると共にリチウムを吸蔵および放出する負極活物質を含み、その負極活物質が炭素系活物質およびケイ素系活物質を含み、その負極活物質においてリチウムを吸蔵および放出する際に得られる負極吸蔵放出容量が正極吸蔵放出容量よりも小さい負極活物質層とを含む負極と、電解液とを備えたものである。 The secondary battery of the embodiment of the present technology contains a positive electrode active material that stores and releases lithium, and a positive electrode that obtains a positive electrode storage and release capacity when lithium is stored and released in the positive electrode active material, and a negative electrode current collection. The body, a base layer provided on the negative electrode current collector and containing a carbon material, and a negative electrode active material provided on the base layer and storing and releasing lithium, and the negative electrode active material is carbon-based. A negative electrode containing an active material and a silicon-based active material, and a negative electrode active material layer in which the negative electrode storage / release capacity obtained when lithium is stored and released in the negative electrode active material is smaller than the positive electrode storage / release capacity, and an electrolytic solution. It is equipped with.
 ここで、「炭素材料」とは、炭素を構成元素として含む材料の総称である。「炭素系活物質」とは、リチウムを吸蔵および放出することが可能であると共に炭素を構成元素として含む材料(活物質)の総称である。「ケイ素系活物質」とは、リチウムを吸蔵および放出することが可能であると共にケイ素を構成元素として含む材料(活物質)の総称である。ただし、「ケイ素系活物質」に該当する材料は、「炭素系活物質」から除かれることとする。 Here, "carbon material" is a general term for materials containing carbon as a constituent element. The "carbon-based active material" is a general term for materials (active materials) capable of occluding and releasing lithium and containing carbon as a constituent element. The "silicon-based active material" is a general term for materials (active materials) capable of occluding and releasing lithium and containing silicon as a constituent element. However, materials corresponding to "silicon-based active materials" shall be excluded from "carbon-based active materials".
 本技術の一実施形態の二次電池によれば、負極が負極集電体と炭素材料を含む下地層と炭素系活物質およびケイ素系活物質を含む負極活物質層とを含んでおり、その負極の負極吸蔵放出容量が正極の正極吸蔵放出容量よりも小さいので、優れた電池特性を得ることができる。 According to the secondary battery of one embodiment of the present technology, the negative electrode includes a negative electrode current collector, a base layer containing a carbon material, and a negative electrode active material layer containing a carbon-based active material and a silicon-based active material. Since the negative electrode storage / discharge capacity of the negative electrode is smaller than the positive electrode storage / discharge capacity of the positive electrode, excellent battery characteristics can be obtained.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 Note that the effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
本技術の一実施形態における二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view which shows the structure of the secondary battery (laminate film type) in one Embodiment of this technique. 図1に示した巻回電極体の構成を表す断面図である。It is sectional drawing which shows the structure of the wound electrode body shown in FIG. 図2に示した正極および負極のそれぞれの構成を表す平面図である。It is a top view which shows each structure of the positive electrode and the negative electrode shown in FIG. 本技術の一実施形態における他の二次電池(円筒型)の構成を表す断面図である。It is sectional drawing which shows the structure of another secondary battery (cylindrical type) in one Embodiment of this technique. 変形例1の二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view which shows the structure of the secondary battery (laminate film type) of the modification 1. FIG. 図5に示した積層電極体の構成を表す断面図である。It is sectional drawing which shows the structure of the laminated electrode body shown in FIG. 二次電池の適用例(電池パック:単電池)の構成を表すブロック図である。It is a block diagram which shows the structure of the application example (battery pack: cell) of a secondary battery. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram which shows the structure of application example (battery pack: assembled battery) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram which shows the structure of the application example (electric vehicle) of a secondary battery. 試験用の二次電池(コイン型)の構成を表す断面図である。It is sectional drawing which shows the structure of the secondary battery (coin type) for a test.
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.ラミネートフィルム型
   1-1-1.構成
   1-1-2.動作(動作原理)
   1-1-3.製造方法
   1-1-4.作用および効果
  1-2.円筒型
   1-2-1.構成
   1-2-2.動作(動作原理)
   1-2-3.製造方法
   1-2-4.作用および効果
 2.変形例
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.その他
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. 1. Secondary battery 1-1. Laminate film type 1-1-1. Configuration 1-1-2. Operation (operation principle)
1-1-3. Manufacturing method 1-1-4. Action and effect 1-2. Cylindrical type 1-2-1. Configuration 1-2-2. Operation (operation principle)
1-2-3. Manufacturing method 1-2-4. Action and effect 2. Modification example 3. Applications of secondary batteries 3-1. Battery pack (cell)
3-2. Battery pack (assembled battery)
3-3. Electric vehicle 3-4. Other
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
<1. Rechargeable battery >
First, a secondary battery according to an embodiment of the present technology will be described.
 ここで説明する二次電池は、リチウムの吸蔵および放出を利用して電池容量が得られると共にリチウムの析出および溶解も利用して電池容量が得られる二次電池であり、正極および負極と共に電解液を備えている。この二次電池では、リチウムがイオン状態で吸蔵されると共にイオン状態で放出される。また、二次電池では、リチウムが金属状態で析出すると共にイオン状態で溶解される。二次電池の詳細な動作原理(充放電原理)に関しては、後述する。 The secondary battery described here is a secondary battery in which the battery capacity can be obtained by utilizing the occlusion and release of lithium and the battery capacity can be obtained by utilizing the precipitation and dissolution of lithium, and the electrolytic solution together with the positive electrode and the negative electrode. It has. In this secondary battery, lithium is occluded in an ionic state and released in an ionic state. Further, in a secondary battery, lithium is precipitated in a metallic state and dissolved in an ionic state. The detailed operating principle (charging / discharging principle) of the secondary battery will be described later.
<1-1.ラミネートフィルム型>
 まず、電池素子を収納するための外装部材として、柔軟性または可撓性を有するフィルム20を用いたラミネートフィルム型の二次電池に関して説明する。
<1-1. Laminate film type>
First, a laminated film type secondary battery using a flexible or flexible film 20 as an exterior member for accommodating a battery element will be described.
<1-1-1.構成>
 図1は、ラミネートフィルム型の二次電池の斜視構成を表している。図2は、図1に示した巻回電極体10の断面構成を表している。図3は、図2に示した正極11および負極12のそれぞれの平面構成を表している。
<1-1-1. Configuration>
FIG. 1 shows a perspective configuration of a laminated film type secondary battery. FIG. 2 shows the cross-sectional configuration of the wound electrode body 10 shown in FIG. FIG. 3 shows the planar configurations of the positive electrode 11 and the negative electrode 12 shown in FIG.
 ただし、図1では、巻回電極体10とフィルム20とが互いに分離された状態を示している。図2では、巻回電極体10の一部だけを示している。図3では、正極11と負極12とが互いに分離された状態を示している。 However, FIG. 1 shows a state in which the wound electrode body 10 and the film 20 are separated from each other. FIG. 2 shows only a part of the wound electrode body 10. FIG. 3 shows a state in which the positive electrode 11 and the negative electrode 12 are separated from each other.
 この二次電池では、図1に示したように、袋状のフィルム20の内部に巻回型の電池素子(巻回電極体10)が収納されており、その巻回電極体10に正極リード14および負極リード15が接続されている。正極リード14および負極リード15のそれぞれは、フィルム20の内部から外部に向かって同様の方向に導出されている。 In this secondary battery, as shown in FIG. 1, a winding type battery element (winding electrode body 10) is housed inside a bag-shaped film 20, and a positive electrode lead is housed in the winding electrode body 10. 14 and the negative electrode lead 15 are connected. Each of the positive electrode lead 14 and the negative electrode lead 15 is led out in the same direction from the inside to the outside of the film 20.
[フィルム]
 フィルム20は、図1に示した矢印R(一点鎖線)の方向に折り畳み可能な1枚のフィルム状部材である。このフィルム20には、巻回電極体10を収容するための窪み部20U(いわゆる深絞り部)が設けられている。
[the film]
The film 20 is a single film-like member that can be folded in the direction of the arrow R (dashed line) shown in FIG. The film 20 is provided with a recessed portion 20U (so-called deep drawing portion) for accommodating the wound electrode body 10.
 具体的には、フィルム20は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、そのフィルム20が折り畳まれた状態では、融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。ただし、ラミネートフィルムであるフィルム20の層数は、3層に限定されないため、1層でもよいし、2層または4層以上でもよい。 Specifically, the film 20 is a three-layer laminated film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside, and when the film 20 is folded, it is among the fusion layers. The outer peripheral edges of the film are fused to each other. The fused layer contains a polymer compound such as polypropylene. The metal layer contains a metallic material such as aluminum. The surface protective layer contains a polymer compound such as nylon. However, since the number of layers of the film 20 which is a laminated film is not limited to three, it may be one layer, two layers, or four or more layers.
 フィルム20と正極リード14との間には、密着フィルム21が挿入されていると共に、フィルム20と負極リード15との間には、密着フィルム22が挿入されている。密着フィルム21,22は、外気の侵入を防止する部材であり、正極リード14および負極リード15のそれぞれに対して密着性を有するポリオレフィン樹脂などのうちのいずれか1種類または2種類以上を含んでいる。このポリオレフィン樹脂は、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。ただし、密着フィルム21,22のうちの一方または双方は、省略されてもよい。 The adhesion film 21 is inserted between the film 20 and the positive electrode lead 14, and the adhesion film 22 is inserted between the film 20 and the negative electrode lead 15. The adhesion films 21 and 22 are members for preventing the intrusion of outside air, and include any one or more of a polyolefin resin having adhesion to each of the positive electrode lead 14 and the negative electrode lead 15. There is. The polyolefin resin is polyethylene, polypropylene, modified polyethylene, modified polypropylene and the like. However, one or both of the adhesion films 21 and 22 may be omitted.
[巻回電極体]
 巻回電極体10は、図1および図2に示したように、正極11と、負極12と、セパレータ13と、液状の電解質である電解液とを備えている。この巻回電極体10は、セパレータ13を介して正極11および負極12が互いに積層されたのち、その正極11、負極12およびセパレータ13が巻回された構造体である。電解液は、正極11、負極12およびセパレータ13のそれぞれに含浸されている。
[Wound electrode body]
As shown in FIGS. 1 and 2, the wound electrode body 10 includes a positive electrode 11, a negative electrode 12, a separator 13, and an electrolytic solution which is a liquid electrolyte. The wound electrode body 10 is a structure in which a positive electrode 11 and a negative electrode 12 are laminated with each other via a separator 13, and then the positive electrode 11, the negative electrode 12 and the separator 13 are wound. The electrolytic solution is impregnated in each of the positive electrode 11, the negative electrode 12, and the separator 13.
[正極]
 正極11は、図2に示したように、正極集電体11Aと、その正極集電体11Aの両面に設けられた2つの正極活物質層11Bとを含んでいる。ただし、正極活物質層11Bは、正極集電体11Aの片面だけに設けられていてもよい。
[Positive electrode]
As shown in FIG. 2, the positive electrode 11 includes a positive electrode current collector 11A and two positive electrode active material layers 11B provided on both sides of the positive electrode current collector 11A. However, the positive electrode active material layer 11B may be provided on only one side of the positive electrode current collector 11A.
(正極集電体)
 正極集電体11Aは、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。
(Positive current collector)
The positive electrode current collector 11A contains any one or more of conductive materials such as aluminum, nickel and stainless steel.
(正極活物質層)
 正極活物質層11Bは、リチウムを吸蔵および放出する正極活物質、すなわちリチウムをイオン状態で吸蔵および放出することが可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層11Bは、さらに、正極結着剤および正極導電剤などを含んでいてもよい。
(Positive electrode active material layer)
The positive electrode active material layer 11B contains any one or more of the positive electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state. However, the positive electrode active material layer 11B may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
(正極活物質)
 正極活物質の種類は、特に限定されないが、リチウム含有遷移金属化合物などのリチウム含有化合物である。このリチウム含有遷移金属化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を含んでおり、さらに、1種類または2種類以上の他元素を含んでいてもよい。他元素の種類は、任意の元素(ただし、遷移金属元素を除く。)であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素であることが好ましい。なお、リチウム含有遷移金属化合物は、酸化物でもよいし、リン酸化合物、ケイ酸化合物およびホウ酸化合物などでもよい。
(Positive electrode active material)
The type of the positive electrode active material is not particularly limited, but is a lithium-containing compound such as a lithium-containing transition metal compound. This lithium-containing transition metal compound contains one or more kinds of transition metal elements together with lithium, and may further contain one kind or two or more kinds of other elements. The type of the other element is not particularly limited as long as it is an arbitrary element (excluding the transition metal element). Among them, the other elements are preferably elements belonging to groups 2 to 15 in the long periodic table. The lithium-containing transition metal compound may be an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound, or the like.
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Specific examples of oxides are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 , Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and Li Mn 2 O 4 . Specific examples of the phosphoric acid compound include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
(正極結着剤)
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
(Positive electrode binder)
The positive electrode binder contains any one or more of synthetic rubber, polymer compounds, and the like. Synthetic rubbers include styrene-butadiene rubbers, fluororubbers and ethylene propylene dienes. Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
(正極導電剤)
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性を有していれば、金属材料および導電性高分子などでもよい。
(Positive electrode conductive agent)
The positive electrode conductive agent contains any one or more of the conductive materials such as carbon material. The carbon materials include graphite, carbon black, acetylene black and ketjen black. However, the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as it has conductivity.
 なお、正極集電体11Aの両面において、正極活物質層11Bは、その正極集電体11Aの一部に設けられている。このため、正極集電体11Aのうちの正極活物質層11Bが設けられていない部分は、その正極活物質層11Bにより被覆されておらずに露出している。 On both sides of the positive electrode current collector 11A, the positive electrode active material layer 11B is provided on a part of the positive electrode current collector 11A. Therefore, the portion of the positive electrode current collector 11A where the positive electrode active material layer 11B is not provided is not covered by the positive electrode active material layer 11B and is exposed.
 具体的には、正極集電体11Aは、図3に示したように、長手方向(X軸方向)に延在しており、被覆部11AXおよび一対の非被覆部11AYを含んでいる。被覆部11AXは、長手方向における正極集電体11Aの中央部に位置しており、正極活物質層11Bが形成される部分である。一対の非被覆部11AYは、長手方向における正極集電体11Aの一端部および他端部に位置しており、正極活物質層11Bが形成されない部分である。これにより、被覆部11AXは、正極活物質層11Bにより被覆されているのに対して、一対の非被覆部11ZYは、正極活物質層11Bにより被覆されておらずに露出している。図3では、正極活物質層11Bに淡い網掛けを施している。 Specifically, as shown in FIG. 3, the positive electrode current collector 11A extends in the longitudinal direction (X-axis direction) and includes a covering portion 11AX and a pair of uncovered portions 11AY. The covering portion 11AX is located at the central portion of the positive electrode current collector 11A in the longitudinal direction, and is a portion where the positive electrode active material layer 11B is formed. The pair of uncoated portions 11AY are located at one end and the other end of the positive electrode current collector 11A in the longitudinal direction, and are portions where the positive electrode active material layer 11B is not formed. As a result, the coated portion 11AX is covered with the positive electrode active material layer 11B, whereas the pair of uncoated portions 11ZY are not covered with the positive electrode active material layer 11B and are exposed. In FIG. 3, the positive electrode active material layer 11B is lightly shaded.
[負極]
 負極12は、図2に示したように、負極集電体12Aと、その負極集電体12Aの上(両面)に設けられた下地層12Bと、その下地層12Bの上(表面)に設けられた負極活物質層12Cとを含んでいる。ただし、下地層12Bおよび負極活物質層12Cのそれぞれは、負極集電体12Aの片面だけに設けられていてもよい。
[Negative electrode]
As shown in FIG. 2, the negative electrode 12 is provided on the negative electrode current collector 12A, the base layer 12B provided on the negative electrode current collector 12A (both sides), and on the base layer 12B (surface). It contains the negative electrode active material layer 12C obtained. However, each of the base layer 12B and the negative electrode active material layer 12C may be provided on only one side of the negative electrode current collector 12A.
(負極集電体)
 負極集電体12Aは、銅、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。
(Negative electrode current collector)
The negative electrode current collector 12A contains any one or more of conductive materials such as copper, aluminum, nickel and stainless steel.
(下地層)
 下地層12Bは、負極集電体12Aと負極活物質層12Cとの間に介在している。この下地層12Bは、負極集電体12Aと負極活物質層12Cとの間の導電性を担保しながら、その負極集電体12Aに対する負極活物質層12Cの密着性を向上させる。これにより、負極集電体12Aと負極活物質層12Cとが互いに電気的に導通しながら、充放電時において負極活物質層12Cが負極集電体12Aから剥離しにくくなる。
(Underground layer)
The base layer 12B is interposed between the negative electrode current collector 12A and the negative electrode active material layer 12C. The base layer 12B improves the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A while ensuring the conductivity between the negative electrode current collector 12A and the negative electrode active material layer 12C. As a result, the negative electrode current collector 12A and the negative electrode active material layer 12C are electrically connected to each other, and the negative electrode active material layer 12C is less likely to be separated from the negative electrode current collector 12A during charging and discharging.
 特に、後述するように、塗布法を用いて負極活物質層12Cを形成し、すなわち負極活物質と共に負極結着剤を含む負極合剤スラリーを用いて下地層12Bの表面に負極活物質層12Cを形成する場合には、負極集電体12Aに対する負極活物質層12Cの密着性よりも、下地層12Bに対する負極活物質層12Cの密着性が飛躍的に向上する。負極集電体12Aに対する負極結着剤の密着性よりも、下地層12Bに対する負極結着剤の密着性が著しく高くなるからである。これにより、充放電時において負極活物質層12Cが負極集電体12Aから著しく剥離しにくくなる。 In particular, as will be described later, the negative electrode active material layer 12C is formed by a coating method, that is, the negative electrode active material layer 12C is formed on the surface of the base layer 12B by using a negative electrode mixture slurry containing a negative electrode binder together with the negative electrode active material. In the case of forming the above, the adhesion of the negative electrode active material layer 12C to the base layer 12B is dramatically improved rather than the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A. This is because the adhesion of the negative electrode binder to the base layer 12B is significantly higher than the adhesion of the negative electrode binder to the negative electrode current collector 12A. As a result, the negative electrode active material layer 12C is significantly less likely to be separated from the negative electrode current collector 12A during charging and discharging.
 この下地層12Bは、炭素材料のうちのいずれか1種類または2種類以上を含んでいる。ここで説明した炭素材料とは、上記したように、炭素を構成元素として含む材料の総称である。ただし、下地層12Bは、さらに、下地結着剤などを含んでいてもよい。下地結着剤に関する詳細は、後述する負極結着剤に関する詳細と同様である。 This base layer 12B contains any one or more of the carbon materials. As described above, the carbon material described here is a general term for materials containing carbon as a constituent element. However, the base layer 12B may further contain a base binder or the like. The details regarding the base binder are the same as the details regarding the negative electrode binder described later.
 炭素材料の具体例は、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。負極集電体12Aに対する負極活物質層12Cの密着性が十分に高くなるからである。 Specific examples of carbon materials are carbon black, acetylene black, ketjen black, and the like. This is because the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A is sufficiently high.
 この炭素材料は、粉末(複数の粒子状)である。この場合において、複数の粒子状の炭素材料のBET比表面積は、特に限定されないが、中でも、30m/g~300m/gであることが好ましい。負極集電体12Aに対する負極活物質層12Cの密着性がより向上するため、その負極活物質層12Cが負極集電体12Aからより剥離しにくくなるからである。 This carbon material is a powder (plural particles). In this case, the BET specific surface area of the plurality of particulate carbon materials is not particularly limited, but is preferably 30 m 2 / g to 300 m 2 / g. This is because the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A is further improved, so that the negative electrode active material layer 12C is more difficult to peel off from the negative electrode current collector 12A.
 詳細には、BET比表面積が30m/gよりも小さいと、下地層12Bの表面に設けられる凹凸が小さすぎるため、負極活物質層12Cに対する下地層12Bの密着性が低下する可能性がある。一方、BET比表面積が300m/gよりも大きいと、下地層の12Bの表面に設けられる凹凸が大きすぎるため、負極集電体12Aに対する下地層12Bの密着性が低下する可能性がある。これに対して、BET比表面積が30m/g~300m/gであると、負極集電体12Aおよび負極活物質層12Cのそれぞれに対する下地層12Bの密着性が担保されるため、その下地層12Bを利用して負極活物質層12Cが負極集電体12Aから著しく剥離しにくくなる。 Specifically, if the BET specific surface area is smaller than 30 m 2 / g, the unevenness provided on the surface of the base layer 12B is too small, so that the adhesion of the base layer 12B to the negative electrode active material layer 12C may decrease. .. On the other hand, if the BET specific surface area is larger than 300 m 2 / g, the unevenness provided on the surface of the base layer 12B is too large, so that the adhesion of the base layer 12B to the negative electrode current collector 12A may decrease. On the other hand, when the BET specific surface area is 30 m 2 / g to 300 m 2 / g, the adhesion of the base layer 12B to each of the negative electrode current collector 12A and the negative electrode active material layer 12C is ensured. The negative electrode active material layer 12C is remarkably difficult to be separated from the negative electrode current collector 12A by using the stratum 12B.
 炭素材料の結晶性は、特に限定されない。中でも、炭素材料は、低結晶性を有していることが好ましい。下地層12Bに対するリチウムのインターカレーション量(反応量)が減少するため、その下地層12Bを用いても負極活物質層12Cにおいてリチウムが十分かつ安定に吸蔵および放出されやすくなるからである。 The crystallinity of the carbon material is not particularly limited. Above all, the carbon material preferably has low crystallinity. This is because the amount of lithium intercalated (reaction amount) with respect to the base layer 12B is reduced, so that even if the base layer 12B is used, lithium can be easily and stably occluded and released in the negative electrode active material layer 12C.
 具体的には、ラマン分光法を用いて炭素材料を分析することにより、ラマンスペクトル(横軸はラマンシフト(cm-1)および縦軸はスペクトル強度)を取得する。この場合において、1580cm-1付近に検出されるGバンドのピーク強度IGと、1360cm-1付近に検出されるDバンドのピーク強度IDとを測定すると、そのピーク強度IGに対するピーク強度IDの比(ピーク強度比)ID/IGは、1.0以上であることが好ましい。 Specifically, a Raman spectrum (Raman shift (cm -1 ) on the horizontal axis and spectral intensity on the vertical axis) is obtained by analyzing the carbon material using Raman spectroscopy. In this case, the peak intensity IG of the G band is detected near 1580 cm -1, as measured with a peak intensity ID of D band is detected near 1360 cm -1, the ratio of the peak intensity ID for the peak intensity IG ( Peak intensity ratio) ID / IG is preferably 1.0 or more.
 なお、上記したBET比表面積およびピーク強度比ID/IGを調べる場合には、炭素材料を用いて測定および分析を行うために、二次電池から炭素材料を回収する必要がある。この場合には、最初に、二次電池を解体することにより、負極12を取り出す。続いて、負極12を解体することにより、下地層12Bを取り出す。この場合には、負極集電体12Aおよび負極活物質層12Cのそれぞれから下地層12Bを剥離させる。最後に、有機溶剤中に下地層12Bを投入したのち、その有機溶剤を撹拌する。これにより、下地層12B中の可溶成分(下地結着剤など)が溶解されるため、その下地層12B中の不溶成分(炭素材料)が回収される。有機溶剤の種類は、下地結着剤などの可溶成分を溶解可能であれば、特に限定されない。 When investigating the above-mentioned BET specific surface area and peak intensity ratio ID / IG, it is necessary to recover the carbon material from the secondary battery in order to perform measurement and analysis using the carbon material. In this case, first, the negative electrode 12 is taken out by disassembling the secondary battery. Subsequently, the base layer 12B is taken out by disassembling the negative electrode 12. In this case, the base layer 12B is peeled off from each of the negative electrode current collector 12A and the negative electrode active material layer 12C. Finally, the base layer 12B is put into the organic solvent, and then the organic solvent is stirred. As a result, the soluble component (base binder and the like) in the base layer 12B is dissolved, so that the insoluble component (carbon material) in the base layer 12B is recovered. The type of the organic solvent is not particularly limited as long as it can dissolve a soluble component such as a base binder.
(負極活物質層)
 負極活物質層12Cは、リチウムを吸蔵および放出する負極活物質、すなわちリチウムをイオン状態で吸蔵および放出することが可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層12Cは、さらに、負極結着剤および負極導電剤などを含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、上記した正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
(Negative electrode active material layer)
The negative electrode active material layer 12C contains any one or more of negative electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state. However, the negative electrode active material layer 12C may further contain a negative electrode binder, a negative electrode conductive agent, and the like. The details regarding each of the negative electrode binder and the negative electrode conductive agent are the same as the details regarding each of the positive electrode binder and the positive electrode conductive agent described above.
(負極活物質)
 負極活物質は、リチウムをイオン状態で吸蔵および放出することが可能である2種類の材料(炭素系活物質およびケイ素系活物質)を含んでいる。炭素系活物質とは、上記したように、リチウムを吸蔵および放出することが可能であると共に炭素を構成元素として含む材料(活物質)の総称である。ケイ素系活物質とは、上記したように、リチウムを吸蔵および放出することが可能であると共にケイ素を構成元素として含む材料(活物質)の総称であり、そのリチウムと合金を形成可能である。ただし、ケイ素系活物質に該当する材料は、炭素系活物質から除かれることとする。
(Negative electrode active material)
The negative electrode active material contains two types of materials (carbon-based active material and silicon-based active material) capable of occluding and releasing lithium in an ionic state. As described above, the carbon-based active material is a general term for materials (active materials) capable of occluding and releasing lithium and containing carbon as a constituent element. As described above, the silicon-based active material is a general term for materials (active materials) that can occlude and release lithium and also contain silicon as a constituent element, and can form an alloy with the lithium. However, materials corresponding to silicon-based active materials shall be excluded from carbon-based active materials.
 負極活物質が炭素系活物質およびケイ素系活物質を含んでいるのは、高い理論容量(電池容量)が担保されながら、充放電時において負極12(負極活物質層12C)の膨張および収縮が抑制されるからである。 The negative electrode active material contains a carbon-based active material and a silicon-based active material because the negative electrode 12 (negative electrode active material layer 12C) expands and contracts during charging and discharging while ensuring a high theoretical capacity (battery capacity). This is because it is suppressed.
 詳細には、炭素系活物質は、充放電時において膨張および収縮しにくいという利点を有している反面、理論容量が低いという懸念点を有している。これに対して、ケイ素系活物質は、理論容量が高いという利点を有している反面、充放電時において膨張および収縮しやすいという懸念点を有している。よって、炭素系活物質とケイ素系活物質とを併用することにより、充放電時において炭素系活物質により負極活物質層12Cの膨張および収縮が抑制されながら、ケイ素系活物質により高い電池容量が得られる。 Specifically, the carbon-based active material has the advantage that it does not easily expand and contract during charging and discharging, but has the concern that the theoretical capacity is low. On the other hand, the silicon-based active material has an advantage of having a high theoretical capacity, but has a concern that it easily expands and contracts during charging and discharging. Therefore, by using the carbon-based active material and the silicon-based active material in combination, the carbon-based active material suppresses the expansion and contraction of the negative electrode active material layer 12C during charging and discharging, while the silicon-based active material has a higher battery capacity. can get.
 具体的には、炭素系活物質は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などのうちのいずれか1種類または2種類以上を含んでいる。この黒鉛は、天然黒鉛でもよいし、人造黒鉛でもよいし、双方でもよい。中でも、炭素系活物質は、黒鉛を含んでいることが好ましい。十分な電池容量が安定して得られるからである。 Specifically, the carbon-based active material contains any one or more of graphitizable carbon, non-graphitizable carbon, and graphite. This graphite may be natural graphite, artificial graphite, or both. Above all, the carbon-based active material preferably contains graphite. This is because a sufficient battery capacity can be stably obtained.
 ケイ素系活物質は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、それらの2種類以上の混合物でもよい。具体的には、ケイ素系活物質は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<x≦2)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどのうちのいずれか1種類または2種類以上を含んでいる。 The silicon-based active material may be a simple substance of silicon, an alloy of silicon, a compound of silicon, or a mixture of two or more of them. Specifically, the silicon-based active materials are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO x (0 <x ≦ 2), LiSiO, SnO w (0 <w ≦) 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like, or any one or more of them are contained.
 中でも、ケイ素系活物質は、SiO(0<x≦2)で表される酸化ケイ素を含んでいることが好ましく、SiOを含んでいることがより好ましい。不可逆容量が減少するため、高い電池容量が安定して得られるからである。 Among them, the silicon-based active material preferably contains silicon oxide represented by SiO x (0 <x ≦ 2), and more preferably contains SiO. This is because the irreversible capacity is reduced, so that a high battery capacity can be stably obtained.
 炭素系活物質とケイ素系活物質との混合比(重量比)は、特に限定されない。中でも、炭素系活物質の混合比は、ケイ素系活物質の混合比よりも大きいことが好ましい。充放電時において膨張および収縮しやすいケイ素系活物質の割合よりも、充放電時において膨張および収縮しにくい炭素系活物質の割合が多くなるため、充放電時において負極活物質の全体が膨張および収縮しにくくなるからである。 The mixing ratio (weight ratio) of the carbon-based active material and the silicon-based active material is not particularly limited. Above all, the mixing ratio of the carbon-based active material is preferably larger than the mixing ratio of the silicon-based active material. Since the proportion of carbon-based active material that does not easily expand and contract during charging and discharging is larger than the proportion of silicon-based active material that easily expands and contracts during charging and discharging, the entire negative electrode active material expands and contracts during charging and discharging. This is because it becomes difficult to shrink.
 なお、負極集電体12Aの両面において、負極活物質層12Cは、その負極集電体12Aの全体に設けられている。このため、負極集電体12Aの全体は、露出しておらずに負極活物質層12Cにより被覆されている。 On both sides of the negative electrode current collector 12A, the negative electrode active material layer 12C is provided on the entire negative electrode current collector 12A. Therefore, the entire negative electrode current collector 12A is not exposed and is covered with the negative electrode active material layer 12C.
 具体的には、負極集電体12Aは、図3に示したように、長手方向(X軸方向)に延在しており、負極活物質層12Cは、一対の未対向部12CZを含んでいる。一対の未対向部12CZは、一対の非被覆部11AYに対向する部分である。すなわち、一対の未対向部12CZは、正極活物質層11Bに対向していない部分であるため、充放電反応に関与しない部分である。図3では、負極活物質層12Cに濃い網掛けを施している。 Specifically, as shown in FIG. 3, the negative electrode current collector 12A extends in the longitudinal direction (X-axis direction), and the negative electrode active material layer 12C includes a pair of non-opposing portions 12CZ. There is. The pair of non-opposing portions 12CZ are portions facing the pair of uncovered portions 11AY. That is, since the pair of non-opposing portions 12CZ are portions that do not face the positive electrode active material layer 11B, they are not involved in the charge / discharge reaction. In FIG. 3, the negative electrode active material layer 12C is darkly shaded.
 なお、上記した炭素材料のBET比表面積を事後的、すなわち二次電池の完成後(使用中)に調べる場合には、その炭素材料を回収するための負極活物質層12Cとして、図3に示した未対向部12CZを用いることが好ましい。未対向部12CZは充放電反応にほとんど関与しないため、炭素材料の状態(BET比表面積)が充放電反応の影響を受けずに負極12の形成時のままで維持されやすいからである。これにより、二次電池が使用済みである場合においても、炭素材料のBET比表面積を安定かつ再現性よく調べることができる。 When the BET specific surface area of the carbon material described above is examined ex post facto, that is, after the secondary battery is completed (in use), it is shown in FIG. 3 as a negative electrode active material layer 12C for recovering the carbon material. It is preferable to use the non-opposing portion 12CZ. This is because the non-opposing portion 12CZ hardly participates in the charge / discharge reaction, so that the state of the carbon material (BET specific surface area) is easily maintained as it was when the negative electrode 12 was formed without being affected by the charge / discharge reaction. As a result, the BET specific surface area of the carbon material can be examined stably and with good reproducibility even when the secondary battery has been used.
 同様の理由により、上記した炭素材料のピーク強度比ID/IGを調べる場合においても、未対向部12CZを用いることが好ましい。 For the same reason, it is preferable to use the non-opposing portion 12CZ even when examining the peak intensity ratio ID / IG of the carbon material described above.
[セパレータ]
 セパレータ13は、図2に示したように、正極11と負極12との間に介在している。このセパレータ13は、正極11と負極12との接触に起因する短絡を防止しながらリチウムを通過させる絶縁性の多孔質膜であり、1種類の多孔質膜からなる単層膜でもよいし、2種類以上の多孔質膜が互いに積層された多層膜でもよい。この多孔質膜は、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。
[Separator]
As shown in FIG. 2, the separator 13 is interposed between the positive electrode 11 and the negative electrode 12. The separator 13 is an insulating porous film that allows lithium to pass through while preventing a short circuit due to contact between the positive electrode 11 and the negative electrode 12, and may be a single-layer film composed of one type of porous film. It may be a multilayer film in which more than one kind of porous film is laminated on each other. This porous membrane contains any one or more of polymer compounds such as polytetrafluoroethylene, polypropylene and polyethylene.
[電解液]
 電解液は、溶媒および電解質塩を含んでいる。溶媒の種類は、1種類だけでもよいし、2種類以上でもよいと共に、電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。
[Electrolytic solution]
The electrolyte contains a solvent and an electrolyte salt. The type of the solvent may be only one type or two or more types, and the type of the electrolyte salt may be only one type or two or more types.
(溶媒)
 溶媒は、非水溶媒(有機溶剤)を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。
(solvent)
The solvent contains a non-aqueous solvent (organic solvent), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
 非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。 Non-aqueous solvents are esters, ethers, and the like, and more specifically, carbonic acid ester compounds, carboxylic acid ester compounds, lactone compounds, and the like.
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルは、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルは、炭酸ジメチル、炭酸ジエチルおよび炭酸メチルエチルなどである。カルボン酸エステル系化合物は、酢酸エチル、プロピオン酸エチルおよびトリメチル酢酸エチルなどである。ラクトン系化合物は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。エーテル類は、上記したラクトン系化合物の他、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどである。 Carbonate ester compounds include cyclic carbonates and chain carbonates. Cyclic carbonates include ethylene carbonate and propylene carbonate, and chain carbonates include dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate. Carboxylate ester compounds include ethyl acetate, ethyl propionate and ethyl trimethyl acetate. Lactone compounds include γ-butyrolactone and γ-valerolactone. Ethers include 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane and the like, in addition to the above-mentioned lactone compounds.
 また、非水溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。電解液の化学的安定性が向上するからである。 The non-aqueous solvent is an unsaturated cyclic carbonate ester, a halogenated carbonate ester, a sulfonic acid ester, a phosphoric acid ester, an acid anhydride, a nitrile compound, an isocyanate compound, or the like. This is because the chemical stability of the electrolytic solution is improved.
 具体的には、不飽和環状炭酸エステルは、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、フルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルは、1,3-プロパンスルトンなどである。リン酸エステルは、リン酸トリメチルなどである。酸無水物は、環状カルボン酸無水物、環状ジスルホン酸無水物および環状カルボン酸スルホン酸無水物などである。環状カルボン酸無水物は、無水コハク酸、無水グルタル酸および無水マレイン酸などである。環状ジスルホン酸無水物は、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。環状カルボン酸スルホン酸無水物は、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ニトリル化合物は、アセトニトリルおよびスクシノニトリルなどである。イソシアネート化合物は、ヘキサメチレンジイソシアネートなどである。 Specifically, the unsaturated cyclic carbonate is vinylene carbonate, vinyl acetate ethylene, methylene carbonate, or the like. Halogenated carbonic acid esters include ethylene fluorocarbonate and ethylene difluorocarbonate. The sulfonic acid ester is 1,3-propane sultone or the like. The phosphoric acid ester is trimethyl phosphate or the like. Acid anhydrides include cyclic carboxylic acid anhydrides, cyclic disulfonic acid anhydrides and cyclic carboxylic acid sulfonic acid anhydrides. Cyclic carboxylic acid anhydrides include succinic anhydride, glutaric anhydride and maleic anhydride. Cyclic disulfonic acid anhydrides include ethanedisulfonic anhydride and propanedisulfonic anhydride. Cyclic carboxylic acid sulfonic acid anhydrides include sulfobenzoic acid anhydride, sulfopropionic anhydride and sulfobutyric anhydride. Nitrile compounds include acetonitrile and succinonitrile. The isocyanate compound is hexamethylene diisocyanate or the like.
(電解質塩)
 電解質塩は、リチウム塩などの軽金属塩のいずれか1種類または2種類以上である。このリチウム塩は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)およびビス(オキサラト)ホウ酸リチウム(LiB(C)などである。電解質塩の含有量は、特に限定されないが、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
(Electrolyte salt)
The electrolyte salt is any one or more of light metal salts such as lithium salt. This lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and bis (fluorosulfonyl) imide lithium (LiN (FSO)). 2 ) 2 ), bis (trifluoromethanesulfonyl) imidelithium (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ) and bis (oxalate) lithium borate (LiB (C 2 O 4 ) 2 ) and the like. The content of the electrolyte salt is not particularly limited, but is 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity can be obtained.
[正極リードおよび負極リード]
 正極リード14は、正極11(正極集電体11A)に接続されていると共に、負極リード15は、負極12(負極集電体12A)に接続されている。この正極リード14は、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいると共に、負極リード15は、銅、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。正極リード14および負極リード15のそれぞれの形状は、薄板状および網目状などである。
[Positive lead and negative electrode lead]
The positive electrode lead 14 is connected to the positive electrode 11 (positive electrode current collector 11A), and the negative electrode lead 15 is connected to the negative electrode 12 (negative electrode current collector 12A). The positive electrode lead 14 contains any one or more of the conductive materials such as aluminum, and the negative electrode lead 15 is any one of the conductive materials such as copper, nickel and stainless steel. Includes type or two or more types. The shapes of the positive electrode lead 14 and the negative electrode lead 15 are thin plate-like and mesh-like, respectively.
<1-1-2.動作(動作原理)>
 この二次電池では、以下で説明する動作原理に基づいて充放電反応が進行することにより、動作する。
<1-1-2. Operation (operation principle)>
This secondary battery operates by proceeding with a charge / discharge reaction based on the operating principle described below.
[動作原理]
 上記したように、正極11は、リチウムを吸蔵および放出する正極活物質を含んでいると共に、負極12は、リチウムを吸蔵および放出する負極活物質を含んでいる。これにより、正極11では、正極活物質においてリチウムを吸蔵および放出する際に容量(正極吸蔵放出容量)が得られると共に、負極12では、負極活物質においてリチウムを吸蔵および放出する際に容量(負極吸蔵放出容量)が得られる。
[Operating principle]
As described above, the positive electrode 11 contains a positive electrode active material that occludes and releases lithium, and the negative electrode 12 contains a negative electrode active material that occludes and releases lithium. As a result, in the positive electrode 11, a capacity (positive electrode occlusion / release capacity) is obtained when lithium is occluded and released in the positive electrode active material, and in the negative electrode 12, a capacity (negative electrode) is obtained when lithium is occluded and released in the negative electrode active material. (Occlusion release capacity) is obtained.
 ただし、正極活物質の量と負極活物質の量との関係を調整することにより、負極吸蔵放出容量は、正極吸蔵放出容量よりも小さくなるように設定されている。これにより、充放電反応を進行させると、開回路電圧(すなわち電池電圧)が過充電電圧よりも低い状態において、負極12の表面にリチウムが析出する。 However, by adjusting the relationship between the amount of the positive electrode active material and the amount of the negative electrode active material, the negative electrode storage / release capacity is set to be smaller than the positive electrode storage / discharge capacity. As a result, when the charge / discharge reaction proceeds, lithium is deposited on the surface of the negative electrode 12 in a state where the open circuit voltage (that is, the battery voltage) is lower than the overcharge voltage.
 ここで説明した過充電電圧とは、二次電池が過充電状態に到達した時点の開回路電圧であり、日本蓄電池工業会(電池工業会)により定められた指針の1つである「リチウム二次電池安全性評価基準ガイドライン」(SBA G1101)の6頁に記載(定義)されている「完全充電」された二次電池の開回路電圧よりも高い電圧を意味している。言い換えれば、各二次電池の公称容量を求める際に用いられる充電方法、標準充電方法または推奨充電方法を用いて充電された後の開回路電圧よりも高い電圧を意味している。 The overcharge voltage described here is the open circuit voltage when the secondary battery reaches the overcharge state, and is one of the guidelines set by the Japan Storage Battery Industry Association (Battery Industry Association), "Lithium Ion". It means a voltage higher than the open circuit voltage of a “fully charged” secondary battery described (defined) on page 6 of the “Guidelines for Secondary Battery Safety Evaluation Criteria” (SBA G1101). In other words, it means a voltage higher than the open circuit voltage after being charged using the charging method, the standard charging method, or the recommended charging method used in determining the nominal capacity of each secondary battery.
 より具体的には、充放電反応を進行させると、開回路電圧が上限電圧に到達した時点において完全充電となり、その開回路電圧が0V~上限電圧である範囲内の一部範囲においてリチウムが析出する。この上限電圧とは、通常の充電反応を進行させることが可能である電圧の上限値であり、正極活物質の種類に応じて決定される。リチウムの析出場所は、特に限定されないが、リチウムを吸蔵および放出する負極活物質の表面などである。 More specifically, when the charge / discharge reaction is advanced, the battery is fully charged when the open circuit voltage reaches the upper limit voltage, and lithium is deposited in a part of the range where the open circuit voltage is 0 V to the upper limit voltage. To do. This upper limit voltage is an upper limit value of a voltage capable of advancing a normal charging reaction, and is determined according to the type of positive electrode active material. The place where lithium is deposited is not particularly limited, but is the surface of a negative electrode active material that occludes and releases lithium.
 よって、電池容量、すなわち負極12の全容量は、上記した負極活物質においてリチウムを吸蔵および放出する際に得られる負極吸蔵放出容量と、負極12においてリチウムが析出および溶解する際に得られる容量(負極析出溶解容量)との和である。 Therefore, the battery capacity, that is, the total capacity of the negative electrode 12, is the capacity obtained when lithium is occluded and released in the above-mentioned negative electrode active material and the capacity obtained when lithium is deposited and dissolved in the negative electrode 12 ( It is the sum of the negative electrode precipitation and dissolution capacity).
 負極12の全容量が負極吸蔵放出容量と負極析出溶解容量との和で表され、すなわちリチウムの吸蔵放出現象とリチウムの析出溶解現象とを利用して電池容量が得られるのは、高いエネルギー密度が得られると共に、サイクル特性および急速充電特性などが向上するからである。 The total capacity of the negative electrode 12 is represented by the sum of the negative electrode occlusion / release capacity and the negative electrode precipitation / dissolution capacity. That is, it is a high energy density that the battery capacity can be obtained by utilizing the lithium occlusion / release phenomenon and the lithium precipitation / dissolution phenomenon. This is because the cycle characteristics and the quick charge characteristics are improved at the same time.
 この場合には、第1に、リチウムを吸蔵および放出することが可能である負極活物質は、一般的に、大きな表面性を有しているため、リチウムの析出時には、負極活物質の表面においてリチウムが均一に析出されやすくなる。第2に、リチウムを吸蔵および放出することが可能である負極活物質を用いると、その負極活物質の表面だけでなく、複数の負極活物質の間(隙間)にまでリチウムが析出するため、負極活物質層12C(負極活物質の全体)の体積変化が低減する。第3に、リチウムを吸蔵および放出することが可能である負極活物質によるリチウムの析出および溶解も充放電容量に寄与するため、高い電池容量が得られるにも関わらず、リチウムの析出量(および溶解量)が少なくなる。第4に、充電初期ではリチウムを吸蔵および放出することが可能である負極活物質にリチウムが吸蔵されるため、急速充電が可能になる。 In this case, firstly, the negative electrode active material capable of occluding and releasing lithium generally has a large surface property, so that when lithium is deposited, it is present on the surface of the negative electrode active material. Lithium is likely to be deposited uniformly. Secondly, when a negative electrode active material capable of storing and releasing lithium is used, lithium is deposited not only on the surface of the negative electrode active material but also between a plurality of negative electrode active materials (gap). The volume change of the negative electrode active material layer 12C (the entire negative electrode active material) is reduced. Thirdly, the precipitation and dissolution of lithium by the negative electrode active material capable of occluding and releasing lithium also contributes to the charge / discharge capacity, so that the amount of lithium precipitation (and the amount of lithium precipitation (and) can be obtained in spite of the high battery capacity. The amount of dissolution) is reduced. Fourth, since lithium is occluded in the negative electrode active material which can occlude and release lithium in the initial stage of charging, rapid charging becomes possible.
[動作]
 充電時には、正極11(正極活物質)からリチウムが放出されると共に、そのリチウムが電解液を介して負極12(負極活物質)に吸蔵される。これにより、負極12において負極吸蔵放出容量が得られる。
[motion]
At the time of charging, lithium is released from the positive electrode 11 (positive electrode active material), and the lithium is occluded in the negative electrode 12 (negative electrode active material) via the electrolytic solution. As a result, the negative electrode storage / release capacity is obtained in the negative electrode 12.
 しかも、さらに充電が進行すると、開回路電圧が過充電電圧よりも低い状態において、充電容量が負極活物質の充電容量能力を上回るため、その負極活物質の表面にリチウムが析出し始める。この場合には、充電が終了するまで、負極活物質の表面にリチウムが析出し続ける。これにより、負極12において負極析出溶解容量が得られる。 Moreover, as charging progresses further, in a state where the open circuit voltage is lower than the overcharge voltage, the charge capacity exceeds the charge capacity capacity of the negative electrode active material, so lithium begins to precipitate on the surface of the negative electrode active material. In this case, lithium continues to precipitate on the surface of the negative electrode active material until charging is completed. As a result, the negative electrode precipitation / dissolution capacity is obtained in the negative electrode 12.
 放電時には、負極活物質の表面に析出したリチウムが溶解されることにより、そのリチウムが電解液中に溶出すると共に、その電解液中に溶出したリチウムが正極11(正極活物質)に吸蔵される。 At the time of discharge, lithium precipitated on the surface of the negative electrode active material is dissolved, so that the lithium is eluted in the electrolytic solution, and the lithium eluted in the electrolytic solution is occluded in the positive electrode 11 (positive electrode active material). ..
 しかも、さらに放電が進行すると、負極活物質に吸蔵されたリチウムが放出されると共に、そのリチウムが電解液を介して正極11(正極活物質)に吸蔵される。 Moreover, when the discharge further progresses, the lithium stored in the negative electrode active material is released, and the lithium is occluded in the positive electrode 11 (positive electrode active material) via the electrolytic solution.
<1-1-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極11および負極12を作製すると共に電解液を調製したのち、二次電池を組み立てる。
<1-1-3. Manufacturing method>
In the case of manufacturing a secondary battery, the positive electrode 11 and the negative electrode 12 are manufactured and an electrolytic solution is prepared according to the procedure described below, and then the secondary battery is assembled.
[正極の作製]
 最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などの分散溶媒に正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体11Aの両面に正極合剤スラリーを塗布することにより、正極活物質層11Bを形成する。こののち、ロールプレス機などを用いて正極活物質層11Bを圧縮成型してもよい。この場合には、正極活物質層11Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体11Aの両面に正極活物質層11Bが形成されるため、正極11が作製される。
[Preparation of positive electrode]
First, the positive electrode active material is mixed with a positive electrode binder, a positive electrode conductive agent, and the like, if necessary, to obtain a positive electrode mixture. Subsequently, a paste-like positive electrode mixture slurry is prepared by adding the positive electrode mixture to a dispersion solvent such as an organic solvent. Finally, the positive electrode active material layer 11B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 11A. After that, the positive electrode active material layer 11B may be compression-molded using a roll press or the like. In this case, the positive electrode active material layer 11B may be heated, or compression molding may be repeated a plurality of times. As a result, the positive electrode active material layers 11B are formed on both sides of the positive electrode current collector 11A, so that the positive electrode 11 is produced.
[負極の作製]
 最初に、炭素材料と、必要に応じて下地結着剤などとを混合することにより、下地合剤とする。続いて、水性溶媒などの分散溶媒に下地合剤を投入することにより、ペースト状の下地合剤スラリーを調製する。続いて、負極集電体12Aの両面に下地合剤スラリーを塗布することにより、下地層12Bを形成する。
[Preparation of negative electrode]
First, the carbon material and, if necessary, a base binder or the like are mixed to obtain a base mixture. Subsequently, a paste-like base mixture slurry is prepared by adding the base mixture to a dispersion solvent such as an aqueous solvent. Subsequently, the base layer 12B is formed by applying the base mixture slurry on both sides of the negative electrode current collector 12A.
 続いて、炭素系活物質およびケイ素系活物質を含む負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤とする。この場合には、負極吸蔵放出容量が正極吸蔵放出容量よりも小さくなるように、正極活物質の量に対して負極活物質(炭素系活物質およびケイ素系活物質)の量を調整する。続いて、有機溶剤などの分散溶媒に負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。最後に、下地層12Bの表面に負極合剤スラリーを塗布することにより、負極活物質層12Cを形成する。こののち、正極活物質層11Bを形成した場合と同様に、ロールプレス機などを用いて負極活物質層12Cを圧縮成型してもよい。これにより、負極集電体12Aの両面に下地層12Bおよび負極活物質層12Cが形成されるため、負極12が作製される。 Subsequently, a negative electrode active material containing a carbon-based active material and a silicon-based active material is mixed with a negative electrode binder, a negative electrode conductive agent, and the like, if necessary, to obtain a negative electrode mixture. In this case, the amount of the negative electrode active material (carbon-based active material and silicon-based active material) is adjusted with respect to the amount of the positive electrode active material so that the negative electrode storage / release capacity is smaller than the positive electrode storage / discharge capacity. Subsequently, a paste-like negative electrode mixture slurry is prepared by adding the negative electrode mixture to a dispersion solvent such as an organic solvent. Finally, the negative electrode active material layer 12C is formed by applying the negative electrode mixture slurry to the surface of the base layer 12B. After that, the negative electrode active material layer 12C may be compression-molded using a roll press or the like as in the case where the positive electrode active material layer 11B is formed. As a result, the base layer 12B and the negative electrode active material layer 12C are formed on both sides of the negative electrode current collector 12A, so that the negative electrode 12 is produced.
[電解液の作製]
 有機溶剤などの溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[Preparation of electrolytic solution]
The electrolyte salt is added to a solvent such as an organic solvent. As a result, the electrolyte salt is dispersed or dissolved in the solvent, so that an electrolytic solution is prepared.
[二次電池の組み立て]
 最初に、溶接法などを用いて正極11(正極集電体11A)に正極リード14を接続させると共に、溶接法などを用いて負極12(負極集電体12A)に負極リード15を接続させる。続いて、セパレータ13を介して正極11および負極12を互いに積層させたのち、その正極11、負極12およびセパレータ13を巻回させることにより、巻回体を作製する。続いて、窪み20Uの内部に巻回体を収容すると共に、フィルム20を折り畳んだのち、熱融着法などを用いてフィルム20(融着層)のうちの2辺の外周縁部同士を互いに接着させることにより、袋状のフィルム20の内部に巻回体を収納する。最後に、袋状のフィルム20の内部に電解液を注入したのち、熱融着法などを用いてフィルム20(融着層)のうちの残りの1辺の外周縁部同士を互いに接着させる。この場合には、フィルム20と正極リード14との間に密着フィルム21を挿入すると共に、フィルム20と負極リード15との間に密着フィルム22を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が作製される。よって、袋状のフィルム20の内部に巻回電極体10が封入されるため、ラミネートフィルム型の二次電池が完成する。
[Assembly of secondary battery]
First, the positive electrode lead 14 is connected to the positive electrode 11 (positive electrode current collector 11A) by a welding method or the like, and the negative electrode lead 15 is connected to the negative electrode 12 (negative electrode current collector 12A) by a welding method or the like. Subsequently, the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13, and then the positive electrode 11, the negative electrode 12, and the separator 13 are wound to produce a wound body. Subsequently, the wound body is housed inside the recess 20U, the film 20 is folded, and then the outer peripheral edges of the two sides of the film 20 (fused layer) are attached to each other by using a heat fusion method or the like. By adhering, the winding body is housed inside the bag-shaped film 20. Finally, after injecting the electrolytic solution into the bag-shaped film 20, the outer peripheral edges of the remaining one side of the film 20 (fused layer) are adhered to each other by a heat fusion method or the like. In this case, the adhesive film 21 is inserted between the film 20 and the positive electrode lead 14, and the adhesive film 22 is inserted between the film 20 and the negative electrode lead 15. As a result, the wound body is impregnated with the electrolytic solution, so that the wound electrode body 10 is manufactured. Therefore, since the wound electrode body 10 is enclosed inside the bag-shaped film 20, the laminated film type secondary battery is completed.
<1-1-4.作用および効果>
 このラミネートフィルム型の二次電池によれば、負極12が負極集電体12A、下地層12B(炭素材料)および負極活物質層12C(炭素系活物質およびケイ素系活物質)を含んでおり、その負極12の負極吸蔵放出容量が正極11の正極吸蔵放出容量よりも小さくなっている。
<1-1-4. Actions and effects>
According to this laminated film type secondary battery, the negative electrode 12 contains a negative electrode current collector 12A, a base layer 12B (carbon material) and a negative electrode active material layer 12C (carbon-based active material and silicon-based active material). The negative electrode storage / release capacity of the negative electrode 12 is smaller than the positive electrode storage / release capacity of the positive electrode 11.
 この場合には、第1に、負極活物質層12Cが炭素系活物質およびケイ素系活物質を含んでいるため、高い電池容量が担保されながら、充放電時において負極活物質層12Cが膨張および収縮しにくくなる。第2に、負極集電体12Aと負極活物質層12Cとの間に下地層12Bが介在しているため、充放電時において負極活物質層12Cが膨張および収縮しても、その負極活物質層12Cが負極集電体12Aから剥離しにくくなる。この場合には、特に、充電の進行に応じてケイ素系活物質が満充電状態以上の状態に到達することに起因して負極活物質層12Cが激しく膨張しても、その負極活物質層12Cが負極集電体12Aから十分に剥離しにくくなる。第3に、負極吸蔵放出容量が正極吸蔵放出容量よりも小さいため、高いエネルギー密度が得られると共にサイクル特性などが向上する。よって、優れた電池特性を得ることができる。 In this case, first, since the negative electrode active material layer 12C contains the carbon-based active material and the silicon-based active material, the negative electrode active material layer 12C expands and expands during charging and discharging while ensuring a high battery capacity. It becomes difficult to shrink. Secondly, since the base layer 12B is interposed between the negative electrode current collector 12A and the negative electrode active material layer 12C, even if the negative electrode active material layer 12C expands and contracts during charging and discharging, the negative electrode active material The layer 12C is less likely to peel off from the negative electrode current collector 12A. In this case, in particular, even if the negative electrode active material layer 12C expands violently due to the silicon-based active material reaching a state of being fully charged or higher as the charging progresses, the negative electrode active material layer 12C Is sufficiently difficult to peel off from the negative electrode current collector 12A. Thirdly, since the negative electrode storage / discharge capacity is smaller than the positive electrode storage / discharge capacity, a high energy density can be obtained and the cycle characteristics and the like can be improved. Therefore, excellent battery characteristics can be obtained.
 特に、複数の粒子状である炭素材料のBET比表面積が30m/g~300m/gであれば、充放電時において下地層12Bを利用して負極活物質層12Cが負極集電体12Aからより剥離しにくくなるため、より高い効果を得ることができる。 In particular, when the BET specific surface area of a plurality of particulate carbon materials is 30 m 2 / g to 300 m 2 / g, the negative electrode active material layer 12C is the negative electrode current collector 12A by utilizing the base layer 12B during charging and discharging. Since it is more difficult to peel off from the surface, a higher effect can be obtained.
 また、ラマン分光法を用いて測定される炭素材料のピーク強度比ID/IGが1.0以上であれば、下地層12Bを用いても負極活物質層12Cにおいてリチウムが十分かつ安定に吸蔵および放出されやすくなるため、より高い効果を得ることができる。 Further, if the peak intensity ratio ID / IG of the carbon material measured by Raman spectroscopy is 1.0 or more, lithium can be sufficiently and stably occluded in the negative electrode active material layer 12C even if the base layer 12B is used. Since it is easily released, a higher effect can be obtained.
 また、炭素材料がカーボンブラックなどを含んでいれば、負極集電体12Aに対する負極活物質層12Cの密着性が十分に高くなるため、より高い効果を得ることができる。 Further, if the carbon material contains carbon black or the like, the adhesion of the negative electrode active material layer 12C to the negative electrode current collector 12A becomes sufficiently high, so that a higher effect can be obtained.
 また、炭素系活物質が黒鉛を含んでいると共に、ケイ素系活物質がSiO(0<x≦2)で表される酸化ケイ素を含んでいれば、不可逆容量が減少すると共に高い電池容量が安定して得られるため、より高い効果を得ることができる。この場合には、ケイ素系活物質がSiOを含んでいれば、不可逆容量が十分に減少するため、さらに高い効果を得ることができる。 Further, if the carbon-based active material contains graphite and the silicon-based active material contains silicon oxide represented by SiO x (0 <x ≦ 2), the irreversible capacity is reduced and the battery capacity is high. Since it can be obtained stably, a higher effect can be obtained. In this case, if the silicon-based active material contains SiO, the irreversible capacity is sufficiently reduced, so that a higher effect can be obtained.
 また、開回路電圧が過充電電圧よりも低い状態において負極12の表面にリチウムが析出していれば、リチウムを吸蔵および放出する正極11および負極12を用いることにより、リチウムの吸蔵および放出を利用して電池容量が得られるだけでなく、そのリチウムの析出および溶解も利用して電池容量が得られる。よって、高い電池容量が安定して得られるため、より高い効果を得ることができる。 If lithium is deposited on the surface of the negative electrode 12 when the open circuit voltage is lower than the overcharge voltage, the lithium storage and release can be utilized by using the positive electrode 11 and the negative electrode 12 that occlude and release lithium. Not only the battery capacity can be obtained, but also the precipitation and dissolution of lithium can be used to obtain the battery capacity. Therefore, a high battery capacity can be stably obtained, and a higher effect can be obtained.
 また、負極12の全容量(電池容量)が負極吸蔵放出容量と負極析出溶解容量との和であれば、上記したように、高い電池容量が安定して得られるため、より高い効果を得ることができる。 Further, if the total capacity (battery capacity) of the negative electrode 12 is the sum of the negative electrode occlusion / discharge capacity and the negative electrode precipitation / dissolution capacity, a high battery capacity can be stably obtained as described above, and a higher effect can be obtained. Can be done.
<1-2.円筒型>
 次に、電池素子を収納するための外装部材として、剛性を有する電池缶41を用いた円筒型の二次電池に関して説明する。
<1-2. Cylindrical type>
Next, a cylindrical secondary battery using a rigid battery can 41 as an exterior member for accommodating the battery element will be described.
<1-2-1.構成>
 図4は、円筒型の二次電池の断面構成を表している。以下の説明では、随時、既に説明したラミネートフィルム型の二次電池の構成要素(図2)を引用する。
<1-2-1. Configuration>
FIG. 4 shows a cross-sectional configuration of a cylindrical secondary battery. In the following description, the components of the laminated film type secondary battery (FIG. 2) already described will be cited from time to time.
 この二次電池では、図4に示したように、円筒状の電池缶41の内部に、一対の絶縁板42,43と、巻回型の電池素子(巻回電極体30)とを備えており、その巻回電極体30には、正極リード34および負極リード35が接続されている。 In this secondary battery, as shown in FIG. 4, a pair of insulating plates 42, 43 and a winding type battery element (winding electrode body 30) are provided inside the cylindrical battery can 41. A positive electrode lead 34 and a negative electrode lead 35 are connected to the wound electrode body 30.
[電池缶]
 電池缶41は、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、鉄、アルミニウムおよびそれらの合金などの金属材料のうちのいずれか1種類または2種類以上を含んでいる。電池缶41の表面には、ニッケルなどが鍍金されていてもよい。絶縁板42,43は、互いに巻回電極体30を挟むように配置されていると共に、その巻回電極体30の巻回周面に対して交差する方向に延在している。
[Battery can]
The battery can 41 has a hollow structure in which one end is closed and the other end is open, and any one or more of metal materials such as iron, aluminum and alloys thereof can be used. Includes. The surface of the battery can 41 may be plated with nickel or the like. The insulating plates 42 and 43 are arranged so as to sandwich the wound electrode body 30 with each other, and extend in a direction intersecting the winding peripheral surface of the wound electrode body 30.
 電池缶41の開放端部には、電池蓋44、安全弁機構45および熱感抵抗素子(PTC素子)46が絶縁性のガスケット47を介してかしめられている。このため、電池缶41の開放端部は密閉されている。電池蓋44は、電池缶41の形成材料と同様の材料を含んでいる。安全弁機構45およびPTC素子46は、電池蓋44の内側に設けられており、その安全弁機構45は、PTC素子46を介して電池蓋44と電気的に接続されている。この安全弁機構45では、内部短絡および外部加熱などに起因して電池缶41の内圧が一定以上になると、ディスク板45Aが反転するため、電池蓋44と巻回電極体30との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、PTC素子46の抵抗は温度の上昇に応じて増加する。ガスケット47の表面には、アスファルトなどが塗布されていてもよい。 A battery lid 44, a safety valve mechanism 45, and a heat-sensitive resistance element (PTC element) 46 are crimped to the open end of the battery can 41 via an insulating gasket 47. Therefore, the open end of the battery can 41 is sealed. The battery lid 44 contains the same material as the material for forming the battery can 41. The safety valve mechanism 45 and the PTC element 46 are provided inside the battery lid 44, and the safety valve mechanism 45 is electrically connected to the battery lid 44 via the PTC element 46. In this safety valve mechanism 45, when the internal pressure of the battery can 41 exceeds a certain level due to an internal short circuit, external heating, or the like, the disk plate 45A is inverted, so that the battery lid 44 and the wound electrode body 30 are electrically connected. Be disconnected. In order to prevent abnormal heat generation due to a large current, the resistance of the PTC element 46 increases as the temperature rises. Asphalt or the like may be applied to the surface of the gasket 47.
[巻回電極体]
 巻回電極体30は、正極31と、負極32と、セパレータ33と、電解液とを備えている。この巻回電極体30は、セパレータ33を介して正極31および負極32が互いに積層されたのち、その正極31、負極32およびセパレータ33が巻回された構造体である。電解液は、正極31、負極32およびセパレータ33のそれぞれに含浸されている。正極リード34は、正極31(正極集電体31A)に接続されていると共に、負極リード35は、負極32(負極集電体32A)に接続されている。
[Wound electrode body]
The wound electrode body 30 includes a positive electrode 31, a negative electrode 32, a separator 33, and an electrolytic solution. The wound electrode body 30 is a structure in which the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, and then the positive electrode 31, the negative electrode 32 and the separator 33 are wound. The electrolytic solution is impregnated in each of the positive electrode 31, the negative electrode 32 and the separator 33. The positive electrode lead 34 is connected to the positive electrode 31 (positive electrode current collector 31A), and the negative electrode lead 35 is connected to the negative electrode 32 (negative electrode current collector 32A).
 巻回電極体30の巻回中心に設けられた空間には、センターピン36が挿入されている。ただし、センターピン36は、省略されてもよい。正極リード34は、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、安全弁機構45を介して電池蓋44と電気的に接続されている。負極リード35は、銅、ニッケルおよびステンレス(SUS)などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、電池缶41と電気的に接続されている。正極リード34および負極リード35の形状は、薄板状および網目状などである。 A center pin 36 is inserted in the space provided at the winding center of the winding electrode body 30. However, the center pin 36 may be omitted. The positive electrode lead 34 contains any one or more of the conductive materials such as aluminum, and is electrically connected to the battery lid 44 via the safety valve mechanism 45. The negative electrode lead 35 contains any one or more of conductive materials such as copper, nickel and stainless steel (SUS), and is electrically connected to the battery can 41. The shapes of the positive electrode lead 34 and the negative electrode lead 35 are thin plate-like and mesh-like.
[正極、負極、セパレータおよび電解質層]
 図2に示したように、正極31は、正極集電体31Aおよび正極活物質層31Bを含んでいると共に、負極32は、負極集電体32A、下地層32Bおよび負極活物質層32Cを含んでいる。正極集電体31A、正極活物質層31B、負極集電体32A、下地層32Bおよび負極活物質層32Cのそれぞれの構成は、正極集電体11A、正極活物質層11B、負極集電体12A、下地層12Bおよび負極活物質層12Cのそれぞれの構成と同様である。すなわち、負極活物質層32Cは、負極活物質(炭素系活物質およびケイ素系活物質)を含んでいる。セパレータ33の構成は、セパレータ13の構成と同様である。
[Positive electrode, negative electrode, separator and electrolyte layer]
As shown in FIG. 2, the positive electrode 31 includes a positive electrode current collector 31A and a positive electrode active material layer 31B, and the negative electrode 32 includes a negative electrode current collector 32A, a base layer 32B, and a negative electrode active material layer 32C. I'm out. The configurations of the positive electrode current collector 31A, the positive electrode active material layer 31B, the negative electrode current collector 32A, the base layer 32B, and the negative electrode active material layer 32C are the positive electrode current collector 11A, the positive electrode active material layer 11B, and the negative electrode current collector 12A. , The configurations of the base layer 12B and the negative electrode active material layer 12C are the same. That is, the negative electrode active material layer 32C contains a negative electrode active material (carbon-based active material and silicon-based active material). The configuration of the separator 33 is the same as that of the separator 13.
<1-2-2.動作(動作原理)>
 正極31および負極32を備えた円筒型の二次電池の動作原理および動作は、正極11および負極12を備えたラミネートフィルム型の二次電池の動作原理および動作と同様である。
<1-2-2. Operation (operation principle)>
The operating principle and operation of the cylindrical secondary battery including the positive electrode 31 and the negative electrode 32 are the same as the operating principle and operation of the laminated film type secondary battery including the positive electrode 11 and the negative electrode 12.
 すなわち、負極32の負極吸蔵放出容量は、正極31の正極吸蔵放出容量よりも小さくなるように設定されている。これにより、充放電反応を進行させると、開回路電圧が過充電電圧よりも低い状態、より具体的には、開回路電圧が0V~上限電圧である範囲内の一部範囲において、負極活物質の表面にリチウムが析出する。よって、負極12の全容量(電池容量)は、負極吸蔵放出容量と負極析出溶解容量との和である。 That is, the negative electrode storage / release capacity of the negative electrode 32 is set to be smaller than the positive electrode storage / discharge capacity of the positive electrode 31. As a result, when the charge / discharge reaction proceeds, the negative electrode active material is in a state where the open circuit voltage is lower than the overcharge voltage, more specifically, in a part of the range where the open circuit voltage is 0 V to the upper limit voltage. Lithium is deposited on the surface of the. Therefore, the total capacity (battery capacity) of the negative electrode 12 is the sum of the negative electrode occlusion / discharge capacity and the negative electrode precipitation / dissolution capacity.
 充電時には、正極31からリチウムが放出されると共に、そのリチウムが電解液を介して負極32に吸蔵されるため、その負極32において負極吸蔵放出容量が得られる。また、さらに充電が進行すると、負極活物質の表面にリチウムが析出するため、その負極32において負極析出溶解容量が得られる。 At the time of charging, lithium is released from the positive electrode 31 and the lithium is occluded in the negative electrode 32 via the electrolytic solution, so that the negative electrode storage / release capacity can be obtained in the negative electrode 32. Further, as charging progresses further, lithium is deposited on the surface of the negative electrode active material, so that the negative electrode precipitation dissolution capacity can be obtained at the negative electrode 32.
 放電時には、負極活物質の表面に析出したリチウムが電解液中に溶出すると共に、そのリチウムが正極31に吸蔵される。また、さらに放電が進行すると、負極活物質に吸蔵されたリチウムが放出されると共に、そのリチウムが電解液を介して正極31に吸蔵される。 At the time of discharge, lithium precipitated on the surface of the negative electrode active material is eluted in the electrolytic solution, and the lithium is occluded in the positive electrode 31. Further, as the discharge progresses, the lithium stored in the negative electrode active material is released, and the lithium is occluded in the positive electrode 31 via the electrolytic solution.
<1-2-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極31および負極32を作製したのち、二次電池を組み立てる。なお、電解液の調製手順に関しては既に説明したので、その説明をここでは省略する。
<1-2-3. Manufacturing method>
In the case of manufacturing a secondary battery, the positive electrode 31 and the negative electrode 32 are manufactured by the procedure described below, and then the secondary battery is assembled. Since the procedure for preparing the electrolytic solution has already been described, the description thereof will be omitted here.
[正極の作製および負極の作製]
 正極11の作製手順と同様の手順により、正極31を作製すると共に、負極12の作製手順と同様の手順により、負極32を作製する。すなわち、正極31を作製する場合には、正極集電体31Aの両面に正極活物質層31Bを形成すると共に、負極32を作製する場合には、負極集電体32Aの両面に下地層32Bおよび負極活物質層32Cを形成する。
[Preparation of positive electrode and fabrication of negative electrode]
The positive electrode 31 is manufactured by the same procedure as the procedure for manufacturing the positive electrode 11, and the negative electrode 32 is manufactured by the same procedure as the procedure for manufacturing the negative electrode 12. That is, when the positive electrode 31 is manufactured, the positive electrode active material layers 31B are formed on both sides of the positive electrode current collector 31A, and when the negative electrode 32 is manufactured, the base layers 32B and the base layers 32B and The negative electrode active material layer 32C is formed.
[二次電池の組み立て]
 最初に、溶接法などを用いて正極31(正極集電体31A)に正極リード34を接続させると共に、溶接法などを用いて負極32(負極集電体32A)に負極リード35を接続させる。続いて、セパレータ33を介して正極31および負極32を互いに積層させたのち、その正極31、負極32およびセパレータ33を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間にセンターピン36を挿入する。
[Assembly of secondary battery]
First, the positive electrode lead 34 is connected to the positive electrode 31 (positive electrode current collector 31A) by a welding method or the like, and the negative electrode lead 35 is connected to the negative electrode 32 (negative electrode current collector 32A) by a welding method or the like. Subsequently, the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, and then the positive electrode 31, the negative electrode 32, and the separator 33 are wound to form a wound body. Subsequently, the center pin 36 is inserted into the space provided at the winding center of the winding body.
 続いて、一対の絶縁板42,43により巻回体が挟まれた状態において、その巻回体を絶縁板42,43と一緒に電池缶41の内部に収納する。この場合には、溶接法などを用いて正極リード34を安全弁機構45に接続させると共に、溶接法などを用いて負極リード35を電池缶41に接続させる。続いて、電池缶41の内部に電解液を注入する。これにより、正極31、負極32およびセパレータ33に電解液が含浸されるため、巻回電極体30が形成される。 Subsequently, in a state where the winding body is sandwiched between the pair of insulating plates 42 and 43, the winding body is stored together with the insulating plates 42 and 43 inside the battery can 41. In this case, the positive electrode lead 34 is connected to the safety valve mechanism 45 by a welding method or the like, and the negative electrode lead 35 is connected to the battery can 41 by a welding method or the like. Subsequently, the electrolytic solution is injected into the inside of the battery can 41. As a result, the positive electrode 31, the negative electrode 32, and the separator 33 are impregnated with the electrolytic solution, so that the wound electrode body 30 is formed.
 最後に、ガスケット47を介して電池缶41の開放端部をかしめることにより、その電池缶41の開放端部に電池蓋44、安全弁機構45およびPTC素子46を取り付ける。よって、電池缶41の内部に巻回電極体30が封入されるため、円筒型の二次電池が完成する。 Finally, by crimping the open end of the battery can 41 via the gasket 47, the battery lid 44, the safety valve mechanism 45, and the PTC element 46 are attached to the open end of the battery can 41. Therefore, since the wound electrode body 30 is enclosed inside the battery can 41, a cylindrical secondary battery is completed.
<1-2-4.作用および効果>
 この円筒型の二次電池によれば、負極32が負極12の構成と同様の構成を有しており、その負極32の負極吸蔵放出容量が正極31の正極吸蔵放出容量よりも小さくなっているので、ラミネートフィルム型の二次電池に関して説明した場合と同様の理由により、優れた電池特性を得ることができる。
<1-2-4. Actions and effects>
According to this cylindrical secondary battery, the negative electrode 32 has the same configuration as that of the negative electrode 12, and the negative electrode storage / discharge capacity of the negative electrode 32 is smaller than the positive electrode storage / discharge capacity of the positive electrode 31. Therefore, excellent battery characteristics can be obtained for the same reason as described with respect to the laminated film type secondary battery.
 円筒型の二次電池に関する他の作用および効果は、ラミネートフィルム型の二次電池に関する他の作用および効果と同様である。 Other actions and effects related to the cylindrical secondary battery are the same as those related to the laminated film type secondary battery.
<2.変形例>
 次に、上記した二次電池の変形例に関して説明する。二次電池の構成は、以下で説明するように、適宜変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上の変形例が互いに組み合わされてもよい。
<2. Modification example>
Next, a modification of the above-mentioned secondary battery will be described. The configuration of the secondary battery can be changed as appropriate as described below. However, any two or more types of modifications in the series of modifications described below may be combined with each other.
[変形例1]
 図1および図2では、巻回型の電池素子(巻回電極体10)を用いた。しかしながら、図1に対応する図5および図2に対応する図6に示したように、巻回電極体10の代わりに積層型の電池素子(積層電極体50)を用いてもよい。
[Modification 1]
In FIGS. 1 and 2, a winding type battery element (winding electrode body 10) was used. However, as shown in FIG. 5 corresponding to FIG. 1 and FIG. 6 corresponding to FIG. 2, a laminated battery element (laminated electrode body 50) may be used instead of the wound electrode body 10.
 図5および図6に示したラミネートフィルム型の二次電池は、巻回電極体10(正極11、負極12およびセパレータ13)、正極リード14および負極リード15の代わりに、積層電極体50(正極51、負極52およびセパレータ53)、正極リード54および負極リード55を備えていることを除いて、図1および図2に示したラミネートフィルム型の二次電池の構成と同様の構成を有している。 In the laminated film type secondary battery shown in FIGS. 5 and 6, the laminated electrode body 50 (positive electrode body 50 (positive electrode body)) is used instead of the wound electrode body 10 (positive electrode body 11, negative electrode 12 and separator 13), positive electrode lead 14 and negative electrode lead 15. It has the same configuration as the laminated film type secondary battery shown in FIGS. 1 and 2 except that the 51, the negative electrode 52 and the separator 53), the positive electrode lead 54 and the negative electrode lead 55 are provided. There is.
 正極51、負極52、セパレータ53、正極リード54および負極リード55のそれぞれの構成は、以下で説明することを除いて、正極11、負極12、セパレータ13、正極リード14および負極リード15のそれぞれの構成と同様である。 The configurations of the positive electrode 51, the negative electrode 52, the separator 53, the positive electrode lead 54, and the negative electrode lead 55 are each of the positive electrode 11, the negative electrode 12, the separator 13, the positive electrode lead 14, and the negative electrode lead 15, except as described below. Similar to the configuration.
 積層電極体50では、正極51および負極52がセパレータ53を介して交互に積層されている。正極51、負極52およびセパレータ53の積層数は、特に限定されないが、ここでは、複数の正極51および複数の負極52が複数のセパレータ53を介して互いに積層されている。電解液は、正極51、負極52およびセパレータ53のそれぞれに含浸されており、その電解液の構成は、上記した通りである。正極51は、正極集電体51Aおよび正極活物質層51Bを含んでいると共に、負極52は、負極集電体52A、下地層52Bおよび負極活物質層52Cを含んでいる。 In the laminated electrode body 50, the positive electrode 51 and the negative electrode 52 are alternately laminated via the separator 53. The number of layers of the positive electrode 51, the negative electrode 52, and the separator 53 is not particularly limited, but here, the plurality of positive electrodes 51 and the plurality of negative electrodes 52 are laminated to each other via the plurality of separators 53. The electrolytic solution is impregnated in each of the positive electrode 51, the negative electrode 52, and the separator 53, and the structure of the electrolytic solution is as described above. The positive electrode 51 includes a positive electrode current collector 51A and a positive electrode active material layer 51B, and the negative electrode 52 includes a negative electrode current collector 52A, a base layer 52B, and a negative electrode active material layer 52C.
 ただし、図5および図6に示したように、正極集電体51Aは、正極活物質層51Bが形成されていない突出部51ATを含んでいると共に、負極集電体52Aは、負極活物質層52Cが形成されていない突出部52ATを含んでいる。この突出部52ATは、突出部51ATと重ならない位置に配置されている。複数の突出部51ATは、互いに接合されることにより、1本のリード状の接合部51Zを形成していると共に、複数の突出部52ATは、互いに接合されることにより、1本のリード状の接合部52Zを形成している。正極リード54は、接合部51Zに接続されていると共に、負極リード55は、接合部52Zに接続されている。 However, as shown in FIGS. 5 and 6, the positive electrode current collector 51A includes the protruding portion 51AT in which the positive electrode active material layer 51B is not formed, and the negative electrode current collector 52A includes the negative electrode active material layer. It includes a protrusion 52AT in which the 52C is not formed. The protruding portion 52AT is arranged at a position that does not overlap with the protruding portion 51AT. The plurality of protrusions 51AT are joined to each other to form one lead-shaped joint 51Z, and the plurality of protrusions 52AT are joined to each other to form one lead-like joint 51Z. The joint portion 52Z is formed. The positive electrode lead 54 is connected to the joint portion 51Z, and the negative electrode lead 55 is connected to the joint portion 52Z.
 図5および図6に示したラミネートフィルム型の二次電池の製造方法は、巻回電極体10(正極リード14および負極リード15)の代わりに積層電極体50(正極リード54および負極リード55)を作製することを除いて、図1および図2に示したラミネートフィルム型の二次電池の製造方法と同様である。 In the method for manufacturing the laminated film type secondary battery shown in FIGS. 5 and 6, the laminated electrode body 50 (positive electrode lead 54 and negative electrode lead 55) is used instead of the wound electrode body 10 (positive electrode lead 14 and negative electrode lead 15). The method is the same as the method for manufacturing the laminated film type secondary battery shown in FIGS. 1 and 2, except that the above is produced.
 積層電極体50を作製する場合には、最初に、正極集電体51A(突出部51ATを除く。)の両面に正極活物質層51Bが形成された正極51と、負極集電体52A(突出部52ATを除く。)の両面に下地層52Bおよび負極活物質層52Cが形成された負極52とを作製したのち、複数のセパレータ53を介して複数の正極51および複数の負極52を互いに積層させることにより、積層体を形成する。続いて、溶接法などを用いて複数の突出部51ATを互いに接合させることにより、接合部51Zを形成すると共に、溶接法などを用いて複数の突出部52ATを互いに接合させることにより、接合部52Zを形成する。続いて、溶接法などを用いて突出部51ATに正極リード54を接続させると共に、溶接法などを用いて突出部52ATに負極リード55を接続させる。最後に、積層体が収納された袋状のフィルム20の内部に電解液を注入したのち、そのフィルム20を封止する。これにより、積層体に電解液が含浸されるため、積層電極体50が作製される。 When producing the laminated electrode body 50, first, the positive electrode 51 in which the positive electrode active material layers 51B are formed on both sides of the positive electrode current collector 51A (excluding the protruding portion 51AT) and the negative electrode current collector 52A (protruding) After producing the negative electrode 52 in which the base layer 52B and the negative electrode active material layer 52C are formed on both sides of the portion 52AT), the plurality of positive electrodes 51 and the plurality of negative electrodes 52 are laminated with each other via the plurality of separators 53. As a result, a laminated body is formed. Subsequently, the joint portion 51Z is formed by joining the plurality of projecting portions 51AT to each other by using a welding method or the like, and the joining portion 52Z is formed by joining the plurality of projecting portions 52AT to each other by using a welding method or the like. To form. Subsequently, the positive electrode lead 54 is connected to the protruding portion 51AT by using a welding method or the like, and the negative electrode lead 55 is connected to the protruding portion 52AT by using a welding method or the like. Finally, the electrolytic solution is injected into the bag-shaped film 20 in which the laminate is housed, and then the film 20 is sealed. As a result, the laminated body is impregnated with the electrolytic solution, so that the laminated electrode body 50 is produced.
 この積層電極体50を用いた場合においても、巻回電極体10を用いた場合と同様の効果を得ることができる。なお、ここでは具体的に図示しないが、図2および図4に示した円筒型の二次電池に積層型の電池素子(積層電極体50)を適用してもよい。 Even when the laminated electrode body 50 is used, the same effect as when the wound electrode body 10 is used can be obtained. Although not specifically shown here, a laminated battery element (laminated electrode body 50) may be applied to the cylindrical secondary batteries shown in FIGS. 2 and 4.
[変形例2]
 図5および図6に示したラミネートフィルム型の二次電池において、正極リード54の数および負極リード55の数は、特に限定されない。すなわち、正極リード54の数は、1つだけに限られず、2つ以上でもよいと共に、負極リード55の数は、1つだけに限られず、2つ以上でもよい。正極リード54の数および負極リード55の数を変更した場合においても、同様の効果を得ることができる。なお、ここでは具体的に図示しないが、図2および図4に示した円筒型の二次電池において正極リード34の数および負極リード35の数を変更してもよい。
[Modification 2]
In the laminated film type secondary battery shown in FIGS. 5 and 6, the number of positive electrode leads 54 and the number of negative electrode leads 55 are not particularly limited. That is, the number of positive electrode leads 54 is not limited to one, and may be two or more, and the number of negative electrode leads 55 is not limited to one, and may be two or more. The same effect can be obtained even when the number of positive electrode leads 54 and the number of negative electrode leads 55 are changed. Although not specifically shown here, the number of positive electrode leads 34 and the number of negative electrode leads 35 may be changed in the cylindrical secondary batteries shown in FIGS. 2 and 4.
[変形例3]
 図1および図2に示したラミネートフィルム型の二次電池では、多孔質膜であるセパレータ13を用いた。しかしながら、ここでは具体的に図示しないが、多孔質膜であるセパレータ13の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
[Modification 3]
In the laminated film type secondary battery shown in FIGS. 1 and 2, a separator 13 which is a porous film was used. However, although not specifically shown here, a laminated separator containing a polymer compound layer may be used instead of the separator 13 which is a porous film.
 具体的には、積層型のセパレータは、上記した多孔質膜である基材層と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいる。正極11および負極12のそれぞれに対するセパレータの密着性が向上するため、巻回電極体10の位置ずれが発生しにくくなるからである。これにより、電解液の分解反応などが発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。 Specifically, the laminated type separator includes the above-mentioned porous film base material layer and the polymer compound layer provided on one side or both sides of the base material layer. This is because the adhesion of the separator to each of the positive electrode 11 and the negative electrode 12 is improved, so that the positional deviation of the wound electrode body 10 is less likely to occur. As a result, the secondary battery is less likely to swell even if a decomposition reaction of the electrolytic solution occurs. The polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
 なお、基材層および高分子化合物層のうちの一方または双方は、複数の無機粒子および複数の樹脂粒子などのうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の無機粒子などが放熱するため、二次電池の耐熱性および安全性が向上するからである。無機粒子の種類は、特に限定されないが、酸化アルミニウム(アルミナ)、窒化アルミニウム、ベーマイト、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化マグネシウム(マグネシア)および酸化ジルコニウム(ジルコニア)などである。 Note that one or both of the base material layer and the polymer compound layer may contain any one or more of a plurality of inorganic particles and a plurality of resin particles. This is because the heat resistance and safety of the secondary battery are improved because a plurality of inorganic particles and the like dissipate heat when the secondary battery generates heat. The type of the inorganic particles is not particularly limited, and includes aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia), and zirconium oxide (zirconia).
 積層型のセパレータを作製する場合には、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、基材層の片面または両面に前駆溶液を塗布する。 When producing a laminated separator, a precursor solution containing a polymer compound, an organic solvent, etc. is prepared, and then the precursor solution is applied to one or both sides of the base material layer.
 この積層型のセパレータを用いた場合においても、正極11と負極12との間においてリチウムが移動可能になるため、同様の効果を得ることができる。なお、図2および図4に示した円筒型の二次電池に積層型のセパレータを適用してもよい。 Even when this laminated separator is used, lithium can move between the positive electrode 11 and the negative electrode 12, so that the same effect can be obtained. A laminated separator may be applied to the cylindrical secondary battery shown in FIGS. 2 and 4.
[変形例4]
 図1および図2に示したラミネートフィルム型の二次電池では、液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
[Modification example 4]
In the laminated film type secondary battery shown in FIGS. 1 and 2, an electrolytic solution which is a liquid electrolyte was used. However, although not specifically shown here, an electrolyte layer, which is a gel-like electrolyte, may be used instead of the electrolytic solution.
 電解質層を用いた巻回電極体10では、セパレータ13および電解質層を介して正極11および負極12が互いに積層されたのち、その正極11、負極12、セパレータ13および電解質層が巻回されている。この電解質層は、正極11とセパレータ13との間に介在していると共に、負極12とセパレータ13との間に介在している。 In the wound electrode body 10 using the electrolyte layer, the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13 and the electrolyte layer, and then the positive electrode 11, the negative electrode 12, the separator 13 and the electrolyte layer are wound. .. This electrolyte layer is interposed between the positive electrode 11 and the separator 13 and is interposed between the negative electrode 12 and the separator 13.
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解質層中では、電解液が高分子化合物により保持されている。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、正極11および負極12の両面に前駆溶液を塗布する。 Specifically, the electrolyte layer contains a polymer compound together with the electrolytic solution, and the electrolytic solution is held by the polymer compound in the electrolyte layer. The composition of the electrolytic solution is as described above. The polymer compound contains polyvinylidene fluoride and the like. When forming the electrolyte layer, a precursor solution containing an electrolytic solution, a polymer compound, an organic solvent and the like is prepared, and then the precursor solution is applied to both the positive electrode 11 and the negative electrode 12.
 この電解質層を用いた場合においても、正極11と負極12との間において電解質層を介してリチウムが移動可能になるため、同様の効果を得ることができる。なお、図2および図4に示した円筒型の二次電池に電解質層を適用してもよい。 Even when this electrolyte layer is used, the same effect can be obtained because lithium can move between the positive electrode 11 and the negative electrode 12 via the electrolyte layer. The electrolyte layer may be applied to the cylindrical secondary battery shown in FIGS. 2 and 4.
<3.二次電池の用途>
 次に、上記した二次電池の用途(適用例)に関して説明する。
<3. Applications for secondary batteries>
Next, the application (application example) of the above-mentioned secondary battery will be described.
 二次電池の用途は、主に、駆動用の電源または電力蓄積用の電力貯蔵源などとして二次電池を利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。 Secondary batteries are mainly used for machines, devices, appliances, devices and systems (aggregates of multiple devices, etc.) in which the secondary battery can be used as a power source for driving or a power storage source for storing power. If so, it is not particularly limited. The secondary battery used as a power source may be a main power source or an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of another power source. The auxiliary power supply may be a power supply used in place of the main power supply, or may be a power supply that can be switched from the main power supply as needed. When a secondary battery is used as an auxiliary power source, the type of main power source is not limited to the secondary battery.
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。なお、二次電池の電池構造は、上記したラミネートフィルム型および円筒型でもよいし、それら以外の他の電池構造でもよい。また、電池パックおよび電池モジュールなどとして、複数の二次電池が用いられてもよい。 Specific examples of applications for secondary batteries are as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs and portable information terminals. It is a portable living appliance such as an electric shaver. A storage device such as a backup power supply and a memory card. Electric tools such as electric drills and electric saws. It is a battery pack that is installed in notebook computers as a removable power source. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a household battery system that stores power in case of an emergency. The battery structure of the secondary battery may be the above-mentioned laminated film type or cylindrical type, or may be another battery structure other than these. Further, a plurality of secondary batteries may be used as the battery pack, the battery module, and the like.
 中でも、電池パックおよび電池モジュールは、電動車両、電力貯蔵システムおよび電動工具などの比較的大型の機器などに適用されることが有効である。電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用可能である。 Above all, it is effective that the battery pack and the battery module are applied to relatively large equipment such as electric vehicles, electric power storage systems and electric tools. As the battery pack, as will be described later, a single battery or an assembled battery may be used. The electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a vehicle (hybrid vehicle or the like) that also has a drive source other than the secondary battery as described above. A power storage system is a system that uses a secondary battery as a power storage source. In a household electric power storage system, since electric power is stored in a secondary battery which is an electric power storage source, it is possible to use the electric power for household electric products and the like.
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。以下の適用例に用いられる二次電池の種類は、特に限定されないため、ラミネートフィルム型でもよいし、円筒型でもよい。 Here, some application examples of the secondary battery will be specifically described. The configuration of the application example described below is just an example, and can be changed as appropriate. The type of the secondary battery used in the following application examples is not particularly limited, and may be a laminated film type or a cylindrical type.
<3-1.電池パック(単電池)>
 図7は、単電池を用いた電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
<3-1. Battery pack (cell) >
FIG. 7 shows a block configuration of a battery pack using a cell. The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
 この電池パックは、図7に示したように、電源61と、回路基板62とを備えている。この回路基板62は、電源61に接続されていると共に、正極端子63、負極端子64および温度検出端子(いわゆるT端子)65を含んでいる。 As shown in FIG. 7, this battery pack includes a power supply 61 and a circuit board 62. The circuit board 62 is connected to the power supply 61 and includes a positive electrode terminal 63, a negative electrode terminal 64, and a temperature detection terminal (so-called T terminal) 65.
 電源61は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子63に接続されていると共に、負極リードが負極端子64に接続されている。この電源61は、正極端子63および負極端子64を介して外部と接続可能であるため、その正極端子63および負極端子64を介して充放電可能である。回路基板62は、制御部66と、スイッチ67と、PTC素子68と、温度検出部69とを含んでいる。ただし、PTC素子68は省略されてもよい。 The power supply 61 includes one secondary battery. In this secondary battery, the positive electrode lead is connected to the positive electrode terminal 63, and the negative electrode lead is connected to the negative electrode terminal 64. Since this power supply 61 can be connected to the outside via the positive electrode terminal 63 and the negative electrode terminal 64, it can be charged and discharged through the positive electrode terminal 63 and the negative electrode terminal 64. The circuit board 62 includes a control unit 66, a switch 67, a PTC element 68, and a temperature detection unit 69. However, the PTC element 68 may be omitted.
 制御部66は、中央演算処理装置(CPU:Central Processing Unit )およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部66は、必要に応じて電源61の使用状態の検出および制御を行う。 The control unit 66 includes a central processing unit (CPU: Central Processing Unit), a memory, and the like, and controls the operation of the entire battery pack. The control unit 66 detects and controls the usage state of the power supply 61 as needed.
 なお、制御部66は、電源61(二次電池)の電池電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ67を切断させることにより、電源61の電流経路に充電電流が流れないようにする。また、制御部66は、充電時または放電時において大電流が流れると、スイッチ67を切断させることにより、充電電流を遮断する。過充電検出電圧および過放電検出電圧は、特に限定されない。一例を挙げると、過充電検出電圧は、4.2V±0.05Vであると共に、過放電検出電圧は、2.4V±0.1Vである。 When the battery voltage of the power supply 61 (secondary battery) reaches the overcharge detection voltage or the overdischarge detection voltage, the control unit 66 disconnects the switch 67 so that the charging current does not flow in the current path of the power supply 61. To do so. Further, when a large current flows during charging or discharging, the control unit 66 cuts off the charging current by disconnecting the switch 67. The overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ± 0.05V, and the overdischarge detection voltage is 2.4V ± 0.1V.
 スイッチ67は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部66の指示に応じて電源61と外部機器との接続の有無を切り換える。このスイッチ67は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor )などを含んでおり、充放電電流は、スイッチ67のON抵抗に基づいて検出される。 The switch 67 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 61 is connected to an external device according to an instruction from the control unit 66. This switch 67 includes a field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor) using a metal oxide semiconductor, and the charge / discharge current is detected based on the ON resistance of the switch 67. ..
 温度検出部69は、サーミスタなどの温度検出素子を含んでおり、温度検出端子65を用いて電源61の温度を測定すると共に、その温度の測定結果を制御部66に出力する。温度検出部69により測定される温度の測定結果は、異常発熱時において制御部66が充放電制御を行う場合および残容量の算出時において制御部66が補正処理を行う場合などに用いられる。 The temperature detection unit 69 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 61 using the temperature detection terminal 65, and outputs the measurement result of the temperature to the control unit 66. The temperature measurement result measured by the temperature detection unit 69 is used when the control unit 66 performs charge / discharge control when abnormal heat generation occurs, or when the control unit 66 performs correction processing when calculating the remaining capacity.
<3-2.電池パック(組電池)>
 図8は、組電池を用いた電池パックのブロック構成を表している。以下の説明では、随時、単電池を用いた電池パック(図7)の構成要素を引用する。
<3-2. Battery pack (assembled battery)>
FIG. 8 shows a block configuration of a battery pack using an assembled battery. In the following description, the components of the battery pack (FIG. 7) using a cell will be quoted from time to time.
 この電池パックは、図8に示したように、正極端子81および負極端子82を含んでいる。具体的には、電池パックは、筐体70の内部に、制御部71と、電源72と、スイッチ73と、電流測定部74と、温度検出部75と、電圧検出部76と、スイッチ制御部77と、メモリ78と、温度検出素子79と、電流検出抵抗80とを備えている。 As shown in FIG. 8, this battery pack includes a positive electrode terminal 81 and a negative electrode terminal 82. Specifically, the battery pack contains a control unit 71, a power supply 72, a switch 73, a current measurement unit 74, a temperature detection unit 75, a voltage detection unit 76, and a switch control unit inside the housing 70. It includes 77, a memory 78, a temperature detection element 79, and a current detection resistor 80.
 電源72は、2個以上の二次電池が互いに接続された組電池を含んでおり、その2個以上の二次電池の接続形式は、特に限定されない。このため、接続方式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源72は、2並列3直列となるように互いに接続された6個の二次電池を含んでいる。 The power supply 72 includes an assembled battery in which two or more secondary batteries are connected to each other, and the connection form of the two or more secondary batteries is not particularly limited. Therefore, the connection method may be in series, in parallel, or a mixed type of both. As an example, the power supply 72 includes six secondary batteries connected to each other so as to be in two parallels and three series.
 制御部71、スイッチ73、温度検出部75および温度検出素子79の構成は、制御部66、スイッチ67および温度検出部69(温度検出素子)の構成と同様である。電流測定部74は、電流検出抵抗80を用いて電流を測定すると共に、その電流の測定結果を制御部71に出力する。電圧検出部76は、電源72(二次電池)の電池電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部71に供給する。 The configuration of the control unit 71, the switch 73, the temperature detection unit 75, and the temperature detection element 79 is the same as the configuration of the control unit 66, the switch 67, and the temperature detection unit 69 (temperature detection element). The current measuring unit 74 measures the current using the current detection resistor 80, and outputs the measurement result of the current to the control unit 71. The voltage detection unit 76 measures the battery voltage of the power source 72 (secondary battery) and supplies the measurement result of the analog-to-digital converted voltage to the control unit 71.
 スイッチ制御部77は、電流測定部74および電圧検出部76から入力される信号に応じてスイッチ73の動作を制御する。このスイッチ制御部77は、電池電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ73(充電制御スイッチ)を切断させることにより、電源72の電流経路に充電電流が流れないようにする。これにより、電源72では、放電用ダイオードを介して放電だけが可能になり、または充電用ダイオードを介して充電だけが可能になる。また、スイッチ制御部77は、充電時または放電時において大電流が流れると、充電電流または放電電流を遮断する。 The switch control unit 77 controls the operation of the switch 73 according to the signals input from the current measurement unit 74 and the voltage detection unit 76. When the battery voltage reaches the overcharge detection voltage or the overdischarge detection voltage, the switch control unit 77 disconnects the switch 73 (charge control switch) so that the charge current does not flow in the current path of the power supply 72. .. As a result, in the power supply 72, only discharging is possible through the discharging diode, or only charging is possible through the charging diode. Further, the switch control unit 77 cuts off the charging current or the discharging current when a large current flows during charging or discharging.
 なお、スイッチ制御部77を省略することにより、制御部71がスイッチ制御部77の機能を兼ねてもよい。過充電検出電圧および過放電検出電圧は、特に限定されないが、単電池を用いた電池パックに関して説明した場合と同様である。 By omitting the switch control unit 77, the control unit 71 may also function as the switch control unit 77. The overcharge detection voltage and the overdischarge detection voltage are not particularly limited, but are the same as those described for the battery pack using a cell.
 メモリ78は、不揮発性メモリであるEEPROM(Electrically Erasable Programmable Read-Only Memory )などを含んでおり、そのメモリ78には、制御部71により演算された数値および製造工程において測定された二次電池の情報(初期状態の内部抵抗、満充電容量および残容量など)などが記憶されている。 The memory 78 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory) which is a non-volatile memory, and the memory 78 includes a numerical value calculated by the control unit 71 and a secondary battery measured in the manufacturing process. Information (initial resistance, full charge capacity, remaining capacity, etc.) is stored.
 正極端子81および負極端子82は、電池パックを用いて稼働する外部機器(ノート型のパーソナルコンピュータなど)および電池パックを充電するために用いられる外部機器(充電器など)などに接続される端子である。電源72(二次電池)は、正極端子81および負極端子82を介して充放電可能である。 The positive electrode terminal 81 and the negative electrode terminal 82 are terminals connected to an external device (such as a notebook personal computer) that operates using the battery pack and an external device (such as a charger) that is used to charge the battery pack. is there. The power supply 72 (secondary battery) can be charged and discharged via the positive electrode terminal 81 and the negative electrode terminal 82.
<3-3.電動車両>
 図9は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、図9に示したように、筐体83の内部に、制御部84と、エンジン85と、電源86と、モータ87と、差動装置88と、発電機89と、トランスミッション90およびクラッチ91と、インバータ92,93と、各種センサ94とを備えている。また、電動車両は、差動装置88およびトランスミッション90に接続された前輪用駆動軸95および一対の前輪96と、後輪用駆動軸97および一対の後輪98とを備えている。
<3-3. Electric vehicle>
FIG. 9 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle. As shown in FIG. 9, this electric vehicle includes a control unit 84, an engine 85, a power supply 86, a motor 87, a differential device 88, a generator 89, and a transmission 90 inside the housing 83. It also includes a clutch 91, inverters 92 and 93, and various sensors 94. Further, the electric vehicle includes a front wheel drive shaft 95 and a pair of front wheels 96 connected to the differential device 88 and the transmission 90, and a rear wheel drive shaft 97 and a pair of rear wheels 98.
 この電動車両は、エンジン85およびモータ87のうちのいずれか一方を駆動源として用いて走行可能である。エンジン85は、ガソリンエンジンなどの主要な動力源である。エンジン85を動力源とする場合には、駆動部である差動装置88、トランスミッション90およびクラッチ91を介してエンジン85の駆動力(回転力)が前輪96および後輪98に伝達される。なお、エンジン85の回転力が発電機89に伝達されるため、その回転力を利用して発電機89が交流電力を発生させると共に、その交流電力がインバータ93を介して直流電力に変換されるため、その直流電力が電源86に蓄積される。一方、変換部であるモータ87を動力源とする場合には、電源86から供給された電力(直流電力)がインバータ92を介して交流電力に変換されるため、その交流電力を利用してモータ87が駆動する。モータ87により電力から変換された駆動力(回転力)は、駆動部である差動装置88、トランスミッション90およびクラッチ91を介して前輪96および後輪98に伝達される。 This electric vehicle can run using either one of the engine 85 and the motor 87 as a drive source. The engine 85 is a main power source such as a gasoline engine. When the engine 85 is used as a power source, the driving force (rotational force) of the engine 85 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units. Since the rotational force of the engine 85 is transmitted to the generator 89, the generator 89 uses the rotational force to generate AC power, and the AC power is converted into DC power via the inverter 93. Therefore, the DC power is stored in the power source 86. On the other hand, when the motor 87, which is a conversion unit, is used as a power source, the electric power (DC power) supplied from the power source 86 is converted into AC power via the inverter 92, and the AC power is used to convert the motor. 87 is driven. The driving force (rotational force) converted from the electric power by the motor 87 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units.
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ87に回転力として伝達されるため、その回転力を利用してモータ87が交流電力を発生させてもよい。この交流電力は、インバータ92を介して直流電力に変換されるため、その直流回生電力は、電源86に蓄積される。 When the electric vehicle decelerates through the braking mechanism, the resistance force at the time of deceleration is transmitted to the motor 87 as a rotational force. Therefore, the motor 87 may generate AC power by using the rotational force. Since this AC power is converted into DC power via the inverter 92, the DC regenerative power is stored in the power supply 86.
 制御部84は、CPUなどを含んでおり、電動車両全体の動作を制御する。電源86は、1個または2個以上の二次電池を含んでおり、外部電源と接続されている。この場合には、電源86は、外部電源から電力を供給されることにより、電力を蓄積させてもよい。各種センサ94は、エンジン85の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ94は、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。 The control unit 84 includes a CPU and the like, and controls the operation of the entire electric vehicle. The power supply 86 includes one or more secondary batteries and is connected to an external power source. In this case, the power supply 86 may store electric power by being supplied with electric power from an external power source. The various sensors 94 are used to control the rotation speed of the engine 85 and to control the opening degree (throttle opening degree) of the throttle valve. The various sensors 94 include any one type or two or more types of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン85を用いずに電源86およびモータ87だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle is taken as an example, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 86 and the motor 87 without using the engine 85.
<3-4.その他>
 ここでは具体的に図示しないが、二次電池の適用例としては他の適用例も考えられる。
<3-4. Others>
Although not specifically shown here, other application examples can be considered as application examples of the secondary battery.
 具体的には、二次電池は、電力貯蔵システムに適用可能である。この電力貯蔵システムは、一般住宅および商業用ビルなどの家屋の内部に、制御部と、1個または2個以上の二次電池を含む電源と、スマートメータと、パワーハブとを備えている。 Specifically, the secondary battery is applicable to the power storage system. This power storage system includes a control unit, a power source including one or more secondary batteries, a smart meter, and a power hub inside a house such as a general house or a commercial building.
 電源は、家屋の内部に設置された冷蔵庫などの電気機器に接続されていると共に、その家屋の外部に停車されたハイブリッド自動車などの電動車両に接続可能である。また、電源は、家屋に設置された太陽光発電機などの自家発電機にパワーハブを介して接続されていると共に、スマートメータおよびパワーハブを介して外部の火力発電所などの集中型電力系統に接続されている。 The power supply is connected to electrical equipment such as a refrigerator installed inside the house, and can also be connected to an electric vehicle such as a hybrid vehicle parked outside the house. In addition, the power supply is connected to a private power generator such as a solar power generator installed in a house via a power hub, and is also connected to a centralized power system such as an external thermal power plant via a smart meter and a power hub. Has been done.
 または、二次電池は、電動ドリルおよび電動鋸などの電動工具に適用可能である。この電動工具は、ドリル部および鋸刃部などの可動部が取り付けられた筐体の内部に、制御部と、1個または2個以上の二次電池を含む電源とを備えている。 Alternatively, the secondary battery can be applied to electric tools such as electric drills and electric saws. This power tool includes a control unit and a power supply including one or more secondary batteries inside a housing to which a movable portion such as a drill portion and a saw blade portion is attached.
 本技術の実施例に関して説明する。 An embodiment of this technology will be described.
(実験例1-1~1-5)
 図10は、試験用の二次電池(コイン型)の断面構成を表している。ここでは、コイン型の二次電池を作製したのち、その二次電池の電池特性を評価した。
(Experimental Examples 1-1 to 1-5)
FIG. 10 shows a cross-sectional configuration of a secondary battery (coin type) for testing. Here, after producing a coin-type secondary battery, the battery characteristics of the secondary battery were evaluated.
 コイン型の二次電池では、図10に示したように、外装カップ104の内部に試験極101が収容されていると共に、外装缶102の内部に対極103が収容されている。試験極101および対極103は、セパレータ105を介して互いに積層されていると共に、外装缶102および外装カップ104は、ガスケット106を介して互いにかしめられている。電解液は、試験極101、対極103およびセパレータ105のそれぞれに含浸されている。 In the coin-type secondary battery, as shown in FIG. 10, the test pole 101 is housed inside the outer cup 104, and the counter electrode 103 is housed inside the outer can 102. The test pole 101 and the counter electrode 103 are laminated to each other via the separator 105, and the outer can 102 and the outer cup 104 are crimped to each other via the gasket 106. The electrolytic solution is impregnated in each of the test electrode 101, the counter electrode 103 and the separator 105.
[二次電池の作製]
 最初に、以下で説明する手順により、二次電池を作製した。
[Making secondary batteries]
First, a secondary battery was manufactured by the procedure described below.
(試験極の作製)
 ここでは、試験極101として負極を作製した。最初に、炭素材料(カーボンブラック,ピーク強度比ID/IG=1.1)98質量部と、下地結着剤(スチレンブタジエンゴム1質量部およびカルボキシメチルセルロース1質量部)2質量部とを混合することにより、下地合剤とした。この炭素材料のBET比表面積(m/g)は、表1に示した通りである。続いて、水性溶媒(純水)に下地合剤を投入したのち、その水性溶媒を撹拌することにより、ペースト状の下地合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体(銅箔,厚さ=15μm)の両面に下地合剤スラリーを塗布したのち、その下地合剤スラリーを乾燥させることにより、下地層を形成した。
(Preparation of test pole)
Here, a negative electrode was produced as a test electrode 101. First, 98 parts by mass of a carbon material (carbon black, peak intensity ratio ID / IG = 1.1) and 2 parts by mass of a base binder (1 part by mass of styrene butadiene rubber and 1 part by mass of carboxymethyl cellulose) are mixed. As a result, it was used as a base mixture. The BET specific surface area (m 2 / g) of this carbon material is as shown in Table 1. Subsequently, a base mixture was added to an aqueous solvent (pure water), and then the aqueous solvent was stirred to prepare a paste-like base mixture slurry. Subsequently, the undercoat mixture slurry was applied to both sides of the negative electrode current collector (copper foil, thickness = 15 μm) using a coating device, and then the undercoat mixture slurry was dried to form an underlayer.
 続いて、負極活物質(炭素系活物質である黒鉛70質量部およびケイ素系活物質である酸化ケイ素(SiO)20質量部)90質量部と、負極結着剤(スチレンブタジエンゴム1質量部およびカルボキシメチルセルロース1質量部)2質量部と、負極導電剤(カーボンブラック)8質量物とを混合することにより、負極合剤とした。続いて、水性溶媒(純水)に負極合剤を投入したのち、その水性溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて下地層の表面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層を形成した。 Subsequently, 90 parts by mass of the negative electrode active material (70 parts by mass of graphite which is a carbon-based active material and 20 parts by mass of silicon oxide (SiO) which is a silicon-based active material) and 90 parts by mass of a negative electrode binder (1 part by mass of styrene butadiene rubber and). A negative electrode mixture was prepared by mixing 2 parts by mass of carboxymethyl cellulose (1 part by mass) and 8 parts by mass of a negative electrode conductive agent (carbon black). Subsequently, the negative electrode mixture was added to the aqueous solvent (pure water), and then the aqueous solvent was stirred to prepare a paste-like negative electrode mixture slurry. Subsequently, a negative electrode mixture slurry was applied to the surface of the base layer using a coating device, and then the negative electrode mixture slurry was dried to form a negative electrode active material layer.
 最後に、下地層および負極活物質層が形成された負極集電体を円盤状(外径=16mm)に打ち抜いたのち、一軸油圧プレス機を用いて負極活物質層を圧縮成型した。これにより、負極である試験極101が作製された。ただし、試験極101を作製する場合には、正極活物質の量に対して負極活物質(炭素系活物質およびケイ素系活物質)の量を調整することにより、負極吸蔵放出容量が正極吸蔵放出容量よりも小さくなるようにした。 Finally, the negative electrode current collector on which the base layer and the negative electrode active material layer were formed was punched into a disk shape (outer diameter = 16 mm), and then the negative electrode active material layer was compression-molded using a uniaxial hydraulic press. As a result, a test electrode 101, which is a negative electrode, was produced. However, when the test electrode 101 is produced, the negative electrode storage / release capacity is increased by adjusting the amount of the negative electrode active material (carbon-based active material and silicon-based active material) with respect to the amount of the positive electrode active material. I made it smaller than the capacity.
 なお、比較のために、下地層を形成しなかったことを除いて同様の手順により、試験極101を作製した。また、比較のために、負極活物質として炭素系活物質およびケイ素系活物質のうちの一方だけを用いたことを除いて同様の手順により、試験極101を作製した。さらに、比較のために、下地層を形成しなかったと共に負極活物質として炭素系活物質だけを用いたことを除いて同様の手順により、試験極101を作製した。 For comparison, the test electrode 101 was prepared by the same procedure except that the base layer was not formed. Further, for comparison, the test electrode 101 was prepared by the same procedure except that only one of the carbon-based active material and the silicon-based active material was used as the negative electrode active material. Further, for comparison, the test electrode 101 was prepared by the same procedure except that the base layer was not formed and only the carbon-based active material was used as the negative electrode active material.
(対極の作製)
 ここでは、対極103として正極を作製した。最初に、正極活物質(コバルト酸リチウム(LiCoO))95質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(カーボンブラック)2質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを得た。続いて、コーティング装置を用いて正極集電体(アルミニウム箔,厚さ=15μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層を形成した。最後に、正極活物質層が形成された正極集電体を円盤状(外径=15mm)に打ち抜いたのち、ロールプレス機を用いて正極活物質層を圧縮成型した。これにより、正極である対極103が作製された。
(Making the opposite pole)
Here, a positive electrode was produced as the counter electrode 103. First, by mixing 95 parts by mass of the positive electrode active material (lithium cobalt oxide (LiCoO 2 )), 3 parts by mass of the positive electrode binder (vinylidene fluoride), and 2 parts by mass of the positive electrode conductive agent (carbon black). , Positive electrode mixture. Subsequently, a positive electrode mixture was added to an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to obtain a paste-like positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry is applied to both sides of the positive electrode current collector (aluminum foil, thickness = 15 μm) using a coating device, and then the positive electrode mixture slurry is dried to form a positive electrode active material layer. did. Finally, the positive electrode current collector on which the positive electrode active material layer was formed was punched into a disk shape (outer diameter = 15 mm), and then the positive electrode active material layer was compression molded using a roll press machine. As a result, the counter electrode 103, which is a positive electrode, was produced.
(電解液の調製)
 溶媒(炭酸エチレンおよび炭酸エチルメチル)に電解質塩(六フッ化リン酸リチウム)を投入したのち、その溶媒を撹拌した。溶媒の混合比(重量比)は、炭酸エチレン:炭酸エチルメチル=50:50とした。電解質塩の含有量は、溶媒に対して1mol/kgとした。
(Preparation of electrolyte)
The electrolyte salt (lithium hexafluorophosphate) was added to the solvent (ethylene carbonate and ethylmethyl carbonate), and then the solvent was stirred. The mixing ratio (weight ratio) of the solvent was ethylene carbonate: ethyl methyl carbonate = 50:50. The content of the electrolyte salt was 1 mol / kg with respect to the solvent.
(二次電池の組み立て)
 最初に、外装カップ104の内部に試験極101を収容すると共に、外装缶102の内部に対極103を収容した。続いて、電解液が含浸されたセパレータ105を介して、外装カップ104の内部に収容された試験極101と外装缶102の内部に収容された対極103とを互いに積層させた。これにより、セパレータ105に含浸された電解液の一部が試験極101および対極103のそれぞれに含浸された。最後に、セパレータ105を介して試験極101と対極103とが互いに積層されている状態において、ガスケット106を介して外装缶102および外装カップ104を互いにかしめた。よって、外装缶102および外装カップ104により試験極101、対極103、セパレータ105および電解液が封入されたため、コイン型の二次電池が完成した。
(Assembly of secondary battery)
First, the test pole 101 was housed inside the outer cup 104, and the counter electrode 103 was housed inside the outer can 102. Subsequently, the test pole 101 housed inside the outer cup 104 and the counter electrode 103 housed inside the outer can 102 were laminated with each other via the separator 105 impregnated with the electrolytic solution. As a result, a part of the electrolytic solution impregnated in the separator 105 was impregnated in each of the test electrode 101 and the counter electrode 103. Finally, the outer can 102 and the outer cup 104 were crimped to each other via the gasket 106 in a state where the test pole 101 and the counter electrode 103 were laminated with each other via the separator 105. Therefore, the test pole 101, the counter electrode 103, the separator 105, and the electrolytic solution were sealed by the outer can 102 and the outer cup 104, so that the coin-type secondary battery was completed.
[電池特性の評価]
 二次電池の電池特性(サイクル特性)を評価したところ、表1に示した結果が得られた。
[Evaluation of battery characteristics]
When the battery characteristics (cycle characteristics) of the secondary battery were evaluated, the results shown in Table 1 were obtained.
 サイクル特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。続いて、同環境中において二次電池を充放電させることにより、2サイクル目の放電容量を測定した。続いて、同環境中において充放電サイクル数が100サイクルに到達するまで二次電池を繰り返して充放電させることにより、100サイクル目の放電容量を測定した。最後に、容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。 When examining the cycle characteristics, first, in order to stabilize the state of the secondary battery, the secondary battery was charged and discharged for one cycle in a room temperature environment (temperature = 23 ° C.). Subsequently, the discharge capacity of the second cycle was measured by charging and discharging the secondary battery in the same environment. Subsequently, the discharge capacity at the 100th cycle was measured by repeatedly charging and discharging the secondary battery until the number of charge / discharge cycles reached 100 cycles in the same environment. Finally, the capacity retention rate (%) = (discharge capacity in the 100th cycle / discharge capacity in the second cycle) × 100 was calculated.
 充電時には、0.5Cの電流において電圧が4.25Vに到達するまで定電流充電したのち、その4.25Vの電圧において電流が0.05Cに到達するまで定電圧充電した。放電時には、0.5Cの電流において電圧が3.0Vに到達するまで定電流放電した。0.5Cとは、電池容量(理論容量)を2時間で放電しきる電流値であると共に、0.05Cとは、上記した電池容量を20時間で放電しきる電流値である。 At the time of charging, a constant current charge was performed until the voltage reached 4.25 V at a current of 0.5 C, and then a constant voltage charge was performed until the current reached 0.05 C at the voltage of 4.25 V. At the time of discharge, constant current discharge was performed at a current of 0.5 C until the voltage reached 3.0 V. 0.5C is a current value that can completely discharge the battery capacity (theoretical capacity) in 2 hours, and 0.05C is a current value that can completely discharge the above-mentioned battery capacity in 20 hours.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、負極活物質(炭素系活物質およびケイ素系活物質のうちの一方または双方)を用いたと共に負極吸蔵放出容量が正極吸蔵放出容量よりも小さくなるように設定された二次電池では、下地層の有無に応じて二次電池の電池特性(サイクル特性)が大きく変動した。
[Discussion]
As shown in Table 1, the negative electrode active material (one or both of the carbon-based active material and the silicon-based active material) was used, and the negative electrode storage / release capacity was set to be smaller than the positive electrode storage / release capacity. In the secondary battery, the battery characteristics (cycle characteristics) of the secondary battery fluctuated greatly depending on the presence or absence of the base layer.
 具体的には、負極活物質として炭素系活物質だけを用いた場合(実験例1-2,1-3)には、下地層の有無に応じて容量維持率が変化しなかった。すなわち、下地層を形成しなかった場合(実験例1-2)には、高い容量維持率が得られたと共に、下地層を形成した場合(実験例1-3)においても同様に、同等の高い容量維持率が得られた。 Specifically, when only a carbon-based active material was used as the negative electrode active material (Experimental Examples 1-2, 1-3), the capacity retention rate did not change depending on the presence or absence of the underlying layer. That is, when the base layer was not formed (Experimental Example 1-2), a high capacity retention rate was obtained, and the same was also obtained when the base layer was formed (Experimental Example 1-3). A high capacity retention rate was obtained.
 これに対して、負極活物質として炭素系活物質およびケイ素系活物質の双方を用いた場合(実験例1-1,1-4)には、下地層の有無に応じて容量維持率が大幅に変化した。すなわち、下地層を形成しなかった場合(実験例1-4)には、負極活物質として炭素系活物質だけを用いた場合(実験例1-2,1-3)と比較して、容量維持率が大幅に減少した。しかしながら、下地層を形成した場合(実験例1-1)には、下地層を形成しなかった場合(実験例1-4)と比較して、容量維持率が大幅に増加した。言い換えれば、下地層を形成した場合(実験例1-1)には、負極活物質として炭素系活物質だけを用いた場合(実験例1-2,1-3)と比較して、容量維持率が減少したものの、その容量維持率の減少が十分に抑制されたため、許容範囲内である高い容量維持率が得られた。 On the other hand, when both a carbon-based active material and a silicon-based active material are used as the negative electrode active material (Experimental Examples 1-1, 1-4), the capacity retention rate is significantly increased depending on the presence or absence of the underlying layer. Changed to. That is, when the base layer was not formed (Experimental Example 1-4), the capacity was compared with the case where only the carbon-based active material was used as the negative electrode active material (Experimental Examples 1-2, 1-3). The maintenance rate has decreased significantly. However, when the base layer was formed (Experimental Example 1-1), the capacity retention rate was significantly increased as compared with the case where the base layer was not formed (Experimental Example 1-4). In other words, when the underlayer is formed (Experimental Example 1-1), the capacity is maintained as compared with the case where only the carbon-based active material is used as the negative electrode active material (Experimental Examples 1-2, 1-3). Although the rate decreased, the decrease in the capacity retention rate was sufficiently suppressed, so that a high capacity retention rate within the permissible range was obtained.
 なお、負極活物質としてケイ素系活物質だけを用いた場合(実験例1-5)には、下地層を形成しているにも関わらず、容量維持率が激減した。 When only a silicon-based active material was used as the negative electrode active material (Experimental Example 1-5), the capacity retention rate drastically decreased even though the base layer was formed.
 これらのことから、負極吸蔵放出容量が正極吸蔵放出容量よりも小さくなるように設定された二次電池において、下地層が容量維持率を増加させる機能、言い換えれば下地層が負極活物質の膨張および収縮に起因した容量維持率の減少を十分に抑制する機能は、炭素系活物質だけを用いた場合には得られず、炭素系活物質およびケイ素系活物質の双方を用いた場合において初めて得られる特別な利点である。 From these facts, in a secondary battery in which the negative electrode storage / discharge capacity is set to be smaller than the positive electrode storage / discharge capacity, the base layer has a function of increasing the capacity retention rate, in other words, the base layer expands the negative electrode active material and The function of sufficiently suppressing the decrease in the capacity retention rate due to shrinkage cannot be obtained when only the carbon-based active material is used, and is obtained only when both the carbon-based active material and the silicon-based active material are used. Is a special advantage.
(実験例2-1~2-5)
 表2に示したように、炭素材料のBET比表面積を変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。この場合には、BET比表面積が互いに異なる複数種類の炭素材料(カーボンブラック)を用いることにより、そのBET比表面積を変化させた。
(Experimental Examples 2-1 to 2-5)
As shown in Table 2, a secondary battery was produced and the battery characteristics were evaluated by the same procedure except that the BET specific surface area of the carbon material was changed. In this case, the BET specific surface area was changed by using a plurality of types of carbon materials (carbon black) having different BET specific surface areas.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、BET比表面積を変化させた場合(実験例2-1~2-5)においても、高い容量維持率が得られた。中でも、炭素材料のBET比表面積が30m/g~300m/gであると(実験例1-1,2-2~2-4)、容量維持率がより増加した。 As shown in Table 2, a high capacity retention rate was obtained even when the BET specific surface area was changed (Experimental Examples 2-1 to 2-5). Above all, when the BET specific surface area of the carbon material was 30 m 2 / g to 300 m 2 / g (Experimental Examples 1-1, 2-2 to 2-4), the capacity retention rate was further increased.
(実験例3-1~3-3)
 表3に示したように、炭素材料のピーク強度比ID/IGを変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。この場合には、ピーク強度比ID/IGが互いに異なる複数種類の炭素材料(カーボンブラック)を用いることにより、そのピーク強度比ID/IGを変化させた。このピーク強度比ID/IGは、カーボンブラックの製造時における焼成温度に応じて変化した。
(Experimental Examples 3-1 to 3-3)
As shown in Table 3, a secondary battery was produced and the battery characteristics were evaluated by the same procedure except that the peak intensity ratio ID / IG of the carbon material was changed. In this case, the peak intensity ratio ID / IG was changed by using a plurality of types of carbon materials (carbon black) having different peak intensity ratio IDs / IGs. This peak intensity ratio ID / IG changed according to the firing temperature during the production of carbon black.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、ピーク強度比ID/IGを変化させた場合(実験例3-1~3-3)においても、高い容量維持率が得られた。中でも、ピーク強度比ID/IGが1.0以上であると(実験例1-1,3-2,3-3)、容量維持率がより増加した。 As shown in Table 3, a high capacity retention rate was obtained even when the peak intensity ratio ID / IG was changed (Experimental Examples 3-1 to 3-3). Above all, when the peak intensity ratio ID / IG was 1.0 or more (Experimental Examples 1-1, 3-2, 3-3), the capacity retention rate was further increased.
[まとめ]
 表1~表3に示した結果から、負極が負極集電体、下地層(炭素材料)および負極活物質層(炭素系活物質およびケイ素系活物質)を含んでおり、その負極の負極吸蔵放出容量が正極の正極吸蔵放出容量よりも小さくなっていると、サイクル特性が改善された。よって、リチウムの吸蔵放出現象とリチウムの析出溶解現象とを利用して電池容量が得られる二次電池において、優れた電池特性が得られた。
[Summary]
From the results shown in Tables 1 to 3, the negative electrode contains a negative electrode current collector, an underlayer (carbon material) and a negative electrode active material layer (carbon-based active material and silicon-based active material), and the negative electrode is stored in the negative electrode. When the discharge capacity was smaller than the positive electrode storage and discharge capacity of the positive electrode, the cycle characteristics were improved. Therefore, excellent battery characteristics have been obtained in a secondary battery in which the battery capacity can be obtained by utilizing the lithium storage / release phenomenon and the lithium precipitation / dissolution phenomenon.
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。 Although the present technology has been described above with reference to one embodiment and examples, the configuration of the present technology is not limited to the configurations described in one embodiment and examples, and thus can be variously modified.
 具体的には、液状の電解質(電解液)およびゲル状の電解質(電解質層)を用いる場合に関して説明したが、その電解質の種類は、特に限定されないため、固体状の電解質(固体電解質)を用いてもよい。 Specifically, the case where a liquid electrolyte (electrolyte solution) and a gel-like electrolyte (electrolyte layer) are used has been described, but since the type of the electrolyte is not particularly limited, a solid electrolyte (solid electrolyte) is used. You may.
 また、二次電池の電池構造がラミネートフィルム型、円筒型およびコイン型である場合に関して説明したが、その電池構造は、特に限定されないため、角型などの他の電池構造でもよい。 Further, the case where the battery structure of the secondary battery is a laminated film type, a cylindrical type, or a coin type has been described, but since the battery structure is not particularly limited, other battery structures such as a square type may be used.
 また、電池素子の素子構造が巻回型および積層型である場合に関して説明したが、その電池素子の素子構造は、特に限定されないため、電極(正極および負極)がジグザグに折り畳まれた九十九折り型などの他の素子構造でもよい。 Further, the case where the element structure of the battery element is a winding type or a laminated type has been described, but since the element structure of the battery element is not particularly limited, the electrodes (positive electrode and negative electrode) are folded in a zigzag pattern. Other element structures such as a folding type may be used.
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。 Further, although the case where the electrode reactant is lithium has been described, the electrode reactant is not particularly limited. Specifically, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。 Since the effects described in the present specification are merely examples, the effects of the present technology are not limited to the effects described in the present specification. Therefore, other effects may be obtained with respect to the present technology.

Claims (8)

  1.  リチウムを吸蔵および放出する正極活物質を含み、前記正極活物質において前記リチウムを吸蔵および放出する際に正極吸蔵放出容量が得られる正極と、
     負極集電体と、前記負極集電体の上に設けられると共に炭素材料を含む下地層と、前記下地層の上に設けられると共に前記リチウムを吸蔵および放出する負極活物質を含み、前記負極活物質が炭素系活物質およびケイ素系活物質を含み、前記負極活物質において前記リチウムを吸蔵および放出する際に得られる負極吸蔵放出容量が前記正極吸蔵放出容量よりも小さい負極活物質層と、を含む負極と、
     電解液と
     を備えた、二次電池。
    A positive electrode containing a positive electrode active material that occludes and releases lithium, and a positive electrode that can obtain a positive electrode occlusal and release capacity when occluding and releasing lithium in the positive electrode active material
    The negative electrode activity includes a negative electrode current collector, a base layer provided on the negative electrode current collector and containing a carbon material, and a negative electrode active material provided on the base layer and storing and releasing the lithium. A negative electrode active material layer in which the material contains a carbon-based active material and a silicon-based active material, and the negative electrode storage / release capacity obtained when storing and releasing the lithium in the negative electrode active material is smaller than the positive electrode storage / release capacity. Including negative electrode and
    A rechargeable battery with an electrolyte.
  2.  前記炭素材料は、複数の粒子状であり、
     前記複数の粒子状の炭素材料のBET比表面積は、30m/g以上300m/g以下である、
     請求項1記載の二次電池。
    The carbon material is in the form of a plurality of particles and is in the form of a plurality of particles.
    The BET specific surface area of the plurality of particulate carbon materials is 30 m 2 / g or more and 300 m 2 / g or less.
    The secondary battery according to claim 1.
  3.  ラマン分光法を用いて前記炭素材料を分析した際、1580cm-1付近に検出されるGバンドのピーク強度IGに対する、1360cm-1付近に検出されるDバンドのピーク強度IDの比ID/IGは、1.0以上である、
     請求項1または請求項2に記載の二次電池。
    When analyzing the carbon material using a Raman spectroscopy, to the peak intensity IG of the G band is detected near 1580 cm -1, the ratio ID / IG of the peak intensity ID of D band is detected near 1360 cm -1 is , 1.0 or more,
    The secondary battery according to claim 1 or 2.
  4.  前記炭素材料は、カーボンブラック、アセチレンブラックおよびケッチェンブラックのうちの少なくとも1種を含む、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
    The carbon material comprises at least one of carbon black, acetylene black and ketjen black.
    The secondary battery according to any one of claims 1 to 3.
  5.  前記炭素系活物質は、黒鉛を含み、
     前記ケイ素系活物質は、SiO(0<x≦2)で表される酸化ケイ素を含む、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
    The carbon-based active material contains graphite and contains graphite.
    The silicon-based active material contains silicon oxide represented by SiO x (0 <x ≦ 2).
    The secondary battery according to any one of claims 1 to 4.
  6.  前記ケイ素系活物質は、SiOを含む、
     請求項5記載の二次電池。
    The silicon-based active material contains SiO.
    The secondary battery according to claim 5.
  7.  開回路電圧が過充電電圧よりも低い状態において、前記負極の表面に前記リチウムが析出している、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
    When the open circuit voltage is lower than the overcharge voltage, the lithium is deposited on the surface of the negative electrode.
    The secondary battery according to any one of claims 1 to 6.
  8.  前記負極の全容量は、前記負極吸蔵放出容量と、前記負極において前記リチウムが析出および溶解する際に得られる負極析出溶解容量との和である、
     請求項7記載の二次電池。
    The total capacity of the negative electrode is the sum of the negative electrode occlusion / release capacity and the negative electrode precipitation / dissolution capacity obtained when the lithium is precipitated and dissolved in the negative electrode.
    The secondary battery according to claim 7.
PCT/JP2020/023942 2019-07-12 2020-06-18 Secondary battery WO2021010085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021532738A JPWO2021010085A1 (en) 2019-07-12 2020-06-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129774 2019-07-12
JP2019-129774 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021010085A1 true WO2021010085A1 (en) 2021-01-21

Family

ID=74210568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023942 WO2021010085A1 (en) 2019-07-12 2020-06-18 Secondary battery

Country Status (2)

Country Link
JP (1) JPWO2021010085A1 (en)
WO (1) WO2021010085A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332483A (en) * 2022-10-11 2022-11-11 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery
JPH0229700B2 (en) * 1984-01-26 1990-07-02 Dainippon Insatsu Kk
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JP2000228199A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution secondary battery
JP2001176557A (en) * 1999-12-20 2001-06-29 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2002151154A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2005259617A (en) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2011096643A (en) * 2009-09-29 2011-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2011129066A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Lithium-ion secondary battery
JP2017216090A (en) * 2016-05-30 2017-12-07 ダイニック株式会社 Coating material for underlying layer and electrode for electrochemical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229700B2 (en) * 1984-01-26 1990-07-02 Dainippon Insatsu Kk
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JP2000228199A (en) * 1999-02-09 2000-08-15 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte solution secondary battery
JP2001176557A (en) * 1999-12-20 2001-06-29 Toyota Central Res & Dev Lab Inc Non-aqueous electrolyte secondary battery
JP2002151154A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2005259617A (en) * 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP2011096643A (en) * 2009-09-29 2011-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte battery
WO2011129066A1 (en) * 2010-04-16 2011-10-20 株式会社豊田自動織機 Lithium-ion secondary battery
JP2011228052A (en) * 2010-04-16 2011-11-10 Toyota Industries Corp Lithium ion secondary battery
JP2017216090A (en) * 2016-05-30 2017-12-07 ダイニック株式会社 Coating material for underlying layer and electrode for electrochemical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332483A (en) * 2022-10-11 2022-11-11 宁德新能源科技有限公司 Negative pole piece, electrochemical device comprising same and electronic device

Also Published As

Publication number Publication date
JPWO2021010085A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
CN104078648A (en) Secondary battery
WO2017026268A1 (en) Negative electrode for secondary battery and production method therefor, secondary battery and production method therefor, battery pack, electric vehicle, power storage system, electric tool and electronic device
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP6566130B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
CN108370064B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
US10868327B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP7439834B2 (en) Negative electrode for secondary batteries and secondary batteries
WO2017098850A1 (en) Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2021010085A1 (en) Secondary battery
CN110720149B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6874777B2 (en) Negative electrodes for secondary batteries, secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
JP6849066B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
WO2021079842A1 (en) Secondary battery
WO2021199484A1 (en) Secondary battery
WO2021085205A1 (en) Secondary battery and battery pack
JP7327507B2 (en) secondary battery
WO2021187068A1 (en) Secondary cell
WO2021131742A1 (en) Secondary battery
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2021192402A1 (en) Secondary battery
WO2021044859A1 (en) Electrolyte solution for secondary batteries, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840257

Country of ref document: EP

Kind code of ref document: A1