WO2017098850A1 - Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device - Google Patents

Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device Download PDF

Info

Publication number
WO2017098850A1
WO2017098850A1 PCT/JP2016/083031 JP2016083031W WO2017098850A1 WO 2017098850 A1 WO2017098850 A1 WO 2017098850A1 JP 2016083031 W JP2016083031 W JP 2016083031W WO 2017098850 A1 WO2017098850 A1 WO 2017098850A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
carbonate
copolymer
weight
electrolyte layer
Prior art date
Application number
PCT/JP2016/083031
Other languages
French (fr)
Japanese (ja)
Inventor
洋樹 三田
一正 武志
修平 杉田
愛子 中村
窪田 忠彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017098850A1 publication Critical patent/WO2017098850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present technology relates to an electrolyte layer for a secondary battery including an electrolytic solution and a polymer compound, a secondary battery including the electrolyte layer for the secondary battery, a battery pack using the secondary battery, an electric vehicle, and a power storage system.
  • the present invention relates to electric tools and electronic devices.
  • Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses. Examples of other applications are battery packs that are detachably mounted on electronic devices, electric vehicles such as electric cars, power storage systems such as household power servers, and electric tools such as electric drills.
  • the secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode, and the electrolyte solution is generally mounted on the secondary battery in a state of being impregnated in a separator.
  • the electrolytic solution may be mounted on the secondary battery while being held by the polymer compound.
  • the secondary battery in this case includes an electrolyte layer that is a so-called gel electrolyte, and in the secondary battery using the electrolyte layer, leakage of the electrolyte is prevented.
  • the electrolyte layer for a secondary battery includes an electrolytic solution and a copolymer, and the copolymer is a parcel represented by each of the following formulas (1) and (2). It contains at least one of fluoro unsaturated compounds as a component.
  • R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms.
  • R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.
  • a secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolyte layer, and the electrolyte layer has the same configuration as the electrolyte layer for a secondary battery according to the embodiment of the present technology described above. It is.
  • Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
  • the “monovalent perfluorohydrocarbon group” is a group in which all hydrogen groups (—H) of monovalent hydrocarbon groups are substituted with fluorine groups (—F).
  • the “valent hydrocarbon group” is a general term for monovalent groups composed of carbon (C) and hydrogen (H).
  • the copolymer is composed of at least one of the perfluorounsaturated compounds represented by Formula (1) and Formula (2) as a component.
  • the same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 2 is a cross-sectional view of a wound electrode body taken along line II-II shown in FIG.
  • FIG. 4 is a block diagram illustrating a configuration of the battery pack illustrated in FIG. 3.
  • It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery.
  • It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery.
  • It is sectional drawing showing the structure of the secondary battery (coin type) for a test.
  • Secondary battery 1-1 Configuration of secondary battery 1-1-1. Overall configuration 1-1-2. Positive electrode 1-1-3. Negative electrode 1-1-4. Separator 1-1-5. Electrolyte layer (electrolyte layer for secondary battery) 1-2. Operation of secondary battery 1-3. Manufacturing method of secondary battery 1-4. Action and effect of secondary battery Applications of secondary batteries 2-1. Battery pack (single cell) 2-2. Battery pack (assembled battery) 2-3. Electric vehicle 2-4. Electric power storage system 2-5. Electric tool
  • FIG. 1 shows a perspective configuration of the secondary battery.
  • FIG. 2 shows a cross-sectional configuration of the spirally wound electrode body 10 along the line II-II shown in FIG.
  • the secondary battery described here is a secondary battery in which the capacity of the negative electrode 14 can be obtained by occluding and releasing the electrode reactant, and has a so-called laminate film type battery structure.
  • the “electrode reactant” is a substance involved in the electrode reaction, and for example, lithium (or lithium ion) in a lithium ion secondary battery in which battery capacity is obtained by occlusion and release of lithium (Li).
  • lithium or lithium ion
  • a lithium ion secondary battery in which battery capacity is obtained by occlusion and release of lithium (Li).
  • the secondary battery of this technique is a lithium ion secondary battery is mentioned as an example.
  • a wound electrode body 10 that is a battery element is housed inside a film-shaped exterior member 20.
  • a positive electrode 13 and a negative electrode 14 stacked via a separator 15 and an electrolyte layer 16 are wound.
  • a positive electrode lead 11 is attached to the positive electrode 13
  • a negative electrode lead 12 is attached to the negative electrode 14.
  • the outermost peripheral part of the wound electrode body 10 is protected by a protective tape 17.
  • the positive electrode lead 11 is led out from the inside of the exterior member 20 to the outside, for example.
  • the positive electrode lead 11 includes any one type or two or more types of conductive materials such as aluminum (Al).
  • the negative electrode lead 12 is led out in the same direction as the positive electrode lead 11 from the inside of the exterior member 20 to the outside.
  • the negative electrode lead 12 includes, for example, one or more of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. Both the conductive materials are, for example, in a thin plate shape or a mesh shape.
  • the exterior member 20 is, for example, a single film that can be folded in the direction of the arrow R shown in FIG. 1, and a part of the exterior member 20 is for storing the wound electrode body 10. A depression is provided.
  • the exterior member 20 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, the exterior member 20 is folded so that the fusion layers face each other with the wound electrode body 10 therebetween, and the outer peripheral edges of the fusion layer are fused. However, the exterior member 20 may be two laminated films bonded together with an adhesive or the like.
  • the fusing layer includes, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene.
  • the metal layer includes, for example, any one or more of aluminum foils.
  • the surface protective layer includes, for example, any one kind or two or more kinds of films such as nylon and polyethylene terephthalate.
  • the exterior member 20 is an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 20 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
  • an adhesion film 21 is inserted between the exterior member 20 and the positive electrode lead 11 to prevent intrusion of outside air. Further, for example, an adhesive film 21 is inserted between the exterior member 20 and the negative electrode lead 12.
  • the adhesion film 21 includes one or more of materials having adhesion to both the positive electrode lead 11 and the negative electrode lead 12.
  • the material having this adhesion is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
  • the positive electrode 13 includes a positive electrode current collector 13A and a positive electrode active material layer 13B provided on the positive electrode current collector 13A.
  • the positive electrode active material layer 13B may be provided only on one side of the positive electrode current collector 13A, or may be provided on both sides of the positive electrode current collector 13A.
  • FIG. 2 shows a case where, for example, the positive electrode active material layer 13B is provided on both surfaces of the positive electrode current collector 13A.
  • the positive electrode current collector 13A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, it is metal materials, such as aluminum, nickel, and stainless steel, and the alloy containing 2 or more types of the metal materials may be sufficient.
  • the positive electrode current collector 13A may be a single layer or a multilayer.
  • the positive electrode active material layer 13B includes one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material.
  • the positive electrode active material layer 13B may further include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode material is preferably one or more of lithium-containing compounds.
  • the type of the lithium-containing compound is not particularly limited, but among them, a lithium-containing composite oxide and a lithium-containing phosphate compound are preferable. This is because a high energy density can be obtained.
  • the “lithium-containing composite oxide” is an oxide containing any one or more of lithium and elements other than lithium (hereinafter referred to as “other elements”) as constituent elements.
  • the lithium-containing oxide has, for example, one or two or more crystal structures of a layered rock salt type and a spinel type.
  • the “lithium-containing phosphate compound” is a phosphate compound containing lithium and any one or more of the other elements as constituent elements.
  • This lithium-containing phosphate compound has, for example, any one kind or two or more kinds of crystal structures of the olivine type.
  • the type of other element is not particularly limited as long as it is any one or more of arbitrary elements (excluding lithium).
  • the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, the other element is more preferably any one or two or more metal elements of nickel, cobalt, manganese, iron, and the like. This is because a high voltage can be obtained.
  • lithium-containing composite oxide having a layered rock salt type crystal structure examples include compounds represented by the following formulas (1) to (3).
  • M1 is at least one of cobalt, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, zirconium, molybdenum, tin, calcium, strontium, and tungsten.
  • a to e are 0. .8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1 (However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
  • M2 is at least one of cobalt, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten.
  • A is the value of the fully discharged state.
  • Li a Co (1-b) M3 b O (2-c) F d (3) (M3 is at least one of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten. 0.8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2, and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
  • M4 is at least one of cobalt, nickel, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten. .9 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.6, 3.7 ⁇ c ⁇ 4.1, and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium varies depending on the charge / discharge state. , A is the value of the fully discharged state.
  • lithium-containing composite oxide having a spinel crystal structure is LiMn 2 O 4 .
  • lithium-containing phosphate compound having an olivine type crystal structure examples include a compound represented by the following formula (5).
  • Li a M5PO 4 (5) (M5 is at least one of cobalt, manganese, iron, nickel, magnesium, aluminum, boron, titanium, vanadium, niobium, copper, zinc, molybdenum, calcium, strontium, tungsten, and zirconium.
  • A is 0. .9 ⁇ a ⁇ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.
  • lithium-containing phosphate compound having an olivine type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the lithium-containing composite oxide may be a compound represented by the following formula (6).
  • the positive electrode material may be, for example, an oxide, a disulfide, a chalcogenide, a conductive polymer, or the like.
  • the oxide include titanium oxide, vanadium oxide, and manganese dioxide.
  • the disulfide include titanium disulfide and molybdenum sulfide.
  • An example of the chalcogenide is niobium selenide.
  • the conductive polymer include sulfur, polyaniline, and polythiophene.
  • the positive electrode material is not limited to the materials described above, and other materials may be used.
  • the positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound.
  • synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene.
  • polymer compound include polyvinylidene fluoride, polyacrylic acid, and polyimide.
  • the positive electrode conductive agent includes, for example, one or more of carbon materials.
  • the carbon material include graphite, carbon black, acetylene black, and ketjen black.
  • the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as the material has conductivity.
  • the negative electrode 14 includes a negative electrode current collector 14A and a negative electrode active material layer 14B provided on the negative electrode current collector 14A.
  • the negative electrode active material layer 14B may be provided on only one surface of the negative electrode current collector 14A, or may be provided on both surfaces of the negative electrode current collector 14A.
  • FIG. 2 shows a case where the negative electrode active material layer 14B is provided on both surfaces of the negative electrode current collector 14A, for example.
  • the negative electrode current collector 14A includes, for example, any one type or two or more types of conductive materials.
  • the kind of conductive material is not specifically limited, For example, it is metal materials, such as copper, aluminum, nickel, and stainless steel, and the alloy containing 2 or more types of the metal materials may be sufficient.
  • the negative electrode current collector 14A may be a single layer or multiple layers.
  • the surface of the negative electrode current collector 14A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 14B to the negative electrode current collector 14A. In this case, the surface of the negative electrode current collector 14A only needs to be roughened at least in a region facing the negative electrode active material layer 14A.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 14A by an electrolysis method in an electrolytic bath, the surface of the negative electrode current collector 14A is provided with irregularities.
  • a copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 14B includes any one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material.
  • the negative electrode active material layer 14B may further include any one type or two or more types of other materials such as a negative electrode binder and a negative electrode conductive agent. Details regarding the negative electrode binder and the negative electrode conductive agent are the same as, for example, details regarding the positive electrode binder and the positive electrode conductive agent.
  • the chargeable capacity of the negative electrode material is larger than the discharge capacity of the positive electrode 13 in order to prevent unintentional deposition of lithium metal on the negative electrode 14 during the charging. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 13.
  • the negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
  • Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite.
  • the (002) plane spacing for non-graphitizable carbon is preferably 0.37 nm or more
  • the (002) plane spacing for graphite is preferably 0.34 nm or less.
  • examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks.
  • the cokes include pitch coke, needle coke, petroleum coke and the like.
  • the organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature.
  • the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon.
  • the shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
  • the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
  • the metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them.
  • the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements.
  • the alloy may contain a nonmetallic element.
  • the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
  • the metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
  • silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
  • the material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them.
  • the simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
  • the alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more.
  • the compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
  • the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
  • silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2.
  • v in SiO v may be 0.2 ⁇ v ⁇ 1.4.
  • the alloy of tin for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more.
  • the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
  • the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
  • tin alloy and the tin compound include SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included.
  • the third constituent element includes, for example, any one or more of boron, carbon, aluminum, phosphorus (P), and the like. This is because when the Sn-containing material contains the second constituent element and the third constituent element, high battery capacity, excellent cycle characteristics, and the like can be obtained.
  • the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements.
  • the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
  • the SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reaction phase), excellent characteristics can be obtained due to the presence of the reaction phase. Of course, the reaction phase may include a low crystalline portion and an amorphous portion.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuK ⁇ ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred.
  • the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
  • the diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium
  • a reaction phase capable of reacting with lithium for example, by comparing X-ray diffraction charts before and after electrochemical reaction with lithium.
  • Such a reaction phase contains, for example, each of the constituent elements described above, and is considered to be low crystallization or amorphous mainly due to the presence of carbon.
  • the SnCoC-containing material it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed.
  • the bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al—K ⁇ ray or Mg—K ⁇ ray is used as the soft X-ray.
  • the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV.
  • the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference.
  • the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
  • This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon.
  • This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon
  • One kind or two or more kinds may be included as constituent elements.
  • SnCoC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • SnCoFeC-containing materials materials containing tin, cobalt, iron and carbon as constituent elements
  • the composition of the SnCoFeC-containing material is arbitrary.
  • the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%.
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the carbon content is 11.9% to 29.7% by mass
  • the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass
  • the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
  • the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example.
  • the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide.
  • the polymer compound include polyacetylene, polyaniline, and polypyrrole.
  • the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
  • Metal materials in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging.
  • the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both the carbon material and the metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
  • the negative electrode active material layer 14B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method).
  • the coating method is, for example, a method in which a particulate (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 14A.
  • the vapor phase method include a physical deposition method and a chemical deposition method.
  • a vacuum deposition method a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method.
  • the liquid phase method include an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the surface of the negative electrode current collector 14A.
  • the firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 14A using a coating method, and then the mixture is heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. is there.
  • the firing method include an atmosphere firing method, a reaction firing method, a hot press firing method, and the like.
  • the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is the electrical equivalent of the positive electrode. Greater than the chemical equivalent.
  • the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25 V or more, compared with the case where it is 4.20 V, even when the same positive electrode active material is used, the amount of lithium released per unit mass Therefore, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
  • the separator 15 is disposed between the positive electrode 13 and the negative electrode 14. Thereby, the positive electrode 13 and the negative electrode 14 are isolated via the separator 15.
  • the separator 15 allows lithium ions to pass through while preventing occurrence of a short circuit due to contact between the positive electrode 13 and the negative electrode 14.
  • the separator 15 includes, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films.
  • the synthetic resin contains, for example, one or more of polytetrafluoroethylene, polypropylene and polyethylene.
  • the separator 15 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on the base material layer. This is because the adhesiveness of the separator 15 to each of the positive electrode 13 and the negative electrode 14 is improved, so that the wound electrode body 10 is hardly distorted. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. The battery is less likely to swell.
  • the polymer compound layer may be provided only on one side of the base material layer, or may be provided on both sides of the base material layer.
  • This polymer compound layer contains, for example, any one or more of polymer compounds such as polyvinylidene fluoride. This is because polyvinylidene fluoride is excellent in physical strength and electrochemically stable.
  • a solution in which the polymer compound is dissolved with an organic solvent or the like is applied to the substrate layer, and then the substrate layer is dried.
  • the base material layer may be dried.
  • the electrolyte layer 16 includes an electrolytic solution and a polymer compound, and in the electrolyte layer 16, the electrolytic solution is held by the polymer compound. That is, the electrolyte layer 16 described here is a so-called gel electrolyte.
  • the electrolyte layer 16 is used because high ion conductivity (for example, 1 mS / cm or more at room temperature) can be obtained and leakage of the electrolyte can be prevented.
  • the polymer compound includes a specific copolymer, and the copolymer includes one or both of perfluoro unsaturated compounds represented by the following formulas (1) and (2). It is included as a component (polymerization unit).
  • R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms.
  • R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.
  • the copolymer contains a perfluoro unsaturated compound as a component means that two or more raw materials (monomers) containing the perfluoro unsaturated compound are used and a polymerization reaction of the two or more raw materials is performed. It means that a copolymer is formed.
  • first perfluoro unsaturated compound perfluoro unsaturated compound
  • second perfluoro unsaturated compound perfluoro unsaturated compound
  • the first perfluoro unsaturated compound and the second perfluoro unsaturated compound are collectively referred to as “perfluoro unsaturated compound”.
  • the copolymer that contains the perfluoro unsaturated compound as a component is referred to as a “specific copolymer”.
  • the specific copolymer described here is a so-called random copolymer. Accordingly, the sequence (linkage) of components (monomers) such as perfluoro unsaturated compounds in the specific copolymer is not particularly limited.
  • the polymer compound contains the specific copolymer, as compared with the case where the polymer compound does not contain the specific copolymer, the liquid retention of the electrolyte layer 16 is improved, and the electrolyte layer 16 This is because the physical strength (shape stability) is improved. Thereby, high ion conductivity is obtained in the electrolyte layer 16, and the electrolyte layer 16 is not easily destroyed even when the secondary battery is charged and discharged. Therefore, even if the secondary battery is charged and discharged under severe conditions such as in a high temperature environment, the discharge capacity is unlikely to decrease.
  • the “monovalent perfluorohydrocarbon group” is a group in which all of the monovalent hydrocarbon groups are substituted with fluorine groups as described above.
  • the “monovalent hydrocarbon group” is a general term for monovalent groups composed of carbon and hydrogen.
  • the monovalent perfluorohydrocarbon group may be linear or branched having one or more side chains.
  • the monovalent perfluorohydrocarbon group may be an unsaturated group containing a carbon-carbon multiple bond or a saturated group not containing a carbon-carbon multiple bond.
  • Examples of the carbon-carbon multiple bond include a carbon-carbon double bond (> C ⁇ C ⁇ ) and a carbon-carbon triple bond (—C ⁇ C—).
  • the type of monovalent perfluorohydrocarbon group is not particularly limited.
  • the monovalent perfluorohydrocarbon group is, for example, a perfluoroalkyl group, a perfluoroalkenyl group, a perfluoroalkynyl group, a perfluorocycloalkyl group, a perfluoroaryl group, or a combination of two or more thereof.
  • a monovalent group hereinafter referred to as “monovalent linking group”.
  • the monovalent linking group is, for example, a group described below. This is a group in which a perfluoroalkyl group and a perfluoroalkenyl group are bonded. This is a group in which a perfluoroalkyl group and a perfluoroalkynyl group are bonded. This is a group in which a perfluoroalkenyl group and a perfluoroalkynyl group are bonded.
  • a perfluoroalkyl group, a perfluoroalkenyl group, or a perfluoroalkynyl group is a group in which one or two or more perfluorocycloalkyl groups are bonded to each other.
  • the carbon number of the monovalent perfluorohydrocarbon group is not particularly limited.
  • the perfluoroalkyl group has, for example, 1 to 10 carbon atoms.
  • the carbon number of each of the perfluoroalkenyl group and the perfluoroalkynyl group is, for example, 2 to 10.
  • the carbon number of each of the perfluorocycloalkyl group and the perfluoroaryl group is, for example, 6-18. This is because the specific copolymer can be easily obtained.
  • the perfluorounsaturated compound is difficult to undergo a polymerization reaction due to steric hindrance or the like, and thus it is difficult to form a specific copolymer using the polymerization reaction.
  • the carbon number is in the above-described range, the perfluorounsaturated compound easily undergoes a polymerization reaction, so that the specific copolymer is easily formed using the polymerization reaction.
  • the perfluoroalkyl group includes, for example, a perfluoromethyl group (—CF 3 ), a perfluoroethyl group (—C 2 F 5 ), a perfluoropropyl group (—C 3 F 7 ), and a perfluoro-t-butyl group ( -C (-CF 3 ) 2 -CF 3 ).
  • perfluoroalkenyl group examples include a perfluorovinyl group (—CF ⁇ CF 2 ) and a perfluoroallyl group (—CF 2 —CF ⁇ CF 2 ).
  • perfluoroalkynyl group is a perfluoroethynyl group (—C ⁇ CF).
  • perfluorocycloalkyl group examples include a perfluorocyclopropyl group, a perfluorocyclobutyl group, a perfluorocyclopentyl group, a perfluorocyclohexyl group, a perfluorocycloheptyl group, and a perfluorocyclooctyl group.
  • perfluoroaryl group examples include a perfluorophenyl group and a perfluoronaphthyl group.
  • a specific example of the monovalent linking group is a perfluorobenzyl group.
  • the carbon number of the monovalent perfluorohydrocarbon group which is R1 is 2 or more. This is because, as described above, the liquid retaining property of the electrolyte layer 16 is improved and the physical strength of the electrolyte layer 16 is also improved as compared with the case where the carbon number of R1 is 1. Specifically, even if R1 is a monovalent perfluorohydrocarbon group, if the monovalent perfluorohydrocarbon group has 1 carbon, the carbon number is too small, and thus sufficient. The liquid retaining property of the electrolyte layer 16 cannot be obtained, and sufficient physical strength of the electrolyte layer 16 cannot be obtained.
  • R1 is a monovalent perfluorohydrocarbon group and the carbon number of the monovalent perfluorohydrocarbon group is 2 or more, the number of carbons is secured, so that a sufficient electrolyte layer In addition to the 16 liquid retention, sufficient physical strength of the electrolyte layer 16 is also obtained.
  • R1 is preferably a perfluoroalkyl group.
  • the carbon number of the perfluoroalkyl group as R1 is not particularly limited as long as it is 2 or more, but it is preferably 2 to 10 and more preferably 2 to 4. This is because the specific copolymer can be obtained more easily because the first perfluoro unsaturated compound is more easily polymerized. Further, the liquid retention property of the electrolyte layer 16 is further improved, and the physical strength of the electrolyte layer 16 is further improved.
  • the carbon number of the monovalent perfluorohydrocarbon group which is R2 is 1 or more. If the carbon number of R2 is 1 or more, sufficient liquid retention of the electrolyte layer 16 is obtained, and sufficient physical strength of the electrolyte layer 16 is also obtained.
  • R2 is preferably a perfluoroalkyl group.
  • the carbon number of the perfluoroalkyl group as R2 is not particularly limited as long as it is 1 or more, but among them, 1 to 10 is preferable and 1 to 3 is more preferable. This is because the specific copolymer can be obtained more easily because the second perfluorounsaturated compound is more easily polymerized. Further, the liquid retention property of the electrolyte layer 16 is further improved, and the physical strength of the electrolyte layer 16 is further improved.
  • the configuration (composition) of the specific copolymer is not particularly limited as long as it contains a perfluoro unsaturated compound as a component.
  • the copolymerization amount of the perfluoro unsaturated compound in the specific copolymer is not particularly limited.
  • the weight average molecular weight of the specific copolymer is not particularly limited.
  • the specific copolymer includes one or more compounds other than the perfluoro unsaturated compound (hereinafter referred to as “other compounds”) as components.
  • the type of this other compound is not particularly limited as long as it is a compound containing an unsaturated bond (carbon-carbon double bond) for polymerization reaction.
  • the other compound is preferably one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. That is, the specific copolymer may contain vinylidene fluoride as a component together with the perfluoro unsaturated compound, may contain an oxygen-containing unsaturated compound as a component together with the perfluoro unsaturated compound, A vinylidene fluoride and an oxygen-containing unsaturated compound may be included as components together with the unsaturated compound. This is because the physical strength and electrochemical stability of the electrolyte layer 16 are improved.
  • Oxygen-containing unsaturated compound is a general term for compounds containing an unsaturated bond (carbon double bond) for polymerization reaction and oxygen (O) as a constituent element.
  • the kind of the oxygen-containing unsaturated compound is not particularly limited, and examples thereof include chain unsaturated dicarboxylic acid esters and chain unsaturated glycidyl ethers.
  • the “chain unsaturated dicarboxylic acid ester” is a chain dicarboxylic acid ester containing an unsaturated bond for polymerization reaction.
  • the chain unsaturated dicarboxylic acid ester may be a chain unsaturated dicarboxylic acid monoester or a chain unsaturated dicarboxylic acid diester.
  • the “chain unsaturated glycidyl ether” is a glycidyl ether containing an unsaturated bond for polymerization reaction.
  • chain unsaturated dicarboxylic acid ester is not particularly limited.
  • chain unsaturated dicarboxylic acid monoesters include, for example, monomethyl maleate, monoethyl maleate, monopropyl maleate, monomethyl citraconic acid, monoethyl citraconic acid, monopropyl citraconic acid, monomethyl dimethyl maleate and diethyl maleate. Any one or more of monomethyl acid and the like.
  • the chain unsaturated dicarboxylic acid diester is, for example, any one of dimethyl maleate, diethyl maleate, dipropyl maleate, dimethyl citraconic acid, diethyl citraconic acid, dipropyl citraconic acid, dimethyl dimethyl maleate, dimethyl diethyl maleate and the like.
  • One type or two or more types are examples.
  • the type of chain unsaturated glycidyl ether is not particularly limited, and examples thereof include vinyl monomers containing one or more epoxy groups.
  • the chain unsaturated glycidyl ether includes, for example, any one or more of allyl glycidyl ether, methallyl glycidyl ether, vinyl glycidyl ether, crotonic acid glycidyl ether, and the like.
  • the copolymerization amount of each component in the specific copolymer is not particularly limited.
  • the copolymerization amount (% by weight) of each component when the specific copolymer contains vinylidene fluoride as a component together with the perfluoro unsaturated compound is, for example, as follows.
  • the copolymerization amount P1 of the perfluoro unsaturated compound in the specific copolymer satisfies 3% by weight ⁇ P1 ⁇ 50% by weight.
  • the copolymerization amount P2 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ⁇ P2 ⁇ 97% by weight. This is because the amount of copolymerization P1 and P2 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
  • the copolymerization amount (% by weight) of each component in the case where the specific copolymer contains an oxygen-containing unsaturated compound as a component together with the perfluoro unsaturated compound is, for example, as follows.
  • the copolymerization amount P3 of the perfluoro unsaturated compound in the specific copolymer satisfies 97% by weight ⁇ P3 ⁇ 100% by weight.
  • the copolymerization amount P4 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight ⁇ P4 ⁇ 3% by weight. This is because the amount of copolymerization P3 and P4 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
  • the copolymerization amount (% by weight) of each component in the case where the specific copolymer includes a vinylidene fluoride and an oxygen-containing unsaturated compound together with the perfluoro unsaturated compound is, for example, as follows.
  • the copolymerization amount P5 of the perfluoro unsaturated compound in the specific copolymer satisfies 1% by weight ⁇ P5 ⁇ 50% by weight.
  • the copolymerization amount P6 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ⁇ P6 ⁇ 97% by weight.
  • the copolymerization amount P7 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight ⁇ P7 ⁇ 3% by weight. This is because the amount of copolymerization P5 to P7 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
  • the other compound may be, for example, hexafluoropropylene. That is, the specific copolymer may contain hexafluoropropylene as a component together with the perfluoro unsaturated compound. This is because the ionic conductivity of the specific copolymer is improved. However, it is preferable that the specific copolymer contains hexafluoropropylene as a component together with a perfluoro unsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. This is because a copolymer containing hexafluoropropylene as a component together with one or both of vinylidene fluoride and an oxygen-containing unsaturated compound is superior in physical strength and more electrochemically stable.
  • the amount of copolymerization of each component in the specific copolymer is not particularly limited.
  • the copolymerization amount (% by weight) of each component is, for example, Is as follows.
  • the copolymerization amount P8 of the perfluoro unsaturated compound in the specific copolymer satisfies 1% by weight ⁇ P8 ⁇ 50% by weight.
  • the copolymerization amount P9 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ⁇ P9 ⁇ 97% by weight.
  • the copolymerization amount P10 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight ⁇ P10 ⁇ 3% by weight.
  • the copolymerization amount P11 of hexafluoropropylene in the specific copolymer satisfies 0% by weight ⁇ P11 ⁇ 20% by weight. This is because the copolymerization amount P8 to P11 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
  • the other compound may be, for example, one or both of trifluoroethylene and chlorotrifluoroethylene.
  • the specific copolymer contains, as a component, one or both of trifluoroethylene and chlorotrifluoroethylene together with a perfluorounsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. It is preferable that Alternatively, the specific copolymer includes a perfluoro unsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound, hexafluoropropylene, and one or both of trifluoroethylene and chlorotrifluoroethylene. It is preferable that both are included as components.
  • a copolymer containing one or both of vinylidene fluoride and an oxygen-containing unsaturated compound and hexafluoropropylene together with one or both of trifluoroethylene and chlorotrifluoroethylene as a component is superior in physical strength. Because it is more electrochemically stable.
  • the copolymerization amount of one or both of trifluoroethylene and chlorotrifluoroethylene in the specific copolymer is not particularly limited.
  • the high molecular compound may contain any 1 type or 2 or more types of other polymers with the above-mentioned specific copolymer.
  • the other polymer may be a homopolymer or a copolymer, for example.
  • Homopolymers include, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl Examples thereof include methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
  • the copolymer is, for example, a copolymer that does not contain a perfluoro unsaturated compound as a component.
  • the copolymer is, for example, a copolymer of vinylidene fluoride and one or more other compounds (excluding vinylidene fluoride). Details regarding the other compounds described here are as described above except that they are compounds other than vinylidene fluoride.
  • the following method may be used.
  • the electrolyte layer 16 is taken out by disassembling the secondary battery.
  • a high molecular compound (specific copolymer) is extracted from the electrolyte layer 16 using a reprecipitation method.
  • the specific copolymer is analyzed using an analysis method such as a nuclear magnetic resonance (NMR) method.
  • NMR nuclear magnetic resonance
  • the electrolytic solution contains a solvent and an electrolyte salt.
  • the electrolytic solution may further include any one or more of other materials such as additives.
  • the solvent includes one or more of non-aqueous solvents such as organic solvents.
  • the electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
  • non-aqueous solvent examples include carbonate esters (cyclic carbonate esters and chain carbonate esters), lactones, chain carboxylate esters, and nitriles. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate
  • examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate.
  • lactone examples include ⁇ -butyrolactone and ⁇ -valerolactone.
  • carboxylic acid ester examples include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate.
  • Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
  • non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred. This is because better battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ⁇ 1 mPas).
  • -A combination with s is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
  • the solvent is any one or two or more of unsaturated cyclic carbonate, halogenated carbonate, sulfonate, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound and phosphate ester. May be included. This is because the chemical stability of the electrolytic solution is improved.
  • the unsaturated cyclic carbonate is a cyclic carbonate containing one or more unsaturated bonds (carbon-carbon double bond or carbon-carbon triple bond).
  • examples of the unsaturated cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
  • the content of the unsaturated cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
  • the halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element.
  • cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate.
  • the content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
  • sulfonate ester examples include 1,3-propane sultone and 1,3-propene sultone.
  • the content of the sulfonic acid ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride.
  • Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride.
  • Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid.
  • the content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more).
  • This dinitrile compound includes, for example, succinonitrile (NC-C 2 H 4 -CN), glutaronitrile (NC-C 3 H 6 -CN), adiponitrile (NC-C 4 H 8 -CN) and phthalonitrile ( NC-C 6 H 4 -CN).
  • the content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more).
  • This diisocyanate compound is, for example, hexamethylene diisocyanate (OCN—C 6 H 12 —NCO).
  • the content of the diisocyanate compound in the solvent is not particularly limited and is, for example, 0.5% by weight to 5% by weight.
  • phosphate ester examples include trimethyl phosphate and triethyl phosphate.
  • the content of the phosphate ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt includes, for example, any one kind or two or more kinds of salts such as lithium salt.
  • the electrolyte salt may contain a salt other than the lithium salt, for example.
  • the salt other than lithium include salts of light metals other than lithium.
  • lithium salt examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl.
  • Lithium borate LiB (C 6 H 5 ) 4
  • lithium methanesulfonate LiCH 3 SO 3
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium tetrachloroaluminate LiAlCl 4
  • hexafluoride examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . This is because a higher effect can be obtained because the internal resistance is lowered.
  • the content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
  • the electrolyte layer 16 may further include any one type or two or more types of other materials.
  • the other material is, for example, any one type or two or more types among a plurality of inorganic particles.
  • the plurality of inorganic particles mainly play a role of improving the safety of the secondary battery.
  • the separator 15 is less likely to be oxidized during charge / discharge of the secondary battery. Thereby, since the positive electrode 13 and the negative electrode 14 become difficult to short-circuit, the safety
  • the plurality of inorganic particles include any one or more of inorganic materials such as ceramic (insulating material).
  • the ceramic include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), and magnesium oxide (MgO 2 ). This is because the occurrence of a short circuit is sufficiently suppressed because the oxidation of the separator 15 is sufficiently suppressed.
  • the average particle diameter (median diameter D50) and specific surface area (BET specific surface area) of the plurality of inorganic particles are not particularly limited. Specifically, the average particle diameter is, for example, 0.1 ⁇ m to 2.5 ⁇ m.
  • the specific surface area is, for example, 0.5 m 2 / g to 11 m 2 / g.
  • the content of the plurality of inorganic particles in the electrolyte layer 16 is not particularly limited and can be arbitrarily set.
  • This secondary battery operates as follows, for example.
  • the secondary battery including the electrolyte layer 16 is manufactured by, for example, the following three types of procedures.
  • the positive electrode 13 and the negative electrode 14 are prepared.
  • the positive electrode 13 When the positive electrode 13 is manufactured, first, a positive electrode active material, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed or dissolved in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Finally, after applying the positive electrode mixture slurry on both surfaces of the positive electrode current collector 13A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 13B. After that, the positive electrode active material layer 13B may be compression molded using a roll press machine or the like. In this case, the compression molding process may be performed while heating the positive electrode active material layer 13B, or the compression molding process may be repeated a plurality of times.
  • the negative electrode active material layer 14B is formed on both surfaces of the negative electrode current collector 14A by the same manufacturing procedure as that of the positive electrode 13 described above. Specifically, a negative electrode mixture in which a negative electrode active material, a negative electrode binder, a negative electrode conductive agent, and the like are mixed is dispersed or dissolved in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 14A and drying to form the negative electrode active material layer 14B, the negative electrode active material layer 14B is formed using a roll press machine or the like as necessary. Compression molding.
  • a sol precursor solution is prepared.
  • this specific copolymer for example, two or more monomers (including perfluoro unsaturated compounds) as raw materials are used, and the two or more monomers are subjected to a polymerization reaction.
  • the copolymerization amount of each component in the specific copolymer can be adjusted according to the input amount of each monomer.
  • the gel-like electrolyte layer 16 is formed and the precursor solution is applied to the surface of the negative electrode 14 and then the precursor solution. Is dried to form the gel electrolyte layer 16.
  • the positive electrode lead 11 is attached to the positive electrode current collector 13A using a welding method or the like
  • the negative electrode lead 12 is attached to the negative electrode current collector 14A using a welding method or the like.
  • the wound electrode body 10 is manufactured by winding the positive electrode 13 and the negative electrode 14 laminated via the separator 15 and the electrolyte layer 16.
  • the protective tape 17 is attached to the outermost peripheral portion of the wound electrode body 10.
  • the outer peripheral edge portions of the exterior member 20 are bonded to each other using a heat fusion method or the like, thereby winding the exterior member 20 inside.
  • the rotating electrode body 10 is enclosed.
  • the adhesion film 21 is inserted between the positive electrode lead 11 and the exterior member 20, and the adhesion film 21 is inserted between the negative electrode lead 12 and the exterior member 20.
  • the positive electrode lead 11 is attached to the positive electrode 13 and the negative electrode lead 12 is attached to the negative electrode 14.
  • a wound body that is a precursor of the wound electrode body 10 is produced by winding the positive electrode 13 and the negative electrode 14 stacked via the separator 15.
  • the protective tape 17 is affixed on the outermost periphery part of a wound body.
  • the exterior member 20 is folded so as to sandwich the wound body, the outer peripheral edge portions of the exterior member 20 are bonded to each other using a heat fusion method or the like, so that the wound body is placed inside the exterior member 20. Storing.
  • the electrolytic solution the raw material of the polymer compound (including two or more types of monomers that are the raw material of the specific copolymer), the polymerization initiator, and a plurality of non-particles and a polymerization inhibitor as necessary
  • An electrolyte composition is prepared by mixing with other materials.
  • the electrolyte composition is injected into the bag-shaped exterior member 20, the exterior member 20 is sealed using a heat fusion method or the like.
  • a polymer compound containing a specific copolymer is formed by thermally polymerizing the raw material of the polymer compound.
  • the electrolytic solution is impregnated in the polymer compound, and the polymer compound is gelled, so that the electrolyte layer 16 is formed.
  • a wound body is produced by the same procedure as the above-described second procedure, except that the separator 15 in which the polymer compound layer containing the specific copolymer is formed on both sides is used.
  • the body is stored inside the bag-shaped exterior member 20.
  • a solution in which a polymer compound containing a specific copolymer is dissolved in an organic solvent or the like is applied to both surfaces of the separator 15, and then the solution is dried. Subsequently, after injecting an electrolyte into the exterior member 20, the opening of the exterior member 20 is sealed using a thermal fusion method or the like.
  • the separator 15 is brought into close contact with the positive electrode 13 and the negative electrode 14 through the polymer compound layer by heating the outer member 20 while applying a load to the outer member 20. Accordingly, the polymer compound in the polymer compound layer is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 16 is formed.
  • the polymer compound contained in the electrolyte layer 16 contains the specific copolymer.
  • the liquid retaining property of the electrolyte layer 16 is improved and the physical strength (shape stability) of the electrolyte layer 16 is also improved, so that high ionic conductivity is obtained in the electrolyte layer 16.
  • the electrolyte layer 16 is not easily destroyed. Therefore, even when the secondary battery is charged / discharged under severe conditions such as in a high temperature environment, the discharge capacity is unlikely to decrease, so that excellent battery characteristics can be obtained.
  • R1 shown in Formula (1) is a perfluoroalkyl group and the perfluoroalkyl group has 2 to 10 carbon atoms
  • the specific copolymer can be easily obtained, and the electrolyte layer 16 can be easily obtained. Since sufficient liquid retention and physical strength can be obtained, a higher effect can be obtained.
  • R2 shown in Formula (2) is a perfluoroalkyl group and the perfluoroalkyl group has 1 to 10 carbon atoms, the specific copolymer can be easily obtained and the electrolyte layer 16 can be easily obtained. Since sufficient liquid retention and physical strength can be obtained, a higher effect can be obtained.
  • the specific copolymer contains one or both of vinylidene fluoride and an oxygen-containing unsaturated compound as a component, the physical strength and electrochemical stability of the specific copolymer are improved. A higher effect can be obtained.
  • the copolymerization amount P1 of the perfluorounsaturated compound satisfies 3 wt% ⁇ P1 ⁇ 50 wt%, and vinylidene fluoride If the copolymerization amount P2 satisfies 50% by weight ⁇ P2 ⁇ 97% by weight, a higher effect can be obtained.
  • the copolymerization amount P3 of the perfluorounsaturated compound satisfies 97 wt% ⁇ P3 ⁇ 100 wt% and contains oxygen. If the copolymerization amount P4 of the unsaturated compound satisfies 0% by weight ⁇ P4 ⁇ 3% by weight, a higher effect can be obtained.
  • the copolymerization amount P5 of the perfluorounsaturated compound satisfies 1 wt% ⁇ P5 ⁇ 50 wt%. If the copolymerization amount P6 of vinylidene fluoride satisfies 50% by weight ⁇ P6 ⁇ 97% by weight and the copolymerization amount P7 of the oxygen-containing unsaturated compound satisfies 0% by weight ⁇ P7 ⁇ 3% by weight, A higher effect can be obtained.
  • the specific copolymer contains hexafluoropropylene as a component, since the ionic conductivity of the electrolyte layer 16 is improved, a higher effect can be obtained.
  • the copolymerization amount P8 of the perfluorounsaturated compound is 1% by weight ⁇ P8 ⁇ 50% by weight.
  • the copolymerization amount P9 of vinylidene fluoride satisfies 50% by weight ⁇ P9 ⁇ 97% by weight
  • the copolymerization amount P10 of the oxygen-containing unsaturated compound satisfies 0% by weight ⁇ P10 ⁇ 3% by weight. If the copolymerization amount P11 of hexafluoropropylene satisfies 0% by weight ⁇ P11 ⁇ 20% by weight, a higher effect can be obtained.
  • the electrolyte layer 16 contains a plurality of inorganic particles, the safety is improved, so that a higher effect can be obtained.
  • the plurality of inorganic particles contain aluminum oxide or the like, a higher effect can be obtained.
  • Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • the auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary.
  • the type of main power source is not limited to the secondary battery.
  • the usage of the secondary battery is, for example, as follows.
  • Electronic devices including portable electronic devices
  • portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
  • It is a portable living device such as an electric shaver.
  • Storage devices such as backup power supplies and memory cards.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is mounted on a notebook computer or the like as a detachable power source.
  • Medical electronic devices such as pacemakers and hearing aids.
  • An electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is an electric power storage system such as a home battery system that stores electric power in case of an emergency.
  • the secondary battery may be used for other purposes.
  • the battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above.
  • the power storage system is a system that uses a secondary battery as a power storage source.
  • a secondary battery which is a power storage source
  • An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source.
  • An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
  • FIG. 3 shows a perspective configuration of a battery pack using single cells.
  • FIG. 4 shows a block configuration of the battery pack shown in FIG. FIG. 3 shows a state where the battery pack is disassembled.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone.
  • the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 that is connected to the power supply 111.
  • a positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111.
  • a protection circuit (PCM: Protection Circuit Module) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115.
  • the circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
  • the controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111.
  • the control unit 121 cuts off the discharge current by cutting the switch unit 122.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121.
  • the temperature detection unit 124 includes a temperature detection element such as a thermistor, for example.
  • the temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
  • FIG. 5 shows a block configuration of a battery pack using an assembled battery.
  • This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60.
  • the housing 60 includes, for example, a plastic material.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. .
  • the power source 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62.
  • the power source 62 can only discharge through the discharging diode.
  • the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62.
  • the power source 62 can only be charged via the charging diode.
  • the switch control unit 67 interrupts the discharge current.
  • the overcharge detection voltage is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is, for example, 2.4V ⁇ 0.1V.
  • the memory 68 includes, for example, an EEPROM which is a nonvolatile memory.
  • the memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
  • the temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
  • FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units.
  • the motor 77 serving as the conversion unit is used as a power source
  • the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power.
  • 77 is driven.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
  • the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
  • the control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more types of secondary batteries of the present technology.
  • the power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening).
  • the various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
  • FIG. 7 shows a block configuration of the power storage system.
  • This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
  • the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89.
  • the power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater.
  • the private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator.
  • the electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle.
  • the centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power source 91 includes one or more types of secondary batteries of the present technology.
  • the smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
  • the power storage system for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93.
  • electric power is accumulated in the power source 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
  • the power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
  • the power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
  • FIG. 8 shows a block configuration of the electric power tool.
  • the electric tool described here is, for example, an electric drill.
  • This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool main body 98 includes, for example, a plastic material.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more types of secondary batteries of the present technology.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
  • a positive electrode active material LiCoO 2
  • a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductive agent Ketjen black
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone) to obtain a paste-like positive electrode mixture slurry.
  • a positive electrode mixture slurry was applied to one surface of a positive electrode current collector (15 ⁇ m thick aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried to form a positive electrode active material layer.
  • the positive electrode active material layer was compression molded using a roll press.
  • a negative electrode active material artificial graphite
  • a negative electrode binder polyvinylidene fluoride
  • an organic solvent N-methyl-2-pyrrolidone
  • a negative electrode mixture slurry was applied to one surface of a negative electrode current collector (15 ⁇ m thick copper foil) using a coating apparatus, and then the negative electrode mixture slurry was dried to form a negative electrode active material layer.
  • the negative electrode active material layer was compression molded using a roll press.
  • an electrolyte solution was prepared by dissolving an electrolyte salt (LiPF 6 ) in a solvent (ethylene carbonate and diethyl carbonate).
  • a solvent ethylene carbonate and diethyl carbonate
  • the mixed solution was treated with a homogenizer to uniformly disperse the polymer compound and the plurality of inorganic particles in the electrolytic solution, and then the mixed solution was stirred while being heated (75 ° C.). Subsequently, the mixed solution was further stirred (30 minutes to 1 hour) to obtain a sol-like precursor solution.
  • polymer compound (polymer) is as shown in Table 1.
  • VDF vinylidene fluoride
  • MMM monomethyl maleate
  • HFP hexafluoropropylene
  • PFU perfluoro unsaturated compound
  • “Type” indicates the type of the perfluoro unsaturated compound. Specifically, the first perfluoro unsaturated compound is indicated as “first”, and the second perfluoro unsaturated compound is indicated as “second”. “R1” indicates the type of R1 shown in Formula (1), and “R2” indicates the type of R2 shown in Formula (2).
  • the precursor solution was dried to form a gel electrolyte layer.
  • the gel-like electrolyte layer was formed by drying the precursor solution.
  • the test electrode 51 on which the electrolyte layer was formed was punched into a pellet, and then the test electrode 51 was accommodated in the outer can cup 54.
  • the counter electrode 53 on which the electrolyte layer was formed was punched into a pellet shape, and then the counter electrode 53 was accommodated in the outer can 52.
  • the test electrode 51 accommodated in the exterior cup 54 and the counter electrode 53 accommodated in the exterior can 52 are laminated through the separator 55 (7 ⁇ m thick porous polyolefin film), and then the gasket 56 is interposed.
  • the outer can 52 and the outer cup 54 were caulked. In this case, the electrolyte layer formed on the test electrode 51 and the electrolyte layer formed on the counter electrode 53 were opposed to each other with the separator 55 interposed therebetween.
  • Example 21 When a copolymer comprising vinylidene fluoride and an oxygen-containing unsaturated compound (monomethyl maleate) is used (Experimental Example 21) and when a homopolymer of vinylidene fluoride (polyvinylidene fluoride) is used (experiment) In Example 22), since the compatibility of the polymer compound was lowered, the electrolyte layer could not be formed. As a result, the capacity retention rate could not be measured.
  • the specific polymer contains vinylidene fluoride and an oxygen-containing unsaturated compound (monomethyl maleate) as a component together with the perfluoro unsaturated compound (Experimental Examples 1 to 10), a high capacity retention rate can be obtained. It was. In this case, the copolymerization amount P5 of the perfluoro unsaturated compound satisfies 1% by weight ⁇ P5 ⁇ 50% by weight, and the copolymerization amount P6 of vinylidene fluoride satisfies 50% by weight ⁇ P6 ⁇ 97% by weight. When the copolymerization amount P7 of the oxygen-containing unsaturated compound satisfies 0% by weight ⁇ P7 ⁇ 3% by weight, a sufficient capacity retention rate was obtained.
  • the specific copolymer contains vinylidene fluoride, an oxygen-containing unsaturated compound (monomethyl maleate) and hexafluoropropylene as components together with a perfluoro unsaturated compound (Experimental Examples 11 to 14), a high capacity A retention rate was obtained.
  • the copolymerization amount P8 of the perfluoro unsaturated compound satisfies 1% by weight ⁇ P8 ⁇ 50% by weight
  • the copolymerization amount P9 of vinylidene fluoride satisfies 50% by weight ⁇ P9 ⁇ 97% by weight.
  • the copolymerization amount P10 of the oxygen-containing unsaturated compound satisfies 0% by weight ⁇ P10 ⁇ 3% by weight, and the copolymerization amount P11 of hexafluoropropylene satisfies 0% by weight ⁇ P11 ⁇ 20% by weight. A sufficient capacity retention rate was obtained.
  • the present technique is not limited to the aspect demonstrated in embodiment and an Example, A various deformation
  • the case where the battery structure is a laminate film type and the battery element has a winding structure has been described as an example, but the present invention is not limited thereto.
  • the secondary battery of the present technology can be similarly applied to a case where the battery has other battery structures such as a cylindrical shape, a square shape, and a coin shape, and a case where the battery element has another structure such as a laminated structure.
  • the lithium ion secondary battery in which the capacity of the negative electrode can be obtained by occlusion and release of lithium has been described.
  • the secondary battery of the present technology may be a lithium metal secondary battery in which the capacity of the negative electrode can be obtained by precipitation and dissolution of lithium.
  • the secondary battery of the present technology reduces the capacity of the negative electrode material capable of occluding and releasing lithium from the capacity of the positive electrode.
  • a secondary battery capable of obtaining a capacity may be used.
  • the electrode reactant may be another group 1 element in the long-period periodic table such as sodium (Na) or potassium (K), or a long-period periodic table such as magnesium (Mg) or calcium (Ca). Group 2 elements may be used, or other light metals such as aluminum (Al) may be used.
  • the electrode reactant may be an alloy containing any one or more of the series of elements described above.
  • this technique can also take the following structures.
  • Next battery (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms.
  • R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  • R1 is a perfluoroalkyl group having 2 to 10 carbon atoms; R2 is a perfluoroalkyl group having 1 to 10 carbon atoms,
  • the copolymer further contains at least one of vinylidene fluoride and an oxygen-containing unsaturated compound as a component,
  • the oxygen-containing unsaturated compound includes at least one of a chain unsaturated dicarboxylic acid ester and a chain unsaturated glycidyl ether.
  • the copolymer includes the vinylidene fluoride and the oxygen-containing unsaturated compound as components,
  • the copolymerization amount P5 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ⁇ P5 ⁇ 50% by weight
  • the copolymerization amount P6 of the vinylidene fluoride in the copolymer satisfies 50% by weight ⁇ P6 ⁇ 97% by weight
  • the copolymerization amount P7 of the oxygen-containing unsaturated compound in the copolymer satisfies 0% by weight ⁇ P7 ⁇ 3% by weight.
  • the copolymer further contains hexafluoropropylene as a component, The secondary battery according to (3) or (4) above.
  • the copolymer includes the vinylidene fluoride, the oxygen-containing unsaturated compound and the hexafluoropropylene as components, The copolymerization amount P8 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ⁇ P8 ⁇ 50% by weight, The copolymerization amount P9 of the vinylidene fluoride in the copolymer satisfies 50% by weight ⁇ P9 ⁇ 97% by weight, The copolymerization amount P10 of the oxygen-containing unsaturated compound in the copolymer satisfies 0 wt% ⁇ P10 ⁇ 3 wt%, The copolymerization amount P11 of the hexafluoropropylene in the copolymer satisfies 0% by weight ⁇ P11 ⁇ 20% by weight
  • the electrolyte layer further includes a plurality of inorganic particles, The plurality of inorganic particles include at least one of aluminum oxide, zirconium oxide, titanium oxide, and magnesium oxide.
  • the electrolytic solution contains at least one of carbonate ester and lactone, The carbonate ester includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate,
  • the lactone includes at least one of ⁇ -butyrolactone and ⁇ -valerolactone,
  • the electrolytic solution contains at least one of unsaturated cyclic carbonate, halogenated carbonate, sulfonate, acid anhydride, dicyano compound, diisocyanate compound and phosphate ester
  • the unsaturated cyclic carbonate includes at least one of vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate
  • the halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and carbonic acid.
  • the sulfonate ester includes at least one of 1,3-propane sultone and 1,3-propene sultone
  • the acid anhydride includes at least one of succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride
  • the dicyano compound includes at least one of succinonitrile, glutaronitrile, adiponitrile, and phthalonitrile
  • the diisocyanate compound includes hexamethylene diisocyanate
  • the phosphate ester includes at least one of trimethyl phosphate and triethyl phosphate, The secondary battery according to any one of (1) to (8) above.
  • a lithium ion secondary battery The secondary battery according to any one of (1) to (9).
  • R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms.
  • R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.
  • a battery pack comprising: a switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit.
  • An electronic device comprising the secondary battery according to any one of (1) to (10) as a power supply source.

Abstract

This secondary battery is provided with a positive electrode, a negative electrode and an electrolyte layer; and the electrolyte layer contains an electrolyte solution and a copolymer that contains a perfluoro unsaturated compound as a component.

Description

二次電池用電解質層、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器Electrolyte layer for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
 本技術は、電解液および高分子化合物を含む二次電池用電解質層、その二次電池用電解質層を備えた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。 The present technology relates to an electrolyte layer for a secondary battery including an electrolytic solution and a polymer compound, a secondary battery including the electrolyte layer for the secondary battery, a battery pack using the secondary battery, an electric vehicle, and a power storage system. The present invention relates to electric tools and electronic devices.
 携帯電話機および携帯情報端末機器(PDA)などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。これに伴い、電源として、電池、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。 Various electronic devices such as mobile phones and personal digital assistants (PDAs) are widely used, and there is a demand for downsizing, weight reduction, and long life of the electronic devices. Accordingly, as a power source, development of a battery, in particular, a secondary battery that is small and lightweight and capable of obtaining a high energy density is in progress.
 二次電池は、上記した電子機器に限らず、他の用途への適用も検討されている。他の用途の一例は、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、電動ドリルなどの電動工具である。 Secondary batteries are not limited to the electronic devices described above, but are also being considered for other uses. Examples of other applications are battery packs that are detachably mounted on electronic devices, electric vehicles such as electric cars, power storage systems such as household power servers, and electric tools such as electric drills.
 この二次電池は、正極および負極と共に電解液を備えており、その電解液は、一般的に、セパレータに含浸された状態で二次電池に搭載されている。この他、電解液は、高分子化合物により保持された状態で二次電池に搭載される場合もある。この場合の二次電池は、いわゆるゲル状の電解質である電解質層を備えており、その電解質層を用いた二次電池では、電解液の漏液が防止される。 The secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode, and the electrolyte solution is generally mounted on the secondary battery in a state of being impregnated in a separator. In addition, the electrolytic solution may be mounted on the secondary battery while being held by the polymer compound. The secondary battery in this case includes an electrolyte layer that is a so-called gel electrolyte, and in the secondary battery using the electrolyte layer, leakage of the electrolyte is prevented.
 電解質層に含まれる高分子化合物の構成は、二次電池の電池特性に大きな影響を及ぼし得るため、その高分子化合物の構成に関しては、さまざまな検討がなされている。 Since the configuration of the polymer compound contained in the electrolyte layer can greatly affect the battery characteristics of the secondary battery, various studies have been made on the configuration of the polymer compound.
 具体的には、サイクル特性などを向上させるために、フッ化ビニリデンとヘキサフルオロプロピレンとマレイン酸モノメチルとを成分として含む共重合体が用いられている(例えば、特許文献1参照。)。 Specifically, in order to improve cycle characteristics and the like, a copolymer containing vinylidene fluoride, hexafluoropropylene, and monomethyl maleate as components is used (for example, see Patent Document 1).
特開2008-098055号公報JP 2008-098055 A
 上記した電子機器などは、益々、高性能化および多機能化している。これに伴い、電子機器などの使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。よって、二次電池の電池特性に関しては、未だ改善の余地がある。 The above-mentioned electronic devices are becoming more sophisticated and multifunctional. Accordingly, the frequency of use of electronic devices and the like is increasing, and the use environment of the electronic devices and the like is expanding. Therefore, there is still room for improvement regarding the battery characteristics of the secondary battery.
 したがって、優れた電池特性を得ることが可能な二次電池用電解質層、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することが望ましい。 Therefore, it is desirable to provide an electrolyte layer for a secondary battery, a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device that can obtain excellent battery characteristics.
 本技術の一実施形態の二次電池用電解質層は、電解液と、共重合体とを含み、その共重合体は、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含むものである。 The electrolyte layer for a secondary battery according to an embodiment of the present technology includes an electrolytic solution and a copolymer, and the copolymer is a parcel represented by each of the following formulas (1) and (2). It contains at least one of fluoro unsaturated compounds as a component.
Figure JPOXMLDOC01-appb-C000008
(R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
Figure JPOXMLDOC01-appb-C000008
(R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
 本技術の一実施形態の二次電池は、正極と、負極と、電解質層とを備え、その電解質層が上記した本技術の一実施形態の二次電池用電解質層と同様の構成を有するものである。 A secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolyte layer, and the electrolyte layer has the same configuration as the electrolyte layer for a secondary battery according to the embodiment of the present technology described above. It is.
 本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の一実施形態の二次電池と同様の構成を有するものである。 Each of the battery pack, the electric vehicle, the power storage system, the electric tool, and the electronic device according to the embodiment of the present technology includes a secondary battery, and the secondary battery includes the secondary battery according to the embodiment of the present technology described above. It has the same configuration.
 なお、「1価のパーフルオロ炭化水素基」とは、1価の炭化水素基のうちの全ての水素基(-H)がフッ素基(-F)により置換された基であり、その「1価の炭化水素基」とは、炭素(C)および水素(H)により構成される1価の基の総称である。 The “monovalent perfluorohydrocarbon group” is a group in which all hydrogen groups (—H) of monovalent hydrocarbon groups are substituted with fluorine groups (—F). The “valent hydrocarbon group” is a general term for monovalent groups composed of carbon (C) and hydrogen (H).
 本技術の一実施形態の二次電池用電解質層または二次電池によれば、共重合体が式(1)および式(2)に示したパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含んでいるので、優れた電池特性を得ることができる。また、本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器においても、同様の効果を得ることができる。 According to the secondary battery electrolyte layer or the secondary battery of an embodiment of the present technology, the copolymer is composed of at least one of the perfluorounsaturated compounds represented by Formula (1) and Formula (2) as a component. As a result, excellent battery characteristics can be obtained. The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device according to the embodiment of the present technology.
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。 In addition, the effect described here is not necessarily limited, and may be any effect described in the present technology.
本技術の一実施形態の二次電池(ラミネートフィルム型)の構成を表す斜視図である。It is a perspective view showing the structure of the secondary battery (laminate film type) of one Embodiment of this technique. 図1に示したII-II線に沿った巻回電極体の断面図である。FIG. 2 is a cross-sectional view of a wound electrode body taken along line II-II shown in FIG. 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。It is a perspective view showing the structure of the application example (battery pack: single cell) of a secondary battery. 図3に示した電池パックの構成を表すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the battery pack illustrated in FIG. 3. 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (battery pack: assembled battery) of a secondary battery. 二次電池の適用例(電動車両)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric vehicle) of a secondary battery. 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric power storage system) of a secondary battery. 二次電池の適用例(電動工具)の構成を表すブロック図である。It is a block diagram showing the structure of the application example (electric tool) of a secondary battery. 試験用の二次電池(コイン型)の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery (coin type) for a test.
 以下、本技術の一実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.二次電池の構成
   1-1-1.全体構成
   1-1-2.正極
   1-1-3.負極
   1-1-4.セパレータ
   1-1-5.電解質層(二次電池用電解質層)
  1-2.二次電池の動作
  1-3.二次電池の製造方法
  1-4.二次電池の作用および効果
 2.二次電池の用途
  2-1.電池パック(単電池)
  2-2.電池パック(組電池)
  2-3.電動車両
  2-4.電力貯蔵システム
  2-5.電動工具
Hereinafter, an embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary battery 1-1. Configuration of secondary battery 1-1-1. Overall configuration 1-1-2. Positive electrode 1-1-3. Negative electrode 1-1-4. Separator 1-1-5. Electrolyte layer (electrolyte layer for secondary battery)
1-2. Operation of secondary battery 1-3. Manufacturing method of secondary battery 1-4. Action and effect of secondary battery Applications of secondary batteries 2-1. Battery pack (single cell)
2-2. Battery pack (assembled battery)
2-3. Electric vehicle 2-4. Electric power storage system 2-5. Electric tool
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。なお、本技術の一実施形態の二次電池用電解質層は、ここで説明する二次電池に適用されるため、その二次電池用電解質層に関しては、以下で併せて説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described. In addition, since the electrolyte layer for secondary batteries of one embodiment of the present technology is applied to the secondary battery described here, the electrolyte layer for secondary batteries will be described together below.
<1-1.二次電池の構成>
 図1は、二次電池の斜視構成を表している。図2は、図1に示したII-II線に沿った巻回電極体10の断面構成を表している。
<1-1. Configuration of secondary battery>
FIG. 1 shows a perspective configuration of the secondary battery. FIG. 2 shows a cross-sectional configuration of the spirally wound electrode body 10 along the line II-II shown in FIG.
 ここで説明する二次電池は、電極反応物質の吸蔵放出により負極14の容量が得られる二次電池であり、いわゆるラミネートフィルム型の電池構造を有している。 The secondary battery described here is a secondary battery in which the capacity of the negative electrode 14 can be obtained by occluding and releasing the electrode reactant, and has a so-called laminate film type battery structure.
 「電極反応物質」とは、電極反応に関わる物質であり、例えば、リチウム(Li)の吸蔵放出により電池容量が得られるリチウムイオン二次電池では、リチウム(またはリチウムイオン)である。以下では、本技術の二次電池がリチウムイオン二次電池である場合を例に挙げる。 The “electrode reactant” is a substance involved in the electrode reaction, and for example, lithium (or lithium ion) in a lithium ion secondary battery in which battery capacity is obtained by occlusion and release of lithium (Li). Below, the case where the secondary battery of this technique is a lithium ion secondary battery is mentioned as an example.
<1-1-1.全体構成>
 この二次電池では、例えば、図1に示したように、フィルム状の外装部材20の内部に、電池素子である巻回電極体10が収納されている。巻回電極体10では、例えば、セパレータ15および電解質層16を介して積層された正極13および負極14が巻回されている。正極13には、正極リード11が取り付けられていると共に、負極14には、負極リード12が取り付けられている。巻回電極体10の最外周部は、保護テープ17により保護されている。
<1-1-1. Overall configuration>
In this secondary battery, for example, as shown in FIG. 1, a wound electrode body 10 that is a battery element is housed inside a film-shaped exterior member 20. In the wound electrode body 10, for example, a positive electrode 13 and a negative electrode 14 stacked via a separator 15 and an electrolyte layer 16 are wound. A positive electrode lead 11 is attached to the positive electrode 13, and a negative electrode lead 12 is attached to the negative electrode 14. The outermost peripheral part of the wound electrode body 10 is protected by a protective tape 17.
 正極リード11は、例えば、外装部材20の内部から外部に向かって導出されている。この正極リード11は、例えば、アルミニウム(Al)などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極リード12は、例えば、外装部材20の内部から外部に向かって、正極リード11と同様の方向に導出されている。この負極リード12は、例えば、銅(Cu)、ニッケル(Ni)およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。両者の導電性材料は、例えば、薄板状または網目状である。 The positive electrode lead 11 is led out from the inside of the exterior member 20 to the outside, for example. The positive electrode lead 11 includes any one type or two or more types of conductive materials such as aluminum (Al). For example, the negative electrode lead 12 is led out in the same direction as the positive electrode lead 11 from the inside of the exterior member 20 to the outside. The negative electrode lead 12 includes, for example, one or more of conductive materials such as copper (Cu), nickel (Ni), and stainless steel. Both the conductive materials are, for example, in a thin plate shape or a mesh shape.
 外装部材20は、例えば、図1に示した矢印Rの方向に折り畳むことが可能である1枚のフィルムであり、その外装部材20の一部には、巻回電極体10を収納するための窪みが設けられている。この外装部材20は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。二次電池の製造工程では、融着層同士が巻回電極体10を介して対向するように外装部材20が折り畳まれると共に、その融着層の外周縁部同士が融着される。ただし、外装部材20は、接着剤などを介して貼り合わされた2枚のラミネートフィルムでもよい。融着層は、例えば、ポリエチレンおよびポリプロピレンなどのフィルムのうちのいずれか1種類または2種類以上を含んでいる。金属層は、例えば、アルミニウム箔などのうちのいずれか1種類または2種類以上を含んでいる。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのフィルムのうちのいずれか1種類または2種類以上を含んでいる。 The exterior member 20 is, for example, a single film that can be folded in the direction of the arrow R shown in FIG. 1, and a part of the exterior member 20 is for storing the wound electrode body 10. A depression is provided. The exterior member 20 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order. In the manufacturing process of the secondary battery, the exterior member 20 is folded so that the fusion layers face each other with the wound electrode body 10 therebetween, and the outer peripheral edges of the fusion layer are fused. However, the exterior member 20 may be two laminated films bonded together with an adhesive or the like. The fusing layer includes, for example, any one kind or two or more kinds of films such as polyethylene and polypropylene. The metal layer includes, for example, any one or more of aluminum foils. The surface protective layer includes, for example, any one kind or two or more kinds of films such as nylon and polyethylene terephthalate.
 中でも、外装部材20は、ポリエチレンフィルムとアルミニウム箔とナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。ただし、外装部材20は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの高分子フィルムでもよいし、金属フィルムでもよい。 Especially, it is preferable that the exterior member 20 is an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order. However, the exterior member 20 may be a laminate film having another laminated structure, a polymer film such as polypropylene, or a metal film.
 外装部材20と正極リード11との間には、例えば、外気の侵入を防止するために密着フィルム21が挿入されている。また、外装部材20と負極リード12との間には、例えば、密着フィルム21が挿入されている。この密着フィルム21は、正極リード11および負極リード12の双方に対して密着性を有する材料のうちのいずれか1種類または2種類以上を含んでいる。この密着性を有する材料は、例えば、ポリオレフィン樹脂などであり、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどのうちのいずれか1種類または2種類以上である。 For example, an adhesion film 21 is inserted between the exterior member 20 and the positive electrode lead 11 to prevent intrusion of outside air. Further, for example, an adhesive film 21 is inserted between the exterior member 20 and the negative electrode lead 12. The adhesion film 21 includes one or more of materials having adhesion to both the positive electrode lead 11 and the negative electrode lead 12. The material having this adhesion is, for example, a polyolefin resin, and more specifically, any one or more of polyethylene, polypropylene, modified polyethylene, modified polypropylene, and the like.
<1-1-2.正極>
 正極13は、例えば、図2に示したように、正極集電体13Aと、その正極集電体13Aの上に設けられた正極活物質層13Bとを含んでいる。
<1-1-2. Positive electrode>
For example, as shown in FIG. 2, the positive electrode 13 includes a positive electrode current collector 13A and a positive electrode active material layer 13B provided on the positive electrode current collector 13A.
 なお、正極活物質層13Bは、正極集電体13Aの片面だけに設けられていてもよいし、正極集電体13Aの両面に設けられていてもよい。図2では、例えば、正極活物質層13Bが正極集電体13Aの両面に設けられている場合を示している。 The positive electrode active material layer 13B may be provided only on one side of the positive electrode current collector 13A, or may be provided on both sides of the positive electrode current collector 13A. FIG. 2 shows a case where, for example, the positive electrode active material layer 13B is provided on both surfaces of the positive electrode current collector 13A.
[正極集電体]
 正極集電体13Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、アルミニウム、ニッケルおよびステンレスなどの金属材料であり、その金属材料のうちの2種類以上を含む合金でもよい。なお、正極集電体13Aは、単層でもよいし、多層でもよい。
[Positive electrode current collector]
The positive electrode current collector 13A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, it is metal materials, such as aluminum, nickel, and stainless steel, and the alloy containing 2 or more types of the metal materials may be sufficient. The positive electrode current collector 13A may be a single layer or a multilayer.
[正極活物質層]
 正極活物質層13Bは、正極活物質として、リチウムを吸蔵放出することが可能である正極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層13Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Positive electrode active material layer]
The positive electrode active material layer 13B includes one or more of positive electrode materials capable of occluding and releasing lithium as a positive electrode active material. However, the positive electrode active material layer 13B may further include any one type or two or more types of other materials such as a positive electrode binder and a positive electrode conductive agent.
 正極材料は、リチウム含有化合物のうちのいずれか1種類または2種類以上であることが好ましい。このリチウム含有化合物の種類は、特に限定されないが、中でも、リチウム含有複合酸化物およびリチウム含有リン酸化合物が好ましい。高いエネルギー密度が得られるからである。 The positive electrode material is preferably one or more of lithium-containing compounds. The type of the lithium-containing compound is not particularly limited, but among them, a lithium-containing composite oxide and a lithium-containing phosphate compound are preferable. This is because a high energy density can be obtained.
 「リチウム含有複合酸化物」とは、リチウムとリチウム以外の元素(以下、「他元素」という。)のうちのいずれか1種類または2種類以上とを構成元素として含む酸化物である。このリチウム含有酸化物は、例えば、層状岩塩型およびスピネル型などのうちのいずれか1種類または2種類以上の結晶構造を有している。 The “lithium-containing composite oxide” is an oxide containing any one or more of lithium and elements other than lithium (hereinafter referred to as “other elements”) as constituent elements. The lithium-containing oxide has, for example, one or two or more crystal structures of a layered rock salt type and a spinel type.
 「リチウム含有リン酸化合物」とは、リチウムと他元素のうちのいずれか1種類または2種類以上とを構成元素として含むリン酸化合物である。このリチウム含有リン酸化合物は、例えば、オリビン型などのうちのいずれか1種類または2種類以上の結晶構造を有している。 The “lithium-containing phosphate compound” is a phosphate compound containing lithium and any one or more of the other elements as constituent elements. This lithium-containing phosphate compound has, for example, any one kind or two or more kinds of crystal structures of the olivine type.
 他元素の種類は、任意の元素(リチウムを除く。)のうちのいずれか1種類または2種類以上であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素のうちのいずれか1種類または2種類以上であることが好ましい。より具体的には、他元素は、ニッケル、コバルト、マンガンおよび鉄などのうちのいずれか1種類または2種類以上の金属元素であることがより好ましい。高い電圧が得られるからである。 The type of other element is not particularly limited as long as it is any one or more of arbitrary elements (excluding lithium). Among them, the other elements are preferably any one or more of elements belonging to Groups 2 to 15 in the long-period periodic table. More specifically, the other element is more preferably any one or two or more metal elements of nickel, cobalt, manganese, iron, and the like. This is because a high voltage can be obtained.
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(1)~式(3)のそれぞれで表される化合物などである。 Examples of the lithium-containing composite oxide having a layered rock salt type crystal structure include compounds represented by the following formulas (1) to (3).
 LiMn(1-b-c) NiM1(2-d)  ・・・(1)
(M1は、コバルト、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、ジルコニウム、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (1-bc) Ni b M1 c O (2-d) F e ··· (1)
(M1 is at least one of cobalt, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, zirconium, molybdenum, tin, calcium, strontium, and tungsten. A to e are 0. .8 ≦ a ≦ 1.2, 0 <b <0.5, 0 ≦ c ≦ 0.5, (b + c) <1, −0.1 ≦ d ≦ 0.2 and 0 ≦ e ≦ 0.1 (However, the composition of lithium varies depending on the charge / discharge state, and a is the value of the complete discharge state.)
 LiNi(1-b) M2(2-c)  ・・・(2)
(M2は、コバルト、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Ni (1-b) M2 b O (2-c) F d (2)
(M2 is at least one of cobalt, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten. 0.8 ≦ a ≦ 1.2, 0.005 ≦ b ≦ 0.5, −0.1 ≦ c ≦ 0.2 and 0 ≦ d ≦ 0.1, provided that the composition of lithium is in the charge / discharge state. A is the value of the fully discharged state.
 LiCo(1-b) M3(2-c)  ・・・(3)
(M3は、ニッケル、マンガン、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Co (1-b) M3 b O (2-c) F d (3)
(M3 is at least one of nickel, manganese, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten. 0.8 ≦ a ≦ 1.2, 0 ≦ b <0.5, −0.1 ≦ c ≦ 0.2, and 0 ≦ d ≦ 0.1, provided that the composition of lithium depends on the charge / discharge state Unlikely, a is the value of the fully discharged state.)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。 The lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。 When the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese, and aluminum as constituent elements, the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(4)で表される化合物などである。 The lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
 LiMn(2-b) M4 ・・・(4)
(M4は、コバルト、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、クロム、鉄、銅、亜鉛、モリブデン、スズ、カルシウム、ストロンチウムおよびタングステンのうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a Mn (2-b) M4 b O c F d (4)
(M4 is at least one of cobalt, nickel, magnesium, aluminum, boron, titanium, vanadium, chromium, iron, copper, zinc, molybdenum, tin, calcium, strontium, and tungsten. .9 ≦ a ≦ 1.1, 0 ≦ b ≦ 0.6, 3.7 ≦ c ≦ 4.1, and 0 ≦ d ≦ 0.1, provided that the composition of lithium varies depending on the charge / discharge state. , A is the value of the fully discharged state.)
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、LiMnなどである。 An example of the lithium-containing composite oxide having a spinel crystal structure is LiMn 2 O 4 .
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(5)で表される化合物などである。 Examples of the lithium-containing phosphate compound having an olivine type crystal structure include a compound represented by the following formula (5).
 LiM5PO ・・・(5)
(M5は、コバルト、マンガン、鉄、ニッケル、マグネシウム、アルミニウム、ホウ素、チタン、バナジウム、ニオブ、銅、亜鉛、モリブデン、カルシウム、ストロンチウム、タングステンおよびジルコニウムのうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
Li a M5PO 4 (5)
(M5 is at least one of cobalt, manganese, iron, nickel, magnesium, aluminum, boron, titanium, vanadium, niobium, copper, zinc, molybdenum, calcium, strontium, tungsten, and zirconium. A is 0. .9 ≦ a ≦ 1.1, where the composition of lithium varies depending on the charge / discharge state, and a is the value of the fully discharged state.
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。 Examples of the lithium-containing phosphate compound having an olivine type crystal structure include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
 なお、リチウム含有複合酸化物は、下記の式(6)で表される化合物などでもよい。 The lithium-containing composite oxide may be a compound represented by the following formula (6).
 (LiMnO(LiMnO1-x  ・・・(6)
(xは、0≦x≦1を満たす。)
(Li 2 MnO 3 ) x (LiMnO 2 ) 1-x (6)
(X satisfies 0 ≦ x ≦ 1.)
 この他、正極材料は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子などでもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。 In addition, the positive electrode material may be, for example, an oxide, a disulfide, a chalcogenide, a conductive polymer, or the like. Examples of the oxide include titanium oxide, vanadium oxide, and manganese dioxide. Examples of the disulfide include titanium disulfide and molybdenum sulfide. An example of the chalcogenide is niobium selenide. Examples of the conductive polymer include sulfur, polyaniline, and polythiophene.
 ただし、正極材料は、上記した材料に限られず、他の材料でもよい。 However, the positive electrode material is not limited to the materials described above, and other materials may be used.
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデン、ポリアクリル酸およびポリイミドなどである。 The positive electrode binder contains, for example, any one or more of synthetic rubber and polymer compound. Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, and ethylene propylene diene. Examples of the polymer compound include polyvinylidene fluoride, polyacrylic acid, and polyimide.
 正極導電剤は、例えば、炭素材料などのうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケチェンブラックなどである。なお、正極導電剤は、導電性を有する材料であれば、金属材料および導電性高分子などでもよい。 The positive electrode conductive agent includes, for example, one or more of carbon materials. Examples of the carbon material include graphite, carbon black, acetylene black, and ketjen black. Note that the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as the material has conductivity.
<1-1-3.負極>
 負極14は、例えば、図2に示したように、負極集電体14Aと、その負極集電体14Aの上に設けられた負極活物質層14Bとを含んでいる。
<1-1-3. Negative electrode>
For example, as illustrated in FIG. 2, the negative electrode 14 includes a negative electrode current collector 14A and a negative electrode active material layer 14B provided on the negative electrode current collector 14A.
 なお、負極活物質層14Bは、負極集電体14Aの片面だけに設けられていてもよいし、負極集電体14Aの両面に設けられていてもよい。図2では、例えば、負極活物質層14Bが負極集電体14Aの両面に設けられている場合を示している。 Note that the negative electrode active material layer 14B may be provided on only one surface of the negative electrode current collector 14A, or may be provided on both surfaces of the negative electrode current collector 14A. FIG. 2 shows a case where the negative electrode active material layer 14B is provided on both surfaces of the negative electrode current collector 14A, for example.
[負極集電体]
 負極集電体14Aは、例えば、導電性材料のうちのいずれか1種類または2種類以上を含んでいる。導電性材料の種類は、特に限定されないが、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの金属材料であり、その金属材料のうちの2種類以上を含む合金でもよい。なお、負極集電体14Aは、単層でもよいし、多層でもよい。
[Negative electrode current collector]
The negative electrode current collector 14A includes, for example, any one type or two or more types of conductive materials. Although the kind of conductive material is not specifically limited, For example, it is metal materials, such as copper, aluminum, nickel, and stainless steel, and the alloy containing 2 or more types of the metal materials may be sufficient. The negative electrode current collector 14A may be a single layer or multiple layers.
 負極集電体14Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果により、負極集電体14Aに対する負極活物質層14Bの密着性が向上するからである。この場合には、少なくとも負極活物質層14Aと対向する領域において、負極集電体14Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を用いて微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極集電体14Aの表面に微粒子が形成されるため、その負極集電体14Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。 The surface of the negative electrode current collector 14A is preferably roughened. This is because the so-called anchor effect improves the adhesion of the negative electrode active material layer 14B to the negative electrode current collector 14A. In this case, the surface of the negative electrode current collector 14A only needs to be roughened at least in a region facing the negative electrode active material layer 14A. The roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 14A by an electrolysis method in an electrolytic bath, the surface of the negative electrode current collector 14A is provided with irregularities. A copper foil produced by an electrolytic method is generally called an electrolytic copper foil.
[負極活物質層]
 負極活物質層14Bは、負極活物質として、リチウムを吸蔵放出することが可能である負極材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層14Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極結着剤および負極導電剤に関する詳細は、例えば、正極結着剤および正極導電剤に関する詳細と同様である。
[Negative electrode active material layer]
The negative electrode active material layer 14B includes any one or more of negative electrode materials capable of occluding and releasing lithium as a negative electrode active material. However, the negative electrode active material layer 14B may further include any one type or two or more types of other materials such as a negative electrode binder and a negative electrode conductive agent. Details regarding the negative electrode binder and the negative electrode conductive agent are the same as, for example, details regarding the positive electrode binder and the positive electrode conductive agent.
 ただし、充電途中において意図せずにリチウム金属が負極14に析出することを防止するために、負極材料の充電可能な容量は、正極13の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極13の電気化学当量よりも大きいことが好ましい。 However, it is preferable that the chargeable capacity of the negative electrode material is larger than the discharge capacity of the positive electrode 13 in order to prevent unintentional deposition of lithium metal on the negative electrode 14 during the charging. That is, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is preferably larger than the electrochemical equivalent of the positive electrode 13.
 負極材料は、例えば、炭素材料のうちのいずれか1種類または2種類以上である。リチウムの吸蔵放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られるからである。また、炭素材料は負極導電剤としても機能するため、負極活物質層22Bの導電性が向上するからである。 The negative electrode material is, for example, one or more of carbon materials. This is because the change in crystal structure at the time of occlusion and release of lithium is very small, so that a high energy density can be obtained stably. Moreover, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
 炭素材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。より具体的には、炭素材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類には、ピッチコークス、ニードルコークスおよび石油コークスなどが含まれる。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)されたものである。この他、炭素材料は、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。 Examples of the carbon material include graphitizable carbon, non-graphitizable carbon, and graphite. However, the (002) plane spacing for non-graphitizable carbon is preferably 0.37 nm or more, and the (002) plane spacing for graphite is preferably 0.34 nm or less. More specifically, examples of the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, and carbon blacks. The cokes include pitch coke, needle coke, petroleum coke and the like. The organic polymer compound fired body is obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an appropriate temperature. In addition, the carbon material may be low crystalline carbon heat-treated at a temperature of about 1000 ° C. or less, or may be amorphous carbon. The shape of the carbon material may be any of a fibrous shape, a spherical shape, a granular shape, and a scale shape.
 また、負極材料は、例えば、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料(金属系材料)である。高いエネルギー密度が得られるからである。 Further, the negative electrode material is, for example, a material (metal material) containing any one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained.
 金属系材料は、単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ただし、合金には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。 The metal-based material may be any of a simple substance, an alloy, and a compound, or may be two or more of them, or may be a material having at least a part of one or two or more of them. . However, the alloy includes a material including one or more metal elements and one or more metalloid elements in addition to a material composed of two or more metal elements. The alloy may contain a nonmetallic element. The structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more kinds of coexisting materials.
 上記した金属元素および半金属元素は、例えば、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上である。具体的には、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。 The metal element and metalloid element described above are, for example, any one or more metal elements and metalloid elements capable of forming an alloy with lithium. Specifically, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), tin (Sn), lead (Pb) ), Bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd) and platinum (Pt).
 中でも、ケイ素およびスズのうちの一方または双方が好ましい。リチウムを吸蔵放出する能力が優れているため、著しく高いエネルギー密度が得られるからである。 Among these, one or both of silicon and tin is preferable. This is because the ability to occlude and release lithium is excellent, so that a significantly high energy density can be obtained.
 ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、ケイ素の単体、合金および化合物のうちのいずれでもよいし、スズの単体、合金および化合物のうちのいずれでもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に有する材料でもよい。ここで説明する単体とは、あくまで一般的な意味合いでの単体(微量の不純物を含んでいてもよい)を意味しており、必ずしも純度100%を意味しているわけではない。 The material containing one or both of silicon and tin as a constituent element may be any of a simple substance, an alloy, and a compound of silicon, or any of a simple substance, an alloy, and a compound of tin. These may be two or more types, or may be a material having at least a part of one or two or more of them. The simple substance described here means a simple substance (which may contain a small amount of impurities) in a general sense, and does not necessarily mean 100% purity.
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of silicon is, for example, any one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than silicon or Includes two or more. The compound of silicon contains, for example, one or more of carbon and oxygen as constituent elements other than silicon. In addition, the compound of silicon may contain any 1 type or 2 types or more of the series of elements demonstrated regarding the alloy of silicon as structural elements other than silicon, for example.
 ケイ素の合金およびケイ素の化合物の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。 Specific examples of silicon alloys and silicon compounds are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2. MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 <v ≦ 2), and LiSiO. Note that v in SiO v may be 0.2 <v <1.4.
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。 The alloy of tin, for example, as a constituent element other than tin, any one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium, etc. Includes two or more. The tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin. In addition, the compound of tin may contain any 1 type in the series of elements demonstrated regarding the alloy of tin, or 2 or more types as structural elements other than tin, for example.
 スズの合金およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。 Specific examples of the tin alloy and the tin compound include SnO w (0 <w ≦ 2), SnSiO 3 , LiSnO, and Mg 2 Sn.
 特に、スズを構成元素として含む材料は、例えば、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料(Sn含有材料)であることが好ましい。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上を含んでいる。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリン(P)などのうちのいずれか1種類または2種類以上を含んでいる。Sn含有材料が第2構成元素および第3構成元素を含んでいることにより、高い電池容量および優れたサイクル特性などが得られるからである。 Particularly, the material containing tin as a constituent element is preferably, for example, a material (Sn-containing material) containing a second constituent element and a third constituent element together with tin which is the first constituent element. The second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), Any one or more of tantalum, tungsten, bismuth, silicon and the like are included. The third constituent element includes, for example, any one or more of boron, carbon, aluminum, phosphorus (P), and the like. This is because when the Sn-containing material contains the second constituent element and the third constituent element, high battery capacity, excellent cycle characteristics, and the like can be obtained.
 中でも、Sn含有材料は、スズとコバルトと炭素とを構成元素として含む材料(SnCoC含有材料)であることが好ましい。このSnCoC含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。 In particular, the Sn-containing material is preferably a material (SnCoC-containing material) containing tin, cobalt, and carbon as constituent elements. In this SnCoC-containing material, for example, the carbon content is 9.9 mass% to 29.7 mass%, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20 mass% to 70 mass%. . This is because a high energy density can be obtained.
 SnCoC含有材料は、スズとコバルトと炭素とを含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応可能な相(反応相)であるため、その反応相の存在により優れた特性が得られる。もちろん、反応相は、低結晶性の部分と、非晶質の部分とを含んでいてもよい。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。SnCoC含有材料においてリチウムがより円滑に吸蔵放出されると共に、電解液に対するSnCoC含有材料の反応性が低減するからである。なお、SnCoC含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を含んでいる場合もある。 The SnCoC-containing material has a phase containing tin, cobalt, and carbon, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reaction phase), excellent characteristics can be obtained due to the presence of the reaction phase. Of course, the reaction phase may include a low crystalline portion and an amorphous portion. The half-width (diffraction angle 2θ) of the diffraction peak obtained by X-ray diffraction of this reaction phase is 1 ° or more when CuKα ray is used as the specific X-ray and the insertion speed is 1 ° / min. Is preferred. This is because lithium is occluded and released more smoothly in the SnCoC-containing material and the reactivity of the SnCoC-containing material with respect to the electrolytic solution is reduced. In addition, the SnCoC-containing material may include a phase containing a simple substance or a part of each constituent element in addition to the low crystalline or amorphous phase.
 X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応しているか否かに関しては、例えば、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較することにより、容易に判断できる。具体的には、例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応している。この場合には、例えば、低結晶性または非晶質の反応相の回折ピークが2θ=20°~50°の間に見られる。このような反応相は、例えば、上記した各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化していると考えられる。 As to whether or not the diffraction peak obtained by X-ray diffraction corresponds to a reaction phase capable of reacting with lithium, for example, by comparing X-ray diffraction charts before and after electrochemical reaction with lithium, Can be judged. Specifically, for example, if the position of the diffraction peak changes before and after the electrochemical reaction with lithium, it corresponds to a reaction phase capable of reacting with lithium. In this case, for example, a diffraction peak of a low crystalline or amorphous reaction phase is observed between 2θ = 20 ° and 50 °. Such a reaction phase contains, for example, each of the constituent elements described above, and is considered to be low crystallization or amorphous mainly due to the presence of carbon.
 SnCoC含有材料では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズなどの凝集または結晶化が抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの少なくとも一部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。なお、金原子の4f軌道(Au4f)のピークは、84.0eVに得られるようにエネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、その表面汚染炭素のC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られる。このため、例えば、市販のソフトウエアを用いて解析することで、両者のピークを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。 In the SnCoC-containing material, it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a metalloid element as another constituent element. This is because aggregation or crystallization of tin or the like is suppressed. The bonding state of the elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS). In a commercially available apparatus, for example, Al—Kα ray or Mg—Kα ray is used as the soft X-ray. When at least a part of carbon is bonded to a metal element, a metalloid element, or the like, the peak of the synthetic wave of carbon 1s orbital (C1s) appears in a region lower than 284.5 eV. It is assumed that the energy calibration is performed so that the peak of the 4f orbit (Au4f) of the gold atom is obtained at 84.0 eV. At this time, since surface-contaminated carbon is usually present on the surface of the substance, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, and the peak is used as an energy reference. In the XPS measurement, the waveform of the C1s peak is obtained in a form including the surface contamination carbon peak and the carbon peak in the SnCoC-containing material. For this reason, for example, both peaks are separated by analyzing using commercially available software. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).
 このSnCoC含有材料は、構成元素がスズ、コバルトおよび炭素だけである材料(SnCoC)に限られない。このSnCoC含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。 This SnCoC-containing material is not limited to a material (SnCoC) whose constituent elements are only tin, cobalt and carbon. This SnCoC-containing material is, for example, any one of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium, and bismuth in addition to tin, cobalt, and carbon One kind or two or more kinds may be included as constituent elements.
 SnCoC含有材料の他、スズとコバルトと鉄と炭素とを構成元素として含む材料(SnCoFeC含有材料)も好ましい。このSnCoFeC含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。なお、SnCoFeC含有材料の物性(半値幅など)は、上記したSnCoC含有材料の物性と同様である。 In addition to SnCoC-containing materials, materials containing tin, cobalt, iron and carbon as constituent elements (SnCoFeC-containing materials) are also preferable. The composition of the SnCoFeC-containing material is arbitrary. For example, when the iron content is set to be small, the carbon content is 9.9 mass% to 29.7 mass%, and the iron content is 0.3 mass% to 5.9 mass%. The content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass. Further, when the iron content is set to be large, the carbon content is 11.9% to 29.7% by mass, and the ratio of the content of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the content ratio of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass. This is because a high energy density can be obtained in such a composition range. Note that the physical properties (half-value width, etc.) of the SnCoFeC-containing material are the same as the above-described physical properties of the SnCoC-containing material.
 この他、負極材料は、例えば、金属酸化物および高分子化合物などのうちのいずれか1種類または2種類以上でもよい。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。 In addition, the negative electrode material may be any one kind or two or more kinds of metal oxides and polymer compounds, for example. Examples of the metal oxide include iron oxide, ruthenium oxide, and molybdenum oxide. Examples of the polymer compound include polyacetylene, polyaniline, and polypyrrole.
 中でも、負極材料は、以下の理由により、炭素材料および金属系材料の双方を含んでいることが好ましい。 Among these, the negative electrode material preferably contains both a carbon material and a metal-based material for the following reasons.
 金属系材料、特に、ケイ素およびスズのうちの一方または双方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素材料および金属系材料の双方を用いることにより、高い理論容量(言い替えれば電池容量)を得つつ、充放電時の膨張収縮が抑制される。 Metal materials, in particular, materials containing one or both of silicon and tin as constituent elements have the advantage of high theoretical capacity, but they have a concern that they tend to violently expand and contract during charging and discharging. On the other hand, the carbon material has a concern that the theoretical capacity is low, but has an advantage that it is difficult to expand and contract during charging and discharging. Therefore, by using both the carbon material and the metal-based material, expansion and contraction during charging and discharging are suppressed while obtaining a high theoretical capacity (in other words, battery capacity).
 負極活物質層14Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上の方法により形成されている。塗布法とは、例えば、粒子(粉末)状の負極活物質を負極結着剤などと混合したのち、その混合物を有機溶剤などに分散させてから負極集電体14Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法とは、溶融状態または半溶融状態の負極活物質を負極集電体14Aの表面に噴き付ける方法である。焼成法とは、例えば、塗布法を用いて、有機溶剤などに分散された混合物を負極集電体14Aに塗布したのち、負極結着剤などの融点よりも高い温度で混合物を熱処理する方法である。この焼成法は、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。 The negative electrode active material layer 14B is formed by any one method or two or more methods among, for example, a coating method, a gas phase method, a liquid phase method, a thermal spray method, and a firing method (sintering method). The coating method is, for example, a method in which a particulate (powder) negative electrode active material is mixed with a negative electrode binder and the mixture is dispersed in an organic solvent and then applied to the negative electrode current collector 14A. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. More specifically, for example, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermal chemical vapor deposition, a chemical vapor deposition (CVD) method, and a plasma chemical vapor deposition method. Examples of the liquid phase method include an electrolytic plating method and an electroless plating method. The thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the surface of the negative electrode current collector 14A. The firing method is, for example, a method in which a mixture dispersed in an organic solvent or the like is applied to the negative electrode current collector 14A using a coating method, and then the mixture is heat-treated at a temperature higher than the melting point of the negative electrode binder or the like. is there. Examples of the firing method include an atmosphere firing method, a reaction firing method, a hot press firing method, and the like.
 この二次電池では、上記したように、充電途中において負極14にリチウムが意図せずに析出することを防止するために、リチウムを吸蔵放出可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、それに応じて正極活物質と負極活物質との量が調整されている。これにより、高いエネルギー密度が得られる。 In this secondary battery, as described above, in order to prevent unintentional precipitation of lithium on the negative electrode 14 during charging, the electrochemical equivalent of the negative electrode material capable of occluding and releasing lithium is the electrical equivalent of the positive electrode. Greater than the chemical equivalent. Further, when the open circuit voltage (that is, the battery voltage) at the time of full charge is 4.25 V or more, compared with the case where it is 4.20 V, even when the same positive electrode active material is used, the amount of lithium released per unit mass Therefore, the amounts of the positive electrode active material and the negative electrode active material are adjusted accordingly. Thereby, a high energy density is obtained.
<1-1-4.セパレータ>
 セパレータ15は、正極13と負極14との間に配置されている。これにより、正極13および負極14は、セパレータ15を介して隔離されている。このセパレータ15は、正極13と負極14との接触に起因する短絡の発生を防止しながら、リチウムイオンを通過させる。
<1-1-4. Separator>
The separator 15 is disposed between the positive electrode 13 and the negative electrode 14. Thereby, the positive electrode 13 and the negative electrode 14 are isolated via the separator 15. The separator 15 allows lithium ions to pass through while preventing occurrence of a short circuit due to contact between the positive electrode 13 and the negative electrode 14.
 また、セパレータ15は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上を含んでおり、2種類以上の多孔質膜の積層膜でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどのうちのいずれか1種類または2種類以上を含んでいる。 Further, the separator 15 includes, for example, one kind or two or more kinds of porous films such as synthetic resin and ceramic, and may be a laminated film of two or more kinds of porous films. The synthetic resin contains, for example, one or more of polytetrafluoroethylene, polypropylene and polyethylene.
 なお、セパレータ15は、例えば、上記した多孔質膜(基材層)と、その基材層の上に設けられた高分子化合物層とを含んでいてもよい。正極13および負極14のそれぞれに対するセパレータ15の密着性が向上するため、巻回電極体10が歪みにくくなるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても、電気抵抗が上昇しにくくなると共に、二次電池が膨れにくくなる。 The separator 15 may include, for example, the above-described porous film (base material layer) and a polymer compound layer provided on the base material layer. This is because the adhesiveness of the separator 15 to each of the positive electrode 13 and the negative electrode 14 is improved, so that the wound electrode body 10 is hardly distorted. As a result, the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. The battery is less likely to swell.
 高分子化合物層は、基材層の片面だけに設けられていてもよいし、基材層の両面に設けられていてもよい。この高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。ポリフッ化ビニリデンは、物理的強度に優れていると共に、電気化学的に安定だからである。高分子化合物層を形成する場合には、例えば、有機溶剤などにより高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。なお、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。 The polymer compound layer may be provided only on one side of the base material layer, or may be provided on both sides of the base material layer. This polymer compound layer contains, for example, any one or more of polymer compounds such as polyvinylidene fluoride. This is because polyvinylidene fluoride is excellent in physical strength and electrochemically stable. In the case of forming the polymer compound layer, for example, a solution in which the polymer compound is dissolved with an organic solvent or the like is applied to the substrate layer, and then the substrate layer is dried. In addition, after immersing a base material layer in a solution, the base material layer may be dried.
<1-1-5.電解質層(二次電池用電解質層)>
 電解質層16は、電解液と、高分子化合物とを含んでおり、その電解質層16中では、電解液が高分子化合物により保持されている。すなわち、ここで説明する電解質層16は、いわゆるゲル状の電解質である。電解質層16を用いているのは、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。
<1-1-5. Electrolyte Layer (Electrolyte Layer for Secondary Battery)>
The electrolyte layer 16 includes an electrolytic solution and a polymer compound, and in the electrolyte layer 16, the electrolytic solution is held by the polymer compound. That is, the electrolyte layer 16 described here is a so-called gel electrolyte. The electrolyte layer 16 is used because high ion conductivity (for example, 1 mS / cm or more at room temperature) can be obtained and leakage of the electrolyte can be prevented.
[高分子化合物]
 高分子化合物は、特定の共重合体を含んでおり、その共重合体は、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの一方または双方を成分(重合単位)として含んでいる。
[Polymer compound]
The polymer compound includes a specific copolymer, and the copolymer includes one or both of perfluoro unsaturated compounds represented by the following formulas (1) and (2). It is included as a component (polymerization unit).
Figure JPOXMLDOC01-appb-C000009
(R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
Figure JPOXMLDOC01-appb-C000009
(R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
 「共重合体がパーフルオロ不飽和化合物を成分として含んでいる」とは、そのパーフルオロ不飽和化合物を含む2種類以上の原料(モノマー)を用いて、その2種類以上の原料の重合反応により共重合体が形成されていることを意味している。 “The copolymer contains a perfluoro unsaturated compound as a component” means that two or more raw materials (monomers) containing the perfluoro unsaturated compound are used and a polymerization reaction of the two or more raw materials is performed. It means that a copolymer is formed.
 以下では、式(1)に示したパーフルオロ不飽和化合物を「第1パーフルオロ不飽和化合物」と呼称すると共に、式(2)に示したパーフルオロ不飽和化合物を「第2パーフルオロ不飽和化合物」と呼称する。また、第1パーフルオロ不飽和化合物および第2パーフルオロ不飽和化合物をまとめて「パーフルオロ不飽和化合物」と総称する。 Hereinafter, the perfluoro unsaturated compound represented by formula (1) is referred to as “first perfluoro unsaturated compound”, and the perfluoro unsaturated compound represented by formula (2) is referred to as “second perfluoro unsaturated compound”. Referred to as "compound". The first perfluoro unsaturated compound and the second perfluoro unsaturated compound are collectively referred to as “perfluoro unsaturated compound”.
 この他、パーフルオロ不飽和化合物を成分として含んでいない共重合体と区別するために、そのパーフルオロ不飽和化合物を成分として含んでいる共重合体を「特定共重合体」と呼称する。 In addition, in order to distinguish from a copolymer that does not contain a perfluoro unsaturated compound as a component, the copolymer that contains the perfluoro unsaturated compound as a component is referred to as a “specific copolymer”.
 ここで説明している特定共重合体は、いわゆるランダム共重合体である。これに伴い、特定共重合体におけるパーフルオロ不飽和化合物などの成分(モノマー)の配列(連結)順は、特に限定されない。 The specific copolymer described here is a so-called random copolymer. Accordingly, the sequence (linkage) of components (monomers) such as perfluoro unsaturated compounds in the specific copolymer is not particularly limited.
 高分子化合物が特定共重合体を含んでいるのは、その高分子化合物が特定共重合体を含んでいない場合と比較して、電解質層16の保液性が向上すると共に、その電解質層16の物理的強度(形状安定性)が向上するからである。これにより、電解質層16において高いイオン伝導性が得られると共に、二次電池を充放電させても電解質層16が破壊されにくくなる。よって、特に、高温環境中などの厳しい条件下において二次電池を充放電させても、放電容量が低下しにくくなる。 The polymer compound contains the specific copolymer, as compared with the case where the polymer compound does not contain the specific copolymer, the liquid retention of the electrolyte layer 16 is improved, and the electrolyte layer 16 This is because the physical strength (shape stability) is improved. Thereby, high ion conductivity is obtained in the electrolyte layer 16, and the electrolyte layer 16 is not easily destroyed even when the secondary battery is charged and discharged. Therefore, even if the secondary battery is charged and discharged under severe conditions such as in a high temperature environment, the discharge capacity is unlikely to decrease.
 上記した「高分子化合物が特定共重合体を含んでいない場合」とは、例えば、高分子化合物が後述する他の重合体を含んでいる場合などである。 “The case where the polymer compound does not contain the specific copolymer” is, for example, the case where the polymer compound contains another polymer described later.
 「1価のパーフルオロ炭化水素基」とは、上記したように、1価の炭化水素基のうちの全ての水素基がフッ素基により置換された基である。ただし、「1価の炭化水素基」とは、炭素および水素により構成される1価の基の総称である。 The “monovalent perfluorohydrocarbon group” is a group in which all of the monovalent hydrocarbon groups are substituted with fluorine groups as described above. However, the “monovalent hydrocarbon group” is a general term for monovalent groups composed of carbon and hydrogen.
 この1価のパーフルオロ炭化水素基は、直鎖状でもよいし、1または2以上の側鎖を有する分岐状でもよい。また、1価のパーフルオロ炭化水素基は、炭素間多重結合を含んでいる不飽和基でもよいし、炭素間多重結合を含んでいない飽和基でもよい。この炭素間多重結合は、例えば、炭素間二重結合(>C=C<)および炭素間三重結合(-C≡C-)などである。 The monovalent perfluorohydrocarbon group may be linear or branched having one or more side chains. The monovalent perfluorohydrocarbon group may be an unsaturated group containing a carbon-carbon multiple bond or a saturated group not containing a carbon-carbon multiple bond. Examples of the carbon-carbon multiple bond include a carbon-carbon double bond (> C═C <) and a carbon-carbon triple bond (—C≡C—).
 1価のパーフルオロ炭化水素基の種類は、特に限定されない。具体的には、1価のパーフルオロ炭化水素基は、例えば、パーフルオロアルキル基、パーフルオロアルケニル基、パーフルオロアルキニル基、パーフルオロシクロアルキル基、パーフルオロアリール基およびそれらの2種類以上が結合された1価の基(以下、「1価結合基」という。)などのうちのいずれかである。 The type of monovalent perfluorohydrocarbon group is not particularly limited. Specifically, the monovalent perfluorohydrocarbon group is, for example, a perfluoroalkyl group, a perfluoroalkenyl group, a perfluoroalkynyl group, a perfluorocycloalkyl group, a perfluoroaryl group, or a combination of two or more thereof. Or a monovalent group (hereinafter referred to as “monovalent linking group”).
 1価結合基は、例えば、以下で説明する基などである。パーフルオロアルキル基とパーフルオロアルケニル基とが結合された基である。パーフルオロアルキル基とパーフルオロアルキニル基とが結合された基である。パーフルオロアルケニル基とパーフルオロアルキニル基とが結合された基である。パーフルオロアルキル基、パーフルオロアルケニル基およびパーフルオロアルキニル基のうちのいずれか1種類または2種類以上とパーフルオロシクロアルキル基とが結合された基である。パーフルオロアルキル基、パーフルオロアルケニル基およびパーフルオロアルキニル基のうちのいずれか1種類または2種類以上とアリール基とが結合された基である。パーフルオロシクロアルキル基とパーフルオロアリール基とが結合された基である。 The monovalent linking group is, for example, a group described below. This is a group in which a perfluoroalkyl group and a perfluoroalkenyl group are bonded. This is a group in which a perfluoroalkyl group and a perfluoroalkynyl group are bonded. This is a group in which a perfluoroalkenyl group and a perfluoroalkynyl group are bonded. A perfluoroalkyl group, a perfluoroalkenyl group, or a perfluoroalkynyl group is a group in which one or two or more perfluorocycloalkyl groups are bonded to each other. It is a group in which one or two or more of a perfluoroalkyl group, a perfluoroalkenyl group and a perfluoroalkynyl group are bonded to an aryl group. This is a group in which a perfluorocycloalkyl group and a perfluoroaryl group are bonded.
 1価のパーフルオロ炭化水素基の炭素数は、特に限定されない。具体的には、パーフルオロアルキル基の炭素数は、例えば、1~10である。パーフルオロアルケニル基およびパーフルオロアルキニル基のそれぞれの炭素数は、例えば、2~10である。パーフルオロシクロアルキル基およびパーフルオロアリール基のそれぞれの炭素数は、例えば、6~18である。特定共重合体が容易に得られるからである。 The carbon number of the monovalent perfluorohydrocarbon group is not particularly limited. Specifically, the perfluoroalkyl group has, for example, 1 to 10 carbon atoms. The carbon number of each of the perfluoroalkenyl group and the perfluoroalkynyl group is, for example, 2 to 10. The carbon number of each of the perfluorocycloalkyl group and the perfluoroaryl group is, for example, 6-18. This is because the specific copolymer can be easily obtained.
 詳細には、炭素数が多すぎると、立体障害などに起因してパーフルオロ不飽和化合物が重合反応しにくくなるため、その重合反応を利用して特定共重合体を形成しにくくなる。これに対して、炭素数が上記した範囲内であると、パーフルオロ不飽和化合物が重合反応しやすくなるため、その重合反応を利用して特定共重合体を形成しやすくなる。 Specifically, if the number of carbon atoms is too large, the perfluorounsaturated compound is difficult to undergo a polymerization reaction due to steric hindrance or the like, and thus it is difficult to form a specific copolymer using the polymerization reaction. On the other hand, when the carbon number is in the above-described range, the perfluorounsaturated compound easily undergoes a polymerization reaction, so that the specific copolymer is easily formed using the polymerization reaction.
 パーフルオロアルキル基は、例えば、パーフルオロメチル基(-CF)、パーフルオロエチル基(-C)、パーフルオロプロピル基(-C)およびパーフルオロ-t-ブチル基(-C(-CF-CF)などである。 The perfluoroalkyl group includes, for example, a perfluoromethyl group (—CF 3 ), a perfluoroethyl group (—C 2 F 5 ), a perfluoropropyl group (—C 3 F 7 ), and a perfluoro-t-butyl group ( -C (-CF 3 ) 2 -CF 3 ).
 パーフルオロアルケニル基の具体例は、パーフルオロビニル基(-CF=CF)およびパーフルオロアリル基(-CF-CF=CF)などである。 Specific examples of the perfluoroalkenyl group include a perfluorovinyl group (—CF═CF 2 ) and a perfluoroallyl group (—CF 2 —CF═CF 2 ).
 パーフルオロアルキニル基の具体例は、パーフルオロエチニル基(-C≡CF)などである。 A specific example of the perfluoroalkynyl group is a perfluoroethynyl group (—C≡CF).
 パーフルオロシクロアルキル基の具体例は、パーフルオロシクロプロピル基、パーフルオロシクロブチル基、パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基、パーフルオロシクロヘプチル基およびパーフルオロシクロオクチル基などである。 Specific examples of the perfluorocycloalkyl group include a perfluorocyclopropyl group, a perfluorocyclobutyl group, a perfluorocyclopentyl group, a perfluorocyclohexyl group, a perfluorocycloheptyl group, and a perfluorocyclooctyl group.
 パーフルオロアリール基の具体例は、パーフルオロフェニル基およびパーフルオロナフチル基などである。 Specific examples of the perfluoroaryl group include a perfluorophenyl group and a perfluoronaphthyl group.
 1価結合基の具体例は、パーフルオロベンジル基などである。 A specific example of the monovalent linking group is a perfluorobenzyl group.
 ただし、R1である1価のパーフルオロ炭化水素基の炭素数は、2以上である。R1の炭素数が1である場合と比較して、上記したように、電解質層16の保液性が向上すると共に、その電解質層16の物理的強度も向上するからである。具体的には、R1が1価のパーフルオロ炭化水素基であっても、その1価のパーフルオロ炭化水素基の炭素数が1である場合には、その炭素数が少なすぎるため、十分な電解質層16の保液性が得られないと共に、十分な電解質層16の物理的強度も得られない。これに対して、R1が1価のパーフルオロ炭化水素基であり、その1価のパーフルオロ炭化水素基の炭素数が2以上であると、その炭素数が確保されるため、十分な電解質層16の保液性が得られると共に、十分な電解質層16の物理的強度も得られる。 However, the carbon number of the monovalent perfluorohydrocarbon group which is R1 is 2 or more. This is because, as described above, the liquid retaining property of the electrolyte layer 16 is improved and the physical strength of the electrolyte layer 16 is also improved as compared with the case where the carbon number of R1 is 1. Specifically, even if R1 is a monovalent perfluorohydrocarbon group, if the monovalent perfluorohydrocarbon group has 1 carbon, the carbon number is too small, and thus sufficient. The liquid retaining property of the electrolyte layer 16 cannot be obtained, and sufficient physical strength of the electrolyte layer 16 cannot be obtained. On the other hand, when R1 is a monovalent perfluorohydrocarbon group and the carbon number of the monovalent perfluorohydrocarbon group is 2 or more, the number of carbons is secured, so that a sufficient electrolyte layer In addition to the 16 liquid retention, sufficient physical strength of the electrolyte layer 16 is also obtained.
 中でも、R1は、パーフルオロアルキル基であることが好ましい。また、R1であるパーフルオロアルキル基の炭素数は、2以上であれば特に限定されないが、中でも、2~10であることが好ましく、2~4であることがより好ましい。第1パーフルオロ不飽和化合物がより重合反応しやすくなるため、特定共重合体がより容易に得られるからである。また、電解質層16の保液性がより向上すると共に、その電解質層16の物理的強度もより向上するからである。 Among them, R1 is preferably a perfluoroalkyl group. Further, the carbon number of the perfluoroalkyl group as R1 is not particularly limited as long as it is 2 or more, but it is preferably 2 to 10 and more preferably 2 to 4. This is because the specific copolymer can be obtained more easily because the first perfluoro unsaturated compound is more easily polymerized. Further, the liquid retention property of the electrolyte layer 16 is further improved, and the physical strength of the electrolyte layer 16 is further improved.
 一方、R2である1価のパーフルオロ炭化水素基の炭素数は、1以上である。R2の炭素数が1以上であれば、十分な電解質層16の保液性が得られると共に、十分な電解質層16の物理的強度も得られる。 On the other hand, the carbon number of the monovalent perfluorohydrocarbon group which is R2 is 1 or more. If the carbon number of R2 is 1 or more, sufficient liquid retention of the electrolyte layer 16 is obtained, and sufficient physical strength of the electrolyte layer 16 is also obtained.
 中でも、R2は、パーフルオロアルキル基であることが好ましい。また、R2であるパーフルオロアルキル基の炭素数は、1以上であれば特に限定されないが、中でも、1~10であることが好ましく、1~3であることがより好ましい。第2パーフルオロ不飽和化合物がより重合反応しやすくなるため、特定共重合体がより容易に得られるからである。また、電解質層16の保液性がより向上すると共に、その電解質層16の物理的強度もより向上するからである。 Among them, R2 is preferably a perfluoroalkyl group. Further, the carbon number of the perfluoroalkyl group as R2 is not particularly limited as long as it is 1 or more, but among them, 1 to 10 is preferable and 1 to 3 is more preferable. This is because the specific copolymer can be obtained more easily because the second perfluorounsaturated compound is more easily polymerized. Further, the liquid retention property of the electrolyte layer 16 is further improved, and the physical strength of the electrolyte layer 16 is further improved.
 なお、特定共重合体の構成(組成)は、パーフルオロ不飽和化合物を成分として含んでいれば、特に限定されない。この場合には、特定共重合体におけるパーフルオロ不飽和化合物の共重合量も、特に限定されない。この他、特定共重合体の重量平均分子量は、特に限定されない。 The configuration (composition) of the specific copolymer is not particularly limited as long as it contains a perfluoro unsaturated compound as a component. In this case, the copolymerization amount of the perfluoro unsaturated compound in the specific copolymer is not particularly limited. In addition, the weight average molecular weight of the specific copolymer is not particularly limited.
 ここで、特定共重合体は、パーフルオロ不飽和化合物と共に、それ以外の1種類または2種類以上の化合物(以下、「他化合物」という。)を成分として含んでいる。この他化合物の種類は、重合反応用の不飽和結合(炭素間二重結合)を含んでいる化合物であれば、特に限定されない。 Here, the specific copolymer includes one or more compounds other than the perfluoro unsaturated compound (hereinafter referred to as “other compounds”) as components. The type of this other compound is not particularly limited as long as it is a compound containing an unsaturated bond (carbon-carbon double bond) for polymerization reaction.
 中でも、他化合物は、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方であることが好ましい。すなわち、特定共重合体は、パーフルオロ不飽和化合物と共にフッ化ビニリデンを成分として含んでいてもよいし、パーフルオロ不飽和化合物と共に酸素含有不飽和化合物を成分として含んでいてもよいし、パーフルオロ不飽和化合物と共にフッ化ビニリデンおよび酸素含有不飽和化合物を成分として含んでいてもよい。電解質層16の物理的強度および電気化学的安定性が向上するからである。 Among these, the other compound is preferably one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. That is, the specific copolymer may contain vinylidene fluoride as a component together with the perfluoro unsaturated compound, may contain an oxygen-containing unsaturated compound as a component together with the perfluoro unsaturated compound, A vinylidene fluoride and an oxygen-containing unsaturated compound may be included as components together with the unsaturated compound. This is because the physical strength and electrochemical stability of the electrolyte layer 16 are improved.
 「酸素含有不飽和化合物」とは、重合反応用の不飽和結合(炭素間二重結合)を含むと共に酸素(O)を構成元素として含む化合物の総称である。 “Oxygen-containing unsaturated compound” is a general term for compounds containing an unsaturated bond (carbon double bond) for polymerization reaction and oxygen (O) as a constituent element.
 この酸素含有不飽和化合物の種類は、特に限定されないが、例えば、鎖状不飽和ジカルボン酸エステルおよび鎖状不飽和グリシジルエーテルなどである。 The kind of the oxygen-containing unsaturated compound is not particularly limited, and examples thereof include chain unsaturated dicarboxylic acid esters and chain unsaturated glycidyl ethers.
 「鎖状不飽和ジカルボン酸エステル」とは、重合反応用の不飽和結合を含む鎖状のジカルボン酸エステルである。この鎖状不飽和ジカルボン酸エステルは、鎖状不飽和ジカルボン酸モノエステルでもよいし、鎖状不飽和ジカルボン酸ジエステルでもよい。「鎖状不飽和グリシジルエーテル」とは、重合反応用の不飽和結合を含むグリシジルエーテルである。 The “chain unsaturated dicarboxylic acid ester” is a chain dicarboxylic acid ester containing an unsaturated bond for polymerization reaction. The chain unsaturated dicarboxylic acid ester may be a chain unsaturated dicarboxylic acid monoester or a chain unsaturated dicarboxylic acid diester. The “chain unsaturated glycidyl ether” is a glycidyl ether containing an unsaturated bond for polymerization reaction.
 鎖状不飽和ジカルボン酸エステルの種類は、特に限定されない。具体的には、鎖状不飽和ジカルボン酸モノエステルは、例えば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、ジメチルマレイン酸モノメチルおよびジエチルマレイン酸モノメチルなどのうちのいずれか1種類または2種類以上である。鎖状不飽和ジカルボン酸ジエステルは、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、シトラコン酸ジメチル、シトラコン酸ジエチル、シトラコン酸ジプロピル、ジメチルマレイン酸ジメチルおよびジエチルマレイン酸ジメチルなどのうちのいずれか1種類または2種類以上である。 The type of chain unsaturated dicarboxylic acid ester is not particularly limited. Specifically, chain unsaturated dicarboxylic acid monoesters include, for example, monomethyl maleate, monoethyl maleate, monopropyl maleate, monomethyl citraconic acid, monoethyl citraconic acid, monopropyl citraconic acid, monomethyl dimethyl maleate and diethyl maleate. Any one or more of monomethyl acid and the like. The chain unsaturated dicarboxylic acid diester is, for example, any one of dimethyl maleate, diethyl maleate, dipropyl maleate, dimethyl citraconic acid, diethyl citraconic acid, dipropyl citraconic acid, dimethyl dimethyl maleate, dimethyl diethyl maleate and the like. One type or two or more types.
 鎖状不飽和グリシジルエーテルの種類は、特に限定されないが、例えば、1または2以上のエポキシ基を含むビニル単量体などである。具体的には、鎖状不飽和グリシジルエーテルは、例えば、アリルグリシジルエーテル、メタアリルグリシジルエーテル、ビニルグリシジルエーテルおよびクロトン酸グリシジルエーテルなどのうちのいずれか1種類または2種類以上を含んでいる。 The type of chain unsaturated glycidyl ether is not particularly limited, and examples thereof include vinyl monomers containing one or more epoxy groups. Specifically, the chain unsaturated glycidyl ether includes, for example, any one or more of allyl glycidyl ether, methallyl glycidyl ether, vinyl glycidyl ether, crotonic acid glycidyl ether, and the like.
 特定共重合体がフッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方を成分として含んでいる場合において、特定共重合体における各成分の共重合量は、特に限定されない。 In the case where the specific copolymer contains one or both of vinylidene fluoride and an oxygen-containing unsaturated compound as a component, the copolymerization amount of each component in the specific copolymer is not particularly limited.
 具体的には、特定共重合体がパーフルオロ不飽和化合物と共にフッ化ビニリデンを成分として含んでいる場合における各成分の共重合量(重量%)は、例えば、以下の通りである。特定共重合体におけるパーフルオロ不飽和化合物の共重合量P1は、3重量%≦P1≦50重量%を満たしている。特定共重合体におけるフッ化ビニリデンの共重合量P2は、50重量%≦P2≦97重量%を満たしている。各成分の共重合量P1,P2が適正化されるため、電解質層16の保液性および物理的強度がより向上するからである。 Specifically, the copolymerization amount (% by weight) of each component when the specific copolymer contains vinylidene fluoride as a component together with the perfluoro unsaturated compound is, for example, as follows. The copolymerization amount P1 of the perfluoro unsaturated compound in the specific copolymer satisfies 3% by weight ≦ P1 ≦ 50% by weight. The copolymerization amount P2 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ≦ P2 ≦ 97% by weight. This is because the amount of copolymerization P1 and P2 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
 特定共重合体がパーフルオロ不飽和化合物と共に酸素含有不飽和化合物を成分として含んでいる場合における各成分の共重合量(重量%)は、例えば、以下の通りである。特定共重合体におけるパーフルオロ不飽和化合物の共重合量P3は、97重量%≦P3<100重量%を満たしている。特定共重合体における酸素含有不飽和化合物の共重合量P4は、0重量%<P4≦3重量%を満たしている。各成分の共重合量P3,P4が適正化されるため、電解質層16の保液性および物理的強度がより向上するからである。 The copolymerization amount (% by weight) of each component in the case where the specific copolymer contains an oxygen-containing unsaturated compound as a component together with the perfluoro unsaturated compound is, for example, as follows. The copolymerization amount P3 of the perfluoro unsaturated compound in the specific copolymer satisfies 97% by weight ≦ P3 <100% by weight. The copolymerization amount P4 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight <P4 ≦ 3% by weight. This is because the amount of copolymerization P3 and P4 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
 特定共重合体がパーフルオロ不飽和化合物と共にフッ化ビニリデンおよび酸素含有不飽和化合物を成分として含んでいる場合における各成分の共重合量(重量%)は、例えば、以下の通りである。特定共重合体におけるパーフルオロ不飽和化合物の共重合量P5は、1重量%≦P5<50重量%を満たしている。特定共重合体におけるフッ化ビニリデンの共重合量P6は、50重量%≦P6≦97重量%を満たしている。特定共重合体における酸素含有不飽和化合物の共重合量P7は、0重量%<P7≦3重量%を満たしている。各成分の共重合量P5~P7が適正化されるため、電解質層16の保液性および物理的強度がより向上するからである。 The copolymerization amount (% by weight) of each component in the case where the specific copolymer includes a vinylidene fluoride and an oxygen-containing unsaturated compound together with the perfluoro unsaturated compound is, for example, as follows. The copolymerization amount P5 of the perfluoro unsaturated compound in the specific copolymer satisfies 1% by weight ≦ P5 <50% by weight. The copolymerization amount P6 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ≦ P6 ≦ 97% by weight. The copolymerization amount P7 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight <P7 ≦ 3% by weight. This is because the amount of copolymerization P5 to P7 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
 また、他化合物は、例えば、ヘキサフルオロプロピレンでもよい。すなわち、特定共重合体は、パーフルオロ不飽和化合物と共にヘキサフルオロプロピレンを成分として含んでいてもよい。特定共重合体のイオン伝導性が向上するからである。ただし、特定共重合体は、パーフルオロ不飽和化合物と、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方と共に、ヘキサフルオロプロピレンを成分として含んでいることが好ましい。フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方と共にヘキサフルオロプロピレンを成分として含んでいる共重合体は、物理的強度により優れていると共に、電気化学的により安定だからである。 The other compound may be, for example, hexafluoropropylene. That is, the specific copolymer may contain hexafluoropropylene as a component together with the perfluoro unsaturated compound. This is because the ionic conductivity of the specific copolymer is improved. However, it is preferable that the specific copolymer contains hexafluoropropylene as a component together with a perfluoro unsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. This is because a copolymer containing hexafluoropropylene as a component together with one or both of vinylidene fluoride and an oxygen-containing unsaturated compound is superior in physical strength and more electrochemically stable.
 特定共重合体がヘキサフルオロプロピレンを成分として含んでいる場合において、特定共重合体における各成分の共重合量は、特に限定されない。 In the case where the specific copolymer contains hexafluoropropylene as a component, the amount of copolymerization of each component in the specific copolymer is not particularly limited.
 具体的には、特定共重合体がパーフルオロ不飽和化合物と共にフッ化ビニリデン、酸素含有不飽和化合物およびヘキサフルオロプロピレンを成分として含んでいる場合における各成分の共重合量(重量%)は、例えば、以下の通りである。特定共重合体におけるパーフルオロ不飽和化合物の共重合量P8は、1重量%≦P8<50重量%を満たしている。特定共重合体におけるフッ化ビニリデンの共重合量P9は、50重量%≦P9≦97重量%を満たしている。特定共重合体における酸素含有不飽和化合物の共重合量P10は、0重量%<P10≦3重量%を満たしている。特定共重合体におけるヘキサフルオロプロピレンの共重合量P11は、0重量%<P11≦20重量%を満たしている。各成分の共重合量P8~P11が適正化されるため、電解質層16の保液性および物理的強度がより向上するからである。 Specifically, when the specific copolymer contains a vinylidene fluoride, an oxygen-containing unsaturated compound and hexafluoropropylene as components together with a perfluoro unsaturated compound, the copolymerization amount (% by weight) of each component is, for example, Is as follows. The copolymerization amount P8 of the perfluoro unsaturated compound in the specific copolymer satisfies 1% by weight ≦ P8 <50% by weight. The copolymerization amount P9 of vinylidene fluoride in the specific copolymer satisfies 50% by weight ≦ P9 ≦ 97% by weight. The copolymerization amount P10 of the oxygen-containing unsaturated compound in the specific copolymer satisfies 0% by weight <P10 ≦ 3% by weight. The copolymerization amount P11 of hexafluoropropylene in the specific copolymer satisfies 0% by weight <P11 ≦ 20% by weight. This is because the copolymerization amount P8 to P11 of each component is optimized, so that the liquid retention and physical strength of the electrolyte layer 16 are further improved.
 この他、他化合物は、例えば、トリフルオロエチレンおよびクロロトリフルオロエチレンのうちの一方または双方でもよい。ただし、特定共重合体は、パーフルオロ不飽和化合物と、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方と共に、トリフルオロエチレンおよびクロロトリフルオロエチレンのうちの一方または双方を成分として含んでいることが好ましい。または、特定共重合体は、パーフルオロ不飽和化合物と、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方と、ヘキサフルオロプロピレンと共に、トリフルオロエチレンおよびクロロトリフルオロエチレンのうちの一方または双方を成分として含んでいることが好ましい。フッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方とヘキサフルオロプロピレンと共にトリフルオロエチレンおよびクロロトリフルオロエチレンのうちの一方または双方を成分として含んでいる共重合体は、物理的強度により優れていると共に、電気化学的により安定だからである。特定共重合体におけるトリフルオロエチレンおよびクロロトリフルオロエチレンのうちの一方または双方の共重合量は、特に限定されない。 In addition, the other compound may be, for example, one or both of trifluoroethylene and chlorotrifluoroethylene. However, the specific copolymer contains, as a component, one or both of trifluoroethylene and chlorotrifluoroethylene together with a perfluorounsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound. It is preferable that Alternatively, the specific copolymer includes a perfluoro unsaturated compound, one or both of vinylidene fluoride and an oxygen-containing unsaturated compound, hexafluoropropylene, and one or both of trifluoroethylene and chlorotrifluoroethylene. It is preferable that both are included as components. A copolymer containing one or both of vinylidene fluoride and an oxygen-containing unsaturated compound and hexafluoropropylene together with one or both of trifluoroethylene and chlorotrifluoroethylene as a component is superior in physical strength. Because it is more electrochemically stable. The copolymerization amount of one or both of trifluoroethylene and chlorotrifluoroethylene in the specific copolymer is not particularly limited.
 なお、高分子化合物は、上記した特定共重合体と共に、他の重合体のうちのいずれか1種類または2種類以上を含んでいてもよい。他の重合体は、例えば、単独重合体でもよいし、共重合体でもよい。 In addition, the high molecular compound may contain any 1 type or 2 or more types of other polymers with the above-mentioned specific copolymer. The other polymer may be a homopolymer or a copolymer, for example.
 単独重合体は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどである。 Homopolymers include, for example, polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, polymethacryl Examples thereof include methyl acid, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
 共重合体は、例えば、パーフルオロ不飽和化合物を成分として含んでいない共重合体である。具体的には、共重合体は、例えば、フッ化ビニリデンと1種類または2種類以上の他化合物(フッ化ビニリデンを除く。)との共重合体などである。ここで説明している他化合物に関する詳細は、フッ化ビニリデン以外の化合物であることを除き、上記した通りである。 The copolymer is, for example, a copolymer that does not contain a perfluoro unsaturated compound as a component. Specifically, the copolymer is, for example, a copolymer of vinylidene fluoride and one or more other compounds (excluding vinylidene fluoride). Details regarding the other compounds described here are as described above except that they are compounds other than vinylidene fluoride.
 特定共重合体の組成を調べるためには、例えば、以下の手法を用いればよい。最初に、二次電池を解体することにより、電解質層16を取り出す。続いて、再沈法を用いて、電解質層16から高分子化合物(特定共重合体)を抽出する。最後に、核磁気共鳴(NMR)法などの分析方法を用いて、特定共重合体を分析する。これにより、特定共重合体の組成を特定することができる。すなわち、特定共重合体に成分として含まれている2種類以上の化合物(モノマー)の種類を特定することができると共に、その特定共重合体における各成分の共重合量を特定することができる。 In order to examine the composition of the specific copolymer, for example, the following method may be used. First, the electrolyte layer 16 is taken out by disassembling the secondary battery. Subsequently, a high molecular compound (specific copolymer) is extracted from the electrolyte layer 16 using a reprecipitation method. Finally, the specific copolymer is analyzed using an analysis method such as a nuclear magnetic resonance (NMR) method. Thereby, the composition of a specific copolymer can be specified. That is, two or more kinds of compounds (monomers) contained as components in the specific copolymer can be specified, and the copolymerization amount of each component in the specific copolymer can be specified.
[電解液]
 電解液は、溶媒および電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Electrolyte]
The electrolytic solution contains a solvent and an electrolyte salt. However, the electrolytic solution may further include any one or more of other materials such as additives.
 溶媒は、有機溶媒などの非水溶媒のうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。 The solvent includes one or more of non-aqueous solvents such as organic solvents. The electrolytic solution containing the nonaqueous solvent is a so-called nonaqueous electrolytic solution.
 非水溶媒は、例えば、炭酸エステル(環状炭酸エステルおよび鎖状炭酸エステル)、ラクトン、鎖状カルボン酸エステルおよびニトリルなどである。優れた電池容量、サイクル特性および保存特性などが得られるからである。環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどであり、鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。 Examples of the non-aqueous solvent include carbonate esters (cyclic carbonate esters and chain carbonate esters), lactones, chain carboxylate esters, and nitriles. This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, and butylene carbonate, and examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate. Examples of the lactone include γ-butyrolactone and γ-valerolactone. Examples of the carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, and ethyl trimethyl acetate. Nitriles include, for example, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like.
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。 Other non-aqueous solvents include, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 , 4-dioxane, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N′-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide. This is because similar advantages can be obtained.
 中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルのうちのいずれか1種類または2種類以上が好ましい。より優れた電池容量、サイクル特性および保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。 Of these, one or more of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are preferred. This is because better battery capacity, cycle characteristics, storage characteristics, and the like can be obtained. In this case, high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, dielectric constant ε ≧ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity ≦ 1 mPas). -A combination with s) is more preferred. This is because the dissociation property of the electrolyte salt and the ion mobility are improved.
 特に、溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物およびリン酸エステルなどのうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するからである。 In particular, the solvent is any one or two or more of unsaturated cyclic carbonate, halogenated carbonate, sulfonate, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound and phosphate ester. May be included. This is because the chemical stability of the electrolytic solution is improved.
 不飽和環状炭酸エステルとは、1または2以上の不飽和結合(炭素間二重結合または炭素間三重結合)を含む環状炭酸エステルである。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。 The unsaturated cyclic carbonate is a cyclic carbonate containing one or more unsaturated bonds (carbon-carbon double bond or carbon-carbon triple bond). Examples of the unsaturated cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate. The content of the unsaturated cyclic carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 10% by weight.
 ハロゲン化炭酸エステルとは、1または2以上のハロゲンを構成元素として含む環状または鎖状の炭酸エステルである。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。 The halogenated carbonate is a cyclic or chain carbonate containing one or more halogens as a constituent element. Examples of cyclic halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one. Examples of the chain halogenated carbonate include fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, and difluoromethyl methyl carbonate. The content of the halogenated carbonate in the solvent is not particularly limited, but is, for example, 0.01% by weight to 50% by weight.
 スルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどである。溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 Examples of the sulfonate ester include 1,3-propane sultone and 1,3-propene sultone. The content of the sulfonic acid ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 Examples of the acid anhydride include carboxylic acid anhydride, disulfonic acid anhydride, and carboxylic acid sulfonic acid anhydride. Examples of the carboxylic acid anhydride include succinic anhydride, glutaric anhydride, and maleic anhydride. Examples of the disulfonic anhydride include ethanedisulfonic anhydride and propanedisulfonic anhydride. Examples of the carboxylic acid sulfonic acid anhydride include anhydrous sulfobenzoic acid, anhydrous sulfopropionic acid, and anhydrous sulfobutyric acid. The content of the acid anhydride in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
 ジニトリル化合物は、例えば、NC-C2m-CN(mは、1以上の整数である。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)およびフタロニトリル(NC-C-CN)などである。溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The dinitrile compound is, for example, a compound represented by NC—C m H 2m —CN (m is an integer of 1 or more). This dinitrile compound includes, for example, succinonitrile (NC-C 2 H 4 -CN), glutaronitrile (NC-C 3 H 6 -CN), adiponitrile (NC-C 4 H 8 -CN) and phthalonitrile ( NC-C 6 H 4 -CN). The content of the dinitrile compound in the solvent is not particularly limited, but is, for example, 0.5% by weight to 5% by weight.
 ジイソシアネート化合物は、例えば、OCN-C2n-NCO(nは、1以上の整数である。)で表される化合物である。このジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート(OCN-C12-NCO)などである。溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 The diisocyanate compound is, for example, a compound represented by OCN—C n H 2n —NCO (n is an integer of 1 or more). This diisocyanate compound is, for example, hexamethylene diisocyanate (OCN—C 6 H 12 —NCO). The content of the diisocyanate compound in the solvent is not particularly limited and is, for example, 0.5% by weight to 5% by weight.
 リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。溶媒中におけるリン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。 Examples of the phosphate ester include trimethyl phosphate and triethyl phosphate. The content of the phosphate ester in the solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
 電解質塩は、例えば、リチウム塩などの塩のうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム以外の塩は、例えば、リチウム以外の軽金属の塩などである。 The electrolyte salt includes, for example, any one kind or two or more kinds of salts such as lithium salt. However, the electrolyte salt may contain a salt other than the lithium salt, for example. Examples of the salt other than lithium include salts of light metals other than lithium.
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。 Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and tetraphenyl. Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride Examples include dilithium silicate (Li 2 SiF 6 ), lithium chloride (LiCl), and lithium bromide (LiBr). This is because excellent battery capacity, cycle characteristics, storage characteristics, and the like can be obtained.
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちのいずれか1種類または2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するため、より高い効果が得られるからである。 Among them, one or more of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . This is because a higher effect can be obtained because the internal resistance is lowered.
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is not particularly limited, but is preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity is obtained.
[他の材料]
 なお、電解質層16は、さらに、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
[Other materials]
The electrolyte layer 16 may further include any one type or two or more types of other materials.
 他の材料は、例えば、複数の無機粒子のうちのいずれか1種類または2種類以上である。この複数の無機粒子は、主に、二次電池の安全性を向上させる役割を果たす。詳細には、電解質層16が複数の無機粒子を含んでいると、二次電池の充放電時においてセパレータ15が酸化されにくくなる。これにより、正極13と負極14とが短絡しにくくなるため、二次電池の安全性が向上する。 The other material is, for example, any one type or two or more types among a plurality of inorganic particles. The plurality of inorganic particles mainly play a role of improving the safety of the secondary battery. Specifically, when the electrolyte layer 16 includes a plurality of inorganic particles, the separator 15 is less likely to be oxidized during charge / discharge of the secondary battery. Thereby, since the positive electrode 13 and the negative electrode 14 become difficult to short-circuit, the safety | security of a secondary battery improves.
 複数の無機粒子の種類は、特に限定されない。具体的には、複数の無機粒子は、例えば、セラミック(絶縁性材料)などの無機材料のうちのいずれか1種類または2種類以上を含んでいる。このセラミックは、例えば、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)および酸化マグネシウム(MgO)などである。セパレータ15の酸化が十分に抑制されるため、短絡の発生が十分に抑制されるからである。 The kind of several inorganic particle is not specifically limited. Specifically, the plurality of inorganic particles include any one or more of inorganic materials such as ceramic (insulating material). Examples of the ceramic include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), and magnesium oxide (MgO 2 ). This is because the occurrence of a short circuit is sufficiently suppressed because the oxidation of the separator 15 is sufficiently suppressed.
 複数の無機粒子の平均粒径(メジアン径D50)および比表面積(BET比表面積)などは、特に限定されない。具体的には、平均粒径は、例えば、0.1μm~2.5μmである。比表面積は、例えば、0.5m/g~11m/gである。 The average particle diameter (median diameter D50) and specific surface area (BET specific surface area) of the plurality of inorganic particles are not particularly limited. Specifically, the average particle diameter is, for example, 0.1 μm to 2.5 μm. The specific surface area is, for example, 0.5 m 2 / g to 11 m 2 / g.
 電解質層16中における複数の無機粒子の含有量は、特に限定されないため、任意に設定可能である。 The content of the plurality of inorganic particles in the electrolyte layer 16 is not particularly limited and can be arbitrarily set.
<1-2.二次電池の動作>
 この二次電池は、例えば、以下のように動作する。
<1-2. Operation of secondary battery>
This secondary battery operates as follows, for example.
 充電時には、正極13からリチウムイオンが放出されると、そのリチウムイオンが電解質層16を介して負極14に吸蔵される。一方、放電時には、負極14からリチウムイオンが放出されると、そのリチウムイオンが電解質層16を介して正極13に吸蔵される。 At the time of charging, when lithium ions are released from the positive electrode 13, the lithium ions are occluded in the negative electrode 14 through the electrolyte layer 16. On the other hand, when lithium ions are released from the negative electrode 14 during discharge, the lithium ions are occluded by the positive electrode 13 through the electrolyte layer 16.
<1-3.二次電池の製造方法>
 電解質層16を備えた二次電池は、例えば、以下の3種類の手順により製造される。
<1-3. Manufacturing method of secondary battery>
The secondary battery including the electrolyte layer 16 is manufactured by, for example, the following three types of procedures.
 第1手順では、最初に、正極13を作製すると共に、負極14を作製する。 In the first procedure, first, the positive electrode 13 and the negative electrode 14 are prepared.
 正極13を作製する場合には、最初に、正極活物質と、正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、正極合剤を有機溶剤などに分散または溶解させることにより、ペースト状の正極合剤スラリーとする。最後に、正極合剤スラリーを正極集電体13Aの両面に塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層13Bを形成する。こののち、ロールプレス機などを用いて、正極活物質層13Bを圧縮成型してもよい。この場合には、正極活物質層13Bを加熱しながら圧縮成型処理してもよいし、圧縮成型処理を複数回繰り返してもよい。 When the positive electrode 13 is manufactured, first, a positive electrode active material, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to obtain a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed or dissolved in an organic solvent or the like to obtain a paste-like positive electrode mixture slurry. Finally, after applying the positive electrode mixture slurry on both surfaces of the positive electrode current collector 13A, the positive electrode mixture slurry is dried to form the positive electrode active material layer 13B. After that, the positive electrode active material layer 13B may be compression molded using a roll press machine or the like. In this case, the compression molding process may be performed while heating the positive electrode active material layer 13B, or the compression molding process may be repeated a plurality of times.
 負極14を作製する場合には、上記した正極13と同様の作製手順により、負極集電体14Aの両面に負極活物質層14Bを形成する。具体的には、負極活物質と負極結着剤および負極導電剤などとが混合された負極合剤を有機溶剤などに分散または溶解させることにより、ペースト状の負極合剤スラリーとする。続いて、負極合剤スラリーを負極集電体14Aの両面に塗布してから乾燥させて負極活物質層14Bを形成したのち、必要に応じてロールプレス機などを用いて負極活物質層14Bを圧縮成型する。 When the negative electrode 14 is manufactured, the negative electrode active material layer 14B is formed on both surfaces of the negative electrode current collector 14A by the same manufacturing procedure as that of the positive electrode 13 described above. Specifically, a negative electrode mixture in which a negative electrode active material, a negative electrode binder, a negative electrode conductive agent, and the like are mixed is dispersed or dissolved in an organic solvent to obtain a paste-like negative electrode mixture slurry. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 14A and drying to form the negative electrode active material layer 14B, the negative electrode active material layer 14B is formed using a roll press machine or the like as necessary. Compression molding.
 続いて、電解液と、特定共重合体を含む高分子化合物と、必要に応じて複数の無機粒子および希釈用溶媒(例えば、有機溶剤)などとを混合したのち、その混合物を撹拌することにより、ゾル状の前駆溶液を調製する。 Subsequently, by mixing the electrolytic solution, the polymer compound containing the specific copolymer, and a plurality of inorganic particles and a diluent solvent (for example, an organic solvent) as necessary, the mixture is stirred. A sol precursor solution is prepared.
 この特定共重合体を得る場合には、例えば、原料である2種類以上のモノマー(パーフルオロ不飽和化合物を含む。)を用いて、その2種類以上のモノマーを重合反応させる。この場合には、各モノマーの投入量に応じて、特定共重合体における各成分の共重合量を調整可能である。 In order to obtain this specific copolymer, for example, two or more monomers (including perfluoro unsaturated compounds) as raw materials are used, and the two or more monomers are subjected to a polymerization reaction. In this case, the copolymerization amount of each component in the specific copolymer can be adjusted according to the input amount of each monomer.
 続いて、正極13の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層16を形成すると共に、負極14の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層16を形成する。続いて、溶接法などを用いて正極集電体13Aに正極リード11を取り付けると共に、溶接法などを用いて負極集電体14Aに負極リード12を取り付ける。続いて、セパレータ15および電解質層16を介して積層された正極13および負極14を巻回させることにより、巻回電極体10を作製する。続いて、巻回電極体10の最外周部に保護テープ17を貼り付ける。続いて、巻回電極体10を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20の外周縁部同士を接着させることにより、その外装部材20の内部に巻回電極体10を封入する。この場合には、正極リード11と外装部材20との間に密着フィルム21を挿入すると共に、負極リード12と外装部材20との間に密着フィルム21を挿入する。 Subsequently, after applying the precursor solution to the surface of the positive electrode 13 and drying the precursor solution, the gel-like electrolyte layer 16 is formed and the precursor solution is applied to the surface of the negative electrode 14 and then the precursor solution. Is dried to form the gel electrolyte layer 16. Subsequently, the positive electrode lead 11 is attached to the positive electrode current collector 13A using a welding method or the like, and the negative electrode lead 12 is attached to the negative electrode current collector 14A using a welding method or the like. Subsequently, the wound electrode body 10 is manufactured by winding the positive electrode 13 and the negative electrode 14 laminated via the separator 15 and the electrolyte layer 16. Subsequently, the protective tape 17 is attached to the outermost peripheral portion of the wound electrode body 10. Subsequently, after folding the exterior member 20 so as to sandwich the wound electrode body 10, the outer peripheral edge portions of the exterior member 20 are bonded to each other using a heat fusion method or the like, thereby winding the exterior member 20 inside. The rotating electrode body 10 is enclosed. In this case, the adhesion film 21 is inserted between the positive electrode lead 11 and the exterior member 20, and the adhesion film 21 is inserted between the negative electrode lead 12 and the exterior member 20.
 第2手順では、正極13に正極リード11を取り付けると共に、負極14に負極リード12を取り付ける。続いて、セパレータ15を介して積層された正極13および負極14を巻回させることにより、巻回電極体10の前駆体である巻回体を作製する。続いて、巻回体の最外周部に保護テープ17を貼り付ける。続いて、巻回体を挟むように外装部材20を折り畳んだのち、熱融着法などを用いて外装部材20の外周縁部同士を接着させることにより、その外装部材20の内部に巻回体を収納する。続いて、電解液と、高分子化合物の原料(特定共重合体の原料である2種類以上のモノマーを含む)と、重合開始剤と、必要に応じて複数の無粒子および重合禁止剤などの他の材料とを混合することにより、電解質用組成物を調製する。続いて、袋状の外装部材20の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材20を密封する。続いて、高分子化合物の原料を熱重合させることにより、特定共重合体を含む高分子化合物を形成する。これにより、電解液が高分子化合物に含浸されると共に、その高分子化合物がゲル化するため、電解質層16が形成される。 In the second procedure, the positive electrode lead 11 is attached to the positive electrode 13 and the negative electrode lead 12 is attached to the negative electrode 14. Subsequently, a wound body that is a precursor of the wound electrode body 10 is produced by winding the positive electrode 13 and the negative electrode 14 stacked via the separator 15. Then, the protective tape 17 is affixed on the outermost periphery part of a wound body. Subsequently, after the exterior member 20 is folded so as to sandwich the wound body, the outer peripheral edge portions of the exterior member 20 are bonded to each other using a heat fusion method or the like, so that the wound body is placed inside the exterior member 20. Storing. Subsequently, the electrolytic solution, the raw material of the polymer compound (including two or more types of monomers that are the raw material of the specific copolymer), the polymerization initiator, and a plurality of non-particles and a polymerization inhibitor as necessary An electrolyte composition is prepared by mixing with other materials. Subsequently, after the electrolyte composition is injected into the bag-shaped exterior member 20, the exterior member 20 is sealed using a heat fusion method or the like. Subsequently, a polymer compound containing a specific copolymer is formed by thermally polymerizing the raw material of the polymer compound. Thereby, the electrolytic solution is impregnated in the polymer compound, and the polymer compound is gelled, so that the electrolyte layer 16 is formed.
 第3手順では、特定共重合体を含む高分子化合物層が両面に形成されたセパレータ15を用いることを除き、上記した第2手順と同様の手順により巻回体を作製したのち、その巻回体を袋状の外装部材20の内部に収納する。この高分子化合物層を形成する場合には、特定共重合体を含む高分子化合物が有機溶剤などに溶解された溶液をセパレータ15の両面に塗布したのち、その溶液を乾燥させる。続いて、外装部材20の内部に電解液を注入したのち、熱融着法などを用いて外装部材20の開口部を密封する。続いて、外装部材20に加重をかけながら外装部材20を加熱することにより、高分子化合物層を介してセパレータ15を正極13および負極14に密着させる。これにより、高分子化合物層中の高分子化合物に電解液が含浸されると共に、その高分子化合物がゲル化するため、電解質層16が形成される。 In the third procedure, a wound body is produced by the same procedure as the above-described second procedure, except that the separator 15 in which the polymer compound layer containing the specific copolymer is formed on both sides is used. The body is stored inside the bag-shaped exterior member 20. In the case of forming this polymer compound layer, a solution in which a polymer compound containing a specific copolymer is dissolved in an organic solvent or the like is applied to both surfaces of the separator 15, and then the solution is dried. Subsequently, after injecting an electrolyte into the exterior member 20, the opening of the exterior member 20 is sealed using a thermal fusion method or the like. Subsequently, the separator 15 is brought into close contact with the positive electrode 13 and the negative electrode 14 through the polymer compound layer by heating the outer member 20 while applying a load to the outer member 20. Accordingly, the polymer compound in the polymer compound layer is impregnated with the electrolytic solution, and the polymer compound gels, so that the electrolyte layer 16 is formed.
 この第3手順では、第1手順よりも二次電池の膨れが抑制される。また、第3手順では、第2手順よりも高分子化合物の原料であるモノマーまたは溶媒などが電解質層16中にほとんど残らないため、高分子化合物の形成工程が良好に制御される。このため、正極13、負極14およびセパレータ15と電解質層16とが十分に密着する。 In this third procedure, swelling of the secondary battery is suppressed more than in the first procedure. Further, in the third procedure, a monomer or a solvent that is a raw material for the polymer compound is hardly left in the electrolyte layer 16 than in the second procedure, so that the formation process of the polymer compound is controlled well. For this reason, the positive electrode 13, the negative electrode 14, the separator 15, and the electrolyte layer 16 are sufficiently adhered.
<1-4.二次電池の作用および効果>
 この二次電池によれば、電解質層16に含まれている高分子化合物は、特定共重合体を含んでいる。
<1-4. Action and Effect of Secondary Battery>
According to this secondary battery, the polymer compound contained in the electrolyte layer 16 contains the specific copolymer.
 この場合には、上記したように、電解質層16の保液性が向上すると共に、その電解質層16の物理的強度(形状安定性)も向上するため、電解質層16において高いイオン伝導性が得られると共に、二次電池を充放電させても電解質層16が破壊されにくくなる。よって、特に、高温環境中などの厳しい条件下において二次電池を充放電させても放電容量が低下しにくくなるため、優れた電池特性を得ることができる。 In this case, as described above, the liquid retaining property of the electrolyte layer 16 is improved and the physical strength (shape stability) of the electrolyte layer 16 is also improved, so that high ionic conductivity is obtained in the electrolyte layer 16. In addition, even when the secondary battery is charged and discharged, the electrolyte layer 16 is not easily destroyed. Therefore, even when the secondary battery is charged / discharged under severe conditions such as in a high temperature environment, the discharge capacity is unlikely to decrease, so that excellent battery characteristics can be obtained.
 特に、式(1)に示したR1がパーフルオロアルキル基であると共に、そのパーフルオロアルキル基の炭素数が2~10であれば、特定共重合体を容易に得やすくなると共に、電解質層16において十分な保液性および物理的強度が得られるため、より高い効果を得ることができる。また、式(2)に示したR2がパーフルオロアルキル基であると共に、そのパーフルオロアルキル基の炭素数が1~10であれば、特定共重合体を容易に得やすくなると共に、電解質層16において十分な保液性および物理的強度が得られるため、より高い効果を得ることができる。 In particular, when R1 shown in Formula (1) is a perfluoroalkyl group and the perfluoroalkyl group has 2 to 10 carbon atoms, the specific copolymer can be easily obtained, and the electrolyte layer 16 can be easily obtained. Since sufficient liquid retention and physical strength can be obtained, a higher effect can be obtained. In addition, when R2 shown in Formula (2) is a perfluoroalkyl group and the perfluoroalkyl group has 1 to 10 carbon atoms, the specific copolymer can be easily obtained and the electrolyte layer 16 can be easily obtained. Since sufficient liquid retention and physical strength can be obtained, a higher effect can be obtained.
 また、特定共重合体がフッ化ビニリデンおよび酸素含有不飽和化合物のうちの一方または双方を成分として含んでいれば、その特定共重合体の物理的強度および電気化学的安定性が向上するため、より高い効果を得ることができる。 Further, if the specific copolymer contains one or both of vinylidene fluoride and an oxygen-containing unsaturated compound as a component, the physical strength and electrochemical stability of the specific copolymer are improved. A higher effect can be obtained.
 中でも、特定共重合体がフッ化ビニリデンを成分として含んでいる場合には、パーフルオロ不飽和化合物の共重合量P1が3重量%≦P1≦50重量%を満たしていると共に、フッ化ビニリデンの共重合量P2が50重量%≦P2≦97重量%を満たしていれば、さらに高い効果を得ることができる。 In particular, when the specific copolymer contains vinylidene fluoride as a component, the copolymerization amount P1 of the perfluorounsaturated compound satisfies 3 wt% ≦ P1 ≦ 50 wt%, and vinylidene fluoride If the copolymerization amount P2 satisfies 50% by weight ≦ P2 ≦ 97% by weight, a higher effect can be obtained.
 または、特定共重合体が酸素含有不飽和化合物を成分として含んでいる場合には、パーフルオロ不飽和化合物の共重合量P3が97重量%≦P3<100重量%を満たしていると共に、酸素含有不飽和化合物の共重合量P4が0重量%<P4≦3重量%を満たしていれば、さらに高い効果を得ることができる。 Alternatively, when the specific copolymer contains an oxygen-containing unsaturated compound as a component, the copolymerization amount P3 of the perfluorounsaturated compound satisfies 97 wt% ≦ P3 <100 wt% and contains oxygen. If the copolymerization amount P4 of the unsaturated compound satisfies 0% by weight <P4 ≦ 3% by weight, a higher effect can be obtained.
 または、特定共重合体がフッ化ビニリデンおよび酸素含有不飽和化合物を成分として含んでいる場合には、パーフルオロ不飽和化合物の共重合量P5が1重量%≦P5<50重量%を満たしており、フッ化ビニリデンの共重合量P6が50重量%≦P6≦97重量%を満たしており、酸素含有不飽和化合物の共重合量P7が0重量%<P7≦3重量%を満たしていれば、さらに高い効果を得ることができる。 Alternatively, when the specific copolymer contains vinylidene fluoride and an oxygen-containing unsaturated compound as components, the copolymerization amount P5 of the perfluorounsaturated compound satisfies 1 wt% ≦ P5 <50 wt%. If the copolymerization amount P6 of vinylidene fluoride satisfies 50% by weight ≦ P6 ≦ 97% by weight and the copolymerization amount P7 of the oxygen-containing unsaturated compound satisfies 0% by weight <P7 ≦ 3% by weight, A higher effect can be obtained.
 この場合には、特定共重合体がヘキサフルオロプロピレンを成分として含んでいれば、電解質層16のイオン伝導性が向上するため、より高い効果を得ることができる。 In this case, if the specific copolymer contains hexafluoropropylene as a component, since the ionic conductivity of the electrolyte layer 16 is improved, a higher effect can be obtained.
 中でも、特定共重合体がフッ化ビニリデン、酸素含有不飽和化合物およびヘキサフルオロプロピレンを成分として含んでいる場合には、パーフルオロ不飽和化合物の共重合量P8が1重量%≦P8<50重量%を満たしており、フッ化ビニリデンの共重合量P9が50重量%≦P9≦97重量%を満たしており、酸素含有不飽和化合物の共重合量P10が0重量%<P10≦3重量%を満たしており、ヘキサフルオロプロピレンの共重合量P11が0重量%<P11≦20重量%を満たしていれば、さらに高い効果を得ることができる。 In particular, when the specific copolymer contains vinylidene fluoride, an oxygen-containing unsaturated compound and hexafluoropropylene as components, the copolymerization amount P8 of the perfluorounsaturated compound is 1% by weight ≦ P8 <50% by weight. The copolymerization amount P9 of vinylidene fluoride satisfies 50% by weight ≦ P9 ≦ 97% by weight, and the copolymerization amount P10 of the oxygen-containing unsaturated compound satisfies 0% by weight <P10 ≦ 3% by weight. If the copolymerization amount P11 of hexafluoropropylene satisfies 0% by weight <P11 ≦ 20% by weight, a higher effect can be obtained.
 また、電解質層16が複数の無機粒子を含んでいれば、安全性が向上するため、より高い効果を得ることができる。この場合には、複数の無機粒子が酸化アルミニウムなどを含んでいれば、さらに高い効果を得ることができる。 Further, if the electrolyte layer 16 contains a plurality of inorganic particles, the safety is improved, so that a higher effect can be obtained. In this case, if the plurality of inorganic particles contain aluminum oxide or the like, a higher effect can be obtained.
<2.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
<2. Applications of secondary batteries>
Next, application examples of the above-described secondary battery will be described.
 二次電池の用途は、その二次電池を駆動用の電源または電力蓄積用の電力貯蔵源などとして利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。 Secondary batteries can be used in machines, equipment, instruments, devices and systems (aggregates of multiple equipment) that can be used as a power source for driving or a power storage source for power storage. If there is, it will not be specifically limited. The secondary battery used as a power source may be a main power source or an auxiliary power source. The main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be, for example, a power supply used instead of the main power supply, or a power supply that can be switched from the main power supply as necessary. When a secondary battery is used as an auxiliary power source, the type of main power source is not limited to the secondary battery.
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。 The usage of the secondary battery is, for example, as follows. Electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals. It is a portable living device such as an electric shaver. Storage devices such as backup power supplies and memory cards. Electric tools such as electric drills and electric saws. It is a battery pack that is mounted on a notebook computer or the like as a detachable power source. Medical electronic devices such as pacemakers and hearing aids. An electric vehicle such as an electric vehicle (including a hybrid vehicle). It is an electric power storage system such as a home battery system that stores electric power in case of an emergency. Of course, the secondary battery may be used for other purposes.
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。 Among them, it is effective that the secondary battery is applied to a battery pack, an electric vehicle, an electric power storage system, an electric tool, an electronic device, and the like. This is because excellent battery characteristics are required for these applications, and therefore the performance can be effectively improved by using the secondary battery of the present technology. The battery pack is a power source using a secondary battery. As will be described later, this battery pack may use a single battery or an assembled battery. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be an automobile (such as a hybrid automobile) that includes a drive source other than the secondary battery as described above. The power storage system is a system that uses a secondary battery as a power storage source. For example, in a household power storage system, power is stored in a secondary battery, which is a power storage source, and thus it is possible to use household electrical appliances or the like using the power. An electric power tool is a tool in which a movable part (for example, a drill etc.) moves, using a secondary battery as a driving power source. An electronic device is a device that exhibits various functions using a secondary battery as a driving power source (power supply source).
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。 Here, some application examples of the secondary battery will be specifically described. In addition, since the structure of the application example demonstrated below is an example to the last, the structure of the application example can be changed suitably.
<2-1.電池パック(単電池)>
 図3は、単電池を用いた電池パックの斜視構成を表している。図4は、図3に示した電池パックのブロック構成を表している。なお、図3では、電池パックが分解された状態を示している。
<2-1. Battery pack (single cell)>
FIG. 3 shows a perspective configuration of a battery pack using single cells. FIG. 4 shows a block configuration of the battery pack shown in FIG. FIG. 3 shows a state where the battery pack is disassembled.
 ここで説明する電池パックは、1つの本技術の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図3に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。 The battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery of the present technology, and is mounted on, for example, an electronic device typified by a smartphone. For example, as shown in FIG. 3, the battery pack includes a power supply 111 that is a laminate film type secondary battery, and a circuit board 116 that is connected to the power supply 111. A positive electrode lead 112 and a negative electrode lead 113 are attached to the power source 111.
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:ProtectionCircuitModule )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。 A pair of adhesive tapes 118 and 119 are attached to both side surfaces of the power source 111. A protection circuit (PCM: Protection Circuit Module) is formed on the circuit board 116. The circuit board 116 is connected to the positive electrode 112 through the tab 114 and is connected to the negative electrode lead 113 through the tab 115. The circuit board 116 is connected to a lead wire 117 with a connector for external connection. In the state where the circuit board 116 is connected to the power source 111, the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
 また、電池パックは、例えば、図4に示したように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。 Further, the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG. The circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124. Since the power source 111 can be connected to the outside via the positive electrode terminal 125 and the negative electrode terminal 127, the power source 111 is charged / discharged via the positive electrode terminal 125 and the negative electrode terminal 127. The temperature detector 124 detects the temperature using a temperature detection terminal (so-called T terminal) 126.
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。 The controller 121 controls the operation of the entire battery pack (including the usage state of the power supply 111). The control unit 121 includes, for example, a central processing unit (CPU) and a memory.
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. For example, when a large current flows during charging, the control unit 121 cuts off the charging current by cutting the switch unit 122.
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。 On the other hand, for example, when the battery voltage reaches the overdischarge detection voltage, the control unit 121 disconnects the switch unit 122 so that no discharge current flows in the current path of the power supply 111. For example, when a large current flows during discharge, the control unit 121 cuts off the discharge current by cutting the switch unit 122.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。 The switch unit 122 switches the usage state of the power source 111, that is, whether or not the power source 111 is connected to an external device, in accordance with an instruction from the control unit 121. The switch unit 122 includes, for example, a charge control switch and a discharge control switch. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor. The charge / discharge current is detected based on, for example, the ON resistance of the switch unit 122.
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。 The temperature detection unit 124 measures the temperature of the power supply 111 and outputs the temperature measurement result to the control unit 121. The temperature detection unit 124 includes a temperature detection element such as a thermistor, for example. The temperature measurement result measured by the temperature detection unit 124 is used when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。 Note that the circuit board 116 may not include the PTC element 123. In this case, a PTC element may be attached to the circuit board 116 separately.
<2-2.電池パック(組電池)>
 図5は、組電池を用いた電池パックのブロック構成を表している。
<2-2. Battery Pack (Battery)>
FIG. 5 shows a block configuration of a battery pack using an assembled battery.
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。 This battery pack includes, for example, a control unit 61, a power source 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 inside the housing 60. A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive terminal 71 and a negative terminal 72. The housing 60 includes, for example, a plastic material.
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2種類以上の本技術の二次電池を含む組電池であり、その2種類以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6つの二次電池を含んでいる。 The control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62). The control unit 61 includes, for example, a CPU. The power source 62 is an assembled battery including two or more types of secondary batteries of the present technology, and the connection type of the two or more types of secondary batteries may be in series, in parallel, or a mixture of both. . For example, the power source 62 includes six secondary batteries connected in two parallel three series.
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。 The switch unit 63 switches the usage state of the power source 62, that is, whether or not the power source 62 is connected to an external device, in accordance with an instruction from the control unit 61. The switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like. Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。 The current measurement unit 64 measures the current using the current detection resistor 70 and outputs the measurement result of the current to the control unit 61. The temperature detection unit 65 measures the temperature using the temperature detection element 69 and outputs the temperature measurement result to the control unit 61. This temperature measurement result is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity. The voltage detection unit 66 measures the voltage of the secondary battery in the power source 62 and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。 The switch control unit 67 controls the operation of the switch unit 63 according to signals input from the current measurement unit 64 and the voltage detection unit 66, respectively.
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。 For example, when the battery voltage reaches the overcharge detection voltage, the switch control unit 67 disconnects the switch unit 63 (charge control switch) so that the charging current does not flow in the current path of the power source 62. As a result, the power source 62 can only discharge through the discharging diode. For example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。 Further, for example, when the battery voltage reaches the overdischarge detection voltage, the switch control unit 67 disconnects the switch unit 63 (discharge control switch) so that the discharge current does not flow in the current path of the power source 62. As a result, the power source 62 can only be charged via the charging diode. For example, when a large current flows during discharge, the switch control unit 67 interrupts the discharge current.
 なお、過充電検出電圧は、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、例えば、2.4V±0.1Vである。 The overcharge detection voltage is, for example, 4.2V ± 0.05V, and the overdischarge detection voltage is, for example, 2.4V ± 0.1V.
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。 The memory 68 includes, for example, an EEPROM which is a nonvolatile memory. The memory 68 stores, for example, numerical values calculated by the control unit 61, information on the secondary battery measured in the manufacturing process stage (for example, internal resistance in an initial state), and the like. If the full charge capacity of the secondary battery is stored in the memory 68, the control unit 61 can grasp information such as the remaining capacity.
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。 The temperature detection element 69 measures the temperature of the power supply 62 and outputs the temperature measurement result to the control unit 61. The temperature detection element 69 includes, for example, a thermistor.
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。 Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (eg, a notebook personal computer) that is operated using a battery pack, an external device (eg, a charger) that is used to charge the battery pack, and the like. It is a terminal to be connected. The power source 62 is charged and discharged via the positive terminal 71 and the negative terminal 72.
<2-3.電動車両>
 図6は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
<2-3. Electric vehicle>
FIG. 6 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。 This electric vehicle includes, for example, a control unit 74, an engine 75, a power source 76, a driving motor 77, a differential device 78, a generator 79, and a transmission 80 inside a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84. In addition, the electric vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential device 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。 This electric vehicle can travel using, for example, one of the engine 75 and the motor 77 as a drive source. The engine 75 is a main power source, such as a gasoline engine. When the engine 75 is used as a power source, for example, the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential device 78, the transmission 80, and the clutch 81 which are driving units. The Since the rotational force of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational force, and the AC power is converted to DC power via inverter 83. Therefore, the DC power is accumulated in the power source 76. On the other hand, in the case where the motor 77 serving as the conversion unit is used as a power source, the power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82, and therefore the motor is utilized using the AC power. 77 is driven. The driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheels 86 and the rear wheels 88 via, for example, a differential device 78 that is a driving unit, a transmission 80, and a clutch 81.
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。 When the electric vehicle decelerates via the braking mechanism, the resistance force at the time of deceleration is transmitted as a rotational force to the motor 77. Therefore, the motor 77 may generate AC power using the rotational force. Good. Since this AC power is converted into DC power via the inverter 82, the DC regenerative power is preferably stored in the power source 76.
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1または2種類以上の本技術の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。 The control unit 74 controls the operation of the entire electric vehicle. The control unit 74 includes, for example, a CPU. The power source 76 includes one or more types of secondary batteries of the present technology. The power source 76 may be connected to an external power source, and may store power by receiving power supply from the external power source. The various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the throttle valve opening (throttle opening). The various sensors 84 include, for example, any one or more of speed sensors, acceleration sensors, engine speed sensors, and the like.
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。 Although the case where the electric vehicle is a hybrid vehicle has been described as an example, the electric vehicle may be a vehicle (electric vehicle) that operates using only the power source 76 and the motor 77 without using the engine 75.
<2-4.電力貯蔵システム>
 図7は、電力貯蔵システムのブロック構成を表している。
<2-4. Power storage system>
FIG. 7 shows a block configuration of the power storage system.
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。 This power storage system includes, for example, a control unit 90, a power source 91, a smart meter 92, and a power hub 93 in a house 89 such as a general house or a commercial building.
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。 Here, for example, the power source 91 is connected to an electric device 94 installed in the house 89 and can be connected to an electric vehicle 96 stopped outside the house 89. The power source 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93 and also connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
 なお、電気機器94は、例えば、1または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。 Note that the electric device 94 includes, for example, one or more kinds of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, and a water heater. The private power generator 95 includes, for example, any one type or two or more types among a solar power generator and a wind power generator. The electric vehicle 96 includes, for example, any one or more of an electric vehicle, an electric motorcycle, and a hybrid vehicle. The centralized power system 97 includes, for example, any one or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, and a wind power plant.
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1または2種類以上の本技術の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。 The control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91). The control unit 90 includes, for example, a CPU. The power source 91 includes one or more types of secondary batteries of the present technology. The smart meter 92 is, for example, a network-compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Accordingly, the smart meter 92 enables highly efficient and stable energy supply, for example, by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside.
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。 In this power storage system, for example, power is accumulated in the power source 91 from the centralized power system 97 that is an external power source via the smart meter 92 and the power hub 93, and from the private power generator 95 that is an independent power source via the power hub 93. Thus, electric power is accumulated in the power source 91. The electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 in accordance with an instruction from the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged. Become. In other words, the power storage system is a system that makes it possible to store and supply power in the house 89 using the power source 91.
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。 The power stored in the power source 91 can be used as necessary. For this reason, for example, power is stored in the power source 91 from the centralized power system 97 at midnight when the electricity usage fee is low, and the power stored in the power source 91 is used during the day when the electricity usage fee is high. it can.
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。 The power storage system described above may be installed for each house (one household), or may be installed for each of a plurality of houses (multiple households).
<2-5.電動工具>
 図8は、電動工具のブロック構成を表している。
<2-5. Electric tool>
FIG. 8 shows a block configuration of the electric power tool.
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。 The electric tool described here is, for example, an electric drill. This electric tool includes, for example, a control unit 99 and a power source 100 inside a tool body 98. For example, a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1または2種類以上の本技術の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。 The tool main body 98 includes, for example, a plastic material. The control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100). The control unit 99 includes, for example, a CPU. The power supply 100 includes one or more types of secondary batteries of the present technology. The control unit 99 supplies power from the power supply 100 to the drill unit 101 in accordance with the operation of the operation switch.
 本技術の実施例に関して、詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池の作製
 2.二次電池の評価
 3.考察
An embodiment of the present technology will be described in detail. The order of explanation is as follows.

1. Production of secondary battery Evaluation of secondary battery Consideration
<1.二次電池の作製>
(実験例1~22)
 以下の手順により、試験用の二次電池として、図9に示したコイン型のリチウムイオン二次電池を作製した。この二次電池では、試験極51と対極53とがセパレータ55を介して積層されていると共に、試験極51が収容された外装カップ54と対極53が収容された外装缶52とがガスケット56を介してかしめられている。
<1. Production of secondary battery>
(Experimental Examples 1 to 22)
The coin-type lithium ion secondary battery shown in FIG. 9 was produced as a test secondary battery by the following procedure. In this secondary battery, a test electrode 51 and a counter electrode 53 are laminated via a separator 55, and an outer cup 54 in which the test electrode 51 is accommodated and an outer can 52 in which the counter electrode 53 is accommodated form a gasket 56. It is squeezed through.
 試験極51を作製する場合には、最初に、正極活物質(LiCoO)90質量部と、正極結着剤(ポリフッ化ビニリデン)5質量部と、正極導電剤(ケッチェンブラック)5質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を分散させることにより、ペースト状の正極合剤スラリーとした。続いて、コーティング装置を用いて正極集電体(15μm厚のアルミニウム箔)の片面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型した。 When preparing the test electrode 51, first, 90 parts by mass of a positive electrode active material (LiCoO 2 ), 5 parts by mass of a positive electrode binder (polyvinylidene fluoride), and 5 parts by mass of a positive electrode conductive agent (Ketjen black). To obtain a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone) to obtain a paste-like positive electrode mixture slurry. Subsequently, a positive electrode mixture slurry was applied to one surface of a positive electrode current collector (15 μm thick aluminum foil) using a coating apparatus, and then the positive electrode mixture slurry was dried to form a positive electrode active material layer. Finally, the positive electrode active material layer was compression molded using a roll press.
 対極53を作製する場合には、最初に、負極活物質(人造黒鉛)90質量部と、負極結着剤(ポリフッ化ビニリデン)10質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を分散させることにより、ペースト状の負極合剤スラリーとした。続いて、コーティング装置を用いて負極集電体(15μm厚の銅箔)の片面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層を形成した。最後に、ロールプレス機を用いて負極活物質層を圧縮成型した。 When the counter electrode 53 was produced, first, 90 parts by mass of a negative electrode active material (artificial graphite) and 10 parts by mass of a negative electrode binder (polyvinylidene fluoride) were mixed to obtain a negative electrode mixture. Subsequently, the negative electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone) to obtain a paste-like negative electrode mixture slurry. Subsequently, a negative electrode mixture slurry was applied to one surface of a negative electrode current collector (15 μm thick copper foil) using a coating apparatus, and then the negative electrode mixture slurry was dried to form a negative electrode active material layer. Finally, the negative electrode active material layer was compression molded using a roll press.
 電解質層16を形成する場合には、最初に、溶媒(炭酸エチレンおよび炭酸ジエチル)に電解質塩(LiPF)を溶解させることにより、電解液を調製した。この場合には、溶媒の組成を重量比で炭酸エチレン:炭酸ジエチル=50:50、電解質塩の含有量を溶媒に対して1mol/kgとした。 In the case of forming the electrolyte layer 16, first, an electrolyte solution was prepared by dissolving an electrolyte salt (LiPF 6 ) in a solvent (ethylene carbonate and diethyl carbonate). In this case, the composition of the solvent was ethylene carbonate: diethyl carbonate = 50: 50 by weight, and the content of the electrolyte salt was 1 mol / kg with respect to the solvent.
 続いて、電解液90質量部と、高分子化合物(重合体)6質量部と、複数の無機粒子(酸化アルミニウム,メジアン径D50=0.5μm)4質量部とを混合することにより、混合溶液を得た。続いて、ホモジナイザを用いて混合溶液を処理することにより、電解液中に高分子化合物および複数の無機粒子を均一に分散させたのち、その混合溶液を加熱(75℃)しながら撹拌した。続いて、さらに混合溶液を撹拌(30分間~1時間)することにより、ゾル状の前駆溶液を得た。 Subsequently, 90 parts by mass of an electrolytic solution, 6 parts by mass of a polymer compound (polymer), and 4 parts by mass of a plurality of inorganic particles (aluminum oxide, median diameter D50 = 0.5 μm) are mixed to obtain a mixed solution. Got. Subsequently, the mixed solution was treated with a homogenizer to uniformly disperse the polymer compound and the plurality of inorganic particles in the electrolytic solution, and then the mixed solution was stirred while being heated (75 ° C.). Subsequently, the mixed solution was further stirred (30 minutes to 1 hour) to obtain a sol-like precursor solution.
 高分子化合物(重合体)に関する詳細は、表1に示した通りである。重合体の原料(モノマー)としては、フッ化ビニリデン(VDF)と、酸素含有不飽和化合物であるマレイン酸モノメチル(MMM)と、ヘキサフルオロプロピレン(HFP)と、パーフルオロ不飽和化合物(PFU)とを用いた。重合体としては、単独重合体および共重合体を用いた。 Details regarding the polymer compound (polymer) are as shown in Table 1. As a raw material (monomer) of the polymer, vinylidene fluoride (VDF), monomethyl maleate (MMM) which is an oxygen-containing unsaturated compound, hexafluoropropylene (HFP), perfluoro unsaturated compound (PFU), Was used. As the polymer, a homopolymer and a copolymer were used.
 なお、表1に示した「PFU」の欄に関する詳細は、以下の通りである。「種類」は、パーフルオロ不飽和化合物の種類を示している。具体的には、第1パーフルオロ不飽和化合物を「第1」と示していると共に、第2パーフルオロ不飽和化合物を「第2」と示している。「R1」は、式(1)に示したR1の種類を示していると共に、「R2」は、式(2)に示したR2の種類を示している。 Details regarding the “PFU” column shown in Table 1 are as follows. “Type” indicates the type of the perfluoro unsaturated compound. Specifically, the first perfluoro unsaturated compound is indicated as “first”, and the second perfluoro unsaturated compound is indicated as “second”. “R1” indicates the type of R1 shown in Formula (1), and “R2” indicates the type of R2 shown in Formula (2).
 最後に、試験極51(正極活物質層)の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層を形成した。また、対極53(負極活物質層)の表面に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層を形成した。 Finally, after applying a precursor solution to the surface of the test electrode 51 (positive electrode active material layer), the precursor solution was dried to form a gel electrolyte layer. Moreover, after apply | coating a precursor solution to the surface of the counter electrode 53 (negative electrode active material layer), the gel-like electrolyte layer was formed by drying the precursor solution.
 二次電池を組み立てる場合には、最初に、電解質層が形成された試験極51をペレット状に打ち抜いたのち、その試験極51を外装缶カップ54に収容した。続いて、電解質層が形成された対極53をペレット状に打ち抜いたのち、その対極53を外装缶52に収容した。最後に、セパレータ55(7μm厚の多孔質ポリオレフィンフィルム)を介して、外装カップ54に収容された試験極51と外装缶52に収容された対極53とを積層させたのち、ガスケット56を介して外装缶52および外装カップ54をかしめた。この場合には、試験極51に形成された電解質層と対極53に形成された電解質層とがセパレータ55を介して対向するようにした。 When assembling the secondary battery, first, the test electrode 51 on which the electrolyte layer was formed was punched into a pellet, and then the test electrode 51 was accommodated in the outer can cup 54. Subsequently, the counter electrode 53 on which the electrolyte layer was formed was punched into a pellet shape, and then the counter electrode 53 was accommodated in the outer can 52. Finally, the test electrode 51 accommodated in the exterior cup 54 and the counter electrode 53 accommodated in the exterior can 52 are laminated through the separator 55 (7 μm thick porous polyolefin film), and then the gasket 56 is interposed. The outer can 52 and the outer cup 54 were caulked. In this case, the electrolyte layer formed on the test electrode 51 and the electrolyte layer formed on the counter electrode 53 were opposed to each other with the separator 55 interposed therebetween.
 これにより、ラミネートフィルム型の二次電池が完成した。 As a result, a laminated film type secondary battery was completed.
<2.二次電池の評価>
 二次電池の電池特性を評価するために、その二次電池のサイクル特性を調べたところ、表1に示した結果が得られた。
<2. Evaluation of secondary battery>
In order to evaluate the battery characteristics of the secondary battery, the cycle characteristics of the secondary battery were examined. The results shown in Table 1 were obtained.
 サイクル特性を調べる場合には、最初に、電池状態を安定化させるために、常温環境中(23℃)において二次電池を1サイクル充放電させた。続いて、高温環境中(45℃)において二次電池をさらに1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、同環境中(45℃)においてサイクル数の合計が100サイクルになるまで充放電を繰り返すことにより、100サイクル目の放電容量を測定した。最後に、容量維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。 When examining the cycle characteristics, first, in order to stabilize the battery state, the secondary battery was charged and discharged in a normal temperature environment (23 ° C.) for one cycle. Subsequently, the secondary battery was further charged and discharged for one cycle in a high temperature environment (45 ° C.) to measure the discharge capacity at the second cycle. Subsequently, the discharge capacity at the 100th cycle was measured by repeating charging and discharging in the same environment (45 ° C.) until the total number of cycles reached 100 cycles. Finally, capacity retention ratio (%) = (discharge capacity at the 100th cycle / discharge capacity at the second cycle) × 100 was calculated.
 充電時には、1mA/cmの電流密度で電圧が4.35Vに到達するまで充電したのち、さらに4.35Vの電圧で電流密度が0.02mA/cmに到達するまで充電した。放電時には、1mA/cmの電流密度で電圧が3Vに到達するまで放電した。 During charging, the voltage at a current density of 1 mA / cm 2 is After charging to reach the 4.35V, and charged to further current density at a voltage of 4.35V is reached 0.02 mA / cm 2. During discharging, discharging was performed at a current density of 1 mA / cm 2 until the voltage reached 3V.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<3.考察>
 二次電池のサイクル特性は、以下で説明するように、高分子化合物の構成に応じて大きく変動した。
<3. Discussion>
As described below, the cycle characteristics of the secondary battery greatly fluctuated depending on the configuration of the polymer compound.
 フッ化ビニリデンと酸素含有不飽和化合物(マレイン酸モノメチル)とを成分とする共重合体を用いた場合(実験例21)およびフッ化ビニリデンの単独重合体(ポリフッ化ビニリデン)を用いた場合(実験例22)には、高分子化合物の相溶性が低下したため、電解質層を形成することができなかった。これにより、容量維持率を測定することができなかった。 When a copolymer comprising vinylidene fluoride and an oxygen-containing unsaturated compound (monomethyl maleate) is used (Experimental Example 21) and when a homopolymer of vinylidene fluoride (polyvinylidene fluoride) is used (experiment) In Example 22), since the compatibility of the polymer compound was lowered, the electrolyte layer could not be formed. As a result, the capacity retention rate could not be measured.
 また、フッ化ビニリデンと酸素含有不飽和化合物(マレイン酸モノメチル)とヘキサフルオロプロピレンとを成分とする共重合体を用いた場合(実験例15~20)には、十分な容量維持率が得られなかった。 In addition, when a copolymer containing vinylidene fluoride, an oxygen-containing unsaturated compound (monomethyl maleate), and hexafluoropropylene is used (Experimental Examples 15 to 20), a sufficient capacity retention rate is obtained. There wasn't.
 これに対して、パーフルオロ不飽和化合物を成分として含む共重合体(特定共重合体)を用いた場合(実験例1~14)には、十分な容量維持率が得られた。 On the other hand, when a copolymer (specific copolymer) containing a perfluoro unsaturated compound as a component was used (Experimental Examples 1 to 14), a sufficient capacity retention rate was obtained.
 特に、特定共重合体を用いた場合(実験例1~14)には、以下の傾向が導き出された。 In particular, when the specific copolymer was used (Experimental Examples 1 to 14), the following tendencies were derived.
 第1に、第1パーフルオロ不飽和化合物を用いた場合(実験例1~3)には、R1がパーフルオロアルキル基であると共にそのパーフルオロアルキル基の炭素数が2~4であると、高い容量維持率が得られた。また、第2パーフルオロ不飽和化合物を用いた場合(実験例4~6)には、R2がパーフルオロアルキル基であると共にそのパーフルオロアルキル基の炭素数が1~3であると、高い容量維持率が得られた。 First, when the first perfluorounsaturated compound is used (Experimental Examples 1 to 3), when R1 is a perfluoroalkyl group and the perfluoroalkyl group has 2 to 4 carbon atoms, A high capacity retention rate was obtained. Further, when the second perfluoro unsaturated compound is used (Experimental Examples 4 to 6), when R2 is a perfluoroalkyl group and the perfluoroalkyl group has 1 to 3 carbon atoms, a high capacity is obtained. A retention rate was obtained.
 第2に、特定重合体がパーフルオロ不飽和化合物と共にフッ化ビニリデンおよび酸素含有不飽和化合物(マレイン酸モノメチル)を成分として含んでいると(実験例1~10)、高い容量維持率が得られた。この場合には、パーフルオロ不飽和化合物の共重合量P5が1重量%≦P5<50重量%を満たしており、フッ化ビニリデンの共重合量P6が50重量%≦P6≦97重量%を満たしており、酸素含有不飽和化合物の共重合量P7が0重量%<P7≦3重量%を満たしていると、十分な容量維持率が得られた。 Secondly, when the specific polymer contains vinylidene fluoride and an oxygen-containing unsaturated compound (monomethyl maleate) as a component together with the perfluoro unsaturated compound (Experimental Examples 1 to 10), a high capacity retention rate can be obtained. It was. In this case, the copolymerization amount P5 of the perfluoro unsaturated compound satisfies 1% by weight ≦ P5 <50% by weight, and the copolymerization amount P6 of vinylidene fluoride satisfies 50% by weight ≦ P6 ≦ 97% by weight. When the copolymerization amount P7 of the oxygen-containing unsaturated compound satisfies 0% by weight <P7 ≦ 3% by weight, a sufficient capacity retention rate was obtained.
 第3に、特定共重合体がパーフルオロ不飽和化合物と共にフッ化ビニリデン、酸素含有不飽和化合物(マレイン酸モノメチル)およびヘキサフルオロプロピレンを成分として含んでいると(実験例11~14)、高い容量維持率が得られた。この場合には、パーフルオロ不飽和化合物の共重合量P8が1重量%≦P8<50重量%を満たしており、フッ化ビニリデンの共重合量P9が50重量%≦P9≦97重量%を満たしており、酸素含有不飽和化合物の共重合量P10が0重量%<P10≦3重量%を満たしており、ヘキサフルオロプロピレンの共重合量P11が0重量%<P11≦20重量%を満たしていると、十分な容量維持率が得られた。 Third, when the specific copolymer contains vinylidene fluoride, an oxygen-containing unsaturated compound (monomethyl maleate) and hexafluoropropylene as components together with a perfluoro unsaturated compound (Experimental Examples 11 to 14), a high capacity A retention rate was obtained. In this case, the copolymerization amount P8 of the perfluoro unsaturated compound satisfies 1% by weight ≦ P8 <50% by weight, and the copolymerization amount P9 of vinylidene fluoride satisfies 50% by weight ≦ P9 ≦ 97% by weight. The copolymerization amount P10 of the oxygen-containing unsaturated compound satisfies 0% by weight <P10 ≦ 3% by weight, and the copolymerization amount P11 of hexafluoropropylene satisfies 0% by weight <P11 ≦ 20% by weight. A sufficient capacity retention rate was obtained.
 表1に示した結果から、電解質層が特定共重合体を含んでいると、二次電池のサイクル特性が改善された。よって、電解質層を備えた二次電池において、優れた電池特性が得られた。 From the results shown in Table 1, when the electrolyte layer contained a specific copolymer, the cycle characteristics of the secondary battery were improved. Therefore, in the secondary battery provided with the electrolyte layer, excellent battery characteristics were obtained.
 以上、実施形態および実施例を挙げながら本技術を説明したが、本技術は、実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。例えば、電池構造がラミネートフィルム型であると共に、電池素子が巻回構造を有する場合を例に挙げて説明したが、これらに限られない。本技術の二次電池は、円筒型、角型およびコイン型などの他の電池構造を有する場合や、電池素子が積層構造などの他の構造を有する場合に関しても、同様に適用可能である。 As mentioned above, although this technique was demonstrated, giving an embodiment and an Example, this technique is not limited to the aspect demonstrated in embodiment and an Example, A various deformation | transformation is possible. For example, the case where the battery structure is a laminate film type and the battery element has a winding structure has been described as an example, but the present invention is not limited thereto. The secondary battery of the present technology can be similarly applied to a case where the battery has other battery structures such as a cylindrical shape, a square shape, and a coin shape, and a case where the battery element has another structure such as a laminated structure.
 また、実施形態および実施例では、リチウムの吸蔵放出により負極の容量が得られるリチウムイオン二次電池に関して説明したが、これに限られない。例えば、本技術の二次電池は、リチウムの析出溶解により負極の容量が得られるリチウム金属二次電池でもよい。また、本技術の二次電池は、リチウムを吸蔵放出可能な負極材料の容量を正極の容量よりも小さくすることで、リチウムの吸蔵放出による容量とリチウムの析出溶解による容量との和により負極の容量が得られる二次電池でもよい。 In the embodiments and examples, the lithium ion secondary battery in which the capacity of the negative electrode can be obtained by occlusion and release of lithium has been described. For example, the secondary battery of the present technology may be a lithium metal secondary battery in which the capacity of the negative electrode can be obtained by precipitation and dissolution of lithium. In addition, the secondary battery of the present technology reduces the capacity of the negative electrode material capable of occluding and releasing lithium from the capacity of the positive electrode. A secondary battery capable of obtaining a capacity may be used.
 また、実施形態および実施例では、電極反応物質としてリチウムを用いる場合に関して説明したが、これに限られない。電極反応物質は、例えば、ナトリウム(Na)またはカリウム(K)などの長周期型周期表における他の1族の元素でもよいし、マグネシウム(Mg)またはカルシウム(Ca)などの長周期型周期表における2族の元素でもよいし、アルミニウム(Al)などの他の軽金属でもよい。また、電極反応物質は、上記した一連の元素のうちのいずれか1種類または2種類以上を含む合金でもよい。 In the embodiments and examples, the case where lithium is used as the electrode reactant has been described. However, the present invention is not limited to this. The electrode reactant may be another group 1 element in the long-period periodic table such as sodium (Na) or potassium (K), or a long-period periodic table such as magnesium (Mg) or calcium (Ca). Group 2 elements may be used, or other light metals such as aluminum (Al) may be used. The electrode reactant may be an alloy containing any one or more of the series of elements described above.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極と、
 負極と、
 電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
 を備えた、二次電池。
Figure JPOXMLDOC01-appb-C000011
(R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
(2)
 前記R1は、炭素数が2~10であるパーフルオロアルキル基であり、
 前記R2は、炭素数が1~10であるパーフルオロアルキル基である、
 上記(1)記載の二次電池。
(3)
 前記共重合体は、さらに、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの少なくとも一方を成分として含み、
 前記酸素含有不飽和化合物は、鎖状不飽和ジカルボン酸エステルおよび鎖状不飽和グリシジルエーテルのうちの少なくとも一方を含む、
 上記(1)または(2)に記載の二次電池。
(4)
 前記共重合体は、前記フッ化ビニリデンおよび前記酸素含有不飽和化合物を成分として含み、
 前記共重合体における前記パーフルオロ不飽和化合物の共重合量P5は、1重量%≦P5<50重量%を満たし、
 前記共重合体における前記フッ化ビニリデンの共重合量P6は、50重量%≦P6≦97重量%を満たし、
 前記共重合体における前記酸素含有不飽和化合物の共重合量P7は、0重量%<P7≦3重量%を満たす、
 上記(3)記載の二次電池。
(5)
 前記共重合体は、さらに、ヘキサフルオロプロピレンを成分として含む、
 上記(3)または(4)に記載の二次電池。
(6)
 前記共重合体は、前記フッ化ビニリデン、前記酸素含有不飽和化合物および前記ヘキサフルオロプロピレンを成分として含み、
 前記共重合体における前記パーフルオロ不飽和化合物の共重合量P8は、1重量%≦P8<50重量%を満たし、
 前記共重合体における前記フッ化ビニリデンの共重合量P9は、50重量%≦P9≦97重量%を満たし、
 前記共重合体における前記酸素含有不飽和化合物の共重合量P10は、0重量%<P10≦3重量%を満たし、
 前記共重合体における前記ヘキサフルオロプロピレンの共重合量P11は、0重量%<P11≦20重量%を満たす、
 上記(5)記載の二次電池。
(7)
 前記電解質層は、さらに、複数の無機粒子を含み、
 前記複数の無機粒子は、酸化アルミニウム、酸化ジルコニウム、酸化チタンおよび酸化マグネシウムのうちの少なくとも1種を含む、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 前記電解液は、炭酸エステルおよびラクトンのうちの少なくとも一方を含み、
 前記炭酸エステルは、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルのうちの少なくとも1種を含み、
 前記ラクトンは、γ-ブチロラクトンおよびγ-バレロラクトンのうちの少なくとも一方を含む、
 上記(1)ないし(7)のいずれかに記載の二次電池。
(9)
 前記電解液は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物、ジイソシアネート化合物およびリン酸エステルのうちの少なくとも1種を含み、
 前記不飽和環状炭酸エステルは、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンのうちの少なくとも1種を含み、
 前記ハロゲン化炭酸エステルは、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルのうちの少なくとも1種を含み、
 前記スルホン酸エステルは1,3-プロパンスルトンおよび1,3-プロペンスルトンのうちの少なくとも一方を含み、
 前記酸無水物は、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸のうちの少なくとも1種を含み、
 前記ジシアノ化合物は、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルのうちの少なくとも1種を含み、
 前記ジイソシアネート化合物は、ヘキサメチレンジイソシアネートを含み、
 前記リン酸エステルは、リン酸トリメチルおよびリン酸トリエチルのうちの少なくとも一方を含む、
 上記(1)ないし(8)のいずれかに記載の二次電池。
(10)
 リチウムイオン二次電池である、
 上記(1)ないし(9)のいずれかに記載の二次電池。
(11)
 電解液と、
 下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と
 を含む、二次電池用電解質層。
Figure JPOXMLDOC01-appb-C000012
(R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
(12)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(13)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(14)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2種類以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(15)
 上記(1)ないし(10)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(16)
 上記(1)ないし(10)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。
In addition, this technique can also take the following structures.
(1)
A positive electrode;
A negative electrode,
An electrolyte layer comprising: an electrolytic solution; and a copolymer containing at least one of perfluoro unsaturated compounds represented by each of the following formulas (1) and (2) as a component: Next battery.
Figure JPOXMLDOC01-appb-C000011
(R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
(2)
R1 is a perfluoroalkyl group having 2 to 10 carbon atoms;
R2 is a perfluoroalkyl group having 1 to 10 carbon atoms,
The secondary battery according to (1) above.
(3)
The copolymer further contains at least one of vinylidene fluoride and an oxygen-containing unsaturated compound as a component,
The oxygen-containing unsaturated compound includes at least one of a chain unsaturated dicarboxylic acid ester and a chain unsaturated glycidyl ether.
The secondary battery according to (1) or (2) above.
(4)
The copolymer includes the vinylidene fluoride and the oxygen-containing unsaturated compound as components,
The copolymerization amount P5 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ≦ P5 <50% by weight,
The copolymerization amount P6 of the vinylidene fluoride in the copolymer satisfies 50% by weight ≦ P6 ≦ 97% by weight,
The copolymerization amount P7 of the oxygen-containing unsaturated compound in the copolymer satisfies 0% by weight <P7 ≦ 3% by weight.
The secondary battery according to (3) above.
(5)
The copolymer further contains hexafluoropropylene as a component,
The secondary battery according to (3) or (4) above.
(6)
The copolymer includes the vinylidene fluoride, the oxygen-containing unsaturated compound and the hexafluoropropylene as components,
The copolymerization amount P8 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ≦ P8 <50% by weight,
The copolymerization amount P9 of the vinylidene fluoride in the copolymer satisfies 50% by weight ≦ P9 ≦ 97% by weight,
The copolymerization amount P10 of the oxygen-containing unsaturated compound in the copolymer satisfies 0 wt% <P10 ≦ 3 wt%,
The copolymerization amount P11 of the hexafluoropropylene in the copolymer satisfies 0% by weight <P11 ≦ 20% by weight.
The secondary battery according to (5) above.
(7)
The electrolyte layer further includes a plurality of inorganic particles,
The plurality of inorganic particles include at least one of aluminum oxide, zirconium oxide, titanium oxide, and magnesium oxide.
The secondary battery according to any one of (1) to (6) above.
(8)
The electrolytic solution contains at least one of carbonate ester and lactone,
The carbonate ester includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate,
The lactone includes at least one of γ-butyrolactone and γ-valerolactone,
The secondary battery according to any one of (1) to (7) above.
(9)
The electrolytic solution contains at least one of unsaturated cyclic carbonate, halogenated carbonate, sulfonate, acid anhydride, dicyano compound, diisocyanate compound and phosphate ester,
The unsaturated cyclic carbonate includes at least one of vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate,
The halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and carbonic acid. Including at least one of difluoromethylmethyl,
The sulfonate ester includes at least one of 1,3-propane sultone and 1,3-propene sultone,
The acid anhydride includes at least one of succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride,
The dicyano compound includes at least one of succinonitrile, glutaronitrile, adiponitrile, and phthalonitrile,
The diisocyanate compound includes hexamethylene diisocyanate,
The phosphate ester includes at least one of trimethyl phosphate and triethyl phosphate,
The secondary battery according to any one of (1) to (8) above.
(10)
A lithium ion secondary battery,
The secondary battery according to any one of (1) to (9).
(11)
An electrolyte,
The electrolyte layer for secondary batteries containing the copolymer which contains at least one of the perfluoro unsaturated compounds represented by each of following formula (1) and each formula (2) as a component.
Figure JPOXMLDOC01-appb-C000012
(R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
(12)
The secondary battery according to any one of (1) to (10) above;
A control unit for controlling the operation of the secondary battery;
A battery pack comprising: a switch unit that switches the operation of the secondary battery in accordance with an instruction from the control unit.
(13)
The secondary battery according to any one of (1) to (10) above;
A conversion unit that converts electric power supplied from the secondary battery into driving force;
A drive unit that is driven according to the drive force;
An electric vehicle comprising: a control unit that controls the operation of the secondary battery.
(14)
The secondary battery according to any one of (1) to (10) above;
One or two or more types of electric devices supplied with power from the secondary battery;
And a control unit that controls power supply from the secondary battery to the electrical device.
(15)
The secondary battery according to any one of (1) to (10) above;
A power tool comprising: a movable part to which electric power is supplied from the secondary battery.
(16)
An electronic device comprising the secondary battery according to any one of (1) to (10) as a power supply source.
 本出願は、日本国特許庁において2015年12月7日に出願された日本特許出願番号第2015-238431号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2015-238431 filed on December 7, 2015 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲の趣旨やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. Is understood to be included.

Claims (16)

  1.  正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A positive electrode;
    A negative electrode,
    An electrolyte layer comprising: an electrolytic solution; and a copolymer containing at least one of perfluoro unsaturated compounds represented by each of the following formulas (1) and (2) as a component: Next battery.
    Figure JPOXMLDOC01-appb-C000001
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  2.  前記R1は、炭素数が2~10であるパーフルオロアルキル基であり、
     前記R2は、炭素数が1~10であるパーフルオロアルキル基である、
     請求項1記載の二次電池。
    R1 is a perfluoroalkyl group having 2 to 10 carbon atoms;
    R2 is a perfluoroalkyl group having 1 to 10 carbon atoms,
    The secondary battery according to claim 1.
  3.  前記共重合体は、さらに、フッ化ビニリデンおよび酸素含有不飽和化合物のうちの少なくとも一方を成分として含み、
     前記酸素含有不飽和化合物は、鎖状不飽和ジカルボン酸エステルおよび鎖状不飽和グリシジルエーテルのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The copolymer further contains at least one of vinylidene fluoride and an oxygen-containing unsaturated compound as a component,
    The oxygen-containing unsaturated compound includes at least one of a chain unsaturated dicarboxylic acid ester and a chain unsaturated glycidyl ether.
    The secondary battery according to claim 1.
  4.  前記共重合体は、前記フッ化ビニリデンおよび前記酸素含有不飽和化合物を成分として含み、
     前記共重合体における前記パーフルオロ不飽和化合物の共重合量P5は、1重量%≦P5<50重量%を満たし、
     前記共重合体における前記フッ化ビニリデンの共重合量P6は、50重量%≦P6≦97重量%を満たし、
     前記共重合体における前記酸素含有不飽和化合物の共重合量P7は、0重量%<P7≦3重量%を満たす、
     請求項3記載の二次電池。
    The copolymer includes the vinylidene fluoride and the oxygen-containing unsaturated compound as components,
    The copolymerization amount P5 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ≦ P5 <50% by weight,
    The copolymerization amount P6 of the vinylidene fluoride in the copolymer satisfies 50% by weight ≦ P6 ≦ 97% by weight,
    The copolymerization amount P7 of the oxygen-containing unsaturated compound in the copolymer satisfies 0% by weight <P7 ≦ 3% by weight.
    The secondary battery according to claim 3.
  5.  前記共重合体は、さらに、ヘキサフルオロプロピレンを成分として含む、
     請求項3記載の二次電池。
    The copolymer further contains hexafluoropropylene as a component,
    The secondary battery according to claim 3.
  6.  前記共重合体は、前記フッ化ビニリデン、前記酸素含有不飽和化合物および前記ヘキサフルオロプロピレンを成分として含み、
     前記共重合体における前記パーフルオロ不飽和化合物の共重合量P8は、1重量%≦P8<50重量%を満たし、
     前記共重合体における前記フッ化ビニリデンの共重合量P9は、50重量%≦P9≦97重量%を満たし、
     前記共重合体における前記酸素含有不飽和化合物の共重合量P10は、0重量%<P10≦3重量%を満たし、
     前記共重合体における前記ヘキサフルオロプロピレンの共重合量P11は、0重量%<P11≦20重量%を満たす、
     請求項5記載の二次電池。
    The copolymer includes the vinylidene fluoride, the oxygen-containing unsaturated compound and the hexafluoropropylene as components,
    The copolymerization amount P8 of the perfluoro unsaturated compound in the copolymer satisfies 1% by weight ≦ P8 <50% by weight,
    The copolymerization amount P9 of the vinylidene fluoride in the copolymer satisfies 50% by weight ≦ P9 ≦ 97% by weight,
    The copolymerization amount P10 of the oxygen-containing unsaturated compound in the copolymer satisfies 0 wt% <P10 ≦ 3 wt%,
    The copolymerization amount P11 of the hexafluoropropylene in the copolymer satisfies 0% by weight <P11 ≦ 20% by weight.
    The secondary battery according to claim 5.
  7.  前記電解質層は、さらに、複数の無機粒子を含み、
     前記複数の無機粒子は、酸化アルミニウム、酸化ジルコニウム、酸化チタンおよび酸化マグネシウムのうちの少なくとも1種を含む、
     請求項1記載の二次電池。
    The electrolyte layer further includes a plurality of inorganic particles,
    The plurality of inorganic particles include at least one of aluminum oxide, zirconium oxide, titanium oxide, and magnesium oxide.
    The secondary battery according to claim 1.
  8.  前記電解液は、炭酸エステルおよびラクトンのうちの少なくとも一方を含み、
     前記炭酸エステルは、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルのうちの少なくとも1種を含み、
     前記ラクトンは、γ-ブチロラクトンおよびγ-バレロラクトンのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The electrolytic solution contains at least one of carbonate ester and lactone,
    The carbonate ester includes at least one of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and methyl propyl carbonate,
    The lactone includes at least one of γ-butyrolactone and γ-valerolactone,
    The secondary battery according to claim 1.
  9.  前記電解液は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物、ジイソシアネート化合物およびリン酸エステルのうちの少なくとも1種を含み、
     前記不飽和環状炭酸エステルは、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンのうちの少なくとも1種を含み、
     前記ハロゲン化炭酸エステルは、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルのうちの少なくとも1種を含み、
     前記スルホン酸エステルは1,3-プロパンスルトンおよび1,3-プロペンスルトンのうちの少なくとも一方を含み、
     前記酸無水物は、無水コハク酸、無水グルタル酸、無水マレイン酸、無水エタンジスルホン酸、無水プロパンジスルホン酸、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸のうちの少なくとも1種を含み、
     前記ジシアノ化合物は、スクシノニトリル、グルタロニトリル、アジポニトリルおよびフタロニトリルのうちの少なくとも1種を含み、
     前記ジイソシアネート化合物は、ヘキサメチレンジイソシアネートを含み、
     前記リン酸エステルは、リン酸トリメチルおよびリン酸トリエチルのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The electrolytic solution contains at least one of unsaturated cyclic carbonate, halogenated carbonate, sulfonate, acid anhydride, dicyano compound, diisocyanate compound and phosphate ester,
    The unsaturated cyclic carbonate includes at least one of vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate,
    The halogenated carbonates include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and carbonic acid. Including at least one of difluoromethylmethyl,
    The sulfonate ester includes at least one of 1,3-propane sultone and 1,3-propene sultone,
    The acid anhydride includes at least one of succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride,
    The dicyano compound includes at least one of succinonitrile, glutaronitrile, adiponitrile, and phthalonitrile,
    The diisocyanate compound includes hexamethylene diisocyanate,
    The phosphate ester includes at least one of trimethyl phosphate and triethyl phosphate,
    The secondary battery according to claim 1.
  10.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to claim 1.
  11.  電解液と、
     下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と
     を含む、二次電池用電解質層。
    Figure JPOXMLDOC01-appb-C000002
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    An electrolyte,
    The electrolyte layer for secondary batteries containing the copolymer which contains at least one of the perfluoro unsaturated compounds represented by each of following formula (1) and each formula (2) as a component.
    Figure JPOXMLDOC01-appb-C000002
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  12.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、電池パック。
    Figure JPOXMLDOC01-appb-C000003
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A secondary battery,
    A control unit for controlling the operation of the secondary battery;
    A switch unit for switching the operation of the secondary battery according to an instruction from the control unit,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    A battery comprising: an electrolyte solution comprising: an electrolyte solution; and a copolymer containing at least one of perfluoro unsaturated compounds represented by each of the following formulas (1) and (2) as a component: pack.
    Figure JPOXMLDOC01-appb-C000003
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  13.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、電動車両。
    Figure JPOXMLDOC01-appb-C000004
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A secondary battery,
    A conversion unit that converts electric power supplied from the secondary battery into driving force;
    A drive unit that is driven according to the drive force;
    A control unit for controlling the operation of the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolysis layer comprising: an electrolyte solution; and an electrolyte layer including: a copolymer containing at least one of perfluoro unsaturated compounds represented by the following formulas (1) and (2) as a component: vehicle.
    Figure JPOXMLDOC01-appb-C000004
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  14.  二次電池と、
     前記二次電池から電力を供給される1または2種類以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、電力貯蔵システム。
    Figure JPOXMLDOC01-appb-C000005
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A secondary battery,
    One or two or more types of electric devices supplied with power from the secondary battery;
    A control unit for controlling power supply from the secondary battery to the electrical device,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte layer comprising: an electrolyte solution; and an electrolyte layer including: a copolymer containing at least one of perfluoro unsaturated compounds represented by the following formulas (1) and (2) as a component: Storage system.
    Figure JPOXMLDOC01-appb-C000005
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  15.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、電動工具。
    Figure JPOXMLDOC01-appb-C000006
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A secondary battery,
    A movable part to which power is supplied from the secondary battery,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolysis layer comprising: an electrolyte solution; and an electrolyte layer including: a copolymer containing at least one of perfluoro unsaturated compounds represented by the following formulas (1) and (2) as a component: tool.
    Figure JPOXMLDOC01-appb-C000006
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
  16.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極と、
     負極と、
     電解液と、下記の式(1)および式(2)のそれぞれで表されるパーフルオロ不飽和化合物のうちの少なくとも一方を成分として含む共重合体と、を含む電解質層と
     を備えた、電子機器。
    Figure JPOXMLDOC01-appb-C000007
    (R1は、炭素数が2以上である1価のパーフルオロ炭化水素基である。R2は、炭素数が1以上である1価のパーフルオロ炭化水素基である。)
    A secondary battery is provided as a power supply source,
    The secondary battery is
    A positive electrode;
    A negative electrode,
    An electrolyte layer comprising: an electrolyte solution; and an electrolyte layer including: a copolymer containing at least one of perfluoro unsaturated compounds represented by the following formulas (1) and (2) as a component: machine.
    Figure JPOXMLDOC01-appb-C000007
    (R1 is a monovalent perfluorohydrocarbon group having 2 or more carbon atoms. R2 is a monovalent perfluorohydrocarbon group having 1 or more carbon atoms.)
PCT/JP2016/083031 2015-12-07 2016-11-08 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device WO2017098850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238431 2015-12-07
JP2015-238431 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098850A1 true WO2017098850A1 (en) 2017-06-15

Family

ID=59013062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083031 WO2017098850A1 (en) 2015-12-07 2016-11-08 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Country Status (1)

Country Link
WO (1) WO2017098850A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021885A1 (en) * 2017-07-27 2019-01-31 株式会社村田製作所 Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
CN112210034A (en) * 2020-09-30 2021-01-12 氟金(上海)新材料有限公司 Polyelectrolyte material for lithium battery application and preparation method thereof
CN112250786A (en) * 2020-09-25 2021-01-22 氟金(上海)新材料有限公司 Lithium sulfonate terpolymer and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289038A (en) * 1996-04-24 1997-11-04 Asahi Chem Ind Co Ltd Polymer solid electrolyte and battery using it
JPH10294131A (en) * 1997-04-18 1998-11-04 Asahi Glass Co Ltd Lithium battery having polymer electrolyte
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JP2001057241A (en) * 1999-08-17 2001-02-27 Central Glass Co Ltd Polymer solid electrolyte
JP2002373636A (en) * 2001-05-08 2002-12-26 Celgard Inc Separator for polymer battery
JP2008098055A (en) * 2006-10-13 2008-04-24 Sony Corp Battery
JP2010257838A (en) * 2009-04-27 2010-11-11 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289038A (en) * 1996-04-24 1997-11-04 Asahi Chem Ind Co Ltd Polymer solid electrolyte and battery using it
JPH10294131A (en) * 1997-04-18 1998-11-04 Asahi Glass Co Ltd Lithium battery having polymer electrolyte
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JP2001057241A (en) * 1999-08-17 2001-02-27 Central Glass Co Ltd Polymer solid electrolyte
JP2002373636A (en) * 2001-05-08 2002-12-26 Celgard Inc Separator for polymer battery
JP2008098055A (en) * 2006-10-13 2008-04-24 Sony Corp Battery
JP2010257838A (en) * 2009-04-27 2010-11-11 Sony Corp Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021885A1 (en) * 2017-07-27 2019-01-31 株式会社村田製作所 Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic device
CN110945705A (en) * 2017-07-27 2020-03-31 株式会社村田制作所 Electrolyte for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JPWO2019021885A1 (en) * 2017-07-27 2020-04-09 株式会社村田製作所 Electrolyte for secondary batteries, secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic equipment
US11355782B2 (en) 2017-07-27 2022-06-07 Murata Manufacturing Co., Ltd. Electrolytic solution for secondary batteries, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
CN112250786A (en) * 2020-09-25 2021-01-22 氟金(上海)新材料有限公司 Lithium sulfonate terpolymer and preparation method thereof
CN112210034A (en) * 2020-09-30 2021-01-12 氟金(上海)新材料有限公司 Polyelectrolyte material for lithium battery application and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102118241B1 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP6398171B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2013218875A (en) Positive-electrode active material, positive electrode, secondary battery, battery pack, electrically-powered vehicle, electric power storage system, electric motor-driven tool and electronic device
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
US10991978B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN110832678A (en) Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP6566130B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2016056361A1 (en) Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric power tool and electronic apparatus equipment
JP6516021B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP6398170B2 (en) Lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2017098850A1 (en) Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
WO2017159073A1 (en) Negative electrode for secondary batteries, secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JP6874777B2 (en) Negative electrodes for secondary batteries, secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
WO2015186517A1 (en) Secondary cell electrolyte, secondary cell, cell pack, electric vehicle, electric power-storing system, electric tool, and electronic device
JP6597793B2 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
WO2019013027A1 (en) Secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device
JP6849066B2 (en) Rechargeable batteries, battery packs, electric vehicles, power storage systems, power tools and electronics
WO2016059861A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic apparatus
WO2017085994A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, electronic device
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP