WO2021006036A1 - Control device for flow control valve - Google Patents

Control device for flow control valve Download PDF

Info

Publication number
WO2021006036A1
WO2021006036A1 PCT/JP2020/024677 JP2020024677W WO2021006036A1 WO 2021006036 A1 WO2021006036 A1 WO 2021006036A1 JP 2020024677 W JP2020024677 W JP 2020024677W WO 2021006036 A1 WO2021006036 A1 WO 2021006036A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall temperature
target
internal combustion
combustion engine
temperature
Prior art date
Application number
PCT/JP2020/024677
Other languages
French (fr)
Japanese (ja)
Inventor
大介 中西
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021006036A1 publication Critical patent/WO2021006036A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present disclosure relates to a control device for a flow control valve.
  • Patent Document 1 Conventionally, there is a control device for a flow control valve described in Patent Document 1 below.
  • the flow rate control valve described in Patent Document 1 is mounted on a vehicle and is provided in a cooling water circulation circuit that circulates cooling water between an internal combustion engine and a radiator.
  • the radiator cools the cooling water by exchanging heat between the cooling water and the outside air.
  • the flow control valve regulates the flow rate of the cooling water supplied to the internal combustion engine.
  • the control device described in Patent Document 1 controls the opening degree of the flow control valve according to the load of the internal combustion engine.
  • this control device increases the flow rate of the cooling water flowing through the radiator by opening the flow rate control valve when the internal combustion engine is in a high load state, and the temperature of the cooling water. To reduce. As a result, the cylinder wall temperature of the internal combustion engine can be lowered, so that the internal combustion engine can be appropriately cooled even when the combustion gas temperature of the internal combustion engine rises due to a high load state. Become.
  • this control device closes the flow rate control valve to reduce the flow rate of the cooling water flowing through the radiator and raise the temperature of the cooling water. ..
  • the cylinder wall temperature of the internal combustion engine can be raised, so that the temperature of the lubricating oil of the internal combustion engine rises due to the heat of the cooling water.
  • the viscosity of the lubricating oil is lowered, so that the friction generated between the piston and the cylinder of the internal combustion engine can be reduced.
  • the wall temperature of the cylinder can be raised, the cooling loss of the internal combustion engine can be reduced.
  • the cooling loss of the internal combustion engine is a loss of energy that cannot be taken out as power from the internal combustion engine as a result of the heat energy generated by the combustion of the internal combustion engine being absorbed by the cylinder.
  • the cylinder has a cylinder with respect to the target wall temperature, which is the target value of the cylinder wall temperature, due to various factors.
  • a response delay occurs in the actual wall temperature, which is the actual wall temperature.
  • Factors that cause such a response delay in the actual wall temperature of the internal combustion engine are, for example, the influence of the control response delay, the response delay of the actuator that drives the valve body of the flow control valve, the response delay of the radiator, and the heat capacity of the cooling water. And so on.
  • the actual wall temperature of the internal combustion engine deviates from the optimum temperature in each region of the load of the internal combustion engine. There is a risk of deteriorating the fuel efficiency of the internal combustion engine.
  • An object of the present disclosure is to provide a control device for a flow control valve capable of further improving the fuel efficiency of an internal combustion engine.
  • the flow control valve control device regulates the flow rate of the cooling water circulating between the internal combustion engine of the vehicle and the radiator.
  • the control device includes a target opening degree setting unit, an opening degree control unit, and a control parameter changing unit.
  • the target opening degree setting unit sets the target opening degree of the flow control valve for making the actual wall temperature, which is the actual temperature of the cylinder wall temperature of the internal combustion engine, follow the target wall temperature.
  • the opening degree control unit controls the actual opening degree, which is the actual opening degree of the flow control valve, to the target opening degree.
  • the control parameter changing unit changes the control parameter that controls the operation of the flow control valve.
  • the target opening setting unit sets the target wall temperature to the first target wall temperature set value when the internal combustion engine is in a high load state, and sets the target wall temperature when the internal combustion engine is in a low load state. Set to the second target wall temperature set value, which is higher than the first target wall temperature set value.
  • the control parameter changing unit is more than when the absolute value of the deviation between the actual wall temperature and the target wall temperature is less than or equal to the predetermined value. Change the control parameters so that the response speed of the actual wall temperature becomes faster.
  • the target wall temperature of the internal combustion engine can be switched according to the load state of the internal combustion engine, so that the fuel efficiency of the internal combustion engine can be improved.
  • the absolute value of the deviation between the actual wall temperature of the internal combustion engine and the target wall temperature becomes larger than the predetermined value
  • the response speed of the actual wall temperature of the internal combustion engine becomes faster by changing the control parameter of the flow control valve. Therefore, the actual wall temperature of the internal combustion engine changes rapidly toward the target wall temperature.
  • the period in which the actual wall temperature of the internal combustion engine deviates significantly from the target wall temperature can be shortened, and therefore, deterioration of fuel efficiency of the internal combustion engine caused by such dissociation can be suppressed. In other words, the fuel efficiency of the internal combustion engine can be further improved.
  • FIG. 1 is a block diagram showing a schematic configuration of a vehicle cooling water circulation system according to the first embodiment.
  • FIG. 2 is a perspective view showing a perspective structure of the flow control valve of the first embodiment.
  • FIG. 3 is a diagram schematically showing the positional relationship between the inner wall surface of the main body and the valve body in the flow control valve of the first embodiment.
  • 4 (A) to 4 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve and the opening ratio of the first to third outflow ports.
  • FIG. 5 is a block diagram showing an electrical configuration of the flow control valve of the first embodiment.
  • FIG. 6 is a flowchart showing a procedure of processing executed by the ECU of the first embodiment.
  • FIG. 7 is a control block diagram showing a procedure of control processing of the ECU of the first embodiment.
  • FIG. 8 is a map for calculating the calorific value from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment.
  • FIG. 9 is a map for calculating the target outlet water temperature from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment.
  • FIG. 10 is a map for calculating the flow rate when the valve is fully opened from the rotation speed of the internal combustion engine used by the ECU of the first embodiment.
  • FIG. 11 is a map for obtaining the flow rate ratio from the rotation position of the valve body of the flow rate control valve used by the ECU of the first embodiment.
  • FIG. 12 is a control block diagram showing a procedure of control processing of the ECU of the first embodiment.
  • FIG. 13 is a graph showing the relationship between the duty ratio and the displacement speed of the valve body in the flow control valve of the first embodiment.
  • FIG. 14 is a graph showing an example of changes in the temperature of the cooling water.
  • FIG. 15 is a diagram schematically showing the factors of response delay in the cooling water circulation system.
  • FIG. 16 is a map for calculating the target outlet water temperature from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment.
  • FIG. 17 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the first embodiment.
  • FIG. 18 is a graph schematically showing a mode of changing the wall temperature of the internal combustion engine by the flow rate control valve of the first embodiment.
  • 19 (A) to 19 (G) are graphs showing changes in the intake air amount, outlet water temperature, outlet water temperature deviation, duty ratio, valve position, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the first embodiment.
  • FIG. 20 is a control block diagram showing a procedure of control processing of the ECU of the second embodiment.
  • FIG. 21 is a flowchart showing a procedure of processing executed by the ECU of the second embodiment.
  • FIG. 22 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the second embodiment.
  • FIG. 23 (A) to 23 (D) are graphs showing changes in the valve position, the displacement speed of the valve body, the integrated value displacement amount, and the operation frequency in the flow control valve of the cooling water circulation system of the second embodiment.
  • FIG. 24 is a graph showing the relationship between the absolute value of the outlet water temperature deviation of the second embodiment and the duty ratio.
  • FIG. 25 is a control block diagram showing a procedure of control processing of the filtering unit of the third embodiment.
  • FIG. 26 is a control block diagram showing a procedure of control processing of the ECU of the third embodiment.
  • FIG. 27 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the third embodiment.
  • FIG. 28 is a graph showing the relationship between the absolute value of the outlet water temperature deviation used by the control parameter changing unit of the third embodiment and the smoothing time constant.
  • FIGS. 29 (A) to 29 (G) show changes in the intake air amount, outlet water temperature, outlet water temperature deviation, valve position, smoothing time constant, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the third embodiment. It is a graph which shows.
  • FIG. 30 is a control block diagram showing a procedure of control processing of the ECU of the fourth embodiment.
  • FIG. 31 is a diagram schematically showing the relationship between the control executed by the control parameter changing unit of the fourth embodiment and the outlet water temperature deviation.
  • FIG. 32 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the fourth embodiment.
  • FIG. 33 (A) to 33 (G) are graphs showing changes in intake air amount, outlet water temperature, outlet water temperature deviation, valve position, control state, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the fourth embodiment.
  • Is. 34 (A) to 34 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve of the fifth embodiment and the opening ratio of the first to third outflow ports.
  • FIG. 35 is a diagram schematically showing the relationship between the control executed by the control parameter changing unit of the fifth embodiment and the outlet water temperature deviation.
  • FIG. 36 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the fifth embodiment.
  • FIG. 37 (A) to 37 (G) are graphs showing changes in intake air amount, outlet water temperature, outlet water temperature deviation, valve position, control state, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the fifth embodiment.
  • Is. 38 (A) to 38 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve of the sixth embodiment and the opening ratio of the first to third outflow ports.
  • FIG. 39 is a flowchart showing a part of the processing procedure executed by the control parameter changing unit of the fifth embodiment.
  • FIG. 40 is a flowchart showing a part of the processing procedure executed by the control parameter changing unit of the fifth embodiment.
  • the cooling water circulation system 10 is a system that circulates cooling water to an internal combustion engine 20, a radiator 21, a heater core 22, an EGR (Exhaust Gas Recirculation) cooler 23, and an oil cooler 24 mounted on a vehicle.
  • the internal combustion engine 20 and the radiator 21 are connected in an annular shape by the flow path W10.
  • the cooling water circulation system 10 includes a pump 11 and a flow rate control valve 12 in the annular flow path W10.
  • the pump 11 is provided on the upstream side of the internal combustion engine 20 in the annular flow path W10.
  • the flow rate control valve 12 is provided on the downstream side of the internal combustion engine 20 in the annular flow path W10.
  • the pump 11 sucks the cooling water flowing through the annular flow path W10 and pumps the sucked cooling water to the internal combustion engine 20.
  • the cooling water circulates in the annular flow path W10.
  • the pump 11 is a mechanical pump driven by the power of the internal combustion engine 20.
  • the cooling water pumped from the pump 11 passes through the cylinder block 201 and the cylinder head 202 in this order.
  • heat exchange is performed between them and the cooling water to cool the cylinder block 201 and the cylinder head 202.
  • the cooling water discharged from the cylinder head 202 flows into the flow rate control valve 12 through the annular flow path W10.
  • the flow rate control valve 12 includes an inflow port P10 and first to third outflow ports P11 to P13.
  • the internal combustion engine 20 is connected to the inflow port P10 via the annular flow path W10.
  • a radiator 21 is connected to the first outflow port P11 via an annular flow path W10.
  • the first bypass flow path W11 is connected to the second outflow port P12.
  • the first bypass flow path W11 is a flow path that connects the second outflow port P12 of the flow control valve 12 to the intermediate portion between the radiator 21 and the pump 11 in the annular flow path W10.
  • a second bypass flow path W12 is connected to the third outflow port P13.
  • the second bypass flow path W12 is a flow path that connects the third outflow port P13 of the flow control valve to the intermediate portion between the radiator 21 and the pump 11 in the annular flow path W10.
  • the flow rate control valve 12 controls the open / closed state of each outflow port P11 to P13 to control the flow rate of the cooling water flowing through the radiator 21, the flow rate of the cooling water flowing through the first bypass flow path W11, and the second bypass flow path W12. Control the flow rate of cooling water flowing through.
  • Cooling water flows into the radiator 21 from the flow control valve 12 via the annular flow path W10.
  • the radiator 21 cools the cooling water by exchanging heat between the cooling water flowing inside the radiator 21 and the outside air blown by the radiator fan 21a.
  • the outside air is the air outside the vehicle.
  • the cooling water cooled in the radiator 21 is returned to the pump 11 through the annular flow path W10.
  • a heater core 22 and an EGR cooler 23 are arranged in the first bypass flow path W11.
  • the heater core 22 is arranged in an air conditioning duct of an air conditioner mounted on a vehicle.
  • the heater core 22 heats the air by exchanging heat between the cooling water flowing inside the heater core 22 and the air in the air conditioning duct blown by the heating blower 22a.
  • the heated air is blown into the vehicle interior through the air conditioning duct to heat the vehicle interior.
  • the EGR cooler 23 is arranged in an EGR passage that returns a part of the exhaust gas flowing through the exhaust pipe of the internal combustion engine 20 to the intake pipe of the internal combustion engine 20.
  • the EGR cooler 23 cools the exhaust gas returned to the intake pipe by exchanging heat between the cooling water flowing inside the EGR cooler 23 and the exhaust gas flowing through the EGR passage.
  • the cooling water that has passed through the heater core 22 and the EGR cooler 23 is returned to the pump 11 through the first bypass flow path W11 and the annular flow path W10.
  • An oil cooler 24 is arranged in the second bypass flow path W12.
  • the oil cooler 24 cools the lubricating oil by exchanging heat between the cooling water flowing inside the oil cooler 24 and the lubricating oil that lubricates each part of the internal combustion engine 20.
  • the cooling water that has passed through the oil cooler 24 is returned to the pump 11 through the second bypass flow path W12 and the annular flow path W10.
  • the heater core 22, the EGR cooler 23, and the oil cooler 24 correspond to the in-vehicle device.
  • the first outflow port P11 of the flow control valve 12 corresponds to the radiator port
  • the second outflow port P12 and the third outflow port P13 of the flow control valve 12 correspond to the in-vehicle device port
  • the second outflow port P12 corresponds to the heater core port
  • the third outflow port P13 corresponds to the oil cooler port.
  • the flow rate control valve 12 includes a main body 120 and an actuator device 121.
  • First to third outflow ports P11 to P13 are provided on the side surface of the main body 120.
  • An inflow port P10 (not shown) is provided on the bottom surface of the main body 120.
  • a cylindrical valve body for switching the open / closed state of the first to third outflow ports P11 to P13 is provided inside the main body 120.
  • FIG. 3 is a developed view of a cylindrical valve body 122 provided inside the main body 120.
  • the X direction shown in FIG. 3 indicates the circumferential direction of the valve body 122, and the Y direction indicates a direction parallel to the axial direction of the valve body 122.
  • the X1 direction which is one of the X directions
  • the X2 direction which is the opposite direction
  • the valve body 122 is formed with three openings 123a to 123c so as to be arranged in a direction parallel to the axial direction Y.
  • the openings 123a to 123c are formed in a slit shape so as to extend in the circumferential direction X of the valve body 122.
  • the rotation positions in which the openings 123a to 123c are not formed in the circumferential direction X of the valve body 122 are indicated by “P0”, and the rotations are sequentially arranged at positions deviated from the rotation position P0 in the normal rotation direction X1.
  • the positions are indicated by "P1", “P2", “P3", and "P4".
  • the opening 123a is formed so as to extend from the rotation position P3 to the rotation position P4.
  • the opening 123b is formed so as to extend from the rotation position P2 to the rotation position P4.
  • the opening 123c is formed so as to extend from the rotation position P1 to the rotation position P4.
  • three communication holes 124a to 124c are formed side by side in the axial direction Y. The communication holes 124a to 124c are communicated with the first to third outflow ports P11 to P13 shown in FIG. 2, respectively.
  • the actuator device 121 shown in FIG. 2 has a motor, and applies torque to the valve body 122 based on energization of the motor to rotate the valve body 122 in the circumferential direction X.
  • the position of the reference line DL1 in the valve body 122 changes with the rotation of the valve body 122.
  • the position of the reference line DL1 on the valve body 122 will be referred to as “communication position DL1”.
  • the valve body 122 rotates relative to the main body 120 within a range in which the communication position DL1 is displaced from the rotation position P0 to the rotation position P5.
  • the rotation position P5 is set between the rotation position P3 and the rotation position P4.
  • the communication position DL1 of the valve body 122 when the communication position DL1 of the valve body 122 is located between the rotation position P0 and the rotation position P3, the communication hole 124a of the main body 120 is not communicated with the opening 123a of the valve body 122. 1
  • the outflow port P11 is in a closed state.
  • the communication position DL1 of the valve body 122 reaches the rotation position P3, the communication position DL1 of the valve body 122 changes to the forward rotation direction X1 so that the communication hole 124a of the main body 120 and the opening 123a of the valve body 122 The area where and overlaps gradually increases. Therefore, the opening degree of the first outflow port P11 gradually increases.
  • the opening degree of the first outflow port P11 is fully opened. After that, the opening degree of the first outflow port P11 is maintained in the fully open state until the communication position DL1 of the valve body 122 reaches the rotation position P5.
  • the opening degree of the second outflow port P12 changes according to the relative positional relationship between the communication hole 124b of the main body 120 and the opening 123b of the valve body 122, and the communication hole 124c and the valve of the main body 120 change.
  • the opening degree of the third outflow port P13 changes according to the relative positional relationship of the body 122 with the opening 123c.
  • FIGS. 4 (A) to 4 (C) show the aperture ratios of the outflow ports P11 to P13 with respect to the communication position DL1 of the valve body 122.
  • the aperture ratio is defined as "0 [%]” when the outflow port is fully closed, "100 [%]” when the outflow port is fully open, and the opening of the outflow port is "0 [%]”. ] ”To“ 100 [%] ”.
  • the communication position DL1 of the valve body 122 will be referred to as "the valve position of the flow control valve 12."
  • the electrical configuration of the cooling water circulation system 10 will be described.
  • the cooling water circulation system 10 includes a first water temperature sensor 30, a second water temperature sensor 31, a crank angle sensor 32, an air flow meter 33, and an ECU (Electronic Control Unit) 40.
  • the first water temperature sensor 30 is provided in a portion of the annular flow path W10 on the upstream side of the internal combustion engine 20.
  • the first water temperature sensor 30 detects the inlet water temperature TWin, which is the temperature of the cooling water flowing into the internal combustion engine 20, and outputs a signal corresponding to the detected inlet water temperature TWin.
  • the second water temperature sensor 31 is provided in a portion of the annular flow path W10 on the downstream side of the internal combustion engine 20.
  • the second water temperature sensor 31 detects the outlet water temperature TWout, which is the temperature of the cooling water discharged from the internal combustion engine 20, and outputs a signal corresponding to the detected outlet water temperature TWout.
  • the crank angle sensor 32 shown in FIG. 5 detects the crank angle ⁇ c, which is the output shaft of the internal combustion engine 20, and outputs a signal corresponding to the detected crank angle ⁇ c.
  • the air flow meter 33 is provided in the intake pipe of the internal combustion engine 20, detects the flow rate GA of the air sucked into the internal combustion engine 20, and outputs a signal corresponding to the detected intake air amount GA.
  • the ECU 40 is mainly composed of a microcomputer having a CPU, a memory, and the like.
  • the ECU 40 controls the drive of the flow control valve 12 by executing a program stored in advance in the memory. Specifically, the output signals of the sensors 30 to 33 are taken into the ECU 40.
  • the ECU 40 acquires information on the inlet water temperature TWin, the outlet water temperature TWout, the crank angle ⁇ c, and the intake air amount GA based on the output signals of the sensors 30 to 33.
  • the flow rate control valve 12 is provided with a position sensor 125 for detecting the valve position.
  • the ECU 40 also acquires information on the valve position of the flow control valve 12 detected by the position sensor 125.
  • the ECU 40 sets the target rotation position of the valve body 122 of the flow rate control valve 12 based on the inlet water temperature TWin, the outlet water temperature TWout, the crank angle ⁇ c, and the intake air amount GA, and the valve position of the flow rate control valve 12 is the target rotation.
  • the flow control valve 12 is controlled so as to be in the position.
  • the ECU 40 corresponds to the control device.
  • the control for making the valve position of the flow rate control valve 12 follow the target rotation position corresponds to the control for making the actual opening degree of the flow rate control valve 12 follow the target opening degree.
  • the ECU 40 executes the process shown in FIG. 6 based on the outlet water temperature TWout.
  • the ECU 40 starts the process shown in FIG. 6 when the internal combustion engine 20 starts.
  • the ECU 40 first executes the water stop control as the process of step S10.
  • the valve position of the flow rate control valve 12 is set in the range from the rotation position P0 to the rotation position P1 shown in FIG. That is, in the water stop control, all the outflow ports P11 to P13 of the flow rate control valve 12 are set to the closed state.
  • the cooling water circulation system 10 shown in FIG. 1 since the cooling water does not circulate, heat dissipation from the cooling water in the flow paths W10 to W12 other than the internal combustion engine 20, that is, heat loss is suppressed.
  • the heat generated from the internal combustion engine 20 can be effectively used for warming up the internal combustion engine 20.
  • the internal combustion engine 20 can be warmed up at an early stage even at the time of cold start of the internal combustion engine 20.
  • the ECU 40 determines whether or not the outlet water temperature TWout becomes larger than the first temperature threshold value TWth1 as the process of step S11 following step S10.
  • the ECU 40 makes a negative determination in the process of step S11 and continues the water stop control in step S10.
  • the ECU 40 makes an affirmative judgment in the process of step S11 and executes heat distribution control as the process of step S12.
  • the valve position of the flow control valve 12 is set in the range from the rotation position P1 to the rotation position P3 shown in FIG. That is, in the heat distribution control, the second outflow port P12 of the flow control valve 12 is set to the open state or the closed state, and the third outflow port P13 is also set to the open state or the closed state. Further, the first outflow port P11 is maintained in the closed state. In this case, in the cooling water circulation system 10 shown in FIG.
  • the ECU 40 determines whether or not the outlet water temperature TWout becomes larger than the second temperature threshold value TWth2 as the process of step S13 following step S12.
  • the second temperature threshold value TWth2 is set to a value larger than the first temperature threshold value TWth1.
  • the ECU 40 makes a negative determination in the process of step S13 and continues the heat distribution control in step S12.
  • the ECU 40 makes an affirmative judgment in the process of step S13, and executes wall temperature switching control as the process of step S14.
  • the valve position of the flow rate control valve 12 is set in the range from the rotation position P6 to the rotation position P5 shown in FIG.
  • the rotation position P6 is set at a position slightly deviated from the rotation position P3 in the reverse direction X2.
  • the first outflow port P11 of the flow control valve 12 is set to the valve open state or the valve closed state.
  • the second outflow port P12 and the third outflow port P13 are maintained in the fully open state.
  • the cooling water that has absorbed the heat of the internal combustion engine 20 is supplied to the radiator 21 through the first outflow port P11 of the flow control valve 12, so that the cooling water is supplied to the radiator 21.
  • the ECU 40 adjusts the temperature of the cooling water flowing through the internal combustion engine 20 by changing the open / closed state of the first outflow port P11 according to the load state of the internal combustion engine 20.
  • the ECU 40 changes the flow rate of the cooling water supplied to the radiator 21 by changing the first outflow port P11 in the valve opening direction. increase. As a result, the cooling water is easily cooled in the radiator 21, so that the temperature of the cooling water supplied to the internal combustion engine 20 is lowered. Therefore, since the wall temperature of the cylinders 201 and 202 of the internal combustion engine 20 is lowered, knocking is less likely to occur in the internal combustion engine 20. Therefore, it is not necessary to execute the control of shifting the ignition timing of the internal combustion engine 20 to the retard side in order to suppress knocking.
  • the actual wall temperature of the cylinders 201 and 202 of the internal combustion engine 20 is simply referred to as "the wall temperature of the internal combustion engine 20".
  • the ECU 40 reduces the flow rate of the cooling water supplied to the radiator 21 by changing the first outflow port P11 in the valve closing direction. As a result, it becomes difficult for the cooling water to be cooled, so that the temperature of the cooling water flowing through the internal combustion engine 20 rises. Therefore, since the actual wall temperature of the internal combustion engine 20 rises, the cooling loss of the internal combustion engine 20 is reduced and the friction of the internal combustion engine 20 is reduced. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
  • the ECU 40 of the present embodiment utilizes the fact that there is a correlation between the wall temperature of the internal combustion engine 20 and the outlet water temperature TWout of the internal combustion engine 20 as a parameter indicating the wall temperature of the internal combustion engine 20.
  • the outlet water temperature TWout of 20 is used.
  • the ECU 40 includes a target opening degree setting unit 50 and an opening degree control unit 60 for executing wall temperature switching control.
  • the target opening degree setting unit 50 sets the target outlet water temperature according to the load state of the internal combustion engine 20, and of the valve body of the flow rate control valve 12 for making the actual outlet water temperature TWout follow the set target outlet water temperature.
  • the control to make the outlet water temperature TWout follow the target outlet water temperature corresponds to the control to make the actual wall temperature of the internal combustion engine 20 follow the target wall temperature.
  • the target opening degree setting unit 50 includes a feedforward control unit 51, a feedback control unit 52, and a multiplication unit 53.
  • the feedforward control unit 51 sets a target outlet water temperature according to the load of the internal combustion engine 20, and then calculates a target rotation position Pv * for feedforward controlling the outlet water temperature TWout of the internal combustion engine 20 to the target outlet water temperature. It is a part.
  • the feed forward control unit 51 includes a rotation speed calculation unit 510, an intake air amount calculation unit 511, an inlet water temperature calculation unit 512, a calorific value calculation unit 513, a target outlet water temperature calculation unit 514, and a flow rate calculation unit 515. It has a subtraction unit 516, a division units 517a and 517b, a reference target opening degree calculation unit 518, and a filtering unit 519.
  • the output signal of the crank angle sensor 32 is input to the rotation speed calculation unit 510.
  • the rotation speed calculation unit 510 calculates the rotation speed Np of the internal combustion engine 20 by calculating the crank angle ⁇ c based on the output signal of the crank angle sensor 32 and calculating the amount of time change of the calculated crank angle ⁇ c. To do.
  • the output signal of the air flow meter 33 is input to the intake air amount calculation unit 511.
  • the intake air amount calculation unit 511 calculates the intake air amount GA based on the output signal of the air flow meter 33. Since there is a correlation between the intake air amount GA and the load of the internal combustion engine 20, in the present embodiment, the intake air amount GA is used as a parameter representing the load state of the internal combustion engine 20.
  • the output signal of the first water temperature sensor 30 is input to the inlet water temperature calculation unit 512.
  • the inlet water temperature calculation unit 512 calculates the inlet water temperature TWin of the internal combustion engine 20 based on the output signal of the first water temperature sensor 30.
  • the rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 and the intake air amount GA calculated by the intake air amount calculation unit 511 are input to the calorific value calculation unit 513.
  • the calorific value calculation unit 513 calculates the calorific value Q based on the rotation speed Np of the internal combustion engine 20 and the intake air amount GA by using the map shown in FIG.
  • the calorific value Q is the amount of heat transferred from the internal combustion engine 20 to the cooling water. In the map shown in FIG. 8, the calorific value Q increases as the rotational speed Np of the internal combustion engine 20 increases and the intake air amount GA increases.
  • the target outlet water temperature calculation unit 514 includes a rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 and an intake air amount GA calculated by the intake air amount calculation unit 511. Is entered.
  • the target outlet water temperature calculation unit 514 calculates the target outlet water temperature TWout * based on the rotation speed Np of the internal combustion engine 20 and the intake air amount GA by using the map shown in FIG. In the map shown in FIG. 9, in the region where the rotation speed Np of the internal combustion engine 20 is slow and the intake air amount GA is large, that is, in the region where the internal combustion engine 20 is in a high load state, the target outlet water temperature TWout * is the first low temperature.
  • the target water temperature set value TWa1 is set.
  • the target outlet water temperature TWout * is higher than the first target water temperature set value TWa1. It is set to the high temperature second target water temperature set value TWa2.
  • the first target water temperature set value TWa1 corresponds to the first target wall temperature set value
  • the second target water temperature set value TWa2 corresponds to the second target wall temperature set value.
  • the rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 is input to the flow rate calculation unit 515.
  • the flow rate calculation unit 515 calculates the flow rate m when the valve is fully opened based on the rotation speed Np of the internal combustion engine 20 by using the map shown in FIG.
  • the flow rate m when the valve is fully open is the flow rate of the cooling water that passes through the internal combustion engine 20 when all the outflow ports P11 to P13 are in the fully open state.
  • the pump 11 shown in FIG. 1 is a mechanical pump driven based on the power of the internal combustion engine 20
  • the flow rate m when the valve is fully opened is basically as shown in FIG. , Is proportional to the rotation speed Np of the internal combustion engine 20.
  • the target outlet water temperature TWout * calculated by the target outlet water temperature calculation unit 514 and the inlet water temperature TWin calculated by the inlet water temperature calculation unit 512 are input to the subtraction unit 516.
  • the calorific value Q of the internal combustion engine 20 calculated by the calorific value calculation unit 513 and the target water inlet / outlet temperature difference ⁇ T calculated by the subtraction unit 516 are input.
  • the division unit 517a calculates the target flow rate m * of the cooling water based on the following equation f1.
  • "c" in formula f1 shows the specific heat of cooling water.
  • the mass of the cooling water is approximated by the flow rate of the cooling water.
  • the target flow rate m * calculated by the division unit 517a and the valve fully open flow rate m calculated by the flow rate calculation unit 515 are input to the division unit 517b.
  • the target flow rate ratio Rf calculated by the division unit 517b is input to the reference target opening calculation unit 518.
  • the reference target opening degree calculation unit 518 calculates the target rotation position Pvb * of the valve body 122 of the flow rate control valve 12 from the target flow rate ratio Rf by using the map shown in FIG.
  • the map shown in FIG. 11 is a map for converting the flow rate ratio into the rotation position of the valve body of the flow rate control valve 12. This map is prepared in advance based on the opening ratio characteristic of the first outflow port P11 according to the valve position of the flow control valve 12.
  • the target rotation position Pvb * calculated by the reference target opening degree calculation unit 518 is input to the filtering unit 519.
  • the filtering unit 519 smoothes the target rotation position Pvb * by performing a filtering process based on the low-pass filter on the target rotation position Pvb * calculated by the reference target opening degree calculation unit 518.
  • the target rotation position Pvb * that has been filtered by the filtering unit 519 is input to the multiplication unit 53 as a calculated value of the feedforward control unit 51.
  • the feedback control unit 52 is a part that calculates a target rotation position Pvb * for feedback controlling the outlet water temperature TWout of the internal combustion engine 20 to the target outlet water temperature.
  • the feedback control unit 52 includes an outlet water temperature calculation unit 520, a subtraction unit 521, and a PI control unit 522.
  • the output signal of the second water temperature sensor 31 is input to the outlet water temperature calculation unit 520.
  • the outlet water temperature calculation unit 520 calculates the outlet water temperature TWout of the internal combustion engine 20 based on the output signal of the second water temperature sensor 31.
  • the outlet water temperature TWout of the internal combustion engine 20 calculated by the outlet water temperature calculation unit 520 and the target outlet water temperature TWout * calculated by the target outlet water temperature calculation unit 514 of the feedforward control unit 51 are input to the subtraction unit 521. ..
  • the subtraction unit 521 calculates the outlet water temperature deviation ⁇ TWout, which is a deviation thereof, by subtracting the outlet water temperature TWout from the target outlet water temperature TWout *.
  • the outlet water temperature deviation ⁇ TWout calculated by the subtraction unit 521 is input to the PI control unit 522.
  • the PI control unit 522 calculates the feedback correction amount ⁇ for making the outlet water temperature TWout follow the target outlet water temperature TWout * by executing the PI control based on the outlet water temperature deviation ⁇ TWout.
  • the feedback correction amount ⁇ calculated by the PI control unit 522 is input to the multiplication unit 53 as a calculated value of the feedback control unit 52.
  • the multiplication unit 53 calculates the final target rotation position Pv * by multiplying the target rotation position Pvb *, which is the calculated value of the feedforward control unit 51, by the feedback correction amount ⁇ , which is the calculated value of the feedback control unit 52. ..
  • the final target rotation position Pv * calculated by the multiplication unit 53 is output to the opening degree control unit 60 shown in FIG. 5 as a calculated value of the target opening degree setting unit 50.
  • the opening degree control unit 60 includes a subtraction unit 61, a proportional control unit 62, an integration unit 63, an integration control unit 64, an addition unit 65, and a restriction unit 66. ..
  • the final target rotation position Pv * calculated by the target opening degree setting unit 50 and the valve position Pv of the flow rate control valve 12 detected by the position sensor 125 of the flow rate control valve 12 are input to the subtraction unit 61. ..
  • the rotation position deviation ⁇ P calculated by the subtraction unit 61 is input to the proportional control unit 62.
  • the proportional control unit 62 calculates the proportional term Dp of the duty ratio D by executing the proportional control based on the rotation position deviation ⁇ P.
  • the duty ratio D indicates the ratio of the energization time of the actuator device 121 of the flow control valve 12.
  • the duty ratio D of this embodiment is set in the range of "-100 [%] ⁇ D ⁇ 100 [%]". When the duty ratio D is set to a positive value, the actuator device 121 is energized so that the valve body 122 rotates in the forward rotation direction X1.
  • the actuator device 121 When the duty ratio D is set to a negative value, the actuator device 121 is energized so that the valve body 122 rotates in the reverse direction X2. Further, the larger the absolute value of the duty ratio D, the longer the energization time of the actuator device 121. Therefore, a substantially proportional relationship as shown in FIG. 13 is established between the duty ratio D and the displacement speed of the valve body 122 of the flow control valve 12.
  • the rotation position deviation ⁇ P calculated by the subtraction unit 61 is input to the integration unit 63.
  • the integrating unit 63 calculates a temporal integrated value of the rotation position deviation ⁇ P.
  • the integral value of the rotation position deviation ⁇ P calculated by the integral unit 63 is input to the integral control unit 64.
  • the integration control unit 64 calculates the integration term Di of the duty ratio D by executing the integration control based on the integration value of the rotation position deviation ⁇ P.
  • the proportional term Dp of the duty ratio D calculated by the proportional control unit 62 and the integral term Di of the duty ratio D calculated by the integral control unit 64 are input to the addition unit 65.
  • the addition unit 65 calculates the final duty ratio D by adding the proportional term Dp of the duty ratio D and the integral term Di of the duty ratio D.
  • the duty ratio D calculated by the addition unit 65 is input to the restriction unit 66.
  • the limiting unit 66 limits the value of the duty ratio D to "-40 [%] ⁇ D ⁇ 40 [%]". For example, when the duty ratio D calculated by the addition unit 65 is "60 [%]", the duty ratio D is limited to "40 [%]”. Further, for example, when the duty ratio D calculated by the addition unit 65 is "-60 [%]", the duty ratio D is limited to "-40 [%]”.
  • the duty ratio D calculated by the limiting unit 66 is input to the flow control valve 12 as an output signal of the ECU 40.
  • the valve position Pv of the valve body 122 of the flow control valve 12 is controlled to follow the final target rotation position Pv *.
  • the target outlet water temperature TWout * is set at time t10 as shown by the alternate long and short dash line in the figure. 2
  • the target water temperature set value TWa2 is changed to the first target water temperature set value TWa1.
  • the actual outlet water temperature TWout reaches the first target water temperature set value TWa1 at the time t11 when the predetermined time T11 has elapsed from the time t10.
  • the delay time T11 at this time is about 5 to 20 seconds.
  • the target outlet water temperature TWout * increases from the first target water temperature set value TWa1 to the second target water temperature set value TWa2.
  • the actual outlet water temperature TWout reaches the second target water temperature set value TWa2 at the time t13 when the predetermined time T12 has elapsed from the time t12.
  • the delay time T12 at this time is about 10 to 20 seconds.
  • Factors that cause such a response delay of about several tens of seconds include, for example, a delay in control instructions in the ECU 40, a delay in response to the valve body 122 of the flow rate control valve 12, a delay in response to the flow rate of cooling water in the cooling water circulation system 10, and cooling.
  • the temperature of the cooling water flowing through the internal combustion engine 20 changes in the flow as shown in FIG.
  • the intake air amount GA of the internal combustion engine 20 increases.
  • the target rotation position Pvb * is changed so as to correspond to the changed target outlet water temperature TWout *.
  • the valve position Pv of the flow control valve 12 is changed.
  • the opening degrees of the outflow ports P11 to P13 of the flow rate control valve 12 are changed, so that the flow rate of the cooling water flowing through the cooling water circulation system 10 changes.
  • the amount of heat radiated from the radiator 21 and the amount of heat received by the internal combustion engine 20 change based on the change in the flow rate of the cooling water, resulting in a change in the temperature of the cooling water.
  • various response delays occur in the change of each parameter. Specifically, when the amount of depression of the accelerator pedal changes, the response of the intake air amount GA to the change is delayed. This first response delay is due to a delay in the operation of the internal combustion engine 20 and the like. Further, after the intake air amount GA changes, the response of the valve position Pv of the flow rate control valve 12 and the response of the flow rate of the cooling water of the cooling water circulation system 10 to the change are delayed. This second response delay is due to a response delay of the control logic of the flow control valve 12, a mechanical response delay of the flow control valve 12, and the like.
  • the wall temperature of the internal combustion engine 20 may deviate from an appropriate temperature for a long period of time.
  • the wall temperature switching control when the internal combustion engine 20 shifts from the low load state to the high load state, the outlet water temperature TWout is lowered to the first target water temperature set value TWa1.
  • the response of the cooling water temperature is delayed, the state in which the outlet water temperature TWout deviates from the first target water temperature set value TWa1 to the high temperature side may continue. That is, there is a possibility that the wall temperature of the internal combustion engine 20 will continue to be high. In this case, knocking is likely to occur in the internal combustion engine 20, so that the ignition timing control or the like for avoiding knocking is executed in the internal combustion engine 20, which may deteriorate the fuel consumption of the internal combustion engine 20.
  • the outlet water temperature TWout is raised to the second target water temperature set value TWa2.
  • the state in which the outlet water temperature TWout deviates to the low temperature side with respect to the second target water temperature set value TWa2 may continue. That is, there is a possibility that the wall temperature of the internal combustion engine 20 will continue to be low. In this case, the cooling loss of the internal combustion engine 20 increases and the friction increases, so that the fuel consumption of the internal combustion engine 20 may deteriorate.
  • the region that the rotation speed Np of the internal combustion engine 20 and the intake air amount GA can take is, for example, the region surrounded by the alternate long and short dash line L20 in FIG.
  • the boundary line between the first target water temperature set value TWa1 and the second target water temperature set value TWa2 is set to the first boundary line L11, the area surrounded by the alternate long and short dash line L20. Most of them are in the setting area of the second target water temperature set value TWa2. Therefore, the target outlet water temperature TWout * is rarely switched between the first target water temperature set value TWa1 and the second target water temperature set value TWa2.
  • the boundary line between the first target water temperature set value TWa1 and the second target water temperature set value TWa2 is set to the second boundary line L12
  • the region surrounded by the alternate long and short dash line L20 is the first. It is located so as to straddle the setting area of the target water temperature set value TWa1 and the setting area of the second target water temperature set value TWa2. Therefore, the target outlet water temperature TWout * is frequently switched between the first target water temperature set value TWa1 and the second target water temperature set value TWa2. Therefore, the deterioration of the fuel efficiency of the internal combustion engine due to the delay in the response of the temperature of the cooling water described above becomes remarkable.
  • the response speed of the temperature of the cooling water should be increased.
  • the factors that deteriorate the responsiveness of the temperature of the cooling water include the factors corresponding to the first to fourth response delays as shown in FIG.
  • the factor corresponding to the second response delay that is, the response delay of the flow rate control valve 12 is improved to respond to the temperature of the cooling water. Increase the speed.
  • the ECU 40 further includes a control parameter changing unit 70.
  • the control parameter changing unit 70 increases the response speed of the temperature of the cooling water by changing the control parameter of the flow rate control valve 12.
  • the control parameter changing unit 70 of the present embodiment changes the limit value of the duty ratio D set in the limiting unit 66 as a change of the control parameter of the flow rate control valve 12.
  • FIG. 17 is a flowchart showing a procedure of a process in which the control parameter changing unit 70 changes the limit value of the duty ratio D.
  • the control parameter changing unit 70 repeatedly executes the process shown in FIG. 17 at a predetermined cycle during the period during which the wall temperature switching control is being executed in the ECU 40.
  • the control parameter changing unit 70 sets the absolute value
  • the outlet water temperature deviation ⁇ TWout the calculated value of the subtraction unit 521 shown in FIG. 7 is used.
  • the outlet water temperature TWout is set to the actual wall of the internal combustion engine 20 by utilizing the correlation between the outlet water temperature TWout of the cooling water discharged from the internal combustion engine 20 and the actual wall temperature of the internal combustion engine 20. It is used as warm.
  • the outlet water temperature TWout also corresponds to the temperature of the cooling water flowing through the internal combustion engine 20.
  • the target outlet water temperature TWout * corresponds to the target wall temperature, which is the target value of the actual wall temperature of the internal combustion engine.
  • the control parameter changing unit 70 processes in step S20 when the absolute value
  • the normal control is a process of limiting the value of the duty ratio D to a normal range, that is, a range of “
  • the control parameter changing unit 70 is in step S20 when the absolute value
  • the control parameter changing unit 70 executes the response speed improvement control as the process of step S21.
  • the response speed improvement control is a process of setting the value of the duty ratio D in the range of “
  • the target outlet water temperature TWout * changes from the second target water temperature set value TWa2 to the first target water temperature.
  • the set value is changed to TWa1. Therefore, as shown in FIG. 19C, the outlet water temperature deviation ⁇ TWout, which is the deviation between the target outlet water temperature TWout * and the outlet water temperature TWout, changes to a negative value.
  • the response speed improvement control is executed, and the duty ratio D is limited to “
  • the valve position Pv of the flow control valve 12 changes as shown by the alternate long and short dash line in FIG. 19 (E). To do. That is, the valve position Pv of the flow control valve 12 changes steeperly to the final target rotation position Pv * when the duty ratio D limitation is relaxed than when the duty ratio D is limited. Therefore, as shown in FIG. 19F, the flow rate of the cooling water changes significantly when the duty ratio D limitation is relaxed than when the duty ratio D is limited. As a result, as shown in FIG. 19 (G), the initial wall temperature of the internal combustion engine 20 is higher when the duty ratio D limitation is relaxed than when the duty ratio D is limited. The change becomes steep.
  • FIG. 19 (E) when the valve position Pv of the flow control valve 12 reaches the final target rotation position Pv * after the time t20, the flow rate of the cooling water is changed as shown in FIG. 19 (F). Converges to a predetermined flow rate. As the flow rate of the cooling water increases, as shown in FIG. 19B, the outlet water temperature TWout of the internal combustion engine 20 begins to decrease toward the target outlet water temperature TWout * after time t20. As a result, as shown in FIG. 19C, the outlet water temperature deviation ⁇ TWout changes toward zero. When the outlet water temperature deviation ⁇ TWout reaches “ ⁇ Tth10” at time t21, normal control is executed.
  • FIGS. 19 (A) when the intake air amount GA decreases at time t22, that is, when the internal combustion engine 20 becomes a low load state
  • FIGS. 19 (B) to 19 (G) show.
  • the outlet water temperature TWout of the internal combustion engine 20 As shown, the outlet water temperature deviation ⁇ TWout, the duty ratio D, the valve position Pv of the flow rate control valve 12, the flow rate of the cooling water, and the actual wall temperature of the internal combustion engine 20 change.
  • the actual wall temperature of the internal combustion engine 20 is higher when the duty ratio D limitation is relaxed than when the duty ratio D is limited. Can be changed sharply.
  • the target opening degree setting unit 50 of the present embodiment sets the target outlet water temperature TWout * to the first target water temperature set value TWa1 when the internal combustion engine 20 is in a high load state, and the internal combustion engine 20. Is in a low load state, the target outlet water temperature TWout * is set to the second target water temperature set value TWa2.
  • the control parameter changing unit 70 is an internal combustion engine when the absolute value
  • the limitation of the duty ratio D is relaxed so that the response speed of the temperature of the cooling water flowing through 20 is increased. As described above, in the present embodiment, the duty ratio D corresponds to the control parameter changed according to the absolute value
  • the temperature of the cooling water flowing through the internal combustion engine 20 is switched according to the load state of the internal combustion engine 20, so that the fuel consumption of the internal combustion engine 20 can be improved.
  • the outlet water temperature TWout changes rapidly toward the target outlet water temperature TWout *. That is, the actual wall temperature of the internal combustion engine 20 rapidly changes toward the target wall temperature. Therefore, since the time during which the actual wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. In other words, the fuel efficiency of the internal combustion engine 20 can be improved.
  • step S20 when the control parameter changing unit 70 makes an affirmative judgment in the process of step S20, that is, when the absolute value
  • the operation frequency Fv of the actuator device 121 and the outlet water temperature TWout of the internal combustion engine 20 are acquired.
  • the outlet water temperature TWout of the internal combustion engine 20 is used as a parameter representing the temperature of the cooling water flowing through the flow control valve 12.
  • control parameter changing unit 70 acquires the operation frequency of the actuator device 121 by repeatedly executing the process shown in FIG. 22 at a predetermined calculation cycle. As shown in FIG. 22, the control parameter changing unit 70 first acquires the valve position Pv from the flow rate control valve 12 as the process of step S30. The control parameter changing unit 70 acquires the valve position Pv of the flow control valve 12 at a predetermined calculation cycle by executing the process of step S30 each time the process shown in FIG. 22 is repeatedly executed at a predetermined calculation cycle. doing.
  • the control parameter changing unit 70 calculates the differential value of the valve position Pv based on the time-series data of the valve position Pv of the flow rate control valve 12 repeatedly acquired in a predetermined calculation cycle as the process of step S31 following step S30. By doing so, the displacement speed Vv of the valve body 122 of the flow control valve 12 is calculated. Further, as the process of step S32 following step S31, the control parameter changing unit 70 calculates the integrated value of the absolute value
  • control parameter changing unit 70 executes the processes of steps S33 and S34 in parallel with the processes of steps S31 and S32.
  • the control parameter changing unit 70 reads the maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 when the duty ratio D is “100 [%]” from the memory.
  • the maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 is stored in the memory as a predetermined default value.
  • the control parameter changing unit 70 calculates the integrated value of the maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 in a predetermined period from the present to a predetermined time before, thereby causing the flow control valve 12 to change.
  • the maximum integrated displacement amount IDvmax of the valve body 122 is calculated.
  • the control parameter changing unit 70 calculates the operation frequency Fv of the valve body 122 of the flow control valve 12 based on the following equation f2 as the processing of step S35.
  • Fv IDv / IDvmax (f2)
  • FIG. 23 shows the valve position Pv of the flow control valve 12, the displacement speed Vv of the valve body 122 of the flow control valve 12, the actual integrated displacement amount IDv, and the operation calculated by the control parameter changing unit 70 through the process shown in FIG. It shows the transition of the frequency Fv.
  • the valve position Pv of the flow control valve 12 changes as shown in FIG. 23 (A)
  • the displacement velocity Vv of the valve body 122 of the flow control valve 12 changes as shown in FIG. 23 (B).
  • the actual integrated displacement amount IDv of the valve body 122 of the flow control valve 12 changes as shown in FIG. 23 (C).
  • the control parameter changing unit 70 has an operation frequency Fv smaller than a predetermined frequency Fth20 and a cooling water temperature Tv of the flow rate control valve 12 as the process of step S24 following the process of step S23. It is determined whether or not the temperature is lower than the predetermined temperature Tth20.
  • the control parameter changing unit 70 makes an affirmative judgment in the process of step S24, and the subsequent step As the process of S21, the response speed improvement control is executed.
  • the control parameter changing unit 70 uses a map as shown in FIG. 24 in the response speed improvement control to limit the upper limit value DLmax and the lower limit value of the duty ratio D according to the absolute value
  • the control parameter changing unit 70 sets the upper limit DLmax from “40 [%]” to "100 [%] as the absolute value
  • control parameter changing unit 70 steps when the operation frequency Fv is a predetermined frequency Fth20 or more, or when the cooling water temperature Tv of the flow rate control valve 12 is a predetermined temperature Tth20 or more. A negative determination is made in the process of S24, and normal control is executed as the process of the following step S22.
  • the operation frequency Fv is a predetermined frequency Fth20 or more
  • the temperature of the actuator device 121 may rise due to heat generated by the actuator device 121 of the flow control valve 12. Further, when the cooling water temperature Tv of the flow control valve 12 is equal to or higher than the predetermined temperature Tth20, the temperature of the actuator device 121 may rise in the same manner. In a situation where the temperature of the actuator device 121 is rising, if the limitation of the duty ratio D of the flow control valve 12 is relaxed by further executing the response speed improvement control, the actuator device 121 is more likely to generate heat. The temperature of 121 may rise excessively. An excessive rise in the temperature of the actuator device 121 is not preferable because it may adversely affect the durability of the actuator device 121.
  • the operation frequency Fv is a predetermined frequency Fth20 or more, or when the cooling water temperature Tv of the flow rate control valve 12 is a predetermined temperature Tth20 or more, that is, the durability of the actuator device 121
  • the normal control is executed without executing the response speed improvement control. Therefore, deterioration of the durability of the actuator device 121 can be avoided.
  • the filtering unit 519 shown in FIG. 7 performs filtering processing on the target rotation position Pvb * as shown in FIG. 25.
  • the filtering unit 519 includes a subtraction unit 5190, a division unit 5191, and an addition unit 5192.
  • target rotation position Pvb * input to the filtering unit 519 that is, the target rotation position Pvb * before the filtering process is performed is referred to as “target rotation position Pvb * _in before the filter”.
  • target rotation position Pvb * output from the filtering unit 519 that is, the target rotation position Pvb * after the filtering process is performed is referred to as “target rotation position Pvb * _out after filtering”.
  • the subtraction unit 5190 calculates the deviation ⁇ Pvb * by subtracting the target rotation position Pvb * _out after the filter from the target rotation position Pvb * _in before the filter.
  • the division unit 5191 calculates the amount of change DPvb * by dividing the multiplication value of the deviation ⁇ Pvb * calculated by the subtraction unit 5190 and the calculation cycle dT by a predetermined smoothing time constant ⁇ .
  • the addition unit 5192 calculates the next target rotation position Pvb * _out by adding the change amount DPvb * to the target rotation position Pvb * _out one calculation cycle before.
  • the process executed by the filtering unit 519 shown in FIG. 25 can be expressed by the following equation f3.
  • target rotation position Pvb * _out (n-1) indicates the target rotation position Pvb * _out calculated one calculation cycle before.
  • the control parameter changing unit 70 of the present embodiment replaces the method of relaxing the limit value of the duty ratio D in the response speed improvement control, and the smoothing time constant of the filtering unit 519.
  • the response delay of the flow control valve 12 is improved, and the response speed of the temperature of the cooling water is increased.
  • the output signals of the outside air temperature sensor 34 and the vehicle speed sensor 35 mounted on the vehicle are captured in the ECU 40 of the present embodiment.
  • the outside air temperature sensor 34 detects the outside air temperature Tout, which is the outside air temperature of the vehicle, and outputs a signal according to the detected outside air temperature Tout.
  • the vehicle speed sensor 35 detects the vehicle speed Vc, which is the traveling speed of the vehicle, and outputs a signal corresponding to the detected vehicle speed Vc.
  • the control parameter changing unit 70 further uses the outside air temperature Tout and the vehicle speed Vc to execute the process shown in FIG. 27.
  • the control parameter changing unit 70 repeatedly executes the process shown in FIG. 27 at a predetermined cycle during the period when the wall temperature switching control is being executed in the ECU 40.
  • the control parameter changing unit 70 determines whether or not the absolute value
  • the control parameter changing unit 70 makes a negative determination in the process of step S40, and executes normal control as the process of step S44.
  • the normal control is a control using a predetermined first time constant ⁇ 1 as the smoothing time constant ⁇ .
  • the control parameter changing unit 70 acquires the outside air temperature Tout and the vehicle speed Vc as the process of step S41, and then the process of step S42. As a result, it is determined whether or not the outside air temperature Tout is larger than the predetermined temperature Tth30 and the vehicle speed Vc is smaller than the predetermined speed Vth30.
  • the control parameter changing unit 70 makes an affirmative judgment in the process of step S42, and determines the response speed as the subsequent process of step S43. Perform improvement control.
  • the control parameter changing unit 70 changes the smoothing time constant ⁇ according to the absolute value
  • the control parameter changing unit 70 makes a negative determination in the process of step S42. To do. In this case, the control parameter changing unit 70 executes normal control as the process of step S44. That is, the control parameter changing unit 70 sets the smoothing time constant ⁇ to the first time constant ⁇ 1.
  • the smoothing time constant ⁇ corresponds to the control parameter changed according to the absolute value
  • the response speed of the target rotation position Pvb * _out changes when the intake air amount GA of the internal combustion engine 20 changes. As a result, the response speed of the actual wall temperature of the internal combustion engine 20 may decrease.
  • FIG. 29 (A) when the intake air amount GA increases at time t40, that is, when the internal combustion engine 20 is in a high load state, it is shown by a alternate long and short dash line in FIG. 29 (B).
  • the target outlet water temperature TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 29 (C), the outlet water temperature deviation ⁇ TWout changes to a negative value. Due to this, as shown in FIG. 29C, the outlet water temperature deviation ⁇ TWout changes in the negative direction at time t40.
  • the outlet water temperature TWout changes in the negative direction at the time t40, so that the outlet water temperature deviation ⁇ TWout is smaller than “ ⁇ Tth10”.
  • the smoothing time constant ⁇ decreases from the first time constant ⁇ 1 to the second time constant ⁇ 2.
  • the response speed of the target rotation position Pvb * _out is higher than that in the case where the smoothing time constant ⁇ remains fixed to the first time constant ⁇ 1. Will respond faster.
  • the outlet water temperature TWout of the internal combustion engine 20 the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 have a smoothing time constant ⁇ . Will respond faster than if it remains fixed at the first time constant ⁇ 1.
  • the smoothing time constant ⁇ is larger than the second time constant ⁇ 2 at the first hour. Since the constant ⁇ 1 is set, the stability of the calculated value of the target rotation position Pvb * _out can be ensured.
  • the outside air temperature Tout is the predetermined temperature Tth30 or less and the vehicle speed Vc.
  • the normal control is executed without executing the response speed improvement control. That is, since the smoothing time constant ⁇ is still set to the first time constant ⁇ 1 which is larger than the second time constant ⁇ 2, the stability of the calculated value of the target rotation position Pvb * _out can be ensured. As a result, it is possible to appropriately control the wall temperature of the internal combustion engine 20.
  • the ECU 40 of the flow rate control valve 12 of the fourth embodiment will be described.
  • the ECU 40 of the present embodiment has factors corresponding to the third response delay and the fourth response delay among the factors corresponding to the first to fourth response delays shown in FIG. 15, that is, the performance of the radiator 21 and the internal combustion engine.
  • the response speed of the temperature of the cooling water is increased.
  • the configurations of the flow rate control valve 12 and the ECU 40 of the present embodiment will be described.
  • the target rotation position calculation value Pv * calculated by the multiplication unit 53 and the outlet water temperature deviation ⁇ TWout calculated by the subtraction unit 521 are input to the control parameter change unit 70 of the ECU 40. There is.
  • the control parameter changing unit 70 sets the final target rotation position Pv ** as shown in FIG. 31 based on the outlet water temperature deviation ⁇ TWout.
  • the control parameter changing unit 70 executes the first response speed improvement control.
  • the first response speed improvement control is a control for setting the aperture ratio of the first outflow port P11 to "100 [%]". Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P5 shown in FIG.
  • the control parameter changing unit 70 executes normal control when the outlet water temperature deviation ⁇ TWout is in the range of “ ⁇ Tth10” to “Tth10”.
  • the normal control is a control in which the aperture ratio of the first outflow port P11 is variably set in the range of "0 [%]” to "100 [%]”.
  • the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ⁇ TWout as the final target rotation position Pv **.
  • the control parameter changing unit 70 executes the second response speed improvement control when the outlet water temperature deviation ⁇ TWout is larger than “Tth10”.
  • the second response speed improvement control is a control for setting the aperture ratio of the first outflow port P11 to "0 [%]”. Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** to the rotation position P0 shown in FIG.
  • FIG. 32 is a flowchart showing a procedure of processing executed by the control parameter changing unit 70.
  • the control parameter changing unit 70 repeatedly executes the process shown in FIG. 32 at a predetermined calculation cycle.
  • the control parameter changing unit 70 first determines, as the process of step S40, whether or not the outlet water temperature deviation ⁇ TWout is larger than “ ⁇ Tth10”.
  • the control parameter changing unit 70 makes an affirmative determination in the process of step S40, and executes the second response speed improvement control as the subsequent process of step S41. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P0 shown in FIG. As a result, the aperture ratio of the first outflow port P11 is set to "0 [%]".
  • the control parameter changing unit 70 makes a negative determination in the process of step S40, and determines that the outlet water temperature deviation ⁇ TWout is the subsequent process of step S42. Judges whether or not is smaller than "-Tth10".
  • the control parameter changing unit 70 makes an affirmative determination in the process of step S42, and executes the first response speed improvement control as the subsequent process of step S43. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P5 shown in FIG. As a result, the aperture ratio of the first outflow port P11 is set to "100 [%]".
  • step S42 when the control parameter changing unit 70 makes a negative judgment in the process of step S42, that is, when the outlet water temperature deviation ⁇ TWout is “ ⁇ Tth10” or more and “Tth10” or less.
  • Normal control is executed as the process of step S44. That is, the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ⁇ TWout as the final target rotation position Pv **.
  • the target rotation position of the flow rate control valve 12 corresponds to the control parameter changed according to the absolute value
  • the target outlet water temperature is shown by the alternate long and short dash line in FIG. 33 (B).
  • TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 33C, the outlet water temperature deviation ⁇ TWout changes to a negative value.
  • the alternate long and short dash line in FIG. 33 (E) when the control parameter changing unit 70 is executing the normal control, it is indicated by the alternate long and short dash line in FIG. 33 (D).
  • the final target rotation position Pv ** gradually changes to the rotation position P6 with the passage of time. Therefore, as shown by the alternate long and short dash line in FIGS. 33 (B), (F), and (G), the outlet water temperature TWout, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 also change with the passage of time after time t50. It changes gradually.
  • the flow rate of the cooling water flowing through the radiator 21 is immediately increased, so that the responsiveness of the heat radiation amount in the radiator 21 can be improved.
  • the response speed of the outlet water temperature TWout is improved as compared with the case where the normal control is executed, and as a result, it is shown by the solid line in FIG. 33 (G).
  • the response speed of the wall temperature of the internal combustion engine 20 can be improved. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
  • FIG. 33 (A) when the intake air amount GA decreases at time t51, that is, when the internal combustion engine 20 is in a low load state, the target is shown by the alternate long and short dash line in FIG. 33 (B).
  • the outlet water temperature TWout * is changed from the first target water temperature set value TWa1 to the second target water temperature set value TWa2. Therefore, as shown by the solid line in FIG. 33C, the outlet water temperature deviation ⁇ TWout changes to a positive value.
  • the control parameter changing unit 70 is executing the normal control as shown by the alternate long and short dash line in FIG. 33 (E), FIGS. 33 (B), (D), (F), As shown by the alternate long and short dash line in (G), the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 gradually change.
  • the wall temperature of the internal combustion engine 20 changes rapidly toward the target wall temperature. ..
  • the time during which the wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, so that deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. That is, the fuel efficiency of the internal combustion engine 20 can be improved.
  • the threshold value used when switching between the normal control and the first response speed improvement control, and when switching between the normal control and the second response speed improvement control is provided at the threshold used. According to such a configuration, it is possible to avoid a situation in which control is frequently switched when the outlet water temperature deviation ⁇ TWout changes near the threshold value.
  • the ECU 40 of the flow rate control valve 12 of the fifth embodiment will be described.
  • the differences from the ECU 40 of the fourth embodiment will be mainly described.
  • the output signal of the oil temperature sensor 36 mounted on the vehicle is captured in the ECU 40 of the present embodiment.
  • the oil temperature sensor 36 detects the oil temperature Toil, which is the temperature of the lubricating oil that lubricates the internal combustion engine 20, and outputs a signal corresponding to the detected oil temperature Toil.
  • the ECU 40 can communicate with the air conditioning ECU 37 mounted on the vehicle.
  • the air-conditioning ECU 37 heats and cools the interior of the vehicle by comprehensively controlling the air-conditioning device 38 mounted on the vehicle.
  • the air conditioning ECU 37 controls the air conditioning device 38 so that the air flowing through the air conditioning duct flows through the heater core 22 shown in FIG. 1 when heating the interior of the vehicle.
  • the air heated in the heater core 22 is blown into the vehicle interior through the air conditioning duct to heat the vehicle interior.
  • the ECU 40 can acquire information on whether or not heating or cooling of the vehicle interior is being performed, for example.
  • the opening ratios of the outflow ports P11 to P13 with respect to the position of the valve body 122 are set as shown in FIGS. 34 (A) to 34 (C).
  • the rotation position P7 is further set as the valve position.
  • the rotation position P7 is a position set in the normal rotation direction X1 with respect to the rotation position P5.
  • control parameter changing unit 70 of the present embodiment also has the target rotation position calculation value Pv * calculated by the multiplication unit 53 and the subtracting unit 521.
  • the calculated outlet water temperature deviation ⁇ TWout is input.
  • the control parameter changing unit 70 sets the final target rotation position Pv ** as shown in FIG. 35 based on the outlet water temperature deviation ⁇ TWout.
  • the first response speed improvement control is a control in which the aperture ratio of the first outflow port P11 is set to "100 [%] and the aperture ratios of the other outflow ports P12 and P13 are set to" 0 [%] ". is there. Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P7 shown in FIG. 34.
  • the control parameter changing unit 70 executes normal control when the outlet water temperature deviation ⁇ TWout is in the range of “ ⁇ Tth10” to “Tth10”.
  • the normal control is a control using the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ⁇ TWout as the final target rotation position Pv **.
  • the control parameter changing unit 70 executes the second response speed improvement control when the outlet water temperature deviation ⁇ TWout is larger than “Tth10”.
  • the second response speed improvement control is a control for setting the aperture ratios of all the outflow ports P11 to P13 to "0 [%]". Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** to the rotation position P0 shown in FIG. 34.
  • FIG. 36 is a flowchart showing a procedure of processing executed by the control parameter changing unit 70.
  • the control parameter changing unit 70 repeatedly executes the process shown in FIG. 36 at a predetermined calculation cycle.
  • the control parameter changing unit 70 first determines whether or not the outlet water temperature deviation ⁇ TWout is larger than “Tth10” as the process of step S50.
  • the control parameter changing unit 70 makes an affirmative decision in the process of step S50, and acquires the operating state of the air conditioner 38 from the air conditioner ECU 37 as the subsequent process of step S51.
  • information on the oil temperature Tool is acquired through the oil temperature sensor 36.
  • the operating state of the air conditioner 38 includes information on whether cooling or heating is performed when the air conditioner 38 is operating. include.
  • the control parameter changing unit 70 determines whether or not the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50 as the process of step S52 following step S51. When the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50, the control parameter changing unit 70 makes an affirmative judgment in the process of step S52, and as the subsequent process of step S53, determines affirmatively.
  • the second response speed improvement control is executed. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P0 shown in FIG. 34. As a result, the aperture ratios of all the outflow ports P11 to P13 are set to "0 [%]".
  • control parameter changing unit 70 determines whether or not the outlet water temperature deviation ⁇ TWout is smaller than “ ⁇ Tth10” as the process of step S54.
  • the control parameter changing unit 70 makes an affirmative judgment in the process of step S54, and acquires the operating state of the air conditioner 38 from the air conditioner ECU 37 as the subsequent process of step S55.
  • the oil temperature Tool information is acquired through the oil temperature sensor 36.
  • the control parameter changing unit 70 determines whether or not the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50 as the process of step S56 following step S55. When the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50, the control parameter changing unit 70 makes an affirmative judgment in the process of step S56, and as the subsequent process of step S57, determines affirmatively.
  • the first response speed improvement control is executed. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P7 shown in FIG. 34. As a result, the opening ratio of the first outflow port P11 is set to "100 [%]", and the opening ratios of the other outflow ports P12 and P13 are set to "0 [%]".
  • step S58 When the control parameter changing unit 70 makes a negative determination in the process of step S54, that is, when the outlet water temperature deviation ⁇ TWout is “ ⁇ Tth10” or more and “Tth10” or less, the process of step S58 is usually performed. Take control. That is, the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ⁇ TWout as the final target rotation position Pv **. Further, when the control parameter changing unit 70 makes a negative determination in the process of step S52, or when a negative determination is made in the process of step S56, that is, when heating is performed in the air conditioner 38, or when the oil temperature Tool is set. When the predetermined temperature is Tth50 or higher, normal control is executed as the process of step S58.
  • FIG. 37 (A) when the intake air amount GA increases at time t60, that is, when the internal combustion engine 20 is in a high load state, the target outlet water temperature is shown by the alternate long and short dash line in FIG. 37 (B). TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 37 (C), the outlet water temperature deviation ⁇ TWout changes to a negative value. At this time, if the normal control is executed as shown by the alternate long and short dash line in FIG.
  • the final target rotation position Pv is shown by the alternate long and short dash line in FIG. 37 (D). ** gradually changes to the rotation position P6 with the passage of time. Therefore, as shown by the alternate long and short dash line in FIGS. 37 (B), (F), and (G), the outlet water temperature TWout, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 also change with the passage of time after time t60. It changes gradually with it.
  • the solid line in FIG. 37 (C) when the outlet water temperature deviation ⁇ TWout becomes smaller than “ ⁇ Tth10” at time t60, the solid line is shown in FIG. 37 (E).
  • the first response speed improvement control is executed.
  • the final target rotation position Pv ** is immediately set to the rotation position P7, so that the aperture ratio of the first outflow port P11 is "100 [%]".
  • the aperture ratios of the other outflow ports P12 and P3 are set to "0 [%]". Therefore, as shown by the solid line in FIG. 37 (F), the flow rate of the cooling water increases beyond the flow rate feasible by normal control.
  • the flow rate of the cooling water flowing through the radiator 21 increases sharply, so that the responsiveness of the heat radiation amount in the radiator 21 can be improved. Therefore, as shown by the solid line in FIG. 37 (B), the response speed of the outlet water temperature TWout is improved as compared with the case where the normal control is executed, and as a result, as shown in FIG. 37 (G). , The response speed of the wall temperature of the internal combustion engine 20 can be improved. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
  • FIG. 37 (A) when the intake air amount GA decreases at time t61, that is, when the internal combustion engine 20 is in a low load state, the final chain line is shown in FIG. 37 (B).
  • the target rotation position Pv ** is changed from the first target water temperature set value TWa1 to the second target water temperature set value TWa2. Therefore, as shown by the solid line in FIG. 37 (C), the outlet water temperature deviation ⁇ TWout changes to a positive value.
  • the alternate long and short dash line in FIG. 33 (E) when the normal control is executed, the two points are shown in FIGS. 33 (B), (D), (F), and (G).
  • the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 gradually change.
  • the second response speed improvement control is executed as shown in FIG. 37 (E). Will be done. Therefore, the aperture ratios of all the outflow ports P11 to P13 are set to "0 [%]". As a result, as shown by solid lines in FIGS. 33 (B), (D), (F), and (G), the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the internal combustion engine 20. The wall temperature will respond faster than when performing normal control.
  • the wall temperature of the internal combustion engine 20 changes rapidly toward the target wall temperature. ..
  • the time during which the wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, so that deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. That is, the fuel efficiency of the internal combustion engine 20 can be improved.
  • the aperture ratios of the second outflow port P12 and the third outflow port P13 are set to "0 [%]". Cooling water does not flow to the heater core 22 and the oil cooler 24. Therefore, during the period when the first response speed improvement control and the second response speed improvement control are being executed, the air conditioner 38 may not be able to properly perform heating, or the oil temperature Toil may be appropriately managed. It gets harder. In this respect, in the ECU 40 of the present embodiment, even when the absolute value
  • the threshold value used when switching between the normal control and the first response speed improvement control, and the normal control and the second response speed improvement are also performed. Hysteresis may be provided in the threshold value used when switching to the control.
  • the ECU 40 of the flow rate control valve 12 of the sixth embodiment will be described.
  • the differences between the flow control valve 12 of the fifth embodiment and the ECU 40 will be mainly described.
  • the opening ratios of the outflow ports P11 to P13 with respect to the position of the valve body 122 are set as shown in FIGS. 38 (A) to 38 (C).
  • the rotation position P8 is further set as the valve position of the flow control valve 12.
  • the rotation position P8 is a position set between the rotation position P5 and the rotation position P7.
  • control parameter changing unit 70 of the present embodiment executes the processes shown in FIGS. 39 and 40.
  • the same processes as those shown in FIG. 36 are designated by the same reference numerals, so that overlapping description is omitted.
  • the processing of steps S58a and 58b shown in FIGS. 39 and 40 is the same processing as the processing of step S58 shown in FIG. 36.
  • the control parameter changing unit 70 determines whether or not the oil temperature Tool is lower than the predetermined temperature Tth50 as the process of step S60.
  • the control parameter changing unit 70 determines that the air conditioner 38 is performing the heating operation when the affirmative determination is made in the process of step S60, that is, when the oil temperature Tool is lower than the predetermined temperature Tth50. To do.
  • the control parameter changing unit 70 executes the third response speed improvement control as the process of step S61.
  • the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P2 shown in FIG. 38 as the third response speed improvement control.
  • the opening ratios of the first outflow port P11 and the second outflow port P12 are set to "0 [%]"
  • the opening ratio of the third outflow port P13 is set to "100 [%]".
  • step S58a As normal control is executed.
  • the control parameter changing unit 70 determines whether or not the oil temperature Tool is lower than the predetermined temperature Tth50 as the process of step S62.
  • the control parameter changing unit 70 executes the fourth response speed improvement control as the process of step S63 when affirmative determination is made in the process of step S62, that is, when the oil temperature Tool is lower than the predetermined temperature Tth50.
  • the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P8 shown in FIG. 38 as the fourth response speed improvement control.
  • the opening ratios of the first outflow port P11 and the third outflow port P13 are set to "100 [%]"
  • the opening ratio of the second outflow port P12 is set to "0 [%]”.
  • step S62 When the control parameter changing unit 70 makes a negative determination in the process of step S62, that is, when the oil temperature Tool is at a predetermined temperature Tth50 or higher and the air conditioner 38 is heating, the process of step S58b As normal control is executed. Next, the operations and effects of the flow control valve 12 and the ECU 40 of the present embodiment will be described.
  • the control parameter changing unit 70 makes an affirmative decision in the process of step S50 and makes a negative decision in the process of step S52
  • the normal control is performed. Will be executed. Therefore, in a situation where the target outlet water temperature TWout * is larger than the predetermined value Tth10 with respect to the outlet water temperature TWout, heating is performed in the air conditioner 38, and normal control is performed even in a situation where the oil temperature Tool is lower than the predetermined temperature Tth50. Will be executed. However, when the oil temperature Tool is lower than the predetermined temperature Tth50, it is not necessary to flow the cooling water to the oil cooler 24, so that the circulation of the cooling water to the oil cooler 24 can be stopped.
  • the target outlet water temperature TWout * is larger than the predetermined value Tth10 with respect to the outlet water temperature TWout, it is not necessary to circulate the cooling water in the radiator 21. Further, if the circulation of the cooling water to the radiator 21 and the oil cooler 24 can be stopped, the flow rate of the cooling water can be increased by that amount, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved. It is possible.
  • the third response speed improvement control is executed.
  • the opening ratio of the third outflow port P13 is set to "100 [%]", so that the cooling water can be circulated in the heater core 22. Therefore, it is possible to perform heating of the air conditioner 38.
  • the opening ratios of the first outflow port P11 and the second outflow port P12 are set to "0 [%]"
  • the circulation of the cooling water to the radiator 21 and the oil cooler 24 is stopped.
  • the flow rate of the cooling water can be increased, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved.
  • the oil temperature Tool when the oil temperature Tool is lower than the predetermined temperature Tth50, it is not necessary to flow the cooling water to the oil cooler 24 as described above, so that the circulation of the cooling water to the oil cooler 24 can be stopped. .. Further, if the circulation of the cooling water to the oil cooler 24 can be stopped, the flow rate of the cooling water can be increased by that amount, so that the responsiveness of the outlet water temperature TWout to the target outlet water temperature TWout * can be improved. It is possible. However, since the target outlet water temperature TWout * is smaller than the predetermined value Tth10 with respect to the outlet water temperature TWout, it is necessary to circulate the cooling water in the radiator 21.
  • the control parameter changing unit 70 makes a positive judgment in the process of step S62, that is, the oil temperature Tool is lower than the predetermined temperature Tth50, and the air conditioner 38 is heated.
  • the fourth response speed improvement control is executed.
  • the opening ratio of the third outflow port P13 is set to "100 [%]", so that the cooling water can be circulated in the heater core 22. Therefore, it is possible to perform heating of the air conditioner 38.
  • the opening ratio of the first outflow port P11 is set to "100 [%]", it is possible to circulate the cooling water to the radiator 21.
  • the circulation of the cooling water to the oil cooler 24 is stopped.
  • the flow rate of the cooling water can be increased, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved.
  • each embodiment can also be implemented in the following embodiments.
  • the control parameter changing unit 70 of the second embodiment determines whether or not the operation frequency Fv is smaller than the predetermined frequency Fth20, and determines whether the cooling water temperature Tv of the flow rate control valve 12 is determined. Either one of the determinations as to whether or not the temperature is lower than the predetermined temperature Tth20 may be performed.
  • control parameter changing unit 70 of the third embodiment determines whether or not the outside air temperature Tout is larger than the predetermined temperature Tth30, and the vehicle speed Vc is smaller than the predetermined speed Vth30. Either one of the judgments may be made.
  • the control parameter changing unit 70 of the fifth embodiment determines whether or not heating is being performed in the air conditioner 38 in the processes of steps S52 and S56 shown in FIG. 36, and the oil temperature Tool is set from the predetermined temperature Tth50. You may make one of the judgments as to whether or not the temperature is small. The same applies to the control parameter changing unit 70 of the sixth embodiment.
  • the ECU 40 of the fifth embodiment may determine whether or not it is necessary to further operate the EGR cooler 23 in the processes of steps S52 and S56 shown in FIG. The same applies to the processes of step S52 shown in FIG. 39 and step S56 shown in FIG. 40, which are executed by the ECU 40 of the sixth embodiment.
  • the devices arranged in the first bypass flow path W11 and the second bypass flow path W12 can be changed as appropriate.
  • the ECU 40 and its control methods described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer.
  • the ECU 40 and its control method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits.
  • the ECU 40 and its control method described in the present disclosure are configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be realized by one or more dedicated computers.
  • the computer program may be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • the dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A control device (40) for a flow control valve (12) comprises a target opening degree setting unit (50), an opening degree control unit (60), and a control parameter changing unit (70). The target opening degree setting unit sets a target opening degree of the flow control valve. The opening degree control unit controls an actual opening degree of the flow control valve to match the target opening degree. The control parameter changing unit changes a control parameter for controlling the operation of the flow control valve. The target opening degree setting unit sets a target wall temperature in accordance with a load state of an internal combustion engine. When the absolute value of a difference between an actual wall temperature and the target wall temperature is larger than a prescribed value, the control parameter changing unit changes the control parameter such that a response speed of the actual wall temperature is faster than when the absolute value of the difference is not larger than the prescribed value.

Description

流量制御弁の制御装置Flow control valve control device 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月8日に出願された日本国特許出願2019-126763号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-126763 filed on July 8, 2019, claiming the benefit of its priority, and the entire contents of the patent application Incorporated herein by reference.
 本開示は、流量制御弁の制御装置に関する。 The present disclosure relates to a control device for a flow control valve.
 従来、下記の特許文献1に記載の流量制御弁の制御装置がある。特許文献1に記載の流量制御弁は、車両に搭載されており、内燃機関と放熱器との間で冷却水を循環させる冷却水循環回路に設けられている。放熱器は、冷却水と外気との間で熱交換を行うことにより、冷却水を冷却させる。流量制御弁は、内燃機関に供給される冷却水の流量を調整する。特許文献1に記載の制御装置は、内燃機関の負荷に応じて流量制御弁の開度を制御する。 Conventionally, there is a control device for a flow control valve described in Patent Document 1 below. The flow rate control valve described in Patent Document 1 is mounted on a vehicle and is provided in a cooling water circulation circuit that circulates cooling water between an internal combustion engine and a radiator. The radiator cools the cooling water by exchanging heat between the cooling water and the outside air. The flow control valve regulates the flow rate of the cooling water supplied to the internal combustion engine. The control device described in Patent Document 1 controls the opening degree of the flow control valve according to the load of the internal combustion engine.
 具体的には、この制御装置は、内燃機関が高負荷状態である場合には、流量制御弁を開状態にすることにより、放熱器を流れる冷却水の流量を増加させて、冷却水の温度を低下させる。これにより、内燃機関のシリンダ壁温を低くすることができるため、高負荷状態となることにより内燃機関の燃焼ガス温度が上昇した場合であっても、内燃機関を適切に冷却することが可能となる。 Specifically, this control device increases the flow rate of the cooling water flowing through the radiator by opening the flow rate control valve when the internal combustion engine is in a high load state, and the temperature of the cooling water. To reduce. As a result, the cylinder wall temperature of the internal combustion engine can be lowered, so that the internal combustion engine can be appropriately cooled even when the combustion gas temperature of the internal combustion engine rises due to a high load state. Become.
 また、この制御装置は、内燃機関が低負荷状態である場合には、流量制御弁を閉状態にすることにより、放熱器を流れる冷却水の流量を減少させて、冷却水の温度を上昇させる。これにより、内燃機関のシリンダ壁温を高くすることができるため、冷却水の熱により内燃機関の潤滑油の温度が上昇する。その結果、潤滑油の粘度が低下するため、内燃機関のピストンとシリンダとの間等に発生するフリクションを低減することができる。また、シリンダの壁温を上昇させることができるため、内燃機関の冷却損失を低減することもできる。なお、内燃機関の冷却損失とは、内燃機関の燃焼により生じる熱エネルギがシリンダに吸収されることにより、結果として内燃機関から動力として取り出すことができなくなるエネルギの損失である。このような内燃機関におけるフリクションの低減及び熱損失の低減により、内燃機関の燃費を向上させることができる。 Further, when the internal combustion engine is in a low load state, this control device closes the flow rate control valve to reduce the flow rate of the cooling water flowing through the radiator and raise the temperature of the cooling water. .. As a result, the cylinder wall temperature of the internal combustion engine can be raised, so that the temperature of the lubricating oil of the internal combustion engine rises due to the heat of the cooling water. As a result, the viscosity of the lubricating oil is lowered, so that the friction generated between the piston and the cylinder of the internal combustion engine can be reduced. Further, since the wall temperature of the cylinder can be raised, the cooling loss of the internal combustion engine can be reduced. The cooling loss of the internal combustion engine is a loss of energy that cannot be taken out as power from the internal combustion engine as a result of the heat energy generated by the combustion of the internal combustion engine being absorbed by the cylinder. By reducing friction and heat loss in such an internal combustion engine, it is possible to improve the fuel efficiency of the internal combustion engine.
特開2004-84526号公報Japanese Unexamined Patent Publication No. 2004-84526
 特許文献1に記載の制御装置では、内燃機関の負荷に応じて流量制御弁の開度を変化させる際に、種々の要因により、シリンダ壁温の目標値である目標壁温に対して、シリンダ壁温の実際の温度である実壁温に応答遅れが生じる。こうした内燃機関の実壁温に応答遅れを生じさせる要因には、例えば制御の応答遅れ、流量制御弁の弁体を駆動させるアクチュエータの応答遅れ、放熱器の応答遅れ、及び冷却水の熱容量の影響等がある。目標壁温に対して内燃機関の実壁温の応答が遅れることにより、それらが乖離した場合、内燃機関の負荷の各領域において内燃機関の実壁温が最適な温度からずれることとなるため、内燃機関の燃費の悪化を招くおそれがある。 In the control device described in Patent Document 1, when the opening degree of the flow rate control valve is changed according to the load of the internal combustion engine, the cylinder has a cylinder with respect to the target wall temperature, which is the target value of the cylinder wall temperature, due to various factors. A response delay occurs in the actual wall temperature, which is the actual wall temperature. Factors that cause such a response delay in the actual wall temperature of the internal combustion engine are, for example, the influence of the control response delay, the response delay of the actuator that drives the valve body of the flow control valve, the response delay of the radiator, and the heat capacity of the cooling water. And so on. If the response of the actual wall temperature of the internal combustion engine to the target wall temperature is delayed and they deviate from each other, the actual wall temperature of the internal combustion engine deviates from the optimum temperature in each region of the load of the internal combustion engine. There is a risk of deteriorating the fuel efficiency of the internal combustion engine.
 具体的には、車両の減速時に内燃機関が低負荷状態になった際に、内燃機関の実壁温が目標壁温よりも低温側に乖離した場合、内燃機関の冷却損失が増大するとともに、内燃機関のフリクションが増大するため、内燃機関の燃費の悪化を招く。また、車両の加速度時に内燃機関が高負荷状態になった際に、内燃機関の実壁温が目標壁温よりも高温側に乖離した場合、内燃機関におけるノッキングの発生を回避するためには、内燃機関の点火時期を遅角側にずらす必要がある。このような点火時期を遅角側にずらす制御が行われると、排気の熱量が増加する。これは、内燃機関の燃焼により生じるエネルギのうち、排気の熱エネルギとして捨てられるエネルギが増加することに相当するため、結果として内燃機関の燃費の悪化を招くおそれがある。 Specifically, when the internal combustion engine becomes a low load state when the vehicle is decelerated, if the actual wall temperature of the internal combustion engine deviates to a lower temperature side than the target wall temperature, the cooling loss of the internal combustion engine increases and the cooling loss of the internal combustion engine increases. Since the friction of the internal combustion engine increases, the fuel consumption of the internal combustion engine deteriorates. In addition, when the internal combustion engine is in a high load state during vehicle acceleration and the actual wall temperature of the internal combustion engine deviates to a higher temperature side than the target wall temperature, knocking in the internal combustion engine can be avoided. It is necessary to shift the ignition timing of the internal combustion engine to the retard side. When such control to shift the ignition timing to the retard side is performed, the amount of heat of the exhaust increases. This corresponds to an increase in the energy discarded as the thermal energy of the exhaust gas among the energy generated by the combustion of the internal combustion engine, which may result in deterioration of the fuel efficiency of the internal combustion engine.
 本開示の目的は、内燃機関の燃費を更に向上させることが可能な流量制御弁の制御装置を提供することにある。 An object of the present disclosure is to provide a control device for a flow control valve capable of further improving the fuel efficiency of an internal combustion engine.
 本開示の一態様による流量制御弁の制御装置は、車両の内燃機関とラジエータとの間を循環する冷却水の流量を調整する。制御装置は、目標開度設定部と、開度制御部と、制御パラメータ変更部と、を備える。目標開度設定部は、内燃機関のシリンダ壁温の実際の温度である実壁温を目標壁温に追従させるための流量制御弁の目標開度を設定する。開度制御部は、流量制御弁の実際の開度である実開度を目標開度に制御する。制御パラメータ変更部は、流量制御弁の動作を制御する制御パラメータを変更する。目標開度設定部は、内燃機関が高負荷状態であるときに、目標壁温を第1目標壁温設定値に設定するとともに、内燃機関が低負荷状態であるときに、目標壁温を、第1目標壁温設定値よりも高温の第2目標壁温設定値に設定する。制御パラメータ変更部は、実壁温と目標壁温との偏差の絶対値が所定値よりも大きい場合に、実壁温と目標壁温との偏差の絶対値が所定値以下である場合よりも実壁温の応答速度が速くなるように制御パラメータを変更する。 The flow control valve control device according to one aspect of the present disclosure regulates the flow rate of the cooling water circulating between the internal combustion engine of the vehicle and the radiator. The control device includes a target opening degree setting unit, an opening degree control unit, and a control parameter changing unit. The target opening degree setting unit sets the target opening degree of the flow control valve for making the actual wall temperature, which is the actual temperature of the cylinder wall temperature of the internal combustion engine, follow the target wall temperature. The opening degree control unit controls the actual opening degree, which is the actual opening degree of the flow control valve, to the target opening degree. The control parameter changing unit changes the control parameter that controls the operation of the flow control valve. The target opening setting unit sets the target wall temperature to the first target wall temperature set value when the internal combustion engine is in a high load state, and sets the target wall temperature when the internal combustion engine is in a low load state. Set to the second target wall temperature set value, which is higher than the first target wall temperature set value. When the absolute value of the deviation between the actual wall temperature and the target wall temperature is larger than the predetermined value, the control parameter changing unit is more than when the absolute value of the deviation between the actual wall temperature and the target wall temperature is less than or equal to the predetermined value. Change the control parameters so that the response speed of the actual wall temperature becomes faster.
 この構成によれば、内燃機関の負荷状態に応じて内燃機関の目標壁温が切り替えられるため、内燃機関の燃費を向上させることができる。また、内燃機関の実壁温と目標壁温との偏差の絶対値が所定値よりも大きくなった場合には、流量制御弁の制御パラメータの変更により内燃機関の実壁温の応答速度が速くなるため、内燃機関の実壁温が目標壁温に向かって速やかに変化するようになる。これにより、内燃機関の実壁温が目標壁温から大きく乖離している期間を短くすることができるため、それらの乖離により生じる内燃機関の燃費の悪化を抑制することができる。換言すれば、内燃機関の燃費を更に向上させることができる。 According to this configuration, the target wall temperature of the internal combustion engine can be switched according to the load state of the internal combustion engine, so that the fuel efficiency of the internal combustion engine can be improved. In addition, when the absolute value of the deviation between the actual wall temperature of the internal combustion engine and the target wall temperature becomes larger than the predetermined value, the response speed of the actual wall temperature of the internal combustion engine becomes faster by changing the control parameter of the flow control valve. Therefore, the actual wall temperature of the internal combustion engine changes rapidly toward the target wall temperature. As a result, the period in which the actual wall temperature of the internal combustion engine deviates significantly from the target wall temperature can be shortened, and therefore, deterioration of fuel efficiency of the internal combustion engine caused by such dissociation can be suppressed. In other words, the fuel efficiency of the internal combustion engine can be further improved.
図1は、第1実施形態の車両の冷却水循環システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a vehicle cooling water circulation system according to the first embodiment. 図2は、第1実施形態の流量制御弁の斜視構造を示す斜視図である。FIG. 2 is a perspective view showing a perspective structure of the flow control valve of the first embodiment. 図3は、第1実施形態の流量制御弁における本体部の内壁面と弁体との位置関係を模式的に示す図である。FIG. 3 is a diagram schematically showing the positional relationship between the inner wall surface of the main body and the valve body in the flow control valve of the first embodiment. 図4(A)~(C)は、流量制御弁の弁体の回転位置と第1~第3流出ポートの開口率との関係を示すグラフである。4 (A) to 4 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve and the opening ratio of the first to third outflow ports. 図5は、第1実施形態の流量制御弁の電気的な構成を示すブロック図である。FIG. 5 is a block diagram showing an electrical configuration of the flow control valve of the first embodiment. 図6は、第1実施形態のECUにより実行される処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing a procedure of processing executed by the ECU of the first embodiment. 図7は、第1実施形態のECUの制御処理の手順を示す制御ブロック図である。FIG. 7 is a control block diagram showing a procedure of control processing of the ECU of the first embodiment. 図8は、第1実施形態のECUにより用いられる内燃機関の回転速度及び負荷から発熱量を演算するためのマップである。FIG. 8 is a map for calculating the calorific value from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment. 図9は、第1実施形態のECUにより用いられる内燃機関の回転速度及び負荷から目標出口水温を演算するためのマップである。FIG. 9 is a map for calculating the target outlet water temperature from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment. 図10は、第1実施形態のECUにより用いられる内燃機関の回転速度から弁全開時流量を演算するためのマップである。FIG. 10 is a map for calculating the flow rate when the valve is fully opened from the rotation speed of the internal combustion engine used by the ECU of the first embodiment. 図11は、第1実施形態のECUにより用いられる流量制御弁の弁体の回転位置から流量比を求めるためのマップである。FIG. 11 is a map for obtaining the flow rate ratio from the rotation position of the valve body of the flow rate control valve used by the ECU of the first embodiment. 図12は、第1実施形態のECUの制御処理の手順を示す制御ブロック図である。FIG. 12 is a control block diagram showing a procedure of control processing of the ECU of the first embodiment. 図13は、第1実施形態の流量制御弁におけるデューティ比と弁体の変位速度との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the duty ratio and the displacement speed of the valve body in the flow control valve of the first embodiment. 図14は、冷却水の温度の推移の一例を示すグラフである。FIG. 14 is a graph showing an example of changes in the temperature of the cooling water. 図15は、冷却水循環システムにおける応答遅れの要因を模式的に示す図である。FIG. 15 is a diagram schematically showing the factors of response delay in the cooling water circulation system. 図16は、第1実施形態のECUにより用いられる内燃機関の回転速度及び負荷から目標出口水温を演算するためのマップである。FIG. 16 is a map for calculating the target outlet water temperature from the rotation speed and load of the internal combustion engine used by the ECU of the first embodiment. 図17は、第1実施形態の制御パラメータ変更部により実行される処理の手順を示すフローチャートである。FIG. 17 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the first embodiment. 図18は、第1実施形態の流量制御弁による内燃機関の壁温の変更態様を模式的に示すグラフである。FIG. 18 is a graph schematically showing a mode of changing the wall temperature of the internal combustion engine by the flow rate control valve of the first embodiment. 図19(A)~(G)は、第1実施形態の冷却水循環システムにおける吸入空気量、出口水温、出口水温偏差、デューティ比、弁位置、流量、及び内燃機関の壁温の推移を示すグラフである。19 (A) to 19 (G) are graphs showing changes in the intake air amount, outlet water temperature, outlet water temperature deviation, duty ratio, valve position, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the first embodiment. Is. 図20は、第2実施形態のECUの制御処理の手順を示す制御ブロック図である。FIG. 20 is a control block diagram showing a procedure of control processing of the ECU of the second embodiment. 図21は、第2実施形態のECUにより実行される処理の手順を示すフローチャートである。FIG. 21 is a flowchart showing a procedure of processing executed by the ECU of the second embodiment. 図22は、第2実施形態の制御パラメータ変更部により実行される処理の手順を示すフローチャートである。FIG. 22 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the second embodiment. 図23(A)~(D)は、第2実施形態の冷却水循環システムの流量制御弁における弁位置、弁体の変位速度、積算値変位量、及び作動頻度の推移を示すグラフである。23 (A) to 23 (D) are graphs showing changes in the valve position, the displacement speed of the valve body, the integrated value displacement amount, and the operation frequency in the flow control valve of the cooling water circulation system of the second embodiment. 図24は、第2実施形態の出口水温偏差の絶対値とデューティ比との関係を示すグラフである。FIG. 24 is a graph showing the relationship between the absolute value of the outlet water temperature deviation of the second embodiment and the duty ratio. 図25は、第3実施形態のフィルタリング部の制御処理の手順を示す制御ブロック図である。FIG. 25 is a control block diagram showing a procedure of control processing of the filtering unit of the third embodiment. 図26は、第3実施形態のECUの制御処理の手順を示す制御ブロック図である。FIG. 26 is a control block diagram showing a procedure of control processing of the ECU of the third embodiment. 図27は、第3実施形態の制御パラメータ変更部により実行される処理の手順を示すフローチャートである。FIG. 27 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the third embodiment. 図28は、第3実施形態の制御パラメータ変更部により用いられる出口水温偏差の絶対値となまし時定数との関係を示すグラフである。FIG. 28 is a graph showing the relationship between the absolute value of the outlet water temperature deviation used by the control parameter changing unit of the third embodiment and the smoothing time constant. 図29(A)~(G)は、第3実施形態の冷却水循環システムにおける吸入空気量、出口水温、出口水温偏差、弁位置、なまし時定数、流量、及び内燃機関の壁温の推移を示すグラフである。FIGS. 29 (A) to 29 (G) show changes in the intake air amount, outlet water temperature, outlet water temperature deviation, valve position, smoothing time constant, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the third embodiment. It is a graph which shows. 図30は、第4実施形態のECUの制御処理の手順を示す制御ブロック図である。FIG. 30 is a control block diagram showing a procedure of control processing of the ECU of the fourth embodiment. 図31は、第4実施形態の制御パラメータ変更部により実行される制御と出口水温偏差との関係を模式的に示す図である。FIG. 31 is a diagram schematically showing the relationship between the control executed by the control parameter changing unit of the fourth embodiment and the outlet water temperature deviation. 図32は、第4実施形態の制御パラメータ変更部により実行される処理の手順を示すフローチャートである。FIG. 32 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the fourth embodiment. 図33(A)~(G)は、第4実施形態の冷却水循環システムにおける吸入空気量、出口水温、出口水温偏差、弁位置、制御状態、流量、及び内燃機関の壁温の推移を示すグラフである。33 (A) to 33 (G) are graphs showing changes in intake air amount, outlet water temperature, outlet water temperature deviation, valve position, control state, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the fourth embodiment. Is. 図34(A)~(C)は、第5実施形態の流量制御弁の弁体の回転位置と第1~第3流出ポートの開口率との関係を示すグラフである。34 (A) to 34 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve of the fifth embodiment and the opening ratio of the first to third outflow ports. 図35は、第5実施形態の制御パラメータ変更部により実行される制御と出口水温偏差との関係を模式的に示す図である。FIG. 35 is a diagram schematically showing the relationship between the control executed by the control parameter changing unit of the fifth embodiment and the outlet water temperature deviation. 図36は、第5実施形態の制御パラメータ変更部により実行される処理の手順を示すフローチャートである。FIG. 36 is a flowchart showing a procedure of processing executed by the control parameter changing unit of the fifth embodiment. 図37(A)~(G)は、第5実施形態の冷却水循環システムにおける吸入空気量、出口水温、出口水温偏差、弁位置、制御状態、流量、及び内燃機関の壁温の推移を示すグラフである。37 (A) to 37 (G) are graphs showing changes in intake air amount, outlet water temperature, outlet water temperature deviation, valve position, control state, flow rate, and internal combustion engine wall temperature in the cooling water circulation system of the fifth embodiment. Is. 図38(A)~(C)は、第6実施形態の流量制御弁の弁体の回転位置と第1~第3流出ポートの開口率との関係を示すグラフである。38 (A) to 38 (C) are graphs showing the relationship between the rotational position of the valve body of the flow control valve of the sixth embodiment and the opening ratio of the first to third outflow ports. 図39は、第5実施形態の制御パラメータ変更部により実行される処理の手順の一部を示すフローチャートである。FIG. 39 is a flowchart showing a part of the processing procedure executed by the control parameter changing unit of the fifth embodiment. 図40は、第5実施形態の制御パラメータ変更部により実行される処理の手順の一部を示すフローチャートである。FIG. 40 is a flowchart showing a part of the processing procedure executed by the control parameter changing unit of the fifth embodiment.
 以下、流量制御弁の制御装置の実施形態について図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 <第1実施形態>
 はじめに、図1に示される第1実施形態の流量制御弁12が設けられる車両の冷却水循環システム10の概要について説明する。冷却水循環システム10は、車両に搭載される内燃機関20、ラジエータ21、ヒータコア22、EGR(Exhaust Gas Recirculation)クーラ23、及びオイルクーラ24に冷却水を循環させるシステムである。内燃機関20及びラジエータ21は流路W10により環状に接続されている。冷却水循環システム10は、環状流路W10にポンプ11及び流量制御弁12を備えている。ポンプ11は、環状流路W10において内燃機関20の上流側に設けられている。流量制御弁12は、環状流路W10において内燃機関20の下流側に設けられている。
Hereinafter, embodiments of the control device for the flow control valve will be described with reference to the drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
<First Embodiment>
First, an outline of the vehicle cooling water circulation system 10 provided with the flow control valve 12 of the first embodiment shown in FIG. 1 will be described. The cooling water circulation system 10 is a system that circulates cooling water to an internal combustion engine 20, a radiator 21, a heater core 22, an EGR (Exhaust Gas Recirculation) cooler 23, and an oil cooler 24 mounted on a vehicle. The internal combustion engine 20 and the radiator 21 are connected in an annular shape by the flow path W10. The cooling water circulation system 10 includes a pump 11 and a flow rate control valve 12 in the annular flow path W10. The pump 11 is provided on the upstream side of the internal combustion engine 20 in the annular flow path W10. The flow rate control valve 12 is provided on the downstream side of the internal combustion engine 20 in the annular flow path W10.
 ポンプ11は、環状流路W10を流れる冷却水を吸入するとともに、吸入した冷却水を内燃機関20に圧送する。このポンプ11の動作により、環状流路W10を冷却水が循環している。ポンプ11は、内燃機関20の動力に基づいて駆動する機械式のポンプである。
 内燃機関20では、ポンプ11から圧送される冷却水がシリンダブロック201、シリンダヘッド202の順で通過する。シリンダブロック201及びシリンダヘッド202を冷却水が通過する際に、それらと冷却水との間で熱交換が行われることにより、シリンダブロック201及びシリンダヘッド202が冷却される。シリンダヘッド202から吐出される冷却水は環状流路W10を通じて流量制御弁12に流入する。
The pump 11 sucks the cooling water flowing through the annular flow path W10 and pumps the sucked cooling water to the internal combustion engine 20. By the operation of the pump 11, the cooling water circulates in the annular flow path W10. The pump 11 is a mechanical pump driven by the power of the internal combustion engine 20.
In the internal combustion engine 20, the cooling water pumped from the pump 11 passes through the cylinder block 201 and the cylinder head 202 in this order. When the cooling water passes through the cylinder block 201 and the cylinder head 202, heat exchange is performed between them and the cooling water to cool the cylinder block 201 and the cylinder head 202. The cooling water discharged from the cylinder head 202 flows into the flow rate control valve 12 through the annular flow path W10.
 流量制御弁12は、流入ポートP10と、第1~第3流出ポートP11~P13とを備えている。流入ポートP10には、環状流路W10を介して内燃機関20が接続されている。第1流出ポートP11には、環状流路W10を介してラジエータ21が接続されている。第2流出ポートP12には、第1バイパス流路W11が接続されている。第1バイパス流路W11は、流量制御弁12の第2流出ポートP12を、環状流路W10におけるラジエータ21及びポンプ11の中間部分に接続する流路である。第3流出ポートP13には、第2バイパス流路W12が接続されている。第2バイパス流路W12は、流量制御弁の第3流出ポートP13を、環状流路W10におけるラジエータ21及びポンプ11の中間部分に接続する流路である。流量制御弁12は、各流出ポートP11~P13の開閉状態を制御することにより、ラジエータ21を流れる冷却水の流量、第1バイパス流路W11を流れる冷却水の流量、及び第2バイパス流路W12を流れる冷却水の流量を制御する。 The flow rate control valve 12 includes an inflow port P10 and first to third outflow ports P11 to P13. The internal combustion engine 20 is connected to the inflow port P10 via the annular flow path W10. A radiator 21 is connected to the first outflow port P11 via an annular flow path W10. The first bypass flow path W11 is connected to the second outflow port P12. The first bypass flow path W11 is a flow path that connects the second outflow port P12 of the flow control valve 12 to the intermediate portion between the radiator 21 and the pump 11 in the annular flow path W10. A second bypass flow path W12 is connected to the third outflow port P13. The second bypass flow path W12 is a flow path that connects the third outflow port P13 of the flow control valve to the intermediate portion between the radiator 21 and the pump 11 in the annular flow path W10. The flow rate control valve 12 controls the open / closed state of each outflow port P11 to P13 to control the flow rate of the cooling water flowing through the radiator 21, the flow rate of the cooling water flowing through the first bypass flow path W11, and the second bypass flow path W12. Control the flow rate of cooling water flowing through.
 ラジエータ21には、流量制御弁12から環状流路W10を介して冷却水が流入する。ラジエータ21は、その内部を流れる冷却水と、ラジエータファン21aにより送風される外気との間で熱交換を行うことにより冷却水を冷却する。外気は、車両の外部の空気である。ラジエータ21において冷却された冷却水は、環状流路W10を通じてポンプ11に戻される。 Cooling water flows into the radiator 21 from the flow control valve 12 via the annular flow path W10. The radiator 21 cools the cooling water by exchanging heat between the cooling water flowing inside the radiator 21 and the outside air blown by the radiator fan 21a. The outside air is the air outside the vehicle. The cooling water cooled in the radiator 21 is returned to the pump 11 through the annular flow path W10.
 第1バイパス流路W11には、ヒータコア22及びEGRクーラ23が配置されている。ヒータコア22は、車両に搭載される空調装置の空調ダクトに配置されている。ヒータコア22は、その内部を流れる冷却水と、暖房ブロア22aにより送風される空調ダクト内の空気との間で熱交換を行うことにより、空気を加熱する。この加熱された空気が空調ダクトを通じて車室内に送風されることにより、車室内の暖房が行われる。EGRクーラ23は、内燃機関20の排気管を流れる排気の一部を内燃機関20の吸気管に戻すEGR通路に配置されている。EGRクーラ23は、その内部を流れる冷却水と、EGR通路を流れる排気との間で熱交換を行うことにより、吸気管に戻される排気を冷却する。ヒータコア22及びEGRクーラ23を通過した冷却水は、第1バイパス流路W11及び環状流路W10を通じてポンプ11に戻される。 A heater core 22 and an EGR cooler 23 are arranged in the first bypass flow path W11. The heater core 22 is arranged in an air conditioning duct of an air conditioner mounted on a vehicle. The heater core 22 heats the air by exchanging heat between the cooling water flowing inside the heater core 22 and the air in the air conditioning duct blown by the heating blower 22a. The heated air is blown into the vehicle interior through the air conditioning duct to heat the vehicle interior. The EGR cooler 23 is arranged in an EGR passage that returns a part of the exhaust gas flowing through the exhaust pipe of the internal combustion engine 20 to the intake pipe of the internal combustion engine 20. The EGR cooler 23 cools the exhaust gas returned to the intake pipe by exchanging heat between the cooling water flowing inside the EGR cooler 23 and the exhaust gas flowing through the EGR passage. The cooling water that has passed through the heater core 22 and the EGR cooler 23 is returned to the pump 11 through the first bypass flow path W11 and the annular flow path W10.
 第2バイパス流路W12には、オイルクーラ24が配置されている。オイルクーラ24は、その内部を流れる冷却水と、内燃機関20の各部を潤滑する潤滑油との間で熱交換を行うことにより、潤滑油を冷却する。オイルクーラ24を通過した冷却水は、第2バイパス流路W12及び環状流路W10を通じてポンプ11に戻される。 An oil cooler 24 is arranged in the second bypass flow path W12. The oil cooler 24 cools the lubricating oil by exchanging heat between the cooling water flowing inside the oil cooler 24 and the lubricating oil that lubricates each part of the internal combustion engine 20. The cooling water that has passed through the oil cooler 24 is returned to the pump 11 through the second bypass flow path W12 and the annular flow path W10.
 本実施形態では、ヒータコア22、EGRクーラ23、及びオイルクーラ24が車載機器に相当する。また、流量制御弁12の第1流出ポートP11がラジエータ用ポートに相当し、流量制御弁12の第2流出ポートP12及び第3流出ポートP13が車載機器用ポートに相当する。さらに、第2流出ポートP12がヒータコア用ポートに相当し、第3流出ポートP13がオイルクーラ用ポートに相当する。 In the present embodiment, the heater core 22, the EGR cooler 23, and the oil cooler 24 correspond to the in-vehicle device. Further, the first outflow port P11 of the flow control valve 12 corresponds to the radiator port, and the second outflow port P12 and the third outflow port P13 of the flow control valve 12 correspond to the in-vehicle device port. Further, the second outflow port P12 corresponds to the heater core port, and the third outflow port P13 corresponds to the oil cooler port.
 次に、流量制御弁12の構造について詳しく説明する。
 図2に示されるように、流量制御弁12は、本体部120と、アクチュエータ装置121とを備えている。
 本体部120の側面には、第1~第3流出ポートP11~P13が設けられている。本体部120の底面には、図示されていない流入ポートP10が設けられている。また、本体部120の内部には、第1~第3流出ポートP11~P13の開閉状態を切り替えるための円筒状の弁体が設けられている。図3は、本体部120の内部に設けられる円筒状の弁体122の展開図である。なお、図3に示されるX方向は、弁体122の周方向を示し、Y方向は弁体122の軸方向に平行な方向を示す。以下では、X方向のうちの一方向であるX1方向を正転方向と称し、その逆方向であるX2方向を逆転方向と称する。
Next, the structure of the flow control valve 12 will be described in detail.
As shown in FIG. 2, the flow rate control valve 12 includes a main body 120 and an actuator device 121.
First to third outflow ports P11 to P13 are provided on the side surface of the main body 120. An inflow port P10 (not shown) is provided on the bottom surface of the main body 120. Further, inside the main body 120, a cylindrical valve body for switching the open / closed state of the first to third outflow ports P11 to P13 is provided. FIG. 3 is a developed view of a cylindrical valve body 122 provided inside the main body 120. The X direction shown in FIG. 3 indicates the circumferential direction of the valve body 122, and the Y direction indicates a direction parallel to the axial direction of the valve body 122. Hereinafter, the X1 direction, which is one of the X directions, is referred to as a forward rotation direction, and the X2 direction, which is the opposite direction, is referred to as a reverse rotation direction.
 図3に示されるように、弁体122には、その軸方向Yに平行な方向に並ぶように3つの開口部123a~123cが形成されている。各開口部123a~123cは、弁体122の周方向Xに延びるようにスリット状に形成されている。
 図3では、弁体122の周方向Xにおいて開口部123a~123cが形成されていない回転位置が「P0」で示され、回転位置P0から正転方向X1にずれた位置に順に配置される回転位置が「P1」、「P2」、「P3」、「P4」で示されている。
As shown in FIG. 3, the valve body 122 is formed with three openings 123a to 123c so as to be arranged in a direction parallel to the axial direction Y. The openings 123a to 123c are formed in a slit shape so as to extend in the circumferential direction X of the valve body 122.
In FIG. 3, the rotation positions in which the openings 123a to 123c are not formed in the circumferential direction X of the valve body 122 are indicated by “P0”, and the rotations are sequentially arranged at positions deviated from the rotation position P0 in the normal rotation direction X1. The positions are indicated by "P1", "P2", "P3", and "P4".
 開口部123aは、回転位置P3から回転位置P4まで延びるように形成されている。開口部123bは、回転位置P2から回転位置P4まで延びるように形成されている。開口部123cは、回転位置P1から回転位置P4まで延びるように形成されている。
 また、本体部120において弁体122に対向する内周面120aには、3つの連通孔124a~124cが軸方向Yに並べて形成されている。連通孔124a~124cは、図2に示される第1~第3流出ポートP11~P13にそれぞれ連通されている。
The opening 123a is formed so as to extend from the rotation position P3 to the rotation position P4. The opening 123b is formed so as to extend from the rotation position P2 to the rotation position P4. The opening 123c is formed so as to extend from the rotation position P1 to the rotation position P4.
Further, on the inner peripheral surface 120a of the main body 120 facing the valve body 122, three communication holes 124a to 124c are formed side by side in the axial direction Y. The communication holes 124a to 124c are communicated with the first to third outflow ports P11 to P13 shown in FIG. 2, respectively.
 図2に示されるアクチュエータ装置121は、モータを有しており、モータへの通電に基づき弁体122にトルクを付与することにより、弁体122を周方向Xに回転させる。弁体122が周方向Xに回転することにより、本体部120の内周面120aに形成される連通孔124a~124cと、弁体122に形成される開口部123a~123cとの相対的な位置が変化して、各流出ポートP11~P13の開度が変化する。 The actuator device 121 shown in FIG. 2 has a motor, and applies torque to the valve body 122 based on energization of the motor to rotate the valve body 122 in the circumferential direction X. The relative positions of the communication holes 124a to 124c formed in the inner peripheral surface 120a of the main body 120 and the openings 123a to 123c formed in the valve body 122 by rotating the valve body 122 in the circumferential direction X. Changes, and the opening degree of each outflow port P11 to P13 changes.
 具体的には、連通孔124a~124cのそれぞれの中心を通る線を基準線DL1とするとき、弁体122の回転に伴って弁体122おける基準線DL1の位置が変化する。以下では、便宜上、弁体122における基準線DL1の位置を「連通位置DL1」を称する。弁体122は、連通位置DL1が回転位置P0から回転位置P5まで変位する範囲で本体部120に対して相対回転する。回転位置P5は、回転位置P3と回転位置P4との間に設定されている。 Specifically, when the line passing through the center of each of the communication holes 124a to 124c is set as the reference line DL1, the position of the reference line DL1 in the valve body 122 changes with the rotation of the valve body 122. In the following, for convenience, the position of the reference line DL1 on the valve body 122 will be referred to as “communication position DL1”. The valve body 122 rotates relative to the main body 120 within a range in which the communication position DL1 is displaced from the rotation position P0 to the rotation position P5. The rotation position P5 is set between the rotation position P3 and the rotation position P4.
 例えば弁体122の連通位置DL1が回転位置P0から回転位置P3の間に位置している場合には、本体部120の連通孔124aが弁体122の開口部123aに連通されていないため、第1流出ポートP11は閉弁状態になっている。弁体122の連通位置DL1が回転位置P3に達した場合には、弁体122の連通位置DL1が正転方向X1に変化するほど、本体部120の連通孔124aと弁体122の開口部123aとが重なっている面積が徐々に増加する。したがって、第1流出ポートP11の開度が徐々に大きくなる。そして、本体部120の連通孔124aの全体が弁体122の開口部123aと重なると、第1流出ポートP11の開度が全開状態になる。以降、弁体122の連通位置DL1が回転位置P5に達するまでの間は、第1流出ポートP11の開度が全開状態に維持される。同様に、本体部120の連通孔124bと弁体122の開口部123bとの相対的な位置関係に応じて第2流出ポートP12の開度が変化するとともに、本体部120の連通孔124cと弁体122の開口部123cとの相対的な位置関係に応じて第3流出ポートP13の開度が変化する。図4(A)~(C)は、弁体122の連通位置DL1に対する各流出ポートP11~P13の開口率を示したものである。開口率とは、流出ポートが全閉状態であるときを「0[%]」とし、流出ポートが全開状態であるときを「100[%]」として、流出ポートの開度を「0[%]」から「100[%]」の範囲で表したものである。 For example, when the communication position DL1 of the valve body 122 is located between the rotation position P0 and the rotation position P3, the communication hole 124a of the main body 120 is not communicated with the opening 123a of the valve body 122. 1 The outflow port P11 is in a closed state. When the communication position DL1 of the valve body 122 reaches the rotation position P3, the communication position DL1 of the valve body 122 changes to the forward rotation direction X1 so that the communication hole 124a of the main body 120 and the opening 123a of the valve body 122 The area where and overlaps gradually increases. Therefore, the opening degree of the first outflow port P11 gradually increases. When the entire communication hole 124a of the main body 120 overlaps with the opening 123a of the valve body 122, the opening degree of the first outflow port P11 is fully opened. After that, the opening degree of the first outflow port P11 is maintained in the fully open state until the communication position DL1 of the valve body 122 reaches the rotation position P5. Similarly, the opening degree of the second outflow port P12 changes according to the relative positional relationship between the communication hole 124b of the main body 120 and the opening 123b of the valve body 122, and the communication hole 124c and the valve of the main body 120 change. The opening degree of the third outflow port P13 changes according to the relative positional relationship of the body 122 with the opening 123c. 4 (A) to 4 (C) show the aperture ratios of the outflow ports P11 to P13 with respect to the communication position DL1 of the valve body 122. The aperture ratio is defined as "0 [%]" when the outflow port is fully closed, "100 [%]" when the outflow port is fully open, and the opening of the outflow port is "0 [%]". ] ”To“ 100 [%] ”.
 なお、以下では、便宜上、弁体122の連通位置DL1を「流量制御弁12の弁位置」と称する。
 次に、冷却水循環システム10の電気的な構成について説明する。
In the following, for convenience, the communication position DL1 of the valve body 122 will be referred to as "the valve position of the flow control valve 12."
Next, the electrical configuration of the cooling water circulation system 10 will be described.
 図5に示されるように、冷却水循環システム10は、第1水温センサ30と、第2水温センサ31と、クランク角センサ32と、エアフロメータ33と、ECU(Electronic Control Unit)40とを備えている。
 図1に示されるように、第1水温センサ30は、環状流路W10における内燃機関20よりも上流側の部分に設けられている。第1水温センサ30は、内燃機関20に流入する冷却水の温度である入口水温TWinを検出するとともに、検出された入口水温TWinに応じた信号を出力する。
As shown in FIG. 5, the cooling water circulation system 10 includes a first water temperature sensor 30, a second water temperature sensor 31, a crank angle sensor 32, an air flow meter 33, and an ECU (Electronic Control Unit) 40. There is.
As shown in FIG. 1, the first water temperature sensor 30 is provided in a portion of the annular flow path W10 on the upstream side of the internal combustion engine 20. The first water temperature sensor 30 detects the inlet water temperature TWin, which is the temperature of the cooling water flowing into the internal combustion engine 20, and outputs a signal corresponding to the detected inlet water temperature TWin.
 第2水温センサ31は、環状流路W10における内燃機関20よりも下流側の部分に設けられている。第2水温センサ31は、内燃機関20から排出される冷却水の温度である出口水温TWoutを検出するとともに、検出された出口水温TWoutに応じた信号を出力する。 The second water temperature sensor 31 is provided in a portion of the annular flow path W10 on the downstream side of the internal combustion engine 20. The second water temperature sensor 31 detects the outlet water temperature TWout, which is the temperature of the cooling water discharged from the internal combustion engine 20, and outputs a signal corresponding to the detected outlet water temperature TWout.
 図5に示されるクランク角センサ32は、内燃機関20の出力軸であるクランク角θcを検出するとともに、検出されるクランク角θcに応じた信号を出力する。
 エアフロメータ33は、内燃機関20の吸気管に設けられており、内燃機関20に吸入される空気の流量GAを検出するとともに、検出された吸入空気量GAに応じた信号を出力する。
The crank angle sensor 32 shown in FIG. 5 detects the crank angle θc, which is the output shaft of the internal combustion engine 20, and outputs a signal corresponding to the detected crank angle θc.
The air flow meter 33 is provided in the intake pipe of the internal combustion engine 20, detects the flow rate GA of the air sucked into the internal combustion engine 20, and outputs a signal corresponding to the detected intake air amount GA.
 ECU40は、CPUやメモリ等を有するマイクロコンピュータを中心に構成されている。ECU40は、メモリに予め記憶されたプログラムを実行することにより流量制御弁12の駆動を制御する。
 具体的には、ECU40には、各センサ30~33の出力信号が取り込まれている。ECU40は、各センサ30~33の出力信号に基づいて入口水温TWin、出口水温TWout、クランク角θc、及び吸入空気量GAの情報を取得する。また、流量制御弁12には、その弁位置を検出する位置センサ125が設けられている。ECU40は、この位置センサ125により検出される流量制御弁12の弁位置の情報も取得する。ECU40は、入口水温TWin、出口水温TWout、クランク角θc、及び吸入空気量GAに基づいて流量制御弁12の弁体122の目標回転位置を設定するとともに、流量制御弁12の弁位置が目標回転位置となるように流量制御弁12を制御する。本実施形態では、ECU40が制御装置に相当する。また、流量制御弁12の弁位置を目標回転位置に追従させる制御が、流量制御弁12の実開度を目標開度に追従させる制御に相当する。
The ECU 40 is mainly composed of a microcomputer having a CPU, a memory, and the like. The ECU 40 controls the drive of the flow control valve 12 by executing a program stored in advance in the memory.
Specifically, the output signals of the sensors 30 to 33 are taken into the ECU 40. The ECU 40 acquires information on the inlet water temperature TWin, the outlet water temperature TWout, the crank angle θc, and the intake air amount GA based on the output signals of the sensors 30 to 33. Further, the flow rate control valve 12 is provided with a position sensor 125 for detecting the valve position. The ECU 40 also acquires information on the valve position of the flow control valve 12 detected by the position sensor 125. The ECU 40 sets the target rotation position of the valve body 122 of the flow rate control valve 12 based on the inlet water temperature TWin, the outlet water temperature TWout, the crank angle θc, and the intake air amount GA, and the valve position of the flow rate control valve 12 is the target rotation. The flow control valve 12 is controlled so as to be in the position. In this embodiment, the ECU 40 corresponds to the control device. Further, the control for making the valve position of the flow rate control valve 12 follow the target rotation position corresponds to the control for making the actual opening degree of the flow rate control valve 12 follow the target opening degree.
 次に、ECU40により実行される流量制御弁12の制御について具体的に説明する。
 ECU40は、出口水温TWoutに基づいて、図6に示される処理を実行する。なお、ECU40は、内燃機関20が始動した際に図6に示される処理を開始する。
Next, the control of the flow rate control valve 12 executed by the ECU 40 will be specifically described.
The ECU 40 executes the process shown in FIG. 6 based on the outlet water temperature TWout. The ECU 40 starts the process shown in FIG. 6 when the internal combustion engine 20 starts.
 図6に示されるように、ECU40は、まず、ステップS10の処理として、水止め制御を実行する。水止め制御では、流量制御弁12の弁位置が、図4に示される回転位置P0から回転位置P1の範囲に設定される。すなわち、水止め制御では、流量制御弁12の全ての流出ポートP11~P13が閉弁状態に設定される。この場合、図1に示される冷却水循環システム10では、冷却水が循環しないため、内燃機関20以外での流路W10~W12での冷却水から外部への放熱、すなわち熱損失が抑制される。これにより、内燃機関20から発せられる熱を有効に内燃機関20の暖機に活用でき、例えば内燃機関20の冷間始動時であっても、内燃機関20を早期に暖機することができる。 As shown in FIG. 6, the ECU 40 first executes the water stop control as the process of step S10. In the water stop control, the valve position of the flow rate control valve 12 is set in the range from the rotation position P0 to the rotation position P1 shown in FIG. That is, in the water stop control, all the outflow ports P11 to P13 of the flow rate control valve 12 are set to the closed state. In this case, in the cooling water circulation system 10 shown in FIG. 1, since the cooling water does not circulate, heat dissipation from the cooling water in the flow paths W10 to W12 other than the internal combustion engine 20, that is, heat loss is suppressed. As a result, the heat generated from the internal combustion engine 20 can be effectively used for warming up the internal combustion engine 20. For example, the internal combustion engine 20 can be warmed up at an early stage even at the time of cold start of the internal combustion engine 20.
 図6に示されるように、ECU40は、ステップS10に続くステップS11の処理として、出口水温TWoutが第1温度閾値TWth1よりも大きくなったか否かを判断する。ECU40は、出口水温TWoutが第1温度閾値TWth1以下である場合には、ステップS11の処理で否定判断して、ステップS10の水止め制御を継続する。 As shown in FIG. 6, the ECU 40 determines whether or not the outlet water temperature TWout becomes larger than the first temperature threshold value TWth1 as the process of step S11 following step S10. When the outlet water temperature TWout is equal to or less than the first temperature threshold value TWth1, the ECU 40 makes a negative determination in the process of step S11 and continues the water stop control in step S10.
 ECU40は、出口水温TWoutが第1温度閾値TWth1よりも大きくなった場合には、ステップS11の処理で肯定判断して、ステップS12の処理として、熱分配制御を実行する。熱分配制御では、流量制御弁12の弁位置が、図4に示される回転位置P1から回転位置P3の範囲に設定される。すなわち、熱分配制御では、流量制御弁12の第2流出ポートP12が開状態又は閉状態に設定されるとともに、第3流出ポートP13も開状態又は閉状態に設定される。また、第1流出ポートP11は閉弁状態に維持される。この場合、図1に示される冷却水循環システム10では、内燃機関20において加熱された冷却水を流量制御弁12の第2流出ポートP12を通じてヒータコア22及びEGRクーラ23に供給する状態と、それらへの冷却水の供給を停止する状態とを切り替えることができる。また、同様に、内燃機関20において加熱された冷却水を流量制御弁12の第3流出ポートP13を通じてオイルクーラ24に供給する状態と、オイルクーラ24への冷却水の供給を停止する状態とを切り替えることができる。このように、熱分配制御では、冷却水の熱を利用してヒータコア22、EGRクーラ23、及びオイルクーラ24を暖機することができる。 When the outlet water temperature TWout becomes larger than the first temperature threshold value TWth1, the ECU 40 makes an affirmative judgment in the process of step S11 and executes heat distribution control as the process of step S12. In the heat distribution control, the valve position of the flow control valve 12 is set in the range from the rotation position P1 to the rotation position P3 shown in FIG. That is, in the heat distribution control, the second outflow port P12 of the flow control valve 12 is set to the open state or the closed state, and the third outflow port P13 is also set to the open state or the closed state. Further, the first outflow port P11 is maintained in the closed state. In this case, in the cooling water circulation system 10 shown in FIG. 1, a state in which the cooling water heated in the internal combustion engine 20 is supplied to the heater core 22 and the EGR cooler 23 through the second outflow port P12 of the flow control valve 12 and to them. It is possible to switch between a state in which the supply of cooling water is stopped. Similarly, a state in which the cooling water heated in the internal combustion engine 20 is supplied to the oil cooler 24 through the third outflow port P13 of the flow rate control valve 12 and a state in which the supply of the cooling water to the oil cooler 24 is stopped. You can switch. As described above, in the heat distribution control, the heater core 22, the EGR cooler 23, and the oil cooler 24 can be warmed up by utilizing the heat of the cooling water.
 図6に示されるように、ECU40は、ステップS12に続くステップS13の処理として、出口水温TWoutが第2温度閾値TWth2よりも大きくなったか否かを判断する。第2温度閾値TWth2は、第1温度閾値TWth1よりも大きい値に設定されている。ECU40は、出口水温TWoutが第2温度閾値TWth2以下である場合には、ステップS13の処理で否定判断して、ステップS12の熱分配制御を継続する。 As shown in FIG. 6, the ECU 40 determines whether or not the outlet water temperature TWout becomes larger than the second temperature threshold value TWth2 as the process of step S13 following step S12. The second temperature threshold value TWth2 is set to a value larger than the first temperature threshold value TWth1. When the outlet water temperature TWout is equal to or lower than the second temperature threshold value TWth2, the ECU 40 makes a negative determination in the process of step S13 and continues the heat distribution control in step S12.
 ECU40は、出口水温TWoutが第2温度閾値TWth2よりも大きくなった場合には、ステップS13の処理で肯定判断して、ステップS14の処理として、壁温切替制御を実行する。壁温切替制御では、流量制御弁12の弁位置が、図4に示される回転位置P6から回転位置P5の範囲に設定される。回転位置P6は、回転位置P3よりも逆転方向X2に若干ずれた位置に設定されている。流量制御弁12の弁位置が図4に示される回転位置P6から回転位置P5に設定されることにより、流量制御弁12の第1流出ポートP11が開弁状態又は閉弁状態に設定されるとともに、第2流出ポートP12及び第3流出ポートP13が全開状態に維持される。この場合、図1に示される冷却水循環システム10では、内燃機関20の熱を吸収した冷却水が流量制御弁12の第1流出ポートP11を通じてラジエータ21に供給されるため、ラジエータ21において冷却水を冷却することができる。ECU40は、壁温切替制御において、内燃機関20の負荷状態に応じて第1流出ポートP11の開閉状態を変化させることにより、内燃機関20を流れる冷却水の温度を調整する。 When the outlet water temperature TWout becomes larger than the second temperature threshold value TWth2, the ECU 40 makes an affirmative judgment in the process of step S13, and executes wall temperature switching control as the process of step S14. In the wall temperature switching control, the valve position of the flow rate control valve 12 is set in the range from the rotation position P6 to the rotation position P5 shown in FIG. The rotation position P6 is set at a position slightly deviated from the rotation position P3 in the reverse direction X2. By setting the valve position of the flow control valve 12 from the rotation position P6 to the rotation position P5 shown in FIG. 4, the first outflow port P11 of the flow control valve 12 is set to the valve open state or the valve closed state. , The second outflow port P12 and the third outflow port P13 are maintained in the fully open state. In this case, in the cooling water circulation system 10 shown in FIG. 1, the cooling water that has absorbed the heat of the internal combustion engine 20 is supplied to the radiator 21 through the first outflow port P11 of the flow control valve 12, so that the cooling water is supplied to the radiator 21. Can be cooled. In the wall temperature switching control, the ECU 40 adjusts the temperature of the cooling water flowing through the internal combustion engine 20 by changing the open / closed state of the first outflow port P11 according to the load state of the internal combustion engine 20.
 具体的には、ECU40は、内燃機関20の負荷状態が高負荷状態である場合には、第1流出ポートP11を開弁方向に変化させることにより、ラジエータ21に供給される冷却水の流量を増加させる。これにより、ラジエータ21において冷却水が冷却され易くなるため、内燃機関20に供給される冷却水の温度が低下する。したがって、内燃機関20のシリンダ201,202の壁温が低下するため、内燃機関20にノッキングが生じ難くなる。よって、ノッキングを抑制するために内燃機関20の点火時期を遅角側にずらす制御を実行する必要がなくなる。結果として、内燃機関20の点火時期を最適な時期に維持し易くなるため、内燃機関20の燃費を改善することができる。なお、以下では、内燃機関20のシリンダ201,202の実壁温を単に「内燃機関20の壁温」と称する。 Specifically, when the load state of the internal combustion engine 20 is a high load state, the ECU 40 changes the flow rate of the cooling water supplied to the radiator 21 by changing the first outflow port P11 in the valve opening direction. increase. As a result, the cooling water is easily cooled in the radiator 21, so that the temperature of the cooling water supplied to the internal combustion engine 20 is lowered. Therefore, since the wall temperature of the cylinders 201 and 202 of the internal combustion engine 20 is lowered, knocking is less likely to occur in the internal combustion engine 20. Therefore, it is not necessary to execute the control of shifting the ignition timing of the internal combustion engine 20 to the retard side in order to suppress knocking. As a result, it becomes easy to maintain the ignition timing of the internal combustion engine 20 at the optimum timing, so that the fuel consumption of the internal combustion engine 20 can be improved. In the following, the actual wall temperature of the cylinders 201 and 202 of the internal combustion engine 20 is simply referred to as "the wall temperature of the internal combustion engine 20".
 一方、ECU40は、内燃機関20の負荷状態が低負荷状態である場合には、第1流出ポートP11を閉弁方向に変化させることにより、ラジエータ21に供給される冷却水の流量を減少させる。これにより、冷却水が冷却され難くなるため、内燃機関20を流れる冷却水の温度が上昇する。よって、内燃機関20の実壁温が上昇するため、内燃機関20の冷却損失が低減するとともに、内燃機関20のフリクションが低下する。そのため、内燃機関20の燃費を改善することができる。 On the other hand, when the load state of the internal combustion engine 20 is a low load state, the ECU 40 reduces the flow rate of the cooling water supplied to the radiator 21 by changing the first outflow port P11 in the valve closing direction. As a result, it becomes difficult for the cooling water to be cooled, so that the temperature of the cooling water flowing through the internal combustion engine 20 rises. Therefore, since the actual wall temperature of the internal combustion engine 20 rises, the cooling loss of the internal combustion engine 20 is reduced and the friction of the internal combustion engine 20 is reduced. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
 次に、ECU40により実行される壁温切替制御の詳細について説明する。なお、本実施形態のECU40は、内燃機関20の壁温と内燃機関20の出口水温TWoutとの間に相関関係があることを利用して、内燃機関20の壁温を示すパラメータとして、内燃機関20の出口水温TWoutが用いられている。 Next, the details of the wall temperature switching control executed by the ECU 40 will be described. The ECU 40 of the present embodiment utilizes the fact that there is a correlation between the wall temperature of the internal combustion engine 20 and the outlet water temperature TWout of the internal combustion engine 20 as a parameter indicating the wall temperature of the internal combustion engine 20. The outlet water temperature TWout of 20 is used.
 図5に示されるように、ECU40は、壁温切替制御の実行のために、目標開度設定部50と、開度制御部60とを備えている。
 目標開度設定部50は、内燃機関20の負荷状態に応じた目標出口水温を設定するとともに、設定された目標出口水温に実際の出口水温TWoutを追従させるための流量制御弁12の弁体の目標回転位置Pvb*を設定する。本実施形態では、出口水温TWoutを目標出口水温に追従させる制御が、内燃機関20の実壁温を目標壁温に追従させる制御に相当する。また、出口水温TWoutが、内燃機関20を流れる冷却水の温度に相当し、目標出口水温TWout*が、内燃機関20を流れる冷却水の目標水温に相当する。図7に示されるように、目標開度設定部50は、フィードフォワード制御部51と、フィードバック制御部52と、乗算部53とを備えている。
As shown in FIG. 5, the ECU 40 includes a target opening degree setting unit 50 and an opening degree control unit 60 for executing wall temperature switching control.
The target opening degree setting unit 50 sets the target outlet water temperature according to the load state of the internal combustion engine 20, and of the valve body of the flow rate control valve 12 for making the actual outlet water temperature TWout follow the set target outlet water temperature. Set the target rotation position Pvb *. In the present embodiment, the control to make the outlet water temperature TWout follow the target outlet water temperature corresponds to the control to make the actual wall temperature of the internal combustion engine 20 follow the target wall temperature. Further, the outlet water temperature TWout corresponds to the temperature of the cooling water flowing through the internal combustion engine 20, and the target outlet water temperature TWout * corresponds to the target water temperature of the cooling water flowing through the internal combustion engine 20. As shown in FIG. 7, the target opening degree setting unit 50 includes a feedforward control unit 51, a feedback control unit 52, and a multiplication unit 53.
 フィードフォワード制御部51は、内燃機関20の負荷に応じた目標出口水温を設定した上で、内燃機関20の出口水温TWoutを目標出口水温にフィードフォワード制御するための目標回転位置Pv*を演算する部分である。フィードフォワード制御部51は、回転速度演算部510と、吸入空気量演算部511と、入口水温演算部512と、発熱量演算部513と、目標出口水温演算部514と、流量演算部515と、減算部516と、除算部517a,517bと、基準目標開度演算部518と、フィルタリング部519とを有している。 The feedforward control unit 51 sets a target outlet water temperature according to the load of the internal combustion engine 20, and then calculates a target rotation position Pv * for feedforward controlling the outlet water temperature TWout of the internal combustion engine 20 to the target outlet water temperature. It is a part. The feed forward control unit 51 includes a rotation speed calculation unit 510, an intake air amount calculation unit 511, an inlet water temperature calculation unit 512, a calorific value calculation unit 513, a target outlet water temperature calculation unit 514, and a flow rate calculation unit 515. It has a subtraction unit 516, a division units 517a and 517b, a reference target opening degree calculation unit 518, and a filtering unit 519.
 回転速度演算部510には、クランク角センサ32の出力信号が入力されている。回転速度演算部510は、クランク角センサ32の出力信号に基づいてクランク角θcを演算するとともに、演算されたクランク角θcの時間変化量を演算することにより、内燃機関20の回転速度Npを演算する。 The output signal of the crank angle sensor 32 is input to the rotation speed calculation unit 510. The rotation speed calculation unit 510 calculates the rotation speed Np of the internal combustion engine 20 by calculating the crank angle θc based on the output signal of the crank angle sensor 32 and calculating the amount of time change of the calculated crank angle θc. To do.
 吸入空気量演算部511には、エアフロメータ33の出力信号が入力されている。吸入空気量演算部511は、エアフロメータ33の出力信号に基づいて吸入空気量GAを演算する。吸入空気量GAと内燃機関20の負荷との間には相関関係があるため、本実施形態では、内燃機関20の負荷状態を表すパラメータとして、吸入空気量GAが用いられている。 The output signal of the air flow meter 33 is input to the intake air amount calculation unit 511. The intake air amount calculation unit 511 calculates the intake air amount GA based on the output signal of the air flow meter 33. Since there is a correlation between the intake air amount GA and the load of the internal combustion engine 20, in the present embodiment, the intake air amount GA is used as a parameter representing the load state of the internal combustion engine 20.
 入口水温演算部512には、第1水温センサ30の出力信号が入力されている。入口水温演算部512は、第1水温センサ30の出力信号に基づいて内燃機関20の入口水温TWinを演算する。
 発熱量演算部513には、回転速度演算部510により演算される内燃機関20の回転速度Npと、吸入空気量演算部511により演算される吸入空気量GAとが入力される。発熱量演算部513は、図8に示されるマップを用いることにより、内燃機関20の回転速度Np及び吸入空気量GAに基づいて発熱量Qを演算する。発熱量Qは、内燃機関20から冷却水に伝わる熱量である。図8に示されるマップでは、内燃機関20の回転速度Npが速くなるほど、また吸入空気量GAが増加するほど、発熱量Qが増加するようになっている。
The output signal of the first water temperature sensor 30 is input to the inlet water temperature calculation unit 512. The inlet water temperature calculation unit 512 calculates the inlet water temperature TWin of the internal combustion engine 20 based on the output signal of the first water temperature sensor 30.
The rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 and the intake air amount GA calculated by the intake air amount calculation unit 511 are input to the calorific value calculation unit 513. The calorific value calculation unit 513 calculates the calorific value Q based on the rotation speed Np of the internal combustion engine 20 and the intake air amount GA by using the map shown in FIG. The calorific value Q is the amount of heat transferred from the internal combustion engine 20 to the cooling water. In the map shown in FIG. 8, the calorific value Q increases as the rotational speed Np of the internal combustion engine 20 increases and the intake air amount GA increases.
 図7に示されるように、目標出口水温演算部514には、回転速度演算部510により演算される内燃機関20の回転速度Npと、吸入空気量演算部511により演算される吸入空気量GAとが入力される。目標出口水温演算部514は、図9に示されるマップを用いることにより、内燃機関20の回転速度Np及び吸入空気量GAに基づいて目標出口水温TWout*を演算する。図9に示されるマップでは、内燃機関20の回転速度Npが遅く、且つ吸入空気量GAが大きい領域、すなわち内燃機関20が高負荷状態である領域では、目標出口水温TWout*が低温の第1目標水温設定値TWa1に設定される。また、内燃機関20の回転速度Npが速く、且つ吸入空気量GAが小さい領域、すなわち内燃機関20が低負荷状態である領域では、目標出口水温TWout*が、第1目標水温設定値TWa1よりも高温の第2目標水温設定値TWa2に設定される。本実施形態では、第1目標水温設定値TWa1が第1目標壁温設定値に相当し、第2目標水温設定値TWa2が第2目標壁温設定値に相当する。 As shown in FIG. 7, the target outlet water temperature calculation unit 514 includes a rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 and an intake air amount GA calculated by the intake air amount calculation unit 511. Is entered. The target outlet water temperature calculation unit 514 calculates the target outlet water temperature TWout * based on the rotation speed Np of the internal combustion engine 20 and the intake air amount GA by using the map shown in FIG. In the map shown in FIG. 9, in the region where the rotation speed Np of the internal combustion engine 20 is slow and the intake air amount GA is large, that is, in the region where the internal combustion engine 20 is in a high load state, the target outlet water temperature TWout * is the first low temperature. The target water temperature set value TWa1 is set. Further, in the region where the rotation speed Np of the internal combustion engine 20 is high and the intake air amount GA is small, that is, in the region where the internal combustion engine 20 is in a low load state, the target outlet water temperature TWout * is higher than the first target water temperature set value TWa1. It is set to the high temperature second target water temperature set value TWa2. In the present embodiment, the first target water temperature set value TWa1 corresponds to the first target wall temperature set value, and the second target water temperature set value TWa2 corresponds to the second target wall temperature set value.
 図7に示されるように、流量演算部515には、回転速度演算部510により演算される内燃機関20の回転速度Npが入力される。流量演算部515は、図10に示されるマップを用いることにより、内燃機関20の回転速度Npに基づいて弁全開時流量mを演算する。弁全開時流量mは、全ての流出ポートP11~P13が全開状態であるときに内燃機関20を通過する冷却水の流量である。本実施形態では、図1に示されるポンプ11が、内燃機関20の動力に基づき駆動する機械式のポンプであるため、図10に示されるように、弁全開時流量mは、基本的には、内燃機関20の回転速度Npに比例する。 As shown in FIG. 7, the rotation speed Np of the internal combustion engine 20 calculated by the rotation speed calculation unit 510 is input to the flow rate calculation unit 515. The flow rate calculation unit 515 calculates the flow rate m when the valve is fully opened based on the rotation speed Np of the internal combustion engine 20 by using the map shown in FIG. The flow rate m when the valve is fully open is the flow rate of the cooling water that passes through the internal combustion engine 20 when all the outflow ports P11 to P13 are in the fully open state. In the present embodiment, since the pump 11 shown in FIG. 1 is a mechanical pump driven based on the power of the internal combustion engine 20, the flow rate m when the valve is fully opened is basically as shown in FIG. , Is proportional to the rotation speed Np of the internal combustion engine 20.
 図7に示されるように、減算部516には、目標出口水温演算部514により演算される目標出口水温TWout*と、入口水温演算部512により演算される入口水温TWinとが入力される。減算部516は、目標出口水温TWout*から入口水温TWinを減算することにより、それらの偏差である目標出入水温差ΔT(=TWout*-TWin)を演算する。 As shown in FIG. 7, the target outlet water temperature TWout * calculated by the target outlet water temperature calculation unit 514 and the inlet water temperature TWin calculated by the inlet water temperature calculation unit 512 are input to the subtraction unit 516. By subtracting the inlet water temperature TWin from the target outlet water temperature TWout *, the subtraction unit 516 calculates the target inlet / outlet water temperature difference ΔT (= TWout * −TWin), which is a deviation between them.
 除算部517aには、発熱量演算部513により演算される内燃機関20の発熱量Qと、減算部516により演算される目標出入水温差ΔTとが入力される。除算部517aは、以下の式f1に基づいて、冷却水の目標流量m*を演算する。なお、式f1における「c」は冷却水の比熱を示す。また、式f1では、冷却水の質量を冷却水の流量で近似している。 In the division unit 517a, the calorific value Q of the internal combustion engine 20 calculated by the calorific value calculation unit 513 and the target water inlet / outlet temperature difference ΔT calculated by the subtraction unit 516 are input. The division unit 517a calculates the target flow rate m * of the cooling water based on the following equation f1. In addition, "c" in formula f1 shows the specific heat of cooling water. Further, in the formula f1, the mass of the cooling water is approximated by the flow rate of the cooling water.
 m*=Q/(c×ΔT) (f1)
 除算部517bには、除算部517aにより演算される目標流量m*と、流量演算部515により演算される弁全開時流量mとが入力される。除算部517bは、目標流量m*を弁全開時流量mにより除算することにより、目標流量比Rf(=(m*/m)×100[%])を演算する。
m * = Q / (c × ΔT) (f1)
The target flow rate m * calculated by the division unit 517a and the valve fully open flow rate m calculated by the flow rate calculation unit 515 are input to the division unit 517b. The division unit 517b calculates the target flow rate ratio Rf (= (m * / m) × 100 [%]) by dividing the target flow rate m * by the flow rate m when the valve is fully open.
 基準目標開度演算部518には、除算部517bにより演算される目標流量比Rfが入力される。基準目標開度演算部518は、図11に示されるマップを用いることにより、目標流量比Rfから流量制御弁12の弁体122の目標回転位置Pvb*を演算する。図11に示されるマップは、流量比を流量制御弁12の弁体の回転位置に変換するためのマップである。このマップは、流量制御弁12の弁位置に応じた第1流出ポートP11の開口率特性に基づいて予め作成されている。 The target flow rate ratio Rf calculated by the division unit 517b is input to the reference target opening calculation unit 518. The reference target opening degree calculation unit 518 calculates the target rotation position Pvb * of the valve body 122 of the flow rate control valve 12 from the target flow rate ratio Rf by using the map shown in FIG. The map shown in FIG. 11 is a map for converting the flow rate ratio into the rotation position of the valve body of the flow rate control valve 12. This map is prepared in advance based on the opening ratio characteristic of the first outflow port P11 according to the valve position of the flow control valve 12.
 図7に示されるように、フィルタリング部519には、基準目標開度演算部518により演算される目標回転位置Pvb*が入力される。フィルタリング部519は、基準目標開度演算部518により演算される目標回転位置Pvb*に対してローパスフィルタに基づくフィルタリング処理を施すことにより、目標回転位置Pvb*を平滑化する。フィルタリング部519によりフィルタリング処理が施された目標回転位置Pvb*は、フィードフォワード制御部51の演算値として乗算部53に入力される。 As shown in FIG. 7, the target rotation position Pvb * calculated by the reference target opening degree calculation unit 518 is input to the filtering unit 519. The filtering unit 519 smoothes the target rotation position Pvb * by performing a filtering process based on the low-pass filter on the target rotation position Pvb * calculated by the reference target opening degree calculation unit 518. The target rotation position Pvb * that has been filtered by the filtering unit 519 is input to the multiplication unit 53 as a calculated value of the feedforward control unit 51.
 フィードバック制御部52は、内燃機関20の出口水温TWoutを目標出口水温にフィードバック制御するための目標回転位置Pvb*を演算する部分である。フィードバック制御部52は、出口水温演算部520と、減算部521と、PI制御部522とを備えている。 The feedback control unit 52 is a part that calculates a target rotation position Pvb * for feedback controlling the outlet water temperature TWout of the internal combustion engine 20 to the target outlet water temperature. The feedback control unit 52 includes an outlet water temperature calculation unit 520, a subtraction unit 521, and a PI control unit 522.
 出口水温演算部520には、第2水温センサ31の出力信号が入力されている。出口水温演算部520は、第2水温センサ31の出力信号に基づいて内燃機関20の出口水温TWoutを演算する。
 減算部521には、出口水温演算部520により演算される内燃機関20の出口水温TWoutと、フィードフォワード制御部51の目標出口水温演算部514により演算される目標出口水温TWout*とが入力される。減算部521は、目標出口水温TWout*から出口水温TWoutを減算することにより、それらの偏差である出口水温偏差ΔTWoutを演算する。
The output signal of the second water temperature sensor 31 is input to the outlet water temperature calculation unit 520. The outlet water temperature calculation unit 520 calculates the outlet water temperature TWout of the internal combustion engine 20 based on the output signal of the second water temperature sensor 31.
The outlet water temperature TWout of the internal combustion engine 20 calculated by the outlet water temperature calculation unit 520 and the target outlet water temperature TWout * calculated by the target outlet water temperature calculation unit 514 of the feedforward control unit 51 are input to the subtraction unit 521. .. The subtraction unit 521 calculates the outlet water temperature deviation ΔTWout, which is a deviation thereof, by subtracting the outlet water temperature TWout from the target outlet water temperature TWout *.
 PI制御部522には、減算部521により演算される出口水温偏差ΔTWoutが入力される。PI制御部522は、出口水温偏差ΔTWoutに基づくPI制御を実行することにより、目標出口水温TWout*に出口水温TWoutを追従させるためのフィードバック補正量αを演算する。PI制御部522により演算されるフィードバック補正量αは、フィードバック制御部52の演算値として乗算部53に入力される。 The outlet water temperature deviation ΔTWout calculated by the subtraction unit 521 is input to the PI control unit 522. The PI control unit 522 calculates the feedback correction amount α for making the outlet water temperature TWout follow the target outlet water temperature TWout * by executing the PI control based on the outlet water temperature deviation ΔTWout. The feedback correction amount α calculated by the PI control unit 522 is input to the multiplication unit 53 as a calculated value of the feedback control unit 52.
 乗算部53は、フィードフォワード制御部51の演算値である目標回転位置Pvb*に、フィードバック制御部52の演算値であるフィードバック補正量αを乗算することにより、最終目標回転位置Pv*を演算する。この乗算部53により演算される最終目標回転位置Pv*が目標開度設定部50の演算値として、図5に示される開度制御部60に出力される。 The multiplication unit 53 calculates the final target rotation position Pv * by multiplying the target rotation position Pvb *, which is the calculated value of the feedforward control unit 51, by the feedback correction amount α, which is the calculated value of the feedback control unit 52. .. The final target rotation position Pv * calculated by the multiplication unit 53 is output to the opening degree control unit 60 shown in FIG. 5 as a calculated value of the target opening degree setting unit 50.
 図12に示されるように、開度制御部60は、減算部61と、比例制御部62と、積分部63と、積分制御部64と、加算部65と、制限部66とを備えている。
 減算部61には、目標開度設定部50により演算される最終目標回転位置Pv*と、流量制御弁12の位置センサ125により検出される流量制御弁12の弁位置Pvとが入力されている。減算部61は、最終目標回転位置Pv*から実回転位置Pvを減算することにより、回転位置偏差ΔP(=Pv*-Pv)を演算する。
As shown in FIG. 12, the opening degree control unit 60 includes a subtraction unit 61, a proportional control unit 62, an integration unit 63, an integration control unit 64, an addition unit 65, and a restriction unit 66. ..
The final target rotation position Pv * calculated by the target opening degree setting unit 50 and the valve position Pv of the flow rate control valve 12 detected by the position sensor 125 of the flow rate control valve 12 are input to the subtraction unit 61. .. The subtraction unit 61 calculates the rotation position deviation ΔP (= Pv * −Pv) by subtracting the actual rotation position Pv from the final target rotation position Pv *.
 比例制御部62には、減算部61により演算される回転位置偏差ΔPが入力されている。比例制御部62は、回転位置偏差ΔPに基づく比例制御の実行により、デューティ比Dの比例項Dpを演算する。
 なお、デューティ比Dは、流量制御弁12のアクチュエータ装置121の通電時間の割合を示すものである。本実施形態のデューティ比Dは「-100[%]≦D≦100[%]」の範囲で設定されている。デューティ比Dが正の値に設定されている場合、弁体122が正転方向X1に回転するようにアクチュエータ装置121の通電が行われる。また、デューティ比Dが負の値に設定されている場合、弁体122が逆転方向X2に回転するようにアクチュエータ装置121の通電が行われる。また、デューティ比Dの絶対値が大きくなるほど、アクチュエータ装置121の通電時間が長くなる。そのため、デューティ比Dと流量制御弁12の弁体122の変位速度との間には、図13に示されるような略比例関係が成立する。
The rotation position deviation ΔP calculated by the subtraction unit 61 is input to the proportional control unit 62. The proportional control unit 62 calculates the proportional term Dp of the duty ratio D by executing the proportional control based on the rotation position deviation ΔP.
The duty ratio D indicates the ratio of the energization time of the actuator device 121 of the flow control valve 12. The duty ratio D of this embodiment is set in the range of "-100 [%] ≤ D ≤ 100 [%]". When the duty ratio D is set to a positive value, the actuator device 121 is energized so that the valve body 122 rotates in the forward rotation direction X1. When the duty ratio D is set to a negative value, the actuator device 121 is energized so that the valve body 122 rotates in the reverse direction X2. Further, the larger the absolute value of the duty ratio D, the longer the energization time of the actuator device 121. Therefore, a substantially proportional relationship as shown in FIG. 13 is established between the duty ratio D and the displacement speed of the valve body 122 of the flow control valve 12.
 図12に示されるように、積分部63には、減算部61により演算される回転位置偏差ΔPが入力されている。積分部63は、回転位置偏差ΔPの時間的な積分値を演算する。
 積分制御部64には、積分部63により演算される回転位置偏差ΔPの積分値が入力される。積分制御部64は、回転位置偏差ΔPの積分値に基づく積分制御の実行により、デューティ比Dの積分項Diを演算する。
As shown in FIG. 12, the rotation position deviation ΔP calculated by the subtraction unit 61 is input to the integration unit 63. The integrating unit 63 calculates a temporal integrated value of the rotation position deviation ΔP.
The integral value of the rotation position deviation ΔP calculated by the integral unit 63 is input to the integral control unit 64. The integration control unit 64 calculates the integration term Di of the duty ratio D by executing the integration control based on the integration value of the rotation position deviation ΔP.
 加算部65には、比例制御部62により演算されるデューティ比Dの比例項Dpと、積分制御部64により演算されるデューティ比Dの積分項Diとが入力される。加算部65は、デューティ比Dの比例項Dpとデューティ比Dの積分項Diとを加算することにより、最終的なデューティ比Dを演算する。 The proportional term Dp of the duty ratio D calculated by the proportional control unit 62 and the integral term Di of the duty ratio D calculated by the integral control unit 64 are input to the addition unit 65. The addition unit 65 calculates the final duty ratio D by adding the proportional term Dp of the duty ratio D and the integral term Di of the duty ratio D.
 制限部66には、加算部65により演算されるデューティ比Dが入力される。制限部66は、デューティ比Dの値を「-40[%]≦D≦40[%]」に制限する。例えば加算部65により演算されたデューティ比Dが「60[%]」である場合には、デューティ比Dを「40[%]」に制限する。また、例えば加算部65により演算されたデューティ比Dが「-60[%]」である場合には、デューティ比Dを「-40[%]」に制限する。このように流量制御弁12のデューティ比Dを制限すれば、アクチュエータ装置121のモータの発熱を抑制したり、アクチュエータ装置121のギア等の駆動部に加わる負荷を減少させたりすることができる。よって、アクチュエータ装置121の耐久性の要求を満たし易くなる。この制限部66により演算されるデューティ比Dは、ECU40の出力信号として流量制御弁12に入力される。このデューティ比Dに基づいて流量制御弁12のアクチュエータ装置121の通電が制御されることにより、流量制御弁12の弁体122の弁位置Pvが最終目標回転位置Pv*に追従するように制御される。 The duty ratio D calculated by the addition unit 65 is input to the restriction unit 66. The limiting unit 66 limits the value of the duty ratio D to "-40 [%] ≤ D ≤ 40 [%]". For example, when the duty ratio D calculated by the addition unit 65 is "60 [%]", the duty ratio D is limited to "40 [%]". Further, for example, when the duty ratio D calculated by the addition unit 65 is "-60 [%]", the duty ratio D is limited to "-40 [%]". By limiting the duty ratio D of the flow control valve 12 in this way, it is possible to suppress the heat generation of the motor of the actuator device 121 and reduce the load applied to the drive unit such as the gear of the actuator device 121. Therefore, it becomes easy to satisfy the requirement for durability of the actuator device 121. The duty ratio D calculated by the limiting unit 66 is input to the flow control valve 12 as an output signal of the ECU 40. By controlling the energization of the actuator device 121 of the flow control valve 12 based on this duty ratio D, the valve position Pv of the valve body 122 of the flow control valve 12 is controlled to follow the final target rotation position Pv *. To.
 ところで、内燃機関20の吸入空気量GAが変化することにより、すなわち内燃機関20の負荷が変化することにより、図7に示される減算部516により演算される目標出口水温TWout*が変化した際に、実際の出口水温TWoutが目標出口水温TWout*まで変化するまでには時間的な遅れが生じる。 By the way, when the target outlet water temperature TWout * calculated by the subtraction unit 516 shown in FIG. 7 changes due to a change in the intake air amount GA of the internal combustion engine 20, that is, a change in the load of the internal combustion engine 20. , There is a time delay until the actual outlet water temperature TWout changes to the target outlet water temperature TWout *.
 例えば図14に示されるように、時刻t10で車両の加速等により内燃機関20が高負荷状態になったとすると、図中に一点鎖線で示されるように、時刻t10で目標出口水温TWout*が第2目標水温設定値TWa2から第1目標水温設定値TWa1に変更される。この場合、時刻t10から所定時間T11だけ経過した時刻t11で実際の出口水温TWoutが第1目標水温設定値TWa1に到達する。このときの遅れ時間T11は5秒から20秒程度である。 For example, as shown in FIG. 14, if the internal combustion engine 20 is in a high load state due to vehicle acceleration or the like at time t10, the target outlet water temperature TWout * is set at time t10 as shown by the alternate long and short dash line in the figure. 2 The target water temperature set value TWa2 is changed to the first target water temperature set value TWa1. In this case, the actual outlet water temperature TWout reaches the first target water temperature set value TWa1 at the time t11 when the predetermined time T11 has elapsed from the time t10. The delay time T11 at this time is about 5 to 20 seconds.
 また、時刻t12で車両の減速等により内燃機関20が低負荷状態になった場合には、目標出口水温TWout*が第1目標水温設定値TWa1から第2目標水温設定値TWa2に増加する。この場合、時刻t12から所定時間T12だけ経過した時刻t13で実際の出口水温TWoutが第2目標水温設定値TWa2に到達する。このときの遅れ時間T12は10秒から20秒程度である。 Further, when the internal combustion engine 20 becomes a low load state due to deceleration of the vehicle at time t12, the target outlet water temperature TWout * increases from the first target water temperature set value TWa1 to the second target water temperature set value TWa2. In this case, the actual outlet water temperature TWout reaches the second target water temperature set value TWa2 at the time t13 when the predetermined time T12 has elapsed from the time t12. The delay time T12 at this time is about 10 to 20 seconds.
 このような数十秒程度の応答遅れが生じる要因としては、例えばECU40における制御指示の遅れ、流量制御弁12の弁体122の応答遅れ、冷却水循環システム10における冷却水の流量の応答遅れ、冷却水の水温の応答遅れ等がある。
 具体的には、例えば内燃機関20が低負荷状態から高負荷状態に移行する際には、図15に示されるような流れで、内燃機関20を流れる冷却水の温度が変化する。図15に示されるように、まず、運転者がアクセルペダルを踏み込むと、内燃機関20の吸入空気量GAが増加する。吸入空気量GAの増加に伴って目標出口水温TWout*が変更されることにより、変更後の目標出口水温TWout*に対応するように目標回転位置Pvb*が変更される。その結果、流量制御弁12の弁位置Pvが変更される。これにより、流量制御弁12の各流出ポートP11~P13の開度が変更されるため、冷却水循環システム10を流れる冷却水の流量が変化する。この冷却水の流量の変化に基づいてラジエータ21の放熱量や内燃機関20の受熱量が変化し、結果として冷却水の温度の変化に至る。
Factors that cause such a response delay of about several tens of seconds include, for example, a delay in control instructions in the ECU 40, a delay in response to the valve body 122 of the flow rate control valve 12, a delay in response to the flow rate of cooling water in the cooling water circulation system 10, and cooling. There is a delay in the response of the water temperature.
Specifically, for example, when the internal combustion engine 20 shifts from the low load state to the high load state, the temperature of the cooling water flowing through the internal combustion engine 20 changes in the flow as shown in FIG. As shown in FIG. 15, when the driver first depresses the accelerator pedal, the intake air amount GA of the internal combustion engine 20 increases. Since the target outlet water temperature TWout * is changed as the intake air amount GA increases, the target rotation position Pvb * is changed so as to correspond to the changed target outlet water temperature TWout *. As a result, the valve position Pv of the flow control valve 12 is changed. As a result, the opening degrees of the outflow ports P11 to P13 of the flow rate control valve 12 are changed, so that the flow rate of the cooling water flowing through the cooling water circulation system 10 changes. The amount of heat radiated from the radiator 21 and the amount of heat received by the internal combustion engine 20 change based on the change in the flow rate of the cooling water, resulting in a change in the temperature of the cooling water.
 このとき、各パラメータの変化には種々の応答遅れが発生する。具体的には、アクセルペダルの踏み込み量が変化した際には、その変化に対する吸入空気量GAの応答には遅れが生じる。この第1応答遅れは、内燃機関20の動作の遅れ等に起因するものである。
 また、吸入空気量GAが変化した後、その変化に対する流量制御弁12の弁位置Pvの応答及び冷却水循環システム10の冷却水の流量の応答には遅れが生じる。この第2応答遅れは、流量制御弁12の制御ロジックの応答遅れや流量制御弁12の機械的な応答遅れ等に起因するものである。
At this time, various response delays occur in the change of each parameter. Specifically, when the amount of depression of the accelerator pedal changes, the response of the intake air amount GA to the change is delayed. This first response delay is due to a delay in the operation of the internal combustion engine 20 and the like.
Further, after the intake air amount GA changes, the response of the valve position Pv of the flow rate control valve 12 and the response of the flow rate of the cooling water of the cooling water circulation system 10 to the change are delayed. This second response delay is due to a response delay of the control logic of the flow control valve 12, a mechanical response delay of the flow control valve 12, and the like.
 さらに、冷却水の流量が変化した後、その変化に対するラジエータ21の放熱量や内燃機関20の受熱量の応答には遅れが生じる。この第3応答遅れは、ラジエータ21の性能や内燃機関20の発熱量等に起因するものである。
 また、ラジエータ21の放熱量や内燃機関20の受熱量が変化した後に、その変化に対する冷却水の温度の応答には遅れが生じる。この第4応答遅れは、冷却水の熱容量等に起因するものである。
Further, after the flow rate of the cooling water changes, there is a delay in the response of the heat radiation amount of the radiator 21 and the heat reception amount of the internal combustion engine 20 to the change. This third response delay is due to the performance of the radiator 21, the calorific value of the internal combustion engine 20, and the like.
Further, after the amount of heat radiated from the radiator 21 and the amount of heat received by the internal combustion engine 20 change, there is a delay in the response of the temperature of the cooling water to the change. This fourth response delay is due to the heat capacity of the cooling water and the like.
 このように、内燃機関20の負荷状態の変化に対して冷却水の温度の応答が遅れると、内燃機関20の壁温が適切な温度からずれている期間が長くなるおそれがある。
 例えば、壁温切替制御では、内燃機関20が低負荷状態から高負荷状態に移行した際に、出口水温TWoutを第1目標水温設定値TWa1まで低下させることとしている。このような状況において、冷却水の温度の応答に遅れが生じると、第1目標水温設定値TWa1に対して出口水温TWoutが高温側に乖離している状態が継続する可能性がある。すなわち、内燃機関20の壁温が高い状態が継続する可能性がある。この場合、内燃機関20においてノッキングが発生し易くなるため、ノッキングを回避するための点火時期制御等が内燃機関20にて実行されることにより、内燃機関20の燃費が悪化する可能性がある。
As described above, if the response of the temperature of the cooling water to the change in the load state of the internal combustion engine 20 is delayed, the wall temperature of the internal combustion engine 20 may deviate from an appropriate temperature for a long period of time.
For example, in the wall temperature switching control, when the internal combustion engine 20 shifts from the low load state to the high load state, the outlet water temperature TWout is lowered to the first target water temperature set value TWa1. In such a situation, if the response of the cooling water temperature is delayed, the state in which the outlet water temperature TWout deviates from the first target water temperature set value TWa1 to the high temperature side may continue. That is, there is a possibility that the wall temperature of the internal combustion engine 20 will continue to be high. In this case, knocking is likely to occur in the internal combustion engine 20, so that the ignition timing control or the like for avoiding knocking is executed in the internal combustion engine 20, which may deteriorate the fuel consumption of the internal combustion engine 20.
 また、壁温切替制御では、内燃機関20が高負荷状態から低負荷状態に移行した際に、出口水温TWoutを第2目標水温設定値TWa2まで上昇させることとしている。このような状況において、冷却水の温度の応答に遅れが生じると、第2目標水温設定値TWa2に対して出口水温TWoutが低温側に乖離している状態が継続する可能性がある。すなわち、内燃機関20の壁温が低い状態が継続する可能性がある。この場合、内燃機関20において冷却損失が増大したり、フリクションが増大したりするため、内燃機関20の燃費が悪化する可能性がある。 Further, in the wall temperature switching control, when the internal combustion engine 20 shifts from the high load state to the low load state, the outlet water temperature TWout is raised to the second target water temperature set value TWa2. In such a situation, if the response of the temperature of the cooling water is delayed, the state in which the outlet water temperature TWout deviates to the low temperature side with respect to the second target water temperature set value TWa2 may continue. That is, there is a possibility that the wall temperature of the internal combustion engine 20 will continue to be low. In this case, the cooling loss of the internal combustion engine 20 increases and the friction increases, so that the fuel consumption of the internal combustion engine 20 may deteriorate.
 このような冷却水の温度の応答遅れに起因する内燃機関の燃費の悪化は、近年の車両において顕著な課題となっている。近年の燃費規制に対応するために、内燃機関に関しては、高圧縮比、高過給、及びダウンサイジングが要求されている。このような内燃機関では、従来の内燃機関と比較すると、ノッキングが発生し易くなる。より詳細には、従来よりも内燃機関の壁温が低い領域においてノッキングが発生する可能性がある。このような内燃機関においては、図16に示される目標出口水温TWout*を設定するマップにおいて、第1目標水温設定値TWa1と第2目標水温設定値TWa2との境界線を第1境界線L11から第2境界線L12に変更することで、すなわち目標出口水温TWout*が低温の第1目標水温設定値TWa1に設定される領域を拡大することで、ノッキングを抑制することが可能である。 Deterioration of fuel efficiency of the internal combustion engine due to such a delay in the response of the cooling water temperature has become a remarkable problem in vehicles in recent years. In order to comply with recent fuel economy regulations, internal combustion engines are required to have a high compression ratio, high supercharging, and downsizing. In such an internal combustion engine, knocking is more likely to occur as compared with a conventional internal combustion engine. More specifically, knocking may occur in a region where the wall temperature of the internal combustion engine is lower than before. In such an internal combustion engine, in the map for setting the target outlet water temperature TWout * shown in FIG. 16, the boundary line between the first target water temperature set value TWa1 and the second target water temperature set value TWa2 is set from the first boundary line L11. Knocking can be suppressed by changing to the second boundary line L12, that is, by expanding the region where the target outlet water temperature TWout * is set to the low temperature first target water temperature set value TWa1.
 一方、車両が市街地モードで走行している際に、内燃機関20の回転速度Np及び吸入空気量GAが取り得る領域は、例えば図16に二点鎖線L20で囲まれる領域となる。図16に示されるマップにおいて、第1目標水温設定値TWa1と第2目標水温設定値TWa2との境界線が第1境界線L11に設定されている場合には、二点鎖線L20で囲まれる領域の殆どが第2目標水温設定値TWa2の設定領域である。そのため、第1目標水温設定値TWa1と第2目標水温設定値TWa2との間で目標出口水温TWout*が切り替えられる頻度は少ない。 On the other hand, when the vehicle is traveling in the urban mode, the region that the rotation speed Np of the internal combustion engine 20 and the intake air amount GA can take is, for example, the region surrounded by the alternate long and short dash line L20 in FIG. In the map shown in FIG. 16, when the boundary line between the first target water temperature set value TWa1 and the second target water temperature set value TWa2 is set to the first boundary line L11, the area surrounded by the alternate long and short dash line L20. Most of them are in the setting area of the second target water temperature set value TWa2. Therefore, the target outlet water temperature TWout * is rarely switched between the first target water temperature set value TWa1 and the second target water temperature set value TWa2.
 これに対して、第1目標水温設定値TWa1と第2目標水温設定値TWa2との境界線が第2境界線L12に設定されている場合には、二点鎖線L20で囲まれる領域が第1目標水温設定値TWa1の設定領域と第2目標水温設定値TWa2の設定領域とを跨ぐように位置する。そのため、第1目標水温設定値TWa1と第2目標水温設定値TWa2との間で目標出口水温TWout*が切り替えられる頻度が高くなる。そのため、上述した冷却水の温度の応答遅れに起因する内燃機関の燃費の悪化が顕著となる。 On the other hand, when the boundary line between the first target water temperature set value TWa1 and the second target water temperature set value TWa2 is set to the second boundary line L12, the region surrounded by the alternate long and short dash line L20 is the first. It is located so as to straddle the setting area of the target water temperature set value TWa1 and the setting area of the second target water temperature set value TWa2. Therefore, the target outlet water temperature TWout * is frequently switched between the first target water temperature set value TWa1 and the second target water temperature set value TWa2. Therefore, the deterioration of the fuel efficiency of the internal combustion engine due to the delay in the response of the temperature of the cooling water described above becomes remarkable.
 このような内燃機関の燃費の悪化を解消するためには、冷却水の温度の応答速度を速くすればよい。上述の通り、冷却水の温度の応答性を悪化させる要因には、図15に示されるような第1~第4応答遅れに対応する要因がある。本実施形態では、第1~第4応答遅れのそれぞれに対応する要因のうち、第2応答遅れに対応する要因、すなわち流量制御弁12の応答遅れを改善することにより、冷却水の温度の応答速度を速くする。 In order to eliminate such deterioration of fuel efficiency of the internal combustion engine, the response speed of the temperature of the cooling water should be increased. As described above, the factors that deteriorate the responsiveness of the temperature of the cooling water include the factors corresponding to the first to fourth response delays as shown in FIG. In the present embodiment, among the factors corresponding to the first to fourth response delays, the factor corresponding to the second response delay, that is, the response delay of the flow rate control valve 12 is improved to respond to the temperature of the cooling water. Increase the speed.
 次に、本実施形態のECU40により実行される冷却水の温度の応答速度を速くする制御の手順について説明する。
 図5に示されるように、ECU40は制御パラメータ変更部70を更に備えている。制御パラメータ変更部70は、流量制御弁12の制御パラメータを変更することにより、冷却水の温度の応答速度を速くする。本実施形態の制御パラメータ変更部70は、図12に示されるように、流量制御弁12の制御パラメータの変更として、制限部66において設定されているデューティ比Dの制限値を変更する。
Next, a control procedure for increasing the response speed of the temperature of the cooling water executed by the ECU 40 of the present embodiment will be described.
As shown in FIG. 5, the ECU 40 further includes a control parameter changing unit 70. The control parameter changing unit 70 increases the response speed of the temperature of the cooling water by changing the control parameter of the flow rate control valve 12. As shown in FIG. 12, the control parameter changing unit 70 of the present embodiment changes the limit value of the duty ratio D set in the limiting unit 66 as a change of the control parameter of the flow rate control valve 12.
 図17は、制御パラメータ変更部70がデューティ比Dの制限値を変更する処理の手順を示したフローチャートである。なお、制御パラメータ変更部70は、図17に示される処理を、ECU40において壁温切替制御が実行されている期間に所定の周期で繰り返し実行する。 FIG. 17 is a flowchart showing a procedure of a process in which the control parameter changing unit 70 changes the limit value of the duty ratio D. The control parameter changing unit 70 repeatedly executes the process shown in FIG. 17 at a predetermined cycle during the period during which the wall temperature switching control is being executed in the ECU 40.
 図17に示されるように、制御パラメータ変更部70は、まず、ステップS20の処理として、目標出口水温TWout*と出口水温TWoutとの偏差である出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きいか否かを判断する。出口水温偏差ΔTWoutとしては、図7に示される減算部521の演算値が用いられる。なお、本実施形態では、内燃機関20から排出される冷却水の出口水温TWoutと内燃機関20の実壁温とが相関関係があることを利用して、出口水温TWoutを内燃機関20の実壁温として用いている。また、出口水温TWoutは、内燃機関20を流れる冷却水の温度にも相当する。さらに、目標出口水温TWout*が、内燃機関の実壁温の目標値である目標壁温に相当する。 As shown in FIG. 17, first, as the process of step S20, the control parameter changing unit 70 sets the absolute value | ΔTWout | of the outlet water temperature deviation, which is the deviation between the target outlet water temperature TWout * and the outlet water temperature TWout, as a predetermined value Tth10. Determine if it is greater than. As the outlet water temperature deviation ΔTWout, the calculated value of the subtraction unit 521 shown in FIG. 7 is used. In the present embodiment, the outlet water temperature TWout is set to the actual wall of the internal combustion engine 20 by utilizing the correlation between the outlet water temperature TWout of the cooling water discharged from the internal combustion engine 20 and the actual wall temperature of the internal combustion engine 20. It is used as warm. The outlet water temperature TWout also corresponds to the temperature of the cooling water flowing through the internal combustion engine 20. Further, the target outlet water temperature TWout * corresponds to the target wall temperature, which is the target value of the actual wall temperature of the internal combustion engine.
 制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10以下である場合には、すなわち出口水温TWoutが目標出口水温TWout*から乖離していない場合には、ステップS20の処理で否定判断する。この場合、制御パラメータ変更部70は、ステップS22の処理として、通常制御を実行する。通常制御は、デューティ比Dの値を通常の範囲に、すなわち「|D|≦40[%]」の範囲に制限する処理である。 The control parameter changing unit 70 processes in step S20 when the absolute value | ΔTWout | of the outlet water temperature deviation is equal to or less than the predetermined value Tth10, that is, when the outlet water temperature TWout does not deviate from the target outlet water temperature TWout *. To make a negative judgment. In this case, the control parameter changing unit 70 executes normal control as the process of step S22. The normal control is a process of limiting the value of the duty ratio D to a normal range, that is, a range of “| D | ≦ 40 [%]”.
 一方、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合には、すなわち出口水温TWoutが目標出口水温TWout*から乖離している場合には、ステップS20の処理で肯定判断する。この場合、制御パラメータ変更部70は、ステップS21の処理として、応答速度向上制御を実行する。応答速度向上制御は、デューティ比Dの値を「|D|≦100[%]」の範囲で設定する処理である。すなわち、応答速度向上制御は、デューティ比Dの制限を緩和する制御である。 On the other hand, the control parameter changing unit 70 is in step S20 when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10, that is, when the outlet water temperature TWout deviates from the target outlet water temperature TWout *. Make a positive judgment in the processing of. In this case, the control parameter changing unit 70 executes the response speed improvement control as the process of step S21. The response speed improvement control is a process of setting the value of the duty ratio D in the range of “| D | ≦ 100 [%]”. That is, the response speed improvement control is a control that relaxes the limitation of the duty ratio D.
 デューティ比Dの制限が「|D|≦40[%]」から「|D|≦100[%]」に緩和されると、図13に示されるように、流量制御弁12の弁体122の変位速度が、より速い速度に設定され易くなる。そのため、より早期に冷却水の流量が変化するようになる。これにより、内燃機関20の実壁温が目標壁温まで早期に変化し易くなる。 When the limitation of the duty ratio D is relaxed from "| D | ≤40 [%]" to "| D | ≤100 [%]", as shown in FIG. 13, the valve body 122 of the flow control valve 12 The displacement speed is likely to be set to a higher speed. Therefore, the flow rate of the cooling water changes earlier. As a result, the actual wall temperature of the internal combustion engine 20 tends to change to the target wall temperature at an early stage.
 例えば図18に示されるように、内燃機関20の実壁温が温度Tsである状況において、その実壁温を目標温度Tsaまで変化させる状況を考える。冷却水の流量を徐々に増加させると、図中に破線の矢印で示されるように、冷却水の温度も徐々に低下する。このように冷却水の温度が低下する場合、冷却水の温度の応答速度が遅いことが要因となり、内燃機関20の実壁温が目標温度Tsaまで変化するまでに長い時間を要する。 For example, as shown in FIG. 18, in a situation where the actual wall temperature of the internal combustion engine 20 is the temperature Ts, consider a situation in which the actual wall temperature is changed to the target temperature Tsa. As the flow rate of the cooling water is gradually increased, the temperature of the cooling water also gradually decreases as shown by the dashed arrow in the figure. When the temperature of the cooling water is lowered in this way, the response speed of the temperature of the cooling water is slow, and it takes a long time for the actual wall temperature of the internal combustion engine 20 to change to the target temperature Tsa.
 この点、デューティ比Dの制限が「|D|≦100[%]」に緩和されていると、流量制御弁12の弁体122が高速で変位するため、冷却水の流量が大きく変化する。そのため、図18に実線の矢印で示されるように、冷却水の温度が変化するよりも前に、冷却水の流量が急激に増加する。その後、冷却水の温度が低下することにより、内燃機関20の実壁温が目標温度Tsaまで変化する。冷却水の温度の応答速度と比較すると、冷却水の流量の応答速度の方が速い。そのため、図18に実線で示されるように冷却水の流量を変化させることにより、冷却水の温度の応答速度を向上させることが可能である。 In this regard, if the duty ratio D limitation is relaxed to "| D | ≤100 [%]", the valve body 122 of the flow rate control valve 12 is displaced at high speed, so that the flow rate of the cooling water changes significantly. Therefore, as shown by the solid arrow in FIG. 18, the flow rate of the cooling water increases sharply before the temperature of the cooling water changes. After that, as the temperature of the cooling water decreases, the actual wall temperature of the internal combustion engine 20 changes to the target temperature Tsa. The response rate of the flow rate of the cooling water is faster than the response rate of the temperature of the cooling water. Therefore, it is possible to improve the response speed of the temperature of the cooling water by changing the flow rate of the cooling water as shown by the solid line in FIG.
 次に、図19を参照して、本実施形態の動作例について説明する。なお、図19(B)~(G)では、デューティ比Dが「|D|≦40[%]」に制限されている場合の各パラメータの変化が二点鎖線で示されるとともに、デューティ比Dの制限が「|D|≦100[%]」に緩和されている場合の各パラメータの変化が実線で示されている。 Next, an operation example of this embodiment will be described with reference to FIG. In FIGS. 19B to 19G, the change of each parameter when the duty ratio D is limited to “| D | ≦ 40 [%]” is shown by a chain double-dashed line, and the duty ratio D is shown. The change of each parameter when the limitation of is relaxed to "| D | ≤100 [%]" is shown by a solid line.
 図19(A)に示されるように時刻t20で吸入空気量GAが増加すると、すなわち内燃機関20が高負荷状態になると、目標出口水温TWout*が第2目標水温設定値TWa2から第1目標水温設定値TWa1に変更される。そのため、図19(C)に示されるように、目標出口水温TWout*と出口水温TWoutとの偏差である出口水温偏差ΔTWoutが負の値に変化する。この際、図19(C)に示されるように、出口水温偏差ΔTWoutが「-Tth10」よりも小さくなることにより、応答速度向上制御が実行されて、デューティ比Dの制限が「|D|≦100[%]」に緩和される。 As shown in FIG. 19A, when the intake air amount GA increases at time t20, that is, when the internal combustion engine 20 is in a high load state, the target outlet water temperature TWout * changes from the second target water temperature set value TWa2 to the first target water temperature. The set value is changed to TWa1. Therefore, as shown in FIG. 19C, the outlet water temperature deviation ΔTWout, which is the deviation between the target outlet water temperature TWout * and the outlet water temperature TWout, changes to a negative value. At this time, as shown in FIG. 19C, when the outlet water temperature deviation ΔTWout becomes smaller than “−Tth10”, the response speed improvement control is executed, and the duty ratio D is limited to “| D | ≦”. It is relaxed to "100 [%]".
 一方、図19(C)に示されるように出口水温偏差ΔTWoutが変化することにより、図19(E)に一点鎖線で示されるように、出口水温偏差ΔTWoutに基づいて設定される最終目標回転位置Pv*が増加する。これにより、最終目標回転位置Pv*と流量制御弁12の弁位置Pvとの偏差である回転位置偏差ΔPが増加するため、ECU40により演算されるデューティ比Dも増加する。結果として、図19(D)に示されるように、デューティ比Dが「100[%]」に設定される。 On the other hand, as the outlet water temperature deviation ΔTWout changes as shown in FIG. 19C, the final target rotation position set based on the outlet water temperature deviation ΔTWout as shown by the alternate long and short dash line in FIG. 19E. Pv * increases. As a result, the rotation position deviation ΔP, which is the deviation between the final target rotation position Pv * and the valve position Pv of the flow control valve 12, increases, so that the duty ratio D calculated by the ECU 40 also increases. As a result, the duty ratio D is set to "100 [%]" as shown in FIG. 19 (D).
 ところで、仮にデューティ比Dが「|D|≦40[%]」に制限されているとすると、流量制御弁12の弁位置Pvは、図19(E)に二点鎖線で示されるように変化する。すなわち、デューティ比Dが制限されている場合よりも、デューティ比Dの制限が緩和されている場合の方が、流量制御弁12の弁位置Pvが最終目標回転位置Pv*まで急峻に変化する。そのため、図19(F)に示されるように、デューティ比Dが制限されている場合よりも、デューティ比Dの制限が緩和されている場合の方が、冷却水の流量が大きく変化する。結果として、図19(G)に示されるように、デューティ比Dが制限されている場合よりも、デューティ比Dの制限が緩和されている場合の方が、内燃機関20の実壁温の初期変化が急峻となる。 By the way, assuming that the duty ratio D is limited to "| D | ≤40 [%]", the valve position Pv of the flow control valve 12 changes as shown by the alternate long and short dash line in FIG. 19 (E). To do. That is, the valve position Pv of the flow control valve 12 changes steeperly to the final target rotation position Pv * when the duty ratio D limitation is relaxed than when the duty ratio D is limited. Therefore, as shown in FIG. 19F, the flow rate of the cooling water changes significantly when the duty ratio D limitation is relaxed than when the duty ratio D is limited. As a result, as shown in FIG. 19 (G), the initial wall temperature of the internal combustion engine 20 is higher when the duty ratio D limitation is relaxed than when the duty ratio D is limited. The change becomes steep.
 図19(E)に示されるように、時刻t20以降、流量制御弁12の弁位置Pvが最終目標回転位置Pv*に達すると、図19(F)に示されるように、冷却水の流量が所定の流量に収束する。こうした冷却水の流量の増加に伴って、図19(B)に示されるように、時刻t20以降に内燃機関20の出口水温TWoutが目標出口水温TWout*に向かって低下し始める。これにより、図19(C)に示されるように、出口水温偏差ΔTWoutが零に向かって変化する。出口水温偏差ΔTWoutが時刻t21で「-Tth10」に達すると、通常制御が実行される。 As shown in FIG. 19 (E), when the valve position Pv of the flow control valve 12 reaches the final target rotation position Pv * after the time t20, the flow rate of the cooling water is changed as shown in FIG. 19 (F). Converges to a predetermined flow rate. As the flow rate of the cooling water increases, as shown in FIG. 19B, the outlet water temperature TWout of the internal combustion engine 20 begins to decrease toward the target outlet water temperature TWout * after time t20. As a result, as shown in FIG. 19C, the outlet water temperature deviation ΔTWout changes toward zero. When the outlet water temperature deviation ΔTWout reaches “−Tth10” at time t21, normal control is executed.
 なお、図19(A)に示されるように、時刻t22で吸入空気量GAが減少した場合、すなわち内燃機関20が低負荷状態になった場合には、図19(B)~(G)に示されるように内燃機関20の出口水温TWout、出口水温偏差ΔTWout、デューティ比D、流量制御弁12の弁位置Pv、冷却水の流量、及び内燃機関20の実壁温が変化する。この際にも、図19(G)に示されるように、デューティ比Dが制限されている場合よりも、デューティ比Dの制限が緩和されている場合の方が、内燃機関20の実壁温を急峻に変化させることができる。 As shown in FIGS. 19 (A), when the intake air amount GA decreases at time t22, that is, when the internal combustion engine 20 becomes a low load state, FIGS. 19 (B) to 19 (G) show. As shown, the outlet water temperature TWout of the internal combustion engine 20, the outlet water temperature deviation ΔTWout, the duty ratio D, the valve position Pv of the flow rate control valve 12, the flow rate of the cooling water, and the actual wall temperature of the internal combustion engine 20 change. Also in this case, as shown in FIG. 19 (G), the actual wall temperature of the internal combustion engine 20 is higher when the duty ratio D limitation is relaxed than when the duty ratio D is limited. Can be changed sharply.
 以上のように、本実施形態の目標開度設定部50は、内燃機関20が高負荷状態であるときに、目標出口水温TWout*を第1目標水温設定値TWa1に設定するとともに、内燃機関20が低負荷状態であるときに、目標出口水温TWout*を第2目標水温設定値TWa2に設定する。また、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合に、出口水温偏差の絶対値|ΔTWout|が所定値Tth10以下である場合よりも、内燃機関20を流れる冷却水の温度の応答速度が速くなるように、デューティ比Dの制限を緩和する。このように、本実施形態では、デューティ比Dが、出口水温偏差の絶対値|ΔTWout|に応じて変更される制御パラメータに相当する。 As described above, the target opening degree setting unit 50 of the present embodiment sets the target outlet water temperature TWout * to the first target water temperature set value TWa1 when the internal combustion engine 20 is in a high load state, and the internal combustion engine 20. Is in a low load state, the target outlet water temperature TWout * is set to the second target water temperature set value TWa2. Further, the control parameter changing unit 70 is an internal combustion engine when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10 than when the absolute value | ΔTWout | of the outlet water temperature deviation is equal to or less than the predetermined value Tth10. The limitation of the duty ratio D is relaxed so that the response speed of the temperature of the cooling water flowing through 20 is increased. As described above, in the present embodiment, the duty ratio D corresponds to the control parameter changed according to the absolute value | ΔTWout | of the outlet water temperature deviation.
 次に、本実施形態のECU40の作用及び効果について説明する。
 本実施形態のECU40によれば、内燃機関20の負荷状態に応じて、内燃機関20を流れる冷却水の温度が切り替えられるため、内燃機関20の燃費を向上させることができる。
Next, the operation and effect of the ECU 40 of the present embodiment will be described.
According to the ECU 40 of the present embodiment, the temperature of the cooling water flowing through the internal combustion engine 20 is switched according to the load state of the internal combustion engine 20, so that the fuel consumption of the internal combustion engine 20 can be improved.
 また、出口水温偏差の絶対値|ΔTWout|が大きくなった場合には、デューティ比Dの制限が緩和されることにより、内燃機関20を流れる冷却水の温度の応答速度が速くなる。これにより、出口水温TWoutが目標出口水温TWout*に向かって速やかに変化するようになる。すなわち、内燃機関20の実壁温が目標壁温に向かって速やかに変化するようになる。よって、内燃機関20の実壁温が目標壁温から大きく乖離している時間を短くすることができるため、それらの乖離により生じる内燃機関20の燃費の悪化を抑制することができる。換言すれば、内燃機関20の燃費を向上させることができる。 Further, when the absolute value | ΔTWout | of the outlet water temperature deviation becomes large, the limitation of the duty ratio D is relaxed, so that the response speed of the temperature of the cooling water flowing through the internal combustion engine 20 becomes faster. As a result, the outlet water temperature TWout changes rapidly toward the target outlet water temperature TWout *. That is, the actual wall temperature of the internal combustion engine 20 rapidly changes toward the target wall temperature. Therefore, since the time during which the actual wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. In other words, the fuel efficiency of the internal combustion engine 20 can be improved.
 <第2実施形態>
 次に、第2実施形態の流量制御弁12のECU40について説明する。以下、第1実施形態のECU40との相違点を中心に説明する。
 図20に示されるように、本実施形態の制御パラメータ変更部70には、出口水温偏差ΔTWout、流量制御弁12のアクチュエータ装置121の作動頻度Fv、及び内燃機関20の出口水温TWoutが入力されている。制御パラメータ変更部70は、これらのパラメータを用いて、図17に示される処理に代えて、図21に示される処理を実行する。
<Second Embodiment>
Next, the ECU 40 of the flow rate control valve 12 of the second embodiment will be described. Hereinafter, the differences from the ECU 40 of the first embodiment will be mainly described.
As shown in FIG. 20, the outlet water temperature deviation ΔTWout, the operating frequency Fv of the actuator device 121 of the flow control valve 12, and the outlet water temperature TWout of the internal combustion engine 20 are input to the control parameter changing unit 70 of the present embodiment. There is. The control parameter changing unit 70 uses these parameters to execute the process shown in FIG. 21 instead of the process shown in FIG.
 図21に示されるように、制御パラメータ変更部70は、ステップS20の処理で肯定判断した場合には、すなわち出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合には、ステップS23の処理として、アクチュエータ装置121の作動頻度Fv、及び内燃機関20の出口水温TWoutを取得する。内燃機関20の出口水温TWoutは、流量制御弁12を流れる冷却水の温度を表すパラメータとして用いる。 As shown in FIG. 21, when the control parameter changing unit 70 makes an affirmative judgment in the process of step S20, that is, when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10, step S23. As the process of, the operation frequency Fv of the actuator device 121 and the outlet water temperature TWout of the internal combustion engine 20 are acquired. The outlet water temperature TWout of the internal combustion engine 20 is used as a parameter representing the temperature of the cooling water flowing through the flow control valve 12.
 一方、制御パラメータ変更部70は、図22に示される処理を所定の演算周期で繰り返し実行することにより、アクチュエータ装置121の作動頻度を取得している。図22に示されるように、制御パラメータ変更部70は、まず、ステップS30の処理として、流量制御弁12から弁位置Pvを取得する。制御パラメータ変更部70は、図22に示される処理が所定の演算周期で繰り返し実行される都度、ステップS30の処理を実行することにより、流量制御弁12の弁位置Pvを所定の演算周期で取得している。 On the other hand, the control parameter changing unit 70 acquires the operation frequency of the actuator device 121 by repeatedly executing the process shown in FIG. 22 at a predetermined calculation cycle. As shown in FIG. 22, the control parameter changing unit 70 first acquires the valve position Pv from the flow rate control valve 12 as the process of step S30. The control parameter changing unit 70 acquires the valve position Pv of the flow control valve 12 at a predetermined calculation cycle by executing the process of step S30 each time the process shown in FIG. 22 is repeatedly executed at a predetermined calculation cycle. doing.
 制御パラメータ変更部70は、ステップS30に続くステップS31の処理として、所定の演算周期で繰り返し取得した流量制御弁12の弁位置Pvの時系列的なデータに基づいて弁位置Pvの微分値を演算することにより、流量制御弁12の弁体122の変位速度Vvを演算する。また、制御パラメータ変更部70は、ステップS31に続くステップS32の処理として、現在から所定時間前までの所定期間における流量制御弁12の弁体122の変位速度の絶対値|Vv|の積算値を演算することにより、流量制御弁12の弁体122の実積算変位量IDvを演算する。 The control parameter changing unit 70 calculates the differential value of the valve position Pv based on the time-series data of the valve position Pv of the flow rate control valve 12 repeatedly acquired in a predetermined calculation cycle as the process of step S31 following step S30. By doing so, the displacement speed Vv of the valve body 122 of the flow control valve 12 is calculated. Further, as the process of step S32 following step S31, the control parameter changing unit 70 calculates the integrated value of the absolute value | Vv | of the displacement speed of the valve body 122 of the flow control valve 12 in the predetermined period from the present to the predetermined time before. By calculating, the actual integrated displacement amount IDv of the valve body 122 of the flow control valve 12 is calculated.
 また、制御パラメータ変更部70は、ステップS31及びS32の処理に並行して、ステップS33及びS34の処理を実行する。制御パラメータ変更部70は、ステップS33の処理として、デューティ比Dが「100[%]」であるときの流量制御弁12の弁体122の最大変位速度Vvmaxをメモリから読み込む。なお、流量制御弁12の弁体122の最大変位速度Vvmaxは、予め定められた既定値としてメモリに記憶されている。制御パラメータ変更部70は、ステップS34の処理として、現在から所定時間前までの所定期間における流量制御弁12の弁体122の最大変位速度Vvmaxの積算値を演算することにより、流量制御弁12の弁体122の最大積算変位量IDvmaxを演算する。 Further, the control parameter changing unit 70 executes the processes of steps S33 and S34 in parallel with the processes of steps S31 and S32. As the process of step S33, the control parameter changing unit 70 reads the maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 when the duty ratio D is “100 [%]” from the memory. The maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 is stored in the memory as a predetermined default value. As the process of step S34, the control parameter changing unit 70 calculates the integrated value of the maximum displacement speed Vvmax of the valve body 122 of the flow control valve 12 in a predetermined period from the present to a predetermined time before, thereby causing the flow control valve 12 to change. The maximum integrated displacement amount IDvmax of the valve body 122 is calculated.
 制御パラメータ変更部70は、ステップS32及びS34の処理に続いて、ステップS35の処理として、以下の式f2に基づいて流量制御弁12の弁体122の作動頻度Fvを演算する。
 Fv=IDv/IDvmax (f2)
 図23は、図22に示される処理を通じて制御パラメータ変更部70により演算される流量制御弁12の弁位置Pv、流量制御弁12の弁体122の変位速度Vv、実積算変位量IDv、及び作動頻度Fvの推移を示したものである。図23(A)に示されるように流量制御弁12の弁位置Pvが推移した場合、流量制御弁12の弁体122の変位速度Vvは、図23(B)に示されるように推移する。この場合、流量制御弁12の弁体122の実積算変位量IDvは、図23(C)に示されるように推移する。
Following the processing of steps S32 and S34, the control parameter changing unit 70 calculates the operation frequency Fv of the valve body 122 of the flow control valve 12 based on the following equation f2 as the processing of step S35.
Fv = IDv / IDvmax (f2)
FIG. 23 shows the valve position Pv of the flow control valve 12, the displacement speed Vv of the valve body 122 of the flow control valve 12, the actual integrated displacement amount IDv, and the operation calculated by the control parameter changing unit 70 through the process shown in FIG. It shows the transition of the frequency Fv. When the valve position Pv of the flow control valve 12 changes as shown in FIG. 23 (A), the displacement velocity Vv of the valve body 122 of the flow control valve 12 changes as shown in FIG. 23 (B). In this case, the actual integrated displacement amount IDv of the valve body 122 of the flow control valve 12 changes as shown in FIG. 23 (C).
 例えば、図23(A)に示されるように時刻t30で流量制御弁12の弁位置Pvが変化しなくなった場合には、図23(B)に示されるように変位速度Vvも変化しなくなる。そのため、図23(C)に示されるように、時刻t30以降、実積算変位量IDvが増加しなくなる。これに対し、最大積算変位量IDvmaxは、図23(C)に二点鎖線で示されるように時間の経過に伴って単調増加する。 For example, when the valve position Pv of the flow control valve 12 does not change at time t30 as shown in FIG. 23 (A), the displacement speed Vv also does not change as shown in FIG. 23 (B). Therefore, as shown in FIG. 23C, the actual integrated displacement amount IDv does not increase after the time t30. On the other hand, the maximum integrated displacement amount IDvmax increases monotonically with the passage of time as shown by the alternate long and short dash line in FIG. 23 (C).
 そして、このような実積算変位量IDvと最大積算変位量IDvmaxとから上記の式f2に基づいて演算される作動頻度Fvは、図23(D)に示されるように変化する。すなわち、時刻t30以降、作動頻度Fvは減少する。
 一方、図21に示されるように、制御パラメータ変更部70は、ステップS23の処理に続くステップS24の処理として、作動頻度Fvが所定頻度Fth20よりも小さく、且つ流量制御弁12の冷却水温Tvが所定温度Tth20よりも小さいか否かを判断する。制御パラメータ変更部70は、作動頻度Fvが所定頻度Fth20よりも小さく、且つ流量制御弁12の冷却水温Tvが所定温度Tth20よりも小さい場合には、ステップS24の処理で肯定判断して、続くステップS21の処理として、応答速度向上制御を実行する。制御パラメータ変更部70は、応答速度向上制御において、図24に示されるようなマップを用いることにより、出口水温偏差の絶対値|ΔTWout|に応じてデューティ比Dの上側制限値DLmax及び下側制限値DLminを変更する。図24に示されるように、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きくなるほど、上側制限値DLmaxを「40[%]」から「100[%]」まで徐々に増加させる。また、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きくなるほど、下側制限値DLminを「-40[%]」から「-100[%]」まで徐々に減少させる。
Then, the operation frequency Fv calculated from the actual integrated displacement amount IDv and the maximum integrated displacement amount IDvmax based on the above equation f2 changes as shown in FIG. 23 (D). That is, after the time t30, the operation frequency Fv decreases.
On the other hand, as shown in FIG. 21, the control parameter changing unit 70 has an operation frequency Fv smaller than a predetermined frequency Fth20 and a cooling water temperature Tv of the flow rate control valve 12 as the process of step S24 following the process of step S23. It is determined whether or not the temperature is lower than the predetermined temperature Tth20. When the operation frequency Fv is smaller than the predetermined frequency Fth20 and the cooling water temperature Tv of the flow rate control valve 12 is smaller than the predetermined temperature Tth20, the control parameter changing unit 70 makes an affirmative judgment in the process of step S24, and the subsequent step As the process of S21, the response speed improvement control is executed. The control parameter changing unit 70 uses a map as shown in FIG. 24 in the response speed improvement control to limit the upper limit value DLmax and the lower limit value of the duty ratio D according to the absolute value | ΔTWout | of the outlet water temperature deviation. Change the value DLmin. As shown in FIG. 24, the control parameter changing unit 70 sets the upper limit DLmax from "40 [%]" to "100 [%] as the absolute value | ΔTWout | of the outlet water temperature deviation becomes larger than the predetermined value Tth10. Gradually increase until. Further, the control parameter changing unit 70 gradually sets the lower limit value DLmin from "-40 [%]" to "-100 [%]" as the absolute value | ΔTWout | of the outlet water temperature deviation becomes larger than the predetermined value Tth10. To reduce.
 一方、図21に示されるように、制御パラメータ変更部70は、作動頻度Fvが所定頻度Fth20以上である場合、又は流量制御弁12の冷却水温Tvが所定温度Tth20以上である場合には、ステップS24の処理で否定判断して、続くステップS22の処理として、通常制御を実行する。 On the other hand, as shown in FIG. 21, the control parameter changing unit 70 steps when the operation frequency Fv is a predetermined frequency Fth20 or more, or when the cooling water temperature Tv of the flow rate control valve 12 is a predetermined temperature Tth20 or more. A negative determination is made in the process of S24, and normal control is executed as the process of the following step S22.
 次に、本実施形態のECU40の作用及び効果について説明する。
 作動頻度Fvが所定頻度Fth20以上である場合には、流量制御弁12のアクチュエータ装置121が発熱することにより、アクチュエータ装置121の温度が上昇する可能性がある。また、流量制御弁12の冷却水温Tvが所定温度Tth20以上である場合にも、同様にアクチュエータ装置121の温度が上昇する可能性がある。アクチュエータ装置121の温度が上昇している状況で、更に応答速度向上制御の実行により流量制御弁12のデューティ比Dの制限が緩和されると、アクチュエータ装置121が更に発熱し易くなるため、アクチュエータ装置121の温度が過上昇するおそれがある。アクチュエータ装置121の温度の過上昇は、アクチュエータ装置121の耐久性に悪影響を及ぼす可能性があるため、好ましくない。
Next, the operation and effect of the ECU 40 of the present embodiment will be described.
When the operation frequency Fv is a predetermined frequency Fth20 or more, the temperature of the actuator device 121 may rise due to heat generated by the actuator device 121 of the flow control valve 12. Further, when the cooling water temperature Tv of the flow control valve 12 is equal to or higher than the predetermined temperature Tth20, the temperature of the actuator device 121 may rise in the same manner. In a situation where the temperature of the actuator device 121 is rising, if the limitation of the duty ratio D of the flow control valve 12 is relaxed by further executing the response speed improvement control, the actuator device 121 is more likely to generate heat. The temperature of 121 may rise excessively. An excessive rise in the temperature of the actuator device 121 is not preferable because it may adversely affect the durability of the actuator device 121.
 この点、本実施形態のECU40によれば、作動頻度Fvが所定頻度Fth20以上である場合、又は流量制御弁12の冷却水温Tvが所定温度Tth20以上である場合には、すなわちアクチュエータ装置121の耐久性に悪影響を及ぼす可能性がある場合には、応答速度向上制御が実行されずに、通常制御が実行される。そのため、アクチュエータ装置121の耐久性の悪化を回避することができる。 In this regard, according to the ECU 40 of the present embodiment, when the operation frequency Fv is a predetermined frequency Fth20 or more, or when the cooling water temperature Tv of the flow rate control valve 12 is a predetermined temperature Tth20 or more, that is, the durability of the actuator device 121 When there is a possibility of adversely affecting the sex, the normal control is executed without executing the response speed improvement control. Therefore, deterioration of the durability of the actuator device 121 can be avoided.
 <第3実施形態>
 次に、第3実施形態の流量制御弁12のECU40について説明する。以下、第1実施形態のECU40との相違点を中心に説明する。
 本実施形態のECU40では、図7に示されるフィルタリング部519において、図25に示されるような目標回転位置Pvb*に対するフィルタリング処理が施される。図25に示されるように、フィルタリング部519は、減算部5190と、除算部5191と、加算部5192とを備えている。
<Third Embodiment>
Next, the ECU 40 of the flow rate control valve 12 of the third embodiment will be described. Hereinafter, the differences from the ECU 40 of the first embodiment will be mainly described.
In the ECU 40 of the present embodiment, the filtering unit 519 shown in FIG. 7 performs filtering processing on the target rotation position Pvb * as shown in FIG. 25. As shown in FIG. 25, the filtering unit 519 includes a subtraction unit 5190, a division unit 5191, and an addition unit 5192.
 なお、以下では、フィルタリング部519に入力される目標回転位置Pvb*を、すなわちフィルタリング処理が施される前の目標回転位置Pvb*を「フィルタ前の目標回転位置Pvb*_in」と称する。また、フィルタリング部519から出力される目標回転位置Pvb*を、すなわちフィルタリング処理が施された後の目標回転位置Pvb*を「フィルタ後の目標回転位置Pvb*_out」と称する。 In the following, the target rotation position Pvb * input to the filtering unit 519, that is, the target rotation position Pvb * before the filtering process is performed is referred to as "target rotation position Pvb * _in before the filter". Further, the target rotation position Pvb * output from the filtering unit 519, that is, the target rotation position Pvb * after the filtering process is performed is referred to as "target rotation position Pvb * _out after filtering".
 減算部5190は、フィルタ前の目標回転位置Pvb*_inからフィルタ後の目標回転位置Pvb*_outを減算することにより、それらの偏差ΔPvb*を演算する。
 除算部5191は、減算部5190により演算される偏差ΔPvb*と演算周期dTとの乗算値を所定のなまし時定数τで除算することにより、変化量DPvb*を演算する。
The subtraction unit 5190 calculates the deviation ΔPvb * by subtracting the target rotation position Pvb * _out after the filter from the target rotation position Pvb * _in before the filter.
The division unit 5191 calculates the amount of change DPvb * by dividing the multiplication value of the deviation ΔPvb * calculated by the subtraction unit 5190 and the calculation cycle dT by a predetermined smoothing time constant τ.
 加算部5192は、一演算周期前の目標回転位置Pvb*_outに変化量DPvb*を加算することにより、次の目標回転位置Pvb*_outを演算する。
 図25に示されるフィルタリング部519により実行される処理は、以下の式f3で表すことができる。なお、式f3において、「目標回転位置Pvb*_out(n-1)」は、一演算周期前に演算された目標回転位置Pvb*_outを示す。
The addition unit 5192 calculates the next target rotation position Pvb * _out by adding the change amount DPvb * to the target rotation position Pvb * _out one calculation cycle before.
The process executed by the filtering unit 519 shown in FIG. 25 can be expressed by the following equation f3. In addition, in the formula f3, "target rotation position Pvb * _out (n-1)" indicates the target rotation position Pvb * _out calculated one calculation cycle before.
 Pvb*_out=Pvb*_out(n-1)+{Pvb*-Pvb*_out(n-1)}×dT/τ (f3)
 一方、図26に示されるように、本実施形態の制御パラメータ変更部70は、応答速度向上制御において、デューティ比Dの制限値を緩和するという方法に代えて、フィルタリング部519のなまし時定数τを変化させるという方法を採用することにより、流量制御弁12の応答遅れを改善して、冷却水の温度の応答速度を速くする。
Pvb * _out = Pvb * _out (n-1) + {Pvb * -Pvb * _out (n-1)} x dT / τ (f3)
On the other hand, as shown in FIG. 26, the control parameter changing unit 70 of the present embodiment replaces the method of relaxing the limit value of the duty ratio D in the response speed improvement control, and the smoothing time constant of the filtering unit 519. By adopting the method of changing τ, the response delay of the flow control valve 12 is improved, and the response speed of the temperature of the cooling water is increased.
 次に、本実施形態の制御パラメータ変更部70により実行される処理の手順について説明する。
 図5に破線で示されるように、本実施形態のECU40には、車両に搭載される外気温センサ34及び車速センサ35のそれぞれの出力信号が取り込まれている。外気温センサ34は、車両の外部の気温である外気温Toutを検出するとともに、検出された外気温Toutに応じて信号を出力する。車速センサ35は、車両の走行速度である車速Vcを検出するとともに、検出された車速Vcに応じた信号を出力する。
Next, a procedure of processing executed by the control parameter changing unit 70 of the present embodiment will be described.
As shown by the broken line in FIG. 5, the output signals of the outside air temperature sensor 34 and the vehicle speed sensor 35 mounted on the vehicle are captured in the ECU 40 of the present embodiment. The outside air temperature sensor 34 detects the outside air temperature Tout, which is the outside air temperature of the vehicle, and outputs a signal according to the detected outside air temperature Tout. The vehicle speed sensor 35 detects the vehicle speed Vc, which is the traveling speed of the vehicle, and outputs a signal corresponding to the detected vehicle speed Vc.
 制御パラメータ変更部70は、外気温Tout及び車速Vcを更に用いて図27に示される処理を実行する。なお、制御パラメータ変更部70は、図27に示される処理を、ECU40において壁温切替制御が実行されている期間に所定の周期で繰り返し実行する。
 図27に示されるように、制御パラメータ変更部70は、まず、ステップS40の処理として、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きいか否かを判断する。制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10以下である場合には、ステップS40の処理で否定判断し、ステップS44の処理として、通常制御を実行する。通常制御は、なまし時定数τとして、予め定められた第1時定数τ1を用いる制御である。
The control parameter changing unit 70 further uses the outside air temperature Tout and the vehicle speed Vc to execute the process shown in FIG. 27. The control parameter changing unit 70 repeatedly executes the process shown in FIG. 27 at a predetermined cycle during the period when the wall temperature switching control is being executed in the ECU 40.
As shown in FIG. 27, first, as the process of step S40, the control parameter changing unit 70 determines whether or not the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10. When the absolute value | ΔTWout | of the outlet water temperature deviation is equal to or less than the predetermined value Tth10, the control parameter changing unit 70 makes a negative determination in the process of step S40, and executes normal control as the process of step S44. The normal control is a control using a predetermined first time constant τ1 as the smoothing time constant τ.
 一方、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合には、ステップS41の処理として、外気温Tout及び車速Vcを取得した後、ステップS42の処理として、外気温Toutが所定温度Tth30よりも大きく、且つ車速Vcが所定速度Vth30よりも小さいか否かを判断する。制御パラメータ変更部70は、外気温Toutが所定温度Tth30よりも大きく、且つ車速Vcが所定速度Vth30よりも小さい場合には、ステップS42の処理で肯定判断し、続くステップS43の処理として、応答速度向上制御を実行する。制御パラメータ変更部70は、応答速度向上制御において、図28に示されるようなマップを用いることにより、出口水温偏差の絶対値|ΔTWout|に応じてなまし時定数τを変更する。図28に示されるように、制御パラメータ変更部70は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きなるほど、なまし時定数τを第1時定数τ1から第2時定数τ2まで減少させる。 On the other hand, when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10, the control parameter changing unit 70 acquires the outside air temperature Tout and the vehicle speed Vc as the process of step S41, and then the process of step S42. As a result, it is determined whether or not the outside air temperature Tout is larger than the predetermined temperature Tth30 and the vehicle speed Vc is smaller than the predetermined speed Vth30. When the outside air temperature Tout is larger than the predetermined temperature Tth30 and the vehicle speed Vc is smaller than the predetermined speed Vth30, the control parameter changing unit 70 makes an affirmative judgment in the process of step S42, and determines the response speed as the subsequent process of step S43. Perform improvement control. The control parameter changing unit 70 changes the smoothing time constant τ according to the absolute value | ΔTWout | of the outlet water temperature deviation by using the map as shown in FIG. 28 in the response speed improvement control. As shown in FIG. 28, the control parameter changing unit 70 sets the smoothing time constant τ from the first time constant τ1 to the second time constant τ2 as the absolute value | ΔTWout | of the outlet water temperature deviation becomes larger than the predetermined value Tth10. Reduce to.
 一方、図27に示されるように、制御パラメータ変更部70は、外気温Toutが所定温度Tth30以下であって、且つ車速Vcが所定速度Vth30以上である場合には、ステップS42の処理で否定判断する。この場合、制御パラメータ変更部70は、ステップS44の処理として、通常制御を実行する。すなわち、制御パラメータ変更部70は、なまし時定数τを第1時定数τ1に設定する。 On the other hand, as shown in FIG. 27, when the outside air temperature Tout is the predetermined temperature Tth30 or less and the vehicle speed Vc is the predetermined speed Vth30 or more, the control parameter changing unit 70 makes a negative determination in the process of step S42. To do. In this case, the control parameter changing unit 70 executes normal control as the process of step S44. That is, the control parameter changing unit 70 sets the smoothing time constant τ to the first time constant τ1.
 このように、本実施形態では、なまし時定数τが、出口水温偏差の絶対値|ΔTWout|に応じて変更される制御パラメータに相当する。
 次に、本実施形態の流量制御弁12及びECU40の作用及び効果について説明する。
As described above, in the present embodiment, the smoothing time constant τ corresponds to the control parameter changed according to the absolute value | ΔTWout | of the outlet water temperature deviation.
Next, the operations and effects of the flow control valve 12 and the ECU 40 of the present embodiment will be described.
 図25に示されるフィルタリング部519では、なまし時定数τの値が大きくなるほど、目標回転位置Pvb*_outの演算値が安定し易くなる。そのため、流量制御弁12の制御の安定性を確保するためには、なまし時定数τの値をある程度大きくする必要がある。しかしながら、なまし時定数τが通常制御の第1時定数τ1に設定されたままである場合には、内燃機関20の吸入空気量GAが変化した際に、目標回転位置Pvb*_outの応答速度が低下し、結果として内燃機関20の実壁温の応答速度が低下する可能性がある。 In the filtering unit 519 shown in FIG. 25, the larger the value of the smoothing time constant τ, the easier it is for the calculated value of the target rotation position Pvb * _out to be stable. Therefore, in order to secure the control stability of the flow control valve 12, it is necessary to increase the value of the smoothing time constant τ to some extent. However, when the smoothing time constant τ is still set to the first time constant τ1 of the normal control, the response speed of the target rotation position Pvb * _out changes when the intake air amount GA of the internal combustion engine 20 changes. As a result, the response speed of the actual wall temperature of the internal combustion engine 20 may decrease.
 具体的には、図29(A)に示されるように、時刻t40で吸入空気量GAが増加すると、すなわち内燃機関20が高負荷状態になると、図29(B)に一点鎖線で示されるように目標出口水温TWout*が第2目標水温設定値TWa2から第1目標水温設定値TWa1に変更される。そのため、図29(C)に示されるように、出口水温偏差ΔTWoutが負の値に変化する。これに起因して、図29(C)に示されるように、出口水温偏差ΔTWoutは、時刻t40で負の方向に変化する。このような出口水温偏差ΔTWoutの変化に対して、仮に図29(E)に二点鎖線で示されるようになまし時定数τが第1時定数τ1に固定されたままである場合には、図29(D)に二点鎖線で示されるように目標回転位置Pvb*_outが変化する。その結果、内燃機関20の出口水温TWout、冷却水の流量、及び内燃機関20の壁温が図29(B),(C),(G)に二点鎖線で示されるように変化する。 Specifically, as shown in FIG. 29 (A), when the intake air amount GA increases at time t40, that is, when the internal combustion engine 20 is in a high load state, it is shown by a alternate long and short dash line in FIG. 29 (B). The target outlet water temperature TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 29 (C), the outlet water temperature deviation ΔTWout changes to a negative value. Due to this, as shown in FIG. 29C, the outlet water temperature deviation ΔTWout changes in the negative direction at time t40. In response to such a change in the outlet water temperature deviation ΔTWout, if the time constant τ as shown by the alternate long and short dash line in FIG. 29 (E) remains fixed to the first time constant τ1, FIG. The target rotation position Pvb * _out changes as shown by the alternate long and short dash line on 29 (D). As a result, the outlet water temperature TWout of the internal combustion engine 20, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 change as shown by the alternate long and short dash lines in FIGS. 29 (B), (C), and (G).
 一方、本実施形態の冷却水循環システム10では、図29(C)に示されるように出口水温TWoutが時刻t40で負の方向に変化することにより、出口水温偏差ΔTWoutが「-Tth10」よりも小さくなると、図29(E)に実線で示されるように、なまし時定数τが第1時定数τ1から第2時定数τ2に減少する。これにより、図29(D)に実線で示されるように、目標回転位置Pvb*_outの応答速度が、なまし時定数τが第1時定数τ1に固定されたままである場合と比較すると、より速く応答するようになる。その結果、図29(B),(C),(G)に実線で示されるように内燃機関20の出口水温TWout、冷却水の流量、及び内燃機関20の壁温が、なまし時定数τが第1時定数τ1に固定されたままである場合と比較すると、より速く応答するようになる。 On the other hand, in the cooling water circulation system 10 of the present embodiment, as shown in FIG. 29C, the outlet water temperature TWout changes in the negative direction at the time t40, so that the outlet water temperature deviation ΔTWout is smaller than “−Tth10”. Then, as shown by the solid line in FIG. 29 (E), the smoothing time constant τ decreases from the first time constant τ1 to the second time constant τ2. As a result, as shown by the solid line in FIG. 29 (D), the response speed of the target rotation position Pvb * _out is higher than that in the case where the smoothing time constant τ remains fixed to the first time constant τ1. Will respond faster. As a result, as shown by solid lines in FIGS. 29 (B), (C), and (G), the outlet water temperature TWout of the internal combustion engine 20, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 have a smoothing time constant τ. Will respond faster than if it remains fixed at the first time constant τ1.
 また、図29(A)に示されるように、時刻t41で吸入空気量GAが減少した場合にも、すなわち内燃機関20が低負荷状態になった場合にも、同様に、なまし時定数τが第1時定数τ1に固定されたままである場合と比較すると各パラメータの応答速度が向上する。 Further, as shown in FIG. 29 (A), even when the intake air amount GA decreases at time t41, that is, when the internal combustion engine 20 is in a low load state, the smoothing time constant τ is similarly obtained. The response speed of each parameter is improved as compared with the case where is fixed to the first time constant τ1.
 さらに、本実施形態の冷却水循環システム10では、出口水温偏差の絶対値|ΔTWout|が所定値Tth10以下である場合には、なまし時定数τが、第2時定数τ2よりも大きい第1時定数τ1に設定されるため、目標回転位置Pvb*_outの演算値の安定性を確保することができる。 Further, in the cooling water circulation system 10 of the present embodiment, when the absolute value | ΔTWout | of the outlet water temperature deviation is equal to or less than the predetermined value Tth10, the smoothing time constant τ is larger than the second time constant τ2 at the first hour. Since the constant τ1 is set, the stability of the calculated value of the target rotation position Pvb * _out can be ensured.
 一方、外気温Toutが低い状況や車速Vcが速い状況では、ラジエータ21の放熱性能が向上するため、冷却水の温度の制御性が悪化する可能性がある。このような状況において、なまし時定数τを小さくすることにより目標回転位置Pvb*_outの演算値の安定性が低下すると、内燃機関20の壁温を適切に制御することが極めて困難になる可能性が高い。 On the other hand, in a situation where the outside air temperature Tout is low or the vehicle speed Vc is high, the heat dissipation performance of the radiator 21 is improved, so that the controllability of the cooling water temperature may deteriorate. In such a situation, if the stability of the calculated value of the target rotation position Pvb * _out is lowered by reducing the smoothing time constant τ, it may become extremely difficult to appropriately control the wall temperature of the internal combustion engine 20. Highly sexual.
 この点、本実施形態の冷却水循環システム10では、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合であっても、外気温Toutが所定温度Tth30以下であって、且つ車速Vcが所定速度Vth30以上である場合には、応答速度向上制御が実行されずに、通常制御が実行される。すなわち、なまし時定数τは、第2時定数τ2よりも大きい第1時定数τ1に設定されたままであるため、目標回転位置Pvb*_outの演算値の安定性を確保できる。結果として、内燃機関20の壁温を適切に制御することが可能である。 In this respect, in the cooling water circulation system 10 of the present embodiment, even when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10, the outside air temperature Tout is the predetermined temperature Tth30 or less and the vehicle speed Vc. When is equal to or higher than the predetermined speed Vth30, the normal control is executed without executing the response speed improvement control. That is, since the smoothing time constant τ is still set to the first time constant τ1 which is larger than the second time constant τ2, the stability of the calculated value of the target rotation position Pvb * _out can be ensured. As a result, it is possible to appropriately control the wall temperature of the internal combustion engine 20.
 <第4実施形態>
 次に、第4実施形態の流量制御弁12のECU40について説明する。以下、第1実施形態のECU40との相違点を中心に説明する。
 本実施形態のECU40は、図15に示される第1~第4応答遅れのそれぞれに対応する要因のうち、第3応答遅れ及び第4応答遅れに対応する要因、すなわちラジエータ21の性能や内燃機関20の発熱量、冷却水の熱容量等を改善することにより、冷却水の温度の応答速度を速くするものである。以下、本実施形態の流量制御弁12及びECU40の構成について説明する。
<Fourth Embodiment>
Next, the ECU 40 of the flow rate control valve 12 of the fourth embodiment will be described. Hereinafter, the differences from the ECU 40 of the first embodiment will be mainly described.
The ECU 40 of the present embodiment has factors corresponding to the third response delay and the fourth response delay among the factors corresponding to the first to fourth response delays shown in FIG. 15, that is, the performance of the radiator 21 and the internal combustion engine. By improving the calorific value of 20 and the heat capacity of the cooling water, the response speed of the temperature of the cooling water is increased. Hereinafter, the configurations of the flow rate control valve 12 and the ECU 40 of the present embodiment will be described.
 図30に示されるように、ECU40の制御パラメータ変更部70には、乗算部53により演算される目標回転位置演算値Pv*と、減算部521により演算される出口水温偏差ΔTWoutとが入力されている。制御パラメータ変更部70は、出口水温偏差ΔTWoutに基づいて、図31に示されるように最終目標回転位置Pv**を設定する。 As shown in FIG. 30, the target rotation position calculation value Pv * calculated by the multiplication unit 53 and the outlet water temperature deviation ΔTWout calculated by the subtraction unit 521 are input to the control parameter change unit 70 of the ECU 40. There is. The control parameter changing unit 70 sets the final target rotation position Pv ** as shown in FIG. 31 based on the outlet water temperature deviation ΔTWout.
 すなわち、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」よりも小さい場合には、第1応答速度向上制御を実行する。第1応答速度向上制御は、第1流出ポートP11の開口率を「100[%]」に設定する制御である。具体的には、制御パラメータ変更部70は、最終目標回転位置Pv**を、図4に示される回転位置P5に設定する。 That is, when the outlet water temperature deviation ΔTWout is smaller than “−Tth10”, the control parameter changing unit 70 executes the first response speed improvement control. The first response speed improvement control is a control for setting the aperture ratio of the first outflow port P11 to "100 [%]". Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P5 shown in FIG.
 また、図31に示されるように、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」から「Tth10」の範囲である場合には、通常制御を実行する。通常制御は、第1流出ポートP11の開口率を「0[%]」から「100[%]」の範囲で可変設定する制御である。具体的には、制御パラメータ変更部70は、最終目標回転位置Pv**として、出口水温偏差ΔTWoutに応じて可変設定される目標回転位置演算値Pv*を用いる。 Further, as shown in FIG. 31, the control parameter changing unit 70 executes normal control when the outlet water temperature deviation ΔTWout is in the range of “−Tth10” to “Tth10”. The normal control is a control in which the aperture ratio of the first outflow port P11 is variably set in the range of "0 [%]" to "100 [%]". Specifically, the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ΔTWout as the final target rotation position Pv **.
 さらに、図31に示されるように、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「Tth10」よりも大きい場合には、第2応答速度向上制御を実行する。第2応答速度向上制御は、第1流出ポートP11の開口率を「0[%]」に設定する制御である。具体的には、制御パラメータ変更部70は、最終目標回転位置Pv**を、図4に示される回転位置P0に設定する。 Further, as shown in FIG. 31, the control parameter changing unit 70 executes the second response speed improvement control when the outlet water temperature deviation ΔTWout is larger than “Tth10”. The second response speed improvement control is a control for setting the aperture ratio of the first outflow port P11 to "0 [%]". Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** to the rotation position P0 shown in FIG.
 図32は、制御パラメータ変更部70により実行される処理の手順を示すフローチャートである。なお、制御パラメータ変更部70は、図32に示される処理を所定の演算周期で繰り返し実行する。
 図32に示されるように、制御パラメータ変更部70は、まず、ステップS40の処理として、出口水温偏差ΔTWoutが「-Tth10」よりも大きいか否かを判断する。制御パラメータ変更部70は、出口水温偏差ΔTWoutが「Tth10」よりも大きい場合には、ステップS40の処理で肯定判断し、続くステップS41の処理として、第2応答速度向上制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**を、図4に示される回転位置P0に設定する。これにより、第1流出ポートP11の開口率が「0[%]」に設定される。
FIG. 32 is a flowchart showing a procedure of processing executed by the control parameter changing unit 70. The control parameter changing unit 70 repeatedly executes the process shown in FIG. 32 at a predetermined calculation cycle.
As shown in FIG. 32, the control parameter changing unit 70 first determines, as the process of step S40, whether or not the outlet water temperature deviation ΔTWout is larger than “−Tth10”. When the outlet water temperature deviation ΔTWout is larger than “Tth10”, the control parameter changing unit 70 makes an affirmative determination in the process of step S40, and executes the second response speed improvement control as the subsequent process of step S41. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P0 shown in FIG. As a result, the aperture ratio of the first outflow port P11 is set to "0 [%]".
 図32に示されるように、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「Tth10」以下である場合には、ステップS40の処理で否定判断し、続くステップS42の処理として、出口水温偏差ΔTWoutが「-Tth10」よりも小さいか否かを判断する。制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」よりも小さい場合には、ステップS42の処理で肯定判断し、続くステップS43の処理として、第1応答速度向上制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**を、図4に示される回転位置P5に設定する。これにより、第1流出ポートP11の開口率が「100[%]」に設定される。 As shown in FIG. 32, when the outlet water temperature deviation ΔTWout is “Tth10” or less, the control parameter changing unit 70 makes a negative determination in the process of step S40, and determines that the outlet water temperature deviation ΔTWout is the subsequent process of step S42. Judges whether or not is smaller than "-Tth10". When the outlet water temperature deviation ΔTWout is smaller than “−Tth10”, the control parameter changing unit 70 makes an affirmative determination in the process of step S42, and executes the first response speed improvement control as the subsequent process of step S43. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P5 shown in FIG. As a result, the aperture ratio of the first outflow port P11 is set to "100 [%]".
 図32に示されるように、制御パラメータ変更部70は、ステップS42の処理で否定判断した場合、すなわち出口水温偏差ΔTWoutが「-Tth10」以上であって、且つ「Tth10」以下である場合には、ステップS44の処理として、通常制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**として、出口水温偏差ΔTWoutに応じて可変設定される目標回転位置演算値Pv*を用いる。 As shown in FIG. 32, when the control parameter changing unit 70 makes a negative judgment in the process of step S42, that is, when the outlet water temperature deviation ΔTWout is “−Tth10” or more and “Tth10” or less. , Normal control is executed as the process of step S44. That is, the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ΔTWout as the final target rotation position Pv **.
 このように、本実施形態では、流量制御弁12の目標回転位置が、出口水温偏差の絶対値|ΔTWout|に応じて変更される制御パラメータに相当する。
 次に、本実施形態の流量制御弁12及びECU40の作用及び効果について説明する。
As described above, in the present embodiment, the target rotation position of the flow rate control valve 12 corresponds to the control parameter changed according to the absolute value | ΔTWout | of the outlet water temperature deviation.
Next, the operations and effects of the flow control valve 12 and the ECU 40 of the present embodiment will be described.
 図33(A)に示されるように、時刻t50で吸入空気量GAが増加すると、すなわち内燃機関20が高負荷状態になると、図33(B)に一点鎖線で示されるように、目標出口水温TWout*が第2目標水温設定値TWa2から第1目標水温設定値TWa1に変更される。そのため、図33(C)に示されるように、出口水温偏差ΔTWoutが負の値に変化する。この際、仮に図33(E)に二点鎖線で示されるように、制御パラメータ変更部70が通常制御を実行している場合には、図33(D)に二点鎖線で示されるように、最終目標回転位置Pv**が時間の経過に伴って徐々に回転位置P6まで変化する。そのため、図33(B),(F),(G)に二点鎖線で示されるように、時刻t50以降、出口水温TWout、冷却水の流量、内燃機関20の壁温も時間の経過に伴って徐々に変化する。 As shown in FIG. 33 (A), when the intake air amount GA increases at time t50, that is, when the internal combustion engine 20 is in a high load state, the target outlet water temperature is shown by the alternate long and short dash line in FIG. 33 (B). TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 33C, the outlet water temperature deviation ΔTWout changes to a negative value. At this time, as shown by the alternate long and short dash line in FIG. 33 (E), when the control parameter changing unit 70 is executing the normal control, it is indicated by the alternate long and short dash line in FIG. 33 (D). , The final target rotation position Pv ** gradually changes to the rotation position P6 with the passage of time. Therefore, as shown by the alternate long and short dash line in FIGS. 33 (B), (F), and (G), the outlet water temperature TWout, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 also change with the passage of time after time t50. It changes gradually.
 一方、本実施形態の流量制御弁12では、図33(C)に実線で示されるように、時刻t50で出口水温偏差ΔTWoutが「-Tth10」よりも小さくなると、図33(E)に示されるように、第1応答速度向上制御が実行される。よって、図33(D)に実線で示されるように、最終目標回転位置Pv**が即座に回転位置P6に設定されて、第1流出ポートP11の開口率が「100[%]」に設定される。これにより、図33(F)に実線で示されるように、時刻t50で冷却水の流量が急峻に変化する。結果として、ラジエータ21を流れる冷却水の流量が即座に増加するため、ラジエータ21における放熱量の応答性を向上させることができる。これにより、図33(B)に実線で示されるように、通常制御を実行している場合と比較すると、出口水温TWoutの応答速度が向上するため、結果として図33(G)に実線で示されるように、内燃機関20の壁温の応答速度を向上させることができる。そのため、内燃機関20の燃費を向上させることができる。 On the other hand, in the flow rate control valve 12 of the present embodiment, as shown by the solid line in FIG. 33 (C), when the outlet water temperature deviation ΔTWout becomes smaller than “−Tth10” at time t50, it is shown in FIG. 33 (E). As described above, the first response speed improvement control is executed. Therefore, as shown by the solid line in FIG. 33 (D), the final target rotation position Pv ** is immediately set to the rotation position P6, and the aperture ratio of the first outflow port P11 is set to "100 [%]". Will be done. As a result, as shown by the solid line in FIG. 33 (F), the flow rate of the cooling water changes sharply at time t50. As a result, the flow rate of the cooling water flowing through the radiator 21 is immediately increased, so that the responsiveness of the heat radiation amount in the radiator 21 can be improved. As a result, as shown by the solid line in FIG. 33 (B), the response speed of the outlet water temperature TWout is improved as compared with the case where the normal control is executed, and as a result, it is shown by the solid line in FIG. 33 (G). As a result, the response speed of the wall temperature of the internal combustion engine 20 can be improved. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
 また、図33(A)に示されるように、時刻t51で吸入空気量GAが減少すると、すなわち内燃機関20が低負荷状態になると、図33(B)に一点鎖線で示されるように、目標出口水温TWout*が第1目標水温設定値TWa1から第2目標水温設定値TWa2に変更される。そのため、図33(C)に実線で示されるように、出口水温偏差ΔTWoutが正の値に変化する。この際、仮に図33(E)に二点鎖線で示されるように、制御パラメータ変更部70が通常制御を実行している場合には、図33(B),(D),(F),(G)に二点鎖線で示されるように、出口水温TWout、最終目標回転位置Pv**、冷却水の流量、及び内燃機関20の壁温が徐々に変化する。 Further, as shown in FIG. 33 (A), when the intake air amount GA decreases at time t51, that is, when the internal combustion engine 20 is in a low load state, the target is shown by the alternate long and short dash line in FIG. 33 (B). The outlet water temperature TWout * is changed from the first target water temperature set value TWa1 to the second target water temperature set value TWa2. Therefore, as shown by the solid line in FIG. 33C, the outlet water temperature deviation ΔTWout changes to a positive value. At this time, if the control parameter changing unit 70 is executing the normal control as shown by the alternate long and short dash line in FIG. 33 (E), FIGS. 33 (B), (D), (F), As shown by the alternate long and short dash line in (G), the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 gradually change.
 これに対して、本実施形態の流量制御弁12では、図33(C)に示されるように時刻t51で出口水温偏差ΔTWoutが「Tth10」よりも大きくなると、図33(E)に実線で示されるように第2応答速度向上制御が実行されて、第1流出ポートP11の開口率が「0[%]」に設定される。これにより、図33(B),(D),(F),(G)に実線で示されるように、出口水温TWout、最終目標回転位置Pv**、冷却水の流量、及び内燃機関20の壁温が、通常制御を実行している場合と比較すると、より速く応答するようになる。 On the other hand, in the flow control valve 12 of the present embodiment, when the outlet water temperature deviation ΔTWout becomes larger than “Tth10” at time t51 as shown in FIG. 33 (C), it is shown by a solid line in FIG. 33 (E). The second response speed improvement control is executed so that the opening ratio of the first outflow port P11 is set to "0 [%]". As a result, as shown by solid lines in FIGS. 33 (B), (D), (F), and (G), the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the internal combustion engine 20. The wall temperature will respond faster than when performing normal control.
 このように、本実施形態の流量制御弁12及びECU40によれば、内燃機関20の負荷状態が変化した際に、内燃機関20の壁温が目標壁温に向かって速やかに変化するようになる。これにより、内燃機関20の壁温が目標壁温から大きく乖離している時間を短くすることができるため、それらの乖離により生じる内燃機関20の燃費の悪化を抑制することができる。すなわち、内燃機関20の燃費を向上させることができる。 As described above, according to the flow control valve 12 and the ECU 40 of the present embodiment, when the load state of the internal combustion engine 20 changes, the wall temperature of the internal combustion engine 20 changes rapidly toward the target wall temperature. .. As a result, the time during which the wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, so that deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. That is, the fuel efficiency of the internal combustion engine 20 can be improved.
 (変形例)
 次に、第4実施形態の流量制御弁12のECU40の変形例について説明する。
 本変形例の制御パラメータ変更部70は、出口水温偏差ΔTWoutが、「-Tth10」よりも小さい値から「-Tth10」よりも大きい値に変化する際には、出口水温偏差ΔTWoutが「-Tth10+β」を超えることをもって、第1応答速度向上制御から通常制御に移行する。また、制御パラメータ変更部70は、出口水温偏差ΔTWoutが、「Tth10」よりも大きい値から「Tth10」よりも小さい値に変化する際には、出口水温偏差ΔTWoutが「Tth10-β」を超えることをもって、第2応答速度向上制御から通常制御に移行する。なお、所定値βは零よりも大きい値に設定されている。
(Modification example)
Next, a modification of the ECU 40 of the flow rate control valve 12 of the fourth embodiment will be described.
In the control parameter changing unit 70 of this modification, when the outlet water temperature deviation ΔTWout changes from a value smaller than “−Tth10” to a value larger than “−Tth10”, the outlet water temperature deviation ΔTWout becomes “−Tth10 + β”. By exceeding the above, the first response speed improvement control is shifted to the normal control. Further, in the control parameter changing unit 70, when the outlet water temperature deviation ΔTWout changes from a value larger than “Tth10” to a value smaller than “Tth10”, the outlet water temperature deviation ΔTWout exceeds “Tth10-β”. Then, the second response speed improvement control is shifted to the normal control. The predetermined value β is set to a value larger than zero.
 このように、本変形例の制御パラメータ変更部70では、通常制御と第1応答速度向上制御との切り替えの際に用いられる閾値、並びに通常制御と第2応答速度向上制御との切り替えの際に用いられる閾値にヒステリシスが設けられている。このような構成によれば、出口水温偏差ΔTWoutが閾値付近で変化した際に、制御が頻繁に切り替わるような状況を回避することが可能である。 As described above, in the control parameter changing unit 70 of the present modification, the threshold value used when switching between the normal control and the first response speed improvement control, and when switching between the normal control and the second response speed improvement control. Hysteresis is provided at the threshold used. According to such a configuration, it is possible to avoid a situation in which control is frequently switched when the outlet water temperature deviation ΔTWout changes near the threshold value.
 <第5実施形態>
 次に、第5実施形態の流量制御弁12のECU40について説明する。以下、第4実施形態のECU40との相違点を中心に説明する。
 図5に破線で示されるように、本実施形態のECU40には、車両に搭載される油温センサ36の出力信号が取り込まれている。油温センサ36は、内燃機関20を潤滑する潤滑油の温度である油温Toilを検出するとともに、検出された油温Toilに応じた信号を出力する。
<Fifth Embodiment>
Next, the ECU 40 of the flow rate control valve 12 of the fifth embodiment will be described. Hereinafter, the differences from the ECU 40 of the fourth embodiment will be mainly described.
As shown by the broken line in FIG. 5, the output signal of the oil temperature sensor 36 mounted on the vehicle is captured in the ECU 40 of the present embodiment. The oil temperature sensor 36 detects the oil temperature Toil, which is the temperature of the lubricating oil that lubricates the internal combustion engine 20, and outputs a signal corresponding to the detected oil temperature Toil.
 また、ECU40は、車両に搭載される空調ECU37と相互に通信可能となっている。空調ECU37は、車両に搭載される空調装置38を統括的に制御することにより、車室内の暖房や冷房を行う。例えば空調ECU37は、車室内の暖房を行う際には、空調ダクトを流れる空気を、図1に示されるヒータコア22に流すように空調装置38を制御する。これにより、ヒータコア22において加熱された空気が空調ダクトを通じて車室内に送風されて、車室内の暖房が行われる。ECU40は、空調ECU37との通信により、例えば車室内の暖房や冷房が行われているか否かの情報を取得することが可能である。 Further, the ECU 40 can communicate with the air conditioning ECU 37 mounted on the vehicle. The air-conditioning ECU 37 heats and cools the interior of the vehicle by comprehensively controlling the air-conditioning device 38 mounted on the vehicle. For example, the air conditioning ECU 37 controls the air conditioning device 38 so that the air flowing through the air conditioning duct flows through the heater core 22 shown in FIG. 1 when heating the interior of the vehicle. As a result, the air heated in the heater core 22 is blown into the vehicle interior through the air conditioning duct to heat the vehicle interior. By communicating with the air-conditioning ECU 37, the ECU 40 can acquire information on whether or not heating or cooling of the vehicle interior is being performed, for example.
 本実施形態の流量制御弁12では、弁体122の位置に対する各流出ポートP11~P13の開口率が図34(A)~(C)に示されるように設定されている。図34(A)~(C)に示されるように、本実施形態の流量制御弁12では、その弁位置として、回転位置P7が更に設定されている。回転位置P7は、回転位置P5よりも正転方向X1に設定された位置である。流量制御弁12の弁位置が回転位置P7に達した場合には、第1流出ポートP11の開口率が「100[%]」に設定され、且つ第2流出ポートP12及び第3流出ポートP13の開口率が「0[%」」に設定される。 In the flow control valve 12 of the present embodiment, the opening ratios of the outflow ports P11 to P13 with respect to the position of the valve body 122 are set as shown in FIGS. 34 (A) to 34 (C). As shown in FIGS. 34 (A) to 34 (C), in the flow control valve 12 of the present embodiment, the rotation position P7 is further set as the valve position. The rotation position P7 is a position set in the normal rotation direction X1 with respect to the rotation position P5. When the valve position of the flow control valve 12 reaches the rotation position P7, the opening ratio of the first outflow port P11 is set to "100 [%]", and the second outflow port P12 and the third outflow port P13 The aperture ratio is set to "0 [%" ".
 本実施形態の制御パラメータ変更部70も、図30に示される第4実施形態の制御パラメータ変更部70と同様に、乗算部53により演算される目標回転位置演算値Pv*と、減算部521により演算される出口水温偏差ΔTWoutとが入力されている。制御パラメータ変更部70は、出口水温偏差ΔTWoutに基づいて、図35に示されるように最終目標回転位置Pv**を設定する。 Similar to the control parameter changing unit 70 of the fourth embodiment shown in FIG. 30, the control parameter changing unit 70 of the present embodiment also has the target rotation position calculation value Pv * calculated by the multiplication unit 53 and the subtracting unit 521. The calculated outlet water temperature deviation ΔTWout is input. The control parameter changing unit 70 sets the final target rotation position Pv ** as shown in FIG. 35 based on the outlet water temperature deviation ΔTWout.
 すなわち、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」よりも小さい場合には、第1応答速度向上制御を実行する。第1応答速度向上制御は、第1流出ポートP11の開口率を「100[%]に設定するとともに、それ以外の流出ポートP12,P13の開口率を「0[%]」に設定する制御である。具体的には、制御パラメータ変更部70は、最終目標回転位置Pv**を、図34に示される回転位置P7に設定する。 That is, when the outlet water temperature deviation ΔTWout is smaller than “−Tth10”, the control parameter changing unit 70 executes the first response speed improvement control. The first response speed improvement control is a control in which the aperture ratio of the first outflow port P11 is set to "100 [%] and the aperture ratios of the other outflow ports P12 and P13 are set to" 0 [%] ". is there. Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P7 shown in FIG. 34.
 また、図35に示されるように、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」から「Tth10」の範囲である場合には、通常制御を実行する。通常制御は、最終目標回転位置Pv**として、出口水温偏差ΔTWoutに応じて可変設定される目標回転位置演算値Pv*を用いる制御である。 Further, as shown in FIG. 35, the control parameter changing unit 70 executes normal control when the outlet water temperature deviation ΔTWout is in the range of “−Tth10” to “Tth10”. The normal control is a control using the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ΔTWout as the final target rotation position Pv **.
 さらに、図35に示されるように、制御パラメータ変更部70は、出口水温偏差ΔTWoutが「Tth10」よりも大きい場合には、第2応答速度向上制御を実行する。第2応答速度向上制御は、全ての流出ポートP11~P13の開口率を「0[%]」に設定する制御である。具体的には、制御パラメータ変更部70は、最終目標回転位置Pv**を、図34に示される回転位置P0に設定する。 Further, as shown in FIG. 35, the control parameter changing unit 70 executes the second response speed improvement control when the outlet water temperature deviation ΔTWout is larger than “Tth10”. The second response speed improvement control is a control for setting the aperture ratios of all the outflow ports P11 to P13 to "0 [%]". Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** to the rotation position P0 shown in FIG. 34.
 図36は、制御パラメータ変更部70により実行される処理の手順を示すフローチャートである。なお、制御パラメータ変更部70は、図36に示される処理を所定の演算周期で繰り返し実行する。
 図36に示されるように、制御パラメータ変更部70は、まず、ステップS50の処理として、出口水温偏差ΔTWoutが「Tth10」よりも大きいか否かを判断する。制御パラメータ変更部70は、出口水温偏差ΔTWoutが「Tth10」よりも大きい場合には、ステップS50の処理で肯定判断し、続くステップS51の処理として、空調ECU37から空調装置38の動作状態を取得するとともに、油温センサ36を通じて油温Toilの情報を取得する。なお、空調装置38の動作状態には、空調装置38が作動しているか否かの情報に加え、空調装置38が作動している場合には冷房及び暖房のいずれが行われているかの情報が含まれている。
FIG. 36 is a flowchart showing a procedure of processing executed by the control parameter changing unit 70. The control parameter changing unit 70 repeatedly executes the process shown in FIG. 36 at a predetermined calculation cycle.
As shown in FIG. 36, the control parameter changing unit 70 first determines whether or not the outlet water temperature deviation ΔTWout is larger than “Tth10” as the process of step S50. When the outlet water temperature deviation ΔTWout is larger than “Tth10”, the control parameter changing unit 70 makes an affirmative decision in the process of step S50, and acquires the operating state of the air conditioner 38 from the air conditioner ECU 37 as the subsequent process of step S51. At the same time, information on the oil temperature Tool is acquired through the oil temperature sensor 36. In addition to the information on whether or not the air conditioner 38 is operating, the operating state of the air conditioner 38 includes information on whether cooling or heating is performed when the air conditioner 38 is operating. include.
 制御パラメータ変更部70は、ステップS51に続くステップS52の処理として、空調装置38において暖房が行われておらず、且つ油温Toilが所定温度Tth50よりも小さいか否かを判断する。制御パラメータ変更部70は、空調装置38において暖房が行われておらず、且つ油温Toilが所定温度Tth50よりも小さい場合には、ステップS52の処理で肯定判断し、続くステップS53の処理として、第2応答速度向上制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**を、図34に示される回転位置P0に設定する。これにより、全ての流出ポートP11~P13の開口率が「0[%]」に設定される。 The control parameter changing unit 70 determines whether or not the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50 as the process of step S52 following step S51. When the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50, the control parameter changing unit 70 makes an affirmative judgment in the process of step S52, and as the subsequent process of step S53, determines affirmatively. The second response speed improvement control is executed. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P0 shown in FIG. 34. As a result, the aperture ratios of all the outflow ports P11 to P13 are set to "0 [%]".
 制御パラメータ変更部70は、ステップS50の処理で否定判断した場合には、ステップS54の処理として、出口水温偏差ΔTWoutが「-Tth10」よりも小さいか否かを判断する。制御パラメータ変更部70は、出口水温偏差ΔTWoutが「-Tth10」よりも小さい場合には、ステップS54の処理で肯定判断し、続くステップS55の処理として、空調ECU37から空調装置38の動作状態を取得するとともに、油温センサ36を通じて油温Toilの情報を取得する。 When the control parameter changing unit 70 makes a negative determination in the process of step S50, it determines whether or not the outlet water temperature deviation ΔTWout is smaller than “−Tth10” as the process of step S54. When the outlet water temperature deviation ΔTWout is smaller than “−Tth10”, the control parameter changing unit 70 makes an affirmative judgment in the process of step S54, and acquires the operating state of the air conditioner 38 from the air conditioner ECU 37 as the subsequent process of step S55. At the same time, the oil temperature Tool information is acquired through the oil temperature sensor 36.
 制御パラメータ変更部70は、ステップS55に続くステップS56の処理として、空調装置38において暖房が行われておらず、且つ油温Toilが所定温度Tth50よりも小さいか否かを判断する。制御パラメータ変更部70は、空調装置38において暖房が行われておらず、且つ油温Toilが所定温度Tth50よりも小さい場合には、ステップS56の処理で肯定判断し、続くステップS57の処理として、第1応答速度向上制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**を、図34に示される回転位置P7に設定する。これにより、第1流出ポートP11の開口率が「100[%]」に設定されるとともに、それ以外の流出ポートP12,P13の開口率が「0[%]」に設定される。 The control parameter changing unit 70 determines whether or not the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50 as the process of step S56 following step S55. When the air conditioner 38 is not heated and the oil temperature Tool is smaller than the predetermined temperature Tth50, the control parameter changing unit 70 makes an affirmative judgment in the process of step S56, and as the subsequent process of step S57, determines affirmatively. The first response speed improvement control is executed. That is, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P7 shown in FIG. 34. As a result, the opening ratio of the first outflow port P11 is set to "100 [%]", and the opening ratios of the other outflow ports P12 and P13 are set to "0 [%]".
 制御パラメータ変更部70は、ステップS54の処理で否定判断した場合、すなわち出口水温偏差ΔTWoutが「-Tth10」以上であって、且つ「Tth10」以下である場合には、ステップS58の処理として、通常制御を実行する。すなわち、制御パラメータ変更部70は、最終目標回転位置Pv**として、出口水温偏差ΔTWoutに応じて可変設定される目標回転位置演算値Pv*を用いる。また、制御パラメータ変更部70は、ステップS52の処理で否定判断した場合、又はステップS56の処理で否定判断した場合には、すなわち空調装置38において暖房が行われている場合、又は油温Toilが所定温度Tth50以上である場合には、ステップS58の処理として、通常制御を実行する。 When the control parameter changing unit 70 makes a negative determination in the process of step S54, that is, when the outlet water temperature deviation ΔTWout is “−Tth10” or more and “Tth10” or less, the process of step S58 is usually performed. Take control. That is, the control parameter changing unit 70 uses the target rotation position calculation value Pv * that is variably set according to the outlet water temperature deviation ΔTWout as the final target rotation position Pv **. Further, when the control parameter changing unit 70 makes a negative determination in the process of step S52, or when a negative determination is made in the process of step S56, that is, when heating is performed in the air conditioner 38, or when the oil temperature Tool is set. When the predetermined temperature is Tth50 or higher, normal control is executed as the process of step S58.
 次に、本実施形態の流量制御弁12及びECU40の作用及び効果について説明する。
 図37(A)に示されるように、時刻t60で吸入空気量GAが増加すると、すなわち内燃機関20が高負荷状態になると、図37(B)に一点鎖線で示されるように、目標出口水温TWout*が第2目標水温設定値TWa2から第1目標水温設定値TWa1に変更される。そのため、図37(C)に示されるように、出口水温偏差ΔTWoutが負の値に変化する。この際、仮に図37(E)に二点鎖線で示されるように、通常制御が実行されている場合には、図37(D)に二点鎖線で示されるように、最終目標回転位置Pv**が時間の経過に伴って徐々に回転位置P6まで変化する。そのため、図37(B),(F),(G)に二点鎖線で示されるように、時刻t60以降、出口水温TWout、冷却水の流量、及び内燃機関20の壁温も時間の経過に伴って徐々に変化する。
Next, the operations and effects of the flow control valve 12 and the ECU 40 of the present embodiment will be described.
As shown in FIG. 37 (A), when the intake air amount GA increases at time t60, that is, when the internal combustion engine 20 is in a high load state, the target outlet water temperature is shown by the alternate long and short dash line in FIG. 37 (B). TWout * is changed from the second target water temperature set value TWa2 to the first target water temperature set value TWa1. Therefore, as shown in FIG. 37 (C), the outlet water temperature deviation ΔTWout changes to a negative value. At this time, if the normal control is executed as shown by the alternate long and short dash line in FIG. 37 (E), the final target rotation position Pv is shown by the alternate long and short dash line in FIG. 37 (D). ** gradually changes to the rotation position P6 with the passage of time. Therefore, as shown by the alternate long and short dash line in FIGS. 37 (B), (F), and (G), the outlet water temperature TWout, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 also change with the passage of time after time t60. It changes gradually with it.
 一方、本実施形態の流量制御弁12では、図37(C)に実線で示されるように、時刻t60で出口水温偏差ΔTWoutが「-Tth10」よりも小さくなると、図37(E)に実線で示されるように、第1応答速度向上制御が実行される。これにより、図37(D)に実線で示されるように、最終目標回転位置Pv**が即座に回転位置P7に設定されるため、第1流出ポートP11の開口率が「100[%]」に設定されるとともに、それ以外の流出ポートP12,P3の開口率が「0[%]」に設定される。そのため、図37(F)に実線で示されるように、冷却水の流量が、通常制御により実現可能な流量を超えて増加する。結果として、ラジエータ21を流れる冷却水の流量が急激に増加するため、ラジエータ21における放熱量の応答性を向上させることができる。よって、図37(B)に実線で示されるように、通常制御を実行している場合と比較すると、出口水温TWoutの応答速度が向上するため、結果として図37(G)に示されるように、内燃機関20の壁温の応答速度を向上させることができる。そのため、内燃機関20の燃費を向上させることができる。 On the other hand, in the flow control valve 12 of the present embodiment, as shown by the solid line in FIG. 37 (C), when the outlet water temperature deviation ΔTWout becomes smaller than “−Tth10” at time t60, the solid line is shown in FIG. 37 (E). As shown, the first response speed improvement control is executed. As a result, as shown by the solid line in FIG. 37 (D), the final target rotation position Pv ** is immediately set to the rotation position P7, so that the aperture ratio of the first outflow port P11 is "100 [%]". The aperture ratios of the other outflow ports P12 and P3 are set to "0 [%]". Therefore, as shown by the solid line in FIG. 37 (F), the flow rate of the cooling water increases beyond the flow rate feasible by normal control. As a result, the flow rate of the cooling water flowing through the radiator 21 increases sharply, so that the responsiveness of the heat radiation amount in the radiator 21 can be improved. Therefore, as shown by the solid line in FIG. 37 (B), the response speed of the outlet water temperature TWout is improved as compared with the case where the normal control is executed, and as a result, as shown in FIG. 37 (G). , The response speed of the wall temperature of the internal combustion engine 20 can be improved. Therefore, the fuel efficiency of the internal combustion engine 20 can be improved.
 また、図37(A)に示されるように、時刻t61で吸入空気量GAが減少すると、すなわち内燃機関20が低負荷状態になると、図37(B)に一点鎖線で示されるように、最終目標回転位置Pv**が第1目標水温設定値TWa1から第2目標水温設定値TWa2に変更される。そのため、図37(C)に実線で示されるように、出口水温偏差ΔTWoutが正の値に変化する。この際、仮に図33(E)に二点鎖線で示されるように、通常制御が実行されている場合には、図33(B),(D),(F),(G)に二点鎖線で示されるように、出口水温TWout、最終目標回転位置Pv**、冷却水の流量、及び内燃機関20の壁温が徐々に変化する。 Further, as shown in FIG. 37 (A), when the intake air amount GA decreases at time t61, that is, when the internal combustion engine 20 is in a low load state, the final chain line is shown in FIG. 37 (B). The target rotation position Pv ** is changed from the first target water temperature set value TWa1 to the second target water temperature set value TWa2. Therefore, as shown by the solid line in FIG. 37 (C), the outlet water temperature deviation ΔTWout changes to a positive value. At this time, as shown by the alternate long and short dash line in FIG. 33 (E), when the normal control is executed, the two points are shown in FIGS. 33 (B), (D), (F), and (G). As shown by the chain line, the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the wall temperature of the internal combustion engine 20 gradually change.
 これに対して、本実施形態の流量制御弁12では、時刻t61で出口水温偏差ΔTWoutが「Tth10」よりも大きくなると、図37(E)に示されるように、第2応答速度向上制御が実行される。そのため、全ての流出ポートP11~P13の開口率が「0[%]」に設定される。これにより、図33(B),(D),(F),(G)に実線で示されるように、出口水温TWout、最終目標回転位置Pv**、冷却水の流量、及び内燃機関20の壁温が、通常制御を実行している場合と比較すると、より速く応答するようになる。 On the other hand, in the flow rate control valve 12 of the present embodiment, when the outlet water temperature deviation ΔTWout becomes larger than “Tth10” at time t61, the second response speed improvement control is executed as shown in FIG. 37 (E). Will be done. Therefore, the aperture ratios of all the outflow ports P11 to P13 are set to "0 [%]". As a result, as shown by solid lines in FIGS. 33 (B), (D), (F), and (G), the outlet water temperature TWout, the final target rotation position Pv **, the flow rate of the cooling water, and the internal combustion engine 20. The wall temperature will respond faster than when performing normal control.
 このように、本実施形態の流量制御弁12及びECU40によれば、内燃機関20の負荷状態が変化した際に、内燃機関20の壁温が目標壁温に向かって速やかに変化するようになる。これにより、内燃機関20の壁温が目標壁温から大きく乖離している時間を短くすることができるため、それらの乖離により生じる内燃機関20の燃費の悪化を抑制することができる。すなわち、内燃機関20の燃費を向上させることができる。 As described above, according to the flow control valve 12 and the ECU 40 of the present embodiment, when the load state of the internal combustion engine 20 changes, the wall temperature of the internal combustion engine 20 changes rapidly toward the target wall temperature. .. As a result, the time during which the wall temperature of the internal combustion engine 20 deviates significantly from the target wall temperature can be shortened, so that deterioration of fuel efficiency of the internal combustion engine 20 caused by such dissociation can be suppressed. That is, the fuel efficiency of the internal combustion engine 20 can be improved.
 一方、第1応答速度向上制御や第2応答速度向上制御を実行する際には第2流出ポートP12及び第3流出ポートP13のそれぞれの開口率が「0[%]」に設定されるため、ヒータコア22やオイルクーラ24に冷却水が流れなくなる。そのため、第1応答速度向上制御や第2応答速度向上制御が実行されている期間は、空調装置38において暖房を適切に行うことができなくなったり、油温Toilを適切に管理したりすることが難しくなる。この点、本実施形態のECU40は、出口水温偏差の絶対値|ΔTWout|が所定値Tth10よりも大きい場合であっても、空調装置38において暖房が行われている状況、あるいは油温Toilが所定温度Tth50以上である状況では、第1応答速度向上制御や第2応答速度向上制御の実行が回避されて通常制御が実行される。そのため、空調装置38において暖房を適切に行うことができるとともに、油温Toilを適切に管理することが可能となる。 On the other hand, when the first response speed improvement control or the second response speed improvement control is executed, the aperture ratios of the second outflow port P12 and the third outflow port P13 are set to "0 [%]". Cooling water does not flow to the heater core 22 and the oil cooler 24. Therefore, during the period when the first response speed improvement control and the second response speed improvement control are being executed, the air conditioner 38 may not be able to properly perform heating, or the oil temperature Toil may be appropriately managed. It gets harder. In this respect, in the ECU 40 of the present embodiment, even when the absolute value | ΔTWout | of the outlet water temperature deviation is larger than the predetermined value Tth10, the heating is performed in the air conditioner 38, or the oil temperature Tool is predetermined. In a situation where the temperature is Tth50 or higher, the execution of the first response speed improvement control and the second response speed improvement control is avoided, and the normal control is executed. Therefore, the air conditioner 38 can be appropriately heated and the oil temperature Toil can be appropriately managed.
 なお、本実施形態のECU40でも、第5実施形態の変形例のECU40と同様に、通常制御と第1応答速度向上制御との切り替えの際に用いられる閾値、並びに通常制御と第2応答速度向上制御との切り替えの際に用いられる閾値にヒステリシスが設けられていてもよい。 In the ECU 40 of the present embodiment, as in the ECU 40 of the modified example of the fifth embodiment, the threshold value used when switching between the normal control and the first response speed improvement control, and the normal control and the second response speed improvement are also performed. Hysteresis may be provided in the threshold value used when switching to the control.
 <第6実施形態>
 次に、第6実施形態の流量制御弁12のECU40について説明する。以下、第5実施形態の流量制御弁12のECU40との相違点を中心に説明する。
 本実施形態の流量制御弁12では、弁体122の位置に対する各流出ポートP11~P13の開口率が図38(A)~(C)に示されるように設定されている。図38(A)~(C)に示されるように、流量制御弁12の弁位置として、回転位置P8が更に設定されている。回転位置P8は、回転位置P5と回転位置P7との間に設定された位置である。流量制御弁12の弁位置が回転位置P8に設定されている場合、第1流出ポートP11及び第3流出ポートP13のそれぞれの開度が「100[%]」に設定され、且つ第2流出ポートP12の開度が「0[%]」に設定される。
<Sixth Embodiment>
Next, the ECU 40 of the flow rate control valve 12 of the sixth embodiment will be described. Hereinafter, the differences between the flow control valve 12 of the fifth embodiment and the ECU 40 will be mainly described.
In the flow control valve 12 of the present embodiment, the opening ratios of the outflow ports P11 to P13 with respect to the position of the valve body 122 are set as shown in FIGS. 38 (A) to 38 (C). As shown in FIGS. 38 (A) to 38 (C), the rotation position P8 is further set as the valve position of the flow control valve 12. The rotation position P8 is a position set between the rotation position P5 and the rotation position P7. When the valve position of the flow control valve 12 is set to the rotation position P8, the opening degree of each of the first outflow port P11 and the third outflow port P13 is set to "100 [%]", and the second outflow port The opening degree of P12 is set to "0 [%]".
 また、本実施形態の制御パラメータ変更部70は、図39及び図40に示される処理を実行する。なお、図39及び図40に示されるフローチャートにおいて、図36に示される処理と同一の処理には同一の符号を付すことにより重複する説明を割愛する。また、図39及び図40に示されるステップS58a,58bの処理は、図36に示されるステップS58の処理と同一の処理である。 Further, the control parameter changing unit 70 of the present embodiment executes the processes shown in FIGS. 39 and 40. In the flowcharts shown in FIGS. 39 and 40, the same processes as those shown in FIG. 36 are designated by the same reference numerals, so that overlapping description is omitted. Further, the processing of steps S58a and 58b shown in FIGS. 39 and 40 is the same processing as the processing of step S58 shown in FIG. 36.
 図39に示されるように、制御パラメータ変更部70は、ステップS52の処理で否定判断した場合には、ステップS60の処理として、油温Toilが所定温度Tth50よりも低いか否かを判断する。制御パラメータ変更部70は、ステップS60の処理で肯定判断した場合には、すなわち油温Toilが所定温度Tth50よりも低い場合には、空調装置38において暖房動作が行われている状況であると判断する。この場合、制御パラメータ変更部70は、ステップS61の処理として、第3応答速度向上制御を実行する。具体的には、制御パラメータ変更部70は、第3応答速度向上制御として、最終目標回転位置Pv**を、図38に示される回転位置P2に設定する。これにより、第1流出ポートP11及び第2流出ポートP12のそれぞれの開口率が「0[%]」に設定されるとともに、第3流出ポートP13の開口率が「100[%]」に設定される。 As shown in FIG. 39, when a negative determination is made in the process of step S52, the control parameter changing unit 70 determines whether or not the oil temperature Tool is lower than the predetermined temperature Tth50 as the process of step S60. The control parameter changing unit 70 determines that the air conditioner 38 is performing the heating operation when the affirmative determination is made in the process of step S60, that is, when the oil temperature Tool is lower than the predetermined temperature Tth50. To do. In this case, the control parameter changing unit 70 executes the third response speed improvement control as the process of step S61. Specifically, the control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P2 shown in FIG. 38 as the third response speed improvement control. As a result, the opening ratios of the first outflow port P11 and the second outflow port P12 are set to "0 [%]", and the opening ratio of the third outflow port P13 is set to "100 [%]". To.
 制御パラメータ変更部70は、ステップS60の処理で否定判断した場合には、すなわち油温Toilが所定温度Tth50以上であり、且つ空調装置38において暖房が行われている場合には、ステップS58aの処理として、通常制御を実行する。
 図40に示されるように、制御パラメータ変更部70は、ステップS56の処理で否定判断した場合には、ステップS62の処理として、油温Toilが所定温度Tth50よりも低いか否かを判断する。制御パラメータ変更部70は、ステップS62の処理で肯定判断した場合には、すなわち油温Toilが所定温度Tth50よりも低い場合には、ステップS63の処理として、第4応答速度向上制御を実行する。制御パラメータ変更部70は、第4応答速度向上制御として、最終目標回転位置Pv**を、図38に示される回転位置P8に設定する。これにより、第1流出ポートP11及び第3流出ポートP13のそれぞれの開口率が「100[%]」に設定されるとともに、第2流出ポートP12の開口率が「0[%]」に設定される。
When the control parameter changing unit 70 makes a negative determination in the process of step S60, that is, when the oil temperature Tool is at a predetermined temperature Tth50 or higher and the air conditioner 38 is heating, the process of step S58a As normal control is executed.
As shown in FIG. 40, when a negative determination is made in the process of step S56, the control parameter changing unit 70 determines whether or not the oil temperature Tool is lower than the predetermined temperature Tth50 as the process of step S62. The control parameter changing unit 70 executes the fourth response speed improvement control as the process of step S63 when affirmative determination is made in the process of step S62, that is, when the oil temperature Tool is lower than the predetermined temperature Tth50. The control parameter changing unit 70 sets the final target rotation position Pv ** at the rotation position P8 shown in FIG. 38 as the fourth response speed improvement control. As a result, the opening ratios of the first outflow port P11 and the third outflow port P13 are set to "100 [%]", and the opening ratio of the second outflow port P12 is set to "0 [%]". To.
 制御パラメータ変更部70は、ステップS62の処理で否定判断した場合には、すなわち油温Toilが所定温度Tth50以上であり、且つ空調装置38において暖房が行われている場合には、ステップS58bの処理として、通常制御を実行する。
 次に、本実施形態の流量制御弁12及びECU40の作用及び効果について説明する。
When the control parameter changing unit 70 makes a negative determination in the process of step S62, that is, when the oil temperature Tool is at a predetermined temperature Tth50 or higher and the air conditioner 38 is heating, the process of step S58b As normal control is executed.
Next, the operations and effects of the flow control valve 12 and the ECU 40 of the present embodiment will be described.
 図36に示されるように、第5実施形態の流量制御弁12では、制御パラメータ変更部70がステップS50の処理で肯定判断し、且つステップS52の処理で否定判断した場合には、通常制御が実行される。したがって、目標出口水温TWout*が出口水温TWoutに対して所定値Tth10よりも大きい状況において、空調装置38において暖房が行われており、且つ油温Toilが所定温度Tth50よりも低い状況でも、通常制御が実行されることになる。しかしながら、油温Toilが所定温度Tth50よりも低い場合には、オイルクーラ24に冷却水を流す必要がないため、オイルクーラ24への冷却水の循環を停止することが可能である。また、目標出口水温TWout*が出口水温TWoutに対して所定値Tth10よりも大きい状況であるため、ラジエータ21に冷却水を循環させる必要もない。また、ラジエータ21及びオイルクーラ24への冷却水の循環を停止することができれば、その分だけ冷却水の流量を増加させることができるため、内燃機関20の壁温の応答性を向上させることが可能である。 As shown in FIG. 36, in the flow rate control valve 12 of the fifth embodiment, when the control parameter changing unit 70 makes an affirmative decision in the process of step S50 and makes a negative decision in the process of step S52, the normal control is performed. Will be executed. Therefore, in a situation where the target outlet water temperature TWout * is larger than the predetermined value Tth10 with respect to the outlet water temperature TWout, heating is performed in the air conditioner 38, and normal control is performed even in a situation where the oil temperature Tool is lower than the predetermined temperature Tth50. Will be executed. However, when the oil temperature Tool is lower than the predetermined temperature Tth50, it is not necessary to flow the cooling water to the oil cooler 24, so that the circulation of the cooling water to the oil cooler 24 can be stopped. Further, since the target outlet water temperature TWout * is larger than the predetermined value Tth10 with respect to the outlet water temperature TWout, it is not necessary to circulate the cooling water in the radiator 21. Further, if the circulation of the cooling water to the radiator 21 and the oil cooler 24 can be stopped, the flow rate of the cooling water can be increased by that amount, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved. It is possible.
 この点、本実施形態の流量制御弁12では、制御パラメータ変更部70がステップS60の処理で肯定判断する状況、すなわち油温Toilが所定温度Tth50より低く、且つ空調装置38において暖房が行われている状況では、第3応答速度向上制御が実行される。これにより、第3流出ポートP13の開口率のみが「100[%]」に設定されるため、ヒータコア22に冷却水を循環させることができる。よって、空調装置38の暖房を実行することが可能である。また、第1流出ポートP11及び第2流出ポートP12の開口率が「0[%]」に設定されることにより、ラジエータ21及びオイルクーラ24への冷却水の循環が停止される。これにより、冷却水の流量を増加させることができるため、内燃機関20の壁温の応答性を向上させることが可能である。 In this respect, in the flow rate control valve 12 of the present embodiment, the situation where the control parameter changing unit 70 makes a positive judgment in the process of step S60, that is, the oil temperature Tool is lower than the predetermined temperature Tth50, and the air conditioner 38 is heated. In such a situation, the third response speed improvement control is executed. As a result, only the opening ratio of the third outflow port P13 is set to "100 [%]", so that the cooling water can be circulated in the heater core 22. Therefore, it is possible to perform heating of the air conditioner 38. Further, when the opening ratios of the first outflow port P11 and the second outflow port P12 are set to "0 [%]", the circulation of the cooling water to the radiator 21 and the oil cooler 24 is stopped. As a result, the flow rate of the cooling water can be increased, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved.
 一方、図36に示されるように、第5実施形態の流量制御弁12では、制御パラメータ変更部70がステップS54の処理で肯定判断し、且つステップS56の処理で否定判断した場合にも、通常制御が実行される。よって、目標出口水温TWout*が出口水温TWoutに対して所定値Tth10よりも小さい状況において、空調装置38において暖房が行われており、且つ油温Toilが所定温度Tth50よりも低い状況でも、通常制御が実行されることになる。しかしながら、油温Toilが所定温度Tth50よりも低い場合には、上述の通り、オイルクーラ24に冷却水を流す必要がないため、オイルクーラ24への冷却水の循環を停止することが可能である。また、オイルクーラ24への冷却水の循環を停止することができれば、その分だけ冷却水の流量を増加させることができるため、目標出口水温TWout*に対する出口水温TWoutの応答性を向上させることが可能である。ただし、目標出口水温TWout*が出口水温TWoutに対して所定値Tth10よりも小さい状況であるため、ラジエータ21に冷却水を循環させる必要がある。 On the other hand, as shown in FIG. 36, in the flow rate control valve 12 of the fifth embodiment, even when the control parameter changing unit 70 makes a positive judgment in the process of step S54 and makes a negative decision in the process of step S56, it is normal. Control is executed. Therefore, in a situation where the target outlet water temperature TWout * is smaller than the predetermined value Tth10 with respect to the outlet water temperature TWout, heating is performed in the air conditioner 38, and normal control is performed even in a situation where the oil temperature Tool is lower than the predetermined temperature Tth50. Will be executed. However, when the oil temperature Tool is lower than the predetermined temperature Tth50, it is not necessary to flow the cooling water to the oil cooler 24 as described above, so that the circulation of the cooling water to the oil cooler 24 can be stopped. .. Further, if the circulation of the cooling water to the oil cooler 24 can be stopped, the flow rate of the cooling water can be increased by that amount, so that the responsiveness of the outlet water temperature TWout to the target outlet water temperature TWout * can be improved. It is possible. However, since the target outlet water temperature TWout * is smaller than the predetermined value Tth10 with respect to the outlet water temperature TWout, it is necessary to circulate the cooling water in the radiator 21.
 この点、本実施形態の流量制御弁12では、制御パラメータ変更部70がステップS62の処理で肯定判断する状況、すなわち油温Toilが所定温度Tth50より低く、且つ空調装置38において暖房が行われている状況では、第4応答速度向上制御が実行される。これにより、第3流出ポートP13の開口率が「100[%]」に設定されるため、ヒータコア22に冷却水を循環することができる。よって、空調装置38の暖房を実行することが可能である。また、第1流出ポートP11の開口率が「100[%]」に設定されるため、ラジエータ21に冷却水を循環させることも可能である。さらに、第2流出ポートP12の開口率が「0[%]」に設定されることにより、オイルクーラ24への冷却水の循環が停止される。これにより、冷却水の流量を増加させることができるため、内燃機関20の壁温の応答性を向上させることが可能である。 In this regard, in the flow control valve 12 of the present embodiment, the control parameter changing unit 70 makes a positive judgment in the process of step S62, that is, the oil temperature Tool is lower than the predetermined temperature Tth50, and the air conditioner 38 is heated. In such a situation, the fourth response speed improvement control is executed. As a result, the opening ratio of the third outflow port P13 is set to "100 [%]", so that the cooling water can be circulated in the heater core 22. Therefore, it is possible to perform heating of the air conditioner 38. Further, since the opening ratio of the first outflow port P11 is set to "100 [%]", it is possible to circulate the cooling water to the radiator 21. Further, by setting the opening ratio of the second outflow port P12 to "0 [%]", the circulation of the cooling water to the oil cooler 24 is stopped. As a result, the flow rate of the cooling water can be increased, so that the responsiveness of the wall temperature of the internal combustion engine 20 can be improved.
 <他の実施形態>
 なお、各実施形態は、以下の形態にて実施することもできる。
 ・第2実施形態の制御パラメータ変更部70は、図21に示されるステップS24の処理において、作動頻度Fvが所定頻度Fth20よりも小さいか否かの判断、及び流量制御弁12の冷却水温Tvが所定温度Tth20よりも小さいか否かの判断のいずれか一方を行ってもよい。
<Other embodiments>
In addition, each embodiment can also be implemented in the following embodiments.
In the process of step S24 shown in FIG. 21, the control parameter changing unit 70 of the second embodiment determines whether or not the operation frequency Fv is smaller than the predetermined frequency Fth20, and determines whether the cooling water temperature Tv of the flow rate control valve 12 is determined. Either one of the determinations as to whether or not the temperature is lower than the predetermined temperature Tth20 may be performed.
 ・第3実施形態の制御パラメータ変更部70は、図27に示されるステップS42の処理において、外気温Toutが所定温度Tth30よりも大きいか否かの判断、及び車速Vcが所定速度Vth30よりも小さいか否かの判断のいずれか一方を行ってもよい。 In the process of step S42 shown in FIG. 27, the control parameter changing unit 70 of the third embodiment determines whether or not the outside air temperature Tout is larger than the predetermined temperature Tth30, and the vehicle speed Vc is smaller than the predetermined speed Vth30. Either one of the judgments may be made.
 ・第5実施形態の制御パラメータ変更部70は、図36に示されるステップS52,S56の処理において、空調装置38において暖房が行われているか否かの判断、及び油温Toilが所定温度Tth50よりも小さいか否かの判断のいずれか一方を行ってもよい。第6実施形態の制御パラメータ変更部70についても同様である。 The control parameter changing unit 70 of the fifth embodiment determines whether or not heating is being performed in the air conditioner 38 in the processes of steps S52 and S56 shown in FIG. 36, and the oil temperature Tool is set from the predetermined temperature Tth50. You may make one of the judgments as to whether or not the temperature is small. The same applies to the control parameter changing unit 70 of the sixth embodiment.
 ・第5実施形態のECU40は、図36に示されるステップS52及びステップS56の処理において、更にEGRクーラ23を作動させる必要があるか否かを判断してもよい。第6実施形態のECU40により実行される、図39に示されるステップS52及び図40に示されるステップS56の処理についても同様である。 The ECU 40 of the fifth embodiment may determine whether or not it is necessary to further operate the EGR cooler 23 in the processes of steps S52 and S56 shown in FIG. The same applies to the processes of step S52 shown in FIG. 39 and step S56 shown in FIG. 40, which are executed by the ECU 40 of the sixth embodiment.
 ・第1バイパス流路W11及び第2バイパス流路W12に配置される機器は適宜変更可能である。
 ・本開示に記載のECU40及びその制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載のECU40及びその制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載のECU40及びその制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
-The devices arranged in the first bypass flow path W11 and the second bypass flow path W12 can be changed as appropriate.
The ECU 40 and its control methods described in the present disclosure are provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer. The ECU 40 and its control method described in the present disclosure may be realized by a dedicated computer provided by configuring a processor including one or more dedicated hardware logic circuits. The ECU 40 and its control method described in the present disclosure are configured by a combination of a processor and memory programmed to perform one or more functions and a processor including one or more hardware logic circuits. It may be realized by one or more dedicated computers. The computer program may be stored on a computer-readable non-transitional tangible recording medium as an instruction executed by the computer. The dedicated hardware logic circuit and the hardware logic circuit may be realized by a digital circuit including a plurality of logic circuits or an analog circuit.
 ・本開示は上記の具体例に限定されるものではない。上記の具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素、及びその配置、条件、形状等は、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 ・ This disclosure is not limited to the above specific examples. Specific examples described above with appropriate design changes by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (15)

  1.  車両の内燃機関(20)とラジエータ(21)との間を循環する冷却水の流量を調整する流量制御弁(12)の制御装置(40)であって、
     前記内燃機関のシリンダ壁温の実際の温度である実壁温を目標壁温に追従させるための前記流量制御弁の目標開度を設定する目標開度設定部(50)と、
     前記流量制御弁の実際の開度である実開度を前記目標開度に制御する開度制御部(60)と、
     前記流量制御弁の動作を制御する制御パラメータを変更する制御パラメータ変更部(70)と、を備え、
     前記目標開度設定部は、
     前記内燃機関が高負荷状態であるときに、前記目標壁温を第1目標壁温設定値に設定するとともに、
     前記内燃機関が低負荷状態であるときに、前記目標壁温を、前記第1目標壁温設定値よりも高温の第2目標壁温設定値に設定し、
     前記制御パラメータ変更部は、
     前記実壁温と前記目標壁温との偏差の絶対値が所定値よりも大きい場合に、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値以下である場合よりも前記実壁温の応答速度が速くなるように前記制御パラメータを変更する
     流量制御弁の制御装置。
    It is a control device (40) of a flow rate control valve (12) that adjusts the flow rate of cooling water circulating between the internal combustion engine (20) and the radiator (21) of the vehicle.
    A target opening degree setting unit (50) for setting a target opening degree of the flow rate control valve for making the actual wall temperature, which is the actual temperature of the cylinder wall temperature of the internal combustion engine, follow the target wall temperature.
    An opening control unit (60) that controls the actual opening, which is the actual opening of the flow control valve, to the target opening.
    A control parameter changing unit (70) for changing a control parameter that controls the operation of the flow control valve is provided.
    The target opening setting unit is
    When the internal combustion engine is in a high load state, the target wall temperature is set to the first target wall temperature set value, and at the same time,
    When the internal combustion engine is in a low load state, the target wall temperature is set to a second target wall temperature set value higher than the first target wall temperature set value.
    The control parameter changing unit
    When the absolute value of the deviation between the actual wall temperature and the target wall temperature is larger than the predetermined value, the absolute value of the deviation between the actual wall temperature and the target wall temperature is greater than or equal to the predetermined value. A control device for a flow control valve that changes the control parameters so that the response speed of the actual wall temperature becomes faster.
  2.  前記開度制御部は、前記流量制御弁の実開度を前記目標開度に追従させるために、前記流量制御弁の通電時間の割合を示すデューティ比を設定し、
     前記流量制御弁は、弁体を動作させるアクチュエータ装置を有し、前記開度制御部により設定される前記デューティ比に基づいて前記アクチュエータ装置が動作することにより、前記弁体の開度が変更されるものであり、
     前記制御パラメータ変更部は、前記制御パラメータとして、前記デューティ比の制限値を用いるものであって、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値以下である場合よりも前記デューティ比の前記制限値を緩和する方向に変化させることで、前記実壁温の応答速度を速くする
     請求項1に記載の流量制御弁の制御装置。
    The opening degree control unit sets a duty ratio indicating the ratio of the energization time of the flow rate control valve in order to make the actual opening degree of the flow rate control valve follow the target opening degree.
    The flow rate control valve has an actuator device for operating the valve body, and the opening degree of the valve body is changed by operating the actuator device based on the duty ratio set by the opening degree control unit. Is a thing,
    The control parameter changing unit uses the limit value of the duty ratio as the control parameter, and when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. In addition, the response of the actual wall temperature is changed by changing the absolute value of the deviation between the actual wall temperature and the target wall temperature in a direction of relaxing the limit value of the duty ratio as compared with the case where the deviation value is equal to or less than the predetermined value. The control device for a flow control valve according to claim 1, wherein the speed is increased.
  3.  前記制御パラメータ変更部は、
     現在から所定時間前までの期間における前記弁体の作動頻度を演算し、
     前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記作動頻度が所定頻度よりも小さいことに基づいて、前記デューティ比の前記制限値を緩和する方向に変化させる
     請求項2に記載の流量制御弁の制御装置。
    The control parameter changing unit
    The operating frequency of the valve body in the period from the present to a predetermined time ago is calculated.
    When the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the limitation value of the duty ratio is relaxed based on the fact that the operation frequency is smaller than the predetermined frequency. The control device for a flow control valve according to claim 2, wherein the flow control valve is changed in the direction of the operation.
  4.  前記制御パラメータ変更部は、
     前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記流量制御弁を流れる冷却水の温度が所定温度よりも小さいことに基づいて、前記デューティ比の前記制限値を緩和する方向に変化させる
     請求項2に記載の流量制御弁の制御装置。
    The control parameter changing unit
    The duty is based on the fact that the temperature of the cooling water flowing through the flow control valve is smaller than the predetermined temperature when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. The control device for a flow control valve according to claim 2, wherein the limit value of the ratio is changed in a direction of relaxation.
  5.  前記制御パラメータ変更部は、
     現在から所定時間前までの期間における前記弁体の作動頻度を演算し、
     前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記作動頻度が所定頻度よりも小さく、且つ前記流量制御弁を流れる冷却水の温度が所定温度よりも小さいことに基づいて、前記デューティ比の前記制限値を緩和する方向に変化させる
     請求項2に記載の流量制御弁の制御装置。
    The control parameter changing unit
    The operating frequency of the valve body in the period from the present to a predetermined time ago is calculated.
    When the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the operation frequency is smaller than the predetermined frequency, and the temperature of the cooling water flowing through the flow control valve is predetermined. The control device for a flow control valve according to claim 2, wherein the limit value of the duty ratio is changed in a direction to be relaxed based on the temperature being smaller than the temperature.
  6.  前記目標開度設定部は、所定のなまし時定数を用いて前記流量制御弁の目標開度をなまし処理するものであって、
     前記制御パラメータ変更部は、前記制御パラメータとして、前記なまし時定数を用いるものであって、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値以下である場合よりも前記なまし時定数を小さくすることにより、前記実壁温の応答速度を速くする
     請求項1に記載の流量制御弁の制御装置。
    The target opening degree setting unit smoothes the target opening degree of the flow rate control valve using a predetermined smoothing time constant.
    The control parameter changing unit uses the smoothing time constant as the control parameter, and when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. 1. The response speed of the actual wall temperature is increased by making the smoothing time constant smaller than that when the absolute value of the deviation between the actual wall temperature and the target wall temperature is equal to or less than the predetermined value. The control device for the flow control valve according to.
  7.  前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、車両の外部の気温である外気温が所定温度以上であることに基づいて、前記なまし時定数を小さくする
     請求項6に記載の流量制御弁の制御装置。
    In the control parameter changing unit, when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the outside air temperature, which is the outside air temperature of the vehicle, is equal to or higher than the predetermined temperature. The control device for the flow control valve according to claim 6, wherein the smoothing time constant is reduced based on the above.
  8.  前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、車両の走行速度が所定速度以下であることに基づいて、前記なまし時定数を小さくする
     請求項6に記載の流量制御弁の制御装置。
    The control parameter changing unit said that the traveling speed of the vehicle is equal to or less than the predetermined speed when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. The control device for a flow control valve according to claim 6, wherein the smoothing time constant is reduced.
  9.  前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、車両の外部の気温である外気温が所定温度以上であって、且つ前記車両の走行速度が所定速度以下であることに基づいて、前記なまし時定数を小さくする
     請求項6に記載の流量制御弁の制御装置。
    In the control parameter changing unit, when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the outside air temperature, which is the outside air temperature of the vehicle, is equal to or higher than the predetermined temperature. The flow control valve control device according to claim 6, wherein the smoothing time constant is reduced based on the traveling speed of the vehicle being equal to or lower than a predetermined speed.
  10.  前記制御パラメータ変更部は、
     前記制御パラメータとして、前記目標開度を用いるものであって、
     前記実壁温と前記目標壁温との偏差の絶対値が所定値以下である場合に、前記目標開度を、前記流量制御弁の開度が全開又は全閉となる目標開度に設定することにより、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値以下である場合よりも前記実壁温の応答速度を速くする
     請求項1に記載の流量制御弁の制御装置。
    The control parameter changing unit
    The target opening degree is used as the control parameter.
    When the absolute value of the deviation between the actual wall temperature and the target wall temperature is not more than a predetermined value, the target opening degree is set to the target opening degree at which the opening degree of the flow control valve is fully opened or fully closed. The control device for the flow control valve according to claim 1, wherein the response speed of the actual wall temperature is made faster than when the absolute value of the deviation between the actual wall temperature and the target wall temperature is equal to or less than the predetermined value. ..
  11.  前記流量制御弁は、
     前記ラジエータとは別の車載機器(22,24)と前記内燃機関との間を循環する冷却水の流量を更に調整することが可能であり、
     前記ラジエータと前記内燃機関との間を循環する冷却水が流れるラジエータ用ポート(P11)と、
     前記車載機器と前記内燃機関との間を循環する冷却水が流れる車載機器用ポート(P12,P13)とを有し、
     前記ラジエータ用ポートの開度の調整により前記ラジエータと前記内燃機関との間を循環する冷却水の流量を調整可能であるとともに、前記車載機器用ポートの開度の調整により前記車載機器と前記内燃機関との間を循環する冷却水の流量を調整可能であり、
     前記目標開度設定部は、
     前記内燃機関が高負荷状態であるとき、前記実壁温を前記第1目標壁温設定値に追従させるための前記ラジエータ用ポートの目標開度を設定するとともに、前記車載機器用ポートの開度を全開状態に設定し、
     前記内燃機関が低負荷状態であるときに前記実壁温を前記第2目標壁温設定値に追従させるための前記ラジエータ用ポートの目標開度を設定するとともに、前記車載機器用ポートの開度を全開状態に設定するものであり、
     前記制御パラメータ変更部は、
     前記制御パラメータとして、前記車載機器用ポートの開度を用いるものであって、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記車載機器用ポートの開度を全閉状態にすることにより、前記実壁温の応答速度を速くする
     請求項1に記載の流量制御弁の制御装置。
    The flow control valve is
    It is possible to further adjust the flow rate of the cooling water circulating between the in-vehicle device (22, 24) different from the radiator and the internal combustion engine.
    A radiator port (P11) through which cooling water circulating between the radiator and the internal combustion engine flows, and
    It has ports (P12, P13) for in-vehicle equipment through which cooling water circulating between the in-vehicle equipment and the internal combustion engine flows.
    The flow rate of the cooling water circulating between the radiator and the internal combustion engine can be adjusted by adjusting the opening degree of the radiator port, and the in-vehicle device and the internal combustion engine can be adjusted by adjusting the opening degree of the in-vehicle device port. The flow rate of cooling water circulating between the engine and the engine can be adjusted.
    The target opening setting unit is
    When the internal combustion engine is in a high load state, the target opening degree of the radiator port for making the actual wall temperature follow the first target wall temperature set value is set, and the opening degree of the in-vehicle device port is set. Is set to the fully open state,
    When the internal combustion engine is in a low load state, the target opening degree of the radiator port for making the actual wall temperature follow the second target wall temperature set value is set, and the opening degree of the in-vehicle device port is set. Is set to the fully open state,
    The control parameter changing unit
    The opening degree of the in-vehicle device port is used as the control parameter, and when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the in-vehicle device The control device for a flow control valve according to claim 1, wherein the response speed of the actual wall temperature is increased by making the opening degree of the port fully closed.
  12.  前記車載機器には、前記車両の空調装置において車室内に送風される空気を加熱するヒータコア(22)が含まれ、
     前記車載機器用ポートには、前記ヒータコアに対応したヒータコア用ポート(P12)が含まれ、
     前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記車両の空調装置が車室内の暖房を行っていないことに基づいて、前記ヒータコア用ポートの開度を全閉状態にする
     請求項11に記載の流量制御弁の制御装置。
    The in-vehicle device includes a heater core (22) that heats air blown into the vehicle interior in the vehicle air conditioner.
    The in-vehicle device port includes a heater core port (P12) corresponding to the heater core.
    The control parameter changing unit determines that the air conditioner of the vehicle does not heat the interior of the vehicle when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. The control device for a flow control valve according to claim 11, wherein the opening degree of the heater core port is fully closed based on the above.
  13.  前記車載機器には、前記内燃機関の潤滑油を冷却するオイルクーラ(24)が含まれ、
     前記車載機器用ポートには、前記オイルクーラに対応したオイルクーラ用ポート(P13)が含まれ、
     前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記内燃機関の潤滑油の温度が所定温度よりも低いことに基づいて、前記オイルクーラ用ポートの開度を全閉状態にする
     請求項11に記載の流量制御弁の制御装置。
    The in-vehicle device includes an oil cooler (24) that cools the lubricating oil of the internal combustion engine.
    The in-vehicle device port includes an oil cooler port (P13) corresponding to the oil cooler.
    The control parameter changing unit determines that the temperature of the lubricating oil of the internal combustion engine is lower than the predetermined temperature when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value. The control device for a flow control valve according to claim 11, wherein the opening degree of the oil cooler port is fully closed based on the above.
  14.  前記車載機器には、前記車両の空調装置において車室内に送風される空気を加熱するヒータコア(22)、及び前記内燃機関の潤滑油を冷却するオイルクーラ(24)が含まれ、
     前記車載機器用ポートには、前記ヒータコアに対応したヒータコア用ポート(P12)、及び前記オイルクーラに対応したオイルクーラ用ポート(P13)が含まれ、
     前記制御パラメータ変更部は、前記実壁温と前記目標壁温との偏差の絶対値が前記所定値よりも大きくなったときに、前記内燃機関の潤滑油の温度が所定温度よりも低く、且つ前記車両の空調装置が車室内の暖房を行っていないことに基づいて、前記ヒータコア用ポート及び前記オイルクーラ用ポートのそれぞれの開度を全閉状態にする
     請求項11に記載の流量制御弁の制御装置。
    The in-vehicle device includes a heater core (22) that heats air blown into the vehicle interior in the vehicle air conditioner, and an oil cooler (24) that cools the lubricating oil of the internal combustion engine.
    The in-vehicle device port includes a heater core port (P12) corresponding to the heater core and an oil cooler port (P13) corresponding to the oil cooler.
    In the control parameter changing unit, when the absolute value of the deviation between the actual wall temperature and the target wall temperature becomes larger than the predetermined value, the temperature of the lubricating oil of the internal combustion engine is lower than the predetermined temperature and The flow control valve according to claim 11, wherein the opening degree of each of the heater core port and the oil cooler port is fully closed based on the fact that the air conditioner of the vehicle does not heat the interior of the vehicle. Control device.
  15.  前記制御パラメータ変更部は、前記内燃機関の潤滑油の温度が前記所定温度よりも低く、且つ前記車両の空調装置が車室内の暖房を行っていることに基づいて、前記ヒータコア用ポートの開度を全開状態にするとともに、前記オイルクーラ用ポートの開度を全閉状態にする
     請求項14に記載の流量制御弁の制御装置。
    The control parameter changing unit opens the heater core port based on the fact that the temperature of the lubricating oil of the internal combustion engine is lower than the predetermined temperature and the air conditioner of the vehicle is heating the interior of the vehicle. The control device for the flow control valve according to claim 14, wherein the oil cooler port is fully opened and the opening degree of the oil cooler port is fully closed.
PCT/JP2020/024677 2019-07-08 2020-06-23 Control device for flow control valve WO2021006036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-126763 2019-07-08
JP2019126763A JP7346948B2 (en) 2019-07-08 2019-07-08 Flow control valve control device

Publications (1)

Publication Number Publication Date
WO2021006036A1 true WO2021006036A1 (en) 2021-01-14

Family

ID=74114014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024677 WO2021006036A1 (en) 2019-07-08 2020-06-23 Control device for flow control valve

Country Status (2)

Country Link
JP (1) JP7346948B2 (en)
WO (1) WO2021006036A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607452A (en) * 2021-08-03 2021-11-05 华帝股份有限公司 Method and device for detecting reverse connection of water inlet pipe and water outlet pipe
CN114483284A (en) * 2022-04-02 2022-05-13 潍柴动力股份有限公司 Control system and method of electric control thermostat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084526A (en) * 2002-08-26 2004-03-18 Toyota Motor Corp Internal combustion engine
JP2006112330A (en) * 2004-10-15 2006-04-27 Aisan Ind Co Ltd Engine cooling system
JP2013044230A (en) * 2011-08-22 2013-03-04 Hitachi Automotive Systems Ltd Cooling control device of internal combustion engine
JP2017008824A (en) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 Cooling device for internal combustion engine
WO2017159766A1 (en) * 2016-03-16 2017-09-21 本田技研工業株式会社 Internal combustion engine cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084526A (en) * 2002-08-26 2004-03-18 Toyota Motor Corp Internal combustion engine
JP2006112330A (en) * 2004-10-15 2006-04-27 Aisan Ind Co Ltd Engine cooling system
JP2013044230A (en) * 2011-08-22 2013-03-04 Hitachi Automotive Systems Ltd Cooling control device of internal combustion engine
JP2017008824A (en) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 Cooling device for internal combustion engine
WO2017159766A1 (en) * 2016-03-16 2017-09-21 本田技研工業株式会社 Internal combustion engine cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607452A (en) * 2021-08-03 2021-11-05 华帝股份有限公司 Method and device for detecting reverse connection of water inlet pipe and water outlet pipe
CN113607452B (en) * 2021-08-03 2024-04-12 华帝股份有限公司 Method and device for detecting reverse connection of water inlet pipe and water outlet pipe
CN114483284A (en) * 2022-04-02 2022-05-13 潍柴动力股份有限公司 Control system and method of electric control thermostat
CN114483284B (en) * 2022-04-02 2022-07-15 潍柴动力股份有限公司 Control system and method of electric control thermostat

Also Published As

Publication number Publication date
JP7346948B2 (en) 2023-09-20
JP2021011856A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US7128026B2 (en) Method for controlling the heat in an automotive internal combustion engine
JP6225949B2 (en) Cooling device for internal combustion engine
EP1308609B1 (en) Method of engine cooling
JP6378055B2 (en) Cooling control device for internal combustion engine
CN109555592B (en) Engine cooling device
JP6339701B2 (en) Cooling control device for internal combustion engine
WO2021006036A1 (en) Control device for flow control valve
WO2017217462A1 (en) Cooling device of vehicle internal combustion engine, and control method for cooling device
JP4606683B2 (en) Cooling method and apparatus for vehicle engine
JP2017067016A (en) Cooling control device
JP6655220B2 (en) Cooling apparatus and cooling method for internal combustion engine
JP2019108821A (en) Cooling device abnormality diagnosis apparatus
JP2016211430A (en) Cooling control device of internal combustion engine
JP6375599B2 (en) Engine cooling system
US11280264B2 (en) Acoustic insulation system for internal combustion engine
JP5579679B2 (en) Engine control device
JP2013044295A (en) Engine cooling apparatus
WO2020230558A1 (en) Cooling system
JP6263895B2 (en) Engine cooling system
JP2004144042A (en) Cooling device of liquid cooled type heat engine
JP6413835B2 (en) Cooling device for internal combustion engine
JP6582831B2 (en) Cooling control device
CN114738099B (en) Cooling device for turbocharged engine
JP5991149B2 (en) Engine temperature estimation system
JP2006112344A (en) Engine cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837797

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837797

Country of ref document: EP

Kind code of ref document: A1