WO2021005935A1 - Glass melting furnace and production method for glass article - Google Patents

Glass melting furnace and production method for glass article Download PDF

Info

Publication number
WO2021005935A1
WO2021005935A1 PCT/JP2020/022441 JP2020022441W WO2021005935A1 WO 2021005935 A1 WO2021005935 A1 WO 2021005935A1 JP 2020022441 W JP2020022441 W JP 2020022441W WO 2021005935 A1 WO2021005935 A1 WO 2021005935A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
glass
pipe
melting furnace
glass melting
Prior art date
Application number
PCT/JP2020/022441
Other languages
French (fr)
Japanese (ja)
Inventor
仁 金谷
裕之 板津
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202080038327.1A priority Critical patent/CN113874330B/en
Priority to KR1020217039737A priority patent/KR20220031550A/en
Publication of WO2021005935A1 publication Critical patent/WO2021005935A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material

Definitions

  • the present invention relates to a glass melting furnace that melts a glass raw material to produce molten glass, and a method for producing a glass article from molten glass that has flowed out of the glass melting furnace.
  • glass articles typified by glass plates, glass tubes, glass fibers, etc. are manufactured by molding molten glass produced by melting a glass raw material in a glass melting furnace into a predetermined shape.
  • the molten glass produced in the glass melting furnace passes through a pipe penetrating the furnace wall and flows out of the furnace from the inside of the furnace.
  • Patent Document 1 discloses an example of a glass melting furnace.
  • the vicinity of the surface 200a of the molten glass 200 stored in the glass melting furnace 100 (hereinafter referred to as the furnace 100) is in a state before melting after being supplied into the furnace 100.
  • the furnace 100 There is a certain glass raw material 300.
  • the glass raw material 300 flows down along the furnace wall 100a, reaches the opening of the pipe 400, and flows out of the furnace 100 in an unmelted state (indicated by arrow Z). flow).
  • the glass melting furnace according to the present invention for solving the above problems is a furnace provided with a furnace wall and a pipe that penetrates the furnace wall and allows the molten glass in the furnace to flow out of the furnace. , It is characterized by having a protruding portion protruding from the furnace wall to the inside of the furnace.
  • the opening of the pipe is located at a position separated from the furnace wall inside the furnace by the length of the protruding portion protruding from the furnace wall. Therefore, the unmelted glass raw material (hereinafter referred to as unmelted raw material) that has flowed down along the furnace wall does not flow into the opening of the pipe away from the furnace wall, and is the outer circumference of the protruding portion. It collides with the surface and melts while diffusing. As a result, it is possible to prevent the unmelted raw material from flowing out of the glass melting furnace.
  • a flange portion is provided at the tip of the protruding portion.
  • the flange portion is provided at the tip of the protruding portion, a part of the unmelted raw material that has flowed down along the furnace wall collides with the outer peripheral surface of the protruding portion. Even if it flows along the outer peripheral surface of the protruding portion, it collides with the flange portion and melts while further diffusing. At that time, most of the unmelted raw material is guided to the flange portion, flows along the flange portion in the radial direction of the pipe, and moves away from the opening of the pipe, so that diffusion and melting are further promoted. These are further advantageous in preventing the unmelted raw material from flowing into the opening of the pipe.
  • the pipe is arranged at a deep position in the glass melting furnace, and the pipe (protruding portion) receives high pressure from the molten glass in the furnace.
  • it is suitable for avoiding the damage.
  • the protruding portion is inclined with respect to the horizontal plane so that the portion closer to the furnace wall of the protruding portion is located above.
  • the portion closer to the furnace wall of the protruding portion is located above, the portion closer to the furnace wall is located from the molten glass in the glass melting furnace as compared with the portion closer to the tip of the protruding portion.
  • the pressure received will be suppressed.
  • the pressure applied to the part near the furnace wall can be reduced as much as possible, so even if the opening of the pipe is provided at a deep position in the furnace and the molten glass flows into the pipe from this deep position, the pipe This is advantageous in avoiding damage to the (protruding portion).
  • the opening for flowing the molten glass formed at the tip of the protrusion is horizontal so that the upper end of the opening has a longer separation distance from the furnace wall than the lower end. It is preferable that it is inclined with respect to.
  • the unmelted raw material flows down along the furnace wall, the unmelted raw material is more likely to flow in at the upper end of the opening than at the lower end. Therefore, if the upper end of the opening is set to have a longer separation distance from the furnace wall than the lower end, it is more advantageous to prevent the unmelted raw material from flowing into the opening of the pipe.
  • ribs are provided on the outer peripheral surface of the protruding portion.
  • the structure is reinforced by ribs, which is suitable for avoiding damage to the pipe (protruding portion).
  • the plate-shaped member is arranged on the inner wall surface of the furnace wall and the rib is fixed to the plate-shaped member.
  • the ribs are provided so as to extend along the direction of the tube axis of the protruding portion.
  • the method for manufacturing a glass article according to the present invention for solving the above problems is to manufacture a glass article from molten glass that has flowed out of the glass melting furnace by passing through a pipe penetrating the furnace wall.
  • the method is characterized in that the pipe is provided with a protruding portion protruding from the furnace wall to the inside of the furnace.
  • the glass melting furnace and the method for producing a glass article according to the present invention it is possible to prevent the unmelted glass raw material existing in the glass melting furnace from flowing out from the glass melting furnace.
  • platinum in the present invention is not limited to pure platinum, but includes platinum alloys (platinum rhodium, etc.) and reinforced platinum (platinum containing zirconia, etc.).
  • a glass melting furnace 1 (hereinafter referred to as a furnace 1), a feeder 2, and a molding apparatus (not shown) are used to execute the method for manufacturing a glass article.
  • the furnace 1 heats the molten glass 3 stored in the furnace 1 and sequentially melts the glass raw material 3x supplied on the molten glass 3 to generate a new molten glass 3, and the furnace 1 uses a pipe 4 to generate a new molten glass 3.
  • the molten glass 3 in 1 is allowed to flow out of the furnace 1.
  • the molten glass 3 flowing out of the furnace 1 is supplied to the transfer pipe 2a of the feeder 2 connected to the pipe 4.
  • the feeder 2 includes, for example, a clarification container (not shown), a stirring pot, a state adjustment tank, a transfer pipe connecting them, and the like.
  • the molten glass 3 that has passed through such a feeder 2 is supplied to a molding apparatus and molded into a glass article.
  • the furnace 1 has a front wall 1a located at the upstream end in the flow direction of the glass raw material 3x, a rear wall 1b located at the downstream end in the flow direction, and front and back sides of the paper surface in FIG. It has a pair of side walls (not shown) facing each other, a ceiling wall 1c, and a bottom wall 1d. Each of these furnace walls consists of multiple refractories.
  • a screw feeder 5 for supplying the glass raw material 3x into the furnace 1 is arranged on the front wall 1a.
  • a burner capable of injecting a flame is arranged along the surface (liquid level) of the molten glass 3 on each of the pair of side walls.
  • An electrode 6 capable of energizing and heating the molten glass 3 is arranged on the bottom wall 1d.
  • the furnace 1 may heat the molten glass 3 only by energization heating by the electrode 6, and the electrode 6 and the burner are used together. Then, the molten glass 3 may be heated.
  • the rear wall 1b includes the entrance block 7.
  • the entrance block 7 is one of a plurality of refractories 8 constituting the furnace wall (rear wall 1b).
  • the entrance block 7 is arranged at the lowest stage among the refractories 8 constituting the rear wall 1b.
  • the entrance block 7 is formed with a hole 7a leading from the inside of the furnace 1 to the outside of the furnace 1.
  • the pipe 4 inserted into the hole 7a penetrates the entrance block 7 (rear wall 1b).
  • the inner peripheral surface of the hole 7a and the outer peripheral surface of the pipe 4 are in direct contact with each other. That is, the inner peripheral surface of the hole 7a is covered with the outer peripheral surface of the pipe 4.
  • the pipe 4 is arranged above the inner wall surface of the bottom wall 1d.
  • the downstream end of the pipe 4 is connected to the upstream end of the transfer pipe 2a of the feeder 2 in an abutted state.
  • a flange portion 2ab is provided at the upstream end of the transfer pipe 2a.
  • Both the pipe 4 and the transfer pipe 2a are made of platinum.
  • the entrance block 7 has a front surface 7b facing the inside of the furnace 1, a back surface 7c facing the outside of the furnace 1, and a side surface 7d connecting the front surface 7b and the back surface 7c.
  • the pipe 4 is formed in a cylindrical shape in which the tube shaft extends linearly.
  • the pipe 4 is installed in an inclined posture with respect to the horizontal plane.
  • the pipe 4 has a protrusion 4a protruding inward of the furnace 1 from the rear wall 1b.
  • the protruding portion 4a is located above the portion closer to the rear wall 1b due to the inclined posture of the pipe 4.
  • an opening 4aa for allowing the molten glass 3 in the furnace 1 to flow into the pipe 4 is formed.
  • the opening 4aa is inclined with respect to the horizontal plane.
  • the upper end of the opening 4aa (the top of the circular flow path cross section) has a separation distance from the rear wall 1b (the separation distance along the horizontal direction) as compared with the lower end (the bottom of the circular flow path cross section). It's getting longer.
  • the distance from the rear wall 1b of the upper end of the opening 4aa is preferably in the range of 50 mm to 350 mm.
  • a flange portion 4ab is provided at the tip of the protruding portion 4a.
  • the thickness of the flange portion 4ab may be, for example, about the same as the thickness of the pipe 4, and the height of the flange portion 4ab (diameter dimension of the pipe 4) may be, for example, 5 to 35 mm.
  • a plurality of ribs 11 extending in the direction of the pipe axis of the pipe 4 are provided on the outer peripheral surface of the protruding portion 4a. The plurality of ribs 11 are arranged radially around the pipe axis of the pipe 4 when the opening 4aa is viewed from the front.
  • Each rib 11 is fixed to the outer peripheral surface by welding in a state of being upright with respect to the outer peripheral surface of the pipe 4. Further, the front and back surfaces of each rib 11 are parallel to the pipe axis of the pipe 4, and have a triangular shape as shown in FIG. Due to the difference in the separation distance from the rear wall 1b between the upper end and the lower end of the opening 4aa described above, the size of the rib 11 arranged above is larger.
  • the end portion of each rib 11 on the rear wall 1b side is fixed to the platinum plate 10 by welding.
  • the rib 11 is made of platinum.
  • the opening 4aa of the pipe 4 has the rear wall 1b by the length of the protruding portion 4a protruding from the rear wall 1b. It exists at a position away from the inside of the furnace 1. Therefore, the unmelted glass raw material 3x that has flowed down along the rear wall 1b collides with the outer peripheral surface of the protruding portion 4a without flowing into the opening 4aa of the pipe 4 away from the rear wall 1b. And melts while diffusing. As a result, it is possible to prevent the unmelted glass raw material 3x from flowing out of the furnace 1.
  • the glass melting furnace and the method for manufacturing a glass article according to the present invention are not limited to the configurations and embodiments described in the above embodiments.
  • the pipe 4 is installed in a posture inclined with respect to the horizontal plane, but the present invention is not limited to this, and the pipe 4 may be installed in a posture parallel to the horizontal plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

This glass melting furnace 1 is provided with a back wall 1b and a pipe 4 which penetrates the back wall 1b and through which molten glass 3 within the furnace 1 is allowed to pour out of the furnace 1, wherein the pipe 4 is configured to have a protruding portion 4a that protrudes from the back wall 1b toward the interior side of the furnace 1.

Description

ガラス溶融炉およびガラス物品の製造方法Manufacturing method of glass melting furnace and glass articles
 本発明は、ガラス原料を溶融させて溶融ガラスを生成するガラス溶融炉、及び、ガラス溶融炉から流出させた溶融ガラスからガラス物品を製造する方法に関する。 The present invention relates to a glass melting furnace that melts a glass raw material to produce molten glass, and a method for producing a glass article from molten glass that has flowed out of the glass melting furnace.
 周知のように、ガラス板、ガラス管、ガラス繊維等に代表されるガラス物品は、ガラス溶融炉にてガラス原料を溶融させて生成した溶融ガラスを所定の形状に成形することにより製造される。ガラス溶融炉で生成された溶融ガラスは、炉壁を貫通したパイプを通過させて炉内から炉外に流出させる。ここで、特許文献1にはガラス溶融炉の一例が開示されている。 As is well known, glass articles typified by glass plates, glass tubes, glass fibers, etc. are manufactured by molding molten glass produced by melting a glass raw material in a glass melting furnace into a predetermined shape. The molten glass produced in the glass melting furnace passes through a pipe penetrating the furnace wall and flows out of the furnace from the inside of the furnace. Here, Patent Document 1 discloses an example of a glass melting furnace.
特開2010-202444号公報JP-A-2010-202444
 ところで、特許文献1に開示されるようなガラス溶融炉を使用した場合には、下記のような解決すべき問題が生じていた。 By the way, when a glass melting furnace as disclosed in Patent Document 1 is used, the following problems to be solved have occurred.
 すなわち、図4に示すように、ガラス溶融炉100(以下、炉100と表記)内に貯留された溶融ガラス200の表面200a付近には、炉100内に供給された後、溶融前の状態にあるガラス原料300が存在している。このガラス原料300が、炉壁100aに沿って降下するように流れてパイプ400の開口部まで到達し、未溶融の状態のまま炉100から流出してしまう場合があった(矢印Zで表した流れ)。 That is, as shown in FIG. 4, the vicinity of the surface 200a of the molten glass 200 stored in the glass melting furnace 100 (hereinafter referred to as the furnace 100) is in a state before melting after being supplied into the furnace 100. There is a certain glass raw material 300. In some cases, the glass raw material 300 flows down along the furnace wall 100a, reaches the opening of the pipe 400, and flows out of the furnace 100 in an unmelted state (indicated by arrow Z). flow).
 上述のような事態が発生すると、製造されるガラス物品に未溶融のガラス原料に起因した欠陥が含まれてしまい、その品質が低下してしまう問題があった。このような事情に鑑みなされた本発明は、ガラス溶融炉内に存する未溶融のガラス原料について、ガラス溶融炉からの流出を防止することを技術的な課題とする。 When the above-mentioned situation occurs, there is a problem that the quality of the manufactured glass article is deteriorated due to the inclusion of defects caused by the unmelted glass raw material. In view of such circumstances, it is a technical subject of the present invention to prevent the unmelted glass raw material existing in the glass melting furnace from flowing out from the glass melting furnace.
 上記の課題を解決するための本発明に係るガラス溶融炉は、炉壁と、炉壁を貫通すると共に炉内の溶融ガラスを炉外に流出させるパイプとを備えた炉であって、パイプが、炉壁から炉内側に突き出した突出部を有することを特徴とする。 The glass melting furnace according to the present invention for solving the above problems is a furnace provided with a furnace wall and a pipe that penetrates the furnace wall and allows the molten glass in the furnace to flow out of the furnace. , It is characterized by having a protruding portion protruding from the furnace wall to the inside of the furnace.
 本ガラス溶融炉では、パイプが突出部を有することで、突出部が炉壁から突き出した長さの分だけ、パイプの開口部が炉壁から炉内側に離れた位置に存在することになる。このため、炉壁に沿って降下するように流れてきた未溶融のガラス原料(以下、未溶融原料と表記)は、炉壁から離れたパイプの開口部に流入することなく、突出部の外周面と衝突して拡散しながら溶融する。その結果、未溶融原料がガラス溶融炉から流出することを防止できる。 In this glass melting furnace, since the pipe has a protruding portion, the opening of the pipe is located at a position separated from the furnace wall inside the furnace by the length of the protruding portion protruding from the furnace wall. Therefore, the unmelted glass raw material (hereinafter referred to as unmelted raw material) that has flowed down along the furnace wall does not flow into the opening of the pipe away from the furnace wall, and is the outer circumference of the protruding portion. It collides with the surface and melts while diffusing. As a result, it is possible to prevent the unmelted raw material from flowing out of the glass melting furnace.
 上記の構成では、突出部の先端にフランジ部が設けられていることが好ましい。 In the above configuration, it is preferable that a flange portion is provided at the tip of the protruding portion.
 このようにすれば、突出部の先端にフランジ部が設けられていることで、炉壁に沿って降下するように流れてきた未溶融原料の一部が、突出部の外周面と衝突した後で突出部の外周面に沿って流れたとしても、フランジ部と衝突してさらに拡散しながら溶融する。その際、未溶融原料の大部分はフランジ部に案内され、フランジ部に沿ってパイプの径方向に流動し、パイプの開口部から遠ざかることとなるので、拡散及び溶融がさらに促進される。これらにより、未溶融原料がパイプの開口部に流入することを回避する上で更に有利となる。その結果、未溶融原料がガラス溶融炉から流出することを更に好適に防止することが可能となる。さらに、フランジ部によりパイプ(突出部)の強度が向上することから、ガラス溶融炉内でパイプが深い位置に配置され、炉内の溶融ガラスからパイプ(突出部)が高い圧力を受けるような場合でも、その破損を回避する上で好適となる。 In this way, since the flange portion is provided at the tip of the protruding portion, a part of the unmelted raw material that has flowed down along the furnace wall collides with the outer peripheral surface of the protruding portion. Even if it flows along the outer peripheral surface of the protruding portion, it collides with the flange portion and melts while further diffusing. At that time, most of the unmelted raw material is guided to the flange portion, flows along the flange portion in the radial direction of the pipe, and moves away from the opening of the pipe, so that diffusion and melting are further promoted. These are further advantageous in preventing the unmelted raw material from flowing into the opening of the pipe. As a result, it is possible to more preferably prevent the unmelted raw material from flowing out of the glass melting furnace. Further, since the strength of the pipe (protruding portion) is improved by the flange portion, the pipe is arranged at a deep position in the glass melting furnace, and the pipe (protruding portion) receives high pressure from the molten glass in the furnace. However, it is suitable for avoiding the damage.
 上記の構成では、突出部の炉壁寄りの部位ほど上方に位置するように、突出部が水平面に対して傾斜していることが好ましい。 In the above configuration, it is preferable that the protruding portion is inclined with respect to the horizontal plane so that the portion closer to the furnace wall of the protruding portion is located above.
 このようにすれば、突出部の炉壁寄りの部位ほど上方に位置していることから、炉壁寄りの部位では、突出部の先端寄りの部位と比較してガラス溶融炉内の溶融ガラスから受ける圧力が抑制されることになる。このとおり炉壁寄りの部位が受ける圧力を可及的に低くできるため、パイプの開口部を炉内の深い位置に設け、この深い位置からパイプ内に溶融ガラスを流入させるような場合でも、パイプ(突出部)の破損を回避する上で有利となる。 In this way, since the portion closer to the furnace wall of the protruding portion is located above, the portion closer to the furnace wall is located from the molten glass in the glass melting furnace as compared with the portion closer to the tip of the protruding portion. The pressure received will be suppressed. In this way, the pressure applied to the part near the furnace wall can be reduced as much as possible, so even if the opening of the pipe is provided at a deep position in the furnace and the molten glass flows into the pipe from this deep position, the pipe This is advantageous in avoiding damage to the (protruding portion).
 上記の構成では、突出部の先端に形成された溶融ガラスを流入させるための開口部について、開口部の上端が下端と比較して炉壁からの離反距離が長くなるように、開口部が水平面に対して傾斜していることが好ましい。 In the above configuration, the opening for flowing the molten glass formed at the tip of the protrusion is horizontal so that the upper end of the opening has a longer separation distance from the furnace wall than the lower end. It is preferable that it is inclined with respect to.
 炉壁に沿って降下するように未溶融原料が流れてくる関係上、開口部の上端では下端よりも未溶融原料が流入しやすい。そのため、開口部の上端が下端と比較して炉壁からの離反距離が長くなるようにしておけば、未溶融原料がパイプの開口部に流入することを回避する上で一層有利となる。 Since the unmelted raw material flows down along the furnace wall, the unmelted raw material is more likely to flow in at the upper end of the opening than at the lower end. Therefore, if the upper end of the opening is set to have a longer separation distance from the furnace wall than the lower end, it is more advantageous to prevent the unmelted raw material from flowing into the opening of the pipe.
 上記の構成では、突出部の外周面にリブが設けられていることが好ましい。 In the above configuration, it is preferable that ribs are provided on the outer peripheral surface of the protruding portion.
 このようにすれば、リブにより補強された構造となることで、パイプ(突出部)の破損を回避する上で好適となる。 In this way, the structure is reinforced by ribs, which is suitable for avoiding damage to the pipe (protruding portion).
 上記の構成では、炉壁の内壁面上に板状部材が配置され、リブが板状部材に固定されていることが好ましい。 In the above configuration, it is preferable that the plate-shaped member is arranged on the inner wall surface of the furnace wall and the rib is fixed to the plate-shaped member.
 このようにすれば、リブと板状部材との固定に伴って更なる補強効果を得ることができるため、パイプ(突出部)の破損を回避する上で更に有利となる。 By doing so, it is possible to obtain a further reinforcing effect by fixing the rib and the plate-shaped member, which is further advantageous in avoiding damage to the pipe (protruding portion).
 上記の構成では、リブが突出部の菅軸方向に沿って延びるように設けられていることが好ましい。 In the above configuration, it is preferable that the ribs are provided so as to extend along the direction of the tube axis of the protruding portion.
 このようにすれば、突出部が下方に垂れることを防止する上で好適となる。 This is suitable for preventing the protruding portion from hanging downward.
 また、上記の課題を解決するための本発明に係るガラス物品の製造方法は、炉壁を貫通したパイプを通過させてガラス溶融炉内から炉外に流出させた溶融ガラスからガラス物品を製造する方法であって、パイプに、炉壁から炉内側に突き出した突出部を設けたことを特徴とする。 Further, the method for manufacturing a glass article according to the present invention for solving the above problems is to manufacture a glass article from molten glass that has flowed out of the glass melting furnace by passing through a pipe penetrating the furnace wall. The method is characterized in that the pipe is provided with a protruding portion protruding from the furnace wall to the inside of the furnace.
 本製造方法によれば、上記のガラス溶融炉の説明で既述の作用・効果と同一の作用・効果を得ることが可能である。 According to this manufacturing method, it is possible to obtain the same action / effect as the above-mentioned action / effect in the above description of the glass melting furnace.
 本発明に係るガラス溶融炉、及び、ガラス物品の製造方法によれば、ガラス溶融炉内に存する未溶融のガラス原料について、ガラス溶融炉からの流出を防止することができる。 According to the glass melting furnace and the method for producing a glass article according to the present invention, it is possible to prevent the unmelted glass raw material existing in the glass melting furnace from flowing out from the glass melting furnace.
ガラス溶融炉の概略を示す断面図である。It is sectional drawing which shows the outline of the glass melting furnace. 図1におけるA部を拡大して示す拡大断面図である。It is an enlarged cross-sectional view which shows the part A in FIG. 1 enlarged. ガラス溶融炉に備わったパイプの周辺を部分的に示す斜視図である。It is a perspective view which shows the periphery of the pipe provided in the glass melting furnace partially. 従来のガラス溶融炉における問題点を説明するための断面図である。It is sectional drawing for demonstrating the problem in the conventional glass melting furnace.
 以下、本発明の実施形態に係るガラス溶融炉、及び、ガラス物品の製造方法について、添付の図面を参照しながら説明する。ここで、本発明における「白金」とは、純白金に限らず、白金合金(白金ロジウム等)及び強化白金(ジルコニアを含有した白金等)を含むものとする。 Hereinafter, the glass melting furnace according to the embodiment of the present invention and the method for manufacturing a glass article will be described with reference to the attached drawings. Here, "platinum" in the present invention is not limited to pure platinum, but includes platinum alloys (platinum rhodium, etc.) and reinforced platinum (platinum containing zirconia, etc.).
 図1に示すように、ガラス物品の製造方法の実行には、ガラス溶融炉1(以下、炉1と表記)と、フィーダー2と、図示省略の成形装置を用いる。 As shown in FIG. 1, a glass melting furnace 1 (hereinafter referred to as a furnace 1), a feeder 2, and a molding apparatus (not shown) are used to execute the method for manufacturing a glass article.
 炉1は、炉1内に貯留された溶融ガラス3を加熱しつつ、溶融ガラス3上に供給されたガラス原料3xを順次に溶融させて新たな溶融ガラス3を生成すると共に、パイプ4により炉1内の溶融ガラス3を炉1外に流出させる。炉1外に流出した溶融ガラス3は、パイプ4と接続されたフィーダー2の移送管2aに供給される。フィーダー2は、移送管2a以外に、例えば図示省略の清澄容器や撹拌ポット、状態調整槽、それらを接続する移送管等を備える。このようなフィーダー2を通過した溶融ガラス3は、成形装置に供給されてガラス物品に成形される。 The furnace 1 heats the molten glass 3 stored in the furnace 1 and sequentially melts the glass raw material 3x supplied on the molten glass 3 to generate a new molten glass 3, and the furnace 1 uses a pipe 4 to generate a new molten glass 3. The molten glass 3 in 1 is allowed to flow out of the furnace 1. The molten glass 3 flowing out of the furnace 1 is supplied to the transfer pipe 2a of the feeder 2 connected to the pipe 4. In addition to the transfer pipe 2a, the feeder 2 includes, for example, a clarification container (not shown), a stirring pot, a state adjustment tank, a transfer pipe connecting them, and the like. The molten glass 3 that has passed through such a feeder 2 is supplied to a molding apparatus and molded into a glass article.
 炉1は、炉壁として、ガラス原料3xの流れ方向の上流端に位置する前壁1aと、流れ方向の下流端に位置する後壁1bと、図1における紙面の手前側と奥側とで対向する一対の側壁(不図示)と、天井壁1cと、底壁1dとを有する。これらの炉壁はそれぞれ複数の耐火物でなる。 The furnace 1 has a front wall 1a located at the upstream end in the flow direction of the glass raw material 3x, a rear wall 1b located at the downstream end in the flow direction, and front and back sides of the paper surface in FIG. It has a pair of side walls (not shown) facing each other, a ceiling wall 1c, and a bottom wall 1d. Each of these furnace walls consists of multiple refractories.
 前壁1aには、ガラス原料3xを炉1内に供給するためのスクリューフィーダー5が配置されている。一対の側壁のそれぞれには、溶融ガラス3の表面(液面)に沿って火炎の噴射が可能なバーナーが配置されている。底壁1dには、溶融ガラス3の通電加熱が可能な電極6が配置されている。 A screw feeder 5 for supplying the glass raw material 3x into the furnace 1 is arranged on the front wall 1a. A burner capable of injecting a flame is arranged along the surface (liquid level) of the molten glass 3 on each of the pair of side walls. An electrode 6 capable of energizing and heating the molten glass 3 is arranged on the bottom wall 1d.
 なお、炉1は、ガラス原料3xを溶融させて新たな溶融ガラス3を連続的に生成する工程において、電極6による通電加熱のみで溶融ガラス3を加熱してもよく、電極6とバーナーを併用して溶融ガラス3を加熱してもよい。 In the step of continuously producing new molten glass 3 by melting the glass raw material 3x, the furnace 1 may heat the molten glass 3 only by energization heating by the electrode 6, and the electrode 6 and the burner are used together. Then, the molten glass 3 may be heated.
 図2に示すように、後壁1bにはエントランスブロック7が含まれている。エントランスブロック7は、炉壁(後壁1b)を構成する複数の耐火物8のうちの一つである。エントランスブロック7は、後壁1bを構成する耐火物8のうちで最下段に配置されている。 As shown in FIG. 2, the rear wall 1b includes the entrance block 7. The entrance block 7 is one of a plurality of refractories 8 constituting the furnace wall (rear wall 1b). The entrance block 7 is arranged at the lowest stage among the refractories 8 constituting the rear wall 1b.
 エントランスブロック7には、炉1内から炉1外に通じる孔7aが形成されている。この孔7aに挿入されたパイプ4が、エントランスブロック7(後壁1b)を貫通している。孔7aの内周面と、パイプ4の外周面とは直接に接触している。つまり、孔7aの内周面が、パイプ4の外周面によって覆われた状態にある。なお、パイプ4は、底壁1dの内壁面よりも上方に配置されている。パイプ4の下流側端部には、フィーダー2の移送管2aの上流側端部が突き合わされた状態で接続されている。移送管2aの上流側端部にはフランジ部2abが設けられている。パイプ4及び移送管2aは、いずれも白金で構成されている。 The entrance block 7 is formed with a hole 7a leading from the inside of the furnace 1 to the outside of the furnace 1. The pipe 4 inserted into the hole 7a penetrates the entrance block 7 (rear wall 1b). The inner peripheral surface of the hole 7a and the outer peripheral surface of the pipe 4 are in direct contact with each other. That is, the inner peripheral surface of the hole 7a is covered with the outer peripheral surface of the pipe 4. The pipe 4 is arranged above the inner wall surface of the bottom wall 1d. The downstream end of the pipe 4 is connected to the upstream end of the transfer pipe 2a of the feeder 2 in an abutted state. A flange portion 2ab is provided at the upstream end of the transfer pipe 2a. Both the pipe 4 and the transfer pipe 2a are made of platinum.
 図2および図3に示すように、エントランスブロック7は、炉1内に臨む正面7b、炉1外に臨む背面7c、及び、正面7bと背面7cとを連続させる側面7dを有する。 As shown in FIGS. 2 and 3, the entrance block 7 has a front surface 7b facing the inside of the furnace 1, a back surface 7c facing the outside of the furnace 1, and a side surface 7d connecting the front surface 7b and the back surface 7c.
 エントランスブロック7の各面のうち、後壁1bの内壁面の一部をなす正面7bについては、その全領域が板状部材としての白金板10で覆われている。 Of each surface of the entrance block 7, the entire region of the front surface 7b, which forms a part of the inner wall surface of the rear wall 1b, is covered with a platinum plate 10 as a plate-shaped member.
 パイプ4は、菅軸が直線的に延びた円筒状に形成されている。このパイプ4は、水平面に対して傾斜した姿勢で設置されている。パイプ4は、後壁1bから炉1の内側に突き出した突出部4aを有する。突出部4aは、パイプ4の傾斜した姿勢によって後壁1b寄りの部位ほど上方に位置している。 The pipe 4 is formed in a cylindrical shape in which the tube shaft extends linearly. The pipe 4 is installed in an inclined posture with respect to the horizontal plane. The pipe 4 has a protrusion 4a protruding inward of the furnace 1 from the rear wall 1b. The protruding portion 4a is located above the portion closer to the rear wall 1b due to the inclined posture of the pipe 4.
 突出部4aの先端には、炉1内の溶融ガラス3をパイプ4内に流入させるための開口部4aaが形成されている。開口部4aaは水平面に対して傾斜している。これにより、開口部4aaの上端(円形の流路断面の頂部)が、下端(円形の流路断面の底部)と比較して後壁1bからの離反距離(水平方向に沿った離反距離)が長くなっている。なお、開口部4aaの上端について、後壁1bからの離反距離は、50mm~350mmの範囲内とすることが好ましい。 At the tip of the protrusion 4a, an opening 4aa for allowing the molten glass 3 in the furnace 1 to flow into the pipe 4 is formed. The opening 4aa is inclined with respect to the horizontal plane. As a result, the upper end of the opening 4aa (the top of the circular flow path cross section) has a separation distance from the rear wall 1b (the separation distance along the horizontal direction) as compared with the lower end (the bottom of the circular flow path cross section). It's getting longer. The distance from the rear wall 1b of the upper end of the opening 4aa is preferably in the range of 50 mm to 350 mm.
 突出部4aの先端にはフランジ部4abが設けられている。フランジ部4abの厚さは例えばパイプ4の厚さと同程度とすればよく、フランジ部4abの高さ(パイプ4の径方向の寸法)は例えば5~35mmとすればよい。また、突出部4aの外周面にはパイプ4の菅軸方向に延びたリブ11が複数設けられている。複数のリブ11は開口部4aaを正面視した場合に、パイプ4の菅軸を中心として放射状に配置されている。各リブ11はパイプ4の外周面に対して直立した状態で、溶接により外周面に固定されている。更に各リブ11の表裏面は、パイプ4の菅軸と平行になっており、図2に示すように三角形状である。なお、上述した開口部4aaの上端と下端との間における後壁1bからの離反距離の相違により、上方に配置されたリブ11ほどサイズが大きくなっている。各リブ11における後壁1b側の端部は、溶接により白金板10に固定されている。リブ11は白金で構成されている。 A flange portion 4ab is provided at the tip of the protruding portion 4a. The thickness of the flange portion 4ab may be, for example, about the same as the thickness of the pipe 4, and the height of the flange portion 4ab (diameter dimension of the pipe 4) may be, for example, 5 to 35 mm. Further, a plurality of ribs 11 extending in the direction of the pipe axis of the pipe 4 are provided on the outer peripheral surface of the protruding portion 4a. The plurality of ribs 11 are arranged radially around the pipe axis of the pipe 4 when the opening 4aa is viewed from the front. Each rib 11 is fixed to the outer peripheral surface by welding in a state of being upright with respect to the outer peripheral surface of the pipe 4. Further, the front and back surfaces of each rib 11 are parallel to the pipe axis of the pipe 4, and have a triangular shape as shown in FIG. Due to the difference in the separation distance from the rear wall 1b between the upper end and the lower end of the opening 4aa described above, the size of the rib 11 arranged above is larger. The end portion of each rib 11 on the rear wall 1b side is fixed to the platinum plate 10 by welding. The rib 11 is made of platinum.
 以下、上記の炉1およびガラス物品の製造方法による主たる作用・効果について説明する。 Hereinafter, the main actions and effects of the above-mentioned furnace 1 and the method for manufacturing glass articles will be described.
 上記の炉1およびガラス物品の製造方法においては、パイプ4が突出部4aを有することで、突出部4aが後壁1bから突き出した長さの分だけ、パイプ4の開口部4aaが後壁1bから炉1の内側に離れた位置に存在している。このため、後壁1bに沿って降下するように流れてきた未溶融のガラス原料3xは、後壁1bから離れたパイプ4の開口部4aaに流入することなく、突出部4aの外周面と衝突して拡散しながら溶融する。その結果、未溶融のガラス原料3xが炉1から流出することを防止できる。 In the above-mentioned method for manufacturing the furnace 1 and the glass article, since the pipe 4 has the protruding portion 4a, the opening 4aa of the pipe 4 has the rear wall 1b by the length of the protruding portion 4a protruding from the rear wall 1b. It exists at a position away from the inside of the furnace 1. Therefore, the unmelted glass raw material 3x that has flowed down along the rear wall 1b collides with the outer peripheral surface of the protruding portion 4a without flowing into the opening 4aa of the pipe 4 away from the rear wall 1b. And melts while diffusing. As a result, it is possible to prevent the unmelted glass raw material 3x from flowing out of the furnace 1.
 ここで、本発明に係るガラス溶融炉、及び、ガラス物品の製造方法は、上記の実施形態で説明した構成や態様に限定されるものではない。一例として、上記の実施形態においては、パイプ4が水平面に対して傾斜した姿勢で設置されているが、これに限定されるものではなく、水平面と平行となる姿勢で設置されていてもよい。 Here, the glass melting furnace and the method for manufacturing a glass article according to the present invention are not limited to the configurations and embodiments described in the above embodiments. As an example, in the above embodiment, the pipe 4 is installed in a posture inclined with respect to the horizontal plane, but the present invention is not limited to this, and the pipe 4 may be installed in a posture parallel to the horizontal plane.
 1     ガラス溶融炉
 1b    後壁
 3     溶融ガラス
 4     パイプ
 4a    突出部
 4aa   開口部
 4ab   フランジ部
 10    白金板
 11    リブ
1 Glass melting furnace 1b Rear wall 3 Fused glass 4 Pipe 4a Protruding part 4aa Opening 4ab Flange part 10 Platinum plate 11 Rib

Claims (8)

  1.  炉壁と、前記炉壁を貫通すると共に炉内の溶融ガラスを炉外に流出させるパイプとを備えたガラス溶融炉であって、
     前記パイプが、前記炉壁から炉内側に突き出した突出部を有することを特徴とするガラス溶融炉。
    A glass melting furnace provided with a furnace wall and a pipe that penetrates the furnace wall and allows molten glass in the furnace to flow out of the furnace.
    A glass melting furnace in which the pipe has a protrusion protruding from the furnace wall to the inside of the furnace.
  2.  前記突出部の先端にフランジ部が設けられていることを特徴とする請求項1に記載のガラス溶融炉。 The glass melting furnace according to claim 1, wherein a flange portion is provided at the tip of the protruding portion.
  3.  前記突出部の前記炉壁寄りの部位ほど上方に位置するように、前記突出部が水平面に対して傾斜していることを特徴とする請求項1又は2に記載のガラス溶融炉。 The glass melting furnace according to claim 1 or 2, wherein the protruding portion is inclined with respect to a horizontal plane so as to be located above the portion of the protruding portion closer to the furnace wall.
  4.  前記突出部の先端に形成された溶融ガラスを流入させるための開口部について、開口部の上端が下端と比較して前記炉壁からの離反距離が長くなるように、前記開口部が水平面に対して傾斜していることを特徴とする請求項1~3のいずれかに記載のガラス溶融炉。 Regarding the opening for flowing the molten glass formed at the tip of the protrusion, the opening is relative to the horizontal plane so that the upper end of the opening has a longer separation distance from the furnace wall than the lower end. The glass melting furnace according to any one of claims 1 to 3, wherein the glass melting furnace is inclined.
  5.  前記突出部の外周面にリブが設けられていることを特徴とする請求項1~4のいずれかに記載のガラス溶融炉。 The glass melting furnace according to any one of claims 1 to 4, wherein ribs are provided on the outer peripheral surface of the protruding portion.
  6.  前記炉壁の内壁面上に板状部材が配置され、
     前記リブが前記板状部材に固定されていることを特徴とする請求項5に記載のガラス溶融炉。
    A plate-shaped member is arranged on the inner wall surface of the furnace wall.
    The glass melting furnace according to claim 5, wherein the ribs are fixed to the plate-shaped member.
  7.  前記リブが前記突出部の菅軸方向に沿って延びるように設けられていることを特徴とする請求項5又は6に記載のガラス溶融炉。 The glass melting furnace according to claim 5 or 6, wherein the rib is provided so as to extend along the direction of the tube axis of the protruding portion.
  8.  炉壁を貫通したパイプを通過させてガラス溶融炉内から炉外に流出させた溶融ガラスからガラス物品を製造する方法であって、
     前記パイプに、前記炉壁から炉内側に突き出した突出部を設けたことを特徴とするガラス物品の製造方法。
    A method of manufacturing a glass article from molten glass that has flowed out of the furnace from the inside of the glass melting furnace by passing through a pipe that penetrates the furnace wall.
    A method for producing a glass article, wherein the pipe is provided with a protrusion protruding from the furnace wall to the inside of the furnace.
PCT/JP2020/022441 2019-07-05 2020-06-05 Glass melting furnace and production method for glass article WO2021005935A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080038327.1A CN113874330B (en) 2019-07-05 2020-06-05 Glass melting furnace and method for producing glass article
KR1020217039737A KR20220031550A (en) 2019-07-05 2020-06-05 Glass melting furnaces and methods of making glass articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019126047A JP7330434B2 (en) 2019-07-05 2019-07-05 Glass melting furnace and method for manufacturing glass article
JP2019-126047 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021005935A1 true WO2021005935A1 (en) 2021-01-14

Family

ID=74115197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022441 WO2021005935A1 (en) 2019-07-05 2020-06-05 Glass melting furnace and production method for glass article

Country Status (4)

Country Link
JP (1) JP7330434B2 (en)
KR (1) KR20220031550A (en)
CN (1) CN113874330B (en)
WO (1) WO2021005935A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354118Y2 (en) * 1987-03-12 1991-11-28
WO2013011837A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
JP2013193905A (en) * 2012-03-19 2013-09-30 Nippon Electric Glass Co Ltd Glass melting apparatus, method for feeding molten glass, and effluent passage for melting furnace
WO2019100027A2 (en) * 2017-11-20 2019-05-23 Corning Incorporated Glass manufacturing apparatus and methods of fabricating
WO2019113287A1 (en) * 2017-12-08 2019-06-13 Corning Incorporated Glass manufacturing apparatus and glass manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155807A (en) * 1984-01-24 1985-08-15 Mikuni Kogyo Co Ltd Liquid fuel burner
JPH11236237A (en) * 1998-02-23 1999-08-31 Nippon Electric Glass Co Ltd Producing device of glass fiber
JP2005076930A (en) * 2003-08-29 2005-03-24 Hatta Kankyo Gijutsu Jimusho:Kk Device for automatic discharge of molten slag
KR100510196B1 (en) * 2005-02-26 2005-08-24 (주)세라 Continuous type fusion furnace system for frit production
JP5488865B2 (en) 2009-03-03 2014-05-14 旭硝子株式会社 Glass melting furnace and glass melting method
JP6370129B2 (en) * 2013-11-26 2018-08-08 三笠産業株式会社 Fixed quantity spout device and fixed quantity discharge container
CN104801531B (en) * 2015-04-29 2016-08-24 绵阳市鑫科源环保科技有限公司 Plasma fusion cracking industrial sludge system and process technique thereof
CN206094103U (en) * 2016-08-29 2017-04-12 广东省环境科学研究院 Compound plasma melting furnace of waste incineration fly ash
CN109279759B (en) * 2018-11-05 2021-06-15 山东鑫诺新玻璃工程有限公司 Mixing equipment for microcrystalline glass production and microcrystalline glass mixing production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354118Y2 (en) * 1987-03-12 1991-11-28
WO2013011837A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
JP2013193905A (en) * 2012-03-19 2013-09-30 Nippon Electric Glass Co Ltd Glass melting apparatus, method for feeding molten glass, and effluent passage for melting furnace
WO2019100027A2 (en) * 2017-11-20 2019-05-23 Corning Incorporated Glass manufacturing apparatus and methods of fabricating
WO2019113287A1 (en) * 2017-12-08 2019-06-13 Corning Incorporated Glass manufacturing apparatus and glass manufacturing method

Also Published As

Publication number Publication date
JP2021011405A (en) 2021-02-04
CN113874330A (en) 2021-12-31
JP7330434B2 (en) 2023-08-22
CN113874330B (en) 2024-03-01
KR20220031550A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
US8613207B2 (en) Method and apparatus for producing a quartz glass cylinder
EP1832558B1 (en) Plate glass manufacturing apparatus and plate glass manufacturing method
US8434329B2 (en) Apparatus for use in the glass industry and method for processing molten glass
KR102292737B1 (en) Method and apparatus for processing glass
WO2021005935A1 (en) Glass melting furnace and production method for glass article
WO2018034110A1 (en) Glass tube production method
KR20200112800A (en) Glass article manufacturing method and manufacturing apparatus thereof
JP5818164B2 (en) Tubular body for molten glass, molten glass supply device, and pipe member
WO2012011419A1 (en) Molten glass conveying device and method of producing glass using molten glass conveying device
CN112912348A (en) Method for manufacturing glass article
JP5652707B2 (en) Molten glass transfer tube
EP3388397B1 (en) Sleeve for glass tube molding
KR20200004432A (en) Glass manufacturing apparatus and method
JP4867318B2 (en) Sheet glass manufacturing method and manufacturing apparatus
WO2021075200A1 (en) Apparatus and method for manufacturing glass article
WO2021005934A1 (en) Glass article production apparatus
US20070144218A1 (en) Longlife bushing tip
JP6273812B2 (en) Bushing, glass fiber manufacturing apparatus and glass fiber manufacturing method
JP7375454B2 (en) Glass article manufacturing equipment and manufacturing method
JP6955209B2 (en) Glass article manufacturing method, glass article manufacturing equipment, and tube
JP6955208B2 (en) Glass article manufacturing method, glass article manufacturing equipment, and tube
JP5516538B2 (en) Sheet glass manufacturing method and manufacturing apparatus
JP2014231165A (en) Insert part for blow molding
RU2271340C2 (en) Device for supplying glass flow
KR101406814B1 (en) Molding apparatus for horizontal continuous casting of large diameter pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836967

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836967

Country of ref document: EP

Kind code of ref document: A1