WO2021010077A1 - Filament lamp for heating - Google Patents

Filament lamp for heating Download PDF

Info

Publication number
WO2021010077A1
WO2021010077A1 PCT/JP2020/023510 JP2020023510W WO2021010077A1 WO 2021010077 A1 WO2021010077 A1 WO 2021010077A1 JP 2020023510 W JP2020023510 W JP 2020023510W WO 2021010077 A1 WO2021010077 A1 WO 2021010077A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
heating
coil
filament lamp
wire
Prior art date
Application number
PCT/JP2020/023510
Other languages
French (fr)
Japanese (ja)
Inventor
忠和 河村
溝尻 貴文
豊 山水
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to CN202080047768.8A priority Critical patent/CN114051649A/en
Publication of WO2021010077A1 publication Critical patent/WO2021010077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/14Incandescent bodies characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/16Electric connection thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material

Definitions

  • the present invention relates to a filament lamp for heating used as a heat source for heat treatment such as annealing treatment and drying treatment of an object to be treated (work).
  • the semiconductor wafer When the semiconductor wafer is heated at a predetermined temperature for a predetermined time, if the time required to raise the temperature to the predetermined temperature or the time required to lower the temperature from the predetermined temperature becomes long, the semiconductor wafer is heated even in the heating / lowering process, which is desired. This is because it becomes difficult to process with high accuracy in the heating process.
  • the filament lamp which is a heat source
  • FIG. 7 shows a filament lamp used in such a heating device.
  • the light emitted from the light emitting portion (filament) 51 of the filament lamp 50 is a reflector 52. It is set to be reflected by and distributed in the desired irradiation range A1 indicated by the alternate long and short dash line in the figure.
  • the light emitting length M and the width (of the formed double coil) of the light emitting unit 51 shown in FIG. 7 (C) are used in the other lamp. If the outer diameter width) N changes, the irradiation range A2 changes as shown by the solid line in FIG.
  • the size of the light emitting part (for example, the light emitting length and the light emitting width) of the filament lamp that can be mounted is restricted by the configuration of the heating device (for example, the shape of the reflector and the installation location of the light source), and even if the lamp with improved performance is used instead. , There is a problem that they must have the same irradiation area.
  • JP-A-2002-270533 Japanese Unexamined Patent Publication No. 2015-050174
  • the problem to be solved by the present invention is that in a filament lamp for heating, the rising speed and falling speed of radiant energy can be increased while maintaining the light emitting portion of the filament lamp at a predetermined size, and that of the object to be processed. It is an object of the present invention to provide a filament lamp for heating capable of realizing rapid ascending / descending temperature.
  • the ratio of the current value (I) flowing through the filament lamp to the wire weight (MG) per 200 mm of the wire constituting the filament may satisfy the following calculation formula. I / MG ⁇ 6.5
  • the wire diameter (d) may be characterized in that it is formed in the range of 0.08 mm to 0.30 mm.
  • the outer diameter (D) of the coil portion may be formed in the range of 0.8 mm to 2.0 mm.
  • a first feeder line and a second feeder line are provided at the upper end portion and the lower end portion of the filament, respectively, and the strands constituting the coil portion are electrically connected to the feeder line. It may be characterized by being connected in parallel.
  • the strands constituting the filament serving as the light emitting portion are composed of a plurality of thin strands, it is possible to realize rapid temperature rise and fall of the filament lamp.
  • the filament constituting the light emitting portion has a double coil structure. That is, the coil portion in which a plurality of strands arranged in parallel are spirally wound around the first reference axis is spirally wound around the second reference axis different from the first reference axis.
  • the filament has a double coil structure.
  • Sectional drawing of the filament lamp for heating of this invention A first configuration example of the light emitting portion of the filament lamp of the present invention.
  • a second configuration example of the light emitting portion of the filament lamp of the present invention A table showing the I / MG ratio and the light intensity rise time with different numbers of strands.
  • the graph which shows the relationship between the I / MG value of a filament and the light amount rise time.
  • a graph showing the relationship between the number of strands and the rise time of the amount of light.
  • FIG. 1 is an overall cross-sectional view of the single-ended heating filament lamp 1 of the present invention, in which a filament 3 composed of a double coil (hereinafter referred to as a light emitting portion) is inside a sealed body 2 composed of a translucent member.
  • the first feed line 4 and the second feed line 5 are provided at the upper end and the lower end of the double filament 3, and these feeder lines 4 and 5 are inside, respectively. It is wound around leads 6 and 7 and fixed.
  • These internal leads 6 and 7 are connected to the metal foils 10 and 11 embedded in the sealing portion 8, respectively, and are electrically connected to the external leads 12 and 13 via the metal foils 10 and 11, respectively. Has been done.
  • the filament 3 constituting the light emitting portion is formed of two strands 3a and 3b.
  • Each wire 3a and 3b is spirally wound to form a double coil structure. More specifically, two strands 3a and 3b arranged in parallel are spirally wound around the first reference axis X to form a coil portion (primary coil portion) 3A, and further, FIG. As shown in A), the primary coil portion 3A is spirally wound around a second reference axis Y different from the first reference axis X to form a filament 3 having a double coil structure.
  • the strands 3a and 3b constituting these filaments 3 are electrically connected to the first feeder line 4 and the second feeder line 5 shown in FIG. 1 so as to be electrically parallel to each other.
  • FIG. 3 shows a wire having three strands. As shown in FIG. 3B, three strands 3c, 3d, and 3e arranged in parallel are spirally wound around the first reference axis X to form a coil portion (primary coil portion) 3B. Is forming. At this time, the wire diameters d2 of the wires 3c, 3d, and 3e are smaller than the wire diameters d1 of the two wires 3a and 3b.
  • the outer diameter D2 of the primary coil portion 3B having a large number of wires (3 wires) and a thin wire diameter d2 has a small number of wires (2 wires) and is outside the thick primary coil portion 3A having a wire diameter d1. It is desirable that the diameter is smaller than D1, because the power densities of the primary coil portion 3B and the primary coil portion 3A per unit length of the filament 3 are controlled equally.
  • the coil portion (primary coil portion) 3B configured in this way is further spirally wound around a second reference axis Y different from the first reference axis X to be doubled.
  • a filament 3 having a coil structure is formed.
  • both filaments (light emitting parts) 3 having different numbers of strands are aligned so that the light emitting length (filament length) L and the double coil (filament) outer diameter M are the same, respectively.
  • the irradiation area from the light emitting unit 3 is the same.
  • the inventors have conducted diligent studies, and in order to shorten (rapidly) the heating and lowering time of the filament in the filament lamp for heating, the heat capacity of the filament is reduced and the size of the light emitting portion is set to a desired size. I thought of an adjustable configuration. However, simply reducing the heat capacity of the filament may increase the amount of heat generated for the same amount of electric power and change the color temperature of the filament. If the color temperature changes, the amount of light absorbed by the object to be heated (workpiece such as a semiconductor wafer) changes, which makes the desired heat treatment more difficult. Based on the above, it was decided to configure a plurality of strands constituting the filament.
  • the one having a small diameter of each strand is selected when lighting with the same electric power. More specifically, a lamp having a small wire diameter is selected, and the power density per unit length of the entire filament is made equal to that of a conventional lamp having a filament composed of a single wire.
  • the surface area of the filament composed of a plurality of strands is larger than that of the filament composed of a single strand, the temperature tends to decrease, and the heat generation temperature of the filament decreases.
  • by reducing the diameter of each wire of the filament it is possible to adjust the heat generation temperature to the same level as that of the filament of a single wire.
  • the cross-sectional area of the wire becomes smaller, the electric resistance of the wire increases and the electric power decreases. Therefore, it is necessary to shorten the length of the wire and adjust the resistance value.
  • a filament composed of a plurality of strands can reduce the total amount of the entire filament with respect to a filament composed of a single strand, and the heat capacity can be reduced. I was able to reduce it. This makes it possible to realize a filament lamp in which the heating rate and the temperature decreasing rate of the filament are increased.
  • the filament in a double coil shape, it is possible to maintain a desired light emitting portion size without being affected by changes in the diameter and number of wires constituting the filament, so that the light irradiation region can be set. It is also possible to control to a desired range.
  • the heat generation temperature is maintained at the same level as the conventional one, and as a result, It is possible to reduce the total amount (heat capacity) of the entire filament, and it is possible to maintain the same size of the light emitting portion while forming a plurality of strands, and to maintain a desired light irradiation region.
  • the filament according to the present invention for example, a filament having a light emitting length (L) of 20 mm to 40 mm and an outer diameter (M) of 4 mm to 10 mm can be used.
  • the biggest feature of the heating filament lamp according to the present invention is that rapid temperature rise and fall can be realized by forming the filament constituting the light emitting portion with a plurality of strands.
  • the filament is composed of a single wire
  • the shape stability and workability of the double coil are large. It turned out to be different.
  • the double coil with a single wire was used. It was found that the filament formed in the above had an index [D / (n ⁇ d)] value of 4.6 to 5.9. If this index is less than 4.6, it becomes very difficult to process it into a coil shape, which tends to cause distortion or disconnection of the wire. On the other hand, if the index exceeds 5.9, the shape of the double coil structure becomes unstable, the filaments are displaced or bent, and there is a problem that the allowable range is deviated.
  • the outer diameter (D) of the coil portion (primary coil) is smaller.
  • a thinner wire diameter (d) is selected as the number of wires (n) constituting the filament increases. It will be. Therefore, the index [D / (n ⁇ d)] of the filament composed of a plurality of filaments is good in different numerical ranges with respect to the filament of a single wire.
  • the stability and workability of the coil shape when the filament is formed into a double coil structure with a plurality of strands (n 2, 3).
  • the evaluation was carried out.
  • the evaluation results are shown in Tables 1 and 2.
  • the shape stability of the double coil is a confirmation of the degree of maintenance of the shape of the coil
  • the workability of the double coil is a confirmation of the processing limit when processing into a coil shape.
  • samples having an index [D / n ⁇ d] of 2.4 to 4.5 were prepared.
  • Each sample has a filament emission length (L) of 30 mm and an outer diameter (M) of 7 mm, and the power density and heat generation temperature flowing through the filament are designed to be the same.
  • L filament emission length
  • M outer diameter
  • the shape stability of each filament it was confirmed whether or not the shape was retained when each filament was erected vertically. Then, those in which the filament was held without displacement along the vertical direction were evaluated as ⁇ , and those in which the shape was maintained to the extent that the filament was slightly tilted with respect to the vertical direction but was within the allowable range were evaluated as ⁇ .
  • the one in which the wire breaks in the process of processing into a coil is evaluated as ⁇ , and the wire is likely to break in the process of processing into a coil, but the processing conditions (coiling process, heat treatment conditions, etc.) ) was evaluated, and those that could be processed into a coil shape were evaluated as ⁇ , and those that could be processed into a desired coil shape regardless of the processing conditions were evaluated as ⁇ .
  • those that cannot be processed into a coil are marked with "-" because the shape stability cannot be evaluated.
  • the filament according to the present invention has a coil portion (primary coil) spirally wound around the outer diameter (d) of the strands constituting the filament and the first reference axis.
  • the temperature rise of the filament differs depending on the relationship between the current value (I) flowing through the lamp and the wire weight (MG) constituting the filament, which affects the rise time of the amount of light generated from the filament.
  • the wire weight constituting the filament is defined as the wire weight per 200 mm (MG)
  • the current value (I) flowing through the filament lamp and the wire weight per 200 mm (MG) of the wire constituting the filament are used.
  • the ratio (I / MG) to the light intensity rise time of the filament.
  • a wire having a small wire weight (MG) per 200 mm can be used, so that the heat capacity of the wire decreases and the filament temperature rises. This makes it easier to obtain the effect of increasing the rising speed of the amount of light.
  • the temperature of the filament tends to decrease, and the effect of increasing the rising speed of the amount of light can be obtained.
  • the filament In order to use a wire having a small wire weight (MG), the filament needs to be composed of a plurality of wires.
  • the ratio of the lamp current value to the wire weight shows a correlation with the rise time of the filament. Then, as the value of I / MG is increased, the temperature rising performance can be expected to improve.
  • FIG. 4 shows the I / MG ratios of the heating filament lamps shown in FIG. 1 when the number of strands is different for filaments designed with seven different specifications (power value, current value, color temperature). , Indicates the light intensity rise time.
  • FIG. 5 shows the relationship between the ratio of the lamp current value and the weight of the filament wire (I / MG) and the light intensity rise time [ms] of the filament.
  • the rise time of the amount of light is the time from when the target filament lamp is continuously lit for 60 seconds and the amount of light after 60 seconds is set to 100% until the amount of light reaches 90%. , The amount of light was measured as the rise time.
  • the I / MG value increases as the number of strands constituting the filament increases. This is because as the number of strands increases, the strands constituting the filament can be selected to have a lighter weight. Further, since the total weight of the filament also becomes lighter as the number of strands increases, improvement in the temperature rising performance can be expected.
  • the filament according to the present invention preferably has an I / MG value of 6.5 or more. As shown in FIG. 4, in order to control the I / MG value to 6.5 or more, it is necessary to set the number of strands constituting the filament to 2 or more.
  • the filament composed of a plurality of strands has a faster light intensity rise speed than the filament composed of a single strand, and more specifically, the number of strands. It can be seen that the larger the number, the faster the light intensity rise speed.
  • the filament lamp applied to the present invention supplies at least 500 W or more of electric power, and more specifically, 500 to 2000 W of electric power.
  • the wire diameter (d) is preferably formed in the range of 0.08 mm to 0.30 mm. If the wire diameter (d) is less than 0.08 mm, the current value flowing through the wires 3a to 3e becomes small and the heating efficiency drops, while if it exceeds 0.30 mm, the wire becomes too thick. This is because it becomes difficult to form a desired filament shape when processing into a double coil shape.
  • the outer diameters (D) of the coil portions 3A and 3B are preferably formed in the range of 0.8 mm to 2.0 mm. If the outer diameter (D) of the coil portion is less than 0.8 mm or more than 2.0 mm, it becomes very difficult to form a desired double coil shape.
  • the lamp of the present invention is intended to be compatible with conventional lamps, and in the filament lamp of the present invention, the double coil (filament) is matched to the emission size (filament) of the conventional lamp. is there. However, if the outer diameter (D) of the primary coil (coil portion) is too small to be less than 0.8 mm, the length of the double coil (filament) becomes long, and if it becomes larger than 2.0 mm.
  • the length of the double coil (filament) becomes short. That is, if the outer diameter (D) of the coil portion is out of the range of 0.8 mm to 2.0 mm, it becomes impossible to create a double coil with a desired outer diameter and length. This is because compatibility with the lamp cannot be guaranteed.
  • the coil portion obtained by spirally winding a plurality of strands of filaments in a heating filament lamp arranged in parallel around the first reference axis is the first.
  • the filament lamp is spirally wound around a second reference shaft, which is different from the first reference shaft, it is possible to realize a rapid ascending / descending temperature of the filament lamp.
  • the light emitting length and width (outer diameter of the formed double coil) of the light emitting portion (filament) can be adjusted to a desired size. This also has the effect of maintaining the light irradiation range from the lamp within a desired range.

Landscapes

  • Resistance Heating (AREA)

Abstract

To provide a filament lamp for heating which allows the rising rate and falling rate of radiating energy to be increased, with a light-emitting section of the filament lamp being kept to a predetermined size, and is capable of rapidly increasing/decreasing the temperature of an object to be processed. The filament lamp is characterized by having a filament having a double-coil structure in which a coil part formed by spirally winding parallelly arranged multiple strands about a first reference axis is spirally wound about a second reference axis different from the first reference axis.

Description

加熱用フィラメントランプFilament lamp for heating
 この発明は、被処理体(ワーク)のアニール処理、乾燥処理などの加熱処理用の熱源として利用される加熱用フィラメントランプに関する。 The present invention relates to a filament lamp for heating used as a heat source for heat treatment such as annealing treatment and drying treatment of an object to be treated (work).
 従来、半導体製造時の加熱工程において、複数のフィラメントランプを用いた加熱処理が行われている。特開2002-270533号公報(特許文献1)や特開2015-050174号公報(特許文献2)などがその例である。
 このようなフィラメントランプを使った加熱装置は、半導体基板などのワークの表面を短時間、かつ均一に加熱処理することが求められ、より急速に被処理体を昇温及び降温させるRTP(Rapid Thermal Processing)技術が必要とされている。
 半導体ウエハを所定温度で所定時間加熱する場合、所定温度に昇温させるまでの時間、又は所定温度から降温させるまでの時間が長くなると、その昇降温過程でも半導体ウエハを加熱してしまい、所望の加熱工程で高精度に処理することが難しくなるからである。
Conventionally, in the heating process during semiconductor manufacturing, heat treatment using a plurality of filament lamps has been performed. Examples thereof include JP-A-2002-270533 (Patent Document 1) and JP-A-2015-050174 (Patent Document 2).
A heating device using such a filament lamp is required to heat-treat the surface of a work such as a semiconductor substrate uniformly for a short time, and RTP (Rapid Thermal) that raises and lowers the temperature of the object to be treated more rapidly. Processing) technology is required.
When the semiconductor wafer is heated at a predetermined temperature for a predetermined time, if the time required to raise the temperature to the predetermined temperature or the time required to lower the temperature from the predetermined temperature becomes long, the semiconductor wafer is heated even in the heating / lowering process, which is desired. This is because it becomes difficult to process with high accuracy in the heating process.
 より急速な昇温及び降温の実現に向け、熱源となるフィラメントランプの点灯特性の改善が必要となる。例えば、放射エネルギー(光量)の立ち上り時間を早くしたり、放射エネルギー(光量)の立ち下がり時間を早くしたりすることで、より急速な昇降温を実現することが要請されている。
 その一方で、効果的な加熱を達成するために、フィラメントランプの個々の光源から放射される光を所定範囲に所定強度で照射する必要がある。しかし、そのような配光制御を実現するためには、フィラメントランプの発光部を所定のサイズ(発光部の長手方向の発光長や、発光部の幅等)に制限する必要がある。
It is necessary to improve the lighting characteristics of the filament lamp, which is a heat source, in order to realize more rapid temperature rise and fall. For example, it is required to realize a more rapid ascending / descending temperature by shortening the rise time of radiant energy (light amount) or shortening the fall time of radiant energy (light amount).
On the other hand, in order to achieve effective heating, it is necessary to irradiate a predetermined range of light emitted from each light source of the filament lamp with a predetermined intensity. However, in order to realize such light distribution control, it is necessary to limit the light emitting portion of the filament lamp to a predetermined size (light emitting length in the longitudinal direction of the light emitting portion, width of the light emitting portion, etc.).
 図7にこのような加熱装置に用いられるフィラメントランプが示されていて、例えば、図7(A)に示されるように、フィラメントランプ50の発光部(フィラメント)51から出射された光はリフレクタ52で反射され、図中の二点鎖線で示される所望の照射範囲A1に配光されるように設定されている。
 このとき、点灯特性を改善した他のランプを前記加熱装置に搭載しようとしても、他のランプにおいて、図7(C)に示す発光部51の発光長Mや幅(形成される二重コイルの外径幅)Nが変わってしまうと、図7(B)に実線で示すように照射範囲A2が変化してしまい、採用することができないという不具合がある。
 そのため加熱装置の構成(例えば、リフレクタ形状や光源の設置場所)によって、搭載できるフィラメントランプの発光部サイズ(例えば、発光長や発光幅)は制約を受け、性能を改善したランプによって代替する場合でも、同じ照射領域を持つものにしなければならないという問題がある。
FIG. 7 shows a filament lamp used in such a heating device. For example, as shown in FIG. 7A, the light emitted from the light emitting portion (filament) 51 of the filament lamp 50 is a reflector 52. It is set to be reflected by and distributed in the desired irradiation range A1 indicated by the alternate long and short dash line in the figure.
At this time, even if another lamp having improved lighting characteristics is to be mounted on the heating device, the light emitting length M and the width (of the formed double coil) of the light emitting unit 51 shown in FIG. 7 (C) are used in the other lamp. If the outer diameter width) N changes, the irradiation range A2 changes as shown by the solid line in FIG. 7B, and there is a problem that it cannot be adopted.
Therefore, the size of the light emitting part (for example, the light emitting length and the light emitting width) of the filament lamp that can be mounted is restricted by the configuration of the heating device (for example, the shape of the reflector and the installation location of the light source), and even if the lamp with improved performance is used instead. , There is a problem that they must have the same irradiation area.
特開2002-270533号公報JP-A-2002-270533 特開2015-050174号公報Japanese Unexamined Patent Publication No. 2015-050174
 この発明が解決しようとする課題は、加熱用フィラメントランプにおいて、フィラメントランプの発光部を所定のサイズに維持しつつ、放射エネルギーの立ち上り速度及び立ち下がり速度を早くすることができ、被処理体の急速昇降温を実現することが可能な加熱用フィラメントランプを提供することにある。 The problem to be solved by the present invention is that in a filament lamp for heating, the rising speed and falling speed of radiant energy can be increased while maintaining the light emitting portion of the filament lamp at a predetermined size, and that of the object to be processed. It is an object of the present invention to provide a filament lamp for heating capable of realizing rapid ascending / descending temperature.
 上記課題を解決するために、この発明に係る加熱用フィラメントランプは、それぞれ並列に配置された複数本の素線を第一基準軸回りにらせん状に巻回したコイル部を、前記第一基準軸とは異なる第二基準軸回りにらせん状に巻回してなる二重コイル構造のフィラメントを有することを特徴とする。
 また、前記フィラメントは、前記コイル部を構成する素線本数をn、素線径をd、前記コイル部の外径をD、としたとき、関係式X=D/(n×d)が以下の範囲であることを特徴としてもよい。
(1) n=2のとき、 2.7 ≦ X ≦ 4.3
(2) n=3のとき、 2.5 ≦ X ≦ 4.0
In order to solve the above problems, the heating filament lamp according to the present invention has a coil portion in which a plurality of strands arranged in parallel are spirally wound around the first reference axis. It is characterized by having a filament having a double coil structure formed by spirally winding around a second reference shaft different from the shaft.
Further, when the number of wires constituting the coil portion is n, the wire diameter is d, and the outer diameter of the coil portion is D, the filament has the following relational expression X = D / (n × d). It may be characterized by being in the range of.
(1) When n = 2, 2.7 ≤ X ≤ 4.3
(2) When n = 3, 2.5 ≤ X ≤ 4.0
 また、前記フィラメントランプに流れる電流値(I)と、前記フィラメントを構成する素線の200mm当りの素線重量(MG)との比が下記の計算式を満たすことを特徴としてもよい。
  I/MG ≧ 6.5
 また、前記素線径(d)は、0.08mm~0.30mmの範囲で形成されることを特徴としてもよい。
 また、前記コイル部の外径(D)は、0.8mm~2.0mmの範囲で形成されることを特徴としてもよい。
 また、前記フィラメントの上端部と下端部には、それぞれ第一給電線と第二給電線が設けられており、前記給電線に対して、前記コイル部を構成する前記各素線が電気的に並列に接続されていることを特徴としてもよい。
Further, the ratio of the current value (I) flowing through the filament lamp to the wire weight (MG) per 200 mm of the wire constituting the filament may satisfy the following calculation formula.
I / MG ≧ 6.5
Further, the wire diameter (d) may be characterized in that it is formed in the range of 0.08 mm to 0.30 mm.
Further, the outer diameter (D) of the coil portion may be formed in the range of 0.8 mm to 2.0 mm.
Further, a first feeder line and a second feeder line are provided at the upper end portion and the lower end portion of the filament, respectively, and the strands constituting the coil portion are electrically connected to the feeder line. It may be characterized by being connected in parallel.
 この発明の加熱用フィラメントランプによれば、発光部となるフィラメントを構成する素線が、複数の細い素線で構成されるので、フィラメントランプの急速な昇降温を実現することができる。
 また、発光部を構成するフィラメントは二重コイル構造としている。つまり、並列に配置された複数本の素線を第一基準軸回りにらせん状に巻回したコイル部を、前記第一基準軸とは異なる第二基準軸回りにらせん状に巻回してなる二重コイル構造のフィラメントとしている。これにより、フィラメントを構成する素線の径や本数が変更された場合でも、形成される二重コイルからなる発光部の発光長や幅(外径幅)を所望の大きさに調整することが可能となり、当該ランプからの光照射範囲を所望の範囲に維持することができる。
According to the heating filament lamp of the present invention, since the strands constituting the filament serving as the light emitting portion are composed of a plurality of thin strands, it is possible to realize rapid temperature rise and fall of the filament lamp.
Further, the filament constituting the light emitting portion has a double coil structure. That is, the coil portion in which a plurality of strands arranged in parallel are spirally wound around the first reference axis is spirally wound around the second reference axis different from the first reference axis. The filament has a double coil structure. As a result, even if the diameter or number of wires constituting the filament is changed, the light emitting length or width (outer diameter width) of the light emitting portion composed of the formed double coil can be adjusted to a desired size. This makes it possible to maintain the light irradiation range from the lamp within a desired range.
本発明の加熱用フィラメントランプの断面図。Sectional drawing of the filament lamp for heating of this invention. 本発明のフィラメントランプの発光部の第1の構成例。A first configuration example of the light emitting portion of the filament lamp of the present invention. 本発明のフィラメントランプの発光部の第2の構成例。A second configuration example of the light emitting portion of the filament lamp of the present invention. 異なる素線本数でのI/MG比、光量立ち上り時間を示す表。A table showing the I / MG ratio and the light intensity rise time with different numbers of strands. フィラメントのI/MG値と光量立ち上り時間の関係を示すグラフ。The graph which shows the relationship between the I / MG value of a filament and the light amount rise time. 素線本数と光量立ち上り時間の関係を示すグラフ。A graph showing the relationship between the number of strands and the rise time of the amount of light. 従来の加熱用フィラメントランプの説明図。Explanatory drawing of the conventional filament lamp for heating.
 図1は本発明のシングルエンド型の加熱用フィラメントランプ1の全体断面図であり、透光性部材で構成された封体2の内部に、二重コイルからなるフィラメント3(以下、発光部ということもある)が配設されており、当該二重フィラメント3の上端部および下端部には第一給電線4と第二給電線5が設けられており、これら給電線4、5がそれぞれ内部リード6、7に巻きつけられて固定されている。
 これらの内部リード6、7は、封止部8内に埋設された金属箔10、11にそれぞれ接続されており、該金属箔10、11を介して、外部リード12、13と電気的に接続されている。
FIG. 1 is an overall cross-sectional view of the single-ended heating filament lamp 1 of the present invention, in which a filament 3 composed of a double coil (hereinafter referred to as a light emitting portion) is inside a sealed body 2 composed of a translucent member. The first feed line 4 and the second feed line 5 are provided at the upper end and the lower end of the double filament 3, and these feeder lines 4 and 5 are inside, respectively. It is wound around leads 6 and 7 and fixed.
These internal leads 6 and 7 are connected to the metal foils 10 and 11 embedded in the sealing portion 8, respectively, and are electrically connected to the external leads 12 and 13 via the metal foils 10 and 11, respectively. Has been done.
 上記二重フィラメント3の一例の詳細が図2に示されていて、この例では、図2(B)に示すように、発光部を構成するフィラメント3は、2本の素線3a、3bで構成されており、各素線3a、3bがらせん状に巻回され、二重コイル構造に形成されている。
 詳述すると、並列に配置された2本の素線3a、3bが、第一基準軸X回りにらせん状に巻回されてコイル部(一次コイル部)3Aを形成し、さらに、図2(A)に示すように、前記一次コイル部3Aが、前記第一基準軸Xとは異なる第二基準軸Y回りにらせん状に巻回されて二重コイル構造のフィラメント3に形成されている。
 これらのフィラメント3を構成する各素線3a、3bは、図1で示した第一給電線4と第二給電線5に電気的に並列となるように接続されている。
Details of an example of the double filament 3 are shown in FIG. 2, and in this example, as shown in FIG. 2 (B), the filament 3 constituting the light emitting portion is formed of two strands 3a and 3b. Each wire 3a and 3b is spirally wound to form a double coil structure.
More specifically, two strands 3a and 3b arranged in parallel are spirally wound around the first reference axis X to form a coil portion (primary coil portion) 3A, and further, FIG. As shown in A), the primary coil portion 3A is spirally wound around a second reference axis Y different from the first reference axis X to form a filament 3 having a double coil structure.
The strands 3a and 3b constituting these filaments 3 are electrically connected to the first feeder line 4 and the second feeder line 5 shown in FIG. 1 so as to be electrically parallel to each other.
 この二重フィラメント3を構成する素線は図2に示す2本に限られず、より本数を増やすことも可能である。
 図3には素線本数が3本のものが示されている。図3(B)に示すように、並列に配置された3本の素線3c、3d、3eが、第一基準軸X回りにらせん状に巻回されてコイル部(一次コイル部)3Bを形成している。このとき、各素線3c、3d、3eの素線径d2は、前記2本の素線3a、3bの素線径d1よりも小さくされている。
 そして、素線数が多く(3本)、素線径d2が細い一次コイル部3Bの外径D2は、素線数が少なく(2本)、素線径d1の太い一次コイル部3Aの外径D1よりも小さくすることが望ましく、これは、一次コイル部3Bと一次コイル部3Aの、フィラメント3の単位長さあたりの電力密度を同等に制御するためである。
The number of strands constituting the double filament 3 is not limited to the two shown in FIG. 2, and the number of strands can be further increased.
FIG. 3 shows a wire having three strands. As shown in FIG. 3B, three strands 3c, 3d, and 3e arranged in parallel are spirally wound around the first reference axis X to form a coil portion (primary coil portion) 3B. Is forming. At this time, the wire diameters d2 of the wires 3c, 3d, and 3e are smaller than the wire diameters d1 of the two wires 3a and 3b.
The outer diameter D2 of the primary coil portion 3B having a large number of wires (3 wires) and a thin wire diameter d2 has a small number of wires (2 wires) and is outside the thick primary coil portion 3A having a wire diameter d1. It is desirable that the diameter is smaller than D1, because the power densities of the primary coil portion 3B and the primary coil portion 3A per unit length of the filament 3 are controlled equally.
 こうして構成されたコイル部(一次コイル部)3Bを、さらに、図3(A)に示すように、前記第一基準軸Xとは異なる第二基準軸Y回りにらせん状に巻回して二重コイル構造のフィラメント3が形成されている。
 この時、素線数が異なる両者のフィラメント(発光部)3は、それぞれ発光長(フィラメント長)Lや二重コイル(フィラメント)外径Mが同等になるように揃えられており、これにより当該発光部3からの照射領域は同等なものとなる。
As shown in FIG. 3A, the coil portion (primary coil portion) 3B configured in this way is further spirally wound around a second reference axis Y different from the first reference axis X to be doubled. A filament 3 having a coil structure is formed.
At this time, both filaments (light emitting parts) 3 having different numbers of strands are aligned so that the light emitting length (filament length) L and the double coil (filament) outer diameter M are the same, respectively. The irradiation area from the light emitting unit 3 is the same.
 本発明の効果について詳述すると以下のようである。
 発明者らは鋭意検討を行い、加熱用フィラメントランプにおけるフィラメントの昇温時間および降温時間を短く(急速に)するために、フィラメントの熱容量を低減させ、かつ、発光部のサイズを所望の大きさに調整可能な構成を考えた。しかし、単にフィラメントの熱容量を低減させるだけでは、同じ電力量に対して発熱量が高まり、フィラメントの色温度が変化する懸念がある。色温度が変化してしまうと、加熱対象物(半導体ウエハ等のワーク)への光吸収量が変化してしまい、所望の加熱処理がより難しくなってしまう。
 以上を踏まえ、フィラメントを構成する素線を複数本で構成することとした。
The effects of the present invention will be described in detail below.
The inventors have conducted diligent studies, and in order to shorten (rapidly) the heating and lowering time of the filament in the filament lamp for heating, the heat capacity of the filament is reduced and the size of the light emitting portion is set to a desired size. I thought of an adjustable configuration. However, simply reducing the heat capacity of the filament may increase the amount of heat generated for the same amount of electric power and change the color temperature of the filament. If the color temperature changes, the amount of light absorbed by the object to be heated (workpiece such as a semiconductor wafer) changes, which makes the desired heat treatment more difficult.
Based on the above, it was decided to configure a plurality of strands constituting the filament.
 フィラメントを複数本の素線で構成することにより、同じ電力で点灯する場合は各素線の径が細いものが選択される。詳述すると、各素線径が細いものを選択し、フィラメント全体の単位長さあたりの電力密度を単一素線で構成されたフィラメントを有する従来ランプと同等に揃える。この際、複数本の素線で構成されたフィラメントは、単一素線で構成されたフィラメントよりも表面積が大きくなるため温度が低下しやすく、当該フィラメントの発熱温度が低下してしまう。
 これを考慮して当該フィラメントの各素線の径を小さくする(素線を細くする)ことで、単一素線のフィラメントと同程度の発熱温度に調整することができるようにした。一方、素線の断面積が小さくなると、素線の電気抵抗が増加し電力の低下を招くため、素線の長さを短くして抵抗値を合わせる必要がある。
By forming the filament with a plurality of strands, the one having a small diameter of each strand is selected when lighting with the same electric power. More specifically, a lamp having a small wire diameter is selected, and the power density per unit length of the entire filament is made equal to that of a conventional lamp having a filament composed of a single wire. At this time, since the surface area of the filament composed of a plurality of strands is larger than that of the filament composed of a single strand, the temperature tends to decrease, and the heat generation temperature of the filament decreases.
In consideration of this, by reducing the diameter of each wire of the filament (thinning the wire), it is possible to adjust the heat generation temperature to the same level as that of the filament of a single wire. On the other hand, when the cross-sectional area of the wire becomes smaller, the electric resistance of the wire increases and the electric power decreases. Therefore, it is necessary to shorten the length of the wire and adjust the resistance value.
 これらにより、同じ電力密度、発熱温度で比較した場合に、単一素線で構成したフィラメントに対して複数本の素線で構成したフィラメントは、当該フィラメント全体の総量を減らすことができ、熱容量を低減することができた。これにより、フィラメントの昇温速度および降温速度を速くしたフィラメントランプを実現することが可能となる。 As a result, when compared at the same power density and heat generation temperature, a filament composed of a plurality of strands can reduce the total amount of the entire filament with respect to a filament composed of a single strand, and the heat capacity can be reduced. I was able to reduce it. This makes it possible to realize a filament lamp in which the heating rate and the temperature decreasing rate of the filament are increased.
 さらに、フィラメントを二重コイル形状で構成することにより、フィラメントを構成する素線の径や本数の変更に影響を受けることなく、所望の発光部サイズを維持することができるため、光照射領域を所望の範囲に制御することも可能となる。
 このように、本発明は二重コイル構造のフィラメントに対し、当該フィラメントを構成する素線を複数本として並列に配置させることにより、従来と同程度の発熱温度を維持しつつも、結果として、フィラメント全体の総量(熱容量)を低減させることが可能となり、かつ、素線を複数本で構成しつつも発光部のサイズを同程度に維持することができ、所望の光照射領域を維持できる、という利点がある。尚、本発明に係るフィラメントは、例えば、発光長(L)が20mm~40mm、外径(M)が4mm~10mmの大きさのものを用いることができる。
Further, by forming the filament in a double coil shape, it is possible to maintain a desired light emitting portion size without being affected by changes in the diameter and number of wires constituting the filament, so that the light irradiation region can be set. It is also possible to control to a desired range.
As described above, in the present invention, by arranging a plurality of strands constituting the filament in parallel with the filament having a double coil structure, the heat generation temperature is maintained at the same level as the conventional one, and as a result, It is possible to reduce the total amount (heat capacity) of the entire filament, and it is possible to maintain the same size of the light emitting portion while forming a plurality of strands, and to maintain a desired light irradiation region. There is an advantage. As the filament according to the present invention, for example, a filament having a light emitting length (L) of 20 mm to 40 mm and an outer diameter (M) of 4 mm to 10 mm can be used.
 本発明に係る加熱用フィラメントランプは、発光部を構成するフィラメントを複数本の素線で構成させることで、急速な昇降温を実現できる点が最大の特徴である。
 しかして、フィラメントを単一素線で構成する場合と比較して、複数本の素線で二重コイルのフィラメントを形成しようとする場合は、当該二重コイルの形状安定度や加工性が大きく異なることが分かった。
The biggest feature of the heating filament lamp according to the present invention is that rapid temperature rise and fall can be realized by forming the filament constituting the light emitting portion with a plurality of strands.
However, compared to the case where the filament is composed of a single wire, when the filament of the double coil is to be formed by a plurality of wires, the shape stability and workability of the double coil are large. It turned out to be different.
 フィラメントを構成する素線の素線径(d)と、第一基準軸回りにらせん状に巻回されてなるコイル部(一次コイル)の外径(D)と、フィラメントを構成する素線本数(n)とで決められる指標〔D/(n×d)〕の値から、二重コイル(二次コイル)の形状の安定度、加工性について評価したところ、単一素線で二重コイルに形成されたフィラメントは、指標〔D/(n×d)〕の値が、4.6~5.9となることが分かった。
 この指標が4.6を下回るような場合は、コイル状に加工することが非常に困難となり、素線の歪みや断線を招きやすい。また指標が5.9を上回る場合は、二重コイル構造とした場合の形状が不安定となり、フィラメントの位置ズレやたわみが生じてしまい、許容範囲を逸脱するという問題がある。
The wire diameter (d) of the strands that make up the filament, the outer diameter (D) of the coil part (primary coil) that is spirally wound around the first reference axis, and the number of strands that make up the filament. When the stability and workability of the shape of the double coil (secondary coil) were evaluated from the value of the index [D / (n × d)] determined by (n), the double coil with a single wire was used. It was found that the filament formed in the above had an index [D / (n × d)] value of 4.6 to 5.9.
If this index is less than 4.6, it becomes very difficult to process it into a coil shape, which tends to cause distortion or disconnection of the wire. On the other hand, if the index exceeds 5.9, the shape of the double coil structure becomes unstable, the filaments are displaced or bent, and there is a problem that the allowable range is deviated.
 一方、本発明のように、フィラメントが複数本の素線で二重コイル(二次コイル)に形成される場合は、コイル部(一次コイル)の外径(D)がより小さい範囲が良好となる。
 またフィラメントを従前と同じ所定の電力密度、発熱温度で使用する場合は、当該フィラメントを構成する素線本数(n)が増えるにつれ、素線の素線径(d)は細いものが選定されることとなる。そのため単一素線のフィラメントに対し、複数本で構成されたフィラメントの指標〔D/(n×d)〕は異なった数値範囲で良好となる。
On the other hand, when the filament is formed into a double coil (secondary coil) by a plurality of strands as in the present invention, it is preferable that the outer diameter (D) of the coil portion (primary coil) is smaller. Become.
When the filament is used at the same predetermined power density and heat generation temperature as before, a thinner wire diameter (d) is selected as the number of wires (n) constituting the filament increases. It will be. Therefore, the index [D / (n × d)] of the filament composed of a plurality of filaments is good in different numerical ranges with respect to the filament of a single wire.
 上記の指標〔D/(n×d)〕の数値に基づき、フィラメントを複数本の素線(n=2,3)で二重コイル構造に形成した場合のコイル形状の安定性と加工性について評価を実施した。評価結果を表1、2に示す。
 ここで二重コイルの形状安定性とは、コイルの形状維持の程度を確認したものであり、二重コイルの加工性とは、コイル状に加工する場合の加工限界を確認したものである。それぞれ下記の手順により三段階評価を行った。
Based on the numerical value of the above index [D / (n × d)], the stability and workability of the coil shape when the filament is formed into a double coil structure with a plurality of strands (n = 2, 3). The evaluation was carried out. The evaluation results are shown in Tables 1 and 2.
Here, the shape stability of the double coil is a confirmation of the degree of maintenance of the shape of the coil, and the workability of the double coil is a confirmation of the processing limit when processing into a coil shape. Each was evaluated on a three-point scale according to the following procedure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (コイル形状の安定性評価)
○:変形なく形状維持できるもの。
△:形状が許容範囲内で保持されるもの。
×:形状を許容範囲内に維持できないもの。
(コイルの加工性評価)
○:二重コイル形状に加工が可能なもの。
△:加工条件によって二重コイル形状に加工可能なもの。
×:加工の際に破断してしまうもの。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(Evaluation of coil shape stability)
◯: Those that can maintain their shape without deformation.
Δ: The shape is maintained within the permissible range.
X: The shape cannot be maintained within the permissible range.
(Evaluation of coil workability)
◯: Those that can be processed into a double coil shape.
Δ: Those that can be processed into a double coil shape depending on the processing conditions.
X: Those that break during processing.
 まず評価対象となる二重コイル型フィラメントとして、指標〔D/n×d〕が2.4~4.5のサンプルをそれぞれ用意した。各サンプルは全てフィラメントの発光長(L)が30mm、外径(M)が7mmとされており、当該フィラメントに流れる電力密度や発熱温度がそれぞれ同等に設計されている。
 次に各フィラメントの形状安定性を調べるため、各フィラメントを垂直に立てた場合に形状が保持されているかどうかを確認した。そしてフィラメントが垂直方向に沿って変位なく保持されるものを評価○とし、垂直方向に対して僅かに傾くが許容範囲に収まる程度に形状保持されるものを評価△とした。より具体的には、フィラメントを垂直に立てたときの、一端部と他端部の変位量が2mm以内に収まる場合を評価△とした。また垂直方向に対して変位量が2mmよりも大きく形状保持が認められないものを評価×として、それぞれ判定を行った。
 また加工性に関しては、コイル状に加工する過程で素線が破断してしまうものを評価×とし、コイル状に加工する過程で素線が破断しやすいが加工条件(コイリングの工程、熱処理条件等)を変えることによってはコイル形状に加工できるものを評価△とし、加工条件に依らず所望のコイル形状に加工できるものを評価○とした。またコイル状に加工できないものは形状安定性についての評価は実施できないため「-」としている。
First, as a double coil type filament to be evaluated, samples having an index [D / n × d] of 2.4 to 4.5 were prepared. Each sample has a filament emission length (L) of 30 mm and an outer diameter (M) of 7 mm, and the power density and heat generation temperature flowing through the filament are designed to be the same.
Next, in order to examine the shape stability of each filament, it was confirmed whether or not the shape was retained when each filament was erected vertically. Then, those in which the filament was held without displacement along the vertical direction were evaluated as ◯, and those in which the shape was maintained to the extent that the filament was slightly tilted with respect to the vertical direction but was within the allowable range were evaluated as Δ. More specifically, the case where the displacement amount of one end portion and the other end portion was within 2 mm when the filament was erected vertically was evaluated as Δ. Further, the case where the displacement amount in the vertical direction was larger than 2 mm and the shape retention was not recognized was evaluated as x, and each judgment was made.
Regarding workability, the one in which the wire breaks in the process of processing into a coil is evaluated as ×, and the wire is likely to break in the process of processing into a coil, but the processing conditions (coiling process, heat treatment conditions, etc.) ) Was evaluated, and those that could be processed into a coil shape were evaluated as Δ, and those that could be processed into a desired coil shape regardless of the processing conditions were evaluated as ◯. In addition, those that cannot be processed into a coil are marked with "-" because the shape stability cannot be evaluated.
 表1、2に示す結果から、本発明に係るフィラメントは、フィラメントを構成する素線の外径(d)と、第一基準軸回りにらせん状に巻回されてなるコイル部(一次コイル)の外径(D)と、フィラメントを構成する素線本数(n)とで決められる指標〔D/(n×d)〕の値が、素線本数に応じて下記の範囲内であることが必要となることが分かる。
(1) n=2のとき、 2.7 ≦ X ≦ 4.3
(2) n=3のとき、 2.5 ≦ X ≦ 4.0
 また素線本数が異なる場合も、2.7≦ X ≦4.0 が共通の適正範囲を示すことが分かる。
From the results shown in Tables 1 and 2, the filament according to the present invention has a coil portion (primary coil) spirally wound around the outer diameter (d) of the strands constituting the filament and the first reference axis. The value of the index [D / (n × d)] determined by the outer diameter (D) of the above and the number of strands (n) constituting the filament must be within the following range according to the number of strands. It turns out that it is necessary.
(1) When n = 2, 2.7 ≤ X ≤ 4.3
(2) When n = 3, 2.5 ≤ X ≤ 4.0
It can also be seen that 2.7 ≤ X ≤ 4.0 indicates a common appropriate range even when the number of strands is different.
 またフィラメントランプは、ランプに流れる電流値(I)と、フィラメントを構成する素線重量(MG)との関係により、当該フィラメントの温度上昇が異なり、フィラメントから発生する光量の立ち上り時間に影響する。ここでフィラメントを構成する素線重量を、200mm当りの素線重量(MG)とした場合、フィラメントランプに流れる電流値(I)と、フィラメントを構成する素線の200mm当りの素線重量(MG)との比(I/MG)は、当該フィラメントの光量立ち上り時間と相関がある。 Further, in the filament lamp, the temperature rise of the filament differs depending on the relationship between the current value (I) flowing through the lamp and the wire weight (MG) constituting the filament, which affects the rise time of the amount of light generated from the filament. Here, when the wire weight constituting the filament is defined as the wire weight per 200 mm (MG), the current value (I) flowing through the filament lamp and the wire weight per 200 mm (MG) of the wire constituting the filament are used. ) And the ratio (I / MG) to the light intensity rise time of the filament.
 詳述すると、200mm当りの素線重量(MG)が小さい素線を使用できれば、同じ抵抗値における素線の重量が軽量化されることで、素線の熱容量が下がり、フィラメントの温度が上昇しやすくなり、光量の立ち上り速度を速める効果が得られる。同様に、素線の熱容量が下がることでフィラメントの温度が下がりやすくなり、光量の立ち上り速度を速める効果が得られる。
 そして素線重量(MG)が小さい素線を使用するためには、フィラメントを複数の素線で構成する必要がある。
More specifically, if a wire having a small wire weight (MG) per 200 mm can be used, the weight of the wire at the same resistance value is reduced, so that the heat capacity of the wire decreases and the filament temperature rises. This makes it easier to obtain the effect of increasing the rising speed of the amount of light. Similarly, as the heat capacity of the strands decreases, the temperature of the filament tends to decrease, and the effect of increasing the rising speed of the amount of light can be obtained.
In order to use a wire having a small wire weight (MG), the filament needs to be composed of a plurality of wires.
 以上のとおり、ランプ電流値と素線重量の比(I/MG)は、フィラメントの立ち上り時間と相関を示すことが理解できる。そしてI/MGの値を大きくするにつれて昇温性能の向上が期待できる。 As described above, it can be understood that the ratio of the lamp current value to the wire weight (I / MG) shows a correlation with the rise time of the filament. Then, as the value of I / MG is increased, the temperature rising performance can be expected to improve.
 図4は、図1に示す加熱用フィラメントランプにおいて、それぞれ異なる7つの仕様(電力値、電流値、色温度)で設計されたフィラメントについて、それぞれ素線本数を異ならせたときのI/MG比、光量立ち上り時間を示したものである。
 また図5は、ランプ電流値とフィラメント素線重量の比(I/MG)と、当該フィラメントの光量立ち上り時間[ms]との関係を示したものである。
 尚、光量の立ち上り時間は、対象となるフィラメントランプを60秒間点灯し続け、60秒後の光量値を100%として、フィラメントランプの点灯を開始してから光量が90%に達するまでの時間を、光量立ち上り時間として測定を行った。
FIG. 4 shows the I / MG ratios of the heating filament lamps shown in FIG. 1 when the number of strands is different for filaments designed with seven different specifications (power value, current value, color temperature). , Indicates the light intensity rise time.
Further, FIG. 5 shows the relationship between the ratio of the lamp current value and the weight of the filament wire (I / MG) and the light intensity rise time [ms] of the filament.
The rise time of the amount of light is the time from when the target filament lamp is continuously lit for 60 seconds and the amount of light after 60 seconds is set to 100% until the amount of light reaches 90%. , The amount of light was measured as the rise time.
 図4に示すとおり、フィラメントを構成する素線本数が増加するにつれて、I/MG値は大きくなることが分かる。これは素線本数が多くなるにつれ、フィラメントを構成する各素線は、素線重量が軽いものを選択することができるためである。またフィラメントの総重量も、素線本数が増加するにつれて軽くなるため、昇温性能の向上が期待できる。 As shown in FIG. 4, it can be seen that the I / MG value increases as the number of strands constituting the filament increases. This is because as the number of strands increases, the strands constituting the filament can be selected to have a lighter weight. Further, since the total weight of the filament also becomes lighter as the number of strands increases, improvement in the temperature rising performance can be expected.
 また、図5に示すとおり、ランプ電流値とフィラメント素線重量の比(I/MG)と、当該フィラメントの光量立ち上り時間[ms]の変化をみると、I/MG値が大きくなるにつれてフィラメントの光量立ち上り時間は早くなることが分かる。またI/MG値を6.5以上に調整することにより、光量立ち上り時間を大幅に短縮できることが示されている。
 よって本発明に係るフィラメントは、I/MG値を6.5以上とすることが好ましい。尚、図4に示すとおりI/MG値を6.5以上に制御するためには、フィラメントを構成する素線本数は2本以上とすることが必要になる。
Further, as shown in FIG. 5, when the ratio of the lamp current value to the weight of the filament wire (I / MG) and the change in the light intensity rise time [ms] of the filament are observed, the filament becomes larger as the I / MG value increases. It can be seen that the light intensity rise time becomes faster. It has also been shown that by adjusting the I / MG value to 6.5 or more, the light intensity rise time can be significantly shortened.
Therefore, the filament according to the present invention preferably has an I / MG value of 6.5 or more. As shown in FIG. 4, in order to control the I / MG value to 6.5 or more, it is necessary to set the number of strands constituting the filament to 2 or more.
 更に、図6は、フィラメントランプのフィラメント(発光部)を構成する素線本数の変化(n=1本~3本)による光量の立ち上り速度の違いを示すものである。図6に示すとおり、素線1本で構成したフィラメントに比べて、本発明のように、複数本の素線で構成したフィラメントのほうが、光量立ち上り速度が速くなり、さらに言えば、素線本数が多いほうが、光量立ち上り速度が速くなることが解かる。 Further, FIG. 6 shows the difference in the rising speed of the amount of light due to the change in the number of strands (n = 1 to 3) constituting the filament (light emitting portion) of the filament lamp. As shown in FIG. 6, as in the present invention, the filament composed of a plurality of strands has a faster light intensity rise speed than the filament composed of a single strand, and more specifically, the number of strands. It can be seen that the larger the number, the faster the light intensity rise speed.
 ところで、本発明に適用されるフィラメントランプは、小さくとも500W以上の電力、より具体的には、500~2000Wの電力を供給するものである。
 その観点から、素線径(d)は、0.08mm~0.30mmの範囲で形成されることが好適である。
 素線径(d)が0.08mmを下回ると、素線3a~3eに流れる電流値が小さくなり、加熱効率が下がってしまい、また一方、0.30mmを上回ると、素線が太くなりすぎて、二重コイル形状に加工する際に所望のフィラメント形状に成形することが困難になるからである。
By the way, the filament lamp applied to the present invention supplies at least 500 W or more of electric power, and more specifically, 500 to 2000 W of electric power.
From this point of view, the wire diameter (d) is preferably formed in the range of 0.08 mm to 0.30 mm.
If the wire diameter (d) is less than 0.08 mm, the current value flowing through the wires 3a to 3e becomes small and the heating efficiency drops, while if it exceeds 0.30 mm, the wire becomes too thick. This is because it becomes difficult to form a desired filament shape when processing into a double coil shape.
 また、コイル部3A,3Bの外径(D)は、0.8mm~2.0mmの範囲で形成されることが好適である。
 コイル部の外径(D)が0.8mmを下回る、あるいは2.0mmを上回ると、所望の二重コイル形状に成形することが非常に困難となる。
 本発明のランプは従来ランプとの互換性を意図するものであり、本発明の対象とするフィラメントランプにおいては、二重コイル(フィラメント)は、従来ランプの発光サイズ(フィラメント)に合わせたものである。
 ところが、一次コイル(コイル部)の外径(D)が0.8mmを下回るほど小さすぎると、二重コイル(フィラメント)の長さが長くなってしまい、また、2.0mmを上回るほど大きくなると、二重コイル(フィラメント)の長さが短くなってしまう。つまり、コイル部の外径(D)が、0.8mm~2.0mmの範囲を外れたものとなると、二重コイルを所望の外径と長さで作成することができなくなってしまい、従来ランプとの互換性が担保できなくなるからである。
Further, the outer diameters (D) of the coil portions 3A and 3B are preferably formed in the range of 0.8 mm to 2.0 mm.
If the outer diameter (D) of the coil portion is less than 0.8 mm or more than 2.0 mm, it becomes very difficult to form a desired double coil shape.
The lamp of the present invention is intended to be compatible with conventional lamps, and in the filament lamp of the present invention, the double coil (filament) is matched to the emission size (filament) of the conventional lamp. is there.
However, if the outer diameter (D) of the primary coil (coil portion) is too small to be less than 0.8 mm, the length of the double coil (filament) becomes long, and if it becomes larger than 2.0 mm. , The length of the double coil (filament) becomes short. That is, if the outer diameter (D) of the coil portion is out of the range of 0.8 mm to 2.0 mm, it becomes impossible to create a double coil with a desired outer diameter and length. This is because compatibility with the lamp cannot be guaranteed.
 以上説明したように、本発明によれば、加熱用フィラメントランプにおけるフィラメントを、それぞれ並列に配置された複数本の素線を第一基準軸回りにらせん状に巻回したコイル部を、前記第一基準軸とは異なる第二基準軸回りにらせん状に巻回してなる二重コイル構造としたことにより、フィラメントランプの急速な昇降温を実現することができるという効果を奏するものである。
 また、フィラメントを構成する素線の径や本数が変更された場合でも、発光部(フィラメント)の発光長や幅(形成される二重コイルの外径)を所望の大きさに調整することが可能となり、当該ランプからの光照射範囲を所望の範囲に維持することができる効果も有する。
As described above, according to the present invention, the coil portion obtained by spirally winding a plurality of strands of filaments in a heating filament lamp arranged in parallel around the first reference axis is the first. By adopting a double coil structure in which the filament lamp is spirally wound around a second reference shaft, which is different from the first reference shaft, it is possible to realize a rapid ascending / descending temperature of the filament lamp.
Further, even if the diameter or number of the wires constituting the filament is changed, the light emitting length and width (outer diameter of the formed double coil) of the light emitting portion (filament) can be adjusted to a desired size. This also has the effect of maintaining the light irradiation range from the lamp within a desired range.
 1 :加熱用フィラメントランプ
 2 :封体
 3 :フィラメント
 3a~3e:素線
 d :素線径
 3A,3B:コイル部(一次コイル)
 D :コイル部の外径
 L :発光長(フィラメント長)
 M :フィラメント(二重コイル)外径
 4 :第一給電線
 5 :第二給電線
 6,7:内部リード
 8 :封止部
 10、11:金属箔
 12、13:外部リード
 X :第一基準軸
 Y :第二基準軸
1: Filament lamp for heating 2: Sealed body 3: Filament 3a to 3e: Wire d: Wire diameter 3A, 3B: Coil part (primary coil)
D: Outer diameter of coil part L: Emission length (filament length)
M: Filament (double coil) outer diameter 4: First feed line 5: Second feed line 6, 7: Internal lead 8: Sealing part 10, 11: Metal leaf 12, 13: External lead X: First reference Axis Y: Second reference axis

Claims (6)

  1.  それぞれ並列に配置された複数本の素線を第一基準軸回りにらせん状に巻回したコイル部を、
     前記第一基準軸とは異なる第二基準軸回りにらせん状に巻回してなる二重コイル構造のフィラメントを有することを特徴とする加熱用フィラメントランプ。
    A coil part in which a plurality of strands arranged in parallel are spirally wound around the first reference axis.
    A filament lamp for heating, which has a filament having a double coil structure formed by spirally winding around a second reference shaft different from the first reference shaft.
  2.  前記フィラメントは、前記コイル部を構成する素線本数をn、素線径をd、前記コイル部の外径をD、としたとき、関係式X=D/(n×d)が以下の範囲であることを特徴とする請求項1に記載の加熱用フィラメントランプ。
    (1) n=2のとき、 2.7 ≦ X ≦ 4.3
    (2) n=3のとき、 2.5 ≦ X ≦ 4.0
    When the number of wires constituting the coil portion is n, the wire diameter is d, and the outer diameter of the coil portion is D, the filament has the following range of relational expression X = D / (n × d). The heating filament lamp according to claim 1.
    (1) When n = 2, 2.7 ≤ X ≤ 4.3
    (2) When n = 3, 2.5 ≤ X ≤ 4.0
  3.  前記フィラメントランプに流れる電流値(I)と、前記フィラメントを構成する素線の200mm当りの素線重量(MG)との比が下記の計算式を満たすことを特徴とする請求項1に記載の加熱用フィラメントランプ。
     I/MG ≧ 6.5
    The first aspect of the present invention, wherein the ratio of the current value (I) flowing through the filament lamp and the wire weight (MG) per 200 mm of the wire constituting the filament satisfies the following calculation formula. Filament lamp for heating.
    I / MG ≧ 6.5
  4.  前記素線径(d)は、0.08mm~0.30mmの範囲で形成されることを特徴とする請求項2に記載の加熱用フィラメントランプ。 The heating filament lamp according to claim 2, wherein the wire diameter (d) is formed in the range of 0.08 mm to 0.30 mm.
  5.  前記コイル部の外径(D)は、0.8mm~2.0mmの範囲で形成されることを特徴とする請求項2に記載の加熱用フィラメントランプ。 The heating filament lamp according to claim 2, wherein the outer diameter (D) of the coil portion is formed in the range of 0.8 mm to 2.0 mm.
  6.  前記フィラメントの上端部と下端部には、それぞれ第一給電線と第二給電線が設けられており、前記給電線に対して、前記コイル部を構成する前記各素線が電気的に並列に接続されていることを特徴とする請求項1に記載の加熱用フィラメントランプ。 A first feed line and a second feeder are provided at the upper end and the lower end of the filament, respectively, and the strands constituting the coil portion are electrically parallel to the feeder. The heating filament lamp according to claim 1, wherein the filament lamp is connected.
PCT/JP2020/023510 2019-07-17 2020-06-16 Filament lamp for heating WO2021010077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080047768.8A CN114051649A (en) 2019-07-17 2020-06-16 Incandescent lamp for heating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019131553A JP7232415B2 (en) 2019-07-17 2019-07-17 heating filament lamp
JP2019-131553 2019-07-17

Publications (1)

Publication Number Publication Date
WO2021010077A1 true WO2021010077A1 (en) 2021-01-21

Family

ID=74210464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023510 WO2021010077A1 (en) 2019-07-17 2020-06-16 Filament lamp for heating

Country Status (4)

Country Link
JP (1) JP7232415B2 (en)
CN (1) CN114051649A (en)
TW (1) TWI807191B (en)
WO (1) WO2021010077A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7422980B2 (en) * 2020-03-02 2024-01-29 株式会社 秩父イワサキ lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141789U (en) * 1977-04-12 1978-11-09
JPS62133368U (en) * 1986-02-18 1987-08-22
CN201562660U (en) * 2009-06-08 2010-08-25 葛立东 Triple helix filament with pear-shaped structure
JP2016134270A (en) * 2015-01-19 2016-07-25 株式会社ウイザップ偕揚社 Coil filament and incandescent lamp

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818075A (en) * 1955-03-29 1959-08-12 Gen Electric Improvements in infrared lamp device
JP3379405B2 (en) * 1997-09-29 2003-02-24 松下電器産業株式会社 Halogen bulb
EP1697963A2 (en) * 2003-12-16 2006-09-06 Koninklijke Philips Electronics N.V. Electric incandescent lamp and method for fabrication thereof
CN101256927A (en) 2008-03-31 2008-09-03 湖州太箭照明有限公司 Low power energy-saving lamp filament and manufacturing method thereof
JP4821819B2 (en) * 2008-08-26 2011-11-24 ウシオ電機株式会社 Filament lamp and light irradiation type heat treatment equipment
JP5633433B2 (en) * 2011-03-07 2014-12-03 岩崎電気株式会社 Halogen bulb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141789U (en) * 1977-04-12 1978-11-09
JPS62133368U (en) * 1986-02-18 1987-08-22
CN201562660U (en) * 2009-06-08 2010-08-25 葛立东 Triple helix filament with pear-shaped structure
JP2016134270A (en) * 2015-01-19 2016-07-25 株式会社ウイザップ偕揚社 Coil filament and incandescent lamp

Also Published As

Publication number Publication date
JP7232415B2 (en) 2023-03-03
CN114051649A (en) 2022-02-15
JP2021018830A (en) 2021-02-15
TWI807191B (en) 2023-07-01
TW202105458A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
EP1699071B1 (en) Heater and heating device with heaters
EP1918976B1 (en) Filament lamp and light-irradiation-type heat treatment device
TWI428957B (en) Light irradiation heat treatment device
WO2021010077A1 (en) Filament lamp for heating
EP2061069B1 (en) Filament lamp and heat treatment device of the light irradiation type
EP0168015A2 (en) Low wattage double filament tungsten-halogen lamp
JP2011103476A (en) Heating device with heater lamp
US7271530B2 (en) Filament for X-ray tube and X-ray tube having the same
CN111050427A (en) Heating lamp
US9536729B2 (en) Tubular light source having overwind
WO2019208568A1 (en) Light irradiation-type heating device and filament lamp
US4208609A (en) Squirm resistant filament
CN1838373A (en) Ultra-high voltage mercury lamp
KR200170646Y1 (en) High-pressure discharge lamp and associated illuminating system
JP2011129515A (en) Electrode for discharge lamp
JP2010135321A (en) Lamp for rapid temperature processing
WO2007122535A2 (en) A method of manufacturing tungsten electrode rods
JP7497450B2 (en) Conical coil for rapid thermal annealing lamp
JPH07169387A (en) Manufacture of fluorescent lamp
JP2002367569A (en) Incandescent lamp
JPH04286329A (en) Vertical precision electric furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840380

Country of ref document: EP

Kind code of ref document: A1