WO2021008405A1 - 碳减排数据处理方法、设备和计算机可读存储介质 - Google Patents

碳减排数据处理方法、设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2021008405A1
WO2021008405A1 PCT/CN2020/100598 CN2020100598W WO2021008405A1 WO 2021008405 A1 WO2021008405 A1 WO 2021008405A1 CN 2020100598 W CN2020100598 W CN 2020100598W WO 2021008405 A1 WO2021008405 A1 WO 2021008405A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
emission reduction
carbon emission
account
amount
Prior art date
Application number
PCT/CN2020/100598
Other languages
English (en)
French (fr)
Inventor
田新立
Original Assignee
上海唯链信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海唯链信息科技有限公司 filed Critical 上海唯链信息科技有限公司
Priority to EP20841037.3A priority Critical patent/EP3985597A4/en
Priority to JP2021575301A priority patent/JP2022539987A/ja
Priority to US17/597,420 priority patent/US20220292621A1/en
Publication of WO2021008405A1 publication Critical patent/WO2021008405A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/04Payment circuits
    • G06Q20/06Private payment circuits, e.g. involving electronic currency used among participants of a common payment scheme
    • G06Q20/065Private payment circuits, e.g. involving electronic currency used among participants of a common payment scheme using e-cash
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q2220/00Business processing using cryptography

Definitions

  • the present disclosure relates to the field of computer technology, and more specifically, to a method, device, and computer-readable storage medium for processing carbon emission reduction data.
  • Greenhouse gases are some gases in the atmosphere that can absorb solar radiation reflected from the ground and re-emit the radiation. Carbon emissions is an abbreviation for greenhouse gas emissions. The most important greenhouse gas is carbon dioxide, so the term Carbon is used as a representative. According to current research, greenhouse gases will cause the earth's surface temperature to rise, which will have an impact and harm on the environment and climate. Therefore, how to control carbon emissions and how to reduce carbon emissions through emission reduction technologies have become one of the most important environmental protection topics.
  • the embodiment of the present disclosure proposes a data processing solution.
  • a method for processing carbon emission reduction data includes: determining a target smart contract that matches the attributes of an object with carbon emission reduction behavior; and determining the carbon emission reduction corresponding to the object based on the target smart contract and the carbon behavior data corresponding to the carbon emission reduction behavior And sending the carbon emission reduction equivalent to the node of the blockchain platform to store the carbon emission reduction equivalent in the first account associated with the enterprise user on the blockchain platform.
  • an electronic device for processing carbon emission reduction data includes one or more processors; and a storage device for storing one or more programs.
  • the processor implements the method according to the first aspect of the present disclosure.
  • a computer-readable storage medium having a computer program stored thereon, and when the program is executed by a processor, the method according to the first aspect of the present disclosure is implemented.
  • Figure 1 shows a schematic diagram of a system capable of implementing some embodiments of the present disclosure
  • Fig. 2 shows a flowchart of a carbon emission reduction data processing method according to an embodiment of the present disclosure
  • Fig. 3 shows a flowchart of a carbon coin issuing method according to an embodiment of the present disclosure
  • Fig. 4 shows a flowchart of a carbon coin cancellation method according to an embodiment of the present disclosure
  • FIG. 5 shows a flowchart of a method for issuing corporate carbon coins to individual users according to an embodiment of the present disclosure
  • Fig. 6 schematically shows a block diagram of a carbon emission reduction data processing electronic device suitable for implementing embodiments of the present disclosure.
  • CCER China Certified Voluntary Emission Reduction
  • example embodiments of the present disclosure propose a data processing solution.
  • first determine the target smart contract that matches the attributes of the object with carbon emission reduction behavior and then determine the carbon emission reduction corresponding to the object based on the target smart contract and the carbon behavior data corresponding to the carbon emission reduction behavior Equivalent, then send the carbon emission reduction equivalent to the node of the blockchain platform to store the carbon emission reduction equivalent in the first account associated with the enterprise user on the blockchain platform.
  • this program effective and accurate statistics can be made on users' carbon emission reductions.
  • Figure 1 shows a schematic diagram of a system 100 capable of implementing some embodiments of the present disclosure.
  • the system 100 includes an object 110 with carbon emission reduction behavior, a business system 120 and a blockchain platform 130.
  • the objects 110 with carbon emission reduction behaviors include multiple types of objects 112, 114, 116, and 118 (for ease of description, they are collectively or individually referred to as objects 110 hereinafter).
  • the blockchain platform 130 may include multiple blockchain nodes 140-1, 140-2, 140-3 (for ease of description, collectively or individually referred to as blockchain nodes 140 below).
  • the objects 110 with carbon emission reduction behaviors may be, for example, transportation equipment 112 (such as new energy vehicles), energy-saving home appliances 114, recycled items 116, and recycled items 118 ( That is, second-hand items collected for secondary use), etc.
  • transportation equipment 112 such as new energy vehicles
  • energy-saving home appliances 114 such as new energy vehicles
  • recycled items 116 such as recycled items
  • recycled items 118 That is, second-hand items collected for secondary use
  • the transportation equipment 112 may be, for example, a pure electric vehicle (BEV) 112-1, a hybrid electric vehicle (HEV) 112-2, a shared bicycle 112-3, and the like.
  • BEV 112-1 supplies power to the electric motor through a fully charged battery beforehand, and then the electric motor drives the vehicle, and the battery power is supplemented by an external power source.
  • HEV 112-2 is a vehicle that includes an internal combustion engine and one or more electric motors.
  • Each transportation device 112 corresponds to a unique identifier, and the identifier includes an ID that uniquely identifies the transportation device 112.
  • the ID is, for example, the frame number of the transportation equipment 112, or a combination of the frame number of the transportation equipment 112 and the engine number.
  • the transportation device 112 may be configured with a vehicle-mounted module 115, which is, for example, a vehicle-mounted intelligent terminal device with a wireless communication function for dynamic monitoring and management of running vehicles.
  • the vehicle-mounted intelligent terminal device can record and send data such as the ID and carbon behavior data (such as mileage, fuel consumption, power consumption) of the transportation equipment 112.
  • the vehicle-mounted module 115 may also send the recorded ID and carbon behavior data of the transportation equipment via the wireless communication device 117.
  • the transportation device 112-2 may further send the ID and carbon behavior data recorded by the in-vehicle module 115 to the business system 120 via the network.
  • the ID and carbon behavior data of the transportation device 112 are sent via the mobile terminal of the individual user.
  • the mobile terminal 119 owned by the individual user 113-2 who uses the shared bicycle 112-3 can use the loaded application, To obtain the ID (such as frame number) and carbon behavior data (such as mileage) of the shared bicycle, and send the ID and carbon behavior data to the business system 120.
  • the energy-saving home appliances 114 may include various types of energy-saving home appliances, such as air conditioners, washing machines, refrigerators, and so on.
  • the energy-saving home appliance 114 may be a home appliance equipped with a wired or wireless communication module.
  • the energy-saving home appliance 114 may be a home appliance with Internet of Things (IoT) function.
  • IoT Internet of Things
  • each energy-saving home appliance 114 may be assigned or have an identifier (ID) that is unique in the entire system 100 in any other manner.
  • the energy-saving appliance 114 can record its carbon behavior data (such as power consumption) under various working conditions, and send the carbon behavior data and the ID of the energy-saving appliance 114 to the business system 120 through its communication module.
  • Both items 116 and 118 can include paper products, plastic products, glass products, metal products, home appliances, etc.
  • the main difference between item 116 and item 118 is that after item 116 is recycled, it is processed (such as destroyed), and after item 118 is recycled It is recycled again.
  • the old book is regarded as an item 118.
  • the old book is recycled and then destroyed, the old book is considered to be an item 116.
  • the items 116 and 118 generally do not have the ability to communicate with the business system 120 themselves, but instead pass through the system of the organization that performs the recycling of the items 116 and 118 (as shown in FIG.
  • the recycling system 1182) of the article 118 records the corresponding carbon behavior data, such as the number or weight of recycled paper products, the weight or quantity of recycled plastic or metal products, and the type or quantity of recycled home appliances.
  • carbon behavior data is not limited to those listed here, but may also include various other possible data related to carbon emission reduction.
  • the system 1162 or 1182 can combine the carbon behavior data generated by the recycled item 116 or 118 with the user who executed the item 116 or 118 (that is, the owner of the item 116 or 118, for example, the aforementioned user 113-1 or 113-2).
  • the ID or the ID of the system 1162 or 1182 is sent to the service system 120 together.
  • the classification information of the same item can also be sent to the business system 120 together. This enables the business system 120 to match different models to calculate the carbon emission reduction equivalent.
  • the business system 120 After obtaining these data, the business system 120 will process them to generate a carbon emission reduction equivalent 150, as described below with reference to FIG. 2. As shown in FIG. 1, the business system 120 may send the generated carbon emission reduction equivalent 150 to the node 140 of the blockchain platform 130.
  • Each blockchain node 140 may be deployed with multiple smart contracts.
  • Figure 1 shows two smart contracts 142 and 144 deployed on the blockchain node 140.
  • the division of the business system 120 and the blockchain platform 130 shown in FIG. 1 is a logical division.
  • the blockchain platform 130 may be physically a part of the business system 120 or vice versa.
  • the business system 120 and the blockchain platform 130 can be logically or physically implemented as a whole.
  • FIG. 2 shows a flowchart of a carbon emission reduction data processing method 200 according to an embodiment of the present disclosure. It should be understood that the method 200 may further include additional actions not shown and/or the actions shown may be omitted, and the scope of the present disclosure is not limited in this respect. For ease of description, the method 200 is described with reference to FIG. 1.
  • Figure 1 only shows an exemplary system that can implement the embodiments of the present disclosure. It should be understood that the system that can implement the embodiments of the present disclosure is not limited to the form shown in FIG. 1, but may include more or fewer or different components.
  • the business system 120 may determine a target smart contract that matches the attributes of the object 110 with carbon emission reduction behavior.
  • the object 110 may be a transportation device 112 (such as a new energy vehicle), an energy-saving home appliance 114, a recycled item 116, and a recycled item 118 (ie, a second-hand item that is recycled) Wait.
  • a transportation device 112 such as a new energy vehicle
  • an energy-saving home appliance 114 such as a new energy vehicle
  • a recycled item 116 such as a recycled item
  • a recycled item 118 ie, a second-hand item that is recycled
  • an individual user can drive the transportation device 112 and use the energy-saving home appliance 114 to cause the transportation device 112 or the energy-saving home appliance 114 to produce carbon emission reduction behaviors.
  • the business system 120 can obtain relevant data of the individual user's current use of the transportation device 112, such as identification data and carbon behavior data of the transportation device 112.
  • the obtained identification data may be an identification corresponding to the transportation device 112.
  • the identification may be, for example, the frame number of the transportation device 112, or a combination of the frame number of the transportation device 112 and the engine number.
  • the obtained carbon behavior data may be, for example, carbon consumption or carbon emission reduction behavior data of the object.
  • carbon behavior data may include, for example, the mileage of transportation equipment, the amount of fuel consumed in transportation, the electricity consumed by transportation equipment or the operation of home appliances, and the electricity and/or fuel consumed by processing recycled items Wait.
  • the business system 120 can obtain identification data and carbon data through a local storage device (not shown), a vehicle-mounted module of a transportation device, a communication module of an energy-saving home appliance 114, or an application of a user's mobile terminal related to the object. Behavioral data.
  • the business system 120 may determine whether the acquired identification of the object 110 belongs to a predetermined identification set.
  • the predetermined identification set is, for example, an object 110 (for example, a specific type of transportation equipment 112 or an energy-saving home appliance 114, etc.) that has been reviewed and verified in advance by a third-party authority.
  • the attribute corresponding to the object 110 can be obtained based on the identifier, and then the target smart contract can be determined based on the obtained attribute.
  • the attribute may be the type of object 110.
  • transportation equipment 112 may include electric transportation equipment and hybrid transportation equipment.
  • the attributes may be the type (for example, air conditioner, washing machine, refrigerator, etc.), model (for example, washing machine with washing capacity of 6kg, 8kg or 10kg), and working mode (for example, washing machine usually has Standard mode, mixed mode, fast washing mode and wool washing mode, etc.). Since different regions may have different emission references, the attributes of the object 110 may also indicate the regions where carbon behavior is generated.
  • the attributes may be the type of article (for example, paper products, plastic products, glass products, metal products, various household appliances, etc.) and classification information ( Is it recycled or recycled).
  • Target smart contracts are used to convert carbon behavior data into carbon emission reduction equivalents.
  • different types of transportation equipment have differences in many factors such as displacement, power, passenger capacity, and load capacity.
  • For energy-saving home appliances 114 different types of home appliances or different models or different working modes of the same type of home appliances correspond to different power consumption. The above-mentioned factors often affect the calculation relationship of the carbon emission reduction equivalent. Therefore, corresponding target smart contracts can be matched for different attributes of the object 110.
  • the business system 120 may store the correspondence between various candidate smart contracts and keywords, and determine the candidate smart contract matching the object 110 as the target smart contract according to the correspondence.
  • the keyword may correspond to one attribute or a combination of multiple attributes of the object 110.
  • the keyword can be set to the type of the energy-saving home appliance 114 (such as air conditioners, refrigerators, washing machines, etc.), or can be set to the type and model (such as washing capacity of 6kg, 8kg, or 10kg).
  • a candidate smart contract matching the type of the object 110 may be selected from the candidate smart contracts as the target smart contract.
  • the keyword is a combination of the type and model of the energy-saving home appliance 114
  • a candidate smart contract that matches the type and model of the object 110 can be selected from the candidate smart contracts as the target smart contract.
  • the business system 120 may determine the carbon emission reduction equivalent corresponding to the object 110 based on the target smart contract and the carbon behavior data corresponding to the carbon emission reduction behavior.
  • the carbon emission reduction equivalent may be determined based on the reference emission amount and the actual carbon emission amount.
  • Scenario 1 The scenario of transportation equipment:
  • the object 110 may be a transportation device 112.
  • the business system 120 may determine the reference emission amount based on a reference emission relationship associated with the target smart contract, where the reference emission relationship is generated according to a predefined emission standard.
  • the business system 120 may, for example, use transportation equipment with the same or similar attributes (for example, the same type or the same or similar model, etc.) as the transportation equipment 112 (hereinafter collectively referred to as Refer to the emission of the transportation equipment type i) as the reference emission relationship, and then calculate the reference emission of the transportation equipment 112.
  • the business system 120 may calculate the reference emissions (also known as BE) of the transportation equipment 112 based on the following formula:
  • BE y EF BL,i,y *DD i,y *10 -12 (1)
  • BE y represents the reference emission amount (gCO 2 ) in the time period to be counted (y);
  • EF BL,i,y represents the emission factor (gCO 2 / km);
  • DD i,y represents the driving distance (km) of the project transportation equipment type i (that is, the current transportation equipment 112) in the time period (y) to be counted. among them:
  • SFC i represents the fuel consumption per unit distance of reference transportation equipment type i (ie fuel consumption rate), and its unit can be g/km;
  • NCV BL,i represents the net calorific value of fuel consumption of reference transportation equipment type i (J /g);
  • EF BL,i represents the emission factor (gCO 2 /TJ) of fuel consumption of reference transportation equipment type i.
  • the technical improvement of the transportation equipment type i can also be considered.
  • the emission factor EF BL,i,y of the reference transportation equipment type i can be expressed as:
  • IR t represents the reference transportation equipment technology improvement factor in year t.
  • Technology improvement factors are usually measured in calendar years.
  • the technical improvement factors of all reference transportation equipment types can be set to a default value of 0.99.
  • the factor can also be adjusted according to actual technical improvements. In this way, the solution can not only be applied to the case of a fixed reference emission relationship, but also a variable reference emission relationship can be used according to time or according to the technical improvement of the reference transportation equipment.
  • the business system 120 may also determine the actual emission amount based on a predetermined emission relationship related to the attribute of the object 110. The carbon emission reduction equivalent is then determined based on both the reference emission amount and the actual emission amount.
  • the corresponding predetermined emission relationship may be determined according to the received identification data and carbon behavior data.
  • transportation equipment can be divided into two types: electric vehicles and hybrid vehicles, so as to match the corresponding predetermined emission relationship related to electric vehicles or the predetermined emission relationship related to hybrid vehicles according to the type of transportation equipment.
  • the carbon emission relationship may include more types. In this case, it can be divided in advance based on factors such as the model or parameters of the transportation equipment.
  • the business system 120 may convert the carbon behavior data into carbon emissions based on the determined predetermined emission relationship.
  • This carbon emissions here represents the actual emissions of the transportation equipment (also called project emissions (PE)), which refers to the emissions produced by the electricity and/or fuel consumed by the transportation equipment.
  • PE project emissions
  • PE y SEC i,y *EF y /(1-TDL y )*10 3 +SFC i,y *NCV i,y *EF i,y *10 -12 (4)
  • PE y represents the project emissions (gCO 2 ) in the time period to be counted (y);
  • SEC i,y represents the electricity (kWh) consumed by the project transportation equipment type i in the time period to be counted (y);
  • EFy represents The CO 2 emission factor (kgCO 2 /kWh) of the power consumption of the project transportation equipment type i during the statistical time period (y);
  • TDL y represents the average loss and leakage of power transmission and distribution during the statistical time period (y) Rate;
  • SFC i,y represents the fuel consumption (g) of the project transportation equipment type i in the time period (y) to be counted;
  • NCV i,y represents the fuel consumption of the project transportation equipment type i in the time period (y) to be counted
  • EF i,y represents the CO 2 emission factor (gCO 2 /TJ) of the fuel consumed by the project transportation equipment type i in the period (y) to be counted.
  • PE y SEC i,y *EF y /(1-TDL y )*10 3 (5)
  • PE y represents the project emissions (gCO 2 ) in the time period to be counted (y);
  • SEC i,y represents the electricity (kWh) consumed by the project transportation equipment type i in the time period to be counted (y);
  • EFy represents The CO 2 emission factor (kgCO 2 /kWh) of the power consumption of the project transportation equipment type i during the statistical time period (y);
  • TDL y represents the average leakage rate of power transmission and distribution during the statistical time period (y) .
  • the business system 120 may determine the carbon emission reduction equivalent of using transportation equipment based on the actual emission and the reference emission.
  • the carbon emission reduction can be calculated by the following formula:
  • ER y represents the emission reduction (gCO 2 ) in the period (y) to be counted.
  • the emission reductions ER (Emission Reductions) can represent the use of new energy transportation equipment, energy-saving appliances, and goods recycling services.
  • the quantified value is called the carbon emission reduction equivalent; BE y represents the reference emission (gCO 2 ) in the statistical time period (y); PE y represents the project in the statistical time period (y) Emissions (gCO 2 ); LE y represents the leakage (gCO 2 ) in the period (y) to be counted, and this item is usually not considered.
  • the emission standards issued by countries or international organizations may also be used as reference emission relationships.
  • the attribute is transportation equipment, it can be based on the regulations of "Automotive Compression Ignition, Gas Fuel Ignition Engine and Automobile Exhaust Pollutant Emission Limits and Measurement Methods (China Phase III, IV, V)", Vehicle emissions should meet the following phase III, IV, and V standards.
  • the specific masses of carbon monoxide, total hydrocarbons, nitrogen oxides and particulate matter measured by the ESC test, and the opacity smoke measured by the ELR test should not exceed the values given in Table 1 below:
  • ESC is the steady-state engine cycle
  • ELR is the engine load smoke test.
  • ETC means engine transient cycle
  • NG engine means natural gas engine
  • EEV means environmentally friendly car.
  • the various carbon compounds in the emission components can be converted into carbon dioxide CO 2 containing the same amount of carbon, and the corresponding CO can be calculated
  • the sum of 2 is regarded as PE and BE.
  • the reference emission relationship can also be variable. For example, depending on the imbalance of development between domestic regions, the emission standards of transportation equipment in different regions may be different. Some regions have already imposed the National V standard while some regions are still adopting the National IV standard.
  • the business system 120 may choose to use different standards based on the region where the object is located. It can also be set similarly when the object is in a foreign country. In addition, with the improvement of the level of social environmental protection, national or international emission standards may further rise to conditions not listed in the table. In this case, the business system 120 can also adjust its reference emission relationship adaptively.
  • the transportation equipment manufacturer needs to test various emission indicators to obtain a production license before mass-produce a certain type of transportation equipment. For each type of transportation equipment, these measured indicators may be stored in the business system 120 in advance or sent to the business system 120 by the vehicle or vehicle manufacturer every time it is used.
  • the calculation of the vehicle's carbon emission reduction can be based on the emission indicators of the object 110 (ie, transportation equipment) obtained by the test and the carbon emission components in Table 1 and/or Table 2 (such as carbon monoxide (CO), hydrocarbons). Chemical compounds (HC), methane (CH4), non-methane hydrocarbons (NMHC), etc.) are converted into CO 2 to calculate PE and BE to calculate carbon emission reduction ER. It should be understood that when using the standards in Table 1 and Table 2 to calculate carbon emission reductions, the running time (that is, the time period to be counted) and the average running power of the target vehicle to be tested should also be considered.
  • the above describes how to obtain the reference emission amount and the actual emission amount in the scenario where the object 110 is a transportation device, so as to determine the method of carbon emission reduction equivalent.
  • the first method mainly considers emission reduction from the perspective of energy consumption, while the second method mainly considers emission reduction from the perspective of waste emissions.
  • Scenario 2 The scenario of energy-saving appliances:
  • the object 110 may be an energy-saving appliance 114.
  • the carbon emission reduction equivalent of the energy-saving home appliance can be determined.
  • the carbon emission reduction equivalent may also be included in the user's carbon emission reduction amount as a part of the result of the user's total carbon emission reduction behavior.
  • the business system 120 may determine the reference emission amount based on the reference emission relationship associated with the target smart contract, where the reference emission relationship is generated according to a predefined emission standard.
  • the national energy efficiency rating (for example, first, second, or third level, etc.) can be used as a reference emission relationship to calculate the reference emission amount.
  • the national energy efficiency rating can be expressed in the form of energy efficiency ratio or in the form of power consumption per unit time.
  • a home appliance having similar attributes (such as one or more of washing machine capacity, motor speed, and rated output power) with the current energy-saving home appliance 114 can be selected as the reference home appliance, so as to calculate the reference emission amount. In this way, even energy-saving home appliances that have not been registered in the business system 120 can calculate the corresponding carbon savings for them.
  • the business system 120 may also determine the actual emissions based on a predetermined emission relationship related to the attributes of the object 110; and then determine the carbon based on both the reference emissions and the actual emissions. Emission reduction equivalent.
  • the predetermined emission relationship can be expressed by any parameter that can reflect the emission standards of different types of household appliances.
  • the predetermined emission relationship usually includes at least the power consumption per unit time of the object 110, but it is not limited to this.
  • different types of home appliances may correspond to different predetermined emission relationships.
  • different predetermined emission relationships may be set for washing machines, air conditioners, and televisions.
  • different models of household appliances produced by different manufacturers under the same type may also correspond to different predetermined emission relationships.
  • Even different working modes of the same household appliance may correspond to different predetermined emission relationships.
  • corresponding predetermined emission relationships can be configured for these different types, different models, or different working modes, and the corresponding relationship between the household appliances and the predetermined emission relationship can be established and saved in the business system 120 in advance.
  • the household appliances newly connected to the business system 120 its emission parameters can also be compared with the emission parameters of the same type of household appliances already stored in the business system 120 to select the predetermined emission relationship of the household appliance with the closest emission parameter. As the predetermined emission relationship of the newly involved household appliances.
  • the power consumption of a certain type of washing machine in each working mode for a single operation can be as shown in Table 4.
  • Table 3 and Table 4 can be combined to determine the reference emissions and actual emissions when the washing machine is used, so as to determine the carbon emission reduction equivalent.
  • Scenario 3 The scenario of the item recycling service:
  • the object 110 may be a recovered item 116.
  • the recycled items can be, for example, paper products, plastic products, glass products, metal products, various household appliances, etc., but it is not limited thereto.
  • the reference emission amount will be determined based on the reference emission relationship associated with the target smart contract.
  • the reference emission amount can be the amount of carbon emissions consumed by assuming that the item is not recycled and reused but treated as garbage.
  • the carbon emission (BE) per kilogram of the article processed can be calculated by the following formula (7):
  • Q i,y refers to the weight of the recovered item i, in kg (kilogram);
  • Li is a correction coefficient used to correct the loss during the recycling of the item, and its value may be, for example, 0.75;
  • B i refers to the country-specific correction coefficient, which is used to distinguish different countries.
  • different country-specific correction coefficients can be set for Annex I countries and non-Annex I countries in the "Kyoto Protocol.”
  • Bi for China is set to 1;
  • SEC BL,i refers to the power consumption per ton of the item i, and its value is for example 1.11MWh/t (megawatt hours/ton);
  • EF el,y represents the carbon dioxide emission factor in the time period y to be counted.
  • the carbon dioxide emission factor in North China in 2012 was 0.8843tCO 2 /MWh (ton CO 2 /MWh);
  • SFC BL,i refers to the treatment per ton
  • the fuel consumption of the item i is, for example, 15 GJ/t (Gigajoules/ton);
  • CO2 refers to the emission factor of the fuel consumed, and its value is, for example, 0.0675tCO2/GJ (ton CO2/GJ).
  • the actual emission amount may also be determined based on a predetermined emission relationship related to the attribute of the object.
  • Each type of recycled article may have a different predetermined emission relationship, and this predetermined emission relationship mainly indicates the carbon emissions generated by the electricity and/or fuel consumed in the recycling process of the article.
  • different predetermined emission relationships can be set for items with different attributes, such as paper products, plastic products, glass products, metal products, various household appliances, and so on.
  • recycled item type i such as polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • the carbon emission (PE) of each kilogram of recycled item is as follows:
  • PE i,y (EC i,y +SEC P,i )*EF el,y +(FC i,y *NCV FF *EF FF,CO2 ) (8)
  • EF el,y represents the carbon dioxide emission factor in the time period y to be counted.
  • the carbon dioxide emission factor in North China in 2012 was 0.8843tCO2/MWh (ton CO 2 /MWh) (ie 884.3kgCO 2 /MWh (kg CO 2 /MWh));
  • EC i,y refers to the power consumption for reprocessing item i during the recycling process, and the unit can be, for example, MWh (megawatt hour);
  • SEC p,i refers to the electricity consumed by transportation vehicles during the recycling process. In a simplified calculation of emission relationship, this item may not be included in the calculation, that is, its value is taken as 0.
  • FC i,y refers to the fuel consumption in the recycling process, and the unit can be t (tons), for example;
  • NCV FF refers to the net heating value of the fuel consumed, and its value is, for example, 0.04307GJ/t (Gigajoules/ton);
  • EF FF,CO2 refers to the emission factor of the consumed fuel, and its value is, for example, 67.5 kgCO 2 /GJ (kilogram CO 2 /Gigajoule).
  • the reference emission amount and the actual emission amount can be calculated respectively based on the above formula to determine the carbon emission reduction equivalent. For example, you can refer to the above formula (6) to calculate the carbon emission reduction.
  • item 118 in scene 4 can also include paper products, plastic products, glass products, metal products, home appliances, etc.
  • the main difference between item 116 and item 118 is in scene 3. After the item 116 is recovered, it is processed (for example, destroyed), and in scenario 4, the item 118 is recycled after being recovered (ie, second-hand items).
  • the reference emissions of paper products can be determined as:
  • Q i,y refers to the weight of recycled paper products, in kg (kilogram);
  • EF BL,i refers to (according to the original treatment method) the emissions generated per kilogram of paper products, and its value is, for example, 0.1 kg CO 2 per kilogram of paper products.
  • the actual emission amount PE in this scenario can be approximately regarded as zero. Therefore, the carbon emission reduction for recycling items can be calculated by the following formula to determine the carbon emission reduction equivalent:
  • the business system 120 sends the carbon emission reduction equivalent to the node 140 of the blockchain platform 130 to store the carbon emission reduction equivalent in the first account associated with the enterprise user on the blockchain platform 130.
  • the carbon emission reduction equivalent may be transmitted to the blockchain platform 130 to be stored in the first account associated with an enterprise user, which may be associated with multiple objects 110.
  • the enterprise user is, for example, a producer of transportation equipment 112 (such as new energy vehicles) and/or energy-saving home appliances 114, and/or a provider of services such as recycling of items 116 and recycling of items 118.
  • a producer of transportation equipment 112 such as new energy vehicles
  • energy-saving home appliances 114 such as new energy vehicles
  • a provider of services such as recycling of items 116 and recycling of items 118.
  • transmitting the carbon emission reduction equivalent to the blockchain platform 130 may also include determining that both "the preset time interval has been reached" and "the amount of acquired identification data and carbon behavior data exceeds a predetermined value.” And when at least one of the two is satisfied, the determined carbon emission reduction equivalent is packaged for transmission to the node 140 of the blockchain platform 130.
  • the transmission of the original identification data and carbon behavior data to the blockchain platform 130 it is determined whether the "predetermined time interval is reached" and “the amount of acquired identification data and carbon behavior data exceeds a predetermined value" "At least one of the two; and when at least one of the two is met, the obtained original identification data and carbon behavior data are packaged for transmission to a distributed storage device; and the identification data and carbon The hash value of the behavior data is packed and the hash value is packaged for transmission to the blockchain platform 130.
  • the carbon behavior data and the data of the carbon emission reduction equivalent determined by the smart contract are "packaged and transmitted to the blockchain, instead of uploading the above data to the chain in real time, thereby significantly saving the computing power and cost of the blockchain.
  • consideration is given to effective savings in blockchain computing power and cost, and a good user experience. For example, it can be set to 24 or 12 hours, or other suitable time.
  • the original identification data and carbon behavior data obtained in real time from the network are packaged and stored on a distributed storage device (for example, stored in a back-end database and handed over to the third party). Maintenance by three parties). Then, the hash value of the acquired original identification data and carbon behavior data is calculated, and the hash value is packaged to send to the blockchain platform 130 for storage.
  • the amount of identification data and carbon behavior data obtained in real time from the network is small, it can also be confirmed whether the data amount of identification data and carbon behavior data reaches or exceeds a preset value. When it is confirmed that the preset value is reached or exceeded, the hash value of the identification data and carbon behavior data is transmitted to the blockchain platform 130 for storage.
  • the blockchain platform 130 may publish the carbon transaction associated with the carbon emission reduction equivalent in the first account as a blockchain transaction.
  • the data in the carbon trading process can be agreed and cannot be tampered with, thereby solving the problem of opaque and inaccurate carbon emission reduction data in traditional carbon trading methods.
  • the carbon emission reduction data processing method 200 may further include: setting a database type for storing data based on the characteristics of the data to be transmitted to the blockchain platform 130, the database type includes the following items At least one item: basic information type database, used to store data that will not be updated once stored, tracking information type database, used to store data that needs to be updated multiple times, and ownership information type database used to store ownership And its change process data.
  • the carbon emission reduction data processing method 200 further includes: determining the corresponding access mode and authority of the database based on the set database type.
  • the method 200 also includes a process of converting the user's carbon emission reduction equivalent into points.
  • a process of converting the user's carbon emission reduction equivalent into points there can be different implementation methods for converting the user's carbon emission reduction equivalent into points.
  • the original data of the carbon emission reduction behavior is considered authentic and credible by the entire system 100, so it can Converting it directly into points recognized by the entire blockchain network and circulated has higher credibility. It can be understood that since such points can be recognized in the entire system 100, they can be used as digital currency in the system 100 for circulation, such as transfer, payment, and so on.
  • the original data is obtained directly from the data source (ie, transportation equipment, personal user terminal using transportation equipment, etc.) in the method 200 or obtained through a third-party certification body, it will save carbon.
  • the amount of carbon savings can be converted into the first point (ie, carbon currency), and the first point can be associated with the user's ID or account and stored on the blockchain , Or can also be stored in association with the identifiers of tools (for example, transportation equipment) or services (for example, item recycling services).
  • the carbon savings determined by these raw data will be converted into second points, and the second points will be compared with the user’s
  • the ID or account is stored in association with the business system 120, or may also be stored in association with the identifier of the tool or service.
  • the solution of the present disclosure also includes methods such as the issuance, issuance, circulation, coin charging, and cancellation of carbon currency.
  • Carbon coins are value certificates that can be used in the entire system 100 (including the blockchain platform 130). Based on the guarantee of the underlying technology of the blockchain, carbon coins can be exchanged and transferred on the blockchain platform 130 at a low cost, which improves the efficiency of the value transfer of carbon emission reduction resources.
  • the following describes the flow chart of the carbon currency issuance, cancellation and exchange method according to the embodiments of the present disclosure with reference to FIGS. 3 to 5. Those skilled in the art can understand that the methods described in conjunction with FIGS. 3 to 5 may be used as a part of the method in FIG. 2 or may be implemented as a separate method.
  • FIG. 3 shows a flowchart of a carbon currency issuance method 300 according to an embodiment of the present disclosure.
  • each action is executed by the processor of the business system 120 and/or the blockchain platform 130, for example.
  • the method 300 may also include additional actions not shown and/or the actions shown may be omitted, and the scope of the present disclosure is not limited in this respect.
  • the business system 120 when the business system 120 receives a carbon coin issuance request from an enterprise user, it first determines the amount of carbon emission reduction equivalent to be locked in the first account of the enterprise user of the blockchain platform 130, and the carbon emission reduction equivalent The carbon emission reduction behavior of at least one object 110 from the enterprise user.
  • the business system 120 when it receives a carbon currency issuance request from an enterprise user, it can obtain the carbon emission reduction certificate or the to-be-locked amount of carbon emission reduction equivalent in the first account of the enterprise user.
  • the first account is, for example, a blockchain account of an enterprise user who has adopted carbon emission reduction behaviors, and the enterprise user, for example, is audited by a third-party certification body by taking carbon emission reduction behaviors (for example, through Obtain a certain amount of carbon emission reduction certificates (such as CCER) by producing new energy vehicles, producing energy-saving home appliances or providing goods recycling or goods recycling services), and transfer them to the blockchain platform 130 to communicate with the enterprise user In the first linked account.
  • the carbon emission reduction certificate of the enterprise user can be recorded under his carbon coin wallet address.
  • the “carbon Emission reduction equivalents or emission reduction certificates” need to be locked.
  • the amount to be locked is derived, for example, from a value entered by a corporate user for issuing carbon coins.
  • the amount to be locked may be equal to or less than the total amount of carbon emission reduction certificates or carbon emission reduction equivalents in the first account, which enables enterprise users to base all or part of the carbon emission reduction certificates or carbon reduction in the account. Emission equivalent requests the issuance of carbon coins.
  • a carbon currency issuance request from an enterprise user when a carbon currency issuance request from an enterprise user is received, it is first confirmed whether the carbon emission reduction certificate or carbon emission reduction equivalent in the first account of the enterprise user has been certified by a third-party certification body; When it has been certified by a third-party certification body, obtain the carbon emission reduction certificate or the amount of carbon emission reduction equivalent to be locked in the first account of the enterprise user.
  • the relevant data of enterprise users have been audited and verified by a third-party certification body at the beginning of the request for carbon currency issuance.
  • the number of carbon coins to be issued is determined. In some embodiments, it may include determining the number of carbon coins to be issued based on the first predetermined proportional relationship and the amount of carbon emission reduction certificates or carbon emission reduction equivalents to be locked.
  • the first predetermined proportional relationship when an enterprise user’s request for issuance of carbon coins is detected, it is based on the total amount of carbon coins currently existing on the blockchain platform 130 and the locked carbon in the second account.
  • the total amount of emission reduction certificates or carbon emission reduction equivalents determines the first predetermined proportional relationship.
  • the second account is verified and locked by a third-party certification agency.
  • the issued amount of carbon coins can be generated via the second smart contract and stored in the first account.
  • the second smart contract is signed by a private key of a third-party certification authority (such as Det Norske Veritas DNV-GL).
  • the third-party certification agency is responsible for auditing and verifying the smart contracts involved in carbon currency issuance to cancellation, and the process of carbon currency exchange and circulation by corporate users, thereby ensuring the authority of carbon currency issuance , Norms and Compliance.
  • the third-party certification agency is also responsible for auditing and verifying the application program interface of the blockchain platform 130 and various objects or services, and for the ID of the object (for example, transportation equipment) and the original carbon behavior data obtained , Certification and accounting of the determined carbon emission reduction equivalent.
  • the amount of carbon emission reduction equivalent to be locked is transferred from the first account to the second account of the blockchain platform 130.
  • the amount of emission reduction certificates or carbon emission reduction equivalents to be locked can be transferred from the first account to the second account.
  • the number of emission reduction certificates or carbon emission reduction equivalents to be locked is transferred to the second account that is audited, verified, and locked by a third-party certification agency.
  • FIG. 4 shows a flowchart of a carbon coin cancellation method 400 according to an embodiment of the present disclosure.
  • each action is executed by the processor of the business system 120 and/or the blockchain platform 130, for example.
  • the method 400 may further include additional actions not shown and/or the actions shown may be omitted, and the scope of the present disclosure is not limited in this respect.
  • the amount of carbon coins to be cancelled in the first account of the enterprise user is determined at 410. Specifically, it can be determined whether the carbon currency cancellation request of the enterprise user is received, and when the carbon currency cancellation request is received, the amount of carbon coins to be cancelled in the first account of the enterprise user is obtained. In some embodiments, when a carbon coin cancellation request from an enterprise user is received, the carbon coin wallet address associated with the first account and the number of carbon coins to be cancelled are obtained. In some embodiments, the amount of carbon coins to be cancelled may be equal to or less than the total amount of carbon coins in the first account.
  • the unlocked amount of carbon emission reduction equivalent is determined. Specifically, the unlocked amount of emission reduction certificates or carbon emission reduction equivalents may be determined based on the second predetermined proportional relationship and the amount of carbon coins to be cancelled.
  • the second predetermined proportional relationship in some embodiments, when an enterprise user’s carbon currency cancellation request is detected, the total amount of carbon currency of the user currently recorded on the blockchain platform 130 and the second account are locked The total amount of carbon emission reduction certificates or carbon emission reduction equivalents to determine the second predetermined proportional relationship. It should be understood that the first predetermined proportional relationship and the second predetermined proportional relationship mentioned above may be the same or different, and are not limited herein.
  • the amount of carbon coins to be cancelled is destroyed from the first account. Specifically, the amount of carbon coins to be cancelled can be deleted in the first account via the third smart contract.
  • the third smart contract is signed by a private key of a third-party certification authority.
  • the unlocked amount of carbon emission reduction equivalent is transferred from the second account to the first account.
  • the unlocked amount of emission reduction certificates or carbon emission reduction equivalents can be transferred from the second account to the first account.
  • the unlocked emission reduction certificate or carbon emission reduction equivalent can continue to be used for subsequent issuance of carbon coins.
  • FIG. 5 shows a flowchart of a method 500 for issuing carbon coins to individuals according to an embodiment of the present disclosure.
  • each action is executed by the processor of the business system 120 and/or the blockchain platform 130, for example.
  • Method 500 may also include additional actions not shown and/or actions shown may be omitted, and the scope of the present disclosure is not limited in this respect.
  • the first account belongs to, for example, a new energy vehicle manufacturer or a service provider company that shares new energy vehicles.
  • the individual user related to the transportation equipment 112 is, for example, a purchaser of a new energy vehicle or a user of a shared new energy vehicle.
  • the first account may also belong to an enterprise user that produces energy-saving home appliances 114, an enterprise user that provides goods recovery or recycling services, and so on.
  • the individual user related to the object 110 may be, for example, an individual user who uses the energy-saving home appliance 114 or an individual user who sends items to a recycling bin.
  • the exchanged amount of carbon currency is transferred from the first account to the account of the individual user, and the first account may be associated with the accounts of multiple individual users including the individual user.
  • the association may be performed when an individual user purchases or registers a corporate user's transportation equipment 112, an energy-saving home appliance 114, or registers with a corporate user that provides item recovery services, for example.
  • individual users can view and copy the address of a personal wallet, bind the personal carbon coin wallet address in the corporate account system; individual users initiate a carbon coin issuance request, and the enterprise user’s system receives and verifies the carbon coin issuance request, Then determine the number of carbon coins issued; then transfer the corresponding amount of carbon coins in the corporate carbon coin wallet to the individual user's carbon coin wallet address, and the individual user can confirm whether or not they have received the number of carbon coins in the personal wallet.
  • the record of the issuance process is deposited on the blockchain.
  • the carbon coins obtained by enterprises or individual users can be circulated on the blockchain platform 130 and exchanged for services or goods of equivalent value, for example, through the blockchain chain store module on the blockchain platform 130 to exchange for Services or goods of equal value.
  • carbon coins are issued from corporate wallets to individual users and are hosted in the corporate personal wallets, making individual users and companies more active in participating in carbon emission reduction activities and projects.
  • the carbon coins in the user's personal wallet may also be recharged to the personal account associated with the first account of the enterprise.
  • an individual user initiates a coin deposit request
  • an enterprise user creates a unique coin deposit address for an individual user, and individual users can view and copy their coin deposit address in the system
  • an individual user initiates a personal wallet transfer to the coin address, and the enterprise user monitors
  • the deposit address of the individual user confirms the success of the transaction, and increases the individual user's carbon currency in the personal account associated with the enterprise user's system; the individual user can view his own coin deposit history in the enterprise user's system.
  • FIG. 6 schematically shows a block diagram of a carbon emission reduction data processing electronic device 600 suitable for implementing embodiments of the present disclosure.
  • the device 600 may be used to implement one or more hosts in the business system 120 and/or the node 140 in the blockchain platform 130 in FIG. 1.
  • the device 600 includes a central processing unit (CPU) 601, which can be loaded according to computer program instructions stored in a read-only memory (ROM) 602 or loaded from a storage unit 608 to a random access memory (RAM) 603. Program instructions to perform various appropriate actions and processing.
  • ROM read-only memory
  • RAM random access memory
  • RAM 603 various programs and data required for the operation of the device 600 can also be stored.
  • the CPU 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604.
  • An input/output (I/O) interface 605 is also connected to the bus 604.
  • the I/O interface 605 includes: an input unit 606, such as a keyboard, a mouse, etc.; an output unit 607, such as various types of displays, speakers, etc.; and a storage unit 608, such as a magnetic disk, an optical disk, etc. ; And a communication unit 609, such as a network card, a modem, a wireless communication transceiver, etc.
  • the communication unit 609 allows the device 600 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.
  • the processing unit 601 executes the various methods and processes described above, for example, executes the methods 200, 300, 400, and 500 for controlling data backup.
  • the methods 200, 300, 400, and 500 may be implemented as computer software programs, which are stored in a machine-readable medium, such as the storage unit 608.
  • part or all of the computer program may be loaded and/or installed on the device 600 via the ROM 602 and/or the communication unit 609.
  • the CPU 601 may be configured to perform one or more actions of the methods 200, 300, 500, and 600 in any other suitable manner (for example, by means of firmware).
  • the present disclosure may be a method, a device, and/or a computer-readable storage medium, which carries computer-readable program instructions for executing various aspects of the present disclosure.
  • the computer-readable storage medium may be a tangible device that can hold and store instructions used by the instruction execution device.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), static random access memory (SRAM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanical encoding device, such as a printer with instructions stored thereon
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanical encoding device such as a printer with instructions stored thereon
  • the computer-readable storage medium used here is not interpreted as a transient signal itself, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (for example, light pulses through fiber optic cables), or through wires Transmission of electrical signals.
  • the computer-readable program instructions described herein can be downloaded from a computer-readable storage medium to various computing/processing devices, or downloaded to an external computer or external storage device via a network, such as the Internet, a local area network, a wide area network, and/or a wireless network.
  • the network may include copper transmission cables, optical fiber transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • the network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network, and forwards the computer-readable program instructions for storage in the computer-readable storage medium in each computing/processing device .
  • the computer program instructions used to perform the operations of the present disclosure may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or in one or more programming languages.
  • Programming languages include object-oriented programming languages-such as Smalltalk, C++, etc., and conventional procedural programming languages-such as "C" language or similar programming languages.
  • Computer-readable program instructions can be executed entirely on the user's computer, partly on the user's computer, executed as a stand-alone software package, partly on the user's computer and partly executed on a remote computer, or entirely on the remote computer or server carried out.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to access the Internet connection).
  • LAN local area network
  • WAN wide area network
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), can be customized by using the status information of the computer-readable program instructions.
  • the computer-readable program instructions are executed to realize various aspects of the present disclosure.
  • These computer-readable program instructions can be provided to the processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, thereby producing a machine such that when these instructions are executed by the processor of the computer or other programmable data processing device , A device that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram is produced. It is also possible to store these computer-readable program instructions in a computer-readable storage medium. These instructions make computers, programmable data processing apparatuses, and/or other devices work in a specific manner, so that the computer-readable medium storing instructions includes An article of manufacture, which includes instructions for implementing various aspects of the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • each block in the flowchart or block diagram can represent a module, program segment, or part of an instruction, and the module, program segment, or part of an instruction contains one or more executables for implementing the specified logical functions. instruction.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or actions Or it can be realized by a combination of dedicated hardware and computer instructions.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Finance (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Technology Law (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

一种碳减排数据处理方法、设备和计算机可读存储介质。根据该方法,确定与具有碳减排行为的对象的属性相匹配的目标智能合约(210);基于目标智能合约和与碳减排行为相对应的碳行为数据,确定与对象对应的碳减排当量(220);向区块链平台的节点发送碳减排当量,以将碳减排当量存储在区块链平台上与企业用户相关联的第一账户中(230);通过使用该方案可以对用户的碳排放量或减排量进行有效和准确的统计。

Description

碳减排数据处理方法、设备和计算机可读存储介质 技术领域
本公开涉及计算机技术领域,更具体地,涉及碳减排数据处理方法、设备和计算机可读存储介质。
背景技术
温室气体是大气中能够吸收地面反射的太阳辐射并重新发射辐射的一些气体。碳排放是温室气体排放的一个简称。温室气体中最主要的气体是二氧化碳,因此用碳(Carbon)一词作为代表。根据当前的研究,温室气体会导致地球表面温度升高,会对环境和气候产生影响和危害。因此,如何控制碳排放以及如何通过减排技术来减少碳排放量,成为当前最重要的环保话题之一。
为了控制全球或全国的碳排放量,当前通常采用的方式是由国际组织或者各个国家的国家机构向各个能源消耗型企业用户分配碳排放额度或者指定碳减排目标。实际碳排放量超过其排放额度的企业用户将不能继续生产。例如,在中国,相关国家主管部门针对实施碳减排的项目或企业用户主持和核准了中国核证自愿减排量(CCER),企业用户例如可以通过实施新能源终端的项目削减温室气体而获得对应量的CCER。碳超排的企业用户可以通过某种方式从实施碳减排活动的企业用户获得相应的碳排放额度以继续生产。然而,这些已有的方案通常是针对企业级用户的,难以对用户的碳排放量或减排量进行统计。
发明内容
本公开的实施例提出了一种数据处理方案。
在本公开的第一方面,提供了一种碳减排数据处理方法。该方法 包括:确定与具有碳减排行为的对象的属性相匹配的目标智能合约;基于该目标智能合约和与该碳减排行为相对应的碳行为数据,确定与该对象对应的碳减排当量;以及向区块链平台的节点发送该碳减排当量,以将该碳减排当量存储在区块链平台上与企业用户相关联的第一账户中。
在本公开的第二方面,提供了一种碳减排数据处理电子设备。该碳减排数据处理电子设备包括一个或多个处理器;以及存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行时,使得一个或多个处理器实现根据本公开第一方面的方法。
在本公开的第三方面,提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现根据本公开第一方面的方法。
提供发明内容部分是为了简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开的关键特征或主要特征,也无意限制本公开的范围。
附图说明
通过结合附图对本公开示例性实施例进行更详细的描述,本公开的上述以及其它目的、特征和优势将变得更加明显,其中,在本公开示例性实施例中,相同的参考标号通常代表相同部件。
图1示出了能够实施本公开的一些实施例的系统的示意图;
图2示出了根据本公开的实施例的碳减排数据处理方法的流程图;
图3示出了根据本公开的实施例的碳币发行方法的流程图;
图4示出了根据本公开的实施例的碳币注销方法的流程图;
图5示出了根据本公开的实施例的将企业碳币发放给个人用户的方法的流程图;
图6示意性示出了适于用来实现本公开实施例的碳减排数据处理电子设备的框图。
在各个附图中,相同或对应的标号表示相同或对应的部分。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如上文所描述的,为了控制全球或全国的碳排放量,在中国,相关国家主管部门针对实施碳减排的项目或企业用户主持和核准了中国核证自愿减排量(CCER),企业用户例如可以通过实施新能源终端的项目削减温室气体而获得对应量的CCER。碳超排的企业用户可以通过某种方式从实施碳减排活动的企业用户获得相应的碳排放额度以继续生产。
然而,这些已有的方案通常是针对企业级用户的,难以对用户的碳排放量或减排量进行统计。这样,个人用户在使用一些节能工具(例如,新能源车辆、节能家电等)或者服务(例如,用于二手物品回收的服务、用于垃圾分类的服务等)时产生的碳减排量难以被纳入碳减排生态平台,以作为碳减排资源加以认证、管理与交易。由此,造成了大量碳减排资源的闲置与浪费,从而不利于个人用户和企业用户(例如,新能源终端制造者、提供二手物品回收服务的企业用户等)参与碳减排行为的积极性的提高。
另一方面,随着生活水平的提高,例如个人汽车保有量增大、家 用电器的种类增多和普及以及各种生活物资的更新换代速度加快等,由个人生活产生的碳排放量越来越大,这部分碳排放量正逐渐成为全球碳排放量中的一个不可忽视的部分,具有巨大的潜在价值。
因此,如何对个人用户的碳减排行为进行量化以使其产生价值,从而使得个人用户从其碳减排行为中受益也成为一个值得研究的问题。
为了解决上述问题以及其他潜在问题,本公开的示例实施例提出了一种数据处理方案。在该方案中,首先确定与具有碳减排行为的对象的属性相匹配的目标智能合约,然后基于目标智能合约和与碳减排行为相对应的碳行为数据,确定与对象对应的碳减排当量,之后向区块链平台的节点发送碳减排当量,以将碳减排当量存储在区块链平台上与企业用户相关联的第一账户中。通过使用该方案可以对用户的碳减排量进行有效和准确的统计。
图1示出了能够实施本公开的一些实施例的系统100的示意图。如图1所示,系统100包括具有碳减排行为的对象110,业务系统120以及区块链平台130。具有碳减排行为的对象110包括多种类型的对象112、114、116和118(为便于描述,下文统称或单独称为对象110)。区块链平台130可以包括多个区块链节点140-1、140-2、140-3(为便于描述,下文统称或单独称为区块链节点140)。
如图1所示,根据不同的应用场景,具有碳减排行为的对象110例如可以是运输设备112(如新能源车辆)、节能家电114、被回收的物品116和被循环利用的物品118(即,被回收以二次利用的二手物品)等。
运输设备112例如可以是纯电动车辆(BEV)112-1、混合动力车辆(HEV)112-2和共享自行车112-3等。其中,BEV 112-1经由事前已充满电的蓄电池供电给电动机,再由电动机推动车辆,而电池的电量经由外部电源补充。HEV 112-2是包含一个内燃机和一个或多个电动机的车辆。每个运输设备112对应有唯一标识,该标识包括唯一标识该运输设备112的ID。该ID例如是该运输设备112的车架号,或 者是该运输设备112的车架号与发动机号的组合。
在一些实施例中,运输设备112可以配置有车载模块115,该车载模块115例如是带有无线通信功能的车载智能终端设备,以用于对运行车辆的动态监控管理。该车载智能终端设备能够记录和发送运输设备112的ID和碳行为数据(诸如行驶里程,耗油量,耗电量)等数据。在一些实施例中,车载模块115也可以经由无线通信装置117发送所记录的运输设备的ID和碳行为数据。例如,当个人用户113-1使用运输设备112-2之后,运输设备112-2可以进一步将车载模块115所记录的ID和碳行为数据经由网络发送至业务系统120。
在一些实施例中,运输设备112的ID和碳行为数据经由个人用户的移动终端发送。以共享自行车112-3为例,当个人用户113-2使用了共享自行车112-3之后,使用共享自行车112-3的个人用户113-2所拥有的移动终端119可以经由所装载的应用程序,来获取该共享自行车的ID(诸如车架号)和碳行为数据(诸如行驶里程),并将该ID和碳行为数据发送至业务系统120。
类似地,节能家电114可以包括各种类型的节能家电,如空调、洗衣机、电冰箱等。在本文中,节能家电114可以是配置有有线或无线通信模块的家用电器。例如,节能家电114可以是具有物联网(IoT)功能的家用电器。此外,每个节能家电114可以被分配有或者以其他任何方式具有在整个系统100内唯一的标识符(ID)。节能家电114可以记录其在各种工作条件下的碳行为数据(如耗电量),并通过其通信模块将该碳行为数据和节能家电114的ID一起发送至业务系统120。
物品116和118都可以包括纸制品、塑料制品、玻璃制品、金属制品、家电等,物品116和物品118的主要不同之处在于物品116回收之后被处理(如被销毁),而物品118回收之后被再次循环利用。例如,对于一本旧书来说,如果其回收之后被作为二手书籍销售或以其他方式流转给其他用户使用,则该旧书被认为是物品118。相反,如果该旧书被回收之后被执行销毁处理,则该旧书被认为是物品116。
物品116和118通常自身并不具有与业务系统120通信的能力,而是通过对物品116和118执行回收的机构的系统(如图1中所示的用于物品116的回收的系统1162和用于物品118的回收的系统1182)来记录相应的碳行为数据,如回收的纸制品的张数或重量、回收的塑料或金属制品的重量或数量、回收的家电的类型或数量等。本领域技术人员可以理解,碳行为数据并不局限于这里列出的,而是还可以包括其他各种可能的与碳减排有关的数据。系统1162或1182可以将回收物品116或118所产生的碳行为数据和执行物品116或118的用户(即物品116或118的所有者,例如可以是上述的用户113-1或113-2)的ID或者系统1162或1182的ID一起发送至业务系统120。
此外,鉴于物品116和118可以是同一物品在不同应用场景下的分类,还可以将同一物品的这种分类信息(即属于被回收的物品还是被循环利用的物品)一起发送至业务系统120,以使得业务系统120能够匹配不同的模型来计算碳减排当量。
在获得这些数据之后,业务系统120将对它们进行处理,以生成碳减排当量150,如下面参照图2所述。如图1所示,业务系统120可以将生成的碳减排当量150发送给区块链平台130的节点140。
每个区块链节点140可以部署有多个智能合约。图1中显示了区块链节点140上部署的两个智能合约142和144。
本领域技术人员可以理解,图1中所示的业务系统120和区块链平台130的划分是逻辑上的划分,事实上,区块链平台130物理上可以是业务系统120的一部分或者反之。也就是说,可以将业务系统120和区块链平台130逻辑上或物理上实现为一体的。
图2示出了根据本公开的实施例的碳减排数据处理方法200的流程图。应当理解,方法200还可以包括未示出的附加动作和/或可以省略所示出的动作,本公开的范围在此方面不受限制。为便于说明,参考图1来描述方法200。图1仅示出了可以实现本公开的实施例的一种示例性系统。应当理解,可以实现本公开的实施例的系统并不局限于图1中所示的形式,而是可以包括更多或更少或者不同的组成部分。
在210,业务系统120可以确定与具有碳减排行为的对象110的属性相匹配的目标智能合约。
如上文提到的,根据场景不同,对象110可以是运输设备112(如新能源车辆)、节能家电114、被回收的物品116和被循环利用的物品118(即,被回收利用的二手物品)等。
在一些实施例中,个人用户可以通过驾驶运输设备112、使用节能家电114,从而使得运输设备112或节能家电114产生碳减排行为。在一个示例中,在个人用户使用运输设备112(例如电动汽车)后,业务系统120可以获得该个人用户本次使用该运输设备112的相关数据,例如运输设备112的标识数据和碳行为数据。其中,获得的标识数据可以是与运输设备112对应的标识。该标识例如可以是运输设备112的车架号,或者是该运输设备112的车架号与发动机号的组合。
所获得的碳行为数据例如可以是对象的碳消耗或碳减排行为数据。具体地,根据应用场景的不同,碳行为数据例如可以包括运输设备的行驶里程、运输中消耗的油量、运输设备行驶或家电运行消耗的电量、处理回收的物品所消耗的电力和/或燃料等。
在一些实施例中,业务系统120可以通过本地存储设备(未示出)、运输设备的车载模块、节能家电114的通信模块或与对象相关的用户的移动终端的应用程序来获取标识数据和碳行为数据。
在一些实施例中,业务系统120可以判断获取的对象110的标识是否属于预定的标识集合。该预定的标识集合例如是经第三方权威机构所事先审查和核证过的对象110(例如,特定类型的运输设备112或节能家电114等)。当确定对象110的标识属于预定的标识集合时,可以基于该标识来获取与该对象110对应的属性,进而基于得到的属性来确定目标智能合约。
在一些实施例中,属性可以是对象110的类型。以运输设备112为例,运输设备112可以包括电动运输设备和混合动力运输设备。或者,对于节能家电114来说,属性可以是该家电的类型(例如,空调、洗衣机、冰箱等)、型号(如洗涤容量为6kg、8kg或10kg的洗衣机)、 工作模式(例如,洗衣机通常具有标准模式、混合模式、快速洗模式和羊毛洗模式等)等。由于不同地区可能有不同排放参考的情况,因此,对象110的属性还可以指示碳行为产生的地区。在另一些实施例中,在物品回收和物品循环利用的应用场景中时,属性可以是物品的类型(例如,纸制品、塑料制品、玻璃制品、金属制品、各种家电等)和分类信息(被回收还是被循环利用)。
目标智能合约用于将碳行为数据转换为碳减排当量。以运输设备112为例,不同型号的运输设备在排量、动力、载客量和载重量等诸多因素上存在差异。对于节能家电114,不同类型的家电或者同一种类型的家电的不同型号或不同工作模式都对应着不同的耗电量。上述这些因素往往都会影响到碳减排当量的计算关系,因此可以针对对象110的不同属性匹配相应的目标智能合约。
在一些实施例中,业务系统120可以存储有各种候选智能合约和关键字之间的对应关系,并且根据该对应关系确定与该对象110相匹配的候选智能合约作为目标智能合约。这里,关键字可以对应于该对象110的一种属性或多种属性的组合。例如,在对象110是节能家电114的情况下,关键字可以设置为节能家电114的类型(如空调、冰箱、洗衣机等),或者可以设置为类型与型号(如洗涤容量为6kg、8kg或10kg的洗衣机)、工作模式(如洗衣机的标准模式、混合模式、快速模式等)以及其他属性中的任一种的组合。例如,在关键字是节能家电114的类型的情况下,可以从候选智能合约中选择与对象110的类型相匹配的候选智能合约作为目标智能合约。又例如,在关键字是节能家电114的类型与型号的组合的情况下,可以从候选智能合约中选择与对象110的类型和型号同时匹配的候选智能合约作为目标智能合约。
当然,本领域技术人员可以理解,关键字和候选智能合约的设置可以取决于系统的实现复杂度或者应用场景的不同而不同。
在220,业务系统120可以基于目标智能合约和与碳减排行为相对应的碳行为数据,确定与对象110对应的碳减排当量。在一些实施例中, 可以基于参考排放量和实际碳排放量来确定碳减排当量。
下面将分别介绍在运输设备112、节能家电114、物品回收服务和物品循环利用服务四种不同场景下可以如何确定参考排放量和实际排放量,从而确定碳减排当量。
场景1:运输设备的场景:
在一些实施例中,如图1所示,对象110可以是运输设备112。业务系统120可以基于与目标智能合约相关联的参考排放关系来确定参考排放量,其中参考排放关系是根据预定义的排放标准而生成的。在一些实施例中,为了计算运输设备的参考排放量,业务系统120例如可以以与运输设备112具有相同或相似属性(例如,相同类型或相同或相似型号等)的运输设备(下文中统称为参考运输设备类型i)的排放作为参考排放关系,进而计算运输设备112的参考排放量。例如,业务系统120可以基于如下公式计算运输设备112的参考排放量(又称为BE):
BE y=EF BL,i,y*DD i,y*10 -12           (1)
其中,BE y表示待统计时间段(y)内的参考排放量(gCO 2);EF BL,i,y表示参考运输设备类型i在待统计时间段(y)内的排放因子(gCO 2/km);DD i,y表示项目运输设备类型i(即当前的运输设备112)在待统计时间段(y)内的行驶距离(km)。其中:
EF BL,i,y=SFC i*NCV BL,i*EF BL,i        (2)
其中,SFC i表示参考运输设备类型i单位距离消耗的燃料量(即燃料消耗率),其单位可以是g/km;NCV BL,i表示参考运输设备类型i的燃料消耗的净热值(J/g);EF BL,i表示参考运输设备类型i的燃料消耗的排放因子(gCO 2/TJ)。
此外,在计算排放因子EF BL,i,y时还可以考虑参考运输设备类型i的技术改进情况。在这种情况下,参考运输设备类型i的排放因子EF BL,i,y可以表示为:
EF BL,i,y=SFC i*NCV BL,i*EF BL,i*IR t        (3)
其中,IR t表示t年参考运输设备技术改进因子。技术改进因子通常 以日历年为计量单位。在本发明的一个实例中,可以将所有参考运输设备类型的技术改进因子设置为缺省值0.99。在其他实例中,还可以根据实际的技术改进情况对该因子进行调整。通过这种方式,本方案不仅可以应用于固定参考排放关系的情况,而且可以根据时间或者根据参考运输设备的技术改进情况使用可变的参考排放关系。
在一些实施例中,业务系统120还可以基于与对象110的属性有关的预定排放关系,来确定实际排放量。然后基于参考排放量和实际排放量两者来确定碳减排当量。
在一些实施例中,当对象110是运输设备的场景下,可以根据接收到的标识数据和碳行为数据来确定对应的预定排放关系(即,碳排放模型)。在一个实施例中,可以将运输设备分成电动汽车和混合动力汽车两种类型,从而根据运输设备的类型匹配到相应的与电动汽车相关的预定排放关系或者与混合动力汽车相关的预定排放关系。在另一实施例中,碳排放关系可以包括更多种。在这种情况下,可以以运输设备的型号或参数等因素提前划分。
在确定预定排放关系后,业务系统120可以基于确定的预定排放关系,将碳行为数据转换为碳排放量。这个碳排放量在这里表示运输设备的实际排放量(也称为项目排放量(PE)),是指运输设备消耗的电力和/或燃料所产生的排放。
在一个示例中,当运输设备为混合动力汽车时,其实际排放量可以通过下面的公式求得:
PE y=SEC i,y*EF y/(1-TDL y)*10 3+SFC i,y*NCV i,y*EF i,y*10 -12     (4)
其中,PE y表示待统计时间段(y)内的项目排放量(gCO 2);SEC i,y表示项目运输设备类型i在待统计时间段(y)内消耗的电量(kWh);EFy表示项目运输设备类型i在待统计时间段(y)内的电力消耗的CO 2排放因子(kgCO 2/kWh);TDL y表示在待统计时间段(y)内的电力传输与分配的平均损失泄漏率;SFC i,y表示项目运输设备类型i在待统计时间段(y)内消耗的燃料量(g);NCV i,y表示项目运输设备类型i在待统计时间段(y)内的油耗的净热值(J/g);EF i,y表示项目运输设备类 型i在待统计时间段(y)内消耗的燃料的CO 2排放因子(gCO 2/TJ)。
当运输设备为电动运输设备时,其实际排放量可以通过以下的公式计算:
PE y=SEC i,y*EF y/(1-TDL y)*10 3       (5)
其中,PE y表示待统计时间段(y)内的项目排放量(gCO 2);SEC i,y表示项目运输设备类型i在待统计时间段(y)内消耗的电量(kWh);EFy表示项目运输设备类型i在待统计时间段(y)内的电力消耗的CO 2排放因子(kgCO 2/kWh);TDL y表示在待统计时间段(y)内的电力传输与分配的平均泄漏率。
在上述实现的一种简化关系中,假设其他参数不变,BE的计算仅与车辆的实际行驶距离(DD i,y)有关,PE的计算仅与车辆消耗的电量(SEC i,y)和燃料量(SFC i,y)有关,这大大简化了节碳量的计算。
在通过上述的方式分别确定参考排放量(BE)和实际排放量(PE)后,业务系统120可以基于实际排放量和参考排放量来确定使用运输设备的碳减排当量。在一些实施例中,可以通过下面的公式计算碳减排量:
ER y=BE y-PE y-LE y        (6)
其中,ER y表示待统计时间段(y)内的减排量(gCO 2),该减排量ER(Emission Reductions)可以表示由于使用新能源运输设备、节能电器、物品回收的服务等从而实现的减排量,经过量化后的数值称为碳减排当量;BE y表示待统计时间段(y)内的参考排放量(gCO 2);PE y表示待统计时间段(y)内的项目排放量(gCO 2);LE y表示待统计时间段(y)内的泄漏量(gCO 2),通常不考虑此项。
在另一些实施例中,还可以以国家或国际组织发布的排放标准作为参考排放关系。例如,在属性为运输设备的场景中,可以根据《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国III、IV、V阶段)》的规定,车辆排放应满足如下III、IV、V阶段标准。ESC试验测得的一氧化碳、总碳氢化合物、氮氧化物和颗粒物的比质量,以及ELR试验测得的不透光烟度,都不应超出下面的表1中给出的数值:
表1 ESC和ELR实验限值
Figure PCTCN2020100598-appb-000001
其中,ESC是发动机稳态循环;ELR是发动机负荷烟度试验。
对于需进行ETC附加试验的柴油机和必须进行ETC试验的燃气发动机,其一氧化碳、非甲烷碳氢化合物、甲烷(如适用)、氮氧化物和颗粒物(如适用)的比质量,都不应超出表2给出的数值。
表2 ETC实验限值
Figure PCTCN2020100598-appb-000002
其中ETC表示发动机瞬态循环;NG发动机表示天然气发动机;EEV表示环境友好汽车。
在这种情况下,计算参考排放量(BE)和实际排放量(PE)时,可以分别将排放成分中的各种碳化合物分别转换为含有等量碳的二氧化碳CO 2,并计算相应的CO 2之和作为PE和BE。
类似地,参考排放关系也可以是可变的。例如,取决于国内地区之间发展的不平衡,不同地区的运输设备排放标准可能不同,有些地区已经强制使用国V标准,而有些地区仍在采用国IV标准。业务系统120可以基于对象所在地区而选择使用不同的标准。对于对象处于国外的情况也可以类似地设置。此外,随着社会环保水平的提高,国家或国际排放量标准可能会进一步升高至表中未列出的情况。在这种情况下,业务 系统120也可以适应性地将其参考排放关系进行调整。
在使用上述国家或国际标准作为参考排放关系的上述实施例中,运输设备生产厂家在批量生产某种类型的运输设备之前,需要对其各项排放指标进行测试以获得生产许可证。针对每种类型的运输设备,这些测量得到的指标可以预先存储在业务系统120或者由车辆或车辆厂商在每次使用时发给业务系统120。
由此,车辆的碳减排量的计算可以基于测试得到的对象110(即,运输设备)的排放指标与表1和/或表2中的碳排放物成分(如一氧化碳(CO)、碳氢化合物(HC)、甲烷(CH4)、非甲烷碳氢化合物(NMHC)等)标准换算成CO 2来计算PE和BE,从而计算碳减排量ER。应当理解,在使用表1和表2中的标准来计算碳减排量时,还应当考虑待测目标车辆的运行时间(即待统计时间段)和平均运行功率。
以上介绍了在对象110是运输设备的场景下如何获得参考排放量和实际排放量,从而确定碳减排当量的方法。第一种方法主要从能源消耗角度考虑减排,相比之下第二种方法则主要从废弃物排放角度考虑减排。
场景2:节能家电的场景:
在一些实施例中,对象110可以是节能家电114。在这种情况下,当用户使用节能家电114时,可以确定该节能家电的碳减排当量。并且,该碳减排当量也可以计入该用户的碳减排量中,作为该用户的总的碳减排行为的结果的一部分。在这种场景下,业务系统120可以基于与目标智能合约相关联的参考排放关系来确定参考排放量,其中参考排放关系是根据预定义的排放标准而生成的。
在一个示例中,如表3所示,可以将国家能效等级(例如,一级、二级或三级等)作为参考排放关系,以计算参考排放量。该国家能效等级可以以能效比的形式表示或者以单位时间耗电量的形式来表示。
表3 参考排放关系
参考排放关系 耗电量(度)
国标一级能耗 0.66
国标三级能耗 0.9
备选地或附加地,还可以选择与当前节能家电114具有相似属性(如洗衣机容量、电机转速、额定输出功率中的一项或多项)的家电来作为参考家电,从而计算参考排放量。通过这种方式,即使是未在业务系统120中注册过的节能家电类型也可以为其计算相应的节碳量。
在一些实施例中,如上文提到过的,业务系统120还可以基于与对象110的属性有关的预定排放关系,来确定实际排放量;然后基于参考排放量和实际排放量两者来确定碳减排当量。其中,预定排放关系可以用能够体现不同类型家电的排放量标准的任何参数来表示。当前,预定排放关系通常至少包含对象110单位时间的耗电量,但并不限于此。
在一些实施例中,可以为不同类型的家电对应不同的预定排放关系,例如可以为洗衣机、空调、电视机分别设置不同的预定排放关系。可选地,同一类型下的不同厂家生产的不同型号的家电也可以对应着不同的预定排放关系。甚至同一家电的不同工作模式可能也对应着不同的预定排放关系。例如对于洗衣机这种类型的家电,不同品牌的不同型号可能在碳排放方面差异巨大,甚至不同工作模式下的排放量也差异巨大。因此可以为这些不同类型、不同型号或者不同工作模式分别配置相应的预定排放关系,并且在业务系统120中提前建立和保存家电与预定排放关系之间的对应关系。
进一步地,对于新接入业务系统120的家电,也可以将其排放参数与业务系统120中已存储的同类型家电的排放参数进行比较,以选择排放参数最接近的一种家电的预定排放关系作为该新介入的家电的预定排放关系。
在一个示例中,某种型号的洗衣机在各个工作模式下的单次工作耗电量可以如表4所示。
表4
Figure PCTCN2020100598-appb-000003
Figure PCTCN2020100598-appb-000004
因此,可以结合表3和表4分别确定使用洗衣机时的参考排放量和实际排放量,从而确定碳减排当量。例如如果该洗衣机以标准程序模式工作一次,则以一级能耗作为参考排放关系的情况下,其每次节约的用电量为0.66-0.3588=0.3012(度)。以2012年华北地区的二氧化碳排放因子(0.8843kgCO 2/度)来计算,该洗衣机该次工作达到的碳减排当量为0.3012*0.8843=0.266(kgCO 2)。
场景3:物品回收服务的场景:
在一些实施例中,如上文中提到的,对象110可以是被回收的物品116。被回收的物品例如可以是纸制品、塑料制品、玻璃制品、金属制品、各种家电等等等,但并不限于此。在一些实施例中,将基于与目标智能合约相关联的参考排放关系来确定参考排放量。对于上述这些被回收的物品来说,其参考排放量可以以假设该物品未被回收再利用而是对其作为垃圾进行处理所需消耗的碳排放量。例如,以回收物品i(如聚对苯二甲酸类塑料(PET))为例,每处理一千克该物品的碳排放量(BE)可以通过下列公式(7)来计算:
Figure PCTCN2020100598-appb-000005
其中,Q i,y是指回收的物品i的重量,以kg(千克)为单位;
L i是修正系数,用于修正该物品回收过程中的损耗,其值例如可以是0.75;
B i是指国别校正系数,用于区分不同国家的情况。例如,可以针对《京都议定书》中的附件一国家和非附件一国家分别设置不同的国别校正系数。在一种实例中,将针对中国的Bi设置为1;
SEC BL,i是指处理每吨该物品i的电力消耗量,其值例如为1.11MWh/t(兆瓦时/吨);
EF el,y表示待统计时间段y内的二氧化碳排放因子,例如2012年华北地区的二氧化碳排放因子为0.8843tCO 2/MWh(吨CO 2/兆瓦时);SFC BL,i是指处理每吨该物品i的燃料消耗量,其值例如为15GJ/t(吉焦/吨);
EF FF,CO2是指消耗的燃料的排放因子,其值例如是0.0675tCO2/GJ(吨CO2/吉焦)。
在一些实施例中,还可以基于与对象的属性有关的预定排放关系,来确定实际排放量。每种类型的回收物品可以有不同的预定排放关系,此预定排放关系主要指示物品回收过程中所消耗的电力和/或燃料所产生的碳排放。例如,可以针对不同属性的物品,例如纸制品、塑料制品、玻璃制品、金属制品、各种家电等等设置不同的预定排放关系。例如,以回收物品类型i(如聚对苯二甲酸类塑料(PET))为例,每回收一千克该物品的碳排放量(PE)如下:
PE i,y=(EC i,y+SEC P,i)*EF el,y+(FC i,y*NCV FF*EF FF,CO2)        (8)
其中:EF el,y表示待统计时间段y内的二氧化碳排放因子,例如2012年华北地区的二氧化碳排放因子为0.8843tCO2/MWh(吨CO 2/兆瓦时)(即884.3kgCO 2/MWh(千克CO 2/兆瓦时));
EC i,y是指回收过程中对物品i进行再处理的耗电量,单位例如可以是MWh(兆瓦时);
SEC p,i是指回收过程中运输工具消耗的电量。在一种简化的计算排放关系中,该项可以不纳入计算,即将其值取为0。
FC i,y是指回收过程中的燃料消耗量,单位例如可以是t(吨);
NCV FF是指消耗的燃料的净热值,其值例如是0.04307GJ/t(吉焦/吨);
EF FF,CO2是指消耗的燃料的排放因子,其值例如是67.5kgCO 2/GJ(千克CO 2/吉焦)。
由此,可以基于上述公式分别计算出参考排放量和实际排放量,从而确定碳减排当量。例如,可以参考上述公式(6)来计算碳减排量。
场景4:物品循环利用服务的场景
与场景3中的物品116类似,场景4中的物品118也可以包括纸制品、塑料制品、玻璃制品、金属制品、家电等等,物品116和物品118的主要不同之处在于在场景3中,物品116回收之后被处理(如被销毁),而在场景4中,物品118回收之后被再次循环利用(即二手物品)。
以下,以书籍被循环利用为例(二手书),在这种情况下,判断物品118(即该书籍)的属性是纸制品。因此可以确定纸制品的参考排放量为:
BE y=EF BL,i*Q i,y       (9)
其中,Q i,y是指回收的纸制品的重量,单位是kg(千克);
EF BL,i是指(按照原处理方式)处理每千克纸制品所产生的排放,其值例如是每千克纸制品0.1kgCO 2
可选地,这种场景下的实际排放量PE可以近似认为是0。因此,可以通过下列公式计算出物品回收的碳减排量,从而确定出碳减排当量:
ER=BE-PE=BE     (10)
在230,业务系统120向区块链平台130的节点140发送碳减排当量,以将碳减排当量存储在区块链平台130上与企业用户相关联的第一账户中。
在一些实施例中,可以将碳减排当量传输到区块链平台130以便存储在与企业用户相关联的第一账户中,该企业用户可以与多个对象110相关联。在一些实施例中,该企业用户例如是运输设备112(如新能源车辆)和/或节能家电114的生产者,并且/或者是物品116的回收、物品118的循环利用等服务的提供者。通过将基于个人用户使用企业用户提供的各种节碳产品和/或节碳服务所产生的所有碳减排当量都存储在该企业用户的账户中,便于将企业用户和个人用户的所有碳减排当量进行汇总,以便于后续基于汇总后的碳减排当量进行第三方认证、兑换碳币,或者进行其他碳交易。
在一些实施例中,将碳减排当量传输至区块链平台130还可以包括判断满足“达到预设时间间隔”和“所获取的标识数据和碳行为数据的数据量超过预定值”二者之中的至少一项;并且当满足两者之中的至少一项时,则打包所确定的碳减排当量,以传输到区块链平台130的节点140。
关于原始的标识数据和碳行为数据传输至区块链平台130,在一些实施例中,判断是否满足“达到预设时间间隔”和“所获取的标识数据和碳行为数据的数据量超过预定值”二者之中的至少一项;并且当满足两者中的至少一项时,则打包所获取的原始标识数据和碳行为数据,以传输到分布式存储设备;以及计算该标识数据和碳行为数据的哈希值,并打包该哈希值,以传输到区块链平台130。通过设定上述“预设时间间隔”或者“数据量的预定值”,使得当到达预设时间间隔和/或所获取数据量超过预定值时,将“从网络实时获取的、原始标识数据和碳行为数据,以及经由智能合约所确定的碳减排当量的数据”打包并传输上区块链,而并非将上述数据实时地上链,从而显著地节省了区块链的算力和成本。
在一些实施例中,设定预设时间间隔时,兼顾考虑区块链算力和成本的有效节约和良好的用户体验。例如可以设定为24或12小时,或者其他合适的时间。
可选地,为了进一步节省区块链的算力和成本,从网络实时获取的、原始的标识数据和碳行为数据被打包存储在分布式存储设备上(例如存储在后台数据库上,交由第三方进行维护)。然后计算该获取的原始标识数据和碳行为数据的哈希值,再打包该哈希值,以发送至区块链平台130进行存证。在一些实施例中,如果从网络实时获取的标识数据和碳行为的数据量较少,也可通过确认标识数据和碳行为数据的数据量是否达到或超过预设值。当确认达到或超过预设值时,则将标识数据和碳行为数据的哈希值传输至区块链平台130进行存证。
可选地,区块链平台130可以将与第一账户中的碳减排当量相 关联的碳交易作为区块链事务进行发布。通过将碳交易数据作为区块链事务进行发布,使得碳交易过程的数据获得共识以及不可篡改,从而解决了传统碳交易方法中所存在的碳减排数据不透明、不准确的问题。
可选地或附加地,碳减排数据处理方法200还可以进一步包括:基于待传输至区块链平台130的数据的特点,设置用于存储数据的数据库类型,数据库类型包括以下各项中的至少一项:基本信息类型的数据库,用于存储一经存储不再更新的数据,追踪信息类型的数据库,用于存储需要多次更新的数据,以及所有权信息类型的数据库,用于存储涉及权属及其变更过程的数据。在一些实施例中,碳减排数据处理方法200还包括:基于所设定的数据库类型,确定数据库的对应访问方式及权限。
进一步地,方法200还包括将用户的碳减排当量转化为积分的过程。取决于用户的碳减排行为是否经过第三方权威机构认证,将用户的碳减排当量转化为积分可以有不同的实施方式。
一方面,对于经过了第三方权威机构(如挪威船级社DNV-GL等)认证过的碳减排行为,该碳减排行为的原始数据被整个系统100认为是真实可信的,因此可以将其直接转换为整个区块链网络认可并且可以流通的积分有更高的可信性。可以理解,由于这种积分能够在整个系统100内得到认可,其可以被作为系统100内的数字货币来进行流通,如转让、支付等。
另一方面,对于未经第三方权威机构认证过的碳减排行为,为了吸引用户积极参与该节能应用,也应当对用户的参与行为做出奖励,即为其产生仅在业务系统120中认可的积分。
因此,可选地,取决于在方法200中是直接从数据源(即,例如运输设备、使用运输设备的个人用户终端等)直接获取原始数据还是经由第三方认证机构获取原始数据,将节碳量转换为积分可以有两种方式。对于经由第三方认证机构认证过的原始数据,可以将节碳量转换为第一积分(即,碳币),并将该第一积分与用户的ID或账户相 关联地存储在区块链上,或者还可以与工具(例如,运输设备)或服务(例如,物品回收服务)的标识符三者一起相关联地存储。对于未经第三方认证机构认证过的原始数据(例如直接从数据源获取的数据),通过这些原始数据所确定的节碳量将被转换为第二积分,并将第二积分与该用户的ID或账户相关联地存储在业务系统120中,或者还可以与工具或服务的标识符三者一起相关联地存储。
由于上述第一积分(即,碳币)具有在整个系统100内作为数字货币进行流通的功能,因此本公开的方案中还包括了碳币的发行、发放、流转、充币与注销等方法。碳币是可以用于整个系统100(包括区块链平台130)上的价值凭证。基于区块链底层技术的保证,可以将碳币在区块链平台130上低成本地进行交换与流转,提升了碳减排资源的价值流转的效率。以下结合图3至图5描述根据本公开的实施例的碳币发行、注销和兑换的方法的流程图。本领域技术人员可以理解,结合图3至图5所述的方法可以作为图2的方法的一部分或者可以作为单独的方法来实施。
图3示出了根据本公开的实施例的碳币发行方法300的流程图。在图3中,各个动作例如由业务系统120和/或区块链平台130的处理器执行。方法300还可以包括未示出的附加动作和/或可以省略所示出的动作,本公开的范围在此方面不受限制。
在310,当业务系统120接收到来自企业用户的发行碳币请求时,首先确定存储在区块链平台130的企业用户的第一账户中的碳减排当量的待锁定数量,碳减排当量来自于企业用户的至少一个对象110的碳减排行为。
在一些实施例中,当业务系统120接收到来自企业用户的发行碳币请求时,可以获取企业用户的第一账户中的碳减排凭证或碳减排当量的待锁定数量。在一些实施例中,该第一账户例如是采用了碳减排行为的企业用户的区块链账户,并且该企业用户例如在第三方认证机构的审计下,通过采取碳减排行为(例如通过生产新能源车辆、通过生产节能家电或者通过提供物品回收或物品循环利用服务)而获得 了一定数量的碳减排凭证(例如CCER),并将其转到区块链平台130上与该企业用户关联的第一账户中。具体地,在区块链平台130上,该企业用户的碳减排凭证可以记录在其碳币钱包地址下。
为了保证碳币的价值稳定,避免由于投机者重复使用已经用于对等发行碳币的碳减排当量或减排凭证,在碳币发行方法300中,用于对等发行碳币的“碳减排当量或减排凭证”需要被锁定。该待锁定数量例如是由企业用户输入的用于发行碳币的数值导出的。在一些实施例中,该待锁定数量可以等于或小于第一账户中的碳减排凭证或碳减排当量的总量,这使得企业用户可以基于账户中全部或部分碳减排凭证或碳减排当量请求发行碳币。
在一些实施例中,当接收到来自企业用户的发行碳币请求时,首先确认企业用户的第一账户中的碳减排凭证或碳减排当量是否已经经过第三方认证机构认证;以及当确认已经经过第三方认证机构认证时,获取企业用户的第一账户中的碳减排凭证或碳减排当量的待锁定数量。通过采用上述手段,使得企业用户进行请求碳币发行之初,其相关数据就已经经过第三方认证机构的审计和核查。
在320处,基于待锁定数量和第一预定比例关系,确定碳币的发行数量。在一些实施例中,其可以包括基于第一预定比例关系以及碳减排凭证或碳减排当量的待锁定数量,确定碳币的发行数量。
关于该第一预定比例关系,在一些实施例中,当检测到企业用户的发行碳币请求时,基于区块链平台130上当前存在的碳币的总量和第二账户中被锁定的碳减排凭证或碳减排当量的总量,确定该第一预定比例关系。该第二账户例如是由第三方认证机构核查和锁定的。通过采用上述手段,使得能够基于第三方认证机构核查和锁定的碳减排凭证或碳减排当量的总量和第一预定比例关系来发行碳币,能够保证碳币的价值相对稳定和发行规范。
在330处,基于第一账户中的碳减排当量,生成发行数量的碳币。
具体地,可以经由第二智能合约生成发行数量的碳币并将其存 储在第一账户下。在一些实施例中,第二智能合约经由第三方认证机构(例如挪威船级社DNV-GL)的私钥签名。在一些实施例中,由第三方认证机构负责对碳币的发行到注销中所涉及的智能合约、以及企业用户进行碳币兑换和流转的过程进行审计和核查,从而保证碳币的发行的权威、规范与合规。在一些实施例中,第三方认证机构还负责对区块链平台130与各类对象或服务的应用程序接口进行审计和核查,对对象(例如,运输设备)的ID、原始获取的碳行为数据、所确定的碳减排当量等进行认证和核算。
在340处,将待锁定数量的碳减排当量从第一账户转移到区块链平台130的第二账户中。具体地,可以将待锁定数量的减排凭证或碳减排当量从第一账户转移到第二账户中。在一些实施例中,完成对应的发行之后,待锁定数量的减排凭证或碳减排当量被转移到由第三方认证机构负责审计、核查和锁定的第二账户中。
图4示出了根据本公开的实施例的碳币注销方法400的流程图。在图4中,各个动作例如由业务系统120和/或区块链平台130的处理器执行。应当理解,方法400还可以包括未示出的附加动作和/或可以省略所示出的动作,本公开的范围在此方面不受限制。
在405,判断是否接收到来自企业用户的注销碳币请求。当接收到注销碳币请求时,则在410确定企业用户的第一账户中的碳币的待注销数量。具体地,可以判断是否接收到企业用户的注销碳币请求,并且当接收到注销碳币请求时,获取企业用户的第一账户中的碳币的待注销数量。在一些实施例中,当接收到企业用户的注销碳币请求时,获取与第一账户关联的碳币钱包地址和碳币的待注销数量。在一些实施例中,碳币的待注销数量可以等于或小于第一账户中碳币的总量。这使得企业用户可以注销其账户中全部或部分碳币来兑换相应的碳减排凭证或碳减排当量或者在系统100内兑换任何其他实物或虚拟物品。在一些实施例中,当接收到企业用户的注销碳币请求时,确认该企业用户的第一账户中的碳币是否已经经过第三方认证机构认证;以及当确认已经经过第三方认证机构认证时,获取第一账户中的碳币的 待注销数量。籍此,使得企业用户从进行注销碳币开始,其相关数据就已纳入第三方认证机构的审计和核查。
在420,基于碳币的待注销数量和第二预定比例关系,确定碳减排当量的解锁数量。具体地,可以基于第二预定比例关系和碳币的待注销数量,确定减排凭证或碳减排当量的解锁数量。
关于该第二预定比例关系,在一些实施例中,当检测到企业用户的注销碳币请求时,基于区块链平台130上当前记录的用户的碳币的总量和第二账户中被锁定的碳减排凭证或碳减排当量的总量,确定该第二预定比例关系。应当理解,上文中提到的第一预定比例关系和第二预定比例关系可以相同也可以不同,在此并不做限定。
在430,从第一账户中销毁待注销数量的碳币。具体地,可以在第一账户中,经由第三智能合约删除待注销数量的碳币。在一些实施例中,该第三智能合约经由第三方认证机构的私钥签名。
在440,将解锁数量的碳减排当量从第二账户转移到第一账户中。具体地,可以将解锁数量的减排凭证或碳减排当量从第二账户转移到第一账户中。在一些实施例中,在第一账户中,经解锁的减排凭证或碳减排当量可以继续用于后续的碳币的发行。
图5示出了根据本公开的实施例的向个人发放碳币的方法500的流程图。在图5中,各个动作例如由业务系统120和/或区块链平台130的处理器执行。方法500还可以包括未示出的附加动作和/或可以省略所示出的动作,本公开的范围在此方面不受限制。
在510,判断是否接收到与具有碳减排行为的对象110相关的个人用户的碳币发放请求,并且当接收到碳币发放请求时,基于与该个人用户的碳行为相对应的碳行为数据,确定碳币的兑换数量。
例如,判断是否接收到与运输设备112相关的个人用户的碳币发放请求。当接收到碳币发放请求时,则基于运输设备112的碳行为数据,确定碳币的发放数量。在一些实施例中,该第一账户例如属于新能源汽车的制造企业或共享新能源汽车的服务提供企业。该与运输设备112相关的个人用户例如是新能源汽车的购买者或共享新能源汽 车的使用者。在一些实施例中,该第一账户还可以属于生产节能家电114的企业用户、提供物品回收或循环利用服务的企业用户等。该与对象110相关的个人用户例如可以是使用该节能家电114的个人用户或者将物品送去回收站的个人用户。
在520,将兑换数量的碳币从第一账户转移到个人用户的账户,第一账户可以与包括该个人用户在内的多个个人用户的账户相关联。该关联例如可以是在个人用户购买或注册企业用户的运输设备112、节能家电114或者向提供物品回收服务的企业用户注册时执行的。
在一些实施例中,基于前文所提及的方法,将企业用户的第一账户中的一定数量的碳减排当量或碳减排凭证兑换成对应数量的碳币之后,根据与第一账户关联的个人用户在使用新能源汽车过程中的碳行为数据,兑换对应数量的碳币作为奖励,以发放至个人用户的关联账号(即个人用户托管在企业账户系统内的账号)。在一些实施例中,个人用户可以查看和复制个人钱包的地址,在企业账户系统中绑定个人碳币钱包地址;个人用户发起碳币发放请求,企业用户的系统接收、验证碳币发放请求,然后确定碳币的发放数量;然后在企业碳币钱包中将对应发放数量的碳币转账到个人用户的碳币钱包地址,个人用户在个人钱包中可以确认是否收到碳币的数量。该发放过程的记录在区块链上进行存证。
备选地,企业或个人用户所获得的碳币可以在区块链平台130上流转,以及兑换对等价值的服务或商品,例如经由区块链平台130上的区块链连锁店模块来兑换对等价值的服务或商品。通过采用上述手段,碳币由企业钱包发放至个人用户托管在企业的个人钱包中,使得个人用户和企业更加有积极性参与碳减排行为和项目。
在一些实施例中,也可以将用户个人钱包里的碳币充值到企业的第一账号所关联的个人账户中。例如,个人用户发起充币请求,企业用户为个人用户创建唯一的充币地址,个人用户可以在系统中查看、复制自己的充币地址;个人用户发起个人钱包转账到充币地址,企业用户监控个人用户的充币地址,确认交易成功,增加个人用户在 企业用户的系统关联的个人账户中的碳币;个人用户在企业用户的系统中查看自己的充币历史记录。
以上结合图3至图5描述了以企业用户为碳币发放对象的操作过程,获得碳币的企业用户还可以将相应量的碳币转移给实际使用相应的节碳产品或服务的个人用户,从而不仅保证了企业和个人双方都能受益,而且确保同一减排行为不会在系统100内重复计算。然而,本领域技术人员可以理解,本发明还可以实现为其他形式。例如,可以以个人用户作为碳币发放对象,将个人用户使用各种碳减排产品或服务的碳减排行为转化为碳币,并在后续根据情况将相应量的碳币转移给生产相应的产品或提供相应的服务的企业用户。
图6示意性示出了适于用来实现本公开实施例的碳减排数据处理电子设备600的框图。设备600可以用于实现图1的业务系统120和/或区块链平台130中的节点140中的一个或多个主机。如图所示,设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的计算机程序指令或者从存储单元608加载到随机访问存储器(RAM)603中的计算机程序指令,来执行各种适当的动作和处理。在RAM 603中,还可存储设备600操作所需的各种程序和数据。CPU 601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
设备600中的多个部件连接至I/O接口605,包括:输入单元606,例如键盘、鼠标等;输出单元607,例如各种类型的显示器、扬声器等;存储单元608,例如磁盘、光盘等;以及通信单元609,例如网卡、调制解调器、无线通信收发机等。通信单元609允许设备600通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
处理单元601执行上文所描述的各个方法和处理,例如执行用于控制数据备份的方法200、300、400和500。例如,在一些实施例中,方法200、300、400和500可被实现为计算机软件程序,其被存储于机器可读介质,例如存储单元608。在一些实施例中,计算机程 序的部分或者全部可以经由ROM 602和/或通信单元609而被载入和/或安装到设备600上。当计算机程序加载到RAM 603并由CPU 601执行时,可以执行上文描述的方法200、300、400和500的一个或多个操作。备选地,在其他实施例中,CPU 601可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法200、300、500和600的一个或多个动作。
本公开可以是方法、设备、和/或计算机可读存储介质,其上载有用于执行本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令 集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、设备和计算机可读存储介质的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置 或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的方法、设备和计算机可读存储介质的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
以上描述仅为本公开的可选实施例,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等效替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种碳减排数据处理方法,包括:
    确定与具有碳减排行为的对象的属性相匹配的目标智能合约;
    基于所述目标智能合约和与所述碳减排行为相对应的碳行为数据,确定与所述对象对应的碳减排当量;以及
    向区块链平台的节点发送所述碳减排当量,以将所述碳减排当量存储在所述区块链平台上与企业用户相关联的第一账户中。
  2. 根据权利要求1所述的方法,其中确定所述碳减排当量包括:
    基于与所述目标智能合约相关联的参考排放关系来确定参考排放量;以及
    至少基于所述参考排放量来确定所述碳减排当量。
  3. 根据权利要求2所述的方法,其中所述参考排放关系是根据预定义的排放标准而生成的。
  4. 根据权利要求2所述的方法,其中至少基于所述参考排放量来确定所述碳减排当量包括:
    基于与所述对象的属性有关的预定排放关系,来确定实际排放量;以及
    基于所述参考排放量和所述实际排放量来确定所述碳减排当量。
  5. 根据权利要求1所述的方法,其中具有所述碳减排行为的所述对象包括以下项目中的至少一项:
    运输设备,
    节能家电,
    被回收的物品,以及
    被循环利用的物品。
  6. 根据权利要求1所述的方法,其中所述对象的属性包括以下项目中的至少一项:
    运输设备的类型,
    运输设备的型号,
    智能家电的型号,
    智能家电的工作模式,
    被回收的物品的类型,以及
    被循环利用的物品的类型。
  7. 根据权利要求1所述的方法,其中确定所述目标智能合约包括:
    根据候选智能合约和关键字之间的对应关系,确定与所述对象相匹配的候选智能合约作为目标智能合约,其中关键字对应于所述对象的一种属性或多种属性的组合。
  8. 根据权利要求1所述的方法,还包括:
    响应于接收到来自所述企业用户的发行碳币请求,确定存储在区块链平台的所述企业用户的第一账户中的碳减排当量的待锁定数量,所述碳减排当量来自于所述企业用户的至少一个对象的碳减排行为;
    基于所述待锁定数量和第一预定比例关系,确定碳币的发行数量;
    基于所述第一账户中的碳减排当量,生成所述发行数量的碳币;以及
    将所述待锁定数量的碳减排当量从所述第一账户转移到所述区块链平台的第二账户中。
  9. 根据权利要求1所述的方法,还包括:
    响应于接收到来自企业用户的注销碳币请求,确定所述企业用户的第一账户中的所述碳币的待注销数量;
    基于所述碳币的所述待注销数量和第二预定比例关系,确定所述碳减排当量的解锁数量;
    从所述第一账户中销毁所述待注销数量的所述碳币;以及
    将所述解锁数量的所述碳减排当量从所述第二账户转移到所述第一账户中。
  10. 根据权利要求8和9中任一项所述的方法,还包括:
    基于所述碳币的总量和所述第二账户中的碳减排当量,确定所述 第一预定比例关系和所述第二预定比例关系。
  11. 根据权利要求8和9中任一项所述的方法,还包括:
    响应于与具有碳减排行为的对象相关的个人用户的碳币发放请求,基于与所述个人用户的碳行为相对应的碳行为数据,确定所述碳币的兑换数量;以及
    将所述兑换数量的所述碳币从所述第一账户转移到所述个人用户的账户,所述第一账户与包括所述个人用户在内的多个个人用户的账户相关联。
  12. 一种碳减排数据处理电子设备,所述设备包括:
    一个或多个处理器;以及
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-11中任一项所述的方法。
  13. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至11中任一项所述的方法。
PCT/CN2020/100598 2019-07-12 2020-07-07 碳减排数据处理方法、设备和计算机可读存储介质 WO2021008405A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20841037.3A EP3985597A4 (en) 2019-07-12 2020-07-07 METHOD AND APPARATUS FOR PROCESSING CARBON EMISSION REDUCTION DATA, AND COMPUTER READABLE MEDIA
JP2021575301A JP2022539987A (ja) 2019-07-12 2020-07-07 炭素排出削減データ処理方法、装置、及びコンピュータ読み取り可能記憶媒体
US17/597,420 US20220292621A1 (en) 2019-07-12 2020-07-07 Method and Apparatus For Processing Carbon Emission Reduction Data, and Computer Readable Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910630983.XA CN112215621A (zh) 2019-07-12 2019-07-12 碳减排数据处理方法、设备和计算机可读存储介质
CN201910630983.X 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021008405A1 true WO2021008405A1 (zh) 2021-01-21

Family

ID=74048570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100598 WO2021008405A1 (zh) 2019-07-12 2020-07-07 碳减排数据处理方法、设备和计算机可读存储介质

Country Status (5)

Country Link
US (1) US20220292621A1 (zh)
EP (1) EP3985597A4 (zh)
JP (1) JP2022539987A (zh)
CN (1) CN112215621A (zh)
WO (1) WO2021008405A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113487469A (zh) * 2021-07-22 2021-10-08 杭州铲子科技有限公司 一种碳排数据处理方法和系统
CN113672663A (zh) * 2021-08-13 2021-11-19 国网(衢州)综合能源服务有限公司 一种工业企业碳账户系统
CN114338450A (zh) * 2021-12-31 2022-04-12 天翼物联科技有限公司 物联网终端碳排放监测方法、装置及相关组件
CN114862280A (zh) * 2022-07-05 2022-08-05 北京英视睿达科技股份有限公司 基于区块链的碳排放数据处理方法和装置
CN114912079A (zh) * 2022-07-19 2022-08-16 武汉华信数据系统有限公司 污水厂碳排放量的计算方法、装置、设备及存储介质
CN115099540A (zh) * 2022-08-25 2022-09-23 中国工业互联网研究院 基于人工智能的碳中和处理方法
WO2023215386A1 (en) * 2022-05-05 2023-11-09 Valentin Luca Expedited method of quantifying reduction of wildfire related emissions to enable revenue generation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791221B (zh) * 2021-05-17 2023-02-01 姚立和 碳幣交易之系統及其方法
TWI821730B (zh) * 2021-08-23 2023-11-11 張光晨 基於區塊鏈之減碳行為管理方法及電子設備
CN113888035A (zh) * 2021-10-28 2022-01-04 支付宝(杭州)信息技术有限公司 碳排放当量的计算方法及装置
CN113888034A (zh) * 2021-10-28 2022-01-04 支付宝(杭州)信息技术有限公司 碳排放活动的盘查方法及装置
US11615409B1 (en) * 2021-12-22 2023-03-28 Deedstack, Inc. Battery management reward network and system
CN114444950B (zh) * 2022-01-24 2023-06-16 氢山科技有限公司 温室气体减排量的计算方法、计算装置和可读存储介质
CN114548727A (zh) * 2022-02-16 2022-05-27 平安国际智慧城市科技股份有限公司 基于区块链的碳排放配额应用方法及相关设备
CN114612114A (zh) * 2022-03-09 2022-06-10 中国质量认证中心 基于区块链的可信双碳业务评价系统和方法、设备及介质
TWI801236B (zh) * 2022-05-05 2023-05-01 張光晨 基於區塊鏈實現碳中和的交易系統、交易方法及電子設備
CN114819754A (zh) * 2022-06-24 2022-07-29 深圳市环国运物流股份有限公司 一种基于边缘计算的物流企业碳排放量的检测方法及装置
JP2024007082A (ja) * 2022-07-05 2024-01-18 日本特殊陶業株式会社 二酸化炭素の排出権取引支援システム及び二酸化炭素の排出権取引支援方法
CN115801796A (zh) * 2022-10-12 2023-03-14 支付宝(杭州)信息技术有限公司 一种基于区块链的车辆电池数据管理方法、装置及设备
CN115345532B (zh) * 2022-10-20 2022-12-20 中国建筑科学研究院有限公司 一种智能群控电供暖系统碳排放管理平台及方法
TWI836815B (zh) * 2022-12-26 2024-03-21 顏素絹 碳關稅成本評估系統及其方法
CN116307891B (zh) * 2023-03-17 2024-03-05 国家电网有限公司大数据中心 一种企业碳排放评价方法、装置、设备及存储介质
CN116562512B (zh) * 2023-07-11 2023-11-03 国网浙江省电力有限公司宁波供电公司 一种电力系统的能碳诊断方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527335B1 (en) * 2009-07-07 2013-09-03 Robert S. MacArthur System and method for reducing pollution
CN104766237A (zh) * 2015-04-28 2015-07-08 超越联创环境投资咨询(北京)有限公司 一种碳积分形成及交易的方法及其体系
CN108615192A (zh) * 2017-08-18 2018-10-02 赫普科技发展(北京)有限公司 一种基于区块链的碳交易系统
CN109118090A (zh) * 2018-08-15 2019-01-01 北京元链科技有限公司 一种基于区块链技术的共享交通工具碳排放系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343341B2 (en) * 2002-07-20 2008-03-11 Chicago Climate Exchange, Inc. Systems and methods for trading emission reductions
US20090210295A1 (en) * 2008-02-11 2009-08-20 Yorgen Edholm System and Method for Enabling Carbon Credit Rewards for Select Activities
US20110208621A1 (en) * 2010-02-23 2011-08-25 Mitchell Bruce Feierstein Carbon Neutrality Management
KR101184384B1 (ko) * 2011-06-21 2012-09-20 서종혁 온실가스 배출량의 탄소배출권 변환 시스템 및 그 방법
CN103793776A (zh) * 2012-11-02 2014-05-14 王亚利 对碳排放或碳减排行为实现管理的账户系统及方法
US20150324807A1 (en) * 2014-05-09 2015-11-12 Christopher N. Pacheco Carbon emissions credits system
US20160034910A1 (en) * 2014-08-01 2016-02-04 GreenPrint LLC Data processing of carbon offsets for entities
US20160350778A1 (en) * 2015-05-29 2016-12-01 Geostellar, Inc. Online solar marketplace providing carbon reduction incentives and tracking
US10649429B2 (en) * 2015-10-13 2020-05-12 LO3 Energy Inc. Use of blockchain based distributed consensus control
CN108520432B (zh) * 2016-08-24 2022-02-18 创新先进技术有限公司 一种数据处理方法及装置
US20190058328A1 (en) * 2017-08-16 2019-02-21 Latifullah Khan Methods and systems for managing sale and purchase of solar credits
EP3692479A4 (en) * 2017-10-03 2021-04-07 Dynacert Inc. SYSTEMS AND METHODS FOR TRACKING GREENHOUSE GAS EMISSIONS ASSOCIATED WITH AN ENTITY
US11341490B2 (en) * 2017-10-11 2022-05-24 International Business Machines Corporation Carbon footprint blockchain network
US20200027096A1 (en) * 2017-11-07 2020-01-23 Jason Ryan Cooner System, business and technical methods, and article of manufacture for utilizing internet of things technology in energy management systems designed to automate the process of generating and/or monetizing carbon credits
US20220180374A1 (en) * 2017-12-26 2022-06-09 Jason Cooner Architecture, systems, and methods used in carbon credit and block chain systems
WO2019193583A2 (en) * 2018-04-05 2019-10-10 Russell Blades Methods, systems, apparatuses and devices for facilitating provisioning of audit data related to energy consumption, water consumption, water quality, greenhouse gas emissions, and air emissions using blockchain
WO2019204213A1 (en) * 2018-04-15 2019-10-24 Cooner Jason Encryption for blockchain cryptocurrency transactions and uses in conjunction with carbon credits
CN108805702B (zh) * 2018-04-19 2022-04-01 深圳市迅雷网络技术有限公司 基于区块链的交易缓冲/加速方法及区块链交易处理系统
US10747201B2 (en) * 2018-05-02 2020-08-18 Rockwell Automation Technologies, Inc. Subscription-based services using industrial blockchains
CA3053890A1 (en) * 2018-09-04 2020-03-04 Alex Stuart System and method for incorporating sensor measurements into a blockchain
CN109472566B (zh) * 2018-09-26 2023-09-29 平安科技(深圳)有限公司 区块动态生成方法、装置、计算机设备和存储介质
US20200111105A1 (en) * 2018-10-05 2020-04-09 Mastercard International Incorporated Method and system for tracking and using carbon credits via blockchain
US11645708B2 (en) * 2018-10-31 2023-05-09 International Business Machines Corporation Smart contract compliance monitoring and enforcement
US20200148072A1 (en) * 2018-11-08 2020-05-14 Helpanswers Charitable Foundation, Inc. Energy credit accounting and management using blockchain
CN109784927A (zh) * 2019-01-22 2019-05-21 浙江爱立美能源科技有限公司 基于区块链的碳节能交易系统和方法
US11774255B2 (en) * 2019-03-07 2023-10-03 Greenlines Technology Inc. Methods and systems for conversion of physical movements to carbon units
US20220012757A1 (en) * 2019-03-25 2022-01-13 Cole Walker Method and system for automated aggregation of carbon offsets
US11403626B2 (en) * 2019-05-24 2022-08-02 Recycle Go Inc. Methods, systems, apparatuses and devices for facilitating processing of recyclable items
WO2020252013A1 (en) * 2019-06-14 2020-12-17 Newlight Technologies, Inc. Blockchain tracking of carbon credits for materials with sequestered carbon
US11423499B2 (en) * 2019-06-20 2022-08-23 Bank Of America Corporation Logistics sensors for smart contract arbitration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527335B1 (en) * 2009-07-07 2013-09-03 Robert S. MacArthur System and method for reducing pollution
CN104766237A (zh) * 2015-04-28 2015-07-08 超越联创环境投资咨询(北京)有限公司 一种碳积分形成及交易的方法及其体系
CN108615192A (zh) * 2017-08-18 2018-10-02 赫普科技发展(北京)有限公司 一种基于区块链的碳交易系统
CN109118090A (zh) * 2018-08-15 2019-01-01 北京元链科技有限公司 一种基于区块链技术的共享交通工具碳排放系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985597A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113487469A (zh) * 2021-07-22 2021-10-08 杭州铲子科技有限公司 一种碳排数据处理方法和系统
CN113672663A (zh) * 2021-08-13 2021-11-19 国网(衢州)综合能源服务有限公司 一种工业企业碳账户系统
CN113672663B (zh) * 2021-08-13 2023-07-25 国网(衢州)综合能源服务有限公司 一种工业企业碳账户系统
CN114338450A (zh) * 2021-12-31 2022-04-12 天翼物联科技有限公司 物联网终端碳排放监测方法、装置及相关组件
CN114338450B (zh) * 2021-12-31 2024-05-17 天翼物联科技有限公司 物联网终端碳排放监测方法、装置及相关组件
WO2023215386A1 (en) * 2022-05-05 2023-11-09 Valentin Luca Expedited method of quantifying reduction of wildfire related emissions to enable revenue generation
CN114862280A (zh) * 2022-07-05 2022-08-05 北京英视睿达科技股份有限公司 基于区块链的碳排放数据处理方法和装置
CN114912079A (zh) * 2022-07-19 2022-08-16 武汉华信数据系统有限公司 污水厂碳排放量的计算方法、装置、设备及存储介质
CN114912079B (zh) * 2022-07-19 2022-11-11 武汉华信数据系统有限公司 污水厂碳排放量的计算方法、装置、设备及存储介质
CN115099540A (zh) * 2022-08-25 2022-09-23 中国工业互联网研究院 基于人工智能的碳中和处理方法
CN115099540B (zh) * 2022-08-25 2022-11-08 中国工业互联网研究院 基于人工智能的碳中和处理方法

Also Published As

Publication number Publication date
JP2022539987A (ja) 2022-09-14
US20220292621A1 (en) 2022-09-15
EP3985597A1 (en) 2022-04-20
CN112215621A (zh) 2021-01-12
EP3985597A4 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2021008405A1 (zh) 碳减排数据处理方法、设备和计算机可读存储介质
JP7481747B2 (ja) 炭素取引のための方法、装置、記憶媒体及びプログラム製品
JP7264405B2 (ja) ブロックチェーンに基づく炭素記録および炭素取引のための方法、装置、ブロックチェーンノード、コンピュータ可読媒体およびシステム
US10748355B2 (en) Route-based vehicle selection
US11410472B2 (en) Comparing vehicle performance
Gerding et al. Online mechanism design for electric vehicle charging
WO2023060919A1 (zh) 动力电池全生命周期碳排放当量测算方法、装置及介质
CN112765656B (zh) 基于区块链的电车共享充电可信系统和方法
Wang et al. Integrating vehicle‐to‐grid technology into energy system models: Novel methods and their impact on greenhouse gas emissions
O’Riordan et al. Impact of an emissions-based car tax policy on CO2 emissions and tax revenue from private cars in Ireland
Fan et al. Selection of battery suppliers for new energy vehicles by an integrated model based on D numbers
WO2020197612A1 (en) Method and system for automated aggregation of carbon offsets
Waters et al. Cercoin: Carbon tracking enabling blockchain system for electric vehicles
Wan et al. Study on the electric vehicle sales forecast with TEI@ I methodology
Wang Analyzing the application of blockchain and artificial intelligence in new energy vehicle transactions from a data security perspective
Xia et al. Impact of battery size and energy cost on the market acceptance of blended plug-in hybrid electric vehicles
Zahrina et al. Model Conceptualization of Battery Swapping Industry Development Using System Dynamics
Shinoda et al. Evaluation of the plug‐in hybrid electric vehicle considering learning curve on battery and power generation best mix
TWI821730B (zh) 基於區塊鏈之減碳行為管理方法及電子設備
Li et al. Management platform for second-use of retired power battery based on IPv6 and blockchain technology
Sumitra et al. A Comprehensive Study on the Communication Protocols for V2G Operations
Rhamdhanika et al. Inducing the Growth of Electric Vehicle Charging Infrastructure Through a Charge Pricing Model
Rai et al. Blockchain Application in Sustainable Energy Solution
Ji et al. Dynamic impedance model based two‐stage customized charging–navigation strategy for electric vehicles
Guler Smart allocation and sizing of fast charging stations: a metaheuristic solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020841037

Country of ref document: EP

Effective date: 20220112