JPH09289038A - Polymer solid electrolyte and battery using it - Google Patents

Polymer solid electrolyte and battery using it

Info

Publication number
JPH09289038A
JPH09289038A JP8102654A JP10265496A JPH09289038A JP H09289038 A JPH09289038 A JP H09289038A JP 8102654 A JP8102654 A JP 8102654A JP 10265496 A JP10265496 A JP 10265496A JP H09289038 A JPH09289038 A JP H09289038A
Authority
JP
Japan
Prior art keywords
electrolyte
polymer
component
battery
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8102654A
Other languages
Japanese (ja)
Inventor
Nobuhito Hoshi
星  信人
Masakatsu Kuroki
正勝 黒木
Masanori Ikeda
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8102654A priority Critical patent/JPH09289038A/en
Publication of JPH09289038A publication Critical patent/JPH09289038A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a polymer solid electrolyte material with high ionic conductivity, high working capability, high softness, and high mechanical strength, and a battery using this material by forming the polymer solid electrolyte with a specific weight parts of a specific copolymer, an electrolyte, and a plasticizer. SOLUTION: A copolymer of (a) component of a polymer solid electrolyte contains at least one kind of a monomer unit comprising trifluorovinylether represented by formula (in the formula, X is a perfluoroalkyl group having 1-18 carbon atoms, the end of the carbon chain may be hydrogenated, and an ether group may be contained in the chain.), and a monomer unit comprising vinylidene fluoride. As an electrolyte of (b) component, inorganic acids, organic acids, and salts of them are listed. As the plasticizer of (c) component, ethylene carbonate or the like is listed. (a) and (c) components are 5-90 pts.wt., and (b) component is 1-90 pts.wt. based on 100 pts.wt. of the sum of (a), (b), and (c) components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械的特性、及び
イオン伝導性に優れた高分子材料並びにこれをイオン移
動媒体として用いた電池に関する。
TECHNICAL FIELD The present invention relates to a polymer material having excellent mechanical properties and ionic conductivity, and a battery using the polymer material as an ion transfer medium.

【0002】[0002]

【従来の技術】固体電解質をイオン移動媒体として構成
した固体電池は、従来の電解液をイオン移動媒体とした
電池に比べ、液漏れがないため電池の信頼性、安全性が
向上するとともに、薄膜化や積層体形成、パッケージの
簡略化、軽量化が期待されている。この固体電解質材料
として、イオン伝導性のセラミック材料またはポリマー
材料が提案されているが、前者のイオン伝導性セラミッ
ク材料はもろい性質を有し電極との積層体形成が難し
い。一方イオン伝導性ポリマー材料は加工柔軟性を有す
るため固体電解質材料として電池との積層構造体形成、
電極のイオン吸蔵放出による体積変化に追随した界面保
持ができるなど好ましい。
2. Description of the Related Art A solid battery comprising a solid electrolyte as an ion transfer medium has less liquid leakage than a conventional battery using an electrolyte as an ion transfer medium, so that the reliability and safety of the battery are improved and a thin film is formed. It is expected that the structure, the formation of a laminate, the simplification of the package, and the weight reduction will be achieved. As this solid electrolyte material, an ion conductive ceramic material or a polymer material has been proposed, but the former ion conductive ceramic material has fragile properties and it is difficult to form a laminate with an electrode. On the other hand, since the ion conductive polymer material has processing flexibility, it forms a laminated structure with a battery as a solid electrolyte material,
It is preferable that the interface can be maintained following the volume change due to the occlusion and release of ions from the electrode.

【0003】このポリマー固体電解質の試みとして、W
rightによりポリエチレンオキシドのアルカリ金属
塩複合体が、British Polymer Jou
rnal,7 p319(1975)に報告され、以来
ポリエチレングリコール、ポリプロピレンオキシドなど
のポリアルキレンエーテル系材料を中心として、ポリア
クリロニトリル、ポリホスファゼン、ポリシロキサンな
どを骨格とした固体電解質材料が活発に研究されてい
る。
As an attempt of this polymer solid electrolyte, W
The alkali metal salt complex of polyethylene oxide is converted to British Polymer Jou by right.
rnal, 7 p319 (1975), since then, solid electrolyte materials having polyacrylonitrile, polyphosphazene, polysiloxane, etc. as a skeleton have been actively studied centering on polyalkylene ether-based materials such as polyethylene glycol and polypropylene oxide. There is.

【0004】これらポリマーをマトリックスとして金属
塩を含有させ固溶させた高分子固体電解質のイオン伝導
度は電解液のイオン伝導度に比較してかなり小さく、こ
れを用いて構成した電池は充放電電流密度が限定される
などの問題を有する。このため、高いイオン伝導度を有
する高分子固体電解質材料が要求されている。Gozd
zらはフッ化ビニリデンと8〜25重量%のヘキサフル
オロプロピレンからなる共重合体を用い、これに電解質
と大量の可塑剤を含ませることで比較的高いイオン伝導
度を有する高分子電解質材料を報告している(米国特許
第5296318号明細書)。しかしこの場合、大量の
電解質と可塑剤を加えた状態では高分子電解質材料の強
度が大幅に低下するため、高分子電解質材料のフィルム
をロールで扱う際に張力を加えると容易に破損したり、
電極と積層した場合にわずかな圧力で押しつぶされて短
絡するなどの問題が生じ、電池の製造プロセスや信頼性
の点で十分な機械的特性を有するとは言い難かった。
The ionic conductivity of a solid polymer electrolyte containing these polymers as a matrix and containing a metal salt as a solid solution is considerably smaller than the ionic conductivity of an electrolytic solution, and a battery constructed using this polymer has a charge / discharge current. There are problems such as limited density. Therefore, a solid polymer electrolyte material having high ionic conductivity is required. Gozd
Z et al. uses a copolymer of vinylidene fluoride and 8 to 25% by weight of hexafluoropropylene, and by adding an electrolyte and a large amount of a plasticizer to the polymer electrolyte material having relatively high ionic conductivity. Reported (US Pat. No. 5,296,318). However, in this case, the strength of the polyelectrolyte material is significantly reduced in the state where a large amount of the electrolyte and the plasticizer are added.
When laminated with the electrodes, problems such as crushing with a slight pressure and short-circuiting occurred, and it was difficult to say that the battery has sufficient mechanical characteristics in terms of battery manufacturing process and reliability.

【0005】[0005]

【発明が解決しようとする課題】本発明は、大量の電解
質と可塑剤を含浸した状態に於いても、高いイオン伝導
度を有し、加工性、柔軟性、機械的強度に優れた高分子
固体電解質を提供するとともに、これをイオン移動媒体
に用いた固体電池を提供するものである。
The present invention provides a polymer having high ionic conductivity even when impregnated with a large amount of an electrolyte and a plasticizer, and having excellent processability, flexibility and mechanical strength. The present invention provides a solid electrolyte and a solid battery using the same as an ion transfer medium.

【0006】[0006]

【課題を解決するための手段】前記の問題を解決する手
段として、本発明者らは新たに高分子材料について検討
し、充分な強度をもち、かつイオン伝導度の高い高分子
固体電解質材料を得るべく検討を重ねた結果、本発明を
得るに至った。すなわち、本発明は以下のとおりであ
る。 (1) (a)下記一般式(1)で表されるトリフルオ
ロビニルエーテルからなるモノマー単位の少なくとも1
種、及びフッ化ビニリデンからなるモノマー単位を含む
共重合体、 CF2 =CF−OX (1) (式中、Xは炭素数1〜18個のパーフルオロアルキル
基であり、これらの基では炭素鎖の末端が水素化されて
いてもよく、また炭素鎖中にエーテル基を含有していて
もよい。)(b)電解質、及び(c)可塑剤を成分とす
る高分子固体電解質であって、且つ(a)、(b)、
(c)成分の和100重量部に対して(a)成分が5〜
90重量部、(b)成分が1〜90重量部、(c)成分
が5〜90重量部であることを特徴とする高分子固体電
解質。 (2) 上記1の高分子固体電解質を介して電極が接合
したことを特徴とする電池。
[Means for Solving the Problems] As a means for solving the above problems, the present inventors have newly investigated a polymer material, and have found a polymer solid electrolyte material having sufficient strength and high ionic conductivity. As a result of repeated studies to obtain the present invention, the present invention has been obtained. That is, the present invention is as follows. (1) (a) At least one of the monomer units composed of trifluorovinyl ether represented by the following general formula (1)
And a copolymer containing a monomer unit composed of vinylidene fluoride, CF 2 ═CF—OX (1) (wherein, X is a perfluoroalkyl group having 1 to 18 carbon atoms, and these groups are carbon atoms). The chain end may be hydrogenated, and the carbon chain may contain an ether group.) (B) An electrolyte, and (c) a polymer solid electrolyte containing a plasticizer as a component. , And (a), (b),
The component (a) is 5 to 5 parts by weight based on the sum of the components (c).
90 parts by weight, component (b) is 1 to 90 parts by weight, and component (c) is 5 to 90 parts by weight, a solid polymer electrolyte. (2) A battery in which electrodes are joined via the solid polymer electrolyte of the above item 1.

【0007】以下本発明の高分子固体電解質及び電池の
構成要素について説明する。本発明の高分子固体電解質
の(a)成分として用いられる共重合体は充分にフッ素
化された構造を有する高分子化合物であり、耐熱性、酸
化還元安定性に優れた性質を提供するものである。一般
式(1)においてXは、炭素数1〜18個のパーフルオ
ロアルキル基であり、これらの基では、炭素鎖の末端が
水素化されていてもよく、また炭素鎖中にエーテル基を
含有していてもよい。
The constituent elements of the polymer solid electrolyte and battery of the present invention will be described below. The copolymer used as the component (a) of the solid polymer electrolyte of the present invention is a polymer compound having a sufficiently fluorinated structure, and provides excellent properties in heat resistance and redox stability. is there. In the general formula (1), X is a perfluoroalkyl group having 1 to 18 carbon atoms, and in these groups, the end of the carbon chain may be hydrogenated, and the carbon chain contains an ether group. You may have.

【0008】Xの具体的な例としては下記化1に示すも
のが挙げられる。
Specific examples of X include those shown in the following chemical formula 1.

【0009】[0009]

【化1】 Embedded image

【0010】本発明の高分子固体電解質の(a)成分で
ある共重合体は、一般式(1)で表されるトリフルオロ
ビニルエーテルからなるモノマー単位の少なくとも1種
と、フッ化ビニリデンからなるモノマー単位とを含んで
いれば良いが、通常は一般式(1)で表されるモノマー
成分を1〜50重量%、好ましくは5〜30重量%、フ
ッ化ビニリデン成分を50〜99重量%、好ましくは7
0〜95重量%含んでいる。またこれらの成分以外のモ
ノマー成分を49重量%以下、好ましくは20重量%以
下の範囲で1種または2種以上含んでいても良く、その
ような例としてテトラフルオロエチレン、トリフルオロ
エチレン、フルオロエチレン、ヘキサフルオロプロピレ
ン、3,3,3−トリフルオロプロピレン、クロロトリ
フルオロエチレン等の含フッ素モノマーの他、エチレ
ン、プロピレン、酢酸ビニル、メチルビニルエーテル、
アクリロニトリル、アクリルアミド、アクリル酸リチウ
ム、メタクリル酸リチウム、メチルメタクリレート、ス
チレン等が挙げられる。
The copolymer which is the component (a) of the solid polymer electrolyte of the present invention comprises at least one monomer unit of trifluorovinyl ether represented by the general formula (1) and a monomer of vinylidene fluoride. Units, but usually 1 to 50% by weight, preferably 5 to 30% by weight of the monomer component represented by the general formula (1), and 50 to 99% by weight of vinylidene fluoride component, preferably Is 7
It contains 0 to 95% by weight. Further, monomer components other than these components may be contained in one or two or more kinds in a range of 49% by weight or less, preferably 20% by weight or less, and examples thereof include tetrafluoroethylene, trifluoroethylene and fluoroethylene. , Hexafluoropropylene, 3,3,3-trifluoropropylene, chlorotrifluoroethylene and other fluorine-containing monomers, ethylene, propylene, vinyl acetate, methyl vinyl ether,
Examples thereof include acrylonitrile, acrylamide, lithium acrylate, lithium methacrylate, methyl methacrylate, styrene and the like.

【0011】該共重合体は、一般的なラジカル重合で合
成することができる。重合は溶液重合、懸濁重合、乳化
重合、塊状重合等のいずれの方法によっても行なうこと
ができる。重合開始剤としては例えばジイソプロピルパ
ーオキシジカーボネート、ジ−n−プロピルパーオキシ
ジカーボネート、ジ−t−ブチルパーオキサイド、ヘプ
タフルオロブチリルパーオキサイド、3,5,6−トリ
クロロパーフルオロヘキサノイルパーオキサイド、アゾ
ビスイソブチロニトリル、過硫酸カリウム、過硫酸アン
モニウム等があげられる。
The copolymer can be synthesized by a general radical polymerization. The polymerization can be carried out by any method such as solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization. Examples of the polymerization initiator include diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, di-t-butyl peroxide, heptafluorobutyryl peroxide, 3,5,6-trichloroperfluorohexanoyl peroxide, Examples thereof include azobisisobutyronitrile, potassium persulfate, ammonium persulfate and the like.

【0012】本発明における(a)成分の添加量は上記
(a),(b),(c)成分の和100重量部に対して
5〜90重量部、好ましくは10〜60重量部である。
添加する(a)成分が全体の5重量部未満では高分子固
体電解質が非常にもろいものとなり、90重量部を超え
る値ではイオン伝導性が十分でない。本発明の(b)成
分である電解質としては無機塩、有機塩、無機酸、有機
酸のいずれも使用可能である。この例として、たとえば
テトラフルオロホウ酸、過塩素酸、硝酸、硫酸、リン
酸、フッ酸、塩酸などの無機酸、トリフルオロメタンス
ルホン酸、ポリフルオロプロピルスルホン酸、ビス(ト
リフルオロメタンスルホニル)イミド酸、酢酸、トリフ
ルオロ酢酸、プロピオン酸などの有機酸、及びこれら有
機酸、無機酸の塩が挙げられる。またオリゴマー状また
は高分子状の多価電解質を使用することもできる。さら
にこれらの有機酸、無機酸、及びこれらの塩の混合物も
電解質として使用可能である。この塩型の電解質のカチ
オンとしてプロトン、アルカリ金属、アルカリ土類金
属、遷移金属、希土類金属などの単独または混合状態で
用いることができるが好ましくはリチウムやナトリウム
等のアルカリ金属が使用される。このカチオン種は使用
する用途によって異なるため電解質の種類は限定されな
い。たとえば、本発明の高分子固体電解質を用いてリチ
ウム電池として利用する場合は、添加する電解質として
リチウム塩を用いることが好ましい。特に、リチウム二
次電池として利用する場合、広い電位領域を使用するた
め、電気化学的に安定なリチウム塩が好ましく、この例
として、CF3 SO3 Li、C4 9 SO3 Liなどの
フッ素スルホン酸リチウム塩、(CF3 SO2 2 NL
iに代表されるスルホニルイミドリチウム塩、LiBF
4 、LiPF6 、LiClO4 、LiAsF6 等を挙げ
ることができる。
The addition amount of the component (a) in the present invention is 5 to 90 parts by weight, preferably 10 to 60 parts by weight, based on 100 parts by weight of the sum of the above components (a), (b) and (c). .
If the amount of the added component (a) is less than 5 parts by weight, the solid polymer electrolyte becomes very brittle, and if it exceeds 90 parts by weight, the ionic conductivity is insufficient. As the electrolyte as the component (b) of the present invention, any of inorganic salts, organic salts, inorganic acids and organic acids can be used. Examples of this include inorganic acids such as tetrafluoroboric acid, perchloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, trifluoromethanesulfonic acid, polyfluoropropylsulfonic acid, bis (trifluoromethanesulfonyl) imidic acid, Examples thereof include organic acids such as acetic acid, trifluoroacetic acid, and propionic acid, and salts of these organic acids and inorganic acids. In addition, an oligomer or polymer polyelectrolyte can also be used. Furthermore, mixtures of these organic acids, inorganic acids, and salts thereof can also be used as the electrolyte. Protons, alkali metals, alkaline earth metals, transition metals, rare earth metals and the like can be used alone or in a mixed state as cations of this salt type electrolyte, but alkali metals such as lithium and sodium are preferably used. The type of the electrolyte is not limited because the type of the cation varies depending on the use. For example, when the polymer solid electrolyte of the present invention is used as a lithium battery, it is preferable to use a lithium salt as the electrolyte to be added. In particular, when used as a lithium secondary battery, an electrochemically stable lithium salt is preferable because it uses a wide potential region. As an example, a fluorine salt such as CF 3 SO 3 Li or C 4 F 9 SO 3 Li is used. Lithium sulfonate, (CF 3 SO 2 ) 2 NL
i represented by sulfonylimide lithium salt, LiBF
4 , LiPF 6 , LiClO 4 , LiAsF 6 and the like can be mentioned.

【0013】本発明における(b)成分の添加量は上記
(a)、(b)、(c)成分の和100重量部に対して
1〜90重量部、好ましくは10〜60重量部である。
添加する(b)成分が1重量部未満ではイオン伝導性が
十分でなく、90重量部を超えると高分子固体電解質が
非常にもろいものとなる。本発明の(c)成分である可
塑剤は高分子固体電解質のイオン解離促進、加工性、柔
軟性などの強度調整などのために用いられる。この可塑
剤として、エチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネートなどの環状カーボネート化
合物 、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネートなどの鎖状カーボネート
化合物、テトラヒドロフラン、メチルテトラヒドロフラ
ンなどのエーテル化合物、ブチロラクトン、プロピオラ
クトン、酢酸メチルなどのエステル化合物、アセトニト
リル、プロピオニトリルなどのニトリル化合物などの低
分子有機化合物、ジグライムやテトラグライムなどのオ
リゴエチレンオキシドおよびこれらの誘導体を用いるこ
とができる。また、ポリエチレンオキシド、ポリプロピ
レンオキシドなどの脂肪族ポリエーテル、ポリビニリデ
ンフルオライド、ポリ(ビニリデンフルオライド・ヘキ
サフルオロプロピレン)共重合体などのフッ素系ポリマ
ー、ポリアクリロニトリル、脂肪族ポリエステル、脂肪
族カーボネートなどのポリマーを上記の可塑剤と混合し
た混合物も可塑剤として利用することもできる。
The addition amount of the component (b) in the present invention is 1 to 90 parts by weight, preferably 10 to 60 parts by weight, based on 100 parts by weight of the sum of the components (a), (b) and (c). .
If the amount of the added component (b) is less than 1 part by weight, the ionic conductivity will be insufficient, and if it exceeds 90 parts by weight, the solid polymer electrolyte will be very brittle. The plasticizer which is the component (c) of the present invention is used for accelerating ionic dissociation of the polymer solid electrolyte, adjusting strength such as processability and flexibility. As this plasticizer, ethylene carbonate, propylene carbonate, cyclic carbonate compounds such as butylene carbonate, dimethyl carbonate, diethyl carbonate, chain carbonate compounds such as methyl ethyl carbonate, tetrahydrofuran, ether compounds such as methyltetrahydrofuran, butyrolactone, propiolactone, Ester compounds such as methyl acetate, low molecular weight organic compounds such as nitrile compounds such as acetonitrile and propionitrile, oligoethylene oxides such as diglyme and tetraglyme, and derivatives thereof can be used. In addition, fluorine-based polymers such as aliphatic polyethers such as polyethylene oxide and polypropylene oxide, polyvinylidene fluoride, poly (vinylidene fluoride / hexafluoropropylene) copolymer, polyacrylonitrile, aliphatic polyester, aliphatic carbonate, etc. Mixtures of polymers with the above plasticizers can also be utilized as plasticizers.

【0014】本発明の高分子固体電解質をリチウムイオ
ン電池の電解質として用いる場合には、環状カーボネー
ト、鎖状カーボネート、エステル化合物から選ばれた化
合物、及びその混合物が好ましく用いられる。本発明に
おいて、(c)成分は、これを添加することによって高
分子固体電解質の柔軟性とイオン伝導度を上げることが
できる。(c)成分の添加量は上記(a)、(b)、
(c)成分の和100重量部に対して5〜90重量部、
好ましくは30〜80重量部である。添加する(c)成
分が全体の5重量部未満ではイオン伝導度の向上が十分
でなく、90重量部を超えると高分子固体電解質が非常
にもろいものとなる。
When the polymer solid electrolyte of the present invention is used as an electrolyte for a lithium ion battery, compounds selected from cyclic carbonates, chain carbonates, ester compounds, and mixtures thereof are preferably used. In the present invention, by adding the component (c), the flexibility and ionic conductivity of the solid polymer electrolyte can be increased. The addition amount of the component (c) is the same as the above (a), (b),
5 to 90 parts by weight based on 100 parts by weight of the component (c),
Preferably it is 30 to 80 parts by weight. If the total amount of the component (c) added is less than 5 parts by weight, the ionic conductivity will not be sufficiently improved, and if it exceeds 90 parts by weight, the solid polymer electrolyte will be very brittle.

【0015】以上説明した(a)、(b)、(c)成分
を用いて固体電解質を構成する場合、3者の均一な混合
物としても良いし、ポリマー(a)を発泡などの処理に
よって多孔質構造とし、そこに(b)、(c)成分を不
均一に混合させて用いても良い。以上説明した(a)共
重合体、(b)電解質、(c)可塑剤を利用する用途に
応じて構成要素を選び固体電解質を構成する。さらに必
要があれば、さらに他のポリマー、セラミック、金属を
機械的強度、耐熱性調整のため添加させることができ
る。
When the solid electrolyte is formed by using the components (a), (b) and (c) described above, a homogeneous mixture of the three may be used, or the polymer (a) may be porous by a treatment such as foaming. You may use it, having a quality structure, in which the components (b) and (c) are mixed non-uniformly. The solid electrolyte is constituted by selecting the constituent elements according to the use of the above-mentioned (a) copolymer, (b) electrolyte, and (c) plasticizer. If necessary, other polymers, ceramics and metals can be added for adjusting mechanical strength and heat resistance.

【0016】本発明の高分子固体電解質の製造方法は、
たとえば上記の高分子固体電解質の構成要素を均一混合
した後、所定形状に成形加工する方法があげられる。具
体的には、構成要素の溶液を基板上に塗布してシート状
に形成する方法、構成要素を加熱溶融状態で成形したの
ち冷却加工する方法、粉末状の構成要素を所定形状に圧
縮成形する方法などいずれも使用可能である。また、あ
らかじめ所定形状に成形したポリマーに電解質と可塑剤
を順次拡散させる方法も用いることができる。具体的に
はキャストあるいは溶融などで得られたポリマーフィル
ムを電解質と可塑剤に浸して含浸させる方法、有機溶媒
で膨潤させたフィルムを電解質と可塑剤に浸して有機溶
媒を置き換える方法などいずれも可能であり、電極をと
りつけた状態で電解質と可塑剤を含浸させてもよい。ま
た、高分子固体電解質の一般式(1)の化合物と電解
質、可塑剤とともに重合性モノマー、必要があれば開始
剤を混合した後、熱、電子線、放射線などの輻射エネル
ギー照射によって混合物中に重合体を形成させることも
できる。さらに、成形加工した高分子固体電解質の強
度、溶媒含有性調節などの目的で、輻射エネルギーを照
射して変性することも可能である。
The method for producing a polymer solid electrolyte of the present invention is
For example, there may be mentioned a method in which the above-mentioned constituent elements of the polymer solid electrolyte are uniformly mixed and then molded into a predetermined shape. Specifically, a method of applying a solution of the constituents onto a substrate to form a sheet, a method of molding the constituents in a heating and melting state and then cooling, and a method of compressing and molding a powdery constituent into a predetermined shape. Any method can be used. Alternatively, a method of sequentially diffusing the electrolyte and the plasticizer into a polymer that has been molded into a predetermined shape can be used. Specifically, a method of dipping a polymer film obtained by casting or melting into an electrolyte and a plasticizer to impregnate it, and a method of immersing a film swollen with an organic solvent in the electrolyte and the plasticizer to replace the organic solvent are possible. Therefore, the electrolyte and the plasticizer may be impregnated with the electrode attached. In addition, after mixing the compound of the general formula (1) of the polymer solid electrolyte, the electrolyte, the plasticizer, the polymerizable monomer, and the initiator if necessary, the mixture is irradiated with radiant energy such as heat, electron beam, or radiation to form a mixture. It is also possible to form polymers. Further, for the purpose of adjusting the strength and solvent content of the molded solid polymer electrolyte, it is possible to irradiate it with radiant energy for modification.

【0017】本発明の電池は、上記の高分子固体電解質
を介して、正極及び負極が接合した構造を有する電池で
あり、一次電池及び二次電池として利用できる。たとえ
ば電池がリチウム電池の場合、本発明の高分子固体電解
質に添加する電解質としてリチウム塩を用いることが好
ましい。この際、電池の正極、及び負極として、リチウ
ムの吸蔵放出が可能な物質を用いる。この正極物質とし
て、負極に対し高い電位を有する材料を選ぶ。この例と
して、Li1-x CoO2 (0<x<1)、Li1-x Ni
2 、Li1-x Mn2 4 、Li1-x MO2 (MはC
o、Ni、Mn、Feの混合体)、Li2-y Mn2 4
(0<y<2)、結晶性Li 1-x 2 5 、アモルファ
ス状Li2-y 2 5 、Li1.2-x'Nb2 5 (0<
x’<1.2)などの酸化物、Li1-x TiS2 、Li
1-x MoS2 、Li3-zNbSe3 (0<z<3)など
の金属カルコゲナイド、ポリピロール、ポリチオフェ
ン、ポリアニリン、ポリアセン誘導体、ポリアセチレ
ン、ポリチエニレンビニレン、ポリアリレンビニレン、
ジチオール誘導体、ジスルフィド誘導体などの有機化合
物を挙げることができる。
The battery of the present invention is a polymer solid electrolyte as described above.
With a battery having a structure in which the positive electrode and the negative electrode are joined via
Yes, it can be used as a primary battery and a secondary battery. for example
For example, when the battery is a lithium battery, the solid polymer electrolyte of the present invention
It is preferable to use lithium salt as an electrolyte added to the electrolyte.
Good. At this time, lithium batteries are used as the positive and negative electrodes of the battery.
Use a substance that is capable of occluding and releasing the gas. This positive electrode material
Then, a material having a high potential with respect to the negative electrode is selected. With this example
And Li1-xCoOTwo(0 <x <1), Li1-xNi
OTwo, Li1-xMnTwoOFour, Li1-xMOTwo(M is C
o, a mixture of Ni, Mn, and Fe), Li2-yMnTwoOFour
(0 <y <2), crystalline Li 1-xVTwoOFive, Amorpha
Lithium Li2-yVTwoOFive, Li1.2-x 'NbTwoOFive(0 <
x '<1.2) and other oxides, Li1-xTiSTwo, Li
1-xMoSTwo, Li3-zNbSeThree(0 <z <3) etc.
Metal chalcogenides, polypyrrole, polythiophene
, Polyaniline, polyacene derivative, polyacetylene
, Polythienylene vinylene, polyarylene vinylene,
Organic compounds such as dithiol derivatives and disulfide derivatives
Things can be mentioned.

【0018】また負極として、上記正極に対して低い電
位を有する材料を用いる。この例として、金属リチウ
ム、アルミ・リチウム合金、マグネシウム・アルミ・リ
チウム合金などの金属リチウム、グラファイト、コーク
ス、低温焼成高分子などの炭素系材料、酸化チタン、酸
化鉄などの金属酸化物にリチウム固溶体などのセラミッ
クス等が挙げられる。ただし、リチウムイオンを負極で
還元して金属リチウムとして利用する場合は、導電性を
有する材料であればよいので上記に限定されない。
As the negative electrode, a material having a lower potential than the positive electrode is used. Examples of this include lithium metal such as metallic lithium, aluminum-lithium alloys, magnesium-aluminum-lithium alloys, carbon-based materials such as graphite, coke, low-temperature calcined polymers, metal oxides such as titanium oxide and iron oxide, and lithium solid solution. Ceramics and the like. However, when lithium ions are reduced at the negative electrode and used as metallic lithium, the material is not limited to the above, as long as the material has conductivity.

【0019】本発明の電池に用いる正極及び負極は上記
の材料を所定の形状に成形加工する。電極の形態とし
て、連続体または粉末材料のバインダー分散体のいずれ
も使用可能である。前者の連続体の成形方法として、電
解、蒸着、スパッタリング、CVD、溶融加工、焼結、
圧縮などが用いられる。また、後者の方法は、粉末状の
電極材料をバインダーとともに混合して成形する。この
バインダー材料としてポリマー、ポリマー前駆体、金属
などが用いられ、本発明の高分子固体電解質をバインダ
ーとして利用することができる。また、正極、または負
極材料の電子移動を行うために電極に電気抵抗の低い材
料で集電体を設けることができ、集電体を基板に上記の
方法で形成した電極とすることができる。また、正極/
高分子固体電解質/負極の構造で構成した電池に本発明
の高分子固体電解質の構成要素である可塑剤、電解質を
含浸や拡散などの方法で導入することができる。
The positive electrode and the negative electrode used in the battery of the present invention are formed by processing the above materials into a predetermined shape. Either a continuous body or a binder dispersion of powder material can be used as the form of the electrode. As the former continuous body forming method, electrolysis, vapor deposition, sputtering, CVD, melt processing, sintering,
Compression or the like is used. In the latter method, a powdery electrode material is mixed with a binder for molding. Polymers, polymer precursors, metals and the like are used as the binder material, and the polymer solid electrolyte of the present invention can be used as the binder. Further, in order to perform electron transfer of the positive electrode or the negative electrode material, a current collector can be provided on the electrode with a material having low electric resistance, and the current collector can be an electrode formed on the substrate by the above method. Also, positive electrode /
The plasticizer and the electrolyte, which are the constituent elements of the polymer solid electrolyte of the present invention, can be introduced into a battery having a polymer solid electrolyte / negative electrode structure by a method such as impregnation or diffusion.

【0020】電池の形態は、リチウム電池の場合、正極
と負極が高分子固体電解質を介して接合した構造を有す
る。例えば、シート状の構成要素を順次積層した正極/
高分子固体電解質/負極を単位としてシート状やロール
状構造とすることができる。また、電池単位の電極同士
を並列または直列に接続した組電池とすることも可能で
ある。特に、固体電解質電池の場合、直列接続数によっ
て電圧を増加させることができる特徴を有する。また、
必要があれば電池電極に電流取り出し、注入のための外
部端子接続部分、電流電圧制御回路素子や電池単位・積
層体の吸湿防止、構造保護などのための保護層を設けた
りパッケージ化することができる。
In the case of a lithium battery, the form of the battery has a structure in which a positive electrode and a negative electrode are joined via a solid polymer electrolyte. For example, a positive electrode formed by sequentially stacking sheet-like components /
A sheet-like or roll-like structure can be formed with the polymer solid electrolyte / negative electrode as a unit. It is also possible to make an assembled battery in which the electrodes of the battery units are connected in parallel or in series. In particular, the solid electrolyte battery has a feature that the voltage can be increased depending on the number of serial connections. Also,
If necessary, it is possible to provide or package a battery electrode with a protective layer for connecting external terminals for current injection and injection, for preventing current absorption from the current / voltage control circuit element and battery unit / stack, and for structural protection. it can.

【0021】本発明の高分子固体電解質は柔軟性、加工
性、機械的強度に優れるため、上記のリチウム電池に留
まらず、アルカリ電池、鉛電池、ニッケル水素電池、燃
料電池、光電気化学電池、電気化学センサーなど種々の
電気化学素子、装置に応用できるため産業上有用であ
る。
Since the polymer solid electrolyte of the present invention is excellent in flexibility, processability and mechanical strength, it is not limited to the above lithium batteries, but also alkaline batteries, lead batteries, nickel hydrogen batteries, fuel cells, photoelectrochemical cells, It is industrially useful because it can be applied to various electrochemical elements and devices such as electrochemical sensors.

【0022】[0022]

【発明の実施の形態】以下、本発明を一層明確にするた
めに実施例を挙げて説明する。本発明の高分子固体電解
質のイオン伝導度は、高分子固体電解質を金属電極で挟
み込み電気化学セルを構成し、電極間に交流を印可して
抵抗成分を測定する交流インピーダンス法を用い、コー
ルコールプロットの実部抵抗切片から計算した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described by way of examples to further clarify the present invention. The ionic conductivity of the polymer solid electrolyte of the present invention is determined by using an AC impedance method in which a polymer solid electrolyte is sandwiched between metal electrodes to form an electrochemical cell, an alternating current is applied between the electrodes and a resistance component is measured, and the Calculated from the real intercept of the plot.

【0023】[0023]

【製造例1】300mlの耐圧ステンレス容器に、パー
フルオロ(プロピルビニルエーテル)1.8g(一般式
(1)においてX=CF2 CF2 CF3 としたもの)、
トリクロロトリフルオロエタン(以下、CFC113と
称す。)25ml、ヘプタフルオロブチリルパーオキサ
イドの5%CFC113溶液1mlを仕込み、反応器内
を窒素置換した後、−78℃に冷却して真空にした。こ
の中にフッ化ビニリデン12.2gを仕込み、室温で2
0時間撹拌した。反応後、未反応のフッ化ビニリデンを
パージして白色粉末状の反応生成物を取り出し、乾燥し
て12.5gの白色固体を得た。重DMSO中で測定し
たNMRスペクトルから求められた、共重合体中のパー
フルオロ(プロピルビニルエーテル)モノマー単位の含
量は重量比換算で14%であった。以下、この反応生成
物をポリマーAとする。
[Production Example 1] In a 300 ml pressure-resistant stainless steel container, 1.8 g of perfluoro (propyl vinyl ether) (X = CF 2 CF 2 CF 3 in the general formula (1)),
25 ml of trichlorotrifluoroethane (hereinafter referred to as CFC113) and 1 ml of a 5% CFC113 solution of heptafluorobutyryl peroxide were charged, the inside of the reactor was replaced with nitrogen, and then the mixture was cooled to −78 ° C. and evacuated. Into this, 12.2 g of vinylidene fluoride was charged, and 2
Stirred for 0 hours. After the reaction, unreacted vinylidene fluoride was purged to take out a white powdery reaction product and dried to obtain 12.5 g of a white solid. The content of perfluoro (propyl vinyl ether) monomer unit in the copolymer was 14% in terms of weight ratio, which was determined from the NMR spectrum measured in heavy DMSO. Hereinafter, this reaction product is referred to as polymer A.

【0024】[0024]

【実施例1】製造例1で合成したポリマーA(1g)に
LiBF4 のエチレンカーボネート(EC)/プロピレ
ンカーボネート(PC)混合溶媒(1:1)溶液(1m
ol/l)4g(EC:1.956g、PC:1.76
8、LiBF4:0.276g)、アセトン10gを混合
し、50℃に加熱して均一混合物とした後、キャストし
て高分子電解質フィルムを作製した。該フィルムをステ
ンレスシートを電極として挟み込み、インピーダンス測
定(EG&G社製 389型インピーダンスメーター)
をおこなった結果、室温イオン伝導度2.4×10-3
/cmであった。
EXAMPLE 1 Polymer A (1 g) synthesized in Production Example 1 was mixed with a solution of LiBF 4 in an ethylene carbonate (EC) / propylene carbonate (PC) mixed solvent (1: 1) (1 m).
ol / l) 4 g (EC: 1.956 g, PC: 1.76)
8, LiBF 4 : 0.276 g) and 10 g of acetone were mixed, heated to 50 ° C. to obtain a uniform mixture, and cast to prepare a polymer electrolyte membrane. Impedance measurement by sandwiching the film with a stainless sheet as an electrode (Model 389 impedance meter manufactured by EG & G)
As a result, the room temperature ionic conductivity was 2.4 × 10 −3 S
/ Cm.

【0025】[0025]

【実施例2】製造例1で得たポリマーAを用い、実施例
1と同じ操作で作成したフィルム(膜厚300μm)を
10mm幅に切り出し、オリエンテック製RTM−50
0引っ張り試験機を用い、チャック間を30mmとし
て、10mm/分の定速で引っ張ったところ、サンプル
は135%伸張した後に破断し、破断時の応力は2.4
kg/cm2 であった。
Example 2 Using the polymer A obtained in Production Example 1, a film (thickness 300 μm) produced by the same operation as in Example 1 was cut into a width of 10 mm, and RTM-50 manufactured by Orientec Co., Ltd.
When the chuck distance was set to 30 mm and the sample was pulled at a constant speed of 10 mm / min using a 0 tensile tester, the sample broke after stretching 135%, and the stress at break was 2.4.
It was kg / cm 2 .

【0026】[0026]

【比較例1】ポリマーAに代えて、フッ化ビニリデン−
ヘキサフルオロプロピレン共重合体(共重合体中のヘキ
サフルオロプロピレンは12重量%、以下これをポリマ
ーBとする。)を用いた以外は、実施例1と同様にフィ
ルムを作成してイオン伝導度を測定した結果、室温イオ
ン伝導度2.3×10-3S/cmであった。
Comparative Example 1 Instead of polymer A, vinylidene fluoride-
A film was prepared in the same manner as in Example 1 except that a hexafluoropropylene copolymer (hexafluoropropylene in the copolymer was 12% by weight, which will be hereinafter referred to as polymer B) was used to obtain an ionic conductivity. As a result of the measurement, the room temperature ionic conductivity was 2.3 × 10 −3 S / cm.

【0027】[0027]

【比較例2】ポリマーB(1g)を用いて実施例2と同
様に試験片を作成して引っ張り試験機にかけた。サンプ
ルはもろく、22%伸びた点で破断し、破断時の応力は
0.3kg/cm2 であった。比較例2と実施例2の応
力−伸び曲線を図1に示す。この組成では、ポリマーB
は製造例1で合成したポリマーAを用いた電解質材料と
比較すると、イオン伝導度は同等であるが、フィルムの
伸びと強度は大幅に劣っていることがわかる。
Comparative Example 2 A test piece was prepared using Polymer B (1 g) in the same manner as in Example 2 and subjected to a tensile tester. The sample was brittle and broke at the point of elongation of 22%, and the stress at rupture was 0.3 kg / cm 2 . The stress-elongation curves of Comparative Example 2 and Example 2 are shown in FIG. In this composition, polymer B
Compared with the electrolyte material using the polymer A synthesized in Production Example 1, the ionic conductivity is the same, but the elongation and strength of the film are significantly inferior.

【0028】[0028]

【実施例3】共重合体に電解質と可塑剤を添加すること
による電解質材料の機械的な強度の変化を調べるため、
製造例1で得たポリマーAと、比較例に用いたポリマー
Bの2種を用いて両者の特性を比較した。それぞれの共
重合体1gにアセトン10gと、表1記載の量のLiB
4 のエチレンカーボネート(EC)/プロピレンカー
ボネート(PC)混合溶媒(1:1)溶液(1mol/
l)を混合し、キャストして得たフィルムを実施例2と
同様の条件で引っ張り試験機にかけた。両者を比較した
結果を表1に示すが、本発明のパーフルオロ(ビニルエ
ーテル)はフッ化ビニリデン−ヘキサフルオロプロピレ
ン共重合体と比較して機械的強度に優れていることがわ
かる。特に、多量の電解質と可塑剤を加えた組成におい
て、本発明の共重合体からなる電解質材料は優れた機械
的特性を示す。
Example 3 To examine the change in mechanical strength of an electrolyte material by adding an electrolyte and a plasticizer to a copolymer,
The properties of the polymer A obtained in Production Example 1 and the polymer B used in Comparative Example were compared. 1 g of each copolymer and 10 g of acetone, and the amount of LiB shown in Table 1
F 4 ethylene carbonate (EC) / propylene carbonate (PC) mixed solvent (1: 1) solution (1 mol /
The film obtained by mixing and casting 1) was subjected to a tensile tester under the same conditions as in Example 2. The results of comparing the two are shown in Table 1, and it can be seen that the perfluoro (vinyl ether) of the present invention is superior in mechanical strength to the vinylidene fluoride-hexafluoropropylene copolymer. In particular, in a composition containing a large amount of electrolyte and a plasticizer, the electrolyte material comprising the copolymer of the present invention exhibits excellent mechanical properties.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【製造例2】製造例1と同様の操作で、パーフルオロ
(プロピルビニルエーテル)11.2gとフッ化ビニリ
デン12.2g、ヘプタフルオロブチリルパーオキサイ
ドの5%CFC113溶液1mlを室温で20時間反応
させ、乾燥して22.5gの白色固体を得た。重DMS
O中で測定したNMRスペクトルから求められた、共重
合体中のパーフルオロ(プロピルビニルエーテル)の含
量は重量比換算で48%であった。
[Production Example 2] In the same manner as in Production Example 1, 11.2 g of perfluoro (propyl vinyl ether), 12.2 g of vinylidene fluoride and 1 ml of a 5% CFC113 solution of heptafluorobutyryl peroxide were reacted at room temperature for 20 hours. Drying gave 22.5 g of a white solid. Heavy DMS
The content of perfluoro (propyl vinyl ether) in the copolymer determined from the NMR spectrum measured in O was 48% in terms of weight ratio.

【0031】[0031]

【実施例4】実施例1と同様の操作で、製造例2で得た
共重合体(1g)、LiBF4 のエチレンカーボネート
(EC)/プロピレンカーボネート(PC)混合溶媒
(1:1)溶液(1mol/l)1g(EC:0.48
9g、PC:0.442g、LiBF4 :0.069
g)、アセトン10gからフィルムを作成したところ、
室温イオン伝導度は7.8×10-4S/cmであった。
Example 4 in the same manner as in Example 1, the copolymer obtained in Production Example 2 (1 g), LiBF 4 ethylene carbonate (EC) / propylene carbonate (PC) mixed solvent (1: 1) solution ( 1 mol / l) 1 g (EC: 0.48
9 g, PC: 0.442 g, LiBF 4 : 0.069
g), when a film was made from 10 g of acetone,
The room temperature ionic conductivity was 7.8 × 10 −4 S / cm.

【0032】[0032]

【製造例3】製造例1と同様の操作で、パーフルオロ
(メチルビニルエーテル)1.8gとフッ化ビニリデン
8.7g、ヘプタフルオロブチリルパーオキサイドの5
%CFC113溶液1mlを反応させ、乾燥して9.5
gの白色固体を得た。この反応生成物をポリマーCとす
る。重DMSO中で測定したNMRスペクトルから求め
られた、ポリマー中のパーフルオロ(プロピルビニルエ
ーテル)の含量は重量比換算で13%であった。
MANUFACTURING EXAMPLE 3 By the same procedure as in Manufacturing Example 1, 1.8 g of perfluoro (methyl vinyl ether), 8.7 g of vinylidene fluoride and 5 parts of heptafluorobutyryl peroxide were used.
% Ml of CFC113 solution, reacted and dried to 9.5
g of a white solid were obtained. This reaction product is designated as Polymer C. The content of perfluoro (propyl vinyl ether) in the polymer determined from the NMR spectrum measured in deuterated DMSO was 13% in terms of weight ratio.

【0033】[0033]

【実施例5】実施例1と同様の操作で、製造例3で得た
ポリマーC(1g)、LiBF4 のエチレンカーボネー
ト(EC)/プロピレンカーボネート(PC)混合溶媒
(1:1)溶液(1mol/l)1g(EC:0.48
9g、PC:0.442g、LiBF4 :0.069
g)、アセトン10gからフィルムを作成したところ、
室温イオン伝導度は6.6×10-4S/cmであった。
Example 5 By the same operation as in Example 1, a solution of the polymer C (1 g) obtained in Production Example 3 and LiBF 4 in an ethylene carbonate (EC) / propylene carbonate (PC) mixed solvent (1: 1) solution (1 mol) was used. / L) 1 g (EC: 0.48
9 g, PC: 0.442 g, LiBF 4 : 0.069
g), when a film was made from 10 g of acetone,
The room temperature ionic conductivity was 6.6 × 10 −4 S / cm.

【0034】[0034]

【実施例6】水酸化リチウム、酸化コバルトを所定量混
合した後、750℃で5時間加熱して平均粒径10μm
のLiCoO2 粉末を合成した。該粉末とカーボンブラ
ックと、ポリビニリデンフロライド(呉羽化学工業
(株)製 KF1100)のN−メチルピロリドン溶液
(5重量%)に混合分散してスラリーを作製した。な
お、スラリー中の固形分重量組成は、LiCoO2 (8
5%)、カーボンブラック(8%)、ポリマー(7%)
とした。このスラリーをアルミフォイル上にドクターブ
レード法で塗布乾燥して膜厚110μmのシートを作製
した。該LiCoO2シートを2cm角に切断し、この
表面にに実施例1で作製した高分子固体電解質フィルム
(2.5cm角)を重ねた。さらにこの上に金属リチウ
ムホイル(2cm角)を積層して正極(LiCoO2
/高分子固体電解質/負極(金属リチウム)の構成で電
極積層体を構成した。ついで電極積層体の正極、負極に
ステンレス端子を取り付け、ガラスセルの端子にそれぞ
れ接続してアルゴン雰囲気中で封入した。該電池を充放
電機(北斗電工製 101SM6)を用い電流密度0.
1mA/cm2 の電流密度で充放電を行なった。充電後
の電極間電位は4.2V(定電流後4.2V定電位充
電)であり充電が確認できた。また、放電はカットオフ
電圧2.7V定電流放電で行った結果、繰り返し充放電
が可能であり二次電池として作動することがわかった。
Example 6 After mixing a predetermined amount of lithium hydroxide and cobalt oxide, the mixture was heated at 750 ° C. for 5 hours and the average particle size was 10 μm.
Of LiCoO 2 powder was synthesized. A slurry was prepared by mixing and dispersing the powder, carbon black, and polyvinylidene fluoride (KF1100 manufactured by Kureha Chemical Industry Co., Ltd.) in N-methylpyrrolidone solution (5% by weight). The weight composition of solids in the slurry is LiCoO 2 (8
5%), carbon black (8%), polymer (7%)
And This slurry was applied on an aluminum foil by a doctor blade method and dried to prepare a sheet having a film thickness of 110 μm. The LiCoO 2 sheet was cut into 2 cm square, and the polymer solid electrolyte film (2.5 cm square) produced in Example 1 was placed on this surface. Further, a metal lithium foil (2 cm square) was laminated on the positive electrode (LiCoO 2 )
The electrode laminate was composed of / polymer solid electrolyte / negative electrode (metal lithium). Then, stainless steel terminals were attached to the positive electrode and the negative electrode of the electrode laminate, which were respectively connected to the terminals of the glass cell and sealed in an argon atmosphere. The battery was charged and discharged with a current density of 0.
Charging / discharging was performed at a current density of 1 mA / cm 2 . The inter-electrode potential after charging was 4.2 V (4.2 V constant potential charging after constant current), and charging was confirmed. The discharge was performed at a constant current of 2.7 V with a cutoff voltage of 2.7 V. As a result, it was found that the battery can be repeatedly charged and discharged and operates as a secondary battery.

【0035】[0035]

【実施例7】平均粒径10μmのニードルコークス粉末
に、実施例6で用いたポリビニリデンフルオライドのN
−メチルピロリドンの5%溶液を混合してスラリーを作
製した(乾燥重量混合比:ニードルコークス(92
%)、ポリマー(8%))。該スラリーを金属銅シート
にドクターブレード法で塗布して乾燥膜厚120μmで
フィルム(電極層)を形成した。該フィルムを2cm角
に切断した後この表面上に、実施例1で作成した高分子
固体電解質フィルムを2.5cmに切断して積層し、つ
いで実施例6で作製したLiCoO2 電極を積層して正
極(LiCoO2 )/高分子固体電解質/負極(コーク
ス)で接合した電池を形成した。ついで、電池を電極付
きガラスセルに封入した後、実施例6と同様に充放電機
にて充放電を行った。電流密度0.1mA/cm2 で定
電流低電位(4.2V)充電、定電流放電(2.7Vカ
ットオフ)を行った結果、充電後の電池電圧は4.2V
であり、繰り返し充放電可能であった。
Example 7 N of polyvinylidene fluoride used in Example 6 was added to needle coke powder having an average particle size of 10 μm.
A 5% solution of methylpyrrolidone was mixed to form a slurry (dry weight mixing ratio: needle coke (92
%), Polymer (8%)). The slurry was applied to a metal copper sheet by a doctor blade method to form a film (electrode layer) with a dry film thickness of 120 μm. After the film was cut into 2 cm squares, the solid polymer electrolyte film prepared in Example 1 was cut into 2.5 cm and laminated on this surface, and then the LiCoO 2 electrode prepared in Example 6 was laminated. A battery was formed by joining the positive electrode (LiCoO 2 ) / solid polymer electrolyte / negative electrode (coke). Then, after enclosing the battery in a glass cell with an electrode, the battery was charged and discharged in the same manner as in Example 6 using a charger / discharger. As a result of constant current low potential (4.2V) charging and constant current discharging (2.7V cutoff) at a current density of 0.1 mA / cm 2 , the battery voltage after charging was 4.2V.
It was possible to repeatedly charge and discharge.

【0036】[0036]

【発明の効果】本発明の共重合体を用いた高分子固体電
解質材料は、高いイオン伝導度を有し、加工性、柔軟
性、機械的強度、イオン輸率に優れることから、これを
イオン移動媒体に用いることにより、十分な機械的強度
を有する固体電池を提供することが可能である。
The solid polymer electrolyte material using the copolymer of the present invention has a high ionic conductivity and is excellent in processability, flexibility, mechanical strength and ionic transport number. By using it as a moving medium, it is possible to provide a solid-state battery having sufficient mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いたパーフルオロビニルエーテル・
フッ化ビニリデンコポリマーと市販フッ化ビニリデン・
ヘキサフルオロプロピレンコポリマーの応力−歪み曲線
の比較を示すグラフ図。
FIG. 1 Perfluorovinyl ether used in the present invention
Vinylidene fluoride copolymer and commercial vinylidene fluoride
The graph which shows the comparison of the stress-strain curve of a hexafluoropropylene copolymer.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年5月14日[Submission date] May 14, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【化1】 Embedded image

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 8/02 G01N 27/58 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01M 8/02 G01N 27/58 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (a)下記一般式(1)で表されるトリ
フルオロビニルエーテルからなるモノマー単位の少なく
とも1種、及びフッ化ビニリデンからなるモノマー単位
を含む共重合体、 CF2 =CF−OX (1) (式中、Xは炭素数1〜18個のパーフルオロアルキル
基であり、これらの基では炭素鎖の末端が水素化されて
いてもよく、また炭素鎖中にエーテル基を含有していて
もよい。)(b)電解質、及び(c)可塑剤を成分とす
る高分子固体電解質であって、且つ(a)、(b)、
(c)成分の和100重量部に対して(a)成分が5〜
90重量部、(b)成分が1〜90重量部、(c)成分
が5〜90重量部であることを特徴とする高分子固体電
解質。
1. (a) A copolymer containing at least one monomer unit of trifluorovinyl ether represented by the following general formula (1) and a monomer unit of vinylidene fluoride, CF 2 ═CF-OX. (1) (In the formula, X is a perfluoroalkyl group having 1 to 18 carbon atoms, and in these groups, the end of the carbon chain may be hydrogenated, and an ether group is contained in the carbon chain. (B) the electrolyte, and (c) a polymer solid electrolyte containing a plasticizer as a component, and (a), (b),
The component (a) is 5 to 5 parts by weight based on the sum of the components (c).
90 parts by weight, component (b) is 1 to 90 parts by weight, and component (c) is 5 to 90 parts by weight, a solid polymer electrolyte.
【請求項2】 請求項1の高分子固体電解質を介して電
極が接合したことを特徴とする電池。
2. A battery characterized in that electrodes are joined via the polymer solid electrolyte according to claim 1.
JP8102654A 1996-04-24 1996-04-24 Polymer solid electrolyte and battery using it Withdrawn JPH09289038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102654A JPH09289038A (en) 1996-04-24 1996-04-24 Polymer solid electrolyte and battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102654A JPH09289038A (en) 1996-04-24 1996-04-24 Polymer solid electrolyte and battery using it

Publications (1)

Publication Number Publication Date
JPH09289038A true JPH09289038A (en) 1997-11-04

Family

ID=14333235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102654A Withdrawn JPH09289038A (en) 1996-04-24 1996-04-24 Polymer solid electrolyte and battery using it

Country Status (1)

Country Link
JP (1) JPH09289038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JP2000231936A (en) * 1999-02-05 2000-08-22 Ausimont Spa Electrolyte polymer for rechargeable lithium battery
JP2007324140A (en) * 2007-08-13 2007-12-13 Toyota Motor Corp Control device for fuel cell
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
WO2016143240A1 (en) * 2015-03-11 2016-09-15 ソニー株式会社 Electrolyte, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
WO2017098850A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130821A (en) * 1997-07-24 1999-05-18 Kureha Chem Ind Co Ltd Vinylidene fluoride-based copolymer for forming gelatinous solid electrolyte, solid electrolyte and battery
JP2000231936A (en) * 1999-02-05 2000-08-22 Ausimont Spa Electrolyte polymer for rechargeable lithium battery
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
JP2007324140A (en) * 2007-08-13 2007-12-13 Toyota Motor Corp Control device for fuel cell
WO2016143240A1 (en) * 2015-03-11 2016-09-15 ソニー株式会社 Electrolyte, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system
US10566657B2 (en) 2015-03-11 2020-02-18 Murata Manufacturing Co., Ltd. Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
WO2017098850A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Electrolyte layer for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool and electronic device

Similar Documents

Publication Publication Date Title
CN111448619B (en) Solid electrolyte material and battery
CN111295719B (en) Solid electrolyte material and battery
CN111316378B (en) Solid electrolyte material and battery
CN111566756B (en) Solid electrolyte material and battery
CN111279430B (en) Solid electrolyte material and battery
JP5867550B2 (en) Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery
JP4092669B2 (en) Solid electrolyte secondary battery
JPWO2020070955A1 (en) Halide solid electrolyte material and batteries using it
CN111492442A (en) Solid electrolyte material and battery
KR102000101B1 (en) Gel polymer electrolyte composition, gel polymer electrolyte and electrochemical device comprising the same
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
CN109599593B (en) Method for preparing solid-state battery with multilayer composite electrolyte
CN108140885B (en) Composition for gel polymer electrolyte and gel polymer electrolyte
EP4123746A1 (en) Solid electrolyte material and cell using same
CN116133991A (en) Solid electrolyte material and battery using same
JP2022536290A (en) In-situ polymerized polymer electrolyte for lithium-ion batteries
CN116133990A (en) Solid electrolyte material and battery using same
JPH09289038A (en) Polymer solid electrolyte and battery using it
JP2011159503A (en) Lithium ion conductive polymer electrolyte and lithium battery
JP3298960B2 (en) Battery
JP3667005B2 (en) Gel-based electrolyte and method for producing electrochemical element
JP2000228218A (en) Lithium battery having high polymer electrolyte
JP3942232B2 (en) Gel-like solid electrolyte and battery
JP3734896B2 (en) Solid electrolyte and non-aqueous battery
JPH09263637A (en) Functional polymer, solid polyelectrolyte using the same and cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701