WO2020238413A1 - 中央空调、空调水系统及其控制方法和控制装置 - Google Patents

中央空调、空调水系统及其控制方法和控制装置 Download PDF

Info

Publication number
WO2020238413A1
WO2020238413A1 PCT/CN2020/083326 CN2020083326W WO2020238413A1 WO 2020238413 A1 WO2020238413 A1 WO 2020238413A1 CN 2020083326 W CN2020083326 W CN 2020083326W WO 2020238413 A1 WO2020238413 A1 WO 2020238413A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure difference
water system
air
water
temperature difference
Prior art date
Application number
PCT/CN2020/083326
Other languages
English (en)
French (fr)
Inventor
李元阳
费杰
黄漫宁
邱艺德
阎杰
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP20814127.5A priority Critical patent/EP3913295A4/en
Publication of WO2020238413A1 publication Critical patent/WO2020238413A1/zh
Priority to US17/459,864 priority patent/US11835248B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • This application relates to the technical field of electrical appliances, in particular to a central air conditioner, an air-conditioning water system, and a control method and control device thereof.
  • the entire control process of the air conditioning water system usually uses only one control method, such as a pressure difference control method or a temperature difference control method.
  • the related technology has the problem that when the load of the air-conditioning water system changes, only the pressure difference control cannot accurately express the change of the system load, which may cause the control system to fail.
  • the control system will often adjust the air-conditioning water system after a period of time, which affects the timeliness and speed of control.
  • This application aims to solve one of the technical problems in the above technology at least to a certain extent.
  • the first purpose of the present application is to propose a control method of an air-conditioning water system to adaptively control the operating frequency of the water pump of the air-conditioning water system.
  • the second purpose of this application is to provide a control device for an air conditioning water system.
  • the third purpose of this application is to propose an air conditioning water system.
  • the fourth purpose of this application is to propose a central air conditioner.
  • the fifth purpose of this application is to provide a readable storage medium.
  • an embodiment of the first aspect of the present application proposes a control method of an air conditioning water system, which includes: obtaining a pressure difference and a temperature difference between the water inlet pipe and the water outlet pipe of the air conditioning water system.
  • the water inlet pipe is connected to the inlet of the main unit module of the air conditioning water system, and the water outlet pipe is connected to the outlet of the main unit module; detecting and confirming that the pressure difference is less than or equal to the preset pressure difference, according to the pressure
  • the difference controls the operating frequency of the water pump of the air-conditioning water system; detects and confirms that the pressure difference is greater than the preset pressure difference, and controls the operating frequency of the water pump of the air-conditioning water system according to the temperature difference.
  • the pressure difference and temperature difference between the water inlet pipe and the water outlet pipe of the air-conditioning water system are obtained, and the operating frequency of the water pump of the air-conditioning water system is measured according to the pressure difference and the temperature difference. control.
  • the control method of the air-conditioning water system controls the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference, and when the pressure difference is greater than the preset pressure difference, according to the temperature difference
  • the operation frequency of the water pump is controlled, so that when the load of the air conditioning water system changes, the operation frequency of the water pump of the air conditioning water system can be adaptively controlled, so that the control is more stable and timely, and it can also save energy.
  • the controlling the operating frequency of the water pump of the air conditioning water system according to the pressure difference includes: calculating the pressure difference error and the pressure difference change rate according to the pressure difference and the pressure difference setting value ; Control the operating frequency of the water pump according to the differential pressure error and the rate of change of the differential pressure.
  • control method of the air-conditioning water system further includes: detecting and confirming that the pressure difference error is greater than zero and the pressure difference change rate is greater than or equal to zero, and increasing the pressure difference setting value, And adjust the pressure difference setting value to the value before the increase.
  • the controlling the operating frequency of the water pump of the air conditioning water system according to the temperature difference includes: calculating a temperature difference error and a temperature difference change rate according to the temperature difference and a temperature difference setting value; and according to the temperature difference The error and the rate of change of temperature difference control the operating frequency of the water pump.
  • controlling the operating frequency of the water pumps further includes: determining the water pump in the operating state among the multiple water pumps, and obtaining the information of the water pump in the operating state Current operating frequency; controlling the number of water pumps in operating state according to the current operating frequency of the water pump in operating state, the pressure difference and the temperature difference.
  • controlling the number of water pumps in the running state according to the current operating frequency of the running water pump, the pressure difference and the temperature difference includes: detecting and confirming the running water pump The current operating frequency of both reaches the upper frequency limit, and the pressure difference is less than or equal to the pressure difference setting value, or the pressure difference is greater than the pressure difference setting value and the temperature difference is greater than the sum of the temperature difference setting value and the dead zone value , Increase the number of water pumps in operation; detect and confirm that the current operation frequency of any water pump in operation reaches the lower frequency limit, and the pressure difference is greater than the pressure difference setting value and the temperature difference is less than the temperature difference setting The difference between the fixed value and the dead zone value reduces the number of pumps in operation.
  • an embodiment of the second aspect of the present application proposes a control device for an air-conditioning water system, including: an acquisition module for acquiring the pressure difference between the water inlet pipe and the water outlet pipe of the air-conditioning water system and Temperature difference, wherein the water inlet pipe is connected to the inlet of the main unit module of the air conditioning water system, and the water outlet pipe is connected to the outlet of the main unit module; the control module is used to detect and confirm that the pressure difference is less than or Is equal to the preset pressure difference, controls the operating frequency of the water pump of the air-conditioning water system according to the pressure difference, and is used to detect and confirm that the pressure difference is greater than the preset pressure difference, and according to the temperature difference The operating frequency of the water pump of the air conditioning water system is controlled.
  • the pressure difference and temperature difference between the water inlet pipe and the water outlet pipe of the air-conditioning water system are acquired through the acquisition module, and the control module determines whether the pressure difference is less than the preset pressure difference , And control the operating frequency of the water pump of the air conditioning water system according to the pressure difference and temperature difference.
  • the control device of the air-conditioning water system in the embodiment of the present application controls the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference, and when the pressure difference is greater than the preset pressure difference, according to the temperature difference
  • the operation frequency of the water pump is controlled, so that when the load of the air conditioning water system changes, the operation frequency of the water pump of the air conditioning water system can be adaptively controlled, so that the control is more stable and timely, and it can also save energy.
  • an embodiment of the third aspect of the present application proposes an air-conditioning water system, including the control device of the air-conditioning water system described in the embodiment of the second aspect of the present application.
  • the control device of the air-conditioning water system is set to control the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference.
  • the operating frequency of the water pump is controlled according to the temperature difference, so that when the load of the air conditioning water system changes, the operating frequency of the water pump of the air conditioning water system can be adaptively controlled, making the control more stable and timely, and at the same time Energy saving.
  • an embodiment of the fourth aspect of the present application proposes a central air conditioner, including the air-conditioning water system described in the embodiment of the third aspect of the present application.
  • the operating frequency of the water pump is controlled according to the pressure difference, and when the pressure difference is greater than the preset pressure difference, The operating frequency of the water pump is controlled according to the temperature difference, so that when the load of the air conditioning water system changes, the operating frequency of the water pump of the air conditioning water system can be adaptively controlled, making the control more stable and timely, and saving energy.
  • an embodiment of the fifth aspect of the present application provides a readable storage medium on which a computer program is stored. Control Method.
  • Fig. 1 is a schematic flowchart of a control method of an air-conditioning water system according to an embodiment of the present application
  • Fig. 2 is a schematic flowchart of a control method of an air conditioning water system according to an embodiment of the present application
  • FIG. 3 is a block diagram of controlling the operating frequency of the water pump of the air conditioning water system according to the pressure difference according to the control method of the air conditioning water system according to an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a control method of an air conditioning water system according to another embodiment of the present application.
  • FIG. 5 is a block diagram of controlling the operating frequency of the water pump of the air-conditioning water system according to the temperature difference according to the control method of the air-conditioning water system according to another embodiment of the present application;
  • FIG. 6 is a schematic flowchart of a control method of an air conditioning water system according to another embodiment of the present application.
  • Fig. 7 is a schematic flow chart of a control method of an air conditioning water system according to a specific embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a control method of an air conditioning water system according to another specific embodiment of the present application.
  • Fig. 9 is a block diagram of a control device for an air-conditioning water system according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the installation of the water pump controller of the control device of the air conditioning water system on the central air conditioner of the water cooling system according to an embodiment of the present application;
  • Fig. 11 is a schematic diagram of the installation of the water pump controller of the control device of the air-conditioning water system on the central air-conditioning system of the air-cooling system according to an embodiment of the present application.
  • Fig. 1 is a schematic flowchart of a control method of an air conditioning water system according to an embodiment of the present application. As shown in Fig. 1, the control method of the air conditioning water system in the embodiment of the present application includes the following steps:
  • the host module can be a chiller or a heat pump unit.
  • the pressure difference between the inlet pipe and the outlet pipe can be collected by a pressure sensor or a differential pressure sensor, that is, the pressure difference between the inlet and the outlet of the host module of the air conditioning water system.
  • the pressure difference is the difference between the pressure on the inlet pipe and the pressure on the outlet pipe, or it can be used in the inlet pipe.
  • a pressure difference sensor is set between the water inlet pipe and the water outlet pipe to measure the pressure difference between the water inlet pipe and the water outlet pipe in real time.
  • the temperature difference between the water inlet pipe and the water outlet pipe is collected by the temperature sensor, that is, the temperature difference between the inlet and outlet of the host module of the air conditioning water system.
  • temperature sensors can be installed at the water inlet pipe and the water outlet pipe respectively , Real-time measurement of the temperature on the inlet and outlet pipes, the temperature difference is the difference between the temperature on the inlet pipe and the temperature on the outlet pipe.
  • the water inlet pipe is connected with the inlet of the main unit module of the air conditioning water system, and the outlet pipe is connected with the outlet of the main unit module.
  • the water pump can be arranged on the water inlet pipe of the air conditioning water system to transport water from the water inlet pipe to the water outlet pipe. road.
  • the pressure sensor and the temperature sensor respectively send the collected pressure difference and temperature difference between the water inlet pipe and the water outlet pipe to the water pump controller.
  • the water pump controller can be integrated in the group control system or set separately as a controller.
  • the water pump controller communicates with the water pump power cabinet according to the received pressure difference and temperature difference between the water inlet pipe and the water outlet pipe, and the water pump power cabinet controls the operating frequency of the water pump to control the flow of the air conditioning water system.
  • the water pump controller is connected to the input terminal of the water pump power cabinet, and the water pump is connected to the output terminal of the water pump power cabinet.
  • the water pump controller can be used to control chilled water pumps and pump sets, and for air-cooled systems, the water pump controller can be used to control chilled water pumps.
  • the preset pressure difference may be the pressure difference corresponding to the lowest flow rate allowed by the host module of the air conditioning water system.
  • controlling the operating frequency of the water pump of the air conditioning water system according to the pressure difference includes the following steps:
  • the pressure difference setting value can be the pre-set pressure difference value between the inlet pipe and the outlet pipe of the air conditioning water system
  • the pressure difference error e can be the pressure difference setting value and the pressure difference, that is, the actual pressure difference.
  • the difference between the values, the rate of change of pressure difference, de/dt can be the ratio of the amount of change in the pressure difference error to the time it takes for the amount of change in the pressure difference error to occur.
  • the pressure difference between the inlet pipe and the outlet pipe is measured in real time by a pressure sensor or a differential pressure sensor to obtain the actual measured value of the differential pressure, which is converted by the transmitter to the set value of the differential pressure
  • the pressure difference error e and the pressure difference change rate de/dt are obtained.
  • the water pump controller adaptively optimizes the pressure difference control parameters according to the pressure difference error e and the pressure difference change rate de/dt to optimally control the operating frequency of the water pump , Thereby adjusting the speed of the water pump, and then adjusting the flow of the air-conditioning water system to achieve variable flow operation of the air-conditioning water system.
  • the optimal control parameters can be found through algorithms such as fuzzy control, neural network control, and group intelligent optimization control. Adapt to the large lag, time-varying system to make the control more stable and the response speed faster.
  • the pressure difference error e is greater than zero and the pressure difference change rate de/dt is greater than or equal to zero, the pressure difference setting value is increased, and the pressure difference setting value is adjusted to the value before the increase .
  • controlling the operating frequency of the water pump of the air conditioning water system according to the temperature difference includes the following steps:
  • the temperature difference setting value can be the preset temperature difference value between the inlet pipe and the outlet pipe of the air conditioning water system
  • the temperature difference error e' can be the difference between the temperature difference setting value and the temperature difference, that is, the actual temperature difference value.
  • the rate of change of temperature difference de'/dt can be the ratio of the amount of change in temperature difference error to the time it takes for the amount of change in pressure difference error to occur.
  • the temperature difference between the water inlet pipe and the outlet pipe is measured in real time by a temperature sensor to obtain the actual temperature difference value, and the temperature difference error e'is obtained after being converted by the transmitter and compared with the temperature difference setting value.
  • the water pump controller adaptively optimizes the temperature difference control parameters according to the temperature difference error e'and the temperature difference change rate de'/dt to optimally control the operating frequency of the water pump, thereby adjusting the pump speed, and then Adjust the flow of the air conditioning water system to achieve variable flow operation of the air conditioning water system.
  • the optimal control parameters can be found through algorithms such as fuzzy control, neural network control, and group intelligent optimization control, so as to adapt to large lag and time-varying systems , Make the control more stable and the response speed faster.
  • controlling the operating frequency of the water pump further includes the following steps:
  • S5 Determine the water pump in the running state among the plurality of water pumps, and obtain the current running frequency of the water pump in the running state.
  • a speed sensor such as a Hall sensor can be installed on the drive shaft of the water pump to detect the rotation speed of the water pump. When the rotation speed of the water pump is detected to be greater than zero, it indicates that the water pump is running.
  • S6 Control the number of water pumps in operation according to the current operating frequency of the water pumps in the operation state, the pressure difference and the temperature difference between the water inlet pipe and the water outlet pipe of the air conditioning water system.
  • controlling the number of water pumps in operation according to the current operation frequency, pressure difference, and temperature difference of the water pump in operation includes: detecting and confirming the current operation frequency of the water pump in operation All reach the upper frequency limit, and the pressure difference is less than or equal to the set value of the pressure difference, or the pressure difference is greater than the set value of the pressure difference and the temperature difference is greater than the sum of the set temperature difference and the dead zone value, increase the number of water pumps in operation; check and Confirm that the current running frequency of any running water pump reaches the lower frequency limit, and the pressure difference is greater than the pressure difference setting value and the temperature difference is smaller than the difference between the temperature difference setting value and the dead zone value, and reduce the number of running water pumps.
  • the dead zone value can be a preset temperature difference control margin
  • the upper frequency limit can be the maximum value that the pump running frequency can reach
  • the lower frequency limit can be the minimum value that the pump running frequency can reach.
  • controlling the number of water pumps in operation according to the current operating frequency, pressure difference and temperature difference of the water pumps in operation includes the following steps:
  • S202 Determine whether the pressure difference is greater than a set value of the pressure difference.
  • step S203 If yes, go to step S203; if not, go to step S204.
  • S203 Determine whether the temperature difference is greater than the sum of the temperature difference setting value and the dead zone value.
  • step S204 If yes, go to step S204; if not, go to step S209.
  • S206 Determine whether the pressure difference is greater than a set value of the pressure difference.
  • step S207 If yes, go to step S207; if not, go to step S209.
  • S207 Determine whether the temperature difference is less than the difference between the temperature difference setting value and the dead zone value.
  • step S208 If yes, go to step S208; if not, go to step S209.
  • control method of the air-conditioning water system of the embodiment of the present application may include the following steps:
  • S102 Determine whether the pressure difference is less than a preset pressure difference.
  • step S103 If yes, go to step S103; if not, go to step S105.
  • S103 Calculate the pressure difference error e and the pressure difference change rate de/dt according to the pressure difference and the set value of the pressure difference.
  • S104 Control the operating frequency of the water pump according to the pressure difference error e and the pressure difference change rate de/dt.
  • S105 Calculate the temperature difference error e'and the temperature difference change rate de'/dt according to the temperature difference and the temperature difference set value.
  • S107 Determine the water pump in the running state among the multiple water pumps, and obtain the current running frequency of the water pump in the running state.
  • S108 Control the number of water pumps in the running state according to the current operating frequency, pressure difference and temperature difference of the water pumps in the running state.
  • S109 Determine whether the pressure difference error e is greater than zero and whether the pressure difference change rate de/dt is greater than or equal to zero.
  • step S110 If yes, go to step S110; if not, go to step S104.
  • step S110 the pressure difference setting value is increased, and after a preset time, the pressure difference setting value is adjusted to the value before the increase, and step S101 is returned to.
  • the pressure difference and temperature difference between the inlet and outlet pipes of the air-conditioning water system are obtained, and the water pump of the air-conditioning water system is adjusted according to the pressure difference and the temperature difference.
  • the operating frequency is controlled.
  • the control method of the air-conditioning water system of the embodiment of the present application controls the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference, and when the pressure difference is greater than the preset pressure difference, according to the temperature difference
  • the operation frequency of the water pump is controlled, so that when the load of the air conditioning water system changes, the operation frequency of the water pump of the air conditioning water system can be adaptively controlled, so that the control is more stable and timely, and it can also save energy.
  • an embodiment of the present application also proposes a control device for the air-conditioning water system.
  • Fig. 9 is a block diagram of a control device for an air-conditioning water system according to an embodiment of the present application.
  • the control device of the air conditioning water system in the embodiment of the present application includes an acquisition module 10 and a control module 20.
  • the acquisition module 10 is used to acquire the pressure difference and temperature difference between the water inlet pipe and the water outlet pipe of the air-conditioning water system.
  • the water inlet pipe is connected to the inlet of the main unit module of the air-conditioning water system, and the water outlet pipe is connected to the main unit module.
  • the outlet is connected;
  • the control module 20 is used to detect and confirm that the pressure difference is less than or equal to the preset pressure difference, to control the operating frequency of the water pump of the air conditioning water system according to the pressure difference, and to detect and confirm that the pressure difference is greater than the preset pressure difference,
  • the operating frequency of the water pump of the air conditioning water system is controlled according to the temperature difference.
  • the host module can be a chiller or a heat pump unit.
  • the acquisition module 10 may include a pressure sensor or a differential pressure sensor and a temperature sensor
  • the control module 20 may include a water pump controller 21, wherein the pressure sensor or the differential pressure sensor may be used to collect data between the inlet and outlet pipes.
  • the pressure difference that is, the pressure difference between the inlet and outlet of the main module of the air conditioning water system.
  • pressure sensors can be installed at the inlet and outlet pipes to measure the pressure on the inlet and outlet pipes in real time.
  • Pressure, differential pressure is the difference between the pressure on the inlet pipe and the pressure on the outlet pipe
  • a pressure difference sensor can be set between the inlet pipe and the outlet pipe to measure the pressure difference between the inlet pipe and the outlet pipe. Take real-time measurements.
  • the temperature difference between the water inlet pipe and the water outlet pipe is collected by the temperature sensor, that is, the temperature difference between the inlet and outlet of the host module of the air conditioning water system.
  • temperature sensors can be installed at the water inlet pipe and the water outlet pipe respectively , Real-time measurement of the temperature on the inlet and outlet pipes, the temperature difference is the difference between the temperature on the inlet pipe and the temperature on the outlet pipe.
  • the water inlet pipe is connected with the inlet of the main unit module of the air conditioning water system, and the outlet pipe is connected with the outlet of the main unit module.
  • the water pump can be arranged on the water inlet pipe of the air conditioning water system to transport water from the water inlet pipe to the water outlet pipe. road.
  • the pressure sensor or the differential pressure sensor and the temperature sensor respectively send the collected pressure difference and temperature difference between the water inlet pipe and the water outlet pipe to the water pump controller 21.
  • the water pump controller 21 can be integrated into the group control system, as shown in the figure As shown in 10-11, it can also be set as a controller separately.
  • the water pump controller 21 communicates with the water pump strong electric cabinet 30 according to the received pressure difference and temperature difference between the water inlet pipe and the water outlet pipe, and then the water pump strong electricity
  • the cabinet 30 controls the operating frequency of the water pump to control the flow of the air conditioning water system.
  • the water pump controller 21 is connected to the input terminal of the water pump power cabinet 30 and the water pump is connected to the output terminal of the water pump power cabinet 30.
  • the pressure difference and temperature difference between the inlet and outlet pipes of the air-conditioning water system are acquired through the acquisition module, and the control module detects and confirms that the pressure difference is less than Or equal to the preset pressure difference, control the operating frequency of the water pump of the air conditioning water system according to the pressure difference, detect and confirm that the pressure difference is greater than the preset pressure difference, and control the operating frequency of the water pump of the air conditioning water system according to the temperature difference.
  • the control device of the air-conditioning water system in the embodiment of the present application controls the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference, and when the pressure difference is greater than the preset pressure difference, according to the temperature difference
  • the operation frequency of the water pump is controlled, so that when the load of the air conditioning water system changes, the operation frequency of the water pump of the air conditioning water system can be adaptively controlled, so that the control is more stable and timely, and it can also save energy.
  • an embodiment of the present application also proposes an air-conditioning water system, including the aforementioned control device of the air-conditioning water system.
  • the control device of the air-conditioning water system is set to control the operating frequency of the water pump according to the pressure difference when the pressure difference is less than or equal to the preset pressure difference.
  • the operating frequency of the water pump is controlled according to the temperature difference, so that when the load of the air conditioning water system changes, the operating frequency of the water pump of the air conditioning water system can be adaptively controlled, making the control more stable and timely, and at the same time Energy saving.
  • an embodiment of the present application also proposes a central air conditioner, including the aforementioned air-conditioning water system.
  • the operating frequency of the water pump is controlled according to the pressure difference, and when the pressure difference is greater than the preset pressure difference, The operating frequency of the water pump is controlled according to the temperature difference, so that when the load of the air conditioning water system changes, the operating frequency of the water pump of the air conditioning water system can be adaptively controlled, making the control more stable and timely, and saving energy.
  • an embodiment of the present application also proposes a readable storage medium on which a computer program is stored, and the program is executed by a processor to realize the foregoing control method of the air-conditioning water system.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components.
  • installed may be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调水系统及其控制方法和控制装置,方法包括:获取空调水系统的进水管路与出水管路之间的压差及温差,进水管路与空调水系统的主机模块的入口相连,出水管路与主机模块的出口相连;检测并确认压差小于或等于预设压差,根据压差对空调水系统的水泵的运行频率进行控制;检测并确认压差大于预设压差,根据温差对空调水系统的水泵的运行频率进行控制。

Description

中央空调、空调水系统及其控制方法和控制装置
相关申请的交叉引用
本申请基于申请号为201910446559.X,申请日为2019年05月27日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电器技术领域,尤其涉及一种中央空调、空调水系统及其控制方法和控制装置。
背景技术
相关技术中,空调水系统的整个控制过程中通常只采用一种控制方式,例如压差控制方式或者温差控制方式。但是,相关技术存在的问题在于,当空调水系统负荷发生变化时,仅采用压差控制,则不能够准确表述系统负荷的变化,从而可能导致控制系统失效,仅采用温差控制,则当负荷发生较大变化时,控制系统往往会滞后一段时间后对空调水系统进行调节,从而影响了控制的及时性和快速性。
发明内容
本申请旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种空调水系统的控制方法,以对空调水系统的水泵的运行频率进行自适应控制。
本申请的第二个目的在于提出一种空调水系统的控制装置。
本申请的第三个目的在于提出一种空调水系统。
本申请的第四个目的在于提出一种中央空调。
本申请的第五个目的在于提出一种可读存储介质。
为达上述目的,本申请第一方面实施例提出了一种空调水系统的控制方法,包括:获取所述空调水系统的进水管路与出水管路之间的压差及温差,其中,所述进水管路与所述空调水系统的主机模块的入口相连,所述出水管路与所述主机模块的出口相连;检测并确认所述压差小于或等于预设压差,根据所述压差对所述空调水系统的水泵的运行频率进行控制;检测并确认所述压差大于所述预设压差,根据所述温差对所述空调水系统的水泵的运行频率进行控制。
根据本申请实施例提出的空调水系统的控制方法,获取空调水系统的进水管路与出水管路之间的压差及温差,并根据压差和温差对空调水系统的水泵的运行频率进行控制。由此,本申请实施例的空调水系统的控制方法,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
根据本申请的一个实施例,所述根据所述压差对所述空调水系统的水泵的运行频率进行控制包括:根据所述压差和压差设定值计算压差误差和压差变化率;根据所述压差误差和压差变化率对所述水泵的运行频率进行控制。
根据本申请的一个实施例,所述的空调水系统的控制方法,还包括:检测并确认所述压差误差大于零且所述压差变化率大于等于零,提高所述压差设定值,并将所述压差设定值调整为提高前的数值。
根据本申请的一个实施例,所述根据所述温差对所述空调水系统的水泵的运行频率进行控制包括:根据所述温差和温差设定值计算温差误差和温差变化率;根据所述温差误差和温差变化率对所述水泵的运行频率进行控制。
根据本申请的一个实施例,所述水泵为多个,对所述水泵的运行频率进行控制还包括:确定所述多个水泵中处于运行状态的水泵,并获取所述处于运行状态的水泵的当前运行频率;根据所述处于运行状态的水泵的当前运行频率、所述压差及所述温差控制处于运行状态的水泵的数量。
根据本申请的一个实施例,根据所述处于运行状态的水泵的当前运行频率、所述压差及所述温差控制处于运行状态的水泵的数量,包括:检测并确认所述处于运行状态的水泵的当前运行频率均达到频率上限,并且所述压差小于等于压差设定值、或者所述压差大于所述压差设定值且所述温差大于温差设定值与死区值之和,增加处于运行状态的水泵的数量;检测并确认任一处于运行状态的水泵的当前运行频率达到频率下限,并且所述压差大于所述压差设定值且所述温差小于所述温差设定值与死区值之差,减少处于运行状态的水泵的数量。
为达上述目的,本申请第二方面实施例提出了一种空调水系统的控制装置,包括:获取模块,用于获取所述空调水系统的进水管路与出水管路之间的压差及温差,其中,所述进水管路与所述空调水系统的主机模块的入口相连,所述出水管路与所述主机模块的出口相连;控制模块,用于检测并确认所述压差小于或等于所述预设压差,根据所述压差对所述空调水系统的水泵的运行频率进行控制,以及用于检测并确认所述压差大于所述预设压差,根据所述温差对所述空调水系统的水泵的运行频率进行控制。
根据本申请实施例提出的空调水系统的控制装置,通过获取模块获取空调水系统的进水管路与出水管路之间的压差及温差,并通过控制模块判断压差是否小于预设压差,并根据压差和温差对空调水系统的水泵的运行频率进行控制。由此,本申请实施例的空调水系统的控制装置,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
为达上述目的,本申请第三方面实施例提出了一种空调水系统,包括本申请第二方面实施例所述的空调水系统的控制装置。
根据本申请实施例提出的空调水系统,通过设置的空调水系统的控制装置,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
为达上述目的,本申请第四方面实施例提出了一种中央空调,包括本申请第三方面实施例所述的空调水系统。
根据本申请实施例提出的中央空调,通过设置的空调水系统,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
为达上述目的,本申请第五方面实施例提出了一种可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本申请第一方面实施例所述的空调水系统的控制方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1为根据本申请实施例的空调水系统的控制方法的流程示意图;
图2为根据本申请一个实施例的空调水系统的控制方法的流程示意图;
图3为根据本申请一个实施例的空调水系统的控制方法的根据压差对空调水系统的水泵的运行频率进行控制的方框图;
图4为根据本申请另一个实施例的空调水系统的控制方法的流程示意图;
图5为根据本申请另一个实施例的空调水系统的控制方法的根据温差对空调水系统的水泵的运行频率进行控制的方框图;
图6为根据本申请又一个实施例的空调水系统的控制方法的流程示意图;
图7为根据本申请一个具体实施例的空调水系统的控制方法的流程示意图;
图8为根据本申请另一个具体实施例的空调水系统的控制方法的流程示意图;
图9为根据本申请实施例的空调水系统的控制装置的方框示意图;
图10为根据本申请一个实施例的空调水系统的控制装置的水泵控制器在水冷系统中央空调上的安装示意图;
图11为根据本申请一个实施例的空调水系统的控制装置的水泵控制器在风冷系统中央空调上的安装示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的空调水系统及其控制方法和控制装置。
图1为根据本申请实施例的空调水系统的控制方法的流程示意图。如图1所示,本申请实施例的空调水系统的控制方法包括以下步骤:
S1,获取空调水系统的进水管路与出水管路之间的压差及温差,其中,进水管路与空调水系统的主机模块的入口相连,出水管路与主机模块的出口相连。
需要说明的是,主机模块可为冷水机组或者热泵机组。
还需说明的是,可通过压力传感器或压差传感器采集进水管路与出水管路之间的压差,也即空调水系统的主机模块的入口和出口之间的压差,具体地,可在进水管路和出水管路处分别安装压力传感器,实时测量进水管路与出水管路上的压力,压差即为进水管路上的压力与出水管路上的压力之差,或者可在进水管路和出水管路之间设置压差传感器,对进水管路和出水管路之间的压差进行实时测量。通过温度传感器采集进水管路与出水管路之间的温差,也即空调水系统的主机模块的入口和出口之间的温差,具体地,可在进水管路和出水管路处分别安装温度传感器,实时测量进水管路与出水管路上的温度,温差即为进水管路上的温度与出水管路上的温度之差。
其中,进水管路与空调水系统的主机模块的入口相连,出水管路与主机模块的出口相连,水泵可设置在空调水系统的进水管路上,用于将水从进水管路输送到出水管路。
压力传感器和温度传感器分别将采集到的进水管路和出水管路之间的压差和温差发送 给水泵控制器,水泵控制器可集成在群控系统中,也可单独设置作为一个控制器,水泵控制器根据接收到的进水管路和出水管路之间的压差和温差与水泵强电柜进行通讯,进而水泵强电柜对水泵的运行频率进行控制,从而控制空调水系统的流量,其中,水泵控制器连接到水泵强电柜的输入端子,水泵连接到水泵强电柜的输出端子。另外,需说明的是,对于水冷系统,水泵控制器可用于控制冷冻水泵泵组,也可用于控制冷却水泵泵组,对于风冷系统,水泵控制器可用于控制冷冻水泵泵组。
S2,检测并确认压差小于或等于预设压差,根据压差对空调水系统的水泵的运行频率进行控制。
其中,预设压差可为空调水系统的主机模块允许的最低流量对应的压差。
根据本申请的一个实施例,如图2所示,根据压差对空调水系统的水泵的运行频率进行控制包括以下步骤:
S30,根据压差和压差设定值计算压差误差e和压差变化率de/dt。
其中,压差设定值可为预先设定好的空调水系统进水管路与出水管路之间的压差值,压差误差e可为压差设定值与压差也即压差实测值之间的差值,压差变化率de/dt可为压差误差的变化量与发生该压差误差的变化量所用时间的比值。
S31,根据压差误差e和压差变化率de/dt对水泵的运行频率进行控制。
可理解,如图3所示,通过压力传感器或压差传感器实时测量进水管路与出水管路之间的压差以得到压差实测值,并经变送器转换后与压差设定值比较,得到压差误差e和压差变化率de/dt,水泵控制器根据压差误差e和压差变化率de/dt自适应优化压差控制参数,以对水泵的运行频率进行最优控制,从而调节水泵的转速,进而调整空调水系统的流量,实现空调水系统的变流量运行,具体地,可通过模糊控制、神经网络控制和群智能优化控制等算法寻找最佳控制参数,从而能够适应大滞后、时变的系统,使控制更加稳定,响应速度更快。
其中,根据本申请的一个实施例,检测并确认压差误差e大于零且压差变化率de/dt大于等于零,提高压差设定值,并将压差设定值调整为提高前的数值。
可理解,当压差误差e>0且压差变化率de/dt≥0时,空调水系统压力不稳定,空调水系统处于流量不增加或减少过快的状态,即可能引起系统主机侧断水故障,此时,需要提高压差设定值,即进行自适应变压差修正,使水泵频率快速响应,进而提高空调水系统流量,使系统不会处于缺流量的危险状态,当系统恢复满足可靠性的稳定运行状态后,即进行自适应变压差修正达到预设时间后,将压差设定值调整为提高前的数值。
S3,检测并确认压差大于预设压差,根据温差对空调水系统的水泵的运行频率进行控制。
根据本申请的一个实施例,如图4所示,根据温差对空调水系统的水泵的运行频率进行控制包括以下步骤:
S40,根据温差和温差设定值计算温差误差e’和温差变化率de’/dt。
其中,温差设定值可为预先设定好的空调水系统进水管路与出水管路之间的温差值,温差误差e’可为温差设定值与温差也即温差实测值之间的差值,温差变化率de’/dt可为温差误差的变化量与发生该压差误差的变化量所用时间的比值。
S41,根据温差误差e’和温差变化率de’/dt对水泵的运行频率进行控制。
可理解,如图5所示,通过温度传感器实时测量进水管路与出水管路之间的温差以得到温差实测值,并经变送器转换后与温差设定值比较,得到温差误差e’和温差变化率de’/dt,水泵控制器根据温差误差e’和温差变化率de’/dt自适应优化温差控制参数,以对水泵的运行频率进行最优控制,从而调节水泵的转速,进而调整空调水系统的流量,实现空调水系统的变流量运行,具体地,可通过模糊控制、神经网络控制和群智能优化控制等算法寻找最佳控制参数,从而能够适应大滞后、时变的系统,使控制更加稳定,响应速度更快。
进一步地,根据本申请的一个实施例,水泵为多个,如图6所示,对水泵的运行频率进行控制还包括以下步骤:
S5,确定多个水泵中处于运行状态的水泵,并获取处于运行状态的水泵的当前运行频率。
其中,可通过在水泵驱动轴上安装测速传感器例如霍尔传感器等检测水泵的转速,当检测到水泵的转速大于零时,说明水泵处于运行状态。
S6,根据处于运行状态的水泵的当前运行频率、空调水系统的进水管路与出水管路之间的压差及温差控制处于运行状态的水泵的数量。
具体地,在本申请的一个实施例中,根据处于运行状态的水泵的当前运行频率、压差及温差控制处于运行状态的水泵的数量,包括:检测并确认处于运行状态的水泵的当前运行频率均达到频率上限,并且压差小于等于压差设定值、或者压差大于压差设定值且温差大于温差设定值与死区值之和,增加处于运行状态的水泵的数量;检测并确认任一处于运行状态的水泵的当前运行频率达到频率下限,并且压差大于压差设定值且温差小于温差设定值与死区值之差,减少处于运行状态的水泵的数量。
其中,死区值可为预先设定的温差控制余量,频率上限可为水泵运行频率能够达到的最大值,频率下限可为水泵运行频率能够达到的最小值。
举例而言,假设当前有3台水泵处于运行状态,并且3台水泵的当前运行频率均达到频率上限,那么在压差小于等于压差设定值、或者压差大于压差设定值且温差大于温差设定值与死区值之和时,增加处于运行状态的水泵的数量,此时,有4台水泵处于运行状态。 假设当前有3台水泵处于运行状态,并且3台水泵中的任一一台水泵的当前运行频率达到频率下限,那么在压差大于压差设定值且温差小于温差设定值与死区值之差时,减少处于运行状态的水泵的数量,此时,有2台水泵处于运行状态。
其中,如图8所示,根据处于运行状态的水泵的当前运行频率、压差及温差控制处于运行状态的水泵的数量具体包括以下步骤:
S201,处于运行状态的水泵的当前运行频率均达到频率上限。
S202,判断压差是否大于压差设定值。
如果是,则执行步骤S203;如果否,则执行步骤S204。
S203,判断温差是否大于温差设定值与死区值之和。
如果是,则执行步骤S204;如果否,则执行步骤S209。
S204,增加处于运行状态的水泵的数量。
S205,任一处于运行状态的水泵的当前运行频率达到频率下限。
S206,判断压差是否大于压差设定值。
如果是,则执行步骤S207;如果否,则执行步骤S209。
S207,判断温差是否小于温差设定值与死区值之差。
如果是,则执行步骤S208;如果否,则执行步骤S209。
S208,减少处于运行状态的水泵的数量。
S209,保持处于运行状态的水泵的数量不变。
如上所述,如图7所示,本申请实施例的空调水系统的控制方法可包括以下步骤:
S101,获取空调水系统的进水管路与出水管路之间的压差及温差。
S102,判断压差是否小于预设压差。
如果是,则执行步骤S103;如果否,则执行步骤S105。
S103,根据压差和压差设定值计算压差误差e和压差变化率de/dt。
S104,根据压差误差e和压差变化率de/dt对水泵的运行频率进行控制。
S105,根据温差和温差设定值计算温差误差e’和温差变化率de’/dt。
S106,根据温差误差e’和温差变化率de’/dt对水泵的运行频率进行控制。
S107,确定多个水泵中处于运行状态的水泵,并获取处于运行状态的水泵的当前运行频率。
S108,根据处于运行状态的水泵的当前运行频率、压差及温差控制处于运行状态的水泵的数量。
S109,判断压差误差e是否大于零且压差变化率de/dt是否大于等于零。
如果是,则执行步骤S110;如果否,则执行步骤S104。
S110,提高压差设定值,并在预设时间后,将压差设定值调整为提高前的数值,返回执行步骤S101。
综上,根据本申请实施例提出的空调水系统的控制方法,获取空调水系统的进水管路与出水管路之间的压差及温差,并根据压差和温差对空调水系统的水泵的运行频率进行控制。由此,本申请实施例的空调水系统的控制方法,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
基于上述实施例的空调水系统的控制方法,本申请实施例还提出了一种空调水系统的控制装置。
图9为根据本申请实施例的空调水系统的控制装置的方框示意图。如图9所示,本申请实施例的空调水系统的控制装置包括获取模块10和控制模块20。
其中,获取模块10用于获取空调水系统的进水管路与出水管路之间的压差及温差,其中,进水管路与空调水系统的主机模块的入口相连,出水管路与主机模块的出口相连;控制模块20用于检测并确认压差小于或等于预设压差,根据压差对空调水系统的水泵的运行频率进行控制,以及用于检测并确认压差大于预设压差,根据温差对空调水系统的水泵的运行频率进行控制。
需要说明的是,主机模块可为冷水机组或者热泵机组。
可以理解的是,获取模块10可包括压力传感器或压差传感器以及温度传感器,控制模块20可包括水泵控制器21,其中,可通过压力传感器或压差传感器采集进水管路与出水管路之间的压差,也即空调水系统的主机模块的入口和出口之间的压差,具体地,可在进水管路和出水管路处分别安装压力传感器,实时测量进水管路与出水管路上的压力,压差即为进水管路上的压力与出水管路上的压力之差,或者可在进水管路和出水管路之间设置压差传感器,对进水管路和出水管路之间的压差进行实时测量。通过温度传感器采集进水管路与出水管路之间的温差,也即空调水系统的主机模块的入口和出口之间的温差,具体地,可在进水管路和出水管路处分别安装温度传感器,实时测量进水管路与出水管路上的温度,温差即为进水管路上的温度与出水管路上的温度之差。
其中,进水管路与空调水系统的主机模块的入口相连,出水管路与主机模块的出口相连,水泵可设置在空调水系统的进水管路上,用于将水从进水管路输送到出水管路。
压力传感器或压差传感器,以及温度传感器分别将采集到的进水管路和出水管路之间的压差和温差发送给水泵控制器21,水泵控制器21可集成在群控系统中,如图10-11所示,也可单独设置作为一个控制器,水泵控制器21根据接收到的进水管路和出水管路之间的压 差和温差与水泵强电柜30进行通讯,进而水泵强电柜30对水泵的运行频率进行控制,从而控制空调水系统的流量,其中,水泵控制器21连接到水泵强电柜30的输入端子,水泵连接到水泵强电柜30的输出端子。
还需要说明的是,前述对空调水系统的控制方法实施例的解释说明,也适用于本申请实施例的空调水系统的控制装置,此处不再赘述。
综上,根据本申请实施例提出的空调水系统的控制装置,通过获取模块获取空调水系统的进水管路与出水管路之间的压差及温差,并通过控制模块检测并确认压差小于或等于预设压差,根据压差对空调水系统的水泵的运行频率进行控制,以及检测并确认压差大于预设压差,根据温差对空调水系统的水泵的运行频率进行控制。由此,本申请实施例的空调水系统的控制装置,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
基于上述实施例的空调水系统的控制装置,本申请实施例还提出一种空调水系统,包括前述的空调水系统的控制装置。
根据本申请实施例提出的空调水系统,通过设置的空调水系统的控制装置,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
基于上述实施例的空调水系统,本申请实施例还提出一种中央空调,包括前述的空调水系统。
根据本申请实施例提出的中央空调,通过设置的空调水系统,在压差小于或等于预设压差时,根据压差对水泵的运行频率进行控制,在压差大于预设压差时,根据温差对水泵的运行频率进行控制,从而,在空调水系统负荷发生变化时,能够自适应对空调水系统的水泵的运行频率进行控制,使控制更稳定且及时,同时还可节能。
基于上述实施例的空调水系统的控制方法,本申请实施例还提出一种可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述的空调水系统的控制方法。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种空调水系统的控制方法,其特征在于,包括以下步骤:
    获取所述空调水系统的进水管路与出水管路之间的压差及温差,其中,所述进水管路与所述空调水系统的主机模块的入口相连,所述出水管路与所述主机模块的出口相连;
    检测并确认所述压差小于或等于预设压差,根据所述压差对所述空调水系统的水泵的运行频率进行控制;
    检测并确认所述压差大于所述预设压差,根据所述温差对所述空调水系统的水泵的运行频率进行控制。
  2. 根据权利要求1所述的空调水系统的控制方法,其特征在于,所述根据所述压差对所述空调水系统的水泵的运行频率进行控制包括:
    根据所述压差和压差设定值计算压差误差和压差变化率;
    根据所述压差误差和压差变化率对所述水泵的运行频率进行控制。
  3. 根据权利要求2所述的空调水系统的控制方法,其特征在于,还包括:
    检测并确认所述压差误差大于零且所述压差变化率大于等于零,提高所述压差设定值,并将所述压差设定值调整为提高前的数值。
  4. 根据权利要求1所述的空调水系统的控制方法,其特征在于,所述根据所述温差对所述空调水系统的水泵的运行频率进行控制包括:
    根据所述温差和温差设定值计算温差误差和温差变化率;
    根据所述温差误差和温差变化率对所述水泵的运行频率进行控制。
  5. 根据权利要求1-4中任一项所述的空调水系统的控制方法,其特征在于,所述水泵为多个,对所述水泵的运行频率进行控制还包括:
    确定所述多个水泵中处于运行状态的水泵,并获取所述处于运行状态的水泵的当前运行频率;
    根据所述处于运行状态的水泵的当前运行频率、所述压差及所述温差控制处于运行状态的水泵的数量。
  6. 根据权利要求5所述的空调水系统的控制方法,其特征在于,根据所述处于运行状态的水泵的当前运行频率、所述压差及所述温差控制处于运行状态的水泵的数量,包括:
    检测并确认所述处于运行状态的水泵的当前运行频率均达到频率上限,并且所述压差小于等于压差设定值、或者所述压差大于所述压差设定值且所述温差大于温差设定值与死区值之和,增加处于运行状态的水泵的数量;
    检测并确认任一处于运行状态的水泵的当前运行频率达到频率下限,并且所述压差大 于所述压差设定值且所述温差小于所述温差设定值与死区值之差,减少处于运行状态的水泵的数量。
  7. 一种空调水系统的控制装置,其特征在于,包括:
    获取模块,用于获取所述空调水系统的进水管路与出水管路之间的压差及温差,其中,所述进水管路与所述空调水系统的主机模块的入口相连,所述出水管路与所述主机模块的出口相连;
    控制模块,用于检测并确认所述压差小于或等于所述预设压差,根据所述压差对所述空调水系统的水泵的运行频率进行控制,以及用于检测并确认所述压差大于所述预设压差,根据所述温差对所述空调水系统的水泵的运行频率进行控制。
  8. 一种空调水系统,其特征在于,包括根据权利要求7所述的空调水系统的控制装置。
  9. 一种中央空调,其特征在于,包括根据权利要求8所述的空调水系统。
  10. 一种可读存储介质,其特征在于,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-6中任一所述的空调水系统的控制方法。
PCT/CN2020/083326 2019-05-27 2020-04-03 中央空调、空调水系统及其控制方法和控制装置 WO2020238413A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20814127.5A EP3913295A4 (en) 2019-05-27 2020-04-03 CENTRAL AIR CONDITIONER, AIR CONDITIONER WATER SYSTEM, ASSOCIATED CONTROL METHOD AND ASSOCIATED CONTROL DEVICE
US17/459,864 US11835248B2 (en) 2019-05-27 2021-08-27 Central air conditioner, air conditioner water system, control method therefor, and control device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910446559.X 2019-05-27
CN201910446559.XA CN110160230B (zh) 2019-05-27 2019-05-27 中央空调、空调水系统及其控制方法和控制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/459,864 Continuation US11835248B2 (en) 2019-05-27 2021-08-27 Central air conditioner, air conditioner water system, control method therefor, and control device thereof

Publications (1)

Publication Number Publication Date
WO2020238413A1 true WO2020238413A1 (zh) 2020-12-03

Family

ID=67629315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083326 WO2020238413A1 (zh) 2019-05-27 2020-04-03 中央空调、空调水系统及其控制方法和控制装置

Country Status (4)

Country Link
US (1) US11835248B2 (zh)
EP (1) EP3913295A4 (zh)
CN (1) CN110160230B (zh)
WO (1) WO2020238413A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110160230B (zh) * 2019-05-27 2021-12-28 上海美控智慧建筑有限公司 中央空调、空调水系统及其控制方法和控制装置
CN111256202B (zh) * 2020-01-19 2021-10-26 深圳市奥宇节能技术股份有限公司 一种集中供热系统热源热侧变频循环泵群控方法
CN112160897B (zh) * 2020-09-03 2022-07-08 广东Tcl智能暖通设备有限公司 水泵控制方法、装置、两联供系统及计算机可读存储介质
CN112498091B (zh) * 2020-12-09 2023-02-28 庆铃汽车(集团)有限公司 基于nedc工况的纯电动车辆控制方法、终端、介质及车辆
CN117742426B (zh) * 2024-02-20 2024-04-26 北京金博众科技有限公司 一种恒温恒压的供水机组的智能控制方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661672A (zh) * 2012-05-07 2012-09-12 上海斯普莱力热能技术有限公司 节能板式换热机组及其控制方法
CN106168404A (zh) * 2016-07-13 2016-11-30 昆山台佳机电有限公司 温差修正的二次泵空调水系统变流量控制方法和装置
CN106679103A (zh) * 2017-01-10 2017-05-17 深圳达实智能股份有限公司 一种中央空调系统冷冻泵供水控制方法及装置
CN110160230A (zh) * 2019-05-27 2019-08-23 广东美的暖通设备有限公司 中央空调、空调水系统及其控制方法和控制装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1255653C (zh) * 2004-09-09 2006-05-10 贵州汇诚科技有限公司 中央空调冷冻水系统模糊预期控制方法及装置
CN100392330C (zh) 2004-09-16 2008-06-04 杨家华 采集太阳能的方法及其加热装置
WO2008079829A2 (en) * 2006-12-22 2008-07-03 Duncan Scot M Optimized control system for cooling systems
US20130125565A1 (en) * 2011-11-17 2013-05-23 Optimum Energy,Llc Systems and methods for reducing energy consumption of a chilled water distribution system
CN102635921A (zh) * 2012-03-21 2012-08-15 珠海福士得冷气工程有限公司 一种循环泵综合变频节能系统和方法
EP2871423B1 (de) * 2013-11-07 2017-05-03 Grundfos Holding A/S Regelungsverfahren für ein Heizungs- und/oder Kühlsystem mit zumindest einen Lastkreis sowie Verteilereinrichtung für ein Heizungs- und/oder Kühlsystem
JP6570809B2 (ja) * 2014-02-28 2019-09-04 三菱重工サーマルシステムズ株式会社 冷凍機制御装置、冷凍機、及び冷凍機の診断方法
CN104676837B (zh) * 2015-02-11 2017-08-25 广州市科维机电设备安装有限公司 应用于中央空调冷冻水系统全程温差控制的变频节能方法
JP6570746B2 (ja) * 2016-06-23 2019-09-04 三菱電機株式会社 熱媒体循環システム
CN206360877U (zh) * 2016-12-09 2017-07-28 深圳市海源节能科技有限公司 一种变频水泵并联运行的节能优化控制系统
CN106839275A (zh) * 2016-12-28 2017-06-13 杭州裕达自动化科技有限公司 中央空调监控系统中冷冻泵智能节电控制方法
US11187439B2 (en) * 2017-06-08 2021-11-30 Mitsubishi Electric Corporation Heat source system
CN108036464A (zh) * 2017-08-17 2018-05-15 太原大四方节能环保有限公司 一种中央空调系统的自适应动态冷负荷调控方法
CN108775661B (zh) * 2018-07-12 2023-11-07 珠海格力电器股份有限公司 一种冷冻水泵的频率调整方法、装置及空调系统
CN109612055A (zh) * 2018-12-14 2019-04-12 天津大学 一种空调水系统的前馈模糊控制方法
CN109595746B (zh) * 2018-12-20 2020-01-03 珠海格力电器股份有限公司 水泵运行效率优化控制方法、装置和计算机设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661672A (zh) * 2012-05-07 2012-09-12 上海斯普莱力热能技术有限公司 节能板式换热机组及其控制方法
CN106168404A (zh) * 2016-07-13 2016-11-30 昆山台佳机电有限公司 温差修正的二次泵空调水系统变流量控制方法和装置
CN106679103A (zh) * 2017-01-10 2017-05-17 深圳达实智能股份有限公司 一种中央空调系统冷冻泵供水控制方法及装置
CN110160230A (zh) * 2019-05-27 2019-08-23 广东美的暖通设备有限公司 中央空调、空调水系统及其控制方法和控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913295A4 *

Also Published As

Publication number Publication date
US11835248B2 (en) 2023-12-05
CN110160230B (zh) 2021-12-28
EP3913295A4 (en) 2022-03-16
US20210389013A1 (en) 2021-12-16
EP3913295A1 (en) 2021-11-24
CN110160230A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020238413A1 (zh) 中央空调、空调水系统及其控制方法和控制装置
US9861014B2 (en) Automatic control system and method of chillers for data center
CN105352109B (zh) 基于气候补偿的变风量空调末端温度控制系统及方法
WO2020228549A1 (zh) 变频空调的控制方法
US20210041129A1 (en) Control Method and Device for Air Conditioning System and Air Conditioning System
WO2021008146A1 (zh) 空调系统中水泵的控制方法、装置以及空调系统
US6939109B2 (en) Pump control system
CN105674489B (zh) 一种中央空调水泵的优化控制方法及系统
US20120291984A1 (en) Kind Of Air Conditioner System And Control Method Of Its Condensing Fan
CN104990222A (zh) 空调控制方法及装置
CN110822676B (zh) 控制方法、控制装置、空调器和计算机可读存储介质
CN108603709B (zh) 一种用于根据可变温度设定点来控制蒸汽压缩系统的风扇的方法
WO2020177284A1 (zh) 防止空调器的压缩机液击的控制方法及控制系统
CN110736270A (zh) 电子膨胀阀的开度控制方法及装置
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
CN113701321A (zh) 一种中央空调水泵节能变频控制方法
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
US11499766B2 (en) Electric expansion valve, a heat exchange system and a method of controlling the electric expansion valve
CN110388731A (zh) 空调系统的控制方法及系统、空调系统和计算机装置
CN113531691B (zh) 循环式热水机的控制方法和循环式热水机
CN110953684B (zh) 空调冷却系统的控制方法及空调
CN110793151B (zh) 一种多联机冷媒控制方法、装置、空调器及存储介质
CN112361682A (zh) 一种冷水机组控制方法、装置和冷水机组
CN109307316B (zh) 用于变频泵组的节能控制方法及换热站
CN113266925B (zh) 一种两联供热泵系统的控制方法及水温控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020814127

Country of ref document: EP

Effective date: 20210818

NENP Non-entry into the national phase

Ref country code: DE