WO2021009991A1 - Robot device and method for controlling same - Google Patents

Robot device and method for controlling same Download PDF

Info

Publication number
WO2021009991A1
WO2021009991A1 PCT/JP2020/018242 JP2020018242W WO2021009991A1 WO 2021009991 A1 WO2021009991 A1 WO 2021009991A1 JP 2020018242 W JP2020018242 W JP 2020018242W WO 2021009991 A1 WO2021009991 A1 WO 2021009991A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot device
legs
leg
control unit
safe place
Prior art date
Application number
PCT/JP2020/018242
Other languages
French (fr)
Japanese (ja)
Inventor
将也 木下
康久 神川
憲明 高杉
川浪 康範
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2021009991A1 publication Critical patent/WO2021009991A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • the technique disclosed in this specification relates to a robot device having a plurality of legs and a control method thereof.
  • a legged robot In general, a legged robot is capable of walking by alternately switching between standing and attracting a plurality of legs. Compared to other types of mobile robots such as wheel type robots, it has the advantage of being able to move on both leveled and rough terrain. Therefore, the legged robot can be used not only in a limited space such as in a factory, but also in any free space such as a living space where humans live and a space where it is difficult or dangerous for humans to work (for example, in a radiation environment). It is expected to be used.
  • a motor consisting of two motors incorporated coaxially is used for joint drive, and one motor cannot operate due to disconnection or other reasons.
  • a proposal has been made for a walking robot that can continue walking by supplying a current to the other motor even in the case of (see Patent Document 1).
  • the total number of motors mounted on the entire walking robot will increase, and the weight of the main body will increase accordingly. There is concern that the production cost will also increase.
  • a part other than the motor is damaged and the leg becomes inoperable, it can be dealt with.
  • any of the multiple legs is configured to be placed anywhere around the body of the pedestrian body and is actuated by repositioning with any leg that is functioning in place of the failed leg.
  • a proposal has been made for a robot that can change the walking mode when the number of robots is reduced see Patent Document 2. Since this robot needs to be equipped with more legs in case the number of operating legs decreases due to a failure, the number of motors and links increases, the weight of the robot increases, and the manufacturing cost also increases. There is concern that it will become.
  • An object of the technique disclosed in this specification is to provide a robot device having a plurality of legs and a control method thereof.
  • a detection unit that detects whether or not each of the plurality of legs is out of order
  • a control unit that controls the operation according to the detection unit detecting a failure in any of the plurality of legs. It is a robot device equipped with.
  • control unit controls the robot device to evacuate to the safe place by walking using the non-faulty leg, and at that time, the control unit is composed of the non-faulty leg. Control so that the supported polygon to be supported is maximized. In addition, the external device is notified of information regarding the leg in which the failure is detected.
  • the second aspect of the technology disclosed herein is: It is a control method for a robot device equipped with multiple legs. A step of detecting whether or not each of the plurality of legs is defective, A step of performing an action according to the detection of a failure in any of the plurality of legs, and It is a control method of a robot device having.
  • FIG. 1 is a diagram showing an example of a degree of freedom configuration of the robot device 100.
  • FIG. 2 is a diagram showing a configuration example of an electric system of the robot device 100.
  • FIG. 3 is a diagram showing a support polygon (when a failure occurs) of the robot device 100.
  • FIG. 4 is a diagram showing a support polygon (after the change in walking form) of the robot device 100.
  • FIG. 5 is a diagram for explaining a mechanism for changing the walking mode of the robot device 100.
  • FIG. 6 is a diagram for explaining a mechanism for changing the walking mode of the robot device 100.
  • FIG. 7 is a diagram showing a gait example of the robot device 100.
  • FIG. 1 is a diagram showing an example of a degree of freedom configuration of the robot device 100.
  • FIG. 2 is a diagram showing a configuration example of an electric system of the robot device 100.
  • FIG. 3 is a diagram showing a support polygon (when a failure occurs) of the robot device 100.
  • FIG. 8 is a diagram showing a gait example of the robot device 100 when the broken leg is moved to a position where it does not get in the way.
  • FIG. 9 is a diagram showing an example of the gait of the robot device 100 when the broken leg is moved to a position where it does not get in the way.
  • FIG. 10 is a diagram showing how the robot device 100 walks according to the remaining capacity of the failed leg.
  • FIG. 11 is a diagram showing support polygons when a part of the legs of the robot device 100 fails.
  • FIG. 12 is a diagram showing a support polygon when the walking mode is changed due to a failure of a part of the legs of the robot device 100.
  • FIG. 13 is a diagram showing a support polygon when a part of the legs of the robot device 100 fails.
  • FIG. 14 is a diagram showing a support polygon when the walking mode is changed due to a failure of a part of the legs of the robot device 100.
  • FIG. 15 is a flowchart showing an operation procedure executed by the robot device 100 when a part of the legs breaks down.
  • FIG. 1 schematically shows an example of a degree of freedom configuration of a robot device 100 having a plurality of legs to which the technique disclosed in the present specification is applied.
  • the illustrated robot device 100 includes a body portion 101 and four movable legs 110, 120, 130, and 140 connected to the four corners of the body portion 101, respectively.
  • the leg 110 is the left front leg (LF)
  • the leg 120 is the right front leg (RF)
  • the leg 130 is the left hind leg (LR)
  • the leg 140 is the right hind leg (RR).
  • the robot device 100 can walk by operating the legs 110, 120, 130, and 140 synchronously (while alternately switching between the stance and the swing leg). Further, it is assumed that the robot device 100 carries the load loaded on the body portion 101 by loading the load on the body portion 101.
  • the leg 110 includes two links 111 and 112, and a joint portion 113 connecting the link 111 and the link 112.
  • the other end (lower end) of the link 111 corresponds to the sole of the foot and is installed on the floor.
  • the upper end of the link 112 is attached to the body portion 101 via the joint portion 114.
  • the joint portion 113 has a degree of freedom of rotation around the pitch axis, and the link 111 can be driven around the pitch axis with respect to the link 112 by an actuator (not shown) such as a pitch axis rotation motor.
  • the joint portion 114 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 112 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to.
  • the link 112 is also referred to as a first link
  • the link 111 is also referred to as a second link in order of proximity to the body portion 101.
  • the joint portion 114 is also referred to as a first joint
  • the joint portion 113 is also referred to as a second joint in the order of proximity to the body portion 101.
  • the leg 120 is provided with two links 121 and 122 and a joint portion 123 connecting the link 121 and the link 122.
  • the other end (lower end) of the link 121 corresponds to the sole of the foot and is installed on the floor surface.
  • the upper end of the link 122 is attached to the body portion 101 via the joint portion 124.
  • the joint portion 123 has a degree of freedom of rotation around the pitch axis, and the link 121 can be driven around the pitch axis with respect to the link 122 by an actuator (not shown) such as a pitch axis rotation motor.
  • the joint portion 124 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 122 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to.
  • the link 122 is also referred to as a first link
  • the link 121 is also referred to as a second link in order of proximity to the body portion 101.
  • the joint portion 124 is also referred to as a first joint
  • the joint portion 123 is also referred to as a second joint in the order of proximity to the body portion 101.
  • the leg 130 includes two links 131 and 132, and a joint portion 133 that connects the link 131 and the link 132.
  • the other end (lower end) of the link 131 corresponds to the sole of the foot and is installed on the floor.
  • the upper end of the link 132 is attached to the body portion 101 via the joint portion 134.
  • the joint portion 133 has a degree of freedom of rotation around the pitch axis, and the link 131 can be driven around the pitch axis with respect to the link 132 by an actuator (not shown) such as a pitch axis rotation motor.
  • the joint portion 134 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 132 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to.
  • the link 132 is also referred to as a first link
  • the link 131 is also referred to as a second link in order of proximity to the body portion 101.
  • the joint portion 134 will be referred to as the first joint
  • the joint portion 133 will be referred to as the second joint in the order of proximity to the body portion 101.
  • the leg 140 is provided with two links 141 and 142 and a joint portion 143 connecting between the link 141 and the link 142.
  • the other end (lower end) of the link 141 corresponds to the sole of the foot and is installed on the floor.
  • the upper end of the link 142 is attached to the body portion 101 via the joint portion 144.
  • the joint portion 143 has a degree of freedom of rotation around the pitch axis, and the link 141 can be driven around the pitch axis with respect to the link 142 by an actuator (not shown) such as a pitch axis rotation motor.
  • the joint portion 144 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 142 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to.
  • the link 142 is also referred to as a first link
  • the link 141 is also referred to as a second link in order of proximity to the body portion 101.
  • the joint portion 144 is also referred to as a first joint
  • the joint portion 143 is also referred to as a second joint in the order of proximity to the body portion 101.
  • the robot device 100 shown in the figure is composed of four legs, it should be understood that the technology disclosed in the present specification can be applied even if the robot device 100 is equipped with two legs, three legs, or 55 legs or more.
  • the body portion 101 may be equipped with a head equipped with a camera, a speaker, or the like, an arm for work, or the like.
  • FIG. 2 shows a configuration example of the electrical system of the robot device 100.
  • cameras 211L and 211R that function as the left and right "eyes" of the robot device 100, a microphone 212 that functions as an "ear”, a touch sensor 213, and the like are arranged at predetermined positions, respectively. ing.
  • cameras 211L and 211R for example, cameras composed of image pickup elements such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device) are used.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the external sensor unit 210 may further include other sensors.
  • the external sensor unit 210 includes a sole sensor that measures the floor reaction force acting on the soles of the legs 110, 120, 130, and 140.
  • Each sole sensor is composed of, for example, a 6DOF (Degree Of Freedom) force sensor or the like.
  • the external sensor unit 210 may include a sensor capable of measuring or estimating the direction and distance of a predetermined target such as a LIDAR (Laser Imaging Detection and Ranking), a TOF (Time OF Light) sensor, and a laser range sensor. Further, the external sensor unit 210 may include a GPS (Global Positioning System) sensor, an infrared sensor, a temperature sensor, a humidity sensor, an illuminance sensor, and the like.
  • GPS Global Positioning System
  • a speaker 221 and a display unit 222 are arranged at predetermined positions as output units.
  • the speaker 221 functions to output voice and provide voice guidance, for example.
  • the display unit 222 displays the state of the robot device 100 and the response to the user.
  • an internal sensor unit 233 including a main control unit 231, a battery 232, a battery sensor 233A, an acceleration sensor 233B, etc., an external memory 234, and a communication unit 235 are arranged.
  • the cameras 211L and 211R of the external sensor unit 210 image the surrounding situation and send the obtained image signal S1A to the main control unit 231.
  • the microphone 212 collects voice input from the user and sends the obtained voice signal S1B to the main control unit 231.
  • the input voice given to the robot device 100 by the user includes an activation word and various command voices (voice commands) such as "walk”, “turn right", “hurry", and "stop".
  • voice commands voice commands
  • two or more microphones may be provided like the left and right ears to estimate the sound source direction.
  • the touch sensor 213 of 210 of the external sensor unit is laid, for example, on the mounting surface of the body portion 101, detects the pressure received at the place where the luggage is placed, and outputs the detection result to the pressure detection signal. It is sent to the main control unit 231 as S1C.
  • the battery sensor 233A of the internal sensor unit 233 detects the remaining energy of the battery 232 at predetermined intervals, and sends the detection result as the battery remaining amount detection signal S2A to the main control unit 231.
  • the acceleration sensor 233B detects acceleration in three axial directions (x (roll) axis, y (pitch) axis, and z (yaw) axis) at predetermined cycles for the movement of the robot device 100, and obtains the detection result. , Is sent to the main control unit 231 as an acceleration detection signal S2B.
  • the acceleration sensor 233B may be, for example, an IMU (Inertial Measurement Unit) equipped with a three-axis gyro and a three-direction acceleration sensor.
  • the IMU can be used to measure the angle and acceleration of the robot device 100 body or body 101.
  • the external memory 234 stores programs, data, control parameters, etc., and supplies the programs and data to the memory 231A built in the main control unit 231 as needed. Further, the external memory 234 stores data and the like received from the memory 231A in the main control unit 231.
  • the external memory 234 may be configured as a cartridge type memory card such as an SD card, and may be detachable from the robot device 100 main body (or the control unit 230).
  • the communication unit 235 performs data communication with the outside based on a communication method such as Wi-Fi (registered trademark) or LTE (Long Term Evolution). For example, a program such as an application executed by the main control unit 231 and data required for executing the program can be acquired from the outside via the communication unit 235.
  • a communication method such as Wi-Fi (registered trademark) or LTE (Long Term Evolution).
  • Wi-Fi registered trademark
  • LTE Long Term Evolution
  • the main control unit 231 has a built-in memory 231A.
  • the memory 231A stores programs and data, and the main control unit 231 performs various processes by executing the programs stored in the memory 231A. That is, the main control unit 231 includes the image signal S1A, the audio signal S1B, and the pressure detection signal S1C (hereinafter, these are collectively supplied) from the cameras 211L and 211R of the external sensor unit 210, the microphone 212, and the touch sensor 213, respectively.
  • the external sensor signal S1 and the battery remaining amount detection signal S2A and the acceleration detection signal S2B (hereinafter, these are collectively referred to as an internal sensor signal) supplied from the battery sensor 233A and the acceleration sensor 233B of the internal sensor unit 233, respectively.
  • S2 Based on (referred to as S2), it is determined whether or not the surrounding and internal conditions of the robot device 100, a command from the user, or an action from the user.
  • Information on the weight and the position of the center of gravity of the robot device 100 may be stored in the memory 231A in advance.
  • the main control unit 231 determines the surrounding and internal conditions of the robot device 100, the command from the user, or the presence / absence of the action from the user, and the control program stored in advance in the internal memory 231A, or a control program thereof. Based on various control parameters stored in the external memory 234 loaded at the time, the action of the robot device 100 and the expression action to be activated for the user are determined, and a control command based on the decision result is generated. Then, it is sent to each sub-control unit 241, 242, ....
  • the sub-control units 241 and 242, ... are each in charge of operating control of each subsystem in the robot device 100, and drive the subsystems based on the control commands supplied from the main control unit 231.
  • the movable legs 110, 120, 130, and 140 described above correspond to subsystems, and are driven and controlled by sub-control units 241, 242, 243, and 244, respectively.
  • the sub control units 241, 242, 243, and 244 drive control of the joint portions 113, 114, 123, 124, 133, 134, 143, and 144, and set the initial displacement amount of the load compensation mechanism (described later). And so on.
  • leg failure The robot device 100 walks by synchronously operating the legs 110, 120, 130, and 140 (while switching between the standing leg and the swing leg alternately). At that time, the toes of the legs 110, 120, 130, and 140 repeatedly land on the floor, that is, collide with the floor surface, so that a failure is likely to occur. If any of the legs 110, 120, 130, or 140 fails, it becomes difficult to walk with only the remaining normal legs, the posture becomes unstable, and there is a risk of colliding with the road surface or surrounding people or objects due to a fall. ..
  • the robot device 100 that has become difficult to move cannot be restored without human intervention. Further, if the robot device 100, which is difficult to move, is left as it is, it becomes a new obstacle to humans and other robots sharing the space, which may cause serious problems such as secondary damage. Specific examples caused by the failed robot device 100 include the following.
  • Example 1 There is a robot device 100 stopped in the middle of the road, which hinders the following moving body. In addition, it induces secondary damage such as a rear-end collision between the stopped robot device 100 and another moving body.
  • Example 2 Even if the robot device 100 stops due to a failure while working in a space where it is difficult for humans to invade, such as in a radiation environment, it is extremely difficult for humans to go to repair. If the stopped robot device 100 blocks the passage, the difficulty of the work of the other moving body during work and the other moving body toward recovery will be raised.
  • the robot device 100 is not designed so that it can operate with only the remaining available legs after some legs break down during work. For this reason, if a part of the legs breaks down during the work, the walking motion becomes unstable only with the remaining legs, and it is difficult to completely perform the subsequent work. If it is designed so that it can operate with the available legs even if some of the legs break down (see Patent Document 2), the device weight and the device cost increase.
  • Evacuation to a safe place is realized, for example, by moving the robot device 100 to the end of the passage and deviating from the path of another moving body using the same passage.
  • a leg failure occurs near a curve at a right angle to the passage, it generally passes through the inside of the curve, so that the outside of the curve is a safe evacuation site.
  • the support polygon is a polygon that convexly wraps the ground planes of all the support legs. For example, it is a standard for determining stability that the ZMP (Zero Moment Point) or the center of gravity of the mass is housed in the support polygon. If some of the legs break down and become unusable, the posture of the robot device 100 becomes unstable, but the remaining available legs increase the support polygon to stabilize it.
  • ZMP Zero Moment Point
  • the robot device 100 stabilizes its posture while retracting to a safe place by changing the walking form with the remaining available legs so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized. It is possible to prevent the fall.
  • FIG. 3 is composed of the remaining left front leg 110 (LF), left rear leg 130 (LR), and right rear leg 140 (RR) when the right front leg 120 (RF) of the robot device 100 fails.
  • the support polygon 300 is illustrated. At this time, when the robot device 100 has the forward direction as the traveling direction, the margin in the traveling direction of the geometric center of gravity of the support polygon 300 is as shown in Reference No. 301.
  • FIG. 4 walking by the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized.
  • the support polygon 400 when changed to a morphology is illustrated.
  • the margin in the traveling direction of the geometric center of gravity of the support polygon 400 is as shown in Reference No. 401, and the margin of the geometric center of gravity before changing the walking form. It can be seen that it is more extended than 301 (see FIG. 3).
  • inertia acts in the traveling direction of the robot device 100
  • the ZMP or the mass center of gravity can be easily accommodated in the supporting polygon 400 by expanding the margin 401 in the traveling direction of the geometric center of gravity of the supporting polygon 400.
  • the operation of the robot device 100 that retracts to a safe place is stabilized.
  • a mechanism for changing the walking mode by the remaining available legs when a failure of the right front leg 120 (RR) of the robot device 100 occurs near a curve at a right angle of the passage will be described with reference to FIGS. 5 and 6. To do.
  • FIG. 5 shows a state in which the right front leg 120 (RF) of the robot device 100 has failed before the right-angled curve of the passage.
  • the shape of the support polygon 500 is independent of the shelter 501.
  • the support polygon 600 for retracting to a safe place is configured as an isosceles triangle having the tip of the left front leg 110 (LF) as an apex and the apex facing the evacuation location 601.
  • the traveling direction of the robot device 100 is the direction toward the evacuation site 601, and the margin in the traveling direction of the geometric center of gravity of the support polygon 600 is expanded. Therefore, it becomes easy to accommodate the ZMP or the center of gravity of the mass in the support polygon 600, and the operation of the robot device 100 that retracts to a safe place is stabilized.
  • the operation of using one of the legs as a free leg and the remaining two legs as a stance is repeatedly executed.
  • the supporting polygon is only the area connecting the two legs that serve as the stance, and the posture becomes unstable. Therefore, the next landing point of the leg that is currently used as a free leg is planned in consideration of future stabilization. By doing so, it is possible to realize movement so as not to fall while maintaining the posture of the robot device 100.
  • the remaining available legs are switched to swing legs one by one so that the robot device 100 moves by walking.
  • evacuation by walking If the operation cannot be performed, it may be realized by jumping or the like.
  • FIG. 7 shows an example of the gait before and after the failure of the right front leg 120 (RF) of the robot device 100.
  • LF indicates the left front leg 110
  • RF indicates the right front leg 120
  • LR indicates the left rear leg 130
  • RR indicates the right rear leg 140
  • the robot device 100 assumes that the gait is performed in a predetermined walking cycle, and the figure illustrates the gait for three cycles.
  • FIG. 8 and 9 show an example of the gait of the robot device 100 when the failed right front leg 120 (RF) is moved to a position where it does not get in the way.
  • FIG. 8 shows a state in which the robot device 100 is viewed from the front
  • FIG. 9 shows a state in which the robot device is viewed from the right side.
  • the joints 123 and 124 of the right front leg 120 (RF) are driven around the pitch axis, respectively, and the links are folded and retracted toward the body 101 so as not to get in the way. There is.
  • the supporting polygon has the toes of the left front leg 110 (LF) as the apex.
  • a support polygon that becomes an isosceles triangle is constructed so that the margin in the traveling direction of the geometric center of gravity of the support polygon is maximized.
  • the legs 110 to 140 may have a structure in which the entire leg can be attached / detached from the body portion 101 at the first joint, or the second link intention may be attached / detached at the second joint. It may be possible to specify the part to be used.
  • the first joint 124 operates normally and the first joint 124 is the second.
  • One link 122 can be used and may have residual capacity.
  • the robot device 100 operates normally according to the remaining capacity of the failed right front leg 120 (RF), the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 ( By changing the walking mode of RR), the evacuation motion to a safe place may be performed by the walking motion in which the walking motion is changed while using all four legs.
  • FIG. 10 illustrates a state in which the robot device 100 changes the form of another normal leg according to the remaining ability of the failed leg and walks.
  • the first joint 124 of the right front leg 120 RF
  • the first link 122 can be used and has a residual capacity.
  • the second link is bent and folded by the second joint, so that the second joints 113, 123, 133, and 143 are used as grounding points instead of the toes.
  • FIG. 11 is composed of the remaining left front leg 110 (LF), left rear leg 130 (LR), and right rear leg 140 (RR) when the right front leg 120 (RF) of the robot device 100 fails.
  • the support polygon 1100 is illustrated.
  • the support polygon 1100 has a side LF-RR as a hypotenuse and is a right triangle that is asymmetric (that is, left-right asymmetric) with respect to the traveling direction, but the rotational torque of the right hind leg 140 (RR) is large when turning. turn into.
  • the walking modes of the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) are changed so as to form a support polygon 1200 having an isosceles triangle. Change. As a result, the rotational torque of the right rear leg 140 (RR) can be reduced when turning.
  • the robot device 100 should move in any direction. Can't.
  • the walking modes of the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) are arranged so as to form a support polygon 1400 having an isosceles triangle.
  • the line connecting the geometric center of gravity of the supporting polygon 1400 and the traveling direction when traveling straight is symmetrical, so that the wheel can be easily controlled.
  • the support polygon 1400 is an isosceles triangle, it can be moved in any direction by adjusting the torque balance of the left hind leg 130 (LR) and the right hind leg 140 (RR) as follows. Can be done.
  • the leg forms that can be used so as to form an appropriate supporting polygon.
  • the control method during wheel operation with the available legs can be simplified and the load on the wheel drive motor can be reduced.
  • Notification / Alarm at the time of leg failure Another feature of the operation method proposed in this specification for minimizing the risk of secondary damage is that when the leg of the robot device 100 breaks down or the robot device 100 is safe. During the period of evacuation to a suitable place, notify the external device and give an alarm to the surroundings.
  • the external device referred to here is, for example, an information terminal (smartphone, tablet, etc.) operated by the administrator of the robot device 100.
  • the notification to the external device shall be made by using wired communication or wireless communication via the communication unit 235.
  • wireless technology such as Wi-Fi (registered trademark), Bluetooth (registered trademark), and LTE (Long Term Evolution) can be used to notify an external device from the robot device 100. Since the robot device 100 itself cannot repair the broken leg or collect the robot device 100 itself, it notifies the administrator and requests repair or collection from the site.
  • the robot device 100 notifies the external device of the result of the leg failure diagnosis and the information of the position selected as the evacuation location.
  • the administrator may receive the notification from the robot device 100 and give the robot device 100 the designation of the evacuation location and the instruction of the evacuation operation via the external device.
  • an alarm is given to notify the surroundings that the robot device 100 with a broken leg is stopped on the aisle and that the robot device 100 is moving to a safe place.
  • the alarm is executed by using the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Even after the robot device 100 has been evacuated to a safe place, it is noisy if the voice message and beep sound continue to be heard. Only notification may be given.
  • FIG. 15 shows an operation procedure executed by the robot device 100 when a part of the legs fails in the form of a flowchart.
  • the illustrated operation procedure shall be carried out under the overall control of the main control unit 231.
  • the robot device 100 constantly monitors whether or not any of the legs 110 to 140 has a failure during movement (step S1501).
  • the method of detecting the failure of the legs 110 to 140 is not particularly limited.
  • a leg failure can be detected when the torque generated in the joint drive motor shows an abnormal value, or when the rotation angle of the joint measured by using an encoder or the like greatly deviates from the indicated value. ..
  • step S1502 When a failure is detected in any of the legs 110 to 140 (Yes in step S1501), the robot device 100 first notifies the external device (step S1502).
  • the external device referred to here is, for example, an information terminal (smartphone, tablet, etc.) operated by the administrator of the robot device 100.
  • the external device may be an alarm or a warning light.
  • the notification to the external device shall be made by using wired communication or wireless communication via the communication unit 235.
  • the administrator who receives the notification may repair the legs, collect the robot device 100 main body, and the like.
  • the robot device 100 may continue to notify the external device until this process is completed, and sequentially report the progress of subsequent work such as evacuation to a safe place.
  • the robot device 100 implements the treatment of the leg that has detected the failure (step S1503).
  • the treatment of the failed leg includes an operation of retracting the failed leg to a position that does not interfere with the operation of retracting to a safe place using the remaining normal legs.
  • the robot device 100 may fold and retract the failed leg (see FIGS. 8 and 9).
  • the broken leg may be removed from the robot device 100 main body (or the body portion 101).
  • the robot device 100 searches for a safe evacuation site (step S1504).
  • the robot device 100 may autonomously search for a safe place based on the surrounding images taken by the cameras 211L and 211R.
  • a safe place is, for example, the end of a passage. If the leg of the robot device 100 breaks down near a curve at right angles to the passage, the outside of that curve becomes a safe place (see, for example, FIG. 6).
  • the robot device 100 may search for a safe place by using a self-position estimation technique such as a SLAM (Simultaneusly Localization and Mapping) method. Further, the robot device 100 may search for a safe place based on a wireless command from an external device (such as an information terminal operated by an administrator).
  • an external device such as an information terminal operated by an administrator.
  • the robot device 100 checks whether or not it can be evacuated to a safe place (step S1505).
  • step S1505 When it is possible to evacuate to a safe place (Yes in step S1505), the robot device 100 issues an alarm from the speaker 221 to notify the surroundings that the robot device 100 is moving to the evacuation place (step S1506). , The remaining capacity of the leg is used to move to the evacuation site (step S1507).
  • step S1506 the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Implement an alarm.
  • the robot device 100 switches the remaining available legs to swing legs one by one (see, for example, FIG. 7), and moves to a safe evacuation site by walking.
  • the robot device 100 may remove the failed leg from the body portion 101 when the walking motion is performed only with the available legs. By removing the broken leg, it does not interfere with the walking movements of the available legs. In addition, removing the broken leg reduces the weight of the device and has the advantage of making it easier to walk. However, it is necessary to pay sufficient attention to the location of removal so that the legs after removal do not become obstacles to other moving objects that share the work space.
  • the robot device 100 stabilizes the posture by enlarging the supporting polygon with the remaining available legs when moving to a safe evacuation site. Further, the robot device 100 changes the walking posture by the remaining available legs so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized (see, for example, FIG. 4). Stabilize your posture and prevent falls.
  • the robot device 100 changes all the legs 110 to 140 (or a plurality of legs including the failed leg) by changing the walking mode of the normal leg according to the remaining ability of the failed leg. ) May be used to move to a safe evacuation site by a walking motion (see, for example, FIG. 10).
  • the robot device 100 may be realized by jumping or the like when it is urgently criticized or when the evacuation operation by walking cannot be performed (see, for example, FIG. 7). ..
  • step S1507 regardless of which method is used to evacuate to a safe place, the robot device 100 checks the surrounding environment and starts moving when it is determined that the risk of secondary damage is low. Is desirable.
  • step S1508 when the robot device 100 reaches a safe evacuation place, it stops there (step S1508) and waits for the supervisor or the like to repair the broken leg or collect the robot device 100 itself.
  • the robot device 100 issues an alarm indicating that the robot device 100 is stopped at a safe evacuation site (step S1509).
  • step S1509 the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100.
  • Implement an alarm since the safety is guaranteed to some extent at the evacuation site and the risk of secondary damage is low, even a lighter alarm (for example, only turning on the revolving light) than the alarm given while moving to the evacuation site in step S1506 is used. Good.
  • step S1505 if the robot device 100 cannot stand by in a safe place (No in step S1505), the robot device 100 stops at the place where a leg failure is detected (step S1510) and stops on the aisle. An alarm is issued to notify the surroundings that the robot is doing (step S1511).
  • step S1511 the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100.
  • a stronger alarm for example, a voice message or a beep
  • Increase the volume of the light increase the light intensity of the revolving light, etc.).
  • the robot device 100 can reduce the risk of secondary damage when a part of the legs breaks down by pre-programming the processing procedure as shown in FIG.
  • the robot device 100 when carrying out the processing procedure as shown in FIG. 15, the robot device 100 is equipped with two or more motors for one joint, or is equipped with a large number of legs in case of a leg failure. There is no need, and the risk of secondary damage can be reduced at low cost.
  • the robot device 100 since the robot device 100 has a function of notifying an external device (such as an information terminal operated by an administrator) or notifying the surroundings when a leg failure occurs, it causes secondary damage. The risk can be reduced.
  • an external device such as an information terminal operated by an administrator
  • the robot device 100 autonomously performs an operation of ensuring safety when a leg failure occurs, the resistance to use in an environment without human intervention is enhanced.
  • each leg 110 to 140 of the robot device 100 are wheels
  • the wheels on the available legs can be changed by changing the form of the available legs so as to have an appropriate supporting polygon.
  • the control method during operation is simplified, and the load applied to the wheel drive motor can be reduced.
  • the technique disclosed in this specification can be similarly applied to a robot device or a mobile device provided with a plurality of moving means other than the legs.
  • a wheel-type mobile device including an autonomous vehicle
  • multiple wheels if some wheels fail (including when the rotary motor fails or punctures), multiple rotor blades
  • an unmanned aerial vehicle drone equipped with , It is possible to evacuate to a safe place and suppress secondary damage such as collision with other moving objects.
  • the technology disclosed in this specification can also have the following configuration.
  • a detection unit that detects whether or not each of the plurality of legs is out of order
  • a control unit that controls the operation according to the detection unit detecting a failure in any of the plurality of legs.
  • the control unit controls an operation for retracting the robot device to a safe place by utilizing the remaining capacity of the legs.
  • the robot device according to any one of (1) and (2) above.
  • the control unit controls to evacuate to the safe place by walking using the leg that has not failed.
  • the control unit controls so that the support polygon composed of the non-failed legs is maximized when evacuating to the safe place.
  • the control unit controls so that the margin of the geometric center of gravity of the supporting polygon with respect to the traveling direction to the safe place is maximized.
  • the control unit controls the removal of the failed leg.
  • the robot device according to any one of (4) to (6) above.
  • the control unit changes the walking mode of the normal leg according to the remaining ability of the failed leg, and walks using a plurality of legs including the failed leg to the safe place.
  • the control unit controls an operation of notifying the surroundings that the evacuation is being carried out to the safe place.
  • the robot device according to any one of (3) to (8) above.
  • the robot device (10) Further equipped with a communication unit that communicates with an external device, The control unit controls an operation for evacuating to the safe place notified from the external device.
  • the robot device according to any one of (3) to (9) above.
  • a control method for a robot device having a plurality of legs A step of detecting whether or not each of the plurality of legs is defective, A step of performing an action according to the detection of a failure in any of the plurality of legs, and A method of controlling a robot device having.
  • the robot device includes a communication unit that communicates with an external device.
  • the walking mode of the normal leg is changed according to the remaining capacity of the failed leg, and walking using a plurality of legs including the failed leg to the safe place.
  • the robot device includes a communication unit that communicates with an external device.
  • External sensor unit 211L, 211R ... Camera 212 ... Microphone, 213 ... Touch sensor 221 ... Speaker, 222 ... Display unit 230 ... Control unit, 231 ... Main control unit, 232 ... Battery 233 ... Internal sensor unit 233A ... Battery sensor , 233B ... Accelerometer 234 ... External memory, 235 ... Communication unit

Abstract

Provided is a robot device that comprises a plurality of legs, and avoids potential malfunctions caused by failure of some of the legs. The robot device is provided with: a plurality of legs; a detector for detecting whether failure has occurred in each of the plurality of legs; and a controller for controlling operation in response to failure being detected in one of the plurality of legs by the detector. The controller controls the device so as to retreat to a safe location by walking using the functioning legs, and so that the maximum supporting polygon is formed by the functioning legs during this process. The controller also notifies the external device of information pertaining to the leg in which failure was detected.

Description

ロボット装置及びその制御方法Robot device and its control method
 本明細書で開示する技術は、複数の脚を備えたロボット装置及びその制御方法に関する。 The technique disclosed in this specification relates to a robot device having a plurality of legs and a control method thereof.
 近年、脚式ロボットの開発が進められている。一般に、脚式ロボットは、複数の脚を交互に立脚と誘客を切り替えて歩行動作が可能である。車輪型など他のタイプの移動ロボットと比較すると、整地・不整地を問わず移動が可能であるという利点がある。したがって、工場内など限定的な空間だけでなく、人間が生活する住空間や、人間が作業するには難しく若しくは危険な空間(例えば、放射線環境下)など、任意の自由空間でも脚式ロボットを利用することが期待されている。 In recent years, the development of leg-type robots has been promoted. In general, a legged robot is capable of walking by alternately switching between standing and attracting a plurality of legs. Compared to other types of mobile robots such as wheel type robots, it has the advantage of being able to move on both leveled and rough terrain. Therefore, the legged robot can be used not only in a limited space such as in a factory, but also in any free space such as a living space where humans live and a space where it is difficult or dangerous for humans to work (for example, in a radiation environment). It is expected to be used.
 反面、脚は複雑な多リンク構造であることから、自由空間を探索中に複数の脚のうちいずれかが故障することが懸念される。 On the other hand, since the legs have a complicated multi-link structure, there is a concern that one of the multiple legs may break down while exploring the free space.
 例えば、4脚で歩行が可能で且つ腕部による作業が可能な歩行ロボットにおいて、同軸上に組み込んだ2個のモータからなるモータを関節駆動に用い、断線などの理由により一方のモータが動作不能になった場合にも、他方のモータへの電流の供給により、歩行動作を継続可能にした歩行ロボットについて提案がなされている(特許文献1を参照のこと)。しかしながら、関節毎に2個のモータを配置し、さらにすべての脚について同様の関節駆動方式を採用すると、その歩行ロボット全体に搭載されるモータの総数は多くなり、その分だけ本体重量が増すとともに製作コストも高くなることが懸念される。また、モータ以外の部分が破損して脚が動作不能になった場合には対応することができる。 For example, in a walking robot that can walk with four legs and can work with arms, a motor consisting of two motors incorporated coaxially is used for joint drive, and one motor cannot operate due to disconnection or other reasons. A proposal has been made for a walking robot that can continue walking by supplying a current to the other motor even in the case of (see Patent Document 1). However, if two motors are arranged for each joint and the same joint drive method is adopted for all legs, the total number of motors mounted on the entire walking robot will increase, and the weight of the main body will increase accordingly. There is concern that the production cost will also increase. In addition, if a part other than the motor is damaged and the leg becomes inoperable, it can be dealt with.
 また、複数の脚のいずれもが歩行体本体の周囲のいかなる位置に置くことができるように構成され、故障した脚の代りに機能しているいずれかの脚で再度位置決めするにより、作動する脚の数が減った場合に歩行形態を変えることができるロボットについて提案がなされている(特許文献2を参照のこと)。このロボットは、故障により作動する脚の数が減少した場合に備えて、より多くの脚を装備する必要があるため、モータ数やリンク数が増大し、ロボットの重量が増すとともに製作コストも高くなることが懸念される。 Also, any of the multiple legs is configured to be placed anywhere around the body of the pedestrian body and is actuated by repositioning with any leg that is functioning in place of the failed leg. A proposal has been made for a robot that can change the walking mode when the number of robots is reduced (see Patent Document 2). Since this robot needs to be equipped with more legs in case the number of operating legs decreases due to a failure, the number of motors and links increases, the weight of the robot increases, and the manufacturing cost also increases. There is concern that it will become.
特開2004-314216号公報Japanese Unexamined Patent Publication No. 2004-314216 特開平3-92275号公報Japanese Unexamined Patent Publication No. 3-92275
 本明細書で開示する技術の目的は、複数の脚を備えたロボット装置及びその制御方法を提供することにある。 An object of the technique disclosed in this specification is to provide a robot device having a plurality of legs and a control method thereof.
 本明細書で開示する技術は、上記課題を参酌してなされたものであり、その第1の側面は、
 複数の脚と、
 前記複数の脚の各々が故障か否かを検出する検出部と、
 前記検出部が前記複数の脚のいずれかに故障を検出したことに応じた動作を制御する制御部と、
を具備するロボット装置である。
The technology disclosed in the present specification has been made in consideration of the above-mentioned problems, and the first aspect thereof is.
With multiple legs,
A detection unit that detects whether or not each of the plurality of legs is out of order,
A control unit that controls the operation according to the detection unit detecting a failure in any of the plurality of legs.
It is a robot device equipped with.
 第1の側面に係るロボット装置において、前記制御部は、前記故障していない脚を利用した歩行により、前記安全な場所へ退避するように制御し、その際、前記故障していない脚で構成される支持多角形が最大となるように制御する。また、故障を検出した脚に関する情報を前記外部装置に通知する。 In the robot device according to the first aspect, the control unit controls the robot device to evacuate to the safe place by walking using the non-faulty leg, and at that time, the control unit is composed of the non-faulty leg. Control so that the supported polygon to be supported is maximized. In addition, the external device is notified of information regarding the leg in which the failure is detected.
 また、本明細書で開示する技術の第2の側面は、
 複数の脚を備えたロボット装置の制御方法であって、
 前記複数の脚の各々が故障か否かを検出するステップと、
 前記複数の脚のいずれかに故障を検出したことに応じた動作を実行するステップと、
を有するロボット装置の制御方法である。
In addition, the second aspect of the technology disclosed herein is:
It is a control method for a robot device equipped with multiple legs.
A step of detecting whether or not each of the plurality of legs is defective,
A step of performing an action according to the detection of a failure in any of the plurality of legs, and
It is a control method of a robot device having.
 本明細書で開示する技術によれば、複数の脚を備え、一部の脚の故障により発生し得る障害を回避するロボット装置及びその制御方法を提供することができる。 According to the technique disclosed in the present specification, it is possible to provide a robot device having a plurality of legs and avoiding obstacles that may occur due to a failure of some legs and a control method thereof.
 なお、本明細書に記載された効果は、あくまでも例示であり、本明細書で開示する技術によりもたらされる効果はこれに限定されるものではない。また、本明細書で開示する技術が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in the present specification are merely examples, and the effects brought about by the techniques disclosed in the present specification are not limited thereto. In addition, the technique disclosed in the present specification may exert additional effects in addition to the above effects.
 本明細書で開示する技術のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Still other objectives, features and advantages of the techniques disclosed herein will be clarified by more detailed description based on embodiments and accompanying drawings described below.
図1は、ロボット装置100の自由度構成例を示した図である。FIG. 1 is a diagram showing an example of a degree of freedom configuration of the robot device 100. 図2は、ロボット装置100の電気系統の構成例を示した図である。FIG. 2 is a diagram showing a configuration example of an electric system of the robot device 100. 図3は、ロボット装置100の支持多角形(故障発生時)を示した図である。FIG. 3 is a diagram showing a support polygon (when a failure occurs) of the robot device 100. 図4は、ロボット装置100の支持多角形(歩行形態の変化後)を示した図である。FIG. 4 is a diagram showing a support polygon (after the change in walking form) of the robot device 100. 図5は、ロボット装置100の歩行形態を変化させる仕組みを説明するための図である。FIG. 5 is a diagram for explaining a mechanism for changing the walking mode of the robot device 100. 図6は、ロボット装置100の歩行形態を変化させる仕組みを説明するための図である。FIG. 6 is a diagram for explaining a mechanism for changing the walking mode of the robot device 100. 図7は、ロボット装置100の歩容例を示した図である。FIG. 7 is a diagram showing a gait example of the robot device 100. 図8は、故障した脚を邪魔にならない位置に移動させた場合のロボット装置100の歩容例を示した図である。FIG. 8 is a diagram showing a gait example of the robot device 100 when the broken leg is moved to a position where it does not get in the way. 図9は、故障した脚を邪魔にならない位置に移動させた場合のロボット装置100の歩容例を示した図である。FIG. 9 is a diagram showing an example of the gait of the robot device 100 when the broken leg is moved to a position where it does not get in the way. 図10は、ロボット装置100が故障脚の残存能力に応じて歩行動作する様子を示した図である。FIG. 10 is a diagram showing how the robot device 100 walks according to the remaining capacity of the failed leg. 図11は、ロボット装置100の一部の脚の故障時の支持多角形を示した図である。FIG. 11 is a diagram showing support polygons when a part of the legs of the robot device 100 fails. 図12は、ロボット装置100の一部の脚の故障により歩行形態を変更したときの支持多角形を示した図である。FIG. 12 is a diagram showing a support polygon when the walking mode is changed due to a failure of a part of the legs of the robot device 100. 図13は、ロボット装置100の一部の脚の故障時の支持多角形を示した図である。FIG. 13 is a diagram showing a support polygon when a part of the legs of the robot device 100 fails. 図14は、ロボット装置100の一部の脚の故障により歩行形態を変更したときの支持多角形を示した図である。FIG. 14 is a diagram showing a support polygon when the walking mode is changed due to a failure of a part of the legs of the robot device 100. 図15は、ロボット装置100が一部の脚が故障したときに実行する動作手順を示したフローチャートである。FIG. 15 is a flowchart showing an operation procedure executed by the robot device 100 when a part of the legs breaks down.
 以下、図面を参照しながら本明細書で開示する技術の実施形態について詳細に説明する。 Hereinafter, embodiments of the techniques disclosed in the present specification will be described in detail with reference to the drawings.
A.装置構成
 図1には、本明細書で開示する技術が適用される、複数の脚を備えたロボット装置100の自由度構成例を模式的に示している。図示のロボット装置100は、胴体部101と、胴体部101の四隅にそれぞれ連結された4本の可動脚110、120、130、140を備えている。ここで、脚110は左前脚(LF)、脚120は右前脚(RF)、脚130は左後足(LR)、脚140は右後足(RR)とする。ロボット装置100は、脚110、120、130、140を同期的に動作させて(立脚と遊脚を交互に切り替えながら)、歩行することができる。また、胴体部101の上に荷物を積載して、ロボット装置100は、胴体部101に載せた荷物を搬送することも想定される。
A. Device Configuration FIG. 1 schematically shows an example of a degree of freedom configuration of a robot device 100 having a plurality of legs to which the technique disclosed in the present specification is applied. The illustrated robot device 100 includes a body portion 101 and four movable legs 110, 120, 130, and 140 connected to the four corners of the body portion 101, respectively. Here, the leg 110 is the left front leg (LF), the leg 120 is the right front leg (RF), the leg 130 is the left hind leg (LR), and the leg 140 is the right hind leg (RR). The robot device 100 can walk by operating the legs 110, 120, 130, and 140 synchronously (while alternately switching between the stance and the swing leg). Further, it is assumed that the robot device 100 carries the load loaded on the body portion 101 by loading the load on the body portion 101.
 脚110は、2本のリンク111及び112と、リンク111とリンク112間を接続する関節部113を備えている。リンク111の他端(下端)は足底に相当し、床面に設置している。また、リンク112の上端は、関節部114を介して胴体部101に取り付けられている。関節部113は、ピッチ軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、リンク112に対してリンク111をピッチ軸回りに駆動させることができる。また、関節部114は、少なくともピッチ軸及びロール軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、胴体部101に対してリンク112をピッチ軸及びロール軸回りに駆動させることができる。なお、胴体部101に近い順に、リンク112を第1リンク、リンク111を第2リンクとも呼ぶことにする。また、胴体部101に近い順に、関節部114を第1関節、関節部113を第2関節とも呼ぶことにする。 The leg 110 includes two links 111 and 112, and a joint portion 113 connecting the link 111 and the link 112. The other end (lower end) of the link 111 corresponds to the sole of the foot and is installed on the floor. Further, the upper end of the link 112 is attached to the body portion 101 via the joint portion 114. The joint portion 113 has a degree of freedom of rotation around the pitch axis, and the link 111 can be driven around the pitch axis with respect to the link 112 by an actuator (not shown) such as a pitch axis rotation motor. Further, the joint portion 114 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 112 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to. The link 112 is also referred to as a first link, and the link 111 is also referred to as a second link in order of proximity to the body portion 101. Further, the joint portion 114 is also referred to as a first joint, and the joint portion 113 is also referred to as a second joint in the order of proximity to the body portion 101.
 また、脚120は、2本のリンク121及び122と、リンク121とリンク122間を接続する関節部123を備えている。リンク121の他端(下端)は足底に相当し、床面に設置している。また、リンク122の上端は、関節部124を介して胴体部101に取り付けられている。関節部123は、ピッチ軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、リンク122に対してリンク121をピッチ軸回りに駆動させることができる。また、関節部124は、少なくともピッチ軸及びロール軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、胴体部101に対してリンク122をピッチ軸及びロール軸回りに駆動させることができる。なお、胴体部101に近い順に、リンク122を第1リンク、リンク121を第2リンクとも呼ぶことにする。また、胴体部101に近い順に、関節部124を第1関節、関節部123を第2関節とも呼ぶことにする。 Further, the leg 120 is provided with two links 121 and 122 and a joint portion 123 connecting the link 121 and the link 122. The other end (lower end) of the link 121 corresponds to the sole of the foot and is installed on the floor surface. Further, the upper end of the link 122 is attached to the body portion 101 via the joint portion 124. The joint portion 123 has a degree of freedom of rotation around the pitch axis, and the link 121 can be driven around the pitch axis with respect to the link 122 by an actuator (not shown) such as a pitch axis rotation motor. Further, the joint portion 124 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 122 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to. The link 122 is also referred to as a first link, and the link 121 is also referred to as a second link in order of proximity to the body portion 101. Further, the joint portion 124 is also referred to as a first joint, and the joint portion 123 is also referred to as a second joint in the order of proximity to the body portion 101.
 また、脚130は、2本のリンク131及び132と、リンク131とリンク132間を接続する関節部133を備えている。リンク131の他端(下端)は足底に相当し、床面に設置している。また、リンク132の上端は、関節部134を介して胴体部101に取り付けられている。関節部133は、ピッチ軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、リンク132に対してリンク131をピッチ軸回りに駆動させることができる。また、関節部134は、少なくともピッチ軸及びロール軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、胴体部101に対してリンク132をピッチ軸及びロール軸回りに駆動させることができる。なお、胴体部101に近い順に、リンク132を第1リンク、リンク131を第2リンクとも呼ぶことにする。また、胴体部101に近い順に、関節部134を第1関節、関節部133を第2関節とも呼ぶことにする。 Further, the leg 130 includes two links 131 and 132, and a joint portion 133 that connects the link 131 and the link 132. The other end (lower end) of the link 131 corresponds to the sole of the foot and is installed on the floor. Further, the upper end of the link 132 is attached to the body portion 101 via the joint portion 134. The joint portion 133 has a degree of freedom of rotation around the pitch axis, and the link 131 can be driven around the pitch axis with respect to the link 132 by an actuator (not shown) such as a pitch axis rotation motor. Further, the joint portion 134 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 132 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to. The link 132 is also referred to as a first link, and the link 131 is also referred to as a second link in order of proximity to the body portion 101. Further, the joint portion 134 will be referred to as the first joint, and the joint portion 133 will be referred to as the second joint in the order of proximity to the body portion 101.
 また、脚140は、2本のリンク141及び142と、リンク141とリンク142間を接続する関節部143を備えている。リンク141の他端(下端)は足底に相当し、床面に設置している。また、リンク142の上端は、関節部144を介して胴体部101に取り付けられている。関節部143は、ピッチ軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、リンク142に対してリンク141をピッチ軸回りに駆動させることができる。また、関節部144は、少なくともピッチ軸及びロール軸回りの回転自由度を有し、ピッチ軸回転モータなどのアクチュエータ(図示しない)によって、胴体部101に対してリンク142をピッチ軸及びロール軸回りに駆動させることができる。なお、胴体部101に近い順に、リンク142を第1リンク、リンク141を第2リンクとも呼ぶことにする。また、胴体部101に近い順に、関節部144を第1関節、関節部143を第2関節とも呼ぶことにする。 Further, the leg 140 is provided with two links 141 and 142 and a joint portion 143 connecting between the link 141 and the link 142. The other end (lower end) of the link 141 corresponds to the sole of the foot and is installed on the floor. Further, the upper end of the link 142 is attached to the body portion 101 via the joint portion 144. The joint portion 143 has a degree of freedom of rotation around the pitch axis, and the link 141 can be driven around the pitch axis with respect to the link 142 by an actuator (not shown) such as a pitch axis rotation motor. Further, the joint portion 144 has at least a degree of freedom of rotation around the pitch axis and the roll axis, and the link 142 is provided around the pitch axis and the roll axis with respect to the body portion 101 by an actuator (not shown) such as a pitch axis rotation motor. Can be driven to. The link 142 is also referred to as a first link, and the link 141 is also referred to as a second link in order of proximity to the body portion 101. Further, the joint portion 144 is also referred to as a first joint, and the joint portion 143 is also referred to as a second joint in the order of proximity to the body portion 101.
 図示のロボット装置100は4脚で構成されるが、2脚又は3脚、あるいは五5脚以上を装備していても、本明細書で開示する技術を適用可能であることを理解されたい。 Although the robot device 100 shown in the figure is composed of four legs, it should be understood that the technology disclosed in the present specification can be applied even if the robot device 100 is equipped with two legs, three legs, or 55 legs or more.
 また、図1では省略したが、胴体部101には、カメラやスピーカなどを備えた頭部や、作業用のアームなども装備されていてもよい。 Further, although omitted in FIG. 1, the body portion 101 may be equipped with a head equipped with a camera, a speaker, or the like, an arm for work, or the like.
 図2には、ロボット装置100の電気系統の構成例を示している。 FIG. 2 shows a configuration example of the electrical system of the robot device 100.
 ロボット装置100は、外部センサ部210として、ロボット装置100の左右の「目」として機能するカメラ211L及び211R、「耳」として機能するマイクロホン212、並びにタッチセンサ213などがそれぞれ所定位置に配設されている。カメラ211L及び211Rには、例えばCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子で構成されるカメラが用いられる。 In the robot device 100, as an external sensor unit 210, cameras 211L and 211R that function as the left and right "eyes" of the robot device 100, a microphone 212 that functions as an "ear", a touch sensor 213, and the like are arranged at predetermined positions, respectively. ing. As the cameras 211L and 211R, for example, cameras composed of image pickup elements such as CMOS (Complementary Metal Oxide Semiconductor) and CCD (Charge Coupled Device) are used.
 なお、図示を省略するが、外部センサ部210は、その他のセンサをさらに含んでいてもよい。例えば、外部センサ部210は、各脚110、120、130、140の足底に作用する床反力などを計測する足底センサを含んでいる。各足底センサは、例えば6DOF(Degree Of Freedom)の力センサなどで構成される。 Although not shown, the external sensor unit 210 may further include other sensors. For example, the external sensor unit 210 includes a sole sensor that measures the floor reaction force acting on the soles of the legs 110, 120, 130, and 140. Each sole sensor is composed of, for example, a 6DOF (Degree Of Freedom) force sensor or the like.
 また、外部センサ部210は、LIDAR(Laser Imaging Detection and Ranging)、TOF(Time OF Flight)センサ、レーザーレンジセンサといった所定のターゲットの方向並びに距離を測定又は推定可能なセンサを備えていてもよい。また、外部センサ部210は、GPS(Global Positioning System)センサや、赤外線センサ、温度センサ、湿度センサ、照度センサなどを含んでいてもよい。 Further, the external sensor unit 210 may include a sensor capable of measuring or estimating the direction and distance of a predetermined target such as a LIDAR (Laser Imaging Detection and Ranking), a TOF (Time OF Light) sensor, and a laser range sensor. Further, the external sensor unit 210 may include a GPS (Global Positioning System) sensor, an infrared sensor, a temperature sensor, a humidity sensor, an illuminance sensor, and the like.
 また、ロボット装置100は、出力部としてスピーカ221や表示部222などが、それぞれ所定位置に配設されている。スピーカ221は、音声を出力して、例えば音声ガイダンスを行う機能する。また、表示部222には、ロボット装置100の状態や、ユーザに対する応答を表示する。 Further, in the robot device 100, a speaker 221 and a display unit 222 are arranged at predetermined positions as output units. The speaker 221 functions to output voice and provide voice guidance, for example. Further, the display unit 222 displays the state of the robot device 100 and the response to the user.
 制御ユニット230内には、メイン制御部231と、バッテリ232と、バッテリセンサ233A及び加速度センサ233Bなどからなる内部センサ部233と、外部メモリ234と、通信部235が配設されている。 In the control unit 230, an internal sensor unit 233 including a main control unit 231, a battery 232, a battery sensor 233A, an acceleration sensor 233B, etc., an external memory 234, and a communication unit 235 are arranged.
 外部センサ部210のカメラ211L及び211Rは、周囲の状況を撮像し、得られた画像信号S1Aを、メイン制御部231に送出する。マイクロホン212は、ユーザから音声入力を集音し、得られた音声信号S1Bを、メイン制御部231にそれぞれ送出する。ユーザからロボット装置100に与えられる入力音声には、起動ワードや、「歩け」、「右へ曲がれ」、「急げ」、「止まれ」などの各種命令音声(音声コマンド)なども含まれる。なお、図2では1個のマイクロホン82しか描いていないが、左右の耳のように、2個以上のマイクロホンを備えて、音源方向を推定するようにしてもよい。 The cameras 211L and 211R of the external sensor unit 210 image the surrounding situation and send the obtained image signal S1A to the main control unit 231. The microphone 212 collects voice input from the user and sends the obtained voice signal S1B to the main control unit 231. The input voice given to the robot device 100 by the user includes an activation word and various command voices (voice commands) such as "walk", "turn right", "hurry", and "stop". Although only one microphone 82 is drawn in FIG. 2, two or more microphones may be provided like the left and right ears to estimate the sound source direction.
 また、外部センサ部の210のタッチセンサ213は、例えば胴体部101の載置面に敷設されており、荷物が載せられた場所で受けた圧力を検出して、その検出結果を、圧力検出信号S1Cとしてメイン制御部231に送出する。 Further, the touch sensor 213 of 210 of the external sensor unit is laid, for example, on the mounting surface of the body portion 101, detects the pressure received at the place where the luggage is placed, and outputs the detection result to the pressure detection signal. It is sent to the main control unit 231 as S1C.
 内部センサ部233のバッテリセンサ233Aは、所定の周期毎にバッテリ232のエネルギ残量を検出して、検出結果をバッテリ残量検出信号S2Aとして、メイン制御部231に送出する。 The battery sensor 233A of the internal sensor unit 233 detects the remaining energy of the battery 232 at predetermined intervals, and sends the detection result as the battery remaining amount detection signal S2A to the main control unit 231.
 加速度センサ233Bは、ロボット装置100の移動について、所定の周期毎に3軸方向(x(ロール)軸、y(ピッチ)軸及びz(ヨー)軸)の加速度を検出して、その検出結果を、加速度検出信号S2Bとして、メイン制御部231に送出する。加速度センサ233Bは、例えば、3軸のジャイロ及び3方向の加速度センサなどを搭載したIMU(Inertial Measurement Unit)であってもよい。IMUを用いて、ロボット装置100本体又は胴体部101の角度や加速度を計測することができる。 The acceleration sensor 233B detects acceleration in three axial directions (x (roll) axis, y (pitch) axis, and z (yaw) axis) at predetermined cycles for the movement of the robot device 100, and obtains the detection result. , Is sent to the main control unit 231 as an acceleration detection signal S2B. The acceleration sensor 233B may be, for example, an IMU (Inertial Measurement Unit) equipped with a three-axis gyro and a three-direction acceleration sensor. The IMU can be used to measure the angle and acceleration of the robot device 100 body or body 101.
 外部メモリ234は、プログラムやデータ、及び制御パラメータなどを記憶しており、そのプログラムやデータを必要に応じてメイン制御部231に内蔵されるメモリ231Aに供給する。また、外部メモリ234は、メイン制御部231内のメモリ231Aから受け取ったデータなどを記憶する。なお、外部メモリ234は、例えばSDカードのようなカートリッジ式のメモリカードとして構成され、ロボット装置100本体(若しくは、制御ユニット230)から着脱可能であってもよい。 The external memory 234 stores programs, data, control parameters, etc., and supplies the programs and data to the memory 231A built in the main control unit 231 as needed. Further, the external memory 234 stores data and the like received from the memory 231A in the main control unit 231. The external memory 234 may be configured as a cartridge type memory card such as an SD card, and may be detachable from the robot device 100 main body (or the control unit 230).
 通信部235は、例えばWi-Fi(登録商標)やLTE(Long Term Evolution)などの通信方式に基づいて外部とデータ通信を行う。例えば、メイン制御部231で実行するアプリケーションなどのプログラムや、プログラムの実行に必要となるデータを、通信部235を介して外部から取得することができる。 The communication unit 235 performs data communication with the outside based on a communication method such as Wi-Fi (registered trademark) or LTE (Long Term Evolution). For example, a program such as an application executed by the main control unit 231 and data required for executing the program can be acquired from the outside via the communication unit 235.
 メイン制御部231は、メモリ231Aを内蔵している。メモリ231Aは、プログラムやデータを記憶しており、メイン制御部231は、メモリ231Aに記憶されたプログラムを実行することで、各種の処理を行う。すなわち、メイン制御部231は、外部センサ部210のカメラ211L及び211R、マイクロホン212、及びタッチセンサ213からそれぞれ供給される、画像信号S1A、音声信号S1B、及び圧力検出信号S1C(以下、これらをまとめて外部センサ信号S1と称する)と、内部センサ部233のバッテリセンサ233A及び加速度センサ233Bなどからそれぞれ供給される、バッテリ残量検出信号S2A及び加速度検出信号S2B(以下、これらをまとめて内部センサ信号S2と称する)に基づいて、ロボット装置100の周囲及び内部の状況や、ユーザからの指令、又はユーザからの働きかけの有無などを判断する。なお、メモリ231A内には、ロボット装置100本体の重量や重心位置(但し、胴体部101に荷物を置いていない状態)の情報があらかじめ格納されていてもよい。 The main control unit 231 has a built-in memory 231A. The memory 231A stores programs and data, and the main control unit 231 performs various processes by executing the programs stored in the memory 231A. That is, the main control unit 231 includes the image signal S1A, the audio signal S1B, and the pressure detection signal S1C (hereinafter, these are collectively supplied) from the cameras 211L and 211R of the external sensor unit 210, the microphone 212, and the touch sensor 213, respectively. The external sensor signal S1 and the battery remaining amount detection signal S2A and the acceleration detection signal S2B (hereinafter, these are collectively referred to as an internal sensor signal) supplied from the battery sensor 233A and the acceleration sensor 233B of the internal sensor unit 233, respectively. Based on (referred to as S2), it is determined whether or not the surrounding and internal conditions of the robot device 100, a command from the user, or an action from the user. Information on the weight and the position of the center of gravity of the robot device 100 (however, no luggage is placed on the body 101) may be stored in the memory 231A in advance.
 そして、メイン制御部231は、ロボット装置100の周囲及び内部の状況や、ユーザからの指令、又はユーザからの働きかけの有無の判断結果と、内部メモリ231Aにあらかじめ格納されている制御プログラム、あるいはそのとき装填されている外部メモリ234に格納されている各種制御パラメータなどに基づいて、ロボット装置100の行動やユーザに対して発動する表出動作を決定し、その決定結果に基づく制御コマンドを生成して、各サブ制御部241、242、…に送出する。 Then, the main control unit 231 determines the surrounding and internal conditions of the robot device 100, the command from the user, or the presence / absence of the action from the user, and the control program stored in advance in the internal memory 231A, or a control program thereof. Based on various control parameters stored in the external memory 234 loaded at the time, the action of the robot device 100 and the expression action to be activated for the user are determined, and a control command based on the decision result is generated. Then, it is sent to each sub-control unit 241, 242, ....
 サブ制御部241、242、…は、それぞれロボット装置100内の各サブシステムの動作制御を担当しており、メイン制御部231から供給された制御コマンドに基づいて、サブシステムを駆動する。上述した可動脚110、120、130、140はサブシステムに相当し、それぞれサブ制御部241、242、243、244によって駆動制御される。具体的には、サブ制御部241、242、243、244は、関節部113、114、123、124、133、134、143、144の駆動制御と、荷重補償機構(後述)の初期変位量設定などの制御を実施する。 The sub-control units 241 and 242, ... Are each in charge of operating control of each subsystem in the robot device 100, and drive the subsystems based on the control commands supplied from the main control unit 231. The movable legs 110, 120, 130, and 140 described above correspond to subsystems, and are driven and controlled by sub-control units 241, 242, 243, and 244, respectively. Specifically, the sub control units 241, 242, 243, and 244 drive control of the joint portions 113, 114, 123, 124, 133, 134, 143, and 144, and set the initial displacement amount of the load compensation mechanism (described later). And so on.
B.脚故障時の動作
 ロボット装置100は、脚110、120、130、140を同期的に動作させて(立脚と遊脚を交互に切り替えながら)、歩行する。その際、脚110、120、130、140の足先は、着床すなわち床面との衝突を繰り返すことから、故障が発生し易い。脚110、120、130、140のうちいずれかが故障すると、残りの正常な脚のみによる歩行が困難となり、さらに姿勢が不安定となり、転倒により路面や周囲の人や物体と衝突する危険もある。
B. Operation at the time of leg failure The robot device 100 walks by synchronously operating the legs 110, 120, 130, and 140 (while switching between the standing leg and the swing leg alternately). At that time, the toes of the legs 110, 120, 130, and 140 repeatedly land on the floor, that is, collide with the floor surface, so that a failure is likely to occur. If any of the legs 110, 120, 130, or 140 fails, it becomes difficult to walk with only the remaining normal legs, the posture becomes unstable, and there is a risk of colliding with the road surface or surrounding people or objects due to a fall. ..
 移動が困難となったロボット装置100は、人間が介在しない限り復旧できない。また、移動が困難なロボット装置100をそのまま放置すると、空間を共有する人間や他のロボットに対する新たな障害物となってしまい、2次被害などの重篤な問題を招来するおそれがある。故障したロボット装置100が引き起こす具体例として、以下を挙げることができる。 The robot device 100 that has become difficult to move cannot be restored without human intervention. Further, if the robot device 100, which is difficult to move, is left as it is, it becomes a new obstacle to humans and other robots sharing the space, which may cause serious problems such as secondary damage. Specific examples caused by the failed robot device 100 include the following.
(例1)道路の真ん中に停止したロボット装置100があり、後続の移動体の妨げになる。また、停止中のロボット装置100と他の移動体との追突など2次被害を誘発する。 (Example 1) There is a robot device 100 stopped in the middle of the road, which hinders the following moving body. In addition, it induces secondary damage such as a rear-end collision between the stopped robot device 100 and another moving body.
(例2)放射線環境下などの人間が侵入するには困難な空間で作業中に、ロボット装置100が故障により停止しても、人間が修理に行くことは極めて困難である。停止中のロボット装置100が通路を塞いでしまうと、作業中の他の移動体や、回収に向かった他の移動体の作業の難易度を挙げてしまう。 (Example 2) Even if the robot device 100 stops due to a failure while working in a space where it is difficult for humans to invade, such as in a radiation environment, it is extremely difficult for humans to go to repair. If the stopped robot device 100 blocks the passage, the difficulty of the work of the other moving body during work and the other moving body toward recovery will be raised.
 ロボット装置100による作業を開始させる際に、事前故障検出を実施していない、又は検出のレベルが低いと、作業中の脚の故障によりロボット装置100が停止する可能性が高い。しかしながら、検出のレベルを高めたとしても、作業中の脚の故障を完全に防ぐことは不可能である。 When the work by the robot device 100 is started, if the preliminary failure detection is not performed or the detection level is low, there is a high possibility that the robot device 100 will stop due to a leg failure during the work. However, even if the level of detection is increased, it is not possible to completely prevent leg failure during work.
 また、作業中に一部の脚が故障した後に、残りの利用可能な脚のみで動作できるようにロボット装置100が設計されている訳ではない。このため、作業中に一部の脚が故障すると、残りの脚のみでは歩行動作が不安定となり、以降の作業を完全に履行することは難しい。一部の脚が故障しても利用可能な脚で動作可能となるように設計すると(特許文献2を参照のこと)、装置重量や装置コストが増大してしまう。 Also, the robot device 100 is not designed so that it can operate with only the remaining available legs after some legs break down during work. For this reason, if a part of the legs breaks down during the work, the walking motion becomes unstable only with the remaining legs, and it is difficult to completely perform the subsequent work. If it is designed so that it can operate with the available legs even if some of the legs break down (see Patent Document 2), the device weight and the device cost increase.
 そこで、本明細書では、ロボット装置100の少なくとも一部の脚が故障したときに、2次被害のリスクを最小限に抑えるための動作方法について、以下で提案する。 Therefore, in the present specification, the operation method for minimizing the risk of secondary damage when at least a part of the legs of the robot device 100 breaks down is proposed below.
B-1.脚故障時の動作例1
 本明細書で提案する動作方法の1つの特徴は、ロボット装置100が、少なくとも一部の脚が故障したときに、残りの正常な脚のみを利用して歩行する形態に変化させて安全な場所まで退避して、2次被害のリスクを抑制する点にある。
B-1. Operation example when a leg breaks down 1
One of the features of the operation method proposed in the present specification is that the robot device 100 is changed to a walking mode using only the remaining normal legs when at least a part of the legs breaks down, and is a safe place. The point is to evacuate to and reduce the risk of secondary damage.
 安全な場所への退避とは、例えば、ロボット装置100を通路の端に寄せて、同じ通路を使用する他の移動体の経路から外れることで実現する。また、通路の直角のカーブ付近で脚の故障が発生したときには、一般にカーブの内側を通ることから、カーブの外側が安全な退避場所ということになる。 Evacuation to a safe place is realized, for example, by moving the robot device 100 to the end of the passage and deviating from the path of another moving body using the same passage. In addition, when a leg failure occurs near a curve at a right angle to the passage, it generally passes through the inside of the curve, so that the outside of the curve is a safe evacuation site.
 そして、ロボット装置100が安全な場所へ退避する際に、支持多角形が最大となるように、正常な脚のみを利用する形態に変化させて、歩行動作を継続させることを試みる。支持多角形は、すべての支持脚の接地面を凸包する多角形であり、例えばZMP(Zero Moment Point)又は質量重心を支持多角形内に収容することが安定度判別規範となる。一部の脚が故障して使用不能になると、ロボット装置100の姿勢は不安定となるが、残りの利用可能な脚で支持多角形を大きくすることで、安定化を図る。 Then, when the robot device 100 evacuates to a safe place, the robot device 100 is changed to a form in which only normal legs are used so that the supporting polygon is maximized, and an attempt is made to continue the walking motion. The support polygon is a polygon that convexly wraps the ground planes of all the support legs. For example, it is a standard for determining stability that the ZMP (Zero Moment Point) or the center of gravity of the mass is housed in the support polygon. If some of the legs break down and become unusable, the posture of the robot device 100 becomes unstable, but the remaining available legs increase the support polygon to stabilize it.
 また、支持多角形の幾何重心の進行方向のマージンが最大となるように、残りの利用可能な脚による歩行形態を変化させることで、ロボット装置100が安全な場所へ退避中の姿勢を安定化させて、転倒を防止することができる。 In addition, the robot device 100 stabilizes its posture while retracting to a safe place by changing the walking form with the remaining available legs so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized. It is possible to prevent the fall.
 図3には、ロボット装置100の右前脚120(RF)が故障したときの、残りの左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)で構成される支持多角形300を例示している。このとき、ロボット装置100が前方を進行方向とする場合には、支持多角形300の幾何重心の進行方向のマージンは、参照番号301に示す通りである。 FIG. 3 is composed of the remaining left front leg 110 (LF), left rear leg 130 (LR), and right rear leg 140 (RR) when the right front leg 120 (RF) of the robot device 100 fails. The support polygon 300 is illustrated. At this time, when the robot device 100 has the forward direction as the traveling direction, the margin in the traveling direction of the geometric center of gravity of the support polygon 300 is as shown in Reference No. 301.
 一方、図4には、支持多角形の幾何重心の進行方向のマージンが最大となるように、左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)による歩行形態に変化させた場合の支持多角形400を例示している。このとき、ロボット装置100が前方を進行方向とする場合には、支持多角形400の幾何重心の進行方向のマージンは参照番号401に示す通りであり、歩行形態を変化させる前の幾何重心のマージン301(図3を参照のこと)よりも拡張していることが分かる。ロボット装置100の進行方向に慣性が作用するが、支持多角形400の幾何重心の進行方向のマージン401が拡張されることにより、ZMP又は質量重心を支持多角形400内に収容することが容易となり、安全な場所まで退避するロボット装置100の動作が安定化する。 On the other hand, in FIG. 4, walking by the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized. The support polygon 400 when changed to a morphology is illustrated. At this time, when the robot device 100 has the forward direction as the traveling direction, the margin in the traveling direction of the geometric center of gravity of the support polygon 400 is as shown in Reference No. 401, and the margin of the geometric center of gravity before changing the walking form. It can be seen that it is more extended than 301 (see FIG. 3). Although inertia acts in the traveling direction of the robot device 100, the ZMP or the mass center of gravity can be easily accommodated in the supporting polygon 400 by expanding the margin 401 in the traveling direction of the geometric center of gravity of the supporting polygon 400. The operation of the robot device 100 that retracts to a safe place is stabilized.
 通路の直角のカーブ付近でロボット装置100の右前脚120(RR)の故障が発生したときに、残りの利用可能な脚による歩行形態を変化させる仕組みについて、図5及び図6を参照しながら説明する。 A mechanism for changing the walking mode by the remaining available legs when a failure of the right front leg 120 (RR) of the robot device 100 occurs near a curve at a right angle of the passage will be described with reference to FIGS. 5 and 6. To do.
 図5には、通路の直角のカーブの手前で、ロボット装置100の右前脚120(RF)が故障した様子を示している。このとき、残りの左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)の3脚で、ロボット装置500の支持多角形500が構成される。この時点では、支持多角形500の形状は、退避場所501とは無関係である。 FIG. 5 shows a state in which the right front leg 120 (RF) of the robot device 100 has failed before the right-angled curve of the passage. At this time, the remaining three legs, the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR), form the support polygon 500 of the robot device 500. At this point, the shape of the support polygon 500 is independent of the shelter 501.
 図6には、ロボット装置100がカーブの外側に設定された退避場所601へ移動する際に、左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)による歩行動作の形態を変化させた様子を示している。安全な場所に退避する際の支持多角形600は、左前脚110(LF)の足先を頂点とし、且つその頂点が退避場所601の方向を向く2等辺三角形として構成される。そして、ロボット装置100の進行方向は退避場所601に向かう方向であり、支持多角形600の幾何重心の進行方向のマージンが拡張している。したがって、ZMP又は質量重心を支持多角形600内に収容することが容易となり、安全な場所まで退避するロボット装置100の動作が安定化する。 In FIG. 6, when the robot device 100 moves to the evacuation site 601 set outside the curve, walking by the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR). It shows how the form of movement was changed. The support polygon 600 for retracting to a safe place is configured as an isosceles triangle having the tip of the left front leg 110 (LF) as an apex and the apex facing the evacuation location 601. The traveling direction of the robot device 100 is the direction toward the evacuation site 601, and the margin in the traveling direction of the geometric center of gravity of the support polygon 600 is expanded. Therefore, it becomes easy to accommodate the ZMP or the center of gravity of the mass in the support polygon 600, and the operation of the robot device 100 that retracts to a safe place is stabilized.
 ロボット装置100が3脚を使って移動する際、そのうちいずれか1脚を遊脚とし、残りの2脚を立脚とする動作を繰り返し実行することになる。2脚でロボット装置100本体を支持する区間では、支持多角形は立脚となる2脚を結ぶ領域のみとなり姿勢が不安定となってしまう。そこで、現在遊脚としている脚の次の着床点を、将来的な安定化を考慮して計画する。このようにすることで、ロボット装置100の姿勢を保ちつつ、転倒しないような移動を実現することができる。 When the robot device 100 moves using three legs, the operation of using one of the legs as a free leg and the remaining two legs as a stance is repeatedly executed. In the section where the robot device 100 main body is supported by the two legs, the supporting polygon is only the area connecting the two legs that serve as the stance, and the posture becomes unstable. Therefore, the next landing point of the leg that is currently used as a free leg is planned in consideration of future stabilization. By doing so, it is possible to realize movement so as not to fall while maintaining the posture of the robot device 100.
 また、ロボット装置100が3脚を使って移動する際、さらなる破損のリスクを極力低減するために、残りの利用可能な脚を1脚ずつ遊脚に切り替えて、歩行により移動するようにする。但し、バランスを崩して立脚と遊脚の切り替えを実施し難いときや、緊急に退避したい場合、その他、故障した脚の本数や、ロボット装置100の重量バランスなどの事情のために、歩行による退避動作を実施できない場合には、跳躍などによって実現するようにしてもよい。 Further, when the robot device 100 moves using three legs, in order to reduce the risk of further damage as much as possible, the remaining available legs are switched to swing legs one by one so that the robot device 100 moves by walking. However, if it is difficult to switch between standing and swinging legs due to imbalance, or if you want to evacuate urgently, or because of other reasons such as the number of broken legs or the weight balance of the robot device 100, evacuation by walking. If the operation cannot be performed, it may be realized by jumping or the like.
 図7には、ロボット装置100の、右前脚120(RF)の故障前後の歩容の一例を示している。同図では、LFは左前脚110、RFは右前脚120、LRは左後脚130、RRは右後脚140を示し、横方向を時間方向として、脚毎の状態の遷移(遊脚又は立脚のいずれであるか、並びに故障しているか)を示している。なお、ロボット装置100は、所定の歩行周期で歩容を実施するものとし、同図では3周期分の歩容を例示している。 FIG. 7 shows an example of the gait before and after the failure of the right front leg 120 (RF) of the robot device 100. In the figure, LF indicates the left front leg 110, RF indicates the right front leg 120, LR indicates the left rear leg 130, and RR indicates the right rear leg 140, and the transition of the state for each leg (swing or standing leg) with the lateral direction as the time direction. Which of the above, and whether it is out of order) is shown. The robot device 100 assumes that the gait is performed in a predetermined walking cycle, and the figure illustrates the gait for three cycles.
 図7中、第1周期では、4脚がすべて正常に動作して、通常の歩行動作を実施している。第2周期に入ると、右前脚120(RF)が故障して、動作不能となっている。第2周期以降では、残りの利用可能な右前脚(RF)、脚130は左後足(LR)、脚140は右後足(RR)が同時に遊脚となり、跳躍を実施している区間を有している。また、第3周期では、利用可能な右前脚(RF)、脚130は左後足(LR)、脚140は右後足(RR)を1脚ずつ遊脚に切り替えて、形態を変更した歩行動作を実施している。 In FIG. 7, in the first cycle, all four legs are operating normally, and normal walking motion is performed. In the second cycle, the right front leg 120 (RF) failed and became inoperable. In the second and subsequent cycles, the remaining available right front leg (RF), leg 130 with left hind leg (LR), and leg 140 with right hind leg (RR) at the same time are swinging sections. Have. In the third cycle, the available right front leg (RF), leg 130 is switched to the left hind leg (LR), and leg 140 is switched to the right hind leg (RR) one by one, and the walking is changed in form. The operation is being carried out.
B-2.脚故障時の動作例2
 左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)による歩行形態に変化させる場合、故障した右前脚120(RF)が邪魔にならない位置へと移動させることが好ましい。
B-2. Operation example 2 when a leg breaks down
When changing to a walking mode with the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR), the failed right front leg 120 (RF) may be moved to a position where it does not get in the way. preferable.
 図8及び図9には、故障した右前脚120(RF)が邪魔にならない位置へと移動させた場合の、ロボット装置100の歩容例を示している。但し、図8は、ロボット装置100を正面から眺めた様子を示し、図9は、ロボット装置を右側面から眺めた様子を示している。図示のように、右前脚120(RF)の関節部123及び124をそれぞれピッチ軸回りに駆動して、リンクを胴体部101に向かって折り畳むようにして退避させることによって、邪魔にならないようにしている。また、左前脚110の関節部114をロール軸回りに駆動して、足先を胴体部101の中央付近に寄せることによって、支持多角形が左前脚110(LF)の足先を頂点とする2等辺三角形となるような支持多角形を構成して、支持多角形の幾何重心の進行方向のマージンが最大となるようにしている。 8 and 9 show an example of the gait of the robot device 100 when the failed right front leg 120 (RF) is moved to a position where it does not get in the way. However, FIG. 8 shows a state in which the robot device 100 is viewed from the front, and FIG. 9 shows a state in which the robot device is viewed from the right side. As shown in the figure, the joints 123 and 124 of the right front leg 120 (RF) are driven around the pitch axis, respectively, and the links are folded and retracted toward the body 101 so as not to get in the way. There is. Further, by driving the joint portion 114 of the left front leg 110 around the roll axis and moving the toes closer to the center of the body portion 101, the supporting polygon has the toes of the left front leg 110 (LF) as the apex. A support polygon that becomes an isosceles triangle is constructed so that the margin in the traveling direction of the geometric center of gravity of the support polygon is maximized.
 なお、故障した脚が、他の利用可能な脚の歩行動作の邪魔にならないようにする他の方法として、故障した脚を胴体部101から取り外してしまうことも考えられる。故障した脚を、図8並びに図9に示したように、邪魔にならない位置に退避できないような場合には、取り外してしまう方法は有効である。故障した脚を取り外すことによって装置重量が軽減して、歩行し易くなるというメリットもある。但し、脚110~140が胴体部101から着脱可能な構造で、且つ、メイン制御部231などからの指令によって脚110~140の取り外しを実施できる構成であることを前提とする。但し、取り外された後の脚が、作業空間を共有する他の移動体の障害物とならないように、取り外す場所を十分に留意する必要がある。脚110~140は、第1関節で脚全体を胴体部101から着脱可能な構造であってもよいし、あるいは第2関節で第2リンク意向を着脱可能な構造であってもよいし、着脱する部位を指定することが可能であってもよい。 It should be noted that, as another method of preventing the broken leg from interfering with the walking motion of other available legs, it is possible to remove the broken leg from the body 101. As shown in FIGS. 8 and 9, when the broken leg cannot be retracted to an unobtrusive position, a method of removing the broken leg is effective. There is also an advantage that the weight of the device is reduced by removing the broken leg, which makes it easier to walk. However, it is premised that the legs 110 to 140 have a structure that can be attached and detached from the body portion 101, and that the legs 110 to 140 can be removed by a command from the main control unit 231 and the like. However, it is necessary to pay sufficient attention to the location of removal so that the legs after removal do not become obstacles to other moving objects that share the work space. The legs 110 to 140 may have a structure in which the entire leg can be attached / detached from the body portion 101 at the first joint, or the second link intention may be attached / detached at the second joint. It may be possible to specify the part to be used.
B-3.脚故障時の動作例3
 上記B-2で紹介した動作例2では、故障した脚を全く使用しないで、ロボット装置100の安全な場所への退避動作を実施する。ところが、ひとえに脚が故障したといっても、完全に使用できない場合と、部分的には使用可能で残存能力がある場合もある。
B-3. Operation example 3 when a leg breaks down
In the operation example 2 introduced in B-2 above, the robot device 100 is retracted to a safe place without using the broken leg at all. However, even if a leg breaks down, it may not be completely usable, or it may be partially usable and have residual capacity.
 例えば、右前脚120(RF)の第2リンク121若しくはさらにその遠位端側に障害があるが、第2リンク121を使用できない状態であっても、第1関節124は正常に動作して第1リンク122を使用可能で、残存能力を有する場合がある。このような場合、ロボット装置100は、故障した右前脚120(RF)の残存能力に合わせて、正常に動作する左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)の歩行形態を変更することによって、4脚すべてを利用しつつ形態を変えた歩行動作で安全な場所への退避動作を実施するようにしてもよい。 For example, even if the second link 121 of the right front leg 120 (RF) or the distal end side thereof is impaired, but the second link 121 cannot be used, the first joint 124 operates normally and the first joint 124 is the second. One link 122 can be used and may have residual capacity. In such a case, the robot device 100 operates normally according to the remaining capacity of the failed right front leg 120 (RF), the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 ( By changing the walking mode of RR), the evacuation motion to a safe place may be performed by the walking motion in which the walking motion is changed while using all four legs.
 図10には、ロボット装置100が故障した脚の残存能力に応じて、他の正常な脚の形態を変更して、歩行動作する様子を例示している。図示の例では、右前脚120(RF)の第1関節124は正常に動作して第1リンク122を使用可能で、残存能力を有する場合を想定している。このような場合、すべての脚110~140において、第2関節部により第2リンクを屈曲させて折り畳むことによって、足先に代えて第2関節部113、123、133、及び143を接地点として、4脚歩行によって安全な場所への退避動作を実施する。4脚を使用することで、3脚の場合によりも支持多角形が大きくなるので、安定した退避動作を実現することができる。 FIG. 10 illustrates a state in which the robot device 100 changes the form of another normal leg according to the remaining ability of the failed leg and walks. In the illustrated example, it is assumed that the first joint 124 of the right front leg 120 (RF) operates normally and the first link 122 can be used and has a residual capacity. In such a case, in all the legs 110 to 140, the second link is bent and folded by the second joint, so that the second joints 113, 123, 133, and 143 are used as grounding points instead of the toes. Evacuate to a safe place by walking on four legs. By using four legs, the supporting polygon becomes larger than in the case of three legs, so that a stable evacuation operation can be realized.
B-4.脚故障時の動作例4
 ここでは、各脚110~140の足先に車輪が搭載されているロボット装置100の故障時の動作について考察する。いずれか1本の脚が故障して3脚のみ利用可能な状態となった場合には、支持多角形が2等辺三角形となるように歩行形態を変化させることが望ましい。
B-4. Operation example 4 when a leg breaks down
Here, the operation at the time of failure of the robot device 100 in which the wheels are mounted on the toes of the legs 110 to 140 will be considered. When any one leg breaks down and only three legs can be used, it is desirable to change the walking form so that the supporting polygon becomes an isosceles triangle.
 図11には、ロボット装置100の右前脚120(RF)が故障したときの、残りの左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)で構成される支持多角形1100を例示している。この場合の支持多角形1100は、辺LF-RRを斜辺とし、進行方向に対して非対称(すなわち、左右非対称)な直角三角形となるが、旋回時に右後脚140(RR)の回転トルクが大きくなってしまう。 FIG. 11 is composed of the remaining left front leg 110 (LF), left rear leg 130 (LR), and right rear leg 140 (RR) when the right front leg 120 (RF) of the robot device 100 fails. The support polygon 1100 is illustrated. In this case, the support polygon 1100 has a side LF-RR as a hypotenuse and is a right triangle that is asymmetric (that is, left-right asymmetric) with respect to the traveling direction, but the rotational torque of the right hind leg 140 (RR) is large when turning. turn into.
 そこで、図12に示すように、2等辺三角形をした支持多角形1200となるように、左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)の歩行形態を変化させる。これによって、旋回時に右後脚140(RR)の回転トルクを軽減することができる。 Therefore, as shown in FIG. 12, the walking modes of the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) are changed so as to form a support polygon 1200 having an isosceles triangle. Change. As a result, the rotational torque of the right rear leg 140 (RR) can be reduced when turning.
 また、歩行形態を変更しない場合と、支持多角形が2等辺三角形となるように歩行形態を変更した場合とで、直進時の性能を比較してみる。 Also, let's compare the performance when going straight between the case where the walking form is not changed and the case where the walking form is changed so that the supporting polygon becomes an isosceles triangle.
 図13に示すように、歩行形態を変更しない場合、支持多角形1300の幾何重心と直進時の進行方向を結ぶ線が左右非対称となるため、車輪の制御が複雑になってしまう。ロボット装置100の質量バランスを考慮した上で、左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)のトルク配分を決めなければ、任意の方向へ移動することはできない。 As shown in FIG. 13, if the walking mode is not changed, the line connecting the geometric center of gravity of the supporting polygon 1300 and the traveling direction when going straight becomes asymmetrical, which complicates wheel control. If the torque distribution of the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) is not determined in consideration of the mass balance of the robot device 100, the robot device 100 should move in any direction. Can't.
 一方、図14に示すように、2等辺三角形をした支持多角形1400となるように、左前脚110(LF)、左後脚130(LR)、及び右後脚140(RR)の歩行形態を変化させる場合には、支持多角形1400の幾何重心と直進時の進行方向を結ぶ線が左右対称となるので、車輪の制御が簡単になる。支持多角形1400を2等辺三角形とした場合、主に左後脚130(LR)、及び右後脚140(RR)のトルクバランスを以下のように調整することで、任意の方向に移動することができる。 On the other hand, as shown in FIG. 14, the walking modes of the left front leg 110 (LF), the left rear leg 130 (LR), and the right rear leg 140 (RR) are arranged so as to form a support polygon 1400 having an isosceles triangle. When changing, the line connecting the geometric center of gravity of the supporting polygon 1400 and the traveling direction when traveling straight is symmetrical, so that the wheel can be easily controlled. When the support polygon 1400 is an isosceles triangle, it can be moved in any direction by adjusting the torque balance of the left hind leg 130 (LR) and the right hind leg 140 (RR) as follows. Can be done.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 このように、ロボット装置100の各脚110~140の足先が車輪となっている場合、図12及び図14に示したように、適切な支持多角形となるように利用可能な脚の形態を変更することで、利用可能な脚での車輪動作時の制御方法が簡単になり、また、車輪駆動モータにかかる負荷を軽減することができる。 As described above, when the toes of the legs 110 to 140 of the robot device 100 are wheels, as shown in FIGS. 12 and 14, the leg forms that can be used so as to form an appropriate supporting polygon. By changing, the control method during wheel operation with the available legs can be simplified and the load on the wheel drive motor can be reduced.
B-5.脚故障時の通知・警報
 本明細書で提案する、2次被害のリスクを最小限に抑えるための動作方法の他の特徴は、ロボット装置100の脚が故障したときや、ロボット装置100が安全な場所へ退避する期間中に、外部装置への通知や、周囲への警報を実施する。
B-5. Notification / Alarm at the time of leg failure Another feature of the operation method proposed in this specification for minimizing the risk of secondary damage is that when the leg of the robot device 100 breaks down or the robot device 100 is safe. During the period of evacuation to a suitable place, notify the external device and give an alarm to the surroundings.
 ここで言う外部装置は、例えばロボット装置100の管理者が操作する情報端末(スマートフォンやタブレットなど)である。外部装置への通知は、通信部235を介して、有線通信又は無線通信を利用して行われるものとする。例えば、Wi-Fi(登録商標)やBluetooth(登録商標)、LTE(Long Term Evolution)などの無線技術を利用して、ロボット装置100から外部装置への通知を行うことができる。ロボット装置100自身は、故障した脚の修理やロボット装置100本体の回収などを行うことができないから、管理者に通知して、修理や現場からの回収を依頼する。 The external device referred to here is, for example, an information terminal (smartphone, tablet, etc.) operated by the administrator of the robot device 100. The notification to the external device shall be made by using wired communication or wireless communication via the communication unit 235. For example, wireless technology such as Wi-Fi (registered trademark), Bluetooth (registered trademark), and LTE (Long Term Evolution) can be used to notify an external device from the robot device 100. Since the robot device 100 itself cannot repair the broken leg or collect the robot device 100 itself, it notifies the administrator and requests repair or collection from the site.
 例えば、ロボット装置100は、脚の故障診断の結果や、退避場所として選んだ位置の情報などを外部装置へ通知する。これに対し、管理者は、ロボット装置100からの通知を受けて、退避場所の指定や退避する動作の指示を、外部装置を介してロボット装置100に行うようにしてもよい。 For example, the robot device 100 notifies the external device of the result of the leg failure diagnosis and the information of the position selected as the evacuation location. On the other hand, the administrator may receive the notification from the robot device 100 and give the robot device 100 the designation of the evacuation location and the instruction of the evacuation operation via the external device.
 また、警報は、脚が故障したロボット装置100が通路上で停止していることや、このロボット装置100が安全な場所まで移動中であることを周囲に知らせるために行われる。警報は、スピーカ221からの音声メッセージの出力、ビープ音の発生、表示部222による文字表示、回転灯の点灯、あるいはロボット装置100が備えるその他の出力デバイスを利用して実施される。ロボット装置100が安全な場所に退避した以降も音声メッセージやビープ音が鳴り続けるとやかましいので、退避が完了すると音量を低下し音響出力を停止して、回転灯の点灯のみを継続して場所の通知のみを行うようにしてもよい。 In addition, an alarm is given to notify the surroundings that the robot device 100 with a broken leg is stopped on the aisle and that the robot device 100 is moving to a safe place. The alarm is executed by using the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Even after the robot device 100 has been evacuated to a safe place, it is noisy if the voice message and beep sound continue to be heard. Only notification may be given.
B-6.脚故障時の動作フロー
 図15には、ロボット装置100が一部の脚が故障したときに実行する動作手順をフローチャートの形式で示している。図示の動作手順は、メイン制御部231の統括的な制御下で実施されるものとする。
B-6. Operation Flow at the Time of Leg Failure FIG. 15 shows an operation procedure executed by the robot device 100 when a part of the legs fails in the form of a flowchart. The illustrated operation procedure shall be carried out under the overall control of the main control unit 231.
 ロボット装置100は、移動中にいずれかの脚110~140に故障が発生していないかどうかを常時モニタしている(ステップS1501)。 The robot device 100 constantly monitors whether or not any of the legs 110 to 140 has a failure during movement (step S1501).
 ここで、脚110~140の故障の検出方法は特に限定されない。例えば、関節駆動用のモータに発生するトルクが異常値を示す場合や、エンコーダなどを使って計測する関節の回転角が指示値から大きく逸脱する場合などに、脚の故障を検出することができる。 Here, the method of detecting the failure of the legs 110 to 140 is not particularly limited. For example, a leg failure can be detected when the torque generated in the joint drive motor shows an abnormal value, or when the rotation angle of the joint measured by using an encoder or the like greatly deviates from the indicated value. ..
 脚110~140のうちいずれかに故障が検出されると(ステップS1501のYes)、ロボット装置100は、まず外部装置への通知を実施する(ステップS1502)。 When a failure is detected in any of the legs 110 to 140 (Yes in step S1501), the robot device 100 first notifies the external device (step S1502).
 ここで言う外部装置は、例えばロボット装置100の管理者が操作する情報端末(スマートフォンやタブレットなど)である。あるいは、外部機器は、警報機や警光灯であってもよい。外部装置への通知は、通信部235を介して、有線通信又は無線通信を利用して行われるものとする。通知を受けた管理者は、脚の修理やロボット装置100本体の回収などを行うようにしてもよい。ロボット装置100は、本処理が終了するまで、外部装置への通知を継続して、安全な場所への退避など後続の作業の経過を逐次報告するようにしてもよい。 The external device referred to here is, for example, an information terminal (smartphone, tablet, etc.) operated by the administrator of the robot device 100. Alternatively, the external device may be an alarm or a warning light. The notification to the external device shall be made by using wired communication or wireless communication via the communication unit 235. The administrator who receives the notification may repair the legs, collect the robot device 100 main body, and the like. The robot device 100 may continue to notify the external device until this process is completed, and sequentially report the progress of subsequent work such as evacuation to a safe place.
 次いで、ロボット装置100は、故障を検出した脚の処置を実施する(ステップS1503)。 Next, the robot device 100 implements the treatment of the leg that has detected the failure (step S1503).
 ここで、故障脚の処置とは、故障脚が、残りの正常な脚を利用して安全な場所への退避する動作の邪魔にならない位置に退避させる動作を含む。例えば、ロボット装置100は、故障脚を折り畳むようして退避させるようにしてもよい(図8及び図9を参照のこと)。また、故障脚の処置として、故障脚をロボット装置100本体(若しくは、胴体部101)から取り外してしまうようにしてもよい。 Here, the treatment of the failed leg includes an operation of retracting the failed leg to a position that does not interfere with the operation of retracting to a safe place using the remaining normal legs. For example, the robot device 100 may fold and retract the failed leg (see FIGS. 8 and 9). Further, as a treatment for the broken leg, the broken leg may be removed from the robot device 100 main body (or the body portion 101).
 次いで、ロボット装置100は、安全な退避場所の探索を実施する(ステップS1504)。 Next, the robot device 100 searches for a safe evacuation site (step S1504).
 ロボット装置100は、カメラ211L及び211Rで撮影した周囲画像に基づいて、安全な場所を自律的に探索するようにしてもよい。安全な場所は、例えば通路の端である。通路の直角のカーブ付近でロボット装置100の脚が故障した場合には、そのカーブの外側が安全な場所となる(例えば、図6を参照のこと)。ロボット装置100は、SLAM(Simultaneously Localization and Mapping)法などの自己位置推定技術を利用して、安全な場所を探索するようにしてもよい。また、ロボット装置100は、外部装置(管理者が操作する情報端末など)からの無線指令に基づいて、安全な場所を探索するようにしてもよい。 The robot device 100 may autonomously search for a safe place based on the surrounding images taken by the cameras 211L and 211R. A safe place is, for example, the end of a passage. If the leg of the robot device 100 breaks down near a curve at right angles to the passage, the outside of that curve becomes a safe place (see, for example, FIG. 6). The robot device 100 may search for a safe place by using a self-position estimation technique such as a SLAM (Simultaneusly Localization and Mapping) method. Further, the robot device 100 may search for a safe place based on a wireless command from an external device (such as an information terminal operated by an administrator).
 そして、ロボット装置100は、安全な場所へ退避可能かどうかをチェックする(ステップS1505)。 Then, the robot device 100 checks whether or not it can be evacuated to a safe place (step S1505).
 安全な場所へ退避することが可能な場合には(ステップS1505のYes)、ロボット装置100は、退避場所へ移動中であることを周囲に知らせるための警報をスピーカ221から発しながら(ステップS1506)、脚の残存能力を利用してその退避場所への移動を実施する(ステップS1507)。 When it is possible to evacuate to a safe place (Yes in step S1505), the robot device 100 issues an alarm from the speaker 221 to notify the surroundings that the robot device 100 is moving to the evacuation place (step S1506). , The remaining capacity of the leg is used to move to the evacuation site (step S1507).
 ステップS1506では、ロボット装置100は、スピーカ221からの音声メッセージの出力、ビープ音の発生、表示部222による文字表示、回転灯の点灯、あるいはロボット装置100が備えるその他の出力デバイスを利用して、警報を実施する。 In step S1506, the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Implement an alarm.
 また、ステップS1507では、ロボット装置100は、残りの利用可能な脚を1脚ずつ遊脚に切り替えて(例えば、図7を参照のこと)、歩行により安全な退避場所への移動を行う。ロボット装置100は、利用可能な脚のみで歩行動作を行う場合には、故障した脚を胴体部101から取り外すようにしてもよい。故障した脚を取り外すことにより、利用可能な脚による歩行動作を干渉しなくて済む。また、故障した脚を取り外すことで装置重量が軽減され、歩行し易くなるというメリットもある。但し、取り外された後の脚が、作業空間を共有する他の移動体の障害物とならないように、取り外す場所を十分に留意する必要がある。 Further, in step S1507, the robot device 100 switches the remaining available legs to swing legs one by one (see, for example, FIG. 7), and moves to a safe evacuation site by walking. The robot device 100 may remove the failed leg from the body portion 101 when the walking motion is performed only with the available legs. By removing the broken leg, it does not interfere with the walking movements of the available legs. In addition, removing the broken leg reduces the weight of the device and has the advantage of making it easier to walk. However, it is necessary to pay sufficient attention to the location of removal so that the legs after removal do not become obstacles to other moving objects that share the work space.
 ロボット装置100は、安全な退避場所へ移動する際に、残りの利用可能な脚で支持多角形を大きくすることで、姿勢の安定化を図る。また、ロボット装置100は、支持多角形の幾何重心の進行方向のマージンが最大となるように、残りの利用可能な脚による歩行形態を変化させることで(例えば、図4を参照のこと)、姿勢を安定化させて、転倒を防止するようにする。 The robot device 100 stabilizes the posture by enlarging the supporting polygon with the remaining available legs when moving to a safe evacuation site. Further, the robot device 100 changes the walking posture by the remaining available legs so that the margin in the traveling direction of the geometric center of gravity of the supporting polygon is maximized (see, for example, FIG. 4). Stabilize your posture and prevent falls.
 あるいは、ステップS1507では、ロボット装置100は、故障した脚の残存能力に合わせて、正常な脚の歩行形態を変更することによって、すべての脚110~140(若しくは、故障した脚を含む複数の脚)を利用した歩行動作(例えば、図10を参照のこと)で、安全な退避場所への移動を行うようにしてもよい。 Alternatively, in step S1507, the robot device 100 changes all the legs 110 to 140 (or a plurality of legs including the failed leg) by changing the walking mode of the normal leg according to the remaining ability of the failed leg. ) May be used to move to a safe evacuation site by a walking motion (see, for example, FIG. 10).
 あるいは、ステップS1507では、ロボット装置100は、緊急に非難した場合や、歩行による退避動作を実施できない場合などには、跳躍などによって実現するようにしてもよい(例えば、図7を参照のこと)。 Alternatively, in step S1507, the robot device 100 may be realized by jumping or the like when it is urgently criticized or when the evacuation operation by walking cannot be performed (see, for example, FIG. 7). ..
 なお、ステップS1507において、いずれの方法により安全な場所へ退避するにせよ、ロボット装置100は、周辺環境を確認して、2次被害のリスクが低いと判断される場合に、移動を開始することが望ましい。 In step S1507, regardless of which method is used to evacuate to a safe place, the robot device 100 checks the surrounding environment and starts moving when it is determined that the risk of secondary damage is low. Is desirable.
 その後、ロボット装置100は、安全な退避場所に到達すると、そこで停止して(ステップS1508)、監理者などによって故障した脚の修理や、ロボット装置100本体の回収が行われるのを待機する。 After that, when the robot device 100 reaches a safe evacuation place, it stops there (step S1508) and waits for the supervisor or the like to repair the broken leg or collect the robot device 100 itself.
 また、ロボット装置100は、安全な退避場所で停止中であることを示す警報を発する(ステップS1509)。 Further, the robot device 100 issues an alarm indicating that the robot device 100 is stopped at a safe evacuation site (step S1509).
 ステップS1509では、ロボット装置100は、スピーカ221からの音声メッセージの出力、ビープ音の発生、表示部222による文字表示、回転灯の点灯、あるいはロボット装置100が備えるその他の出力デバイスを利用して、警報を実施する。但し、退避場所で安全がある程度保証されており、2次被害のリスクは低いので、ステップS1506において退避場所への移動中に行う警報よりも軽度の警報(例えば、回転灯の点灯のみなど)でもよい。 In step S1509, the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Implement an alarm. However, since the safety is guaranteed to some extent at the evacuation site and the risk of secondary damage is low, even a lighter alarm (for example, only turning on the revolving light) than the alarm given while moving to the evacuation site in step S1506 is used. Good.
 他方、ロボット装置100が安全な場所へ待機することができない場合には(ステップS1505のNo)、ロボット装置100は、脚の故障を検出した場所で停止して(ステップS1510)、通路上で停止していることを周囲に知らせるための警報を発する(ステップS1511)。 On the other hand, if the robot device 100 cannot stand by in a safe place (No in step S1505), the robot device 100 stops at the place where a leg failure is detected (step S1510) and stops on the aisle. An alarm is issued to notify the surroundings that the robot is doing (step S1511).
 ステップS1511では、ロボット装置100は、スピーカ221からの音声メッセージの出力、ビープ音の発生、表示部222による文字表示、回転灯の点灯、あるいはロボット装置100が備えるその他の出力デバイスを利用して、警報を実施する。但し、通路で停止することは、退避場所へ移動中よりも2次被害のリスクは極めて高いので、ステップS1506において退避場所への移動中に行う警報よりも強い警報(例えば、音声メッセージやビープ音の音量を大きくする、回転灯の光強度を高くするなど)を実施するようにする。 In step S1511, the robot device 100 uses the output of a voice message from the speaker 221, the generation of a beep sound, the character display by the display unit 222, the lighting of the revolving light, or other output device included in the robot device 100. Implement an alarm. However, stopping in the aisle has a much higher risk of secondary damage than moving to the evacuation site, so a stronger alarm (for example, a voice message or a beep) than the alarm given while moving to the evacuation site in step S1506. Increase the volume of the light, increase the light intensity of the revolving light, etc.).
C.効果
 ロボット装置100は、図15に示したような処理手順をあらかじめプログラムすることで、一部の脚が故障した際に、2次被害のリスクを低減することができる。
C. Effect The robot device 100 can reduce the risk of secondary damage when a part of the legs breaks down by pre-programming the processing procedure as shown in FIG.
 また、図15に示したような処理手順を実施するに際して、ロボット装置100は、1つの関節に対し2個以上のモータを装備したり、脚の故障に備えて多数の脚を装備したりする必要はなく、低コストで2次被害のリスクを軽減することができる。 Further, when carrying out the processing procedure as shown in FIG. 15, the robot device 100 is equipped with two or more motors for one joint, or is equipped with a large number of legs in case of a leg failure. There is no need, and the risk of secondary damage can be reduced at low cost.
 また、ロボット装置100は、脚の故障が発生したときに、外部装置(管理者が操作する情報端末など)に通知したり、周囲に報知したりする機能を備えているので、2次被害のリスクを軽減することができる。 Further, since the robot device 100 has a function of notifying an external device (such as an information terminal operated by an administrator) or notifying the surroundings when a leg failure occurs, it causes secondary damage. The risk can be reduced.
 また、ロボット装置100は、脚の故障が発生したときに、自律的に安全を確保する動作を実施するので、人間が介在しない環境下での利用耐性が高まる。 In addition, since the robot device 100 autonomously performs an operation of ensuring safety when a leg failure occurs, the resistance to use in an environment without human intervention is enhanced.
 また、ロボット装置100の各脚110~140の足先が車輪となっている場合、適切な支持多角形となるように利用可能な脚の形態を変更することで、利用可能な脚での車輪動作時の制御方法が簡単になり、また、車輪駆動モータにかかる負荷を軽減することができる。 Further, when the toes of each leg 110 to 140 of the robot device 100 are wheels, the wheels on the available legs can be changed by changing the form of the available legs so as to have an appropriate supporting polygon. The control method during operation is simplified, and the load applied to the wheel drive motor can be reduced.
 以上、特定の実施形態を参照しながら、本明細書で開示する技術について詳細に説明してきた。しかしながら、本明細書で開示する技術の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The techniques disclosed in the present specification have been described in detail with reference to the specific embodiments. However, it is self-evident that one of ordinary skill in the art can modify or substitute the embodiment without departing from the gist of the technique disclosed herein.
 本明細書では、本明細書で開示する技術を4脚で構成されるロボット装置に適用した実施形態を中心に説明してきたが、2脚又は3脚、あるいは5脚以上を装備したロボット装置に対しても、同様に本明細書で開示する技術を適用することができる。 In this specification, the embodiment in which the technique disclosed in the present specification is applied to a robot device composed of four legs has been mainly described, but the robot device equipped with two legs, three legs, or five or more legs has been described. Against this, the techniques disclosed herein can be applied as well.
 また、本明細書で開示する技術は、脚以外の複数の移動手段を備えたロボット装置若しくは移動体装置にも同様に適用することができる。例えば、複数の車輪を備えた車輪式の移動体装置(自動運転車を含む)において一部の車輪が故障した場合(回転モータが故障した場合や、パンクした場合を含む)、複数の回転翼を備えた無人航空機(ドローン)において一部の回転翼が故障した場合(回転モータが故障した場合や、回転翼が破損した場合を含む)に、本明細書で開示する技術を適用することによって、安全な場所に退避して、他の移動体との衝突などの2次被害を抑制することができる。 Further, the technique disclosed in this specification can be similarly applied to a robot device or a mobile device provided with a plurality of moving means other than the legs. For example, in a wheel-type mobile device (including an autonomous vehicle) equipped with multiple wheels, if some wheels fail (including when the rotary motor fails or punctures), multiple rotor blades By applying the techniques disclosed herein in the event that some rotorcraft fail (including when the rotorcraft fails or the rotorcraft breaks) in an unmanned aerial vehicle (drone) equipped with , It is possible to evacuate to a safe place and suppress secondary damage such as collision with other moving objects.
 要するに、例示という形態により本明細書で開示する技術について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本明細書で開示する技術の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the technology disclosed in this specification has been described in the form of an example, and the contents of this specification should not be interpreted in a limited manner. The scope of claims should be taken into consideration in determining the gist of the technology disclosed herein.
 なお、本明細書の開示の技術は、以下のような構成をとることも可能である。 The technology disclosed in this specification can also have the following configuration.
(1)複数の脚と、
 前記複数の脚の各々が故障か否かを検出する検出部と、
 前記検出部が前記複数の脚のいずれかに故障を検出したことに応じた動作を制御する制御部と、
を具備するロボット装置。
(1) With multiple legs
A detection unit that detects whether or not each of the plurality of legs is out of order,
A control unit that controls the operation according to the detection unit detecting a failure in any of the plurality of legs.
A robot device equipped with.
(2)外部装置と通信する通信部をさらに備え、
 前記制御部は、前記通信部を介して、故障を検出した脚に関する情報を前記外部装置に通知する、
上記(1)に記載のロボット装置。
(2) Further equipped with a communication unit that communicates with an external device
The control unit notifies the external device of information about the leg that has detected the failure via the communication unit.
The robot device according to (1) above.
(3)前記制御部は、前記脚の残存能力を利用して前記ロボット装置を安全な場所へ退避させるための動作を制御する、
上記(1)又は(2)のいずれかに記載のロボット装置。
(3) The control unit controls an operation for retracting the robot device to a safe place by utilizing the remaining capacity of the legs.
The robot device according to any one of (1) and (2) above.
(4)前記制御部は、前記故障していない脚を利用した歩行により、前記安全な場所へ退避するように制御する、
上記(3)に記載のロボット装置。
(4) The control unit controls to evacuate to the safe place by walking using the leg that has not failed.
The robot device according to (3) above.
(5)前記制御部は、前記安全な場所へ退避する際に、前記故障していない脚で構成される支持多角形が最大となるように制御する、
上記(4)に記載のロボット装置。
(5) The control unit controls so that the support polygon composed of the non-failed legs is maximized when evacuating to the safe place.
The robot device according to (4) above.
(6)前記制御部は、前記安全な場所への進行方向に対する前記支持多角形の幾何重心のマージンが最大となるように制御する、
上記(4)又は(5)のいずれかに記載のロボット装置。
(6) The control unit controls so that the margin of the geometric center of gravity of the supporting polygon with respect to the traveling direction to the safe place is maximized.
The robot device according to any one of (4) and (5) above.
(7)前記制御部は、前記故障した脚の取り外しを制御する、
上記(4)乃至(6)のいずれかに記載のロボット装置。
(7) The control unit controls the removal of the failed leg.
The robot device according to any one of (4) to (6) above.
(8)前記制御部は、前記故障した脚の残存能力に合わせて、正常な脚の歩行形態を変更して、前記故障した脚を含む複数の脚を利用した歩行により、前記安全な場所へ退避するように制御する、
上記(3)乃至(7)のいずれかに記載のロボット装置。
(8) The control unit changes the walking mode of the normal leg according to the remaining ability of the failed leg, and walks using a plurality of legs including the failed leg to the safe place. Control to evacuate,
The robot device according to any one of (3) to (7) above.
(9)前記制御部は、前記安全な場所へ退避中であることを周囲に報知する動作を制御する、
上記(3)乃至(8)のいずれかに記載のロボット装置。
(9) The control unit controls an operation of notifying the surroundings that the evacuation is being carried out to the safe place.
The robot device according to any one of (3) to (8) above.
(10)外部装置と通信する通信部をさらに備え、
 前記制御部は、前記外部装置から通知された前記安全な場所へ退避させるための動作を制御する、
上記(3)乃至(9)のいずれかに記載のロボット装置。
(10) Further equipped with a communication unit that communicates with an external device,
The control unit controls an operation for evacuating to the safe place notified from the external device.
The robot device according to any one of (3) to (9) above.
(11)複数の脚を備えたロボット装置の制御方法であって、
 前記複数の脚の各々が故障か否かを検出するステップと、
 前記複数の脚のいずれかに故障を検出したことに応じた動作を実行するステップと、
を有するロボット装置の制御方法。
(11) A control method for a robot device having a plurality of legs.
A step of detecting whether or not each of the plurality of legs is defective,
A step of performing an action according to the detection of a failure in any of the plurality of legs, and
A method of controlling a robot device having.
(12)前記ロボット装置は外部装置と通信する通信部を備え、
 前記通信部を介して、故障を検出した脚に関する情報を前記外部装置に通知するステップをさらに有する、上記(11)に記載のロボット装置の制御方法。
(12) The robot device includes a communication unit that communicates with an external device.
The method for controlling a robot device according to (11) above, further comprising a step of notifying the external device of information about a leg that has detected a failure via the communication unit.
(13)前記脚の残存能力を利用して前記ロボット装置を安全な場所へ退避させる退避ステップをさらに有する、上記(11)又は(12)のいずれかに記載のロボット装置の制御方法。 (13) The method for controlling a robot device according to any one of (11) and (12) above, further comprising an evacuation step of retracting the robot device to a safe place by utilizing the remaining capacity of the legs.
(14)前記退避ステップでは、前記故障していない脚を利用した歩行により、前記安全な場所へ退避させる、上記(13)に記載のロボット装置の制御方法。 (14) The method for controlling a robot device according to (13) above, wherein in the evacuation step, the robot device is evacuated to the safe place by walking using the leg that has not failed.
(15)前記退避ステップでは、前記安全な場所へ退避する際に、前記故障していない脚で構成される支持多角形が最大となるようにする、上記(14)に記載のロボット装置の制御方法。 (15) The control of the robot device according to (14) above, in which in the evacuation step, the support polygon composed of the non-failed legs is maximized when the robot device is evacuated to the safe place. Method.
(16)前記退避ステップでは、前記安全な場所への進行方向に対する前記支持多角形の幾何重心のマージンが最大となるようにする、上記(14)又は(15)のいずれかに記載のロボット装置の制御方法。 (16) The robot apparatus according to any one of (14) and (15) above, wherein in the evacuation step, the margin of the geometric center of gravity of the supporting polygon with respect to the traveling direction to the safe place is maximized. Control method.
(17)前記故障した脚を前記ロボット装置本体から取り外すステップをさらに有する、上記(14)乃至(16)のいずれかに記載のロボット装置の制御方法。 (17) The method for controlling a robot device according to any one of (14) to (16) above, further comprising a step of removing the failed leg from the robot device main body.
(18)前記退避ステップでは、前記故障した脚の残存能力に合わせて、正常な脚の歩行形態を変更して、前記故障した脚を含む複数の脚を利用した歩行により、前記安全な場所へ退避させる、上記(13)乃至(17)のいずれかに記載のロボット装置の制御方法。 (18) In the evacuation step, the walking mode of the normal leg is changed according to the remaining capacity of the failed leg, and walking using a plurality of legs including the failed leg to the safe place. The method for controlling a robot device according to any one of (13) to (17) above, wherein the robot device is retracted.
(19)前記安全な場所へ退避中であることを周囲に報知するステップをさらに有する、上記(13)乃至(18)のいずれかに記載のロボット装置の制御方法。 (19) The method for controlling a robot device according to any one of (13) to (18) above, further comprising a step of notifying the surroundings that the robot is being evacuated to the safe place.
(20)前記ロボット装置は外部装置と通信する通信部を備え、
 前記退避ステップでは、前記外部装置から通知された前記安全な場所へ退避させる、上記(13)乃至(19)のいずれかに記載のロボット装置の制御方法。
(20) The robot device includes a communication unit that communicates with an external device.
The method for controlling a robot device according to any one of (13) to (19) above, wherein in the evacuation step, the robot device is evacuated to the safe place notified from the external device.
 100…ロボット装置、101…積載部
 110…可動脚
 111…リンク(第2リンク)、112…リンク(第1リンク)
 113…関節部(第2関節)、114…関節部(第1関節)
 120…可動脚
 121…リンク(第2リンク)、122…リンク(第1リンク)
 123…関節部(第2関節)、124…関節部(第1関節)
 130…可動脚
 131…リンク(第2リンク)、132…リンク(第1リンク)
 133…関節部(第2関節)、134…関節部(第1関節)
 140…可動脚
 141…リンク(第2リンク)、142…リンク(第1リンク)
 143…関節部(第2関節)、144…関節部(第1関節)
 210…外部センサ部、211L、211R…カメラ
 212…マイクロホン、213…タッチセンサ
 221…スピーカ、222…表示部
 230…制御ユニット、231…メイン制御部、232…バッテリ
 233…内部センサ部
 233A…バッテリセンサ、233B…加速度センサ
 234…外部メモリ、235…通信部
100 ... Robot device, 101 ... Loading part 110 ... Movable legs 111 ... Link (second link), 112 ... Link (first link)
113 ... Joint (second joint), 114 ... Joint (first joint)
120 ... Movable legs 121 ... Link (second link), 122 ... Link (first link)
123 ... Joint (second joint), 124 ... Joint (first joint)
130 ... Movable legs 131 ... Link (second link), 132 ... Link (first link)
133 ... Joint (second joint), 134 ... Joint (first joint)
140 ... Movable legs 141 ... Link (second link), 142 ... Link (first link)
143 ... Joint (second joint) 144 ... Joint (first joint)
210 ... External sensor unit, 211L, 211R ... Camera 212 ... Microphone, 213 ... Touch sensor 221 ... Speaker, 222 ... Display unit 230 ... Control unit, 231 ... Main control unit, 232 ... Battery 233 ... Internal sensor unit 233A ... Battery sensor , 233B ... Accelerometer 234 ... External memory, 235 ... Communication unit

Claims (11)

  1.  複数の脚と、
     前記複数の脚の各々が故障か否かを検出する検出部と、
     前記検出部が前記複数の脚のいずれかに故障を検出したことに応じた動作を制御する制御部と、
    を具備するロボット装置。
    With multiple legs,
    A detection unit that detects whether or not each of the plurality of legs is out of order,
    A control unit that controls the operation according to the detection unit detecting a failure in any of the plurality of legs.
    A robot device equipped with.
  2.  外部装置と通信する通信部をさらに備え、
     前記制御部は、前記通信部を介して、故障を検出した脚に関する情報を前記外部装置に通知する、
    請求項1に記載のロボット装置。
    It also has a communication unit that communicates with external devices.
    The control unit notifies the external device of information about the leg that has detected the failure via the communication unit.
    The robot device according to claim 1.
  3.  前記制御部は、前記脚の残存能力を利用して前記ロボット装置を安全な場所へ退避させるための動作を制御する、
    請求項1に記載のロボット装置。
    The control unit controls an operation for retracting the robot device to a safe place by utilizing the remaining capacity of the legs.
    The robot device according to claim 1.
  4.  前記制御部は、前記故障していない脚を利用した歩行により、前記安全な場所へ退避するように制御する、
    請求項3に記載のロボット装置。
    The control unit controls to evacuate to the safe place by walking using the leg that has not failed.
    The robot device according to claim 3.
  5.  前記制御部は、前記安全な場所へ退避する際に、前記故障していない脚で構成される支持多角形が最大となるように制御する、
    請求項4に記載のロボット装置。
    The control unit controls so that the support polygon composed of the non-failed legs is maximized when the evacuation to the safe place is performed.
    The robot device according to claim 4.
  6.  前記制御部は、前記安全な場所への進行方向に対する前記支持多角形の幾何重心のマージンが最大となるように制御する、
    請求項4に記載のロボット装置。
    The control unit controls so that the margin of the geometric center of gravity of the supporting polygon with respect to the traveling direction to the safe place is maximized.
    The robot device according to claim 4.
  7.  前記制御部は、前記故障した脚の取り外しを制御する、
    請求項4に記載のロボット装置。
    The control unit controls the removal of the failed leg.
    The robot device according to claim 4.
  8.  前記制御部は、前記故障した脚の残存能力に合わせて、正常な脚の歩行形態を変更して、前記故障した脚を含む複数の脚を利用した歩行により、前記安全な場所へ退避するように制御する、
    請求項3に記載のロボット装置。
    The control unit changes the walking mode of the normal leg according to the remaining ability of the failed leg, and evacuates to the safe place by walking using a plurality of legs including the failed leg. To control,
    The robot device according to claim 3.
  9.  前記制御部は、前記安全な場所へ退避中であることを周囲に報知する動作を制御する、
    請求項3に記載のロボット装置。
    The control unit controls an operation of notifying the surroundings that the user is evacuating to the safe place.
    The robot device according to claim 3.
  10.  外部装置と通信する通信部をさらに備え、
     前記制御部は、前記外部装置から通知された前記安全な場所へ退避させるための動作を制御する、
    請求項3に記載のロボット装置。
    It also has a communication unit that communicates with external devices.
    The control unit controls an operation for retracting to the safe place notified from the external device.
    The robot device according to claim 3.
  11.  複数の脚を備えたロボット装置の制御方法であって、
     前記複数の脚の各々が故障か否かを検出するステップと、
     前記複数の脚のいずれかに故障を検出したことに応じた動作を実行するステップと、
    を有するロボット装置の制御方法。
    It is a control method for a robot device equipped with multiple legs.
    A step of detecting whether or not each of the plurality of legs is defective,
    A step of performing an action according to the detection of a failure in any of the plurality of legs, and
    A method of controlling a robot device having.
PCT/JP2020/018242 2019-07-12 2020-04-30 Robot device and method for controlling same WO2021009991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130186 2019-07-12
JP2019130186A JP2021013992A (en) 2019-07-12 2019-07-12 Robot device and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2021009991A1 true WO2021009991A1 (en) 2021-01-21

Family

ID=74210409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018242 WO2021009991A1 (en) 2019-07-12 2020-04-30 Robot device and method for controlling same

Country Status (2)

Country Link
JP (1) JP2021013992A (en)
WO (1) WO2021009991A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037582A1 (en) * 2021-09-10 2023-03-16 ソニーグループ株式会社 Mobile body, and robot device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130385A (en) * 1984-07-17 1986-02-12 工業技術院長 Robot
JP2001121459A (en) * 1999-10-29 2001-05-08 Mitsubishi Heavy Ind Ltd Working robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130385A (en) * 1984-07-17 1986-02-12 工業技術院長 Robot
JP2001121459A (en) * 1999-10-29 2001-05-08 Mitsubishi Heavy Ind Ltd Working robot

Also Published As

Publication number Publication date
JP2021013992A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5460112B2 (en) Robot and its safety control method
TW544385B (en) Two-legged walking-type moving apparatus and controlling device and method thereof
JPH1148170A (en) Control device for leg type moving robot
KR102115845B1 (en) Roller-skating device and electric balance vehicle
CA3015608A1 (en) Mobility device control system
KR101479234B1 (en) Robot and method of controlling the same
CN106716273A (en) A multirotor unmanned aerial vehicle and a controlling method thereof
WO2021009991A1 (en) Robot device and method for controlling same
CN111497965A (en) Wheel-foot switching robot system and control method thereof
JP6624139B2 (en) Autonomous mobile device, autonomous mobile method and program
EP2343230A1 (en) Robot and control method thereof
JP4608472B2 (en) Mobile robot and mobile robot controller
JP3628826B2 (en) Remote control system for legged mobile robot
KR101981403B1 (en) Walking assistance apparatus and operation method of the same
JP4295947B2 (en) Legged mobile robot and its movement control method
JP2012200318A (en) Walking assist device and walking assist program
JP7295654B2 (en) self-propelled robot
JP4066923B2 (en) robot
WO2021079578A1 (en) Robot device
JPH1110567A (en) Remote control system of bipedality type robot
JP3649852B2 (en) Remote control system for biped robot
JP6218641B2 (en) Robot holding system
JP2007007799A (en) Walking robot
JP4692925B2 (en) Leg wheel type mobile robot and its operation method
JP7376287B2 (en) Protective structures and humanoid robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840488

Country of ref document: EP

Kind code of ref document: A1