JP6372231B2 - Torque measurement method for rotating member - Google Patents

Torque measurement method for rotating member Download PDF

Info

Publication number
JP6372231B2
JP6372231B2 JP2014159328A JP2014159328A JP6372231B2 JP 6372231 B2 JP6372231 B2 JP 6372231B2 JP 2014159328 A JP2014159328 A JP 2014159328A JP 2014159328 A JP2014159328 A JP 2014159328A JP 6372231 B2 JP6372231 B2 JP 6372231B2
Authority
JP
Japan
Prior art keywords
torque
rotating member
sensors
phase
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014159328A
Other languages
Japanese (ja)
Other versions
JP2016038201A (en
Inventor
優香 金子
優香 金子
浩之 山村
浩之 山村
智治 齋藤
智治 齋藤
植田 徹
徹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014159328A priority Critical patent/JP6372231B2/en
Publication of JP2016038201A publication Critical patent/JP2016038201A/en
Application granted granted Critical
Publication of JP6372231B2 publication Critical patent/JP6372231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、自動車用変速機の歯車軸等、各種回転機械装置を構成する回転部材が伝達するトルクの測定方法に関する。   The present invention relates to a method for measuring torque transmitted by rotating members constituting various rotary machine devices such as a gear shaft of a transmission for an automobile.

自動車用自動変速機を構成する回転軸の回転速度と、この回転軸により伝達しているトルクとを測定し、その測定結果を当該変速機の変速制御又はエンジンの出力制御を行う為の情報として利用する事が、従来から行われている。一方、前記トルクを測定する為に利用可能な装置として従来から、トルクを伝達している回転軸の弾性的な捩れ変形量を1対のセンサの出力信号の位相差に変換し、この位相差に基づいて前記トルクを測定する装置が知られている(例えば、特許文献1参照)。この様なトルク測定装置の基本構造に就いて、本発明のトルク測定方法の実施の対象となるトルク測定装置の1例を示す、図1により説明する。   The rotational speed of the rotary shaft constituting the automatic transmission for automobiles and the torque transmitted by the rotary shaft are measured, and the measurement results are used as information for performing shift control of the transmission or engine output control. It has been used conventionally. On the other hand, as a device that can be used for measuring the torque, the amount of elastic torsional deformation of the rotating shaft transmitting torque is converted into a phase difference between the output signals of a pair of sensors. An apparatus for measuring the torque based on the above is known (for example, see Patent Document 1). Such a basic structure of the torque measuring device will be described with reference to FIG. 1, which shows an example of a torque measuring device to which the torque measuring method of the present invention is applied.

トルク測定装置1は、トルク測定の対象となる回転部材2の軸方向2箇所位置に、1対のエンコーダ3a、3bを外嵌固定している。被検出部である、これら両エンコーダ3a、3bの外周面の磁気特性は、円周方向に関して交互に且つ等ピッチで変化している。又、これら両外周面の磁気特性が円周方向に関して変化するピッチは、これら両外周面同士で互いに等しくなっている。又、これら両外周面に、1対のセンサ4a、4bの検出部である先端部を対向させた状態で、これら両センサ4a、4bを、図示しないハウジングに支持している。これら両センサ4a、4bは、それぞれ自身の検出部を対向させた部分の磁気特性の変化に対応して、その出力信号を変化させるものである。この為に、前記両センサ4a、4bの検出部には、ホール素子、磁気抵抗素子等の磁気検出素子を組み込んでいる。   The torque measuring device 1 has a pair of encoders 3a and 3b externally fixed at two positions in the axial direction of the rotating member 2 to be measured. The magnetic characteristics of the outer peripheral surfaces of the encoders 3a and 3b, which are detected parts, are alternately changed at equal pitches in the circumferential direction. In addition, the pitches at which the magnetic properties of the outer peripheral surfaces change in the circumferential direction are equal to each other on the outer peripheral surfaces. The two sensors 4a and 4b are supported by a housing (not shown) in a state where the tip portions which are the detection portions of the pair of sensors 4a and 4b are opposed to both the outer peripheral surfaces. These two sensors 4a and 4b change their output signals in response to changes in the magnetic characteristics of the portions where their own detection units are opposed to each other. For this purpose, a magnetic detection element such as a Hall element or a magnetoresistive element is incorporated in the detection part of both sensors 4a and 4b.

上述の様なセンサ4a、4bの出力信号は、前記回転部材2と共に前記両エンコーダ3a、3bが回転する事に伴い、それぞれ周期的に変化する。この変化の周波数(及び周期T)は、前記回転部材2の回転速度に見合った値をとる。この為、この周波数(又は周期T)に基づいて、前記回転速度を求められる。又、前記回転部材2によりトルクを伝達する事に伴って、この回転部材2が弾性的に捩れ変形すると、前記両エンコーダ3a、3bが回転方向に相対変位する。この結果、前記両センサ4a、4bの出力信号(A相、B相)同士の間に存在する位相差比ε(=位相差λ/周期T)が変化する。この位相差比εは、前記トルク(前記回転部材2の弾性的な捩れ変形量)に見合った値をとる。この為、この位相差比εに基づいて、前記トルクを求める事ができる。即ち、予め計算や実験により調べておいた、前記位相差比εと前記トルクとの関係を、図示しない演算器のメモリ中に、マップや計算式として記憶させておく。そして、この様なマップや計算式を用いて、前記演算器により、その時点での前記位相差比εに対応する、前記トルクを求める(算出する)。   The output signals of the sensors 4a and 4b as described above periodically change as the encoders 3a and 3b rotate together with the rotating member 2. The frequency (and period T) of this change takes a value commensurate with the rotational speed of the rotating member 2. For this reason, the said rotational speed is calculated | required based on this frequency (or period T). When the rotating member 2 is elastically twisted and deformed as torque is transmitted by the rotating member 2, the encoders 3a and 3b are relatively displaced in the rotational direction. As a result, the phase difference ratio ε (= phase difference λ / period T) existing between the output signals (A phase, B phase) of both the sensors 4a and 4b changes. The phase difference ratio ε takes a value commensurate with the torque (the amount of elastic torsional deformation of the rotating member 2). Therefore, the torque can be obtained based on the phase difference ratio ε. That is, the relationship between the phase difference ratio ε and the torque, which have been examined in advance by calculation or experiment, is stored as a map or calculation formula in a memory of a calculator (not shown). Then, the torque corresponding to the phase difference ratio ε at that time is obtained (calculated) by the computing unit using such a map or calculation formula.

この様な位相差比εに基づいてトルクを測定する方法に就いて、図1に加え、図6を参照しつつ、具体的に説明する。前記回転部材2がトルクを伝達していない状態(初期状態)での、前記両センサ4a、4bの出力信号同士の間の位相差(初期位相差)λを、図6の上段の実線及び下段の破線で示す様に、1周期Tの1/2(λ=T/2、180度)に設定する。この様な初期状態から、前記回転部材2によりトルクを伝達する事に伴って、この回転部材2が弾性的に捩れ変形すると、例えば、図6に実線で示す様に、一方(A相)のセンサ4aの出力信号の位相に対して他方(B相)のセンサ4bの出力信号の位相が進み、これら両センサ4a、4bの出力信号同士の間の位相差λが、前記初期位相差λよりも小さくなる。 A method for measuring torque based on such a phase difference ratio ε will be specifically described with reference to FIG. 6 in addition to FIG. The phase difference (initial phase difference) λ 0 between the output signals of the sensors 4a and 4b in a state where the rotating member 2 is not transmitting torque (initial state) is represented by a solid line in the upper stage of FIG. As shown by the lower broken line, it is set to 1/2 of one period T (λ 0 = T / 2, 180 degrees). When the rotating member 2 is elastically twisted and deformed as the torque is transmitted by the rotating member 2 from such an initial state, for example, as shown by a solid line in FIG. The phase of the output signal of the other (B phase) sensor 4b advances with respect to the phase of the output signal of the sensor 4a, and the phase difference λ between the output signals of both the sensors 4a and 4b is the initial phase difference λ 0. Smaller than.

前記回転部材2によるトルク伝達時(この回転部材2の回転運動時)に、前記演算器は、前記両センサ4a、4bから入力される、前記A相と前記B相との双方に含まれる立ち下がりエッジの入力時刻を、順次計測する。前記演算器は、前記両センサ4a、4bのうちの一方のセンサ4aの出力信号(A相)に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、他方のセンサ4bの出力信号(B相)に含まれる立ち下がりエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの立ち下がりエッジFの入力時刻tとを利用して、前記位相差比ε=λ/T=(t−tA1)/(tA2−tA1)を算出する。そして、この算出した位相差比εに基づき、前記マップや計算式を利用して、前記回転部材2が伝達するトルクを求める。このトルクを求める処理は、前記演算器に前記A相の立ち下がりエッジが1つずつ入力される度に(当該立ち下がりエッジをその都度、前記FA2として)行われる。 At the time of torque transmission by the rotating member 2 (during the rotational movement of the rotating member 2), the computing unit is included in both the A phase and the B phase that are input from the sensors 4a and 4b. The falling edge input time is measured sequentially. Among the falling edges included in the output signal (A phase) of one of the sensors 4a and 4b, the computing unit includes two falling edges F A1 that are continuously input from each other. Of the falling edges included in the input time t A1 and t A2 of F A2 and the output signal (phase B) of the other sensor 4b, one input is made between these input times t A1 and t A2 . falling by using the input time t B of the edge F B, to calculate the phase difference ratio ε = λ / T = a (t B -t A1) / ( t A2 -t A1). Then, based on the calculated phase difference ratio ε, the torque transmitted by the rotating member 2 is obtained using the map and the calculation formula. The process for obtaining the torque is performed each time the A-phase falling edge is input to the computing unit one by one (the falling edge is referred to as F A2 each time).

上述の様な従来のトルク測定方法は、前記トルク測定装置1の組立作業を容易にし、製造コストの低減を図る面からは、改良の余地がある。即ち、前記従来のトルク測定方法の場合には、前記初期位相差λを、1周期Tの1/2(λ=T/2)に設定している。この理由は、前記トルクの測定中に、前記A相と前記B相との位相変化により、これらA相とB相との間で、前記演算器への立ち下がりエッジの入力順序が逆転すると(パルスエッジタイミングの追い越しが発生すると)、前記回転部材2が伝達するトルクを求める処理が難しくなる(トルクの作用方向を特定できなくなる)為である。そこで、この様な入力順序の逆転が生じる事を防止すべく、前記従来構造の場合には、前記回転部材2がトルクを伝達していない状態で、前記A相と前記B相とが互いに逆位相となる(位相差比εが0.5となる)様に、前記両エンコーダ3a、3bと前記両センサ4a、4bとの円周方向に関する位置決めを精度良く厳密に規制する必要があり、前記トルク測定装置1の製造コストが嵩む原因となる。 The conventional torque measuring method as described above has room for improvement in terms of facilitating the assembly work of the torque measuring device 1 and reducing the manufacturing cost. That is, in the case of the conventional torque measuring method, the initial phase difference λ 0 is set to ½ of one cycle T (λ 0 = T / 2). The reason for this is that during the torque measurement, due to the phase change between the A phase and the B phase, the input order of the falling edge to the computing unit is reversed between the A phase and the B phase ( This is because when the overtaking of the pulse edge timing occurs), it is difficult to determine the torque transmitted by the rotating member 2 (the direction of the torque operation cannot be specified). Therefore, in order to prevent such a reverse of the input order, in the case of the conventional structure, the A phase and the B phase are opposite to each other while the rotating member 2 is not transmitting torque. The positioning in the circumferential direction between the encoders 3a, 3b and the sensors 4a, 4b must be precisely and precisely regulated so as to be in phase (the phase difference ratio ε is 0.5). This increases the manufacturing cost of the torque measuring device 1.

特開昭63−82330号公報Japanese Unexamined Patent Publication No. 63-82330

本発明は、上述の様な事情に鑑みて、トルク測定装置の組立作業の容易化を図れ、このトルク測定装置の製造コストの低減を図れる、回転部材のトルク測定方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has been invented to realize a torque measuring method for a rotating member that can facilitate the assembly work of the torque measuring device and can reduce the manufacturing cost of the torque measuring device. It is.

本発明の回転部材のトルク測定方法は、回転部材の軸方向に離隔した2箇所位置に支持固定された、それぞれの被検出面の特性を円周方向に関して交互に変化させた1対のエンコーダの被検出面に、回転しない部分に支持固定された1対のセンサのそれぞれの検出部を対向させる。そして、前記両センサのうちの一方のセンサの出力信号に含まれる基準パルスエッジの入力時刻と、他方のセンサの出力信号に含まれる被計測対象パルスエッジの入力時刻の差であるパルスエッジ時間差を求め、このパルスエッジ時間差に基づき、前記回転部材が伝達するトルクを算出する。 The torque measurement method for a rotating member according to the present invention includes a pair of encoders that are supported and fixed at two positions separated in the axial direction of the rotating member, and the characteristics of the respective detection surfaces are alternately changed in the circumferential direction. Each detection part of a pair of sensors supported and fixed to the non-rotating part is opposed to the detection surface. Then, a pulse edge time difference that is a difference between the input time of the reference pulse edge included in the output signal of one of the two sensors and the input time of the pulse edge to be measured included in the output signal of the other sensor Based on this pulse edge time difference, the torque transmitted by the rotating member is calculated.

特に本発明の回転部材のトルク測定方法に於いては、前記回転部材がトルクを伝達していない状態での前記両センサの出力信号に含まれるパルスエッジのうち、信号の変化の方向が互いに同じであるパルスエッジ同士の入力時刻の差である位相差に基づいて、前記被計測対象パルスエッジとして、立ち下がりエッジと立ち上がりエッジとの何れを使用するかを決定する。 Especially at the torque measurement method of a rotating member of the present invention, before Symbol rotary member of said pulse edge in the output signal of both sensors in a state that does not transmit the torque, the direction of signal change each other on the basis of the phase difference which is a difference between the input time of the pulse edges the mechanic is the same, the as measured object pulse edge, to determine whether to use either the rising edge and the falling edge.

上述の様な本発明の回転部材のトルク測定方法を実施する場合に好ましくは、前記両センサとして、電気角で表した、出力信号の立ち上がりエッジのジッタ(揺らぎ)が、同じく立ち下がりエッジのジッタの2倍以下であるものを使用する。
尚、トルク測定中に前記回転部材の回転速度が変動するトルク測定装置で、本発明を実施する場合には、前記パルスエッジ時間差を、前記両センサの出力信号の周期で除した値であるパルスエッジ時間差比に基づいて、前記回転部材が伝達するトルクを算出する様に構成する。そして、前記回転部材がトルクを伝達していない状態での前記両センサの出力信号同士の位相差(初期位相差)を、前記両センサの出力信号の周期で除した値である初期位相差比に基づいて、前記回転部材がトルクを伝達している状態での前記パルスエッジ時間差の算出に用いる、前記両センサの出力信号に含まれるパルスエッジの組み合わせを決定する。
When implementing the torque measurement method of the rotating member of the present invention as described above, preferably, as both sensors, the jitter (fluctuation) of the rising edge of the output signal expressed in electrical angle is the jitter of the falling edge. That is less than 2 times the
When the present invention is implemented in a torque measuring device in which the rotational speed of the rotating member varies during torque measurement, a pulse that is a value obtained by dividing the pulse edge time difference by the period of the output signals of both sensors. The torque transmitted by the rotating member is calculated based on the edge time difference ratio. An initial phase difference ratio that is a value obtained by dividing the phase difference (initial phase difference) between the output signals of the two sensors when the rotating member is not transmitting torque by the period of the output signals of the two sensors. Based on the above, a combination of pulse edges included in the output signals of the two sensors used to calculate the pulse edge time difference in a state where the rotating member is transmitting torque is determined.

又、上述の様な本発明の回転部材のトルク測定方法を実施する場合に、具体的には、前記初期位相差が0若しくは0の近傍である場合には、前記両センサの出力信号に含まれるパルスエッジのうち、信号の変化の方向が互いに異なるパルスエッジの入力時刻同士の差を、前記パルスエッジ時間差とする。これに対し、前記初期位相差が、前記両センサの出力信号の周期の1/2若しくは周期の1/2の近傍である場合には、前記両センサの出力信号に含まれるパルスエッジのうち、信号の変化の方向が互いに同じパルスエッジの入力時刻同士の差(位相差)を、前記パルスエッジ時間差とする。
この場合に好ましくは、前記初期位相差が、前記両センサの出力信号の周期の1/4若しくは周期の1/4の近傍である場合、これら両センサのうちの一方のセンサの出力信号に含まれる、基準パルスエッジ(立ち上がりエッジ又は立ち下がりエッジ)の入力時刻と、この基準パルスエッジが計測された後、他方のセンサの出力信号に含まれるパルスエッジのうち、最初に計測されるパルスエッジの入力時刻との差を、前記パルスエッジ時間差とする。
When the torque measuring method for a rotating member of the present invention as described above is carried out, specifically, when the initial phase difference is 0 or in the vicinity of 0, it is included in the output signals of both sensors. The difference between the input times of pulse edges having different signal change directions among the generated pulse edges is defined as the pulse edge time difference. On the other hand, when the initial phase difference is ½ of the cycle of the output signals of the two sensors or in the vicinity of ½ of the cycle, of the pulse edges included in the output signals of the two sensors, A difference (phase difference) between input times of pulse edges having the same signal change direction is defined as the pulse edge time difference.
In this case, preferably, when the initial phase difference is in the vicinity of 1/4 of the cycle of the output signals of the two sensors or 1/4 of the cycle, the initial phase difference is included in the output signal of one of these sensors. The input time of the reference pulse edge (rising edge or falling edge) and, after this reference pulse edge is measured, of the pulse edge included in the output signal of the other sensor, The difference from the input time is defined as the pulse edge time difference.

上述の様に構成する本発明の回転部材のトルク測定方法によれば、トルク測定装置の組立作業の容易化を図れ、このトルク測定装置の製造コストの低減を図る事ができる。
即ち、本発明の場合、回転部材がトルクを伝達している状態でのパルスエッジ時間差の算出に用いる、1対のセンサの出力信号に含まれるパルスエッジの組み合わせを、前記回転部材がトルクを伝達していない状態での、これら両センサの出力信号同士の位相差に基づいて決定する。この為、これら両センサの出力信号の位相を、トルクを伝達していない状態で必ずしも互いに逆位相に規制する必要はなく、前記トルク測定装置を構成するエンコーダとセンサとの位置精度を過度に高くする必要がない。従って、前記トルク測定装置の組立作業の容易化を図れ、このトルク測定装置の製造コストの低減を図れる。
又、前記両センサとして、電気角で表した、出力信号の立ち上がりエッジのジッタ(揺らぎ)が、同じく立ち下がりエッジのジッタの2倍以下であるものを使用すれば、前記パルスエッジ時間差を求める為に、立ち上がりエッジを使用した場合にも、前記回転部材が伝達するトルクの測定精度を十分に確保する事ができる。即ち、一般的なセンサを用いた場合、立ち下がりエッジに比べて立ち上がりエッジは応答性が良くない(「なまり」が存在する)為、一般的なセンサを用いて、立ち上がりエッジを測定する場合には、立ち下がりエッジを利用した場合に比べてトルクの測定精度が低くなるが、前記両センサとして上述の様な性能のもの使用すれば測定精度を十分に確保できる。
According to the torque measuring method of the rotating member of the present invention configured as described above, the assembly work of the torque measuring device can be facilitated, and the manufacturing cost of the torque measuring device can be reduced.
In other words, in the case of the present invention, the rotation member transmits torque using a combination of pulse edges included in the output signals of a pair of sensors used for calculation of the pulse edge time difference when the rotation member is transmitting torque. This is determined based on the phase difference between the output signals of these two sensors in a state where they are not. For this reason, it is not always necessary to restrict the phases of the output signals of these sensors to opposite phases in a state where torque is not transmitted, and the positional accuracy between the encoder and the sensor constituting the torque measuring device is excessively high. There is no need to do. Therefore, the assembly work of the torque measuring device can be facilitated, and the manufacturing cost of the torque measuring device can be reduced.
Further, when both sensors are used in which the jitter (fluctuation) of the rising edge of the output signal expressed by the electrical angle is less than twice the jitter of the falling edge, the pulse edge time difference is obtained. Even when the rising edge is used, the measurement accuracy of the torque transmitted by the rotating member can be sufficiently ensured. That is, when a general sensor is used, the rising edge is less responsive than the falling edge (there is a “margin”), so when measuring the rising edge using a general sensor. The torque measurement accuracy is lower than when using a falling edge, but if both sensors have the above-mentioned performance, the measurement accuracy can be sufficiently ensured.

本発明のトルク測定方法の対象となるトルク測定装置の1例を示す、略側面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1対のセンサの出力信号(A相、B相)同士の間の初期位相差λが0である場合の、これら両センサの出力信号を表す線図。The diagram showing the output signals of both sensors when the initial phase difference λ 0 between the output signals (A phase, B phase) of a pair of sensors is zero. 同じく初期位相差λが周期Tの1/2である場合の、前記両センサの出力信号を表す線図。Similarly, a diagram showing the output signals of the two sensors when the initial phase difference λ 0 is ½ of the period T. FIG. 同じく初期位相差λが周期Tの1/4である場合の、前記両センサの出力信号を表す線図。Similarly, a diagram representing output signals of both sensors when the initial phase difference λ 0 is ¼ of the period T. FIG. 同じく、パルスエッジ時間差比κとトルクとの関係を示す線図。Similarly, the diagram which shows the relationship between pulse edge time difference ratio (kappa) and torque. 従来のトルク測定方法による1対のセンサの出力信号を表す線図。The diagram showing the output signal of a pair of sensors by the conventional torque measuring method.

[実施の形態の第1例]
本発明の実施の形態の第1例に就いて、前述の図1に加え、図2〜3を参照しつつ説明する。尚、本例を含めて、本発明の特徴は、トルク測定装置1の製造コストの低減を図るべく、回転部材2が伝達するトルクの測定方法を工夫した点にある。前記トルク測定装置1の基本構造及び作用は前述した通りである。即ち、このトルク測定装置1は、前記回転部材2の軸方向に離隔した2箇所位置(軸方向両端部)に、1対のエンコーダ3a、3bを外嵌固定している。そして、被検出部である、これら両エンコーダ3a、3bの外周面に、1対のセンサ4a、4bの検出部である先端部を対向させた状態で、これら両センサ4a、4bを、図示しないハウジングに支持している。尚、本例の場合には、これら両センサ4a、4bとして、電気角で表した出力信号の立ち上がりエッジのジッタが、同じく立ち下がりエッジのジッタの2倍以下のものを使用している。
[First example of embodiment]
A first example of the embodiment of the present invention will be described with reference to FIGS. The feature of the present invention, including this example, is that the method for measuring the torque transmitted by the rotating member 2 is devised in order to reduce the manufacturing cost of the torque measuring device 1. The basic structure and operation of the torque measuring device 1 are as described above. That is, in the torque measuring device 1, a pair of encoders 3a and 3b are fitted and fixed to two positions (both ends in the axial direction) spaced apart in the axial direction of the rotating member 2. The two sensors 4a and 4b are not shown in a state in which the outer end surfaces of both the encoders 3a and 3b, which are detected parts, are opposed to the tip portions that are the detection parts of the pair of sensors 4a and 4b. It is supported by the housing. In the case of the present example, as these sensors 4a and 4b, those having the rising edge jitter of the output signal expressed in electrical angle are also less than twice the falling edge jitter.

この様なトルク測定装置1を用いて前記回転部材2が伝達するトルクを測定する為に、先ず、この回転部材2がトルクを伝達していない状態での前記両センサ4a、4bの出力信号(図2、3の上段の実線及び下段の破線)同士の位相差(初期位相差)λ及び周期Tを計測し、この初期位相差λをこの周期Tで除する事により初期位相差比ε(=λ/T)を求める。そして、この初期位相差比εに応じて、前記回転部材2がトルクを伝達している状態でのこのトルクの算出に用いる、前記両センサ4a、4bの出力信号のパルスエッジの組み合わせを決定する。尚、以下の説明は、前記初期位相差比εは、0以上1/2以下(0≦ε≦1/2)の範囲であるものとして行う。換言すれば、1対のセンサのうち、前記回転部材2がトルクを伝達していない状態での出力信号の位相が少なくとも遅れていない側のセンサを一方のセンサ4a(位相が少なくとも遅れていない側の出力信号をA相)とし、同じく出力信号の位相が少なくとも進んでいない側のセンサを他方のセンサ4b(位相が少なくとも進んでいない側の出力信号をB相)として、説明を行う。 In order to measure the torque transmitted by the rotating member 2 using such a torque measuring device 1, first, the output signals (2) of the sensors 4a and 4b in a state where the rotating member 2 is not transmitting torque ( The phase difference (initial phase difference) λ 0 and the period T between the upper solid line and the lower broken line in FIGS. 2 and 3 are measured, and the initial phase difference ratio is obtained by dividing the initial phase difference λ 0 by this period T. ε 0 (= λ 0 / T) is obtained. Then, in accordance with the initial phase difference ratio ε 0 , the combination of pulse edges of the output signals of the sensors 4a and 4b used to calculate the torque when the rotating member 2 is transmitting torque is determined. To do. In the following description, the initial phase difference ratio ε 0 is assumed to be in the range of 0 or more and ½ or less (0 ≦ ε 0 ≦ 1/2). In other words, of the pair of sensors, the sensor on the side where the phase of the output signal is not delayed at least in the state where the rotating member 2 is not transmitting torque is referred to as one sensor 4a (the side where the phase is not delayed at least). In the following description, the sensor on the side where the phase of the output signal is not advanced at least is the other sensor 4b (the output signal on the side where the phase is not advanced at least is the B phase).

先ず、前記初期位相差比εが、0以上1/4以下(0≦ε≦1/4)である場合、図示しない演算器は、初期位相差比εが0である場合を示した図2に示す様に、前記一方のセンサ4aの出力信号(A相)に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、前記他方のセンサ4bの出力信号(B相)に含まれる立ち上がりエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの立ち上がりエッジRの入力時刻tとを計測する。これに対し、前記初期位相差比εが、1/4よりも大きく1/2以下(1/4<ε≦1/2)である場合、初期位相差比εが1/2である場合を示した図3に示す様に、前記A相に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、前記B相に含まれる立ち下がりエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの立ち下がりエッジFの入力時刻tとを計測する。 First, when the initial phase difference ratio ε 0 is 0 or more and ¼ or less (0 ≦ ε 0 ≦ 1/4), the calculator (not shown) shows a case where the initial phase difference ratio ε 0 is 0. As shown in FIG. 2, among the falling edges included in the output signal (A phase) of the one sensor 4a, the input times of two falling edges F A1 and F A2 that are continuously input to each other. Of the rising edges included in t A1 and t A2 and the output signal (phase B) of the other sensor 4b, one rising edge R B input between these input times t A1 and t A2 to measure the input time t B. On the other hand, when the initial phase difference ratio ε 0 is greater than 1/4 and equal to or less than ½ (1/4 <ε 0 ≦ 1/2), the initial phase difference ratio ε 0 is 1/2. As shown in FIG. 3 showing a certain case, among the falling edges included in the A phase, the input times t A1 and t A2 of two falling edges F A1 and F A2 that are continuously input to each other. When, among the falling edge included in the B-phase, is input between these two input time t A1, t A2, measures the input time t B of one falling edge F B.

何れにしても、前記演算器により計測した前記各入力時刻tA1、tA2、tを利用して、前記両センサ4a、4bの出力信号同士に含まれるパルスエッジFA1、R(又はF)の入力時刻tA1、t同士の差であるパルスエッジ時間差δ(=t−tA1)を求める。そして、このパルスエッジ時間差δを周期T(=tA2−tA1)で除する事により、パルスエッジ時間差比κ=δ/T=(t−tA1)/(tA2−tA1)を求める。更に、このパルスエッジ時間差比κに基づき、予め計算や実験により求めておいた、このパルスエッジ時間差比κと前記回転部材2が伝達するトルクとの関係を表すマップや計算式を利用して、その時点でのこの回転部材2が伝達するトルクを求める。このトルクを求める処理は、前記演算器に前記A相の立ち下がりエッジが1つずつ入力される度に(当該立ち下がりエッジをその都度、前記FA2として)行われる。 In any case, using the input times t A1 , t A2 , t B measured by the calculator, the pulse edges F A1 , R B (or included in the output signals of the sensors 4a, 4b) A pulse edge time difference δ (= t B −t A1 ) that is a difference between the input times t A1 and t B of F B ) is obtained. Then, by dividing the pulse edge time difference δ by the period T (= t A2 −t A1 ), the pulse edge time difference ratio κ = δ / T = (t B −t A1 ) / (t A2 −t A1 ). Ask. Furthermore, based on this pulse edge time difference ratio κ, using a map or a calculation formula representing the relationship between the pulse edge time difference ratio κ and the torque transmitted by the rotating member 2, which has been obtained in advance by calculation or experiment, The torque transmitted by the rotating member 2 at that time is obtained. The process for obtaining the torque is performed each time the A-phase falling edge is input to the computing unit one by one (the falling edge is referred to as F A2 each time).

上述の様な本例によれば、前記トルク測定装置1、延いては、このトルク測定装置1を組み込んだ回転機械装置の製造コストの低減を図る事ができる。
即ち、本例の場合、前記回転部材2がトルクを伝達している状態でのパルスエッジ時間差δ(パルスエッジ時間差比κ)の算出に用いる、前記両センサ4a、4bの出力信号に含まれるパルスエッジの組み合わせを、これら両センサ4a、4bの出力信号同士の初期位相差λ(初期位相差比ε)に基づいて決定する様にしている。具体的には、この初期位相差比εが0以上1/4以下である場合には、基準となるA相の立ち下がりエッジFA1の入力時刻tA1と、B相に含まれるパルスエッジのうちで、このA相の立ち下がりエッジFA1と出力信号の変化の方向が異なる立ち上がりエッジRの入力時刻tとから、前記パルスエッジ時間差比κを求める。これに対し、前記初期位相差比εが1/4より大きく1/2以下である場合には、基準となるA相の立ち下がりエッジFA1の入力時刻tA1と、B相に含まれるパルスエッジのうちで、このA相の立ち下がりエッジFA1と出力信号の変化の方向が同じ立ち下がりエッジFの入力時刻tとから、前記パルスエッジ時間差比κを求める。そして、このパルスエッジ時間差比κから、前記回転部材2が伝達するトルクを求める様にしている。この為、前記両センサ4a、4bの出力信号の位相は、トルクを伝達していない状態で必ずしも逆位相に規制する必要はなく、前記両エンコーダ3a、3bと前記両センサ4a、4bとの円周方向に関する位置決め精度を過度に高くする必要がない。この結果、前記トルク測定装置1の組立作業の容易化を図れ、このトルク測定装置1の製造コストを抑える事ができる
According to the present example as described above, it is possible to reduce the manufacturing cost of the torque measuring device 1 and, in turn, the rotating machine device incorporating the torque measuring device 1.
That is, in the case of this example, the pulses included in the output signals of the two sensors 4a and 4b used for calculating the pulse edge time difference δ (pulse edge time difference ratio κ) when the rotating member 2 is transmitting torque. The combination of edges is determined based on the initial phase difference λ 0 (initial phase difference ratio ε 0 ) between the output signals of both the sensors 4a and 4b. Specifically, the input time t A1 of this early when the phase difference ratio epsilon 0 is 0 or more than 1/4, the fall of the A-phase as a reference edge F A1, pulse edges included in Phase B Among these, the pulse edge time difference ratio κ is obtained from the falling edge F A1 of the A phase and the input time t B of the rising edge R B in which the direction of change of the output signal is different. On the other hand, when the initial phase difference ratio ε 0 is greater than ¼ and less than or equal to ½, the input time t A1 of the reference A-phase falling edge F A1 is included in the B-phase. Among the pulse edges, the pulse edge time difference ratio κ is obtained from the falling edge F A1 of the A phase and the input time t B of the falling edge F B in which the direction of change of the output signal is the same. Then, the torque transmitted by the rotating member 2 is obtained from the pulse edge time difference ratio κ. For this reason, the phases of the output signals of the two sensors 4a and 4b do not necessarily have to be restricted to opposite phases when torque is not transmitted, and the circles of the two encoders 3a and 3b and the two sensors 4a and 4b are not necessary. There is no need to excessively increase the positioning accuracy in the circumferential direction. As a result, the assembly operation of the torque measuring device 1 can be facilitated, and the manufacturing cost of the torque measuring device 1 can be reduced .

又、本例の場合、前記両センサ4a、4bとして、電気角で表した出力信号の立ち上がりエッジのジッタが、同じく立ち下がりエッジのジッタの2倍以下のものを使用している。この為、前記B相の立ち上がりエッジRを用いて、前記パルスエッジ時間差δ(パルスエッジ時間差比κ)を算出する場合にも、前記回転部材2が伝達するトルクの測定精度を十分に確保する事ができる。 In the case of this example, as the sensors 4a and 4b, the jitter of the rising edge of the output signal expressed in electrical angle is similarly less than twice that of the falling edge. Therefore, even when the pulse edge time difference δ (pulse edge time difference ratio κ) is calculated using the rising edge R B of the B phase, sufficient measurement accuracy of the torque transmitted by the rotating member 2 is ensured. I can do things.

尚、上述の様な本例の場合、前記回転部材2が伝達するトルクの測定中に、前記A相と前記B相との位相変化により、基準となるA相の立ち下がりエッジFA1と、前記B相のパルスエッジのうち被計測対象となるパルスエッジ(初期位相差比εが0以上1/4以下である場合には立ち上がりエッジR、同じく1/4より大きく1/2以下である場合には立ち下がりエッジF)との入力順序の逆転が生じない(パルスエッジの追い越しが発生しない)様に、前記回転部材2の捩れ方向の剛性や前記両エンコーダ3a、3bの特性のピッチを規制する必要がある。 In the case of this example as described above, the falling edge F A1 of the reference A phase due to the phase change between the A phase and the B phase during the measurement of the torque transmitted by the rotating member 2; Among the B-phase pulse edges, the pulse edge to be measured (when the initial phase difference ratio ε 0 is 0 or more and 1/4 or less, the rising edge R B is also larger than 1/4 and smaller than 1/2. In some cases, the rigidity of the rotating member 2 in the torsional direction and the characteristics of the encoders 3a and 3b are set so that the input order with respect to the falling edge F B ) does not reverse (no pulse edge overtaking occurs). It is necessary to regulate the pitch.

[実施の形態の第2例]
本発明の実施の形態の第2例に就いて、前述の図1〜3に加え、図4〜5を参照しつつ説明する。本例の場合、初期位相差比εが、0以上1/8以下(0≦ε≦1/8)以下である場合、演算器は、初期位相差比εである場合を示した図2に示す様に、一方のセンサ4aの出力信号(A相)に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、他方のセンサ4bの出力信号(B相)に含まれる立ち上がりエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの立ち上がりエッジRの入力時刻tとを計測する。
[Second Example of Embodiment]
A second example of the embodiment of the present invention will be described with reference to FIGS. 4 to 5 in addition to FIGS. In the case of this example, when the initial phase difference ratio ε 0 is 0 or more and 1/8 or less (0 ≦ ε 0 ≦ 1/8) or less, the computing unit shows the case where the initial phase difference ratio ε 0 is satisfied. As shown in FIG. 2, among the falling edges included in the output signal (A phase) of one sensor 4a, the input times t A1 of two falling edges F A1 and F A2 that are continuously input to each other. T A2 and the rising edge included in the output signal (B phase) of the other sensor 4b, the input time t of one rising edge R B input between these input times t A1 and t A2. B is measured.

これに対し、前記初期位相差比εが、1/8よりも大きく3/8よりも小さい(1/8<ε<3/8)場合には、前記演算器は、初期位相差比εが1/4である場合を示した図4に示す様に、前記A相に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、前記B相に含まれるパルスエッジのうちで、これら両入力時刻tA1、tA2間に入力される、最初の(立ち下がりエッジであるか立ち上がりエッジであるかに拘わらず)パルスエッジの入力時刻tとを計測する。即ち、基準となる前記A相の立ち下がりエッジFA1が入力された後、図4の中段に示す様に、前記B相の立ち下がりエッジFが入力された場合は、この立ち下がりエッジFの入力時刻を前記入力時刻tとする。一方、前記A相の立ち下がりエッジFA1が入力された後、図4の下段に示す様に、前記B相の立ち上がりエッジRが入力された場合は、この立ち上がりエッジRの入力時刻を前記入力時刻tとする。 On the other hand, when the initial phase difference ratio ε 0 is larger than 1/8 and smaller than 3/8 (1/8 <ε 0 <3/8), the calculator calculates the initial phase difference ratio. As shown in FIG. 4 showing the case where ε 0 is ¼, among the falling edges included in the A phase, two falling edges F A1 and F A2 that are continuously input to each other. Among the input edges t A1 and t A2 and the pulse edge included in the B phase, the first (whether it is a falling edge or a rising edge) input between these input times t A1 and t A2 Regardless of), the pulse edge input time t B is measured. That is, after the falling edge F A1 of the phase A as a reference is input, as shown in the middle of FIG. 4, when the falling edge F B of the B-phase is inputted, falling the trailing edge F the input time of the B and the input time t B. Meanwhile, after the falling edge F A1 of the A-phase is entered, as shown in the lower part of FIG. 4, if the rising edge R B of the B-phase is input, the input time of the rising edge R B and the input time t B.

又、前記初期位相差比εが、3/8以上大きく1/2以下(3/8ε≦1/2)である場合、初期位相差比εが1/2である場合を示した図3に示す様に、前記A相に含まれる立ち下がりエッジのうちで、互いに連続して入力される2つの立ち下がりエッジFA1、FA2の入力時刻tA1、tA2と、前記B相に含まれる立ち下がりエッジのうちで、これら両入力時刻tA1、tA2間に入力される、1つの立ち下がりエッジFの入力時刻tとを計測する。 Further, when the initial phase difference ratio ε 0 is 3/8 or more and ½ or less (3/8 ε 0 ≦ 1/2), the initial phase difference ratio ε 0 is 1/2. As shown in FIG. 3, among the falling edges included in the A phase, input times t A1 and t A2 of two falling edges F A1 and F A2 that are continuously input to each other, Among the falling edges included in the B phase, the input time t B of one falling edge F B input between these input times t A1 and t A2 is measured.

何れにしても、次いで、前記各入力時刻tA1、tA2、tからパルスエッジ時間差比κを求め、このパルスエッジ時間差比κに基づき、予め求めておいたマップや計算式を利用して、その時点での回転部材2が伝達しているトルクを求める。ここで、図5は、前記初期位相差比εが、1/8よりも大きく3/8よりも小さい場合(図示の例の場合には、ε=1/4)の、前記時間差比κと前記トルクとの関係を示している。この様な図5中、実線aは、基準となる前記A相の立ち下がりエッジFA1の入力後、最初に入力されたB相のパルスエッジが立ち下がりエッジFである場合の、破線bは、前記A相の立ち下がりエッジFA1の入力後、最初に入力されたB相のパルスエッジが立ち上がりエッジRである場合の、前記パルスエッジ時間差比κと前記トルクとの関係をそれぞれ示している。尚、前記図5は、回転部材2の伝達するトルクが大きくなる程、B相がA相に対して進む場合に就いて示している。これに対し、この回転部材2の伝達するトルクが大きくなる程、B相がA相に対して遅れる場合の、前記パルスエッジ時間差比κと前記トルクとの関係は、前記図5に示す関係と、パルスエッジ時間差比κ=1/4の直線を中心に線対称となる。 In any case, the pulse edge time difference ratio κ is then determined from the input times t A1 , t A2 , and t B , and based on the pulse edge time difference ratio κ, a map or calculation formula that has been obtained in advance is used. Then, the torque transmitted by the rotating member 2 at that time is obtained. Here, FIG. 5 shows the time difference ratio when the initial phase difference ratio ε 0 is larger than 1/8 and smaller than 3/8 (in the example shown, ε 0 = ¼). The relationship between κ and the torque is shown. In FIG. 5, a solid line a is a broken line b when the first B-phase pulse edge inputted after the input of the A-phase falling edge F A1 as a reference is the falling edge F B. Shows the relationship between the pulse edge time difference ratio κ and the torque when the first input B-phase pulse edge is the rising edge R B after the input of the A-phase falling edge F A1. ing. FIG. 5 shows a case where the B phase advances with respect to the A phase as the torque transmitted by the rotating member 2 increases. On the other hand, as the torque transmitted by the rotating member 2 increases, the relationship between the pulse edge time difference ratio κ and the torque when the B phase is delayed with respect to the A phase is the relationship shown in FIG. , The line is symmetrical about a straight line having a pulse edge time difference ratio κ = 1/4.

この様な本例の場合、上述した実施の形態の第1例の場合と比較して、トルク測定の分解能を向上したり、計測できるトルクの最大値を大きくする事ができる。
その他の部分の構成及び作用に就いては、上述した実施の形態の第1例と同様である。
In the case of this example, the resolution of torque measurement can be improved and the maximum value of torque that can be measured can be increased as compared with the case of the first example of the embodiment described above.
About the structure and effect | action of another part, it is the same as that of the 1st example of embodiment mentioned above.

本発明は、例えば自動車用変速機や工作機械の主軸装置、或いは自動車の車輪支持用転がり軸受ユニット等の各種回転機械装置を対象に実施可能である。
又、本発明を実施する場合、例えばエンコーダを永久磁石製とすると共に、このエンコーダの被検出面にS極に着磁した部分とN極に着磁した部分とを円周方向に関して交互に設ける構成を採用できる他、エンコーダを単なる磁性金属製とし、このエンコーダの被検出面に透孔(又は凹部)と柱部(又は凸部)とを円周方向に関して交互に設ける構成を採用できる。又、エンコーダを磁性金属製とし、被検出面に透孔(又は凹部)と柱部(又は凸部)とを設ける構成を採用した場合には、この様なエンコーダと組み合わせるセンサ側に永久磁石を組み込む。
The present invention can be implemented for various rotating machine devices such as a transmission for an automobile, a spindle device of a machine tool, or a rolling bearing unit for supporting a wheel of an automobile.
When the present invention is carried out, for example, the encoder is made of a permanent magnet, and a portion magnetized to the S pole and a portion magnetized to the N pole are alternately provided in the circumferential direction on the detected surface of the encoder. In addition to the configuration, it is possible to employ a configuration in which the encoder is made of a simple magnetic metal, and through holes (or concave portions) and column portions (or convex portions) are alternately provided in the circumferential direction on the detection surface of the encoder. Also, if the encoder is made of magnetic metal and has a structure in which a through hole (or recess) and a column (or protrusion) are provided on the surface to be detected, a permanent magnet is installed on the sensor side combined with such an encoder. Include.

1 トルク測定装置
2 回転部材
3a、3b エンコーダ
4a、4b センサ
DESCRIPTION OF SYMBOLS 1 Torque measuring device 2 Rotating member 3a, 3b Encoder 4a, 4b Sensor

Claims (1)

回転部材の軸方向に離隔した2箇所位置に支持固定された、それぞれの被検出面の特性が円周方向に関して交互に変化した1対のエンコーダの被検出面に、回転しない部分に支持固定された1対のセンサのそれぞれの検出部を対向させ、
これら両センサのうちの一方のセンサの出力信号に含まれる基準パルスエッジの入力時刻と、他方のセンサの出力信号に含まれる被計測対象パルスエッジの入力時刻の差であるパルスエッジ時間差を求め、
このパルスエッジ時間差に基づいて前記回転部材が伝達するトルクを算出する回転部材のトルク測定方法に於いて、
記回転部材がトルクを伝達していない状態での前記両センサの出力信号に含まれるパルスエッジのうち、信号の変化の方向が互いに同じであるパルスエッジ同士の入力時刻の差である位相差に基づいて、前記被計測対象パルスエッジとして、立ち下がりエッジと立ち上がりエッジとの何れを使用するかを決定する事を特徴とする回転部材のトルク測定方法。
The detection surface of the pair of encoders, which are supported and fixed at two positions separated in the axial direction of the rotating member and whose characteristics of the detection surfaces are alternately changed in the circumferential direction, are supported and fixed to the non-rotating portion. Each detection part of a pair of sensors facing each other,
Find the pulse edge time difference that is the difference between the input time of the reference pulse edge included in the output signal of one of these sensors and the input time of the target pulse edge included in the output signal of the other sensor. ,
In the torque measurement method of the rotating member that calculates the torque transmitted by the rotating member based on the pulse edge time difference,
Among the pulse edges in the output signals of both sensors in a state in which front Symbol rotating member does not transmit torque, the phase difference is the difference between the input time of the pulse edges between the same the direction of signal change from one another And determining which of the falling edge and the rising edge should be used as the measurement target pulse edge .
JP2014159328A 2014-08-05 2014-08-05 Torque measurement method for rotating member Active JP6372231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159328A JP6372231B2 (en) 2014-08-05 2014-08-05 Torque measurement method for rotating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159328A JP6372231B2 (en) 2014-08-05 2014-08-05 Torque measurement method for rotating member

Publications (2)

Publication Number Publication Date
JP2016038201A JP2016038201A (en) 2016-03-22
JP6372231B2 true JP6372231B2 (en) 2018-08-15

Family

ID=55529402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159328A Active JP6372231B2 (en) 2014-08-05 2014-08-05 Torque measurement method for rotating member

Country Status (1)

Country Link
JP (1) JP6372231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110960B2 (en) * 2018-12-07 2022-08-02 日本精工株式会社 torque sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018734A (en) * 1983-07-13 1985-01-30 Hitachi Ltd Torque detector
JPS61178628A (en) * 1985-02-05 1986-08-11 Furuno Electric Co Ltd Shaft horsepower meter

Also Published As

Publication number Publication date
JP2016038201A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US20150177022A1 (en) Method for Determining a Rotational Angle Position and/or a Rotational Speed
US9518615B2 (en) Component part, device and method for determining an axial position of a component part and for determining a rotary speed of the component part
CN106199045B (en) Speed measuring device and method for MDPS drive motor
JP2005114481A (en) Angle of rotation sensor
JP2006234723A (en) Method of correcting rotation angle in rotation angle detector
JP6372231B2 (en) Torque measurement method for rotating member
JP6709863B2 (en) Angle detector
JP2013061200A (en) Physical quantity measuring device for rotary machine
KR20040038766A (en) Rotation angle detecting device, and torque detecting device
JP7380289B2 (en) Torque measuring device and its manufacturing method
WO2017217298A1 (en) Torque detection apparatus
JP6006069B2 (en) Encoder and encoder error detection method
JP2006133045A (en) Rotation detection device, and rolling bearing unit with load measuring device
JP5712759B2 (en) Physical quantity measuring device for gear transmission
JP2012098268A5 (en)
JP4823021B2 (en) Rotation detection device and bearing with rotation detection device
JP6476612B2 (en) Contact angle measuring method and contact angle measuring device
JPH11230838A (en) Torque meter
JP4867534B2 (en) Motor speed detection device
JP6075203B2 (en) Rotating machine with physical quantity measuring device
JP2013156185A (en) Physical amount measuring instrument for rotary machine
JP5348041B2 (en) Physical quantity measuring device for rolling bearing units
JP2019219169A (en) Torque measurement device
JP6614788B2 (en) Rotational speed measuring device, transmission control system, and program
JP2019032227A (en) Rotation transmission apparatus having torque measurement apparatus, and torque measurement method of rotation shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150