WO2021008002A1 - 一种基于同塔多回线路的变时限距离保护计时方法及装置 - Google Patents

一种基于同塔多回线路的变时限距离保护计时方法及装置 Download PDF

Info

Publication number
WO2021008002A1
WO2021008002A1 PCT/CN2019/114594 CN2019114594W WO2021008002A1 WO 2021008002 A1 WO2021008002 A1 WO 2021008002A1 CN 2019114594 W CN2019114594 W CN 2019114594W WO 2021008002 A1 WO2021008002 A1 WO 2021008002A1
Authority
WO
WIPO (PCT)
Prior art keywords
iii
distance protection
phase
model
fault
Prior art date
Application number
PCT/CN2019/114594
Other languages
English (en)
French (fr)
Inventor
周泽昕
李天华
曹虹
郭雅蓉
王兴国
杜丁香
王德林
吕鹏飞
张志�
Original Assignee
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 中国电力科学研究院有限公司
Priority to US17/596,623 priority Critical patent/US11749985B2/en
Publication of WO2021008002A1 publication Critical patent/WO2021008002A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/40Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • This application relates to the field of electric power systems and their automation in electrical technology, for example, to a time-varying distance protection timing method and device based on multi-circuit lines on the same tower.
  • the setting calculation is an important condition to ensure the normal performance of the relay protection device.
  • the distance backup protection of the line needs to cooperate with the distance backup protection of the adjacent line.
  • the power grid structure changes due to the disconnection and new construction of the line, it is necessary to recalculate and change the setting value of the distance backup protection, which will consume a lot of time and management costs.
  • Due to the inconsistency of infrastructure project planning and implementation the fixed value that needs to be changed cannot be in place at one time, which will cause the fixed value to lose cooperation during the change process. At the same time, the process of changing the fixed value is accompanied by the potential security risk of changing errors.
  • variable time limit distance protection can realize the delay setting of the distance backup protection without setting, and the action time of the distance backup protection of the whole network can be adaptively coordinated. It is not affected by the grid wiring and fault patterns, and can ensure the priority action of the distance protection backup section of the faulty line , The action time limit difference meets the specification requirements, and the whole network has all coordination points. Realize the coordinated scheme of distance backup protection that is more optimized than the definite time setting calculation in the whole network.
  • Timing method is the core method of variable time limit distance protection. Using the current information of the protection device obtained at the time of the fault, and the measured impedance and line length of the distance protection device, a set of distance protection section II and Section III operating time calculation formula, online calculation of operating time, to achieve the coordination of adjacent protection action time limits.
  • the accuracy of impedance measurement is reduced in the case of cross-line faults, etc., and the calculated action time may not meet the coordination relationship of adjacent lines.
  • This application provides a time-varying distance protection timing method and device based on multi-circuit lines on the same tower, which can solve the problems in the background technology for the decrease in accuracy of impedance measurement under conditions such as multi-circuit lines on the same tower and cross-line faults, and calculate The action time may not meet the problem of the coordination relationship between adjacent lines.
  • variable time limit distance protection timing method based on multi-circuit lines on the same tower includes:
  • a multi-circuit line ranging result is calculated
  • the multi-circuit line ranging result, and the adaptive calculation model, the distance protection section II action time t II and the final distance protection section III action time t III are calculated;
  • variable time limit distance protection timing device for multi-circuit lines on the same tower includes:
  • the acquisition and acquisition parameter unit is respectively connected to the multi-circuit line ranging model unit, the adaptive calculation model unit and the cross-line fault auxiliary criterion model unit; the acquisition and acquisition parameter unit is configured to acquire Setting parameters, and sending the preset parameters to the multi-circuit line ranging model unit, the adaptive calculation model unit, and the cross-line fault auxiliary criterion model unit;
  • a multi-circuit line ranging model unit is connected to the adaptive calculation model unit; the multi-circuit line ranging model unit is configured to be configured according to the preset data sent by the acquisition parameter unit Setting parameters and a multi-circuit line ranging model, calculating a multi-circuit line ranging result, and sending the multi-circuit line ranging result to the adaptive calculation model unit;
  • An adaptive calculation model unit which is connected to the cross-line fault auxiliary criterion model unit; the adaptive calculation model unit is configured to measure the multiple lines according to the preset parameters and From the multi-circuit line ranging result and the adaptive calculation model sent by the model unit, the distance protection section II operating time and the final distance protection section III operating time are calculated, and the distance protection section II operating time is sent to the Cross-line fault auxiliary criterion model unit;
  • a cross-line fault auxiliary criterion model unit where the cross-line fault auxiliary criterion model unit is configured to perform the variable time limit distance protection in accordance with the preset parameters, the cross-line fault auxiliary criterion model, and the multi-circuit line on the same tower.
  • the instantaneous value of the current at the installation location determines the final distance protection stage II action time.
  • FIG. 1 is a flowchart of a time-varying distance protection timing method based on multi-circuit lines on the same tower according to a specific embodiment of this application;
  • Fig. 2 is a structural diagram of a time-varying distance protection timing device based on multi-circuit lines on the same tower according to a specific embodiment of the application.
  • Fig. 1 is a flowchart of a time-varying distance protection timing method based on multi-circuit lines on the same tower according to a specific embodiment of the application. As shown in Figure 1, the method includes:
  • Step 110 Collect the instantaneous value of the current at the time-varying distance protection installation in the multi-circuit line on the same tower; obtain preset parameters; the preset parameters include the collected instantaneous values of the three-phase current to determine the three-phase current fundamental wave Phasor Set the phase selection as the fundamental phasor of the fault phase current when the phase is faulty When setting the selected phase as single-phase fault, the current fundamental phasor of the leading phase in the non-faulty phase Current fundamental phasor of the lagging phase in the non-fault phase Obtain the preset time range K 0 , the length of this line C L , the number of multi-circuit lines N, the distance protection distance measurement result C, the minimum action time t min of the distance section III, and the maximum action time L III.set of the distance section III;
  • Step 120 Calculate the multi-circuit line ranging result according to the preset parameters and the multi-circuit line ranging model
  • the preset parameters include the distance protection ranging result C, the length of the multi-circuit line on the same tower C L, and the number of multi-circuit lines on the same tower N;
  • the calculation formula is:
  • CD is the multi-circuit line ranging result; the N is a positive integer.
  • Step 130 According to the preset parameters, the multi-circuit line ranging result and the adaptive calculation model, calculate the distance protection section II action time t II and the final distance protection section III action time t III ;
  • Said M is a positive integer.
  • the preset parameters further include the time range K 0 , the minimum operation time t min of the distance protection section III, and the maximum operation time L III.set of the distance protection section III; the adaptive calculation There are six intermediate values of the action time in the model, and the calculation formulas for the six groups of the six intermediate values of the action time are:
  • a 11 , a 12 , a 21 , a 31 , a 32 , a 41 , a 42 , a 51 , a 61 , a 62 , b 11 , b 12 , b 31 , b 41 , b 51 , c 12 , c 21 , c 31 , c 41 , c 51 , d 12 , d 31 , d 41 , e 11 , e 31 , e 41 and e 61 are all positive numbers;
  • the calculation formulas for the first six groups of the median action time in the adaptive calculation model are:
  • the unit of the above t 1 , t 2 , t 3 , t 4 , t 5 , and t 6 is second (s).
  • the distance protection section II can be calculated according to the preset parameters, the results of the multi-circuit line ranging, the adaptive calculation model, and the intermediate value t m of the operating time The action time t II and the final distance protection stage III action time t III .
  • the intermediate value of the action time may also be more than six. In the case where the intermediate value of the action time is more than six, the above is used to calculate t 1 , t 2 , t 3 , and t 4
  • the formulas of t 5 , t 6 can be used to calculate the first six intermediate values of the action time among the more than six intermediate values of the action time.
  • the formula for calculating the operating time t II of the distance protection section II in the adaptive calculation model is:
  • f 11 , g 11 , f 21 , h 21 , g 21 , h 22 , f 31 , h 31 , g 31 , h 41 and g 41 are all positive numbers, and g 21 ⁇ h 22 + t 2 .
  • the formula for calculating the operating time t II of the distance protection section II in the adaptive calculation model is:
  • the formula for calculating the final distance protection section III action time t III in the adaptive calculation model is:
  • the formula for calculating the final distance protection section III action time t III in the adaptive calculation model is:
  • Step 140 the instantaneous value of the current of the preset parameters and the fault line across the secondary criterion model to determine the final distance protection Stage II operation time t 'II; Stage II operation of the protection according to the final distance time t' II And the final distance protection stage III action time t III to complete the coordination of adjacent protection action time limits.
  • phase selection result of the distance protection is a phase-to-phase fault
  • the cross-line fault auxiliary criterion model includes a phase-to-phase fault auxiliary criterion model and a single-phase fault auxiliary criterion model;
  • Fig. 2 is a structural diagram of a time-varying distance protection timing device based on multi-circuit lines on the same tower according to a specific embodiment of the application. As shown in Figure 2, the device includes:
  • the acquisition and acquisition parameter unit 1 is connected to the multi-circuit line ranging model unit 2, the adaptive calculation model unit 3 and the cross-line fault auxiliary criterion model unit 4 respectively; the acquisition and acquisition parameter unit 1 Is configured to collect preset parameters, and send the preset parameters to the multi-circuit line ranging model unit 2, the adaptive calculation model unit 3, and the cross-line fault auxiliary criterion model unit 4;
  • a multi-circuit line ranging model unit 2 the multi-circuit line ranging model unit 2 is connected to the adaptive calculation model unit 3; the multi-circuit line ranging model unit 2 is configured to acquire parameters according to the collection The preset parameters and the multi-circuit line ranging model sent by the unit 1 are calculated to obtain the multi-circuit line ranging result, and the multi-circuit line ranging result is sent to the adaptive calculation model unit 3;
  • the adaptive calculation model unit 3 is connected to the cross-line fault assistance criterion model unit 4; the adaptive calculation model unit 3 is configured to be based on the preset parameters, the The multi-circuit line ranging result and the adaptive calculation model sent by the multi-circuit line ranging model unit 2 calculate the distance protection section II operation time and the final distance protection section III operation time, and then operate the distance protection section II The time is sent to the cross-line fault auxiliary criterion model unit 4;
  • the cross-line fault auxiliary criterion model unit 4 is configured to be based on the preset parameters, the cross-line fault auxiliary criterion model, and the variable time limit distance in the multi-circuit line on the same tower.
  • the instantaneous value of the current at the installation location of the protection determines the final distance protection stage II action time.
  • the preset parameters include the distance protection phase selection result, the time range K 0 , the length of the same tower multi-circuit line C L , the number of the same tower multi-circuit line N, and the distance protection distance measurement Result C, the minimum action time t min from the distance section III and the maximum action time L III.set from the distance section III;
  • the cross-line fault assistant criterion model includes a phase-to-phase fault assistant criterion model and a single-phase fault assistant criterion model.
  • modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.
  • the step numbers involved in this specification are only used to distinguish the steps, and are not used to limit the time or logical relationship between the steps. Unless there is a clear limitation in the text, the relationship between the steps includes various possible happening.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • the present disclosure can also be implemented as a device or system program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.
  • the beneficial effects of this article are: the technical solution of the present application provides a method and device for variable time limit distance protection timing based on multi-circuit lines on the same tower.
  • the method may include: acquiring preset parameters; Parameters and the multi-circuit line ranging model to calculate the multi-circuit line ranging result; according to the preset parameters, the multi-circuit line ranging result and the adaptive calculation model, the distance protection stage II action time and the final distance are calculated
  • the action time of the protection section III; the final distance protection section II action time is determined according to the preset parameters and the cross-line fault auxiliary criterion model; according to the final distance protection section II action time and the final distance protection section III action time ;
  • the calculated action time may not meet the problem of the coordination relationship of adjacent lines, causing cross-line faults or single-line faults on the double-circuit lines on the same tower When the fault occurs, the coordination of

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种基于同塔多回线路的变时限距离保护计时方法及装置,所述方法包括:采集所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值,获取预设参数(110);根据所述预设参数以及多回线路测距模型,计算得到多回线路测距结果(120);根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间以及最终距离保护III段动作时间(130);根据所述电流的瞬时值、所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间(140)。

Description

一种基于同塔多回线路的变时限距离保护计时方法及装置
本公开要求在2019年07月16日提交中国专利局、申请号为201910641081.6的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及电气技术中电力系统及其自动化领域,例如涉及一种基于同塔多回线路的变时限距离保护计时方法及装置。
背景技术
整定计算是确保继电保护装置发挥正常性能的重要条件。线路的距离后备保护需要和相邻线路的距离后备保护配合。在线路的开断、新建等导致电网结构变化时,需要重新计算并更改距离后备保护定值,将耗费大量的时间和管理成本。由于基建项目计划和实施的不一致性,需要更改的定值不能一次到位,会造成更改过程中定值失去配合。同时,在定值更改过程中也伴随着更改出错的潜在安全风险。
变时限距离保护可以实现距离后备保护延时定值免整定,全网距离后备保护动作时间可自适应配合,不受电网接线形式和故障形态的影响,能确保故障线路的距离保护后备段优先动作,动作时限级差满足规范要求,全网无不配合点。实现全网比定时限整定计算更为优化的距离后备保护的配合方案。
计时方法是变时限距离保护的核心方法,利用保护装置在故障发生时刻所获取的本侧的电流信息,和距离保护装置的测量阻抗、线路长度等定值,设计出一套距离保护II段和III段动作时间计算公式,对动作时间进行在线计算,实现相邻保护动作时限的配合。
对于同塔多回线路,跨线故障等情况下测量阻抗的准确性下降,计算出的 动作时间可能不满足相邻线路的配合关系。
发明内容
本申请提供了一种基于同塔多回线路的变时限距离保护计时方法及装置,可以解决背景技术存在的对于同塔多回线路,跨线故障等情况下测量阻抗的准确性下降,计算出的动作时间可能不满足相邻线路的配合关系问题。
所述基于同塔多回线路的变时限距离保护计时方法包括:
采集所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值;获取预设参数;
根据所述预设参数以及多回线路测距模型,计算得到多回线路测距结果;
根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间t II以及最终距离保护III段动作时间t III
根据所述电流的瞬时值、所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间t' II
所述一种用于同塔多回线路的变时限距离保护计时装置包括:
采集获取参数单元,所述采集获取参数单元分别与多回线路测距模型单元、自适应计算模型单元以及跨线故障辅助判据模型单元相连接;所述采集获取参数单元被配置为采集获取预设参数,并将所述预设参数发送至所述多回线路测距模型单元、所述自适应计算模型单元以及所述跨线故障辅助判据模型单元;
多回线路测距模型单元,所述多回线路测距模型单元与所述自适应计算模型单元相连接;所述多回线路测距模型单元被配置为根据所述采集获取参数单元发送的预设参数以及多回线路测距模型,计算得到多回线路测距结果,并将所述多回线路测距结果发送至所述自适应计算模型单元;
自适应计算模型单元,所述自适应计算模型单元与所述跨线故障辅助判据模型单元相连接;所述自适应计算模型单元被配置为根据所述预设参数、所述多回线路测距模型单元发送的所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间以及最终距离保护III段动作时间,并将所述距离保护II段动作时间发送至所述跨线故障辅助判据模型单元;
跨线故障辅助判据模型单元,所述跨线故障辅助判据模型单元被配置为根据所述预设参数、跨线故障辅助判据模型以及所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值,确定最终距离保护II段动作时间。
附图说明
图1为本申请具体实施方式的一种基于同塔多回线路的变时限距离保护计时方法的流程图;
图2为本申请具体实施方式的一种基于同塔多回线路的变时限距离保护计时装置的结构图。
具体实施方式
现在参考附图介绍本申请的示例性实施方式,然而,本申请可以用许多不同的形式来实施,并且不局限于此处描述的实施例。对于表示在附图中的示例性实施方式中的术语并不是对本申请的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理 想化的或过于正式的意义。
图1为本申请具体实施方式的一种基于同塔多回线路的变时限距离保护计时方法的流程图。如图1所述,所述方法包括:
步骤110,采集所述同塔多回线路中变时限距离保护安装处电流的瞬时值;获取预设参数;所述预设参数包括所述采集的三相电流的瞬时值确定三相电流基波相量
Figure PCTCN2019114594-appb-000001
设置选相为相间故障时故障相电流基波相量
Figure PCTCN2019114594-appb-000002
设置选相为单相故障时,非故障相中超前相的电流基波相量
Figure PCTCN2019114594-appb-000003
非故障相中滞后相的电流基波相量
Figure PCTCN2019114594-appb-000004
获取预先设置的时间极差K 0、本线路长度C L、多回线路数N、距离保护的测距结果C及距离III段最小动作时间t min、距离III段最大动作时间L III.set
步骤120,根据所述预设参数以及多回线路测距模型,计算得到多回线路测距结果;
在一些实施例中,所述预设参数包括距离保护的测距结果C、所述同塔多回线路长度C L以及所述同塔多回线路数N;所述多回线路测距模型的计算公式为:
Figure PCTCN2019114594-appb-000005
其中,C D为多回线路测距结果;所述N为正整数。
步骤130,根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间t II以及最终距离保护III段动作时间t III
在本步骤中,可以根据预设参数、所述多回线路测距结果以及所述自适应计算模型,计算动作时间中间值t m(m=1,2,3,……,M),所述M为正整数。
在一些实施例中,所述预设参数还包括时间极差K 0、所述距离保护III段最 小动作时间t min以及所述距离保护III段最大动作时间L III.set;所述自适应计算模型中所述动作时间中间值有六个,所述六个动作时间中间值的六组的计算公式为:
Figure PCTCN2019114594-appb-000006
Figure PCTCN2019114594-appb-000007
Figure PCTCN2019114594-appb-000008
Figure PCTCN2019114594-appb-000009
Figure PCTCN2019114594-appb-000010
Figure PCTCN2019114594-appb-000011
其中,a 11、a 12、a 21、a 31、a 32、a 41、a 42、a 51、a 61、a 62、b 11、b 12、b 31、b 41、b 51、c 12、c 21、c 31、c 41、c 51、d 12、d 31、d 41、e 11、e 31、e 41以及e 61均为正数;
在一些实施例中,所述自适应计算模型中所述动作时间中间值的前六组的计算公式为,
Figure PCTCN2019114594-appb-000012
Figure PCTCN2019114594-appb-000013
Figure PCTCN2019114594-appb-000014
Figure PCTCN2019114594-appb-000015
t 5=0.002×(C D/5) 2.5
Figure PCTCN2019114594-appb-000016
上述t 1、t 2、t 3、t 4、t 5、t 6的单位为秒(s)。
在计算得到动作时间中间值后,可以根据所述预设参数、所述多回线路测距结果、所述自适应计算模型以及所述动作时间中间值t m,计算得到所述距离保护II段动作时间t II以及所述最终距离保护III段动作时间t III。需要说明的是,所述动作时间中间值也可以为多于六个,在所述动作时间中间值为多于六个的情况下,上述用于计算t 1、t 2、t 3、t 4、t 5、t 6的公式,可以被用于计算所述多于六个的动作时间中间值之中的前六个所述动作时间中间值。
在一些实施例中,所述自适应计算模型中计算得到所述距离保护II段动作时间t II的公式为:
当0≤C D≤f 11C L时,t II=t 1,若t II<g 11,t II=g 11
当f 11C L<C D≤f 21C L时,
Figure PCTCN2019114594-appb-000017
若t II<g 21,t II=g 21;若t II>h 22+t 2,t II=h 22+t 2
当f 21C L<C D≤f 31C L时,
Figure PCTCN2019114594-appb-000018
若t II>g 31,t II=g 31
当f 31C L<C D时,
Figure PCTCN2019114594-appb-000019
若t II>g 41,t II=g 41
其中,f 11、g 11、f 21、h 21、g 21、h 22、f 31、h 31、g 31、h 41以及g 41均为正数,且,且g 21≤h 22+t 2
可理解的是,本实施例的各公式中,“=”的含义为“赋值”,而不是“相等”。举例而言,“当0≤C D≤f 11C L时,t II=t 1,若t II<g 11,t II=g 11;”应被理解为当0≤C D≤f 11C L时,将t 1的值赋予t II,在将t 1的值赋予t II之后,如果t II<g 11,则再将g 11的值赋予t II,使t II的取值由t 1调整为了g 11
在一些实施例中,所述自适应计算模型中计算得到所述距离保护II段动作时间t II的公式为:
当0≤C D≤0.6C L时,t II=t 1
当t II<0.2时,t II取为0.2s;
当0.6C L<C D≤1.05C L时,
Figure PCTCN2019114594-appb-000020
当t II<0.5时,t II取为0.5s。当t II>2+t 6时,t II取为2+t 6
当1.05C L<C D≤1.5C L时,
Figure PCTCN2019114594-appb-000021
当t II>3时,t II取为3s;
当1.5C L<C D时,
Figure PCTCN2019114594-appb-000022
当t II>5时,t II取为5s;
在一些实施例中,所述自适应计算模型中计算得到所述最终距离保护III段动作时间t III的公式为:
当0≤C D≤f 11C L时,t III=t 1+t min+j 11
当f 11C L<C D≤f 21C L时,
Figure PCTCN2019114594-appb-000023
若t III<k 21+t min,t III=k 21+t min;若t III>k 22+t 6+t min,t III=k 22+t 6+t min
当f 21C L<C D≤f 31C L时,
Figure PCTCN2019114594-appb-000024
若t III>k 31,t III=k 31
当f 31C L<C D时,
Figure PCTCN2019114594-appb-000025
若t III>L III.set时,t III=L III.set
计算得到t III后,若t III>L III.set;t III=L III.set,其中f 11、f 21、j 21、j 22、k 21、k 22、f 21、f 31、j 31、j 32、j 33、j 34、k 31、f 31、j 41以及k 41均为正数;
在一些实施例中,所述自适应计算模型中计算得到所述最终距离保护III段 动作时间t III的公式为:
当0≤C D≤0.6C L时,t III=t 1+t min-0.2;
当0.6C L<C D≤1.05C L时,
Figure PCTCN2019114594-appb-000026
当t III<0.3+t min时,t III取为0.3+t min;当t III>1.8+t 6+t min时,t III取为1.8+t 6+t min
当1.05C L<C D≤1.5C L时,
Figure PCTCN2019114594-appb-000027
当t III>10时,t III取为10s;
当1.5C L<C D时,
Figure PCTCN2019114594-appb-000028
当t III>L III.set时,t III取为L III.set
计算出t III后,对于多回线路,若t III<2.5时,t III取为2.5s。
步骤140,根据所述电流的瞬时值、所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间t' II;根据所述最终距离保护II段动作时间t' II以及所述最终距离保护III段动作时间t III,完成相邻保护动作时限配合。
在一些实施例中,若距离保护选相结果为相间故障时,判断相间故障辅助判据是否满足,若满足,则t′ II=t II;若不满足,当t II>1时,t′ II取为1秒;
若距离保护选相结果为单相故障时,判断单相故障辅助判据是否满足,若满足,则t' II=t II;若不满足,当t II>1时,t' II取为1秒;
在一些实施例中,所述跨线故障辅助判据模型包括相间故障辅助判据模型以及单相故障辅助判据模型;
所述相间故障辅助判据模型的公式为:
Figure PCTCN2019114594-appb-000029
其中,
Figure PCTCN2019114594-appb-000030
为相间故障的其中一个故障相的电流基波相量;
Figure PCTCN2019114594-appb-000031
为相间故障的另一个故障相的电流基波相量;η为相间第一系数,η>1;λ为相间第二系数,λ<1;
所述单相故障辅助判据模型的公式为:
Figure PCTCN2019114594-appb-000032
其中,
Figure PCTCN2019114594-appb-000033
为非故障相中的超前相的电流基波相量;
Figure PCTCN2019114594-appb-000034
为非故障相中的滞后相的电流基波相量;θ 1为单相第一角度;θ 2为单相第二角度,θ 2>θ 1>90°。
可理解的是,
Figure PCTCN2019114594-appb-000035
Figure PCTCN2019114594-appb-000036
需要同时满足,才能判定满足相间故障辅助判据;
Figure PCTCN2019114594-appb-000037
Figure PCTCN2019114594-appb-000038
需要同时满足,才能判定满足判断单相故障辅助判据。
图2为本申请具体实施方式的一种基于同塔多回线路的变时限距离保护计时装置的结构图。如图2所示,所述装置包括:
采集获取参数单元1,所述采集获取参数单元1分别与多回线路测距模型单元2、自适应计算模型单元3以及跨线故障辅助判据模型单元4相连接;所述采集获取参数单元1被配置为采集获取预设参数,并将所述预设参数发送至所述多回线路测距模型单元2、所述自适应计算模型单元3以及所述跨线故障辅助判 据模型单元4;
多回线路测距模型单元2,所述多回线路测距模型单元2与所述自适应计算模型单元3相连接;所述多回线路测距模型单元2被配置为根据所述采集获取参数单元1发送的预设参数以及多回线路测距模型,计算得到多回线路测距结果,并将所述多回线路测距结果发送至所述自适应计算模型单元3;
自适应计算模型单元3,所述自适应计算模型单元3与所述跨线故障辅助判据模型单元4相连接;所述自适应计算模型单元3被配置为根据所述预设参数、所述多回线路测距模型单元2发送的所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间以及最终距离保护III段动作时间,并将所述距离保护II段动作时间发送至所述跨线故障辅助判据模型单元4;
跨线故障辅助判据模型单元4,所述跨线故障辅助判据模型单元4被配置为根据所述预设参数、跨线故障辅助判据模型以及所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值,确定最终距离保护II段动作时间。
在一些实施例中,所述预设参数包括距离保护选相结果、时间极差K 0、所述同塔多回线路长度C L、所述同塔多回线路数N、距离保护的测距结果C、距离III段最小动作时间t min以及距离III段最大动作时间L III.set
在一些实施例中,所述跨线故障辅助判据模型包括相间故障辅助判据模型以及单相故障辅助判据模型。
在本申请中,上文公式中提到的参数a 11、a 12、a 21、a 31、a 32、a 41、a 42、a 51、a 61、a 62、b 11、b 12、b 31、b 41、b 51、c 12、c 21、c 31、c 41、c 51、d 12、d 31、d 41、e 11、e 31、e 41,e 61、f 11、g 11、f 21、h 21、g 21、h 22、f 31、h 31、g 31、h 41、g 41、f 11、j 11、f 21、j 21、j 22、k 21、k 22、f 21、f 31、j 31、j 32、j 33、j 34、k 31、f 31、j 41、k 41、P、Q均预设参数,这些预设参数均可以根据预先进行的测试结果调整和确定。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。本说明书中涉及到的步骤编号仅用于区别各步骤,而并不用于限制各步骤之间的时间或逻辑的关系,除非文中有明确的限定,否则各个步骤之间的关系包括各种可能的情况。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。例如,在权利要求书中所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者系统程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载 得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本公开进行说明而不是对本公开进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干系统的单元权利要求中,这些系统中的若干个可以是通过同一个硬件项来具体体现。
本文的有益效果为:本申请的技术方案,给出了一种基于同塔多回线路的变时限距离保护计时方法及装置,所述方法可以包括:采集获取预设参数;根据所述预设参数以及多回线路测距模型,计算得到多回线路测距结果;根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间以及最终距离保护III段动作时间;根据所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间;根据所述最终距离保护II段动作时间以及所述最终距离保护III段动作时间;为了对于同塔多回线路,跨线故障等情况下测量阻抗的准确性下降,计算出的动作时间可能不满足相邻线路的配合关系问题,使同塔双回线路发生跨线故障或单一故障时均实现相邻保护动作时限的配合。

Claims (11)

  1. 一种基于同塔多回线路的变时限距离保护计时方法,所述方法包括:
    采集所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值;获取预设参数;
    根据所述预设参数以及多回线路测距模型,计算得到多回线路测距结果;
    根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间t II以及最终距离保护III段动作时间t III
    根据所述电流的瞬时值、所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间t' II
  2. 根据权利要求1所述的方法,其中,所述预设参数包括距离保护的测距结果C、所述同塔多回线路长度C L以及所述同塔多回线路数N;所述多回线路测距模型的计算公式为:
    Figure PCTCN2019114594-appb-100001
    其中,C D为多回线路测距结果,N为正整数。
  3. 根据权利要求2所述的方法,其中,根据所述预设参数、所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间t II以及最终距离保护III段动作时间t III,包括:
    根据预设参数、所述多回线路测距结果以及所述自适应计算模型,计算动作时间中间值;
    根据所述预设参数、所述多回线路测距结果、所述自适应计算模型以及所述动作时间中间值,计算得到所述距离保护II段动作时间t II以及所述最终距离保护III段动作时间t III
  4. 根据权利要求3所述的方法,所述预设参数还包括时间极差K 0、所述距 离保护III段最小动作时间t min以及所述距离保护III段最大动作时间L III.set;所述自适应计算模型中所述动作时间中间值有六个,所述六个动作时间中间值的六组的计算公式为:
    Figure PCTCN2019114594-appb-100002
    Figure PCTCN2019114594-appb-100003
    Figure PCTCN2019114594-appb-100004
    Figure PCTCN2019114594-appb-100005
    Figure PCTCN2019114594-appb-100006
    Figure PCTCN2019114594-appb-100007
    其中,a 11、a 12、a 21、a 31、a 32、a 41、a 42、a 51、a 61、a 62、b 11、b 12、b 31、b 41、b 51、c 12、c 21、c 31、c 41、c 51、d 12、d 31、d 41、e 11、e 31、e 41以及e 61均为正数。
  5. 根据权利要求4所述的方法,其中,所述自适应计算模型中计算得到所述距离保护II段动作时间t II的公式为:
    当0≤C D≤f 11C L时,t II=t 1,若t II<g 11,t II=g 11
    当f 11C L<C D≤f 21C L时,
    Figure PCTCN2019114594-appb-100008
    若t II<g 21,t II=g 21;若t II>h 22+t 2,t II=h 22+t 2
    当f 21C L<C D≤f 31C L时,
    Figure PCTCN2019114594-appb-100009
    若t II>g 31,t II=g 31
    当f 31C L<C D时,
    Figure PCTCN2019114594-appb-100010
    若t II>g 41,t II=g 41
    其中,f 11、g 11、f 21、h 21、g 21、h 22、f 31、h 31、g 31、h 41以及g 41均为正数。
  6. 根据权利要求4所述的方法,其中,所述自适应计算模型中计算得到所述最终距离保护III段动作时间t III的公式为:
    当0≤C D≤f 11C L时,t III=t 1+t min+j 11
    当f 11C L<C D≤f 21C L时,
    Figure PCTCN2019114594-appb-100011
    若t III<k 21+t min,t III=k 21+t min;若t III=k 22+t 6+t min,t III>k 22+t 6+t min
    当f 21C L<C D≤f 31C L时,
    Figure PCTCN2019114594-appb-100012
    若t III>k 31,t III=k 31
    当f 31C L<C D时,
    Figure PCTCN2019114594-appb-100013
    若t III>L III.set时,t III=L III.set
    计算得到t III后,若t III>L III.set,t III=L III.set;其中,f 11、f 21、j 21、j 22、k 21、k 22、f 21、f 31、j 31、j 32、j 33、j 34、k 31、f 31、j 41以及k 41均为正数。
  7. 根据权利要求5所述的方法,其中,所述预设参数还包括距离保护选相结果;所述根据所述电流的瞬时值、所述预设参数以及跨线故障辅助判据模型,确定最终距离保护II段动作时间t' II,包括:
    若距离保护选相结果为相间故障时,判断相间故障辅助判据是否满足;若满足,则t' II=t II保持不变;若不满足,当t II>P时,t' II取为P秒,其中,P为正数;
    若距离保护选相结果为单相故障时,判断单相故障辅助判据是否满足;若满足,则t' II=t II保持不变;若不满足,当t II>Q时,t' II取为Q秒,其中,Q为正数。
  8. 根据权利要求7所述的方法,其中,所述跨线故障辅助判据模型包括相间故障辅助判据模型以及单相故障辅助判据模型;
    所述相间故障辅助判据模型的公式为:
    Figure PCTCN2019114594-appb-100014
    其中,
    Figure PCTCN2019114594-appb-100015
    为相间故障的其中一个故障相的电流基波相量;
    Figure PCTCN2019114594-appb-100016
    为相间故障的另一个故障相的电流基波相量;η为相间第一系数,η>1;λ为相间第二系数,λ<1;
    所述单相故障辅助判据模型的公式为:
    Figure PCTCN2019114594-appb-100017
    其中,
    Figure PCTCN2019114594-appb-100018
    为非故障相中的超前相的电流基波相量;
    Figure PCTCN2019114594-appb-100019
    为非故障相中的滞后相的电流基波相量;θ 1为单相第一角度;θ 2为单相第二角度,θ 2>θ 1>90°。
  9. 一种用于同塔多回线路的变时限距离保护计时装置,其中,所述装置包括:
    采集获取参数单元,所述采集获取参数单元分别与多回线路测距模型单元、自适应计算模型单元以及跨线故障辅助判据模型单元相连接;所述采集获取参数单元被配置为采集获取预设参数,并将所述预设参数发送至所述多回线路测距模型单元、所述自适应计算模型单元以及所述跨线故障辅助判据模型单元;
    多回线路测距模型单元,所述多回线路测距模型单元与所述自适应计算模型单元相连接;所述多回线路测距模型单元被配置为根据所述采集获取参数单元发送的预设参数以及多回线路测距模型,计算得到多回线路测距结果,并将所述多回线路测距结果发送至所述自适应计算模型单元;
    自适应计算模型单元,所述自适应计算模型单元与所述跨线故障辅助判据 模型单元相连接;所述自适应计算模型单元被配置为根据所述预设参数、所述多回线路测距模型单元发送的所述多回线路测距结果以及自适应计算模型,计算得到距离保护II段动作时间以及最终距离保护III段动作时间,并将所述距离保护II段动作时间发送至所述跨线故障辅助判据模型单元;
    跨线故障辅助判据模型单元,所述跨线故障辅助判据模型单元被配置为根据所述预设参数、跨线故障辅助判据模型以及所述同塔多回线路中变时限距离保护的安装处的电流的瞬时值,确定最终距离保护II段动作时间。
  10. 根据权利要求9所述的装置,其中,所述预设参数包括距离保护选相结果、时间极差K 0、所述同塔多回线路长度C L、所述同塔多回线路数N、距离保护的测距结果C、距离III段最小动作时间t min以及距离III段最大动作时间L III.set
  11. 根据权利要求9所述的装置,其中,所述跨线故障辅助判据模型包括相间故障辅助判据模型以及单相故障辅助判据模型。
PCT/CN2019/114594 2019-07-16 2019-10-31 一种基于同塔多回线路的变时限距离保护计时方法及装置 WO2021008002A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/596,623 US11749985B2 (en) 2019-07-16 2019-10-31 Method and device for timing in time-varying distance protection based on multiple lines in tower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910641081.6 2019-07-16
CN201910641081.6A CN110492449B (zh) 2019-07-16 2019-07-16 一种基于同塔多回线路的变时限距离保护计时方法及装置

Publications (1)

Publication Number Publication Date
WO2021008002A1 true WO2021008002A1 (zh) 2021-01-21

Family

ID=68547243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114594 WO2021008002A1 (zh) 2019-07-16 2019-10-31 一种基于同塔多回线路的变时限距离保护计时方法及装置

Country Status (3)

Country Link
US (1) US11749985B2 (zh)
CN (1) CN110492449B (zh)
WO (1) WO2021008002A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764396A (zh) * 2009-12-30 2010-06-30 深圳南瑞科技有限公司 自适应弱电源侧纵联距离保护实现方法
EP3291399A1 (en) * 2016-08-31 2018-03-07 General Electric Technology GmbH Protection apparatus
CN109149533A (zh) * 2018-08-17 2019-01-04 中国电力科学研究院有限公司 一种用于计算变时限距离保护装置的延时的方法及系统
CN109167341A (zh) * 2018-08-17 2019-01-08 中国电力科学研究院有限公司 一种变时限距离保护方向元件装置及保护方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373282B2 (en) * 2002-07-31 2008-05-13 Tektronix, Inc. Fault severity check and source identification
EP1416603B1 (en) * 2002-11-01 2015-01-21 ABB Research Ltd. Protection of an electric power transmission network
SE0600119L (sv) * 2006-01-12 2007-02-27 Abb Technology Ltd Metod och anordning för fellokalisering vid en krafttransmissions- eller distributionsledning med två terminaler
ES2340802T3 (es) * 2006-10-18 2010-06-09 Abb Technology Ltd Compensacion de carga en la proteccion de distancia en una linea de transmision de potencia trifasica.
CN102545174B (zh) * 2012-01-10 2014-08-27 广东省电力调度中心 一种超高压线路距离后备保护整定方法
CN104198881B (zh) * 2014-07-01 2017-09-12 昆明理工大学 一种基于单端行波波头相对极性和时差的ann故障测距方法
US10989752B2 (en) * 2017-09-22 2021-04-27 Schweitzer Engineering Laboratories, Inc. Distance protection using traveling waves in an electric power delivery system
CN109142967B (zh) * 2018-07-17 2021-12-17 中国电力科学研究院有限公司 一种用于电网线路的变时限距离保护测距方法和装置
CN109066607B (zh) * 2018-07-17 2021-11-26 中国电力科学研究院有限公司 一种用于电网线路的变时限距离保护的电压加速方法和装置
CN109301799B (zh) * 2018-10-12 2022-07-01 中国电力科学研究院有限公司 一种防止同塔多回线纵联零序方向保护误动的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764396A (zh) * 2009-12-30 2010-06-30 深圳南瑞科技有限公司 自适应弱电源侧纵联距离保护实现方法
EP3291399A1 (en) * 2016-08-31 2018-03-07 General Electric Technology GmbH Protection apparatus
CN109149533A (zh) * 2018-08-17 2019-01-04 中国电力科学研究院有限公司 一种用于计算变时限距离保护装置的延时的方法及系统
CN109167341A (zh) * 2018-08-17 2019-01-08 中国电力科学研究院有限公司 一种变时限距离保护方向元件装置及保护方法

Also Published As

Publication number Publication date
US20220239093A1 (en) 2022-07-28
US11749985B2 (en) 2023-09-05
CN110492449A (zh) 2019-11-22
CN110492449B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Xu et al. A model-based DC fault location scheme for multi-terminal MMC-HVDC systems using a simplified transmission line representation
CN106058876B (zh) 考虑暂态电压稳定性的动态无功规划选址分析方法及系统
AU2020101683A4 (en) Fault detection, location, and prediction within an electricity power transmission and distribution networks
WO2019154135A1 (zh) 一种基于网络抗毁度的微电网可靠性评估方法
CN109655692B (zh) 一种基于录波文件的暂态同源数据比对方法
CN107064630B (zh) 一种电力系统频率测量方法及装置
Van Horn et al. Measurement-based real-time security-constrained economic dispatch
EP2770600B1 (en) Method and system for determining power consumption of loads
CN109950862A (zh) 一种自适应电流定值整定方法
CN108110738B (zh) 用于微电网保护的方法、继电器和系统
CN108448566B (zh) 一种电力系统在线混合仿真方法和系统
CN104076246A (zh) 一种配电网单相接地故障预想事故集的确定方法
CN107179476B (zh) 一种配网故障测距方法
CN104393579B (zh) 一种克服汲出电流对母线差动保护影响的方法
WO2021008002A1 (zh) 一种基于同塔多回线路的变时限距离保护计时方法及装置
CN109765460A (zh) 一种基于自适应尺度Symlets小波的配电网故障选线方法
Srivastava et al. Dynamic state estimation based transmission line protection scheme: Performance evaluation with different fault types and conditions
CN113504486A (zh) 一种园区供电线路短路故障诊断方法和系统
Skok et al. Croatian Academic Research Wide Area Monitoring System–CARWAMS
CN108564252B (zh) 一种考虑多功能配电自动化的配电网供电可靠性计算方法
JP6960263B2 (ja) 電力系統における系統運用支援装置および方法、並びに広域監視保護制御システム
CN113052473B (zh) 一种基于故障率和静态安全分析的电网风险分析方法
Liu et al. PMU-based Estimation of the Frequency of the Center of Inertia and Generator Rotor Speeds
Huang et al. Experiences and challenges in contingency analysis at Hydro-Quebec
Cepeda et al. Real-time adaptive load shedding based on probabilistic overload estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937713

Country of ref document: EP

Kind code of ref document: A1