WO2021008146A1 - 空调系统中水泵的控制方法、装置以及空调系统 - Google Patents
空调系统中水泵的控制方法、装置以及空调系统 Download PDFInfo
- Publication number
- WO2021008146A1 WO2021008146A1 PCT/CN2020/078842 CN2020078842W WO2021008146A1 WO 2021008146 A1 WO2021008146 A1 WO 2021008146A1 CN 2020078842 W CN2020078842 W CN 2020078842W WO 2021008146 A1 WO2021008146 A1 WO 2021008146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed ratio
- conditioning system
- air conditioning
- pumps
- water pump
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B23/00—Pumping installations or systems
- F04B23/04—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
- F04B49/065—Control using electricity and making use of computers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/12—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/02—Stopping of pumps, or operating valves, on occurrence of unwanted conditions
- F04D15/029—Stopping of pumps, or operating valves, on occurrence of unwanted conditions for pumps operating in parallel
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
Definitions
- This application relates to the field of air conditioning technology, and in particular to a method and device for controlling a water pump in an air conditioning system, and an air conditioning system.
- the switching conditions of the number of central air-conditioning water pumps are generally controlled according to the speed. Specifically, when the speed is lower than the lower limit of the speed, one water pump is reduced, and when the speed reaches the upper limit of the speed, one pump is loaded.
- this control method is simple and easy to implement, the flow rate and head of the pump are larger than the actual one. Therefore, when the number of pumps is controlled based on the speed, the air conditioning system will not start another pump based on the efficiency, which causes the pump to often run at The low efficiency zone increases the energy consumption of the air conditioning system.
- This application aims to solve one of the technical problems in the related technology at least to a certain extent.
- the first purpose of this application is to propose a control method for water pumps in an air conditioning system.
- the control method can switch the number of water pumps according to the number of pumps and heads, so as to ensure that the pumps operate in a high efficiency range under full load conditions.
- the second purpose of this application is to provide a control device for a water pump in an air conditioning system.
- the third purpose of this application is to provide a computer-readable storage medium.
- the fourth purpose of this application is to propose a computer device.
- the fifth purpose of this application is to propose an air conditioning system.
- an embodiment of the first aspect of the present application proposes a control method for a water pump in an air conditioning system.
- the air conditioning system includes multiple parallel water pumps.
- the control method includes the following steps: The number of running water pumps, and the current speed ratio and current operating head of the water pump; calculating the control range of the speed ratio according to the number and the current operating head; judging whether the current speed ratio is within the control range of the speed ratio If the current speed ratio is not within the control range of the speed ratio, switch the number of water pumps so that the speed ratio of the water pump falls within the control range of the speed ratio; if the current speed ratio Within the control range of the rotation speed ratio, the currently running water pump is controlled to continue the synchronous frequency conversion speed regulation.
- the control range of the speed ratio is calculated according to the number of water pumps and the current operating head, and then the number of water pumps can be switched according to the control range of the speed ratio and the current speed ratio. Switch the number of pumps with the head to ensure that the pump runs in a high-efficiency range under full load conditions, achieve the purpose of variable-frequency energy-saving control of the pump and reduce the operating power consumption of the air-conditioning system.
- the method for controlling the water pump in the air conditioning system according to the above embodiment of the present application may also have the following additional technical features:
- the method for controlling a water pump in an air conditioning system further includes: obtaining sample parameters of the water pump and at least three sets of characteristic parameters of the water pump under different working conditions, and establishing the water pump according to the sample parameters and the characteristic parameters A model, wherein the sample parameters include the flow rate, head and efficiency of the pump at rated speed, and the characteristic parameters include the flow rate, head and efficiency of the pump under different working conditions; the pump model is used to obtain the flow rate of the pump under different heads- Efficiency-speed ratio curve; According to the flow-efficiency-speed ratio curve, calculate the speed ratio corresponding to the optimal switching point when switching between multiple groups of different pumps; corresponding to the optimal switching point when switching between the multiple groups of different pumps The rotation speed ratio obtains the corresponding relationship between the head and the rotation speed ratio.
- the water pump model is represented by the following formula:
- m is the number of water pumps currently running
- H′ is the head of m parallel pumps after frequency conversion
- ⁇ is the efficiency of m parallel pumps
- a 1 , B 1 , C 1 , A 2 , B 2 , C 2 All are pump characteristic coefficients
- k is the speed ratio
- Q' is the flow rate of m parallel pumps after frequency conversion.
- the corresponding relationship between the head and the speed ratio is expressed by the following formula:
- H is currently running head
- H is the amount of the water pump to pump rated head
- m 0 is the number of pump units control operation after the handover
- m is the number of pump units currently running.
- calculating the control range of the speed ratio according to the number of units and the current operating head includes: calculating according to the number of units, the current operating head, and the correspondence between the head and the speed ratio The control range of the speed ratio, wherein the control range of the speed ratio is
- the current operating head is obtained by the pressure difference between the inlet and outlet of the multiple parallel water pumps.
- an embodiment of the second aspect of the present application proposes a control device for a water pump in an air-conditioning system.
- the air-conditioning system includes multiple water pumps connected in parallel.
- the control device includes: an acquisition module for acquiring the air conditioner.
- the control range of the speed ratio is calculated according to the number of water pumps and the current operating head, and the number of water pumps can be switched according to the control range of the speed ratio and the current speed ratio. Switch the number of pumps with the head to ensure that the pump runs in a high-efficiency range under full load conditions, achieve the purpose of variable-frequency energy-saving control of the pump and reduce the operating power consumption of the air-conditioning system.
- an embodiment of the third aspect of the present application proposes a computer-readable storage medium on which a computer program is stored.
- the program is executed by a processor, the water pump in the air conditioning system proposed in the embodiment of the first aspect of the present application is realized. Control method.
- the number of pumps when the computer program stored thereon is executed, the number of pumps can be switched according to the number of pumps and the head, so as to ensure that the pump runs in a high efficiency range under full load conditions to achieve the pump
- an embodiment of the fourth aspect of the present application proposes a computer device, including a memory, a processor, and a computer program stored on the memory.
- the processor executes the computer program
- the computer program the computer program
- the embodiment of the method for controlling the water pump in the air conditioning system is proposed.
- the number of pumps when the computer program stored in its memory is executed, the number of pumps can be switched according to the number of pumps and the head, ensuring that the pump runs in a high efficiency range under full load conditions, and achieves frequency conversion and energy saving of the pump The purpose of controlling and reducing the operating power consumption of the air conditioning system.
- the embodiment of the fifth aspect of the present application proposes an air conditioning system: the control device of the water pump in the air conditioning system proposed in the embodiment of the second aspect of the present application, or the computer equipment proposed in the fourth aspect of the present application.
- the number of water pumps can be switched according to the number of pumps and the head, so as to ensure that the pump runs in a high efficiency range under full load conditions.
- Fig. 1 is a flowchart of a method for controlling a water pump in an air conditioning system according to an embodiment of the present application
- Figure 2 is a flow-efficiency-speed ratio curve diagram when the head ratio is 30% according to a specific example of the present application
- Figure 3 is a flow-efficiency-speed ratio curve diagram when the head ratio is 50% according to a specific example of the present application
- Figure 4 is a flow-efficiency-speed ratio curve diagram when the head ratio is 70% according to a specific example of the present application
- Figure 5 is a structural block diagram of a water pump control device in an air conditioning system according to an embodiment of the present application
- Fig. 6 is a schematic structural diagram of a control device for a water pump in an air conditioning system according to an example of the present application.
- Fig. 7 is a structural block diagram of a computer device according to an embodiment of the present application.
- Fig. 8 is a structural block diagram of an air conditioning system according to an embodiment of the present application.
- Fig. 1 is a flowchart of a method for controlling a water pump in an air conditioning system according to an embodiment of the present application.
- the air conditioning system of this embodiment includes multiple water pumps connected in parallel.
- multiple pumps connected in parallel should be pumps of the same type and function.
- control method of the water pump in the air conditioning system includes the following steps:
- the current operating head is obtained by the pressure difference between the inlet and outlet of a plurality of parallel water pumps.
- the pressure difference between the inlet and outlet of multiple parallel water pumps is the current operating head. It is understandable that theoretically, the head of multiple pumps in parallel is equal to the head of one pump, but in fact, the characteristics of the water system (piping characteristics) will change after paralleling, so the inlet and outlet pressures of multiple parallel pumps Change occurs, and then the head also changes.
- the current speed ratio of the water pump refers to the ratio of the speed of the water pump after the frequency conversion to the rated speed.
- control range of the speed ratio when the pump operation efficiency is optimal can be calculated according to the number of pumps currently running and the current running head.
- the control range of the speed ratio is the number of pumps currently running and the current running head.
- the current speed ratio of the water pump can be monitored in real time to determine whether the current speed ratio is still within the control range of the speed ratio.
- the current speed ratio is not within the control range of the speed ratio, for example, the current speed ratio is greater than the upper limit of the speed ratio control range, or the current speed ratio is less than the lower limit of the speed ratio control range, at this time, It shows that the current speed ratio is not the most efficient speed ratio under the current working conditions, so the number of water pumps is switched to make the speed ratio of the water pump fall within the optimal control range of the speed ratio.
- control range of the speed ratio after switching can be calculated according to the number of water pumps after switching and the current operating head. If the current speed ratio falls within the control range of the speed ratio after switching, the number of pumps is switched to the speed ratio after switching. The number of units corresponding to the control range of, so that the current speed falls within the control range of the speed ratio corresponding to the optimal efficiency, so that the current pump runs in the high efficiency range.
- the control method of the water pump in the air conditioning system calculates the control range of the speed ratio when the efficiency is optimal according to the number of pumps and the current operating head, and then switches the number of pumps according to the control range of the speed ratio and the current speed ratio, which can be based on the pump operating efficiency and The head switches the number of pumps to ensure that the pumps run in a high efficiency range under full load conditions, achieving the purpose of variable frequency energy-saving control of the pumps and reducing the operating power consumption of the air conditioning system.
- the method for controlling a water pump in an air conditioning system may further include: acquiring sample parameters of the water pump and at least three sets of characteristic parameters of the water pump under different working conditions, and establishing a pump model according to the sample parameters and characteristic parameters, where ,
- the sample parameters include the flow, head and efficiency of the pump at rated speed, and the characteristic parameters include the flow, head and efficiency of the pump under different working conditions; use the pump model to obtain the flow-efficiency-speed ratio curve of the pump at different heads;
- the flow-efficiency-speed ratio curve calculates the speed ratio corresponding to the best switching point when switching between multiple groups of different pumps; obtains the difference between the head and speed ratio according to the speed ratio corresponding to the best switching point when switching between multiple groups of different pumps Correspondence.
- the water pump model is represented by the following formula:
- m is the number of water pumps currently running
- H′ is the head of m parallel pumps after frequency conversion
- ⁇ is the efficiency of m parallel pumps
- a 1 , B 1 , C 1 , A 2 , B 2 , C 2 All are pump characteristic coefficients
- k is the speed ratio
- Q' is the flow rate of m parallel pumps after frequency conversion.
- Q is the flow rate when a pump is running.
- Q m is the flow rate of m parallel pumps at rated speed.
- n′ is the speed of m pumps after frequency conversion
- n is the rated speed of m pumps
- H m is the head of m parallel pumps at rated speed
- k is the speed ratio
- the water pump model can be expressed by formulas (7) and (9), and expressed by the following formula:
- each set of curves should include the flow-efficiency-speed ratio curves of all possible operating pumps, for example, 3
- the flow-efficiency-speed ratio curves of multiple sets of pumps with different heads can be obtained, and the flow-efficiency-speed of each set of pumps under each set of heads is 1 pump, 2 pumps, and 3 pumps.
- Ratio curve; then according to the intersection of the flow-efficiency curve (same flow) of each set of curves (same head) is the best switching point when switching between different numbers of pumps, the speed ratio corresponding to the intersection is the best switching point. Therefore, the speed ratio corresponding to the best switching point when switching between multiple groups of different pumps can be calculated; finally, the head H and the speed ratio k are obtained according to the speed ratio corresponding to the best switching point when switching between multiple groups of different pumps Correspondence between.
- the corresponding relationship between the head H and the speed ratio k can be expressed by the following formula:
- H is currently running head
- H is the amount of the water pump to pump rated head
- m 0 is the number of pump units control operation after the handover
- m is the number of pump units currently running.
- calculating the control range of the speed ratio based on the number of units and the current operating head may include: calculating the control range of the speed ratio according to the number of units, the current operating head and the corresponding relationship between the head and the speed ratio, where the control of the speed ratio Range is
- the lower limit of the control range of the speed ratio can be obtained as The upper limit is Switching to control the number of water pumps may be to reduce 1 water pump or add 1 water pump. It can be understood that when the pump efficiency is too low (less than 0.6), it will affect the reliability of the pump operation and is not enough to support the long-term operation of the pump. Therefore, the speed ratio control Lower limit of range It needs to be greater than 0.6 to ensure the reliability of the pump operation.
- the speed ratio k and the current operating head H can be monitored in real time to determine the current speed ratio Whether it is within the control range of the speed ratio, if it does not fall within the control range of the speed ratio, switch the number of water pumps currently running so that the speed ratio of the water pump falls within the control range corresponding to the switched speed ratio.
- the number of water pumps can be switched according to the optimal efficiency, and the water pumps can be operated in a high efficiency range.
- the air conditioning system includes 3 parallel water pumps, according to the water pump model
- the flow-efficiency-speed ratio curves when the head is 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% can be obtained respectively, the efficiency curve of 1 pump and the efficiency curve of 2 pumps
- the intersection point is the best switching point A of 1 pump and 2 pumps
- the intersection of the efficiency curves of 2 pumps and the efficiency curves of 3 pumps is the best switching point B of 2 pumps and 3 pumps.
- the flow-efficiency-speed ratio curve is the same as the one pump efficiency curve.
- the intersection of the efficiency curves of 2 pumps is the best switching point A between 1 pump and 2 pumps, and the intersection of the efficiency curves of 2 pumps and the efficiency curves of 3 pumps is the best switching point of 2 pumps and 3 pumps.
- B the best switching points A and B can be obtained when the head is 40%, 60%, 80%, 90%, and 100%, and the number of running pumps is 1, 2, and 3;
- the best switching points A and B can respectively obtain the speed ratios k 1A , k 2A , k 2B , and k 3B of 7 groups of different water pump numbers.
- k 1A is the speed ratio of 1 pump at the best switching point A
- k 2A is The speed ratio of the two water pumps at the best switching point A
- k 2B is the speed ratio of the two water pumps at the best switching point B
- k 3B is the speed ratio of the three water pumps at the best switching point B.
- the current operating head ratio The corresponding relationship with the speed ratio k is: Combined with the control range of the speed ratio Can draw Among them, the ratio of the current running pumps m (according to The calculated) is known, and then f 1 and f 2 can be calculated, and then the speed ratio k 1A , k 2A , k 2B , k 3B of 7 groups of different pumps can be calculated, for example, in Time, In the same way, k 1A , k 2A , k 2B , and k 3B at the head ratio of 40%, 50%, 60%, 70%, 80%, 90%, and 100% can be calculated, so that it can be obtained at different heads
- the control range of the speed ratio with the best efficiency of 1 pump is [0.6,k 1A ]
- the control range of the speed ratio with the best efficiency of 2 pumps is [k 2A ,k 2B ]
- the speed ratio k is detected as 0.57 during the operation, that is, it does not fall within the range of [0.6, 0.61], and the current operating head H has not changed. If it is still 30%, increase the number of currently running water pumps to 2 so that the speed ratio of the water pump falls within the control range [0.52, 0.58] corresponding to the speed ratio of the 2 pumps, ensuring that the pump runs in the high efficiency range.
- the head ratio can be considered when switching the number of pumps.
- the method for controlling the water pump in the air conditioning system of the embodiment of the present application obtains the flow-efficiency-speed ratio curve of the water pump at different heads according to the water pump model, and then calculates the speed ratio of the multiple groups of different pumps when the efficiency is optimal.
- the control range, the number of pumps is switched according to the control range of the speed ratio, the current speed ratio, the current operating head and the number of pumps.
- the number of pumps can be switched according to the efficiency and head of the pump to ensure the pump It runs in a high-efficiency range under full load conditions, achieving the purpose of variable frequency energy-saving control of the water pump and reducing the operating power consumption of the air-conditioning system.
- Fig. 5 is a structural block diagram of a control device for a water pump in an air conditioning system according to an embodiment of the present application.
- the air conditioning system 1000 includes multiple water pumps connected in parallel
- the control device 100 of the water pump in the air conditioning system includes: an acquisition module 10, a calculation module 20, a judgment module 30 and a control module 40.
- the obtaining module 10 is used to obtain the number of currently running water pumps in the air conditioning system, as well as the current speed ratio and current operating head of the water pump; the calculation module 20 is used to calculate the control range of the speed ratio according to the number and current operating head; the judgment module 30 Used to determine whether the current speed ratio is within the control range of the speed ratio; the control module 40 is used to switch the number of water pumps when the current speed ratio is not within the control range of the speed ratio, so that the speed ratio of the water pump falls within Within the control range of the speed ratio, and when the current speed ratio is within the control range of the speed ratio, control the currently running water pump to continue the synchronous frequency conversion speed regulation.
- the acquisition module 10 can acquire the number of currently running water pumps, the current speed ratio, and the current operating head in real time, and send them to the calculation module 20.
- the calculation module 20 calculates according to the number and current operating head.
- the control range of the speed ratio when the efficiency is optimal is sent to the judgment module 30.
- the judgment module 30 judges whether the current speed ratio is within the control range of the speed ratio when the efficiency is the best under the current working conditions, and sends the judgment result to the control Module 40, the control module 40 switches the number of water pumps according to the judgment result, so that the speed ratio of the water pump falls within the control range of the speed ratio under the current working condition.
- the water pump control device 100 in the air conditioning system may further include a water pump power cabinet 50 to drive multiple parallel water pumps to operate.
- the control device of the water pump in the air conditioning system of the embodiment of the present application calculates the control range of the speed ratio when the efficiency is optimal based on the number of pumps and the current operating head, and then switches the number of pumps according to the control range of the speed ratio and the current speed ratio.
- the operation efficiency and head of the water pump switch the number of water pumps to ensure that the water pump runs in a high efficiency range under full load conditions, achieving the purpose of variable frequency energy saving control of the water pump and reducing the operating power consumption of the air conditioning system.
- the present application proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for controlling the water pump in the air conditioning system in the foregoing embodiment of the present application is realized.
- the computer-readable storage medium of the embodiment of the present application can switch the number of water pumps according to the operating efficiency and head of the water pump when the computer program stored thereon is executed, so as to ensure that the water pump runs in a high efficiency range under full load conditions, and achieves The purpose of frequency conversion energy-saving control and reducing the operating power consumption of the air conditioning system
- Fig. 7 is a structural block diagram of a computer device according to an embodiment of the present application.
- the computer device 200 includes a memory 21, a processor 22, and a computer program 23 stored on the memory 21.
- the processor 22 executes the computer program 23, it realizes the control of the water pump in the air conditioning system of the above-mentioned embodiment of the present application. method.
- the number of water pumps can be switched according to the operation efficiency and head of the water pump, so as to ensure that the water pump runs in a high efficiency range under full load conditions, and achieves the pump frequency conversion.
- Fig. 8 is a structural block diagram of an air conditioning system according to an embodiment of the present application.
- the air conditioning system 1000 includes a water pump control device 100 or a computer device 200 in the air conditioning system in the above embodiment of the present application.
- the air conditioning system of the embodiment of the present application can switch the number of water pumps according to the operating efficiency and head of the water pump through the control device or computer equipment of the water pump in the above air conditioning system, so as to ensure that the water pump runs in a high efficiency range under full load conditions, and achieves water pump frequency conversion The purpose of energy-saving control and reducing the operating power consumption of the air-conditioning system.
- first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
- installed can be a fixed connection or a detachable connection , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
- the specific meanings of the above terms in this application can be understood according to specific circumstances.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调系统中水泵的控制方法、装置以及空调系统,其中控制方法包括以下步骤:获取空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;根据台数、当前运行扬程计算转速比的控制范围;判断当前转速比是否处在转速比的控制范围内;如果当前转速比未处在转速比的控制范围内,则对水泵进行台数切换,以使水泵的转速比落在转速比的控制范围内。该控制方法能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
Description
相关申请的交叉引用
本申请基于申请号为201910630396.0,申请日为2019年07月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及空调技术领域,尤其涉及空调系统中水泵的控制方法、装置以及空调系统。
目前,中央空调水泵台数切换条件一般根据转速进行控制,具体而言,当转速低于转速下限时减少1台水泵,当转速达到转速上限时加载1台水泵。此控制方式虽然简单易行,但由于水泵选型流量及扬程均比实际偏大,因此基于转速控制水泵台数时,空调系统不会根据效率启动另一台水泵运行,由此导致水泵往往运行在低效率区间,使空调系统能耗增加。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种空调系统中水泵的控制方法,该控制方法能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
本申请的第二个目的在于提出一种空调系统中水泵的控制装置。
本申请的第三个目的在于提出一种计算机可读存储介质。
本申请的第四个目的在于提出一种计算机设备。
本申请的第五个目的在于提出一种空调系统。
为达上述目的,本申请第一方面实施例提出了一种空调系统中水泵的控制方法,所述空调系统包括多台并联的水泵,所述控制方法包括以下步骤:获取所述空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;根据所述台数、所述当前运行扬程计算转速比的控制范围;判断所述当前转速比是否处在所述转速比的控制范围内;如果所述当前转速比未处在所述转速比的控制范围内,则对水泵进行台数切换,以使水泵的转速比落在所述转速比的控制范围内;如果所述当前转速比处在所述转速比的控制范围内,则控制当前运行的水泵继续进行同步变频调速。
根据本申请实施例的空调系统中水泵的控制方法,根据水泵的台数和当前运行扬程计算转速比的控制范围,进而根据转速比的控制范围和当前转速比切换水泵的台数,能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
另外,根据本申请上述实施例的空调系统中水泵的控制方法还可以具有如下附加的技术特征:
根据本申请的一个实施例,空调系统中水泵的控制方法,还包括:获取水泵的样本参数和至少三组不同工况下水泵的特性参数,并根据所述样本参数和所述特征参数建立水泵模型,其中,所述样本参数包括水泵在额定转速下的流量、扬程和效率,特征参数包括水泵在不同工况下的流量、扬程和效率;利用所述水泵模型获取不同扬程下水泵的流量-效率-转速比曲线;根据所述流量-效率-转速比曲线计算多组不同台数水泵切换时的最佳切换点对应的转速比;根据所述多组不同台数水泵切换时的最佳切换点对应的转速比获取扬程与转速比之间的对应关系。
根据本申请的一个实施例,所述水泵模型通过下式表示:
其中,m为当前运行的水泵的台数,H′为m台并联的水泵变频后的扬程,η为m台并联水泵的效率,A
1,B
1,C
1,A
2,B
2,C
2均为水泵特性系数,k为转速比,Q′为m台并联的水泵变频后的流量。
根据本申请的一个实施例,所述扬程与转速比之间的对应关系通过下式表示:
根据本申请的一个实施例,通过所述多个并联的水泵的进出口压力差获得所述当前运 行扬程。
为达上述目的,本申请第二方面实施例提出了一种空调系统中水泵的控制装置,所述空调系统包括多台并联的水泵,所述控制装置包括:获取模块,用于获取所述空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;计算模块,用于根据所述台数、所述当前运行扬程计算转速比的控制范围;判断模块,用于判断所述当前转速比是否处在所述转速比的控制范围内;控制模块,用于在所述当前转速比未处在所述转速比的控制范围内时,对水泵进行台数切换,以使水泵的转速比落在所述转速比的控制范围内,以及在所述当前转速比处在所述转速比的控制范围内时,控制当前运行的水泵继续进行同步变频调速。
根据本申请实施例的空调系统中水泵的控制装置,根据水泵的台数和当前运行扬程计算转速比的控制范围,进而根据转速比的控制范围和当前转速比切换水泵的台数,能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
为达上述目的,本申请第三方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请第一方面实施例提出的空调系统中水泵的控制方法。
根据本申请实施例的计算机可读存储介质,在其上存储的计算机程序被执行时,能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
为达上述目的,本申请第四方面实施例提出了一种计算机设备,包括存储器、处理器及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时,实现本申请第一方面实施例提出的空调系统中水泵的控制方法。
根据本申请实施例的计算机设备,在其存储器上存储的计算机程序被执行时,能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
为达上述目的,本申请第五方面实施例提出了一种空调系统:本申请第二方面实施例提出的空调系统中水泵的控制装置,或者,本申请第四方面提出的计算机设备。
根据本申请实施例的空调系统,通过本申请上述实施例的水泵的控制装置或者计算机设备,能够根据水泵运行台数和扬程切换水泵台数,保证水泵在全负荷工况下运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的空调系统中水泵的控制方法的流程图;
图2是根据本申请一个具体示例的扬程比为30%时的流量-效率-转速比曲线图;
图3是根据本申请一个具体示例的扬程比为50%时的流量-效率-转速比曲线图;
图4是根据本申请一个具体示例的扬程比为70%时的流量-效率-转速比曲线图;
图5是根据本申请实施例的空调系统中水泵的控制装置的结构框图;
图6是根据本申请一个示例的空调系统中水泵的控制装置的结构示意图。
图7是根据本申请实施例的计算机设备的结构框图;
图8是根据本申请实施例的空调系统的结构框图。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空调系统中水泵的控制方法、装置以及空调系统。
图1是根据本申请实施例的空调系统中水泵的控制方法的流程图。
该实施例的空调系统包括多台并联的水泵。一般而言,多台并联的水泵应为同种类型及同种功能的水泵。
如图1所示,该空调系统中水泵的控制方法包括以下步骤:
S1,获取空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程。
在一个实施例中,通过多个并联的水泵的进出口压力差获得当前运行扬程。
具体地,多个并联水泵的进出口压力差即为当前运行扬程。可以理解的是,理论上,多台水泵并联后的扬程和1台水泵的扬程相等,但是实际上,并联后水系统特性(管路特性)会发生变化,则多个并联水泵的进出口压力发生变化,进而扬程也发生变化。
具体而言,在空调系统运行过程中,可实时获取当前运行的水泵的台数、当前转速比和当前运行扬程,其中,水泵的当前转速比指的是水泵变频后的转速与额定转速之比。
S2,根据台数、当前运行扬程计算转速比的控制范围。
具体地,可根据当前运行的水泵台数、当前运行扬程计算水泵运行效率最优(高效率区间)时的转速比的控制范围,该转速比的控制范围即为在当前运行的水泵台数、当前运 行扬程的情况下的转速比的最佳控制范围。
S3,判断当前转速比是否处在转速比的控制范围内。
具体地,在水泵的变频运行过程中,可实时监测水泵的当前转速比,判断当前转速比是否依旧处在转速比的控制范围内。
S4,如果当前转速比未处在转速比的控制范围内,则对水泵进行台数切换,以使水泵的转速比落在转速比的控制范围内。
具体地,如果当前转速比未处在转速比的控制范围内,例如,当前转速比大于转速比控制范围的上限值,或者,当前转速比小于转速比控制范围的下限值,此时,说明当前转速比并不是在当前工况下效率最优的转速比,则对水泵进行台数切换,以使水泵的转速比落在转速比的最佳控制范围内。
具体而言,可根据切换后的水泵台数和当前运行扬程计算切换后转速比的控制范围,如果当前转速比落在切换后转速比的控制范围内,则将水泵台数切换至该切换后转速比的控制范围对应的台数,以使当前转速落在效率最优所对应的转速比控制范围内,进而使当前水泵运行在高效率区间。
S5,如果当前转速比处在转速比的控制范围内,则控制当前运行的水泵继续进行同步变频调速。
可以理解,如果当前转速比处在转速比的控制范围内,则说明此时水泵运行在效率最优的转速比控制范围内,则不需要切换水泵运行的台数。
该空调系统中水泵的控制方法,根据水泵的台数和当前运行扬程计算效率最优时转速比的控制范围,进而根据转速比的控制范围和当前转速比切换水泵的台数,能够根据水泵运行效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
在本申请的一个实施例中,空调系统中水泵的控制方法还可包括:获取水泵的样本参数和至少三组不同工况下水泵的特性参数,并根据样本参数和特征参数建立水泵模型,其中,样本参数包括水泵在额定转速下的流量、扬程和效率,特征参数包括水泵在不同工况下的流量、扬程和效率;利用水泵模型获取不同扬程下水泵的流量-效率-转速比曲线;根据流量-效率-转速比曲线计算多组不同台数水泵切换时的最佳切换点对应的转速比;根据多组不同台数水泵切换时的最佳切换点对应的转速比获取扬程与转速比之间的对应关系。
在一个示例中,水泵模型通过下式表示:
其中,m为当前运行的水泵的台数,H′为m台并联的水泵变频后的扬程,η为m台并联水泵的效率,A
1,B
1,C
1,A
2,B
2,C
2均为水泵特性系数,k为转速比,Q′为m台并联的水泵变频后的流量。
具体而言,1台水泵在额定转速下的扬程H和效率η公式为:
H=A
1Q
2+B
1Q+C
1 (1)
η=A
2Q
3+B
2Q
2+C
2Q (2)
其中,Q为一台水泵运行时的流量。
m台水泵并联的流量公式为:
Q
m=mQ (3)
其中,Q
m为m台并联的水泵在额定转速下的流量。
变频水泵固有的特性:
其中,n′为m台水泵变频后的转速,n为m台水泵的额定转速,H
m为m台并联的水泵在额定转速下的扬程,k为转速比。
将上述公式(3)代入公式(1)中,得出m台并联水泵在额定转速下的扬程H
m为:
再根据公式(4)和公式(5)替换公式(6)中的H
m和Q
m,得出m台并联的水泵变频后的扬程H′为:
将上述公式(3)代入公式(1)中,得出m台并联水泵的效率η为:
再根据公式(4)替换公式(8)中的Q
m,得出m台并联水泵的效率η为:
由此,可通过公式(7)和(9)表示水泵模型,并通过下式表示:
在水泵模型建立后,根据水泵模型获取多组不同扬程下水泵的流量-效率-转速比曲线,且每组曲线均应包括所有可能的运行水泵台数的流量-效率-转速比曲线,例如,3台水泵并联时,可获取多组不同扬程下水泵的流量-效率-转速比曲线时,且在每组扬程下均各自获取1台水泵、2台水泵、3台水泵下的流量-效率-转速比曲线;然后根据每组曲线(相同扬程)的流量-效率曲线的交点(相同流量)即为不同台数水泵切换时的最佳切换点,与该交点对应的转速比即为最佳切换点对应的转速比,因此可计算出多组不同水泵切换时的最佳切换点对应的转速比;最后根据多组不同台数水泵切换时的最佳切换点对应的转速比获取扬程H与转速比k之间的对应关系。
由此,首先根据水泵的样本参数和特征参数建立水泵模型,然后根据水泵模型获取不同扬程下水泵的流量-效率-转速比曲线,并根据曲线获取水泵台数的最佳切换点对应的转速比,最后根据转速比获取扬程与转速比之间的对应关系,能够根据水泵效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间。
在本申请的一个示例中,扬程H与转速比k之间的对应关系可通过下式表示:
具体而言,根据当前扬程H与转速比k之间的对应关系、水泵台数m可得出转速比的控制范围的下限值为
上限值为
切换控制水泵台数可能是减少1台水泵或者增加1台水泵,可以理解,水泵效率太低(低于0.6)时,影响水泵运行的可靠性,不足以支撑水泵长时间运行,因此,转速比控制范围的下限值
需大于0.6,以保证水泵运行的可靠性。
如上所述,在计算出不同工况下(不同扬程、不同水泵台数)下的高效率区间所对应的转速比的控制范围后,可实时监测转速比k和当前运行扬程H,判断当前转速比是否处在转速比的控制范围内,如果未落在转速比的控制范围内,则对当前运行的水泵进行台数切换,以使水泵的转速比落在切换后的转速比对应的控制范围内。由此,能够根据效率最优切换水泵台数,保证水泵运行在高效率区间。
下面根据一个具体示例描述该示例的空调系统中水泵的控制方法。
在该具体示例中,空调系统包括3台并联的水泵,根据水泵模型
可分别求出扬程为30%、40%、50%、60%、70%、80%、90%和100%时的流量-效率-转速比曲线,1台水泵效率曲线与2台水泵效率曲线的交点即为1台水泵和2台水泵的最佳切换点A,2台水泵效率曲线与3台水泵效率曲线的交点即为2台水泵和3台水泵的最佳切换点B。
如图2-图4所示,在扬程为30%、50%和70%,且运行水泵台数为1台、2台和3台时的流量-效率-转速比曲线,1台水泵效率曲线与2台水泵效率曲线的交点即为1台水泵和2台水泵的最佳切换点A,2台水泵效率曲线与3台水泵效率曲线的交点即为2台水泵和3台水泵的最佳切换点B;同理,可获取在扬程为40%、60%、80%、90%和100%,且运行水泵台数为1台、2台和3台时的最佳切换点A和B;根据最佳切换点A和B可分别获取7组不同水泵台数的转速比k
1A,k
2A,k
2B,k
3B,其中,k
1A为1台水泵在最佳切换点A的转速比,k
2A为2台水泵在最佳切换点A的转速比,k
2B为2台水泵在最佳切换点B的转速比,k
3B为3台水泵在最佳切换点B的转速比。
由扬程为30%、40%、50%、60%、70%、80%、90%和100%下流量-效率-转速比 曲线可以得出,当前运行扬程比
与转速比k之间的对应关系为:
再结合转速比的控制范围
可得出
其中,当前运行水泵台数m和当前运行扬程比
(根据
计算得到)已知,进而可计算出f
1和f
2,进而计算出7组不同水泵台数的转速比k
1A,k
2A,k
2B,k
3B,例如在
时,
同理,可计算出扬程比为40%、50%、60%、70%、80%、90%和100%下的k
1A,k
2A,k
2B,k
3B,因此可得出不同扬程下1台水泵效率最优的转速比的控制范围为[0.6,k
1A],2台水泵效率最优的转速比的控制范围为[k
2A,k
2B],3台水泵效率最优的转速比的控制范围为[k
3B,1],进而得到下列表1。
表1
由表1可知,在扬程为30%时,1台水泵效率最优的转速比的控制范围为[0.6,0.61],2台水泵效率最优的转速比的控制范围为[0.52,0.58],3台水泵效率最优的转速比的控制范围为[0.53,1]。
例如,当前仅运行1台水泵,且扬程比为30%,若在运行过程中监测到转速比k为0.57, 即未落在[0.6,0.61]范围内,且当前运行扬程H并没有变化即仍然是30%,则增加当前运行的水泵台数至2台,以使水泵的转速比落在2台水泵的转速比对应的控制范围[0.52,0.58]内,保证水泵运行在高效率区间。
当然,若当前转速比未落在转速比控制范围内,且扬程也发生变化时,可在切换水泵台数时同时考虑扬程比。
终上所述,本申请实施例的空调系统中水泵的控制方法,根据水泵模型获取不同扬程下水泵的流量-效率-转速比曲线,进而计算多组不同台数水泵效率最优时的转速比的控制范围,根据转速比的控制范围、当前转速比、当前运行扬程和水泵台数切换水泵台数,相较于仅根据转速进行水泵台数的切换,能够根据水泵效率和扬程进行水泵台数的切换,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制,降低空调系统运行功耗的目的。
图5是根据本申请实施例的空调系统中水泵的控制装置的结构框图。
该实施例中,空调系统1000包括多台并联的水泵
如图5所示,该空调系统中水泵的控制装置100包括:获取模块10、计算模块20、判断模块30和控制模块40。
其中,获取模块10用于获取空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;计算模块20用于根据台数、当前运行扬程计算转速比的控制范围;判断模块30用于判断当前转速比是否处在转速比的控制范围内;控制模块40用于在当前转速比未处在转速比的控制范围内时,对水泵进行台数切换,以使水泵的转速比落在转速比的控制范围内,以及在当前转速比处在转速比的控制范围内时,控制当前运行的水泵继续进行同步变频调速。
具体地,在空调系统1000的运行过程中,获取模块10可实时获取当前运行的水泵的台数、当前转速比和当前运行扬程,并发送至计算模块20,计算模块20根据台数、当前运行扬程计算效率最优时转速比的控制范围,并发送至判断模块30,判断模块30判断当前转速比是否处在当前工况下的效率最优时转速比的控制范围内,并将判断结果发送至控制模块40,控制模块40根据判断结果对水泵台数进行切换,以使水泵的转速比落在当前工况下转速比的控制范围内。
优选地,如图6所示,该空调系统中水泵的控制装置100还可包括水泵强电柜50,以带动多台并联水泵运行。
需要说明的是,该实施例的空调系统中水泵的控制装置展开的解释说明可参见前述对空调系统中水泵的控制方法实施例的解释说明,此处不再赘述。
本申请实施例的空调系统中水泵的控制装置,根据水泵的台数和当前运行扬程计算效 率最优时转速比的控制范围,进而根据转速比的控制范围和当前转速比切换水泵的台数,能够根据水泵运行效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
进一步地,本申请提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请上述实施例的空调系统中水泵的控制方法。
本申请实施例的计算机可读存储介质,在其上存储的计算机程序被执行时,能够根据水泵运行效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
图7是根据本申请实施例的计算机设备的结构框图。
如图7所示,该计算机设备200包括存储器21、处理器22及存储在存储器21上的计算机程序23,处理器22执行计算机程序23时,实现本申请上述实施例的空调系统中水泵的控制方法。
本申请实施例的计算机设备,在其上存储的计算机程序被处理器执行时,能够根据水泵运行效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
图8是根据本申请实施例的空调系统的结构框图。
如图8所示,该空调系统1000包括本申请上述实施例的空调系统中水泵的控制装置100或者计算机设备200。
本申请实施例的空调系统,通过上述空调系统中水泵的控制装置或者计算机设备,能够根据水泵运行效率和扬程切换水泵台数,保证水泵在全负荷工况下均运行在高效率区间,达到水泵变频节能控制、降低空调系统运行功耗的目的。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
- 一种空调系统中水泵的控制方法,其特征在于,所述空调系统包括多台并联的水泵,所述控制方法包括以下步骤:获取所述空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;根据所述台数、所述当前运行扬程计算转速比的控制范围;判断所述当前转速比是否处在所述转速比的控制范围内;如果所述当前转速比未处在所述转速比的控制范围内,则对水泵进行台数切换,以使水泵的转速比落在所述转速比的控制范围内;如果所述当前转速比处在所述转速比的控制范围内,则控制当前运行的水泵继续进行同步变频调速。
- 如权利要求1所述的空调系统中水泵的控制方法,其特征在于,还包括:获取水泵的样本参数和至少三组不同工况下水泵的特性参数,并根据所述样本参数和所述特征参数建立水泵模型,其中,所述样本参数包括水泵在额定转速下的流量、扬程和效率,特征参数包括水泵在不同工况下的流量、扬程和效率;利用所述水泵模型获取不同扬程下水泵的流量-效率-转速比曲线;根据所述流量-效率-转速比曲线计算多组不同台数水泵切换时的最佳切换点对应的转速比;根据所述多组不同台数水泵切换时的最佳切换点对应的转速比获取扬程与转速比之间的对应关系。
- 如权利要求1所述的空调系统中水泵的控制方法,其特征在于,通过所述多个并联的水泵的进出口压力差获得所述当前运行扬程。
- 一种空调系统中水泵的控制装置,其特征在于,所述空调系统包括多台并联的水泵,所述控制装置包括:获取模块,用于获取所述空调系统中当前运行的水泵的台数,以及水泵的当前转速比和当前运行扬程;计算模块,用于根据所述台数、所述当前运行扬程计算转速比的控制范围;判断模块,用于判断所述当前转速比是否处在所述转速比的控制范围内;控制模块,用于在所述当前转速比未处在所述转速比的控制范围内时,对水泵进行台数切换,以使水泵的转速比落在所述转速比的控制范围内,以及在所述当前转速比处在所述转速比的控制范围内时,控制当前运行的水泵继续进行同步变频调速。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-6中任一项所述的空调系统中水泵的控制方法。
- 一种计算机设备,包括存储器、处理器及存储在所述存储器上的计算机程序,其特征在于,所述处理器执行所述计算机程序时,实现如权利要求1-6中任一项所述的空调系统中水泵的控制方法。
- 一种空调系统,其特征在于,包括:如权利要求7所述的空调系统中水泵的控制装置,或者,如权利要求9所述的计算机设备。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20840606.6A EP3933201A4 (en) | 2019-07-12 | 2020-03-11 | METHOD AND DEVICE FOR CONTROLLING WATER PUMPS IN AN AIR CONDITIONING SYSTEM AND AIR CONDITIONING SYSTEM |
US17/489,486 US20220018564A1 (en) | 2019-07-12 | 2021-09-29 | Control Method and Apparatus for Water Pumps in Air Conditioning System, and Air Conditioning System |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910630396.0A CN110397580B (zh) | 2019-07-12 | 2019-07-12 | 空调系统中水泵的控制方法、装置以及空调系统 |
CN201910630396.0 | 2019-07-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/489,486 Continuation US20220018564A1 (en) | 2019-07-12 | 2021-09-29 | Control Method and Apparatus for Water Pumps in Air Conditioning System, and Air Conditioning System |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021008146A1 true WO2021008146A1 (zh) | 2021-01-21 |
Family
ID=68325502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/078842 WO2021008146A1 (zh) | 2019-07-12 | 2020-03-11 | 空调系统中水泵的控制方法、装置以及空调系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220018564A1 (zh) |
EP (1) | EP3933201A4 (zh) |
CN (1) | CN110397580B (zh) |
WO (1) | WO2021008146A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113126728A (zh) * | 2021-04-08 | 2021-07-16 | 山东英信计算机技术有限公司 | 一种水冷管路控制方法、系统、设备以及介质 |
CN113536710A (zh) * | 2021-07-26 | 2021-10-22 | 杭州哲达科技股份有限公司 | 一种泵及泵组能效可视化监测方法 |
CN113739391A (zh) * | 2021-08-23 | 2021-12-03 | 珠海格力电器股份有限公司 | 一种水泵运行控制方法、系统、空调水泵及空调机组 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110397580B (zh) * | 2019-07-12 | 2021-08-13 | 上海美控智慧建筑有限公司 | 空调系统中水泵的控制方法、装置以及空调系统 |
CN111005861A (zh) * | 2019-11-18 | 2020-04-14 | 浙江志展电气科技有限公司 | 一种自动组网的水泵控制系统 |
CN111287950A (zh) * | 2020-02-21 | 2020-06-16 | 烟台盛泉泵业有限公司 | 一种水泵节能运行的控制方法 |
CN112432326B (zh) * | 2020-11-19 | 2021-11-23 | 珠海格力电器股份有限公司 | 冷冻二级泵的控制方法、装置、空调系统、介质及处理器 |
CN114516285A (zh) * | 2020-11-19 | 2022-05-20 | 上海汽车集团股份有限公司 | 电池冷却器和空调蒸发器的冷量分配方法及相关装置 |
CN113719889B (zh) * | 2021-09-09 | 2023-04-07 | 中国电子信息产业集团有限公司第六研究所 | 一种区块链边缘流量安全控制方法、系统、电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101509680A (zh) * | 2009-03-16 | 2009-08-19 | 哈尔滨工业大学 | 调节同步变速变流量供热系统中水泵台数的节能控制方法 |
JP4329435B2 (ja) * | 2003-08-29 | 2009-09-09 | 株式会社明電舎 | ポンプ運転システム |
JP2012154544A (ja) * | 2011-01-25 | 2012-08-16 | Yokogawa Electric Corp | ポンプ運転台数制御装置 |
CN108131281A (zh) * | 2017-12-21 | 2018-06-08 | 北京慧鎏科技有限公司 | 水泵控制方法、装置及电子设备 |
CN109059216A (zh) * | 2018-06-20 | 2018-12-21 | 广东美的暖通设备有限公司 | 空调系统及其水泵的控制方法和装置 |
CN110397580A (zh) * | 2019-07-12 | 2019-11-01 | 广东美的暖通设备有限公司 | 空调系统中水泵的控制方法、装置以及空调系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070028632A1 (en) * | 2005-08-03 | 2007-02-08 | Mingsheng Liu | Chiller control system and method |
CN102094801A (zh) * | 2010-12-27 | 2011-06-15 | 贵州汇通华城楼宇科技有限公司 | 基于输送能耗最低的泵组优选方法 |
CN103195698B (zh) * | 2013-04-19 | 2015-09-09 | 哈尔滨工业大学 | 变水位取水泵站中水泵同步变速调节的节能控制方法 |
US20170090438A1 (en) * | 2015-09-25 | 2017-03-30 | Mingsheng Liu | Sensorless Fan and Pump Speed Control Device and Method |
CN112262260B (zh) * | 2018-06-08 | 2023-01-13 | 流体处理有限责任公司 | 一种用于泵送的装置以及用于泵送的方法 |
-
2019
- 2019-07-12 CN CN201910630396.0A patent/CN110397580B/zh active Active
-
2020
- 2020-03-11 EP EP20840606.6A patent/EP3933201A4/en active Pending
- 2020-03-11 WO PCT/CN2020/078842 patent/WO2021008146A1/zh unknown
-
2021
- 2021-09-29 US US17/489,486 patent/US20220018564A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4329435B2 (ja) * | 2003-08-29 | 2009-09-09 | 株式会社明電舎 | ポンプ運転システム |
CN101509680A (zh) * | 2009-03-16 | 2009-08-19 | 哈尔滨工业大学 | 调节同步变速变流量供热系统中水泵台数的节能控制方法 |
JP2012154544A (ja) * | 2011-01-25 | 2012-08-16 | Yokogawa Electric Corp | ポンプ運転台数制御装置 |
CN108131281A (zh) * | 2017-12-21 | 2018-06-08 | 北京慧鎏科技有限公司 | 水泵控制方法、装置及电子设备 |
CN109059216A (zh) * | 2018-06-20 | 2018-12-21 | 广东美的暖通设备有限公司 | 空调系统及其水泵的控制方法和装置 |
CN110397580A (zh) * | 2019-07-12 | 2019-11-01 | 广东美的暖通设备有限公司 | 空调系统中水泵的控制方法、装置以及空调系统 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3933201A4 * |
ZHU, JUN-BIN ET AL.: "Energy-saving Research of Parallel-pumps Run with Variable Speed at High-efficient Range", ENERGY CONSERVATION TECHNOLOGY, vol. 33, no. 3, 31 May 2015 (2015-05-31), pages 247 - 250, XP055849273 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113126728A (zh) * | 2021-04-08 | 2021-07-16 | 山东英信计算机技术有限公司 | 一种水冷管路控制方法、系统、设备以及介质 |
CN113536710A (zh) * | 2021-07-26 | 2021-10-22 | 杭州哲达科技股份有限公司 | 一种泵及泵组能效可视化监测方法 |
CN113536710B (zh) * | 2021-07-26 | 2023-12-26 | 杭州哲达科技股份有限公司 | 一种泵及泵组能效可视化监测方法 |
CN113739391A (zh) * | 2021-08-23 | 2021-12-03 | 珠海格力电器股份有限公司 | 一种水泵运行控制方法、系统、空调水泵及空调机组 |
CN113739391B (zh) * | 2021-08-23 | 2022-07-15 | 珠海格力电器股份有限公司 | 一种水泵运行控制方法、系统、空调水泵及空调机组 |
Also Published As
Publication number | Publication date |
---|---|
EP3933201A4 (en) | 2022-06-08 |
EP3933201A1 (en) | 2022-01-05 |
US20220018564A1 (en) | 2022-01-20 |
CN110397580B (zh) | 2021-08-13 |
CN110397580A (zh) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021008146A1 (zh) | 空调系统中水泵的控制方法、装置以及空调系统 | |
CN104566773B (zh) | 多联空调的容量控制方法及控制系统 | |
CN212431402U (zh) | 气悬浮压缩机的电机冷却系统和制冷系统 | |
CN110274361B (zh) | 水多联空调系统及其变频水泵的控制方法 | |
EP3708920A1 (en) | Control method and device for air conditioning system and air conditioning system | |
CN104990211B (zh) | 多机头变频离心式中央空调机组的控制方法 | |
CN108151250B (zh) | 变频空调控制方法和装置 | |
CN110207420B (zh) | 多联机系统及其控制方法 | |
WO2020238413A1 (zh) | 中央空调、空调水系统及其控制方法和控制装置 | |
CN107401806A (zh) | 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法 | |
CN104654525A (zh) | 空调主机增减机控制方法、装置和空调系统 | |
CN104776633A (zh) | 混合动力制冷系统及其控制方法 | |
CN113701321A (zh) | 一种中央空调水泵节能变频控制方法 | |
CN103256213B (zh) | 压缩机系统及其运转控制方法 | |
CN114459133A (zh) | 一种中央空调系统节能控制方法及节能控制系统 | |
CN103591087B (zh) | 泵送液压系统的温度控制装置和控制方法、工程机械 | |
CN107461970B (zh) | 一种具有蒸发式冷凝器的冷水机组控制方法 | |
CN107906760A (zh) | 变频热泵热水器压缩机频率动态优化方法 | |
CN110849034B (zh) | 热泵系统的控制方法、装置、热泵系统及存储介质 | |
WO2023087700A1 (zh) | 多联机系统及其控制方法 | |
WO2020073488A1 (zh) | 一种控制压缩机切缸的方法、装置及机组、空调系统 | |
CN105221385A (zh) | 空调系统用不同扬程不同流量组合式水泵结构及控制方法 | |
CN213687204U (zh) | 一种基于负荷需求的变频泵组云控制装置 | |
CN205505306U (zh) | 中央空调水泵变频节能控制系统以及中央空调 | |
CN109814641B (zh) | 一种火电厂湿冷机组冷端经济调整方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20840606 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020840606 Country of ref document: EP Effective date: 20210929 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |