WO2021006170A1 - Malfunction determination device and malfunction determination method - Google Patents
Malfunction determination device and malfunction determination method Download PDFInfo
- Publication number
- WO2021006170A1 WO2021006170A1 PCT/JP2020/025972 JP2020025972W WO2021006170A1 WO 2021006170 A1 WO2021006170 A1 WO 2021006170A1 JP 2020025972 W JP2020025972 W JP 2020025972W WO 2021006170 A1 WO2021006170 A1 WO 2021006170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torque
- reducer
- strain wave
- wave gearing
- determination unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/32—Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
Definitions
- the present invention relates to a failure determination device and a failure determination method for determining a failure of a strain wave gearing reducer.
- a failure of a strain wave gearing is determined by calculating an overload of the strain wave gearing based on the current of a motor driving the input side of the strain wave gearing (for example, Patent Documents 1 and 2). reference).
- the overload of the strain wave gearing gear reducer occurs on the output side of the strain wave gearing gear reducer. Therefore, the method of calculating the overload of the strain wave gearing based on the current of the motor driving the input side of the strain wave gearing gearing has low accuracy, and improvement is required.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a failure determination device capable of accurately determining a failure of a strain wave gearing speed reducer with respect to the prior art.
- the failure determination device includes a torque detector that detects torque on the output side of the strain wave gearing reducer, and a determination unit that determines a failure of the strain wave gearing reducer based on the torque detected by the torque detector. It is characterized by having.
- FIG. 1 It is a figure which shows the structural example of the failure determination apparatus which concerns on Embodiment 1.
- FIG. It is a figure which shows the structural example of a strain wave gearing reducer. It is a flowchart which shows the operation example of the failure determination apparatus which concerns on Embodiment 1.
- FIG. 1 shows the structural example of the failure determination apparatus which concerns on Embodiment 1.
- FIG. 1 is a diagram showing a configuration example of the failure determination device 1 according to the first embodiment.
- the failure determination device 1 is a device for determining a failure of the strain wave gearing reducer 2.
- the failure determination device 1 includes a torque detector 11, a calculation unit 12, a determination unit 13, an instruction unit 14, a control unit 15, and a notification unit 16.
- the calculation unit 12, the determination unit 13, the instruction unit 14, and the control unit 15 are driven by a processing circuit such as a system LSI (Large Scale Integration) or a CPU (Central Processing Unit) that executes a program stored in a memory or the like. It will be realized.
- FIG. 1 shows a strain wave gearing reducer 2 and a motor 3 in addition to the failure determination device 1.
- the strain wave gearing reducer 2 is a speed reducer that utilizes the differential between an ellipse and a perfect circle. As shown in FIG. 2, the strain wave gearing reducer 2 has a circular spline 21, a wave generator 22, and a flex spline 23.
- the circular spline 21 is a ring-shaped rigid body component.
- the circular spline 21 has teeth engraved on the inner circumference, and has two more teeth than the flex spline 23.
- the circular spline 21 is usually fixed to the casing.
- the wave generator 22 is a component in which a thin ball bearing is combined with the outer circumference of an elliptical cam. In ball bearings, the inner ring is fixed to the cam, but the outer ring is elastically deformed via the ball.
- the wave generator 22 is usually attached to an input shaft (motor 3).
- the flexspline 23 is a thin-walled cup-shaped metal elastic component.
- the flexspline 23 has teeth engraved on the outer periphery of the opening.
- the bottom of the flexspline 23 is called a diaphragm and is usually attached to an output shaft (eg, a robot arm).
- the flexspline 23 is bent in an elliptical shape by the wave generator 22, and the circular spline 21 and the teeth mesh with each other on the long axis portion, and the teeth are completely separated from each other on the short axis portion.
- the flexspline 23 is elastically deformed, and the tooth meshing position with the circular spline 21 is sequentially moved.
- the flexspline 23 moves counterclockwise by the difference in the number of teeth by two.
- the difference in the number of teeth between the circular spline 21 and the flexspline 23 is two is shown, but the difference in the number of teeth differs depending on the reduction ratio or the model of the strain wave gearing reducer 2.
- the motor 3 drives the input side (wave generator 22) of the strain wave gearing reducer 2.
- the torque detector 11 detects the torque on the output side (flex spline 23) of the strain wave gearing reducer 2.
- the torque detector 11 is attached to the flexspline 23.
- the calculation unit 12 calculates the torque on the input side of the strain wave gearing gear reducer 2 based on the current of the motor 3 when the input side of the strain wave gearing gear reducer 2 is rotated by one rotation or more by the control unit 15. At this time, the calculation unit 12 estimates the load from the torque detected by the torque detector 11 when the input side of the strain wave gearing speed reducer 2 is rotated by one rotation or more by the control unit 15, and the calculation unit 12 estimates the load from the current of the motor 3. It is preferable to calculate the torque on the input side of the strain wave gearing reducer 2 after subtracting the load. Further, in FIG. 1, data indicating the torque detected by the torque detector 11 is also output to the determination unit 13 via the calculation unit 12.
- the determination unit 13 determines the failure of the strain wave gearing reducer 2 based on the torque detected by the torque detector 11 and the torque calculated by the calculation unit 12.
- the determination unit 13 determines whether the torque detected by the torque detector 11 is equal to or greater than the ratcheting torque (first determination unit).
- the ratcheting torque is a torque for determining whether the strain wave gearing reducer 2 is in the ratcheting state. Ratcheting is a phenomenon in which when excessive torque is applied while the strain wave gearing reducer 2 is in operation, the flexspline 23 and the like are not damaged and the teeth of the circular spline 21 and the flexspline 23 are momentarily displaced. Point to.
- the ratcheting torque is determined by the specifications of the strain wave gearing reducer 2 and the reduction ratio.
- the buckling torque is a torque for determining whether the strain wave gearing reducer 2 is in the buckling state.
- Buckling refers to a phenomenon in which the flexspline 23 is plastically deformed when an excessive torque is applied to the flexspline 23 while the wave generator 22 is fixed, and the body of the flexspline 23 is damaged.
- the buckling torque is determined by the specifications of the strain wave gearing reducer 2 and the reduction ratio. Then, when the determination unit 13 determines that the torque is equal to or greater than the buckling torque, the determination unit 13 determines that the strain wave gearing reducer 2 is in the buckling state.
- the determination unit 13 determines whether the torque unevenness calculated by the calculation unit 12 is equal to or greater than the threshold value (third determination unit).
- the threshold value is a threshold value for determining whether the strain wave gearing speed reducer 2 is in the deadal state.
- the dedoidal state refers to a phenomenon in which the meshing of teeth is shifted to one side when each component constituting the ratcheting or strain wave gearing reducer 2 is forcibly pushed and assembled. Then, when the determination unit 13 determines that the torque unevenness is equal to or greater than the threshold value, the determination unit 13 determines that the strain wave gearing reducer 2 is in the deadal state.
- the instruction unit 14 outputs data indicating a measurement operation instruction to the control unit 15 when the determination unit 13 determines that the torque is not equal to or greater than the buckling torque.
- the measurement operation instruction is an instruction to rotate the input side of the strain wave gearing reducer 2 by one or more rotations.
- the control unit 15 controls the motor 3. Further, when the control unit 15 receives the measurement operation instruction from the instruction unit 14, the motor 3 rotates the input side of the strain wave gearing reducer 2 by one rotation or more.
- the notification unit 16 notifies the determination result by the determination unit 13 to the outside or by voice or the like.
- the notification unit 16 determines that the torque is not equal to or greater than the ratcheting torque
- the notification unit 16 notifies the outside that the strain wave gearing reducer 2 is normal.
- the notification unit 16 indicates that the strain wave gearing speed reducer 2 is in the buckling state (meaning that it is out of order). Notify the outside.
- the determination unit 13 determines that the strain wave gearing speed reducer 2 is in the deadal state
- the notification unit 16 externally notifies that the strain wave gearing speed reducer 2 is in the deadly state (that it is out of order). Notice.
- the determination unit 13 determines that the torque unevenness is not equal to or greater than the threshold value
- the notification unit 16 notifies the external gear reducer 2 that ratcheting has occurred.
- the overload of the strain wave gearing reducer 2 is estimated from the current of the motor 3, and the failure of the strain wave gearing reducer 2 is determined.
- this method has low accuracy due to an error of the motor 3 (fluctuation of torque constant due to temperature) or an error of the strain wave gearing gear reducer 2 (change of efficiency or running torque).
- the overload of the strain wave gearing reducer 2 is detected from the torque detected by the torque detector 11. That is, the torque detector 11 is attached to the output side of the strain wave gearing reducer 2, and can directly detect the load of the strain wave gearing reducer 2. Therefore, the accuracy of the failure determination device 1 according to the first embodiment is improved as compared with the conventional case.
- the determination of the overload of the strain wave gearing reducer 2 is detected by the torque detector 11 attached to the output side of the strain wave gearing reducer 2. Use torque.
- the current of the motor 3 is used because the phenomenon appears on the input side of the wave gear speed reducer 2 in the dedidal state.
- the torque detector 11 first determines the torque on the output side (flex spline 23) of the strain wave gearing reducer 2. Detect (step ST301).
- the determination unit 13 determines whether the torque detected by the torque detector 11 is equal to or greater than the ratcheting torque (step ST302).
- step ST302 when the determination unit 13 determines that the torque is not equal to or greater than the ratcheting torque, the notification unit 16 notifies the outside that the strain wave gearing reducer 2 is normal (step ST303). After that, the user will continue to use the strain wave gearing reducer 2.
- step ST302 when the determination unit 13 determines that the torque is equal to or greater than the ratcheting torque, it determines whether the torque is equal to or greater than the buckling torque (step ST304).
- step ST304 when the determination unit 13 determines that the torque is equal to or greater than the buckling torque, the wave gear reducer 2 determines that the wave gear reducer 2 is in the buckling state, and the notification unit 16 fails the wave gear reducer 2. Notify the outside (steps ST305 and 306). After that, the user will repair or replace the strain wave gearing reducer 2.
- step ST304 when the determination unit 13 determines in step ST304 that the torque is not equal to or greater than the buckling torque, the instruction unit 14 gives a measurement operation instruction to the control unit 15 (step ST307).
- the control unit 15 rotates the input side of the strain wave gearing reducer 2 by one or more rotations by the motor 3 in response to the measurement operation instruction (step ST308).
- the calculation unit 12 calculates the torque on the input side of the strain wave gearing gear reducer 2 based on the current of the motor 3 when the input side of the strain wave gearing gear reducer 2 is rotated by one rotation or more by the control unit 15. (Step ST309).
- the calculation unit 12 estimates the load from the torque detected by the torque detector 11 when the input side of the strain wave gearing speed reducer 2 is rotated by one rotation or more by the control unit 15, and the load is estimated from the current of the motor 3.
- the failure determination device 1 it is preferable to calculate the torque (no-load rotation torque) on the input side of the strain wave gearing reducer 2 after subtracting.
- the failure determination device 1 even if the load changes due to the configuration prior to the strain wave gearing reducer 2, the failure determination can be performed as it is.
- the determination unit 13 determines whether the torque unevenness calculated by the calculation unit 12 is equal to or greater than the threshold value (step ST310).
- step ST310 when the determination unit 13 determines that the torque unevenness is equal to or greater than the threshold value, the wave gear reducer 2 determines that the wave gear reducer 2 is in a redundant state, and the notification unit 16 fails the wave gear reducer 2. Notify the outside (steps ST311 and 312). After that, the user will repair or replace the strain wave gearing reducer 2.
- step ST310 when the determination unit 13 determines that the torque unevenness is not equal to or greater than the threshold value, the notification unit 16 notifies the wave gear reducer 2 that ratcheting has occurred (warning) to the outside. (Step ST313). If ratcheting occurs, the life of the strain wave gearing reducer 2 may be shortened. Therefore, the user repairs or replaces the strain wave gearing speed reducer 2 depending on the situation.
- the relationship between the torque detected by the torque detector 11 and the current of the motor 3 and the failure of the strain wave gearing gear reducer 2 varies depending on the operation of the device to which the strain wave gearing gear reducer 2 is attached. Therefore, the above relationship may be machine-learned with a learner. Then, it is considered that the failure determination device 1 according to the first embodiment further improves the determination accuracy by performing the failure determination of the strain wave gearing reducer 2 using the machine-learned learner.
- the failure determination device 1 is based on the torque detector 11 that detects the torque on the output side of the strain wave gearing reducer 2 and the torque detected by the torque detector 11. Therefore, a determination unit 13 for determining a failure of the strain wave gearing reducer 2 is provided. As a result, the failure determination device 1 according to the first embodiment can determine the failure of the strain wave gearing reducer 2 with higher accuracy than the conventional technique.
- the present invention can be modified from any component of the embodiment or can be omitted from any component of the embodiment.
- the failure determination device can determine the failure of the strain wave gearing reducer more accurately than the conventional technique, and is suitable for use as a failure determination device for determining the failure of the wave gear reducer.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Retarders (AREA)
- Control Of Electric Motors In General (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
This malfunction determination device comprises a torque detector (11) that detects torque on an output side of a strain wave gearing (2), and a determination unit (13) that determines malfunctions in the strain wave gearing (2) on the basis of the torque detected by the torque detector (11).
Description
この発明は、波動歯車減速機の故障を判定する故障判定装置及び故障判定方法に関する。
The present invention relates to a failure determination device and a failure determination method for determining a failure of a strain wave gearing reducer.
従来、波動歯車減速機の故障は、波動歯車減速機の入力側を駆動するモータの電流に基づいて波動歯車減速機の過負荷を算出することで、判定している(例えば特許文献1,2参照)。
Conventionally, a failure of a strain wave gearing is determined by calculating an overload of the strain wave gearing based on the current of a motor driving the input side of the strain wave gearing (for example, Patent Documents 1 and 2). reference).
しかしながら、波動歯車減速機の過負荷は、波動歯車減速機の出力側で生じる。そのため、波動歯車減速機の入力側を駆動するモータの電流に基づいて波動歯車減速機の過負荷を算出する方法では、精度が低く、改善が求められている。
However, the overload of the strain wave gearing gear reducer occurs on the output side of the strain wave gearing gear reducer. Therefore, the method of calculating the overload of the strain wave gearing based on the current of the motor driving the input side of the strain wave gearing gearing has low accuracy, and improvement is required.
この発明は、上記のような課題を解決するためになされたもので、従来技術に対して精度よく波動歯車減速機の故障を判定可能な故障判定装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a failure determination device capable of accurately determining a failure of a strain wave gearing speed reducer with respect to the prior art.
この発明に係る故障判定装置は、波動歯車減速機の出力側のトルクを検出するトルク検出器と、トルク検出器により検出されたトルクに基づいて、波動歯車減速機の故障を判定する判定部とを備えたことを特徴とする。
The failure determination device according to the present invention includes a torque detector that detects torque on the output side of the strain wave gearing reducer, and a determination unit that determines a failure of the strain wave gearing reducer based on the torque detected by the torque detector. It is characterized by having.
この発明によれば、上記のように構成したので、従来技術に対して精度よく波動歯車減速機の故障を判定可能となる。
According to the present invention, since it is configured as described above, it is possible to accurately determine the failure of the strain wave gearing speed reducer as compared with the conventional technique.
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
図1は実施の形態1に係る故障判定装置1の構成例を示す図である。
故障判定装置1は、波動歯車減速機2の故障を判定する装置である。故障判定装置1は、図1に示すように、トルク検出器11、演算部12、判定部13、指示部14、制御部15及び通知部16を備えている。なお、演算部12、判定部13、指示部14及び制御部15は、システムLSI(Large Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。図1では、故障判定装置1に加え、波動歯車減速機2及びモータ3を示している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the failure determination device 1 according to the first embodiment.
The failure determination device 1 is a device for determining a failure of the strainwave gearing reducer 2. As shown in FIG. 1, the failure determination device 1 includes a torque detector 11, a calculation unit 12, a determination unit 13, an instruction unit 14, a control unit 15, and a notification unit 16. The calculation unit 12, the determination unit 13, the instruction unit 14, and the control unit 15 are driven by a processing circuit such as a system LSI (Large Scale Integration) or a CPU (Central Processing Unit) that executes a program stored in a memory or the like. It will be realized. FIG. 1 shows a strain wave gearing reducer 2 and a motor 3 in addition to the failure determination device 1.
実施の形態1.
図1は実施の形態1に係る故障判定装置1の構成例を示す図である。
故障判定装置1は、波動歯車減速機2の故障を判定する装置である。故障判定装置1は、図1に示すように、トルク検出器11、演算部12、判定部13、指示部14、制御部15及び通知部16を備えている。なお、演算部12、判定部13、指示部14及び制御部15は、システムLSI(Large Scale Integration)等の処理回路、又はメモリ等に記憶されたプログラムを実行するCPU(Central Processing Unit)等により実現される。図1では、故障判定装置1に加え、波動歯車減速機2及びモータ3を示している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of the failure determination device 1 according to the first embodiment.
The failure determination device 1 is a device for determining a failure of the strain
波動歯車減速機2は、楕円と真円の差動を利用した減速機である。波動歯車減速機2は、図2に示すように、サーキュラスプライン21、ウェーブジェネレータ22及びフレクスプライン23を有している。
The strain wave gearing reducer 2 is a speed reducer that utilizes the differential between an ellipse and a perfect circle. As shown in FIG. 2, the strain wave gearing reducer 2 has a circular spline 21, a wave generator 22, and a flex spline 23.
サーキュラスプライン21は、リング状の剛体部品である。サーキュラスプライン21は、内周に歯が刻まれており、フレクスプライン23より歯数が2枚多い。サーキュラスプライン21は、通常、ケーシングに固定される。
ウェーブジェネレータ22は、楕円状のカムの外周に薄肉のボールベアリングを組合わせた部品である。ボールベアリングでは、内輪はカムに固定されているが、外輪はボールを介して弾性変形する。ウェーブジェネレータ22は、通常、入力軸(モータ3)に取付けられる。
フレクスプライン23は、薄肉カップ状の金属弾性体部品である。フレクスプライン23は、開口部外周に歯が刻まれている。フレクスプライン23の底をダイヤフラムと呼び、通常、出力軸(例えばロボットアーム)に取付けられる。 Thecircular spline 21 is a ring-shaped rigid body component. The circular spline 21 has teeth engraved on the inner circumference, and has two more teeth than the flex spline 23. The circular spline 21 is usually fixed to the casing.
Thewave generator 22 is a component in which a thin ball bearing is combined with the outer circumference of an elliptical cam. In ball bearings, the inner ring is fixed to the cam, but the outer ring is elastically deformed via the ball. The wave generator 22 is usually attached to an input shaft (motor 3).
Theflexspline 23 is a thin-walled cup-shaped metal elastic component. The flexspline 23 has teeth engraved on the outer periphery of the opening. The bottom of the flexspline 23 is called a diaphragm and is usually attached to an output shaft (eg, a robot arm).
ウェーブジェネレータ22は、楕円状のカムの外周に薄肉のボールベアリングを組合わせた部品である。ボールベアリングでは、内輪はカムに固定されているが、外輪はボールを介して弾性変形する。ウェーブジェネレータ22は、通常、入力軸(モータ3)に取付けられる。
フレクスプライン23は、薄肉カップ状の金属弾性体部品である。フレクスプライン23は、開口部外周に歯が刻まれている。フレクスプライン23の底をダイヤフラムと呼び、通常、出力軸(例えばロボットアーム)に取付けられる。 The
The
The
フレクスプライン23は、ウェーブジェネレータ22により楕円状に撓められ、長軸の部分でサーキュラスプライン21と歯が噛合い、短軸の部分では歯が完全に離れた状態となる。サーキュラスプライン21を固定してウェーブジェネレータ22を時計方向に回すと、フレクスプライン23は弾性変形し、サーキュラスプライン21との歯の噛合い位置が順次移動していく。ウェーブジェネレータ22が1回転すると、歯数差2枚分だけフレクスプライン23は反時計方向へ移動する。
ここでは、サーキュラスプライン21とフレクスプライン23との歯数差が2枚である場合を示したが、波動歯車減速機2の減速比又は型式によって歯数差は異なる。 Theflexspline 23 is bent in an elliptical shape by the wave generator 22, and the circular spline 21 and the teeth mesh with each other on the long axis portion, and the teeth are completely separated from each other on the short axis portion. When the circular spline 21 is fixed and the wave generator 22 is turned clockwise, the flexspline 23 is elastically deformed, and the tooth meshing position with the circular spline 21 is sequentially moved. When the wave generator 22 makes one rotation, the flexspline 23 moves counterclockwise by the difference in the number of teeth by two.
Here, the case where the difference in the number of teeth between thecircular spline 21 and the flexspline 23 is two is shown, but the difference in the number of teeth differs depending on the reduction ratio or the model of the strain wave gearing reducer 2.
ここでは、サーキュラスプライン21とフレクスプライン23との歯数差が2枚である場合を示したが、波動歯車減速機2の減速比又は型式によって歯数差は異なる。 The
Here, the case where the difference in the number of teeth between the
モータ3は、波動歯車減速機2の入力側(ウェーブジェネレータ22)を駆動する。
The motor 3 drives the input side (wave generator 22) of the strain wave gearing reducer 2.
トルク検出器11は、波動歯車減速機2の出力側(フレクスプライン23)のトルクを検出する。トルク検出器11は、フレクスプライン23に取付けられている。
The torque detector 11 detects the torque on the output side (flex spline 23) of the strain wave gearing reducer 2. The torque detector 11 is attached to the flexspline 23.
演算部12は、制御部15により波動歯車減速機2の入力側が1回転以上回転された際でのモータ3の電流に基づいて、当該波動歯車減速機2の入力側のトルクを算出する。この際、演算部12は、制御部15により波動歯車減速機2の入力側が1回転以上回転された際でのトルク検出器11により検出されたトルクから負荷を推定し、モータ3の電流から当該負荷を差引いた上で、当該波動歯車減速機2の入力側のトルクを算出することが好ましい。
また図1では、トルク検出器11により検出されたトルクを示すデータは、演算部12を介して判定部13にも出力される。 Thecalculation unit 12 calculates the torque on the input side of the strain wave gearing gear reducer 2 based on the current of the motor 3 when the input side of the strain wave gearing gear reducer 2 is rotated by one rotation or more by the control unit 15. At this time, the calculation unit 12 estimates the load from the torque detected by the torque detector 11 when the input side of the strain wave gearing speed reducer 2 is rotated by one rotation or more by the control unit 15, and the calculation unit 12 estimates the load from the current of the motor 3. It is preferable to calculate the torque on the input side of the strain wave gearing reducer 2 after subtracting the load.
Further, in FIG. 1, data indicating the torque detected by the torque detector 11 is also output to thedetermination unit 13 via the calculation unit 12.
また図1では、トルク検出器11により検出されたトルクを示すデータは、演算部12を介して判定部13にも出力される。 The
Further, in FIG. 1, data indicating the torque detected by the torque detector 11 is also output to the
判定部13は、トルク検出器11により検出されたトルク及び演算部12により算出されたトルクに基づいて、波動歯車減速機2の故障を判定する。
The determination unit 13 determines the failure of the strain wave gearing reducer 2 based on the torque detected by the torque detector 11 and the torque calculated by the calculation unit 12.
この際、判定部13は、トルク検出器11により検出されたトルクが、ラチェッティングトルク以上であるかを判定する(第1判定部)。ラチェッティングトルクは、波動歯車減速機2がラチェッティング状態であるかを判定するためのトルクである。ラチェッティングとは、波動歯車減速機2が稼動中に過度なトルクが加わった際にフレクスプライン23等が破損せずにサーキュラスプライン21とフレクスプライン23の歯の噛合いが瞬間的にずれる現象を指す。ラチェッティングトルクは、波動歯車減速機2の仕様及び減速比等により定められている。
At this time, the determination unit 13 determines whether the torque detected by the torque detector 11 is equal to or greater than the ratcheting torque (first determination unit). The ratcheting torque is a torque for determining whether the strain wave gearing reducer 2 is in the ratcheting state. Ratcheting is a phenomenon in which when excessive torque is applied while the strain wave gearing reducer 2 is in operation, the flexspline 23 and the like are not damaged and the teeth of the circular spline 21 and the flexspline 23 are momentarily displaced. Point to. The ratcheting torque is determined by the specifications of the strain wave gearing reducer 2 and the reduction ratio.
また、判定部13は、トルクがラチェッティングトルク以上であると判定した場合に、当該トルクが座屈トルク以上であるかを判定する(第2判定部)。座屈トルクは、波動歯車減速機2が座屈状態であるかを判定するためのトルクである。座屈とは、ウェーブジェネレータ22が固定された状態でフレクスプライン23に過度なトルクがかかった際にフレクスプライン23が塑性変形を起こしてフレクスプライン23の胴部が破損する現象を指す。座屈トルクは、波動歯車減速機2の仕様及び減速比等により定められている。
そして、判定部13は、トルクが座屈トルク以上であると判定した場合には、波動歯車減速機2は座屈状態であると判定する。 Further, when thedetermination unit 13 determines that the torque is equal to or greater than the ratcheting torque, the determination unit 13 determines whether the torque is equal to or greater than the buckling torque (second determination unit). The buckling torque is a torque for determining whether the strain wave gearing reducer 2 is in the buckling state. Buckling refers to a phenomenon in which the flexspline 23 is plastically deformed when an excessive torque is applied to the flexspline 23 while the wave generator 22 is fixed, and the body of the flexspline 23 is damaged. The buckling torque is determined by the specifications of the strain wave gearing reducer 2 and the reduction ratio.
Then, when thedetermination unit 13 determines that the torque is equal to or greater than the buckling torque, the determination unit 13 determines that the strain wave gearing reducer 2 is in the buckling state.
そして、判定部13は、トルクが座屈トルク以上であると判定した場合には、波動歯車減速機2は座屈状態であると判定する。 Further, when the
Then, when the
また、判定部13は、演算部12により算出されたトルクのムラが閾値以上であるかを判定する(第3判定部)。閾値は、波動歯車減速機2がデドイダル状態であるかを判定するための閾値である。デドイダル状態とは、ラチェッティング又は波動歯車減速機2を構成する各部品が無理に押込まれて組付けられた場合等において、歯の噛合いが片方に寄ってしまう現象を指す。
そして、判定部13は、トルクのムラが閾値以上であると判定した場合には、波動歯車減速機2はデドイダル状態であると判定する。 Further, thedetermination unit 13 determines whether the torque unevenness calculated by the calculation unit 12 is equal to or greater than the threshold value (third determination unit). The threshold value is a threshold value for determining whether the strain wave gearing speed reducer 2 is in the deadal state. The dedoidal state refers to a phenomenon in which the meshing of teeth is shifted to one side when each component constituting the ratcheting or strain wave gearing reducer 2 is forcibly pushed and assembled.
Then, when thedetermination unit 13 determines that the torque unevenness is equal to or greater than the threshold value, the determination unit 13 determines that the strain wave gearing reducer 2 is in the deadal state.
そして、判定部13は、トルクのムラが閾値以上であると判定した場合には、波動歯車減速機2はデドイダル状態であると判定する。 Further, the
Then, when the
指示部14は、判定部13によりトルクが座屈トルク以上ではないと判定された場合に、制御部15に対して測定動作指示を示すデータを出力する。測定動作指示は、波動歯車減速機2の入力側を1回転以上回転させる指示である。
The instruction unit 14 outputs data indicating a measurement operation instruction to the control unit 15 when the determination unit 13 determines that the torque is not equal to or greater than the buckling torque. The measurement operation instruction is an instruction to rotate the input side of the strain wave gearing reducer 2 by one or more rotations.
制御部15は、モータ3を制御する。また、制御部15は、指示部14から測定動作指示を受付けた場合には、モータ3により波動歯車減速機2の入力側を1回転以上回転させる。
The control unit 15 controls the motor 3. Further, when the control unit 15 receives the measurement operation instruction from the instruction unit 14, the motor 3 rotates the input side of the strain wave gearing reducer 2 by one rotation or more.
通知部16は、判定部13による判定結果を外部に表示又は音声等により通知する。
通知部16は、判定部13によりトルクがラチェッティングトルク以上ではないと判定された場合には、波動歯車減速機2が正常である旨を外部に通知する。
また、通知部16は、判定部13により波動歯車減速機2が座屈状態であると判定された場合には、波動歯車減速機2が座屈状態である旨(故障している旨)を外部に通知する。
また、通知部16は、判定部13により波動歯車減速機2がデドイダル状態であると判定された場合には、波動歯車減速機2がデドイダル状態である旨(故障している旨)を外部に通知する。
また、通知部16は、判定部13によりトルクのムラが閾値以上ではないと判定された場合には、波動歯車減速機2にラチェッティングが発生した旨を外部に通知する。 Thenotification unit 16 notifies the determination result by the determination unit 13 to the outside or by voice or the like.
When thedetermination unit 13 determines that the torque is not equal to or greater than the ratcheting torque, the notification unit 16 notifies the outside that the strain wave gearing reducer 2 is normal.
Further, when thedetermination unit 13 determines that the strain wave gearing reducer 2 is in the buckling state, the notification unit 16 indicates that the strain wave gearing speed reducer 2 is in the buckling state (meaning that it is out of order). Notify the outside.
Further, when thedetermination unit 13 determines that the strain wave gearing speed reducer 2 is in the deadal state, the notification unit 16 externally notifies that the strain wave gearing speed reducer 2 is in the deadly state (that it is out of order). Notice.
Further, when thedetermination unit 13 determines that the torque unevenness is not equal to or greater than the threshold value, the notification unit 16 notifies the external gear reducer 2 that ratcheting has occurred.
通知部16は、判定部13によりトルクがラチェッティングトルク以上ではないと判定された場合には、波動歯車減速機2が正常である旨を外部に通知する。
また、通知部16は、判定部13により波動歯車減速機2が座屈状態であると判定された場合には、波動歯車減速機2が座屈状態である旨(故障している旨)を外部に通知する。
また、通知部16は、判定部13により波動歯車減速機2がデドイダル状態であると判定された場合には、波動歯車減速機2がデドイダル状態である旨(故障している旨)を外部に通知する。
また、通知部16は、判定部13によりトルクのムラが閾値以上ではないと判定された場合には、波動歯車減速機2にラチェッティングが発生した旨を外部に通知する。 The
When the
Further, when the
Further, when the
Further, when the
次に、図1に示す実施の形態1に係る故障判定装置1の動作例について、図3を参照しながら説明する。
ここで、従来では、モータ3の電流から波動歯車減速機2の過負荷を推定し、波動歯車減速機2の故障を判定している。一方、この方法では、モータ3の誤差(温度によるトルク定数の変動)又は波動歯車減速機2の誤差(効率又はランニングトルクの変化)等があり、精度が低い。これに対し、実施の形態1に係る故障判定装置1では、トルク検出器11により検出されたトルクから波動歯車減速機2の過負荷を検出している。すなわち、トルク検出器11は波動歯車減速機2の出力側に取付けられており、波動歯車減速機2の負荷を直接検出可能である。よって、従来に比べ、実施の形態1に係る故障判定装置1では精度が向上する。 Next, an operation example of the failure determination device 1 according to the first embodiment shown in FIG. 1 will be described with reference to FIG.
Here, conventionally, the overload of the strainwave gearing reducer 2 is estimated from the current of the motor 3, and the failure of the strain wave gearing reducer 2 is determined. On the other hand, this method has low accuracy due to an error of the motor 3 (fluctuation of torque constant due to temperature) or an error of the strain wave gearing gear reducer 2 (change of efficiency or running torque). On the other hand, in the failure determination device 1 according to the first embodiment, the overload of the strain wave gearing reducer 2 is detected from the torque detected by the torque detector 11. That is, the torque detector 11 is attached to the output side of the strain wave gearing reducer 2, and can directly detect the load of the strain wave gearing reducer 2. Therefore, the accuracy of the failure determination device 1 according to the first embodiment is improved as compared with the conventional case.
ここで、従来では、モータ3の電流から波動歯車減速機2の過負荷を推定し、波動歯車減速機2の故障を判定している。一方、この方法では、モータ3の誤差(温度によるトルク定数の変動)又は波動歯車減速機2の誤差(効率又はランニングトルクの変化)等があり、精度が低い。これに対し、実施の形態1に係る故障判定装置1では、トルク検出器11により検出されたトルクから波動歯車減速機2の過負荷を検出している。すなわち、トルク検出器11は波動歯車減速機2の出力側に取付けられており、波動歯車減速機2の負荷を直接検出可能である。よって、従来に比べ、実施の形態1に係る故障判定装置1では精度が向上する。 Next, an operation example of the failure determination device 1 according to the first embodiment shown in FIG. 1 will be described with reference to FIG.
Here, conventionally, the overload of the strain
実施の形態1に係る故障判定装置1では、上記のように、波動歯車減速機2の過負荷の判定については、波動歯車減速機2の出力側に取付けられたトルク検出器11により検出されたトルクを用いる。一方、デドイダル状態の判定については、デドイダル状態が波動歯車減速機2の入力側に現象が現れるため、モータ3の電流を用いる。
In the failure determination device 1 according to the first embodiment, as described above, the determination of the overload of the strain wave gearing reducer 2 is detected by the torque detector 11 attached to the output side of the strain wave gearing reducer 2. Use torque. On the other hand, as for the determination of the dedoidal state, the current of the motor 3 is used because the phenomenon appears on the input side of the wave gear speed reducer 2 in the dedidal state.
図1に示す実施の形態1に係る故障判定装置1の動作例では、図3に示すように、まず、トルク検出器11は、波動歯車減速機2の出力側(フレクスプライン23)のトルクを検出する(ステップST301)。
In the operation example of the failure determination device 1 according to the first embodiment shown in FIG. 1, as shown in FIG. 3, the torque detector 11 first determines the torque on the output side (flex spline 23) of the strain wave gearing reducer 2. Detect (step ST301).
次いで、判定部13は、トルク検出器11により検出されたトルクが、ラチェッティングトルク以上であるかを判定する(ステップST302)。
Next, the determination unit 13 determines whether the torque detected by the torque detector 11 is equal to or greater than the ratcheting torque (step ST302).
このステップST302において、判定部13がトルクがラチェッティングトルク以上ではないと判定した場合には、通知部16は波動歯車減速機2が正常である旨を外部に通知する(ステップST303)。その後、ユーザは、波動歯車減速機2を継続して利用することになる。
In this step ST302, when the determination unit 13 determines that the torque is not equal to or greater than the ratcheting torque, the notification unit 16 notifies the outside that the strain wave gearing reducer 2 is normal (step ST303). After that, the user will continue to use the strain wave gearing reducer 2.
一方、ステップST302において、判定部13は、トルクがラチェッティングトルク以上であると判定した場合には、当該トルクが座屈トルク以上であるかを判定する(ステップST304)。
On the other hand, in step ST302, when the determination unit 13 determines that the torque is equal to or greater than the ratcheting torque, it determines whether the torque is equal to or greater than the buckling torque (step ST304).
このステップST304において、判定部13はトルクが座屈トルク以上であると判定した場合には波動歯車減速機2は座屈状態であると判定し、通知部16は波動歯車減速機2が故障している旨を外部に通知する(ステップST305,306)。その後、ユーザは、波動歯車減速機2の修理又は交換を行うことになる。
In this step ST304, when the determination unit 13 determines that the torque is equal to or greater than the buckling torque, the wave gear reducer 2 determines that the wave gear reducer 2 is in the buckling state, and the notification unit 16 fails the wave gear reducer 2. Notify the outside (steps ST305 and 306). After that, the user will repair or replace the strain wave gearing reducer 2.
一方、ステップST304において、判定部13がトルクが座屈トルク以上ではないと判定した場合には、指示部14は制御部15に対して測定動作指示を行う(ステップST307)。
次いで、制御部15は、測定動作指示に応じて、モータ3により波動歯車減速機2の入力側を1回転以上回転させる(ステップST308)。 On the other hand, when thedetermination unit 13 determines in step ST304 that the torque is not equal to or greater than the buckling torque, the instruction unit 14 gives a measurement operation instruction to the control unit 15 (step ST307).
Next, thecontrol unit 15 rotates the input side of the strain wave gearing reducer 2 by one or more rotations by the motor 3 in response to the measurement operation instruction (step ST308).
次いで、制御部15は、測定動作指示に応じて、モータ3により波動歯車減速機2の入力側を1回転以上回転させる(ステップST308)。 On the other hand, when the
Next, the
次いで、演算部12は、制御部15により波動歯車減速機2の入力側が1回転以上回転された際でのモータ3の電流に基づいて、当該波動歯車減速機2の入力側のトルクを算出する(ステップST309)。なお、例えば波動歯車減速機2がロボットアームの関節部分に取付けられている場合、波動歯車減速機2より先の構成により負荷が変化する。そこで、演算部12は、制御部15により波動歯車減速機2の入力側が1回転以上回転された際でのトルク検出器11により検出されたトルクから負荷を推定し、モータ3の電流から当該負荷を差引いた上で、当該波動歯車減速機2の入力側のトルク(無負荷回転トルク)を算出することが好ましい。これにより、実施の形態1に係る故障判定装置1では、波動歯車減速機2より先の構成により負荷が変化する場合であってもそのまま故障判定を実施可能である。
Next, the calculation unit 12 calculates the torque on the input side of the strain wave gearing gear reducer 2 based on the current of the motor 3 when the input side of the strain wave gearing gear reducer 2 is rotated by one rotation or more by the control unit 15. (Step ST309). For example, when the strain wave gearing reducer 2 is attached to the joint portion of the robot arm, the load changes depending on the configuration prior to the strain wave gearing reducer 2. Therefore, the calculation unit 12 estimates the load from the torque detected by the torque detector 11 when the input side of the strain wave gearing speed reducer 2 is rotated by one rotation or more by the control unit 15, and the load is estimated from the current of the motor 3. It is preferable to calculate the torque (no-load rotation torque) on the input side of the strain wave gearing reducer 2 after subtracting. As a result, in the failure determination device 1 according to the first embodiment, even if the load changes due to the configuration prior to the strain wave gearing reducer 2, the failure determination can be performed as it is.
次いで、判定部13は、演算部12により算出されたトルクのムラが閾値以上であるかを判定する(ステップST310)。
Next, the determination unit 13 determines whether the torque unevenness calculated by the calculation unit 12 is equal to or greater than the threshold value (step ST310).
このステップST310において、判定部13はトルクのムラが閾値以上であると判定した場合には波動歯車減速機2はデドイダル状態であると判定し、通知部16は波動歯車減速機2が故障している旨を外部に通知する(ステップST311,312)。その後、ユーザは、波動歯車減速機2の修理又は交換を行うことになる。
In this step ST310, when the determination unit 13 determines that the torque unevenness is equal to or greater than the threshold value, the wave gear reducer 2 determines that the wave gear reducer 2 is in a redundant state, and the notification unit 16 fails the wave gear reducer 2. Notify the outside (steps ST311 and 312). After that, the user will repair or replace the strain wave gearing reducer 2.
一方、ステップST310において、判定部13はトルクのムラが閾値以上ではないと判定した場合には、通知部16は波動歯車減速機2にラチェッティングが発生した旨(警告)を外部に通知する(ステップST313)。ラチェッティングが発生すると波動歯車減速機2の寿命が減る可能性がある。そのため、ユーザは、状況に応じて波動歯車減速機2の修理又は交換等を行う。
On the other hand, in step ST310, when the determination unit 13 determines that the torque unevenness is not equal to or greater than the threshold value, the notification unit 16 notifies the wave gear reducer 2 that ratcheting has occurred (warning) to the outside. (Step ST313). If ratcheting occurs, the life of the strain wave gearing reducer 2 may be shortened. Therefore, the user repairs or replaces the strain wave gearing speed reducer 2 depending on the situation.
なお、トルク検出器11により検出されるトルク及びモータ3の電流と波動歯車減速機2の故障との関係は、波動歯車減速機2が取付けられた装置の動作によって変動する。そこで、上記の関係を学習器で機械学習してもよい。そして、実施の形態1に係る故障判定装置1は、機械学習済みの学習器を用いて波動歯車減速機2の故障判定を行うことで、判定精度が更に向上するものと考えられる。
The relationship between the torque detected by the torque detector 11 and the current of the motor 3 and the failure of the strain wave gearing gear reducer 2 varies depending on the operation of the device to which the strain wave gearing gear reducer 2 is attached. Therefore, the above relationship may be machine-learned with a learner. Then, it is considered that the failure determination device 1 according to the first embodiment further improves the determination accuracy by performing the failure determination of the strain wave gearing reducer 2 using the machine-learned learner.
以上のように、この実施の形態1によれば、故障判定装置1は、波動歯車減速機2の出力側のトルクを検出するトルク検出器11と、トルク検出器11により検出されたトルクに基づいて、波動歯車減速機2の故障を判定する判定部13とを備えた。これにより、実施の形態1に係る故障判定装置1は、従来技術に対して精度よく波動歯車減速機2の故障を判定可能となる。
As described above, according to the first embodiment, the failure determination device 1 is based on the torque detector 11 that detects the torque on the output side of the strain wave gearing reducer 2 and the torque detected by the torque detector 11. Therefore, a determination unit 13 for determining a failure of the strain wave gearing reducer 2 is provided. As a result, the failure determination device 1 according to the first embodiment can determine the failure of the strain wave gearing reducer 2 with higher accuracy than the conventional technique.
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、若しくは実施の形態の任意の構成要素の省略が可能である。
It should be noted that, within the scope of the invention, the present invention can be modified from any component of the embodiment or can be omitted from any component of the embodiment.
この発明に係る故障判定装置は、従来技術に対して精度よく波動歯車減速機の故障を判定可能となり、波動歯車減速機の故障を判定する故障判定装置に用いるのに適している。
The failure determination device according to the present invention can determine the failure of the strain wave gearing reducer more accurately than the conventional technique, and is suitable for use as a failure determination device for determining the failure of the wave gear reducer.
1 故障判定装置
2 波動歯車減速機
3 モータ
11 トルク検出器
12 演算部
13 判定部
14 指示部
15 制御部
16 通知部
21 サーキュラスプライン
22 ウェーブジェネレータ
23 フレクスプライン 1Failure judgment device 2 Wave gear reducer 3 Motor 11 Torque detector 12 Calculation unit 13 Judgment unit 14 Indicator 15 Control unit 16 Notification unit 21 Circular spline 22 Wave generator 23 Flex spline
2 波動歯車減速機
3 モータ
11 トルク検出器
12 演算部
13 判定部
14 指示部
15 制御部
16 通知部
21 サーキュラスプライン
22 ウェーブジェネレータ
23 フレクスプライン 1
Claims (4)
- 波動歯車減速機の出力側のトルクを検出するトルク検出器と、
前記トルク検出器により検出されたトルクに基づいて、前記波動歯車減速機の故障を判定する判定部と
を備えた故障判定装置。 A torque detector that detects the torque on the output side of the strain wave gearing reducer,
A failure determination device including a determination unit for determining a failure of the strain wave gearing reducer based on the torque detected by the torque detector. - 前記判定部は、
前記トルク検出器により検出されたトルクが、ラチェッティングトルク以上であるかを判定する第1判定部と、
前記第1判定部によりトルクがラチェッティングトルク以上であると判定された場合に、当該トルクが座屈トルク以上であるかを判定する第2判定部とを備え、
前記第2判定部は、トルクが座屈トルク以上であると判定した場合に、前記波動歯車減速機は座屈状態であると判定する
ことを特徴とする請求項1記載の故障判定装置。 The determination unit
A first determination unit that determines whether the torque detected by the torque detector is equal to or greater than the ratcheting torque.
When the first determination unit determines that the torque is equal to or greater than the ratcheting torque, the first determination unit includes a second determination unit for determining whether the torque is equal to or greater than the buckling torque.
The failure determination device according to claim 1, wherein the second determination unit determines that the wave gear reducer is in a buckling state when it determines that the torque is equal to or greater than the buckling torque. - 前記第2判定部によりトルクが座屈トルク以上ではないと判定された場合に、前記波動歯車減速機の入力側を駆動するモータにより当該入力側を1回転以上回転させる制御部と、
前記制御部により前記波動歯車減速機の入力側が1回転以上回転された際での前記モータの電流に基づいて、当該波動歯車減速機の入力側のトルクを算出する演算部とを備え、
前記判定部は、
前記演算部により算出されたトルクのムラが閾値以上であるかを判定する第3判定部を備え、
前記第3判定部は、トルクのムラが閾値以上であると判定した場合に、前記波動歯車減速機はデドイダル状態であると判定する
ことを特徴とする請求項2記載の故障判定装置。 When the second determination unit determines that the torque is not equal to or greater than the buckling torque, the control unit that rotates the input side by one or more rotations by the motor that drives the input side of the strain wave gearing reducer.
The control unit includes a calculation unit that calculates the torque on the input side of the strain wave gearing gear reducer based on the current of the motor when the input side of the strain wave gearing speed reducer is rotated by one or more rotations.
The determination unit
A third determination unit for determining whether the torque unevenness calculated by the calculation unit is equal to or greater than the threshold value is provided.
The failure determination device according to claim 2, wherein when the third determination unit determines that the torque unevenness is equal to or greater than a threshold value, the wave gear reducer determines that the wave gear reducer is in a deadal state. - 波動歯車減速機の出力側のトルクを検出するトルク検出器を備えた故障判定装置による故障判定方法であって、
前記トルク検出器により検出されたトルクに基づいて、前記波動歯車減速機の故障を判定する判定ステップを有する
ことを特徴とする故障判定方法。 This is a failure judgment method using a failure judgment device equipped with a torque detector that detects the torque on the output side of the strain wave gearing reducer.
A failure determination method comprising a determination step of determining a failure of the strain wave gearing reducer based on the torque detected by the torque detector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019129566A JP7394551B2 (en) | 2019-07-11 | 2019-07-11 | Failure determination device and failure determination method |
JP2019-129566 | 2019-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006170A1 true WO2021006170A1 (en) | 2021-01-14 |
Family
ID=74115261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025972 WO2021006170A1 (en) | 2019-07-11 | 2020-07-02 | Malfunction determination device and malfunction determination method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7394551B2 (en) |
WO (1) | WO2021006170A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024008232A1 (en) * | 2022-07-07 | 2024-01-11 | Schaeffler Technologies AG & Co. KG | Method for the dynamic detection of ratcheting in a collaborative robot by means of artifical intelligence and dynamic compensation of the trajectories |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022101977A1 (en) | 2022-01-28 | 2023-08-03 | Schaeffler Technologies AG & Co. KG | Method and system for detecting a mesh failure of a stress wave transmission |
DE102022128423B3 (en) | 2022-10-27 | 2023-12-28 | Schaeffler Technologies AG & Co. KG | Method and a drive module for detecting, quantifying and compensating for a meshing fault in a voltage wave transmission |
DE102022130859A1 (en) | 2022-11-22 | 2024-05-23 | Schaeffler Technologies AG & Co. KG | Method for operating a drive system to avoid interference faults in stress wave gears |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425031A (en) * | 1987-07-20 | 1989-01-27 | Aisin Seiki | Device for detecting dedoidal phenomenon in harmonic drive reduction gear |
JPH09145497A (en) * | 1995-11-20 | 1997-06-06 | Honda Motor Co Ltd | Torque sensor |
JP2009131965A (en) * | 2007-11-28 | 2009-06-18 | Kobe Steel Ltd | Load monitoring method and load monitor for kneading treatment device |
JP2016158751A (en) * | 2015-02-27 | 2016-09-05 | ソニー株式会社 | Actuator and medical support arm device |
-
2019
- 2019-07-11 JP JP2019129566A patent/JP7394551B2/en active Active
-
2020
- 2020-07-02 WO PCT/JP2020/025972 patent/WO2021006170A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6425031A (en) * | 1987-07-20 | 1989-01-27 | Aisin Seiki | Device for detecting dedoidal phenomenon in harmonic drive reduction gear |
JPH09145497A (en) * | 1995-11-20 | 1997-06-06 | Honda Motor Co Ltd | Torque sensor |
JP2009131965A (en) * | 2007-11-28 | 2009-06-18 | Kobe Steel Ltd | Load monitoring method and load monitor for kneading treatment device |
JP2016158751A (en) * | 2015-02-27 | 2016-09-05 | ソニー株式会社 | Actuator and medical support arm device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024008232A1 (en) * | 2022-07-07 | 2024-01-11 | Schaeffler Technologies AG & Co. KG | Method for the dynamic detection of ratcheting in a collaborative robot by means of artifical intelligence and dynamic compensation of the trajectories |
Also Published As
Publication number | Publication date |
---|---|
JP2021014876A (en) | 2021-02-12 |
JP7394551B2 (en) | 2023-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021006170A1 (en) | Malfunction determination device and malfunction determination method | |
US10259121B2 (en) | Robot apparatus, and measuring method of rotation driving apparatus | |
US20140379128A1 (en) | Robot apparatus and speed reducer state diagnosing method | |
JP6265305B2 (en) | Electric power steering device | |
JP2018080842A (en) | Rotary drive method | |
WO2012176358A1 (en) | Torque detection device, and electric power steering device | |
US20160114483A1 (en) | Robot control method, robot apparatus, program, recording medium, and manufacturing method of assembly part | |
WO2017061257A1 (en) | Vehicle steering angle detection device and electric power steering apparatus equipped with same | |
KR102263101B1 (en) | Aparatus and method for learning motor position of electric shift-by-wire system | |
WO2019215992A1 (en) | Robot control apparatus, maintenance management method, and maintenance management program | |
JP2015093360A (en) | Drive device, robot apparatus, control method of drive device, program and recording medium | |
JP7000263B2 (en) | Initial setting method and initial setting device | |
JP2005091204A (en) | Electric power steering device | |
JPWO2018203492A1 (en) | Robot system | |
JP7358049B2 (en) | Control methods, programs, recording media, robot systems, and article manufacturing methods | |
JP2008014794A (en) | Torsional angle measuring device of rotating member, and torque measuring device of rotating member | |
WO2021006169A1 (en) | Correction device and correction method | |
JP6684165B2 (en) | Output control device for reduction gear system, reduction gear system, and output control method for reduction gear system | |
JP3853563B2 (en) | Plastic gear performance test method and apparatus | |
JP7546438B2 (en) | Correction system, correction device, and correction method | |
JP2002243590A (en) | Gear evaluation method, gear evaluation device and storage medium | |
WO2024181488A1 (en) | Load torque calculation device, encoder system, actuator, robot device, load torque calculation method, and program | |
JP2018036097A (en) | Angle position detector | |
JP6372231B2 (en) | Torque measurement method for rotating member | |
WO2007094196A1 (en) | Torque detector and rotating angle detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20837369 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20837369 Country of ref document: EP Kind code of ref document: A1 |