WO2021005910A1 - Photosensitive composition production method, pasty photosensitive composition, electronic component production method, electronic component, device for determining mixing ratio for organic component in photosensitive composition, and computer program - Google Patents

Photosensitive composition production method, pasty photosensitive composition, electronic component production method, electronic component, device for determining mixing ratio for organic component in photosensitive composition, and computer program Download PDF

Info

Publication number
WO2021005910A1
WO2021005910A1 PCT/JP2020/021134 JP2020021134W WO2021005910A1 WO 2021005910 A1 WO2021005910 A1 WO 2021005910A1 JP 2020021134 W JP2020021134 W JP 2020021134W WO 2021005910 A1 WO2021005910 A1 WO 2021005910A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive composition
correlation equation
particle size
line width
correlation
Prior art date
Application number
PCT/JP2020/021134
Other languages
French (fr)
Japanese (ja)
Inventor
佑一朗 佐合
省吾 長江
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to CN202080049490.8A priority Critical patent/CN114096919A/en
Priority to KR1020227004215A priority patent/KR20220034178A/en
Publication of WO2021005910A1 publication Critical patent/WO2021005910A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the present invention relates to a method for producing a photosensitive composition, a paste-like photosensitive composition, a method for producing an electronic component and an electronic component, a compounding ratio determining device for an organic component in the photosensitive composition, and a computer program. It should be noted that this application claims priority based on Japanese Patent Application No. 2019-128628 filed on July 10, 2019, and the entire contents of the application are incorporated herein by reference. There is.
  • a method of forming a conductive layer on a substrate by a photolithography method using a photosensitive composition containing a conductive powder, a photopolymerizable resin, and a photopolymerization initiator is known.
  • a photosensitive composition is applied onto a base material and dried to form a conductive film (a conductive film forming step).
  • the molded conductive film is covered with a photomask having a predetermined aperture pattern, and the conductive film is exposed through the photomask (exposure step). As a result, the exposed portion of the conductive film is photocured.
  • the unexposed portion that has been shielded from light by the photomask is corroded with a developing solution and removed (development step).
  • the conductive film having a desired pattern is fired to be baked onto the base material (firing step).
  • a finer conductive layer can be formed as compared with various conventional printing methods.
  • the L / S of the conductive layer is small, even if the line width of the wiring is slightly thickened, adjacent wires will be connected to each other to cause a short circuit defect, or conversely, if the line width of the wiring is slightly narrowed, it will be peeled off. Or disconnection is likely to occur. Therefore, for electronic components such as multilayer chip inductors, if the line width varies widely, the product characteristics may be adversely affected or the yield may decrease. Therefore, from the viewpoint of mass production, by suppressing the variation in the line width of the conductive film after development to a low level, the variation in the line width of the conductive layer after firing is suppressed, and fine linear wiring in electronic components is formed with good reproducibility. It is necessary to do.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a photosensitive composition capable of forming fine line-shaped wiring with a desired line width with good reproducibility. Another related purpose is to provide a method of manufacturing electronic components and electronic components. Another related object is to provide a compounding ratio determining device and a computer program for organic components in a photosensitive composition.
  • FIG. 1A is a schematic side view showing the state of the exposure process when the conductive powder 1A having a relatively large particle size is used.
  • the particle size of the conductive powder 1A is large, the light that has entered the inside of the conductive film through the opening of the photomask is reflected on the surface of the conductive powder 1A and is easily scattered. Therefore, the light tends to spread in the horizontal direction of the conductive film.
  • FIG. 1B is a schematic side view showing a state of the exposure process when the conductive powder 1B having a relatively small particle size is used.
  • the particle size of the conductive powder 1B is small, the light that has entered the inside of the conductive film through the opening of the photomask is not easily reflected on the surface of the conductive powder 1B, and the light is scattered. It can be suppressed.
  • the particle size of the conductive powder varies to some extent depending on the production lot (product unit).
  • the average particle size (measured value) was the nominal value. It fluctuated by about ⁇ 0.4 ⁇ m. This fluctuation is considered to be due to variations in the manufacturing process. Therefore, it was expected that the line width would vary due to fluctuations in the average particle size (measured value) of the conductive powder as it is. Therefore, the present inventors investigated if the variation in line width caused by the variation between production lots of the conductive powder could be buffered during the production of the photosensitive composition. As a result of further studies, the present invention has been created.
  • the present invention provides a method for producing a photosensitive composition containing a conductive powder at a predetermined compounding ratio.
  • This manufacturing method is a step of measuring the particle size of the conductive powder to be used to obtain an actually measured value; the above measured value is a first correlation formula prepared in advance, and the particle size of the conductive powder and the above measured value are used.
  • a predetermined target level in comparison with the first correlation equation with any factor that fluctuates due to light absorption or photocuring of the conductive film and fluctuates in correlation with the displacement of the particle size.
  • Step of confirming the expected deviation value of the above-mentioned factors with respect to the above; a second correlation equation prepared in advance, in which the factors in the first correlation equation and the organic components contained in the photosensitive composition are varied in the compounding ratio. Includes the step of determining the blending ratio of the organic component so as to cancel the expected deviation value based on the second correlation equation with any organic component that correlates with the variation of the factor.
  • the particle size of the conductive powder used for manufacturing the photosensitive composition is measured in advance, and the expected deviation value with respect to the target level is simulated. Then, based on the result of the simulation, the blending ratio of the organic component is determined so as to cancel the expected deviation value.
  • the influence of fluctuations between the production lots of the conductive powder is reduced, and the variation in line width caused by the difference in the production lots of the conductive powder can be suppressed. Therefore, it is not necessary to control the particle size of the conductive powder so highly, and even if the production lot of the conductive powder to be purchased is switched in the middle, the desired line width can be stably formed.
  • the composition can be provided. As a result, the yield can be improved and mass productivity and productivity can be improved.
  • the organic component is an organic component that adjusts at least one of the light absorption and photopolymerizability of the photosensitive composition.
  • the organic component may be at least one of a photopolymerization initiator system, a light absorber, and a polymerization inhibitor.
  • the organic component may be a photopolymerization initiator system.
  • the factors in the first correlation equation are the line width, film thickness, electrode cross-sectional area, curing shrinkage rate, or resistance value of the conductive film.
  • the factor in the first correlation equation may be a line width.
  • the second correlation equation is represented by a linear function. Since the two variables are in a proportional relationship in the linear function, the compounding ratio can be calculated simply and easily.
  • the conductive powder comprises silver-based particles.
  • the first conductive powder is a core-shell particle containing a metal material as a core and a ceramic material covering at least a part of the surface of the core.
  • the stability of the conductive powder in the photosensitive composition can be improved better, and a highly durable conductive layer can be realized.
  • the integrity with the ceramic base material can be enhanced.
  • a step of applying the photosensitive composition onto a substrate, performing photocuring and etching, and then firing to form a conductive layer made of a fired body of the photosensitive composition are provided, including. According to such a manufacturing method, an electronic component having a small and / or high-density conductive layer can be suitably manufactured.
  • the present invention provides a blending ratio determining device for determining a blending ratio of an organic component with respect to a photosensitive composition containing a conductive powder at a predetermined blending ratio.
  • This compounding ratio determining device is a first correlation equation prepared in advance with an input unit in which the type of conductive powder to be used and the measured value of the particle size are input in response to the input of the user.
  • the present invention provides a computer program configured to operate a computer as the above-mentioned compounding ratio determining device. As a result, calculation errors can be prevented, and even an operator who is not proficient in the work can easily determine the blending ratio of the organic component.
  • an electronic component including a conductive layer made of a fired body of the above photosensitive composition is provided. According to the above-mentioned photosensitive composition, even a conductive layer provided with fine wire-shaped wiring can be stably realized. Therefore, according to the above-mentioned photosensitive composition, it is possible to preferably realize an electronic component having a small size and / or a high-density conductive layer.
  • a paste-like photosensitive composition in which the above-mentioned photosensitive composition contains an organic dispersion medium.
  • the photosensitive composition can be easily supplied to a desired position of the base material in a desired form by means such as coating or printing.
  • FIG. 1A and 1B are schematic side views of a conductive film.
  • FIG. 1A shows a case where a conductive powder having a large average particle size is used
  • FIG. 1B shows a case where a conductive powder having a large average particle size is used. It is a side view of.
  • FIG. 2 is a flowchart of a manufacturing method according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the laminated chip inductor.
  • FIG. 4 is a functional block diagram of the compounding ratio determining device.
  • FIG. 5 is an example of the first correlation equation according to the first embodiment.
  • FIG. 6 is an example of the second correlation equation relating to the photopolymerization initiator system.
  • FIG. 5 is an example of the first correlation equation according to the first embodiment.
  • FIG. 7 is a graph comparing the solid line widths.
  • FIG. 8 is an example of the first correlation equation according to the second embodiment.
  • FIG. 9 is an example of the first correlation equation according to the second embodiment.
  • FIG. 10 is an example of the second correlation equation relating to the ultraviolet absorber.
  • FIG. 11 is an example of the second correlation equation relating to the photopolymerization inhibitor.
  • the "conductive film” refers to a film-like body (dried product) obtained by drying a photosensitive composition at a temperature equal to or lower than the boiling point of an organic component (generally 200 ° C. or lower, for example 100 ° C. or lower).
  • the conductive film includes all unfired (before firing) film-like bodies.
  • the conductive film may be an uncured product before photo-curing or a cured product after photo-curing.
  • the “conductive layer” refers to a sintered body (fired product) obtained by firing a photosensitive composition at a temperature equal to or higher than the sintering temperature of a conductive powder.
  • the conductive layer includes wiring (linear body), wiring pattern, and solid pattern.
  • the notation of "A to B" indicating the range in the present specification includes the meanings of "A or more and B or less", as well as "preferably larger than A” and "preferably smaller than B”.
  • the target level factor is the line width (targeting the line width)
  • the predetermined target level is represented by the "target line width”
  • the expected deviation value is represented by the "expected deviation width”.
  • the target level factor may be due to the light absorption degree or the photocurability degree of the conductive film, and is not limited to the line width.
  • FIG. 2 is a flowchart of the manufacturing method according to the present embodiment.
  • the production method disclosed herein is a method for producing a photosensitive composition containing a conductive powder at a predetermined compounding ratio.
  • a production method is described in the following steps: (step S1) measurement step of average particle size; (step S2) confirmation step of expected deviation width; (step S3) step of determining compounding ratio of organic components; (step S3).
  • step S4 The step of preparing the photosensitive composition; Hereinafter, each step will be described in order.
  • a conductive powder used for producing a photosensitive composition is prepared.
  • the conductive powder is a component that imparts electrical conductivity to the conductive layer.
  • the conductive powder may be purchased as a commercially available product, or may be produced by itself by a conventionally known method.
  • the type of the conductive powder is not particularly limited, and one of the conventionally known ones may be used alone or two or more of them may be appropriately combined depending on the intended use.
  • the conductive powder examples include gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), ruthenium (Ru), and rhodium ( Examples thereof include simple metals such as Rh), tungsten (W), iridium (Ir), and osmium (Os), and mixtures and alloys thereof.
  • the alloy examples include silver alloys such as silver-palladium (Ag-Pd), silver-platinum (Ag-Pt), and silver-copper (Ag-Cu).
  • the conductive powder comprises silver-based particles. Silver is relatively inexpensive and has high electrical conductivity.
  • silver-based particles include all those containing a silver component.
  • silver-based particles include silver alone, the above-mentioned silver alloy, and core-shell particles having silver-based particles as a core, for example, silver-ceramic core-shell particles and the like.
  • An organic surface treatment agent may be attached to the surface of the conductive powder.
  • the organic surface treatment agent for example, improves the dispersibility of the conductive powder in the photosensitive composition, enhances the affinity between the conductive powder and other contained components, and surface oxidizes the metal constituting the conductive powder. It can be used for at least one of the purposes of preventing.
  • the organic surface treatment agent include fatty acids such as carboxylic acids and benzotriazole compounds.
  • the conductive powder contains metal-ceramic core-shell particles.
  • Metal-ceramic core-shell particles have a core containing a metal material and a coating containing a ceramic material and covering at least a portion of the surface of the core.
  • the coating is typically composed of a plurality of fine ceramic particles.
  • the average particle size of the ceramic particles constituting the coating portion is typically smaller than the average particle size of the metal material constituting the core portion, for example, 1/1000 to 1/2 of the average particle size of the metal material, and further. It may be about 1/100 to 1/10. Ceramic materials are excellent in chemical stability, heat resistance, and durability.
  • metal-ceramic core-shell particles it is possible to better improve the stability of the conductive powder in the photosensitive composition and realize a highly durable conductive layer. Further, for example, in an application in which a conductive layer is formed on a ceramic base material to manufacture a ceramic electronic component, the integralness with the ceramic base material can be enhanced, and the conductive layer can be preferably peeled off or broken after firing. It can be suppressed.
  • examples of the ceramic material constituting the coating portion of the core-shell particles include zirconium oxide (zirconia), magnesium oxide (magnesia), aluminum oxide (alumina), silicon oxide (silica), and titanium oxide. (Titania), cerium oxide (ceria), ittium oxide (itria), barium titanate and other oxide-based materials; cordierite, mulite, forsterite, steatite, sialon, zircone, ferrite and other composite oxide-based materials Nitride-based materials such as silicon nitride (silicon nitride) and aluminum nitride (aluminum nitride); carbide-based materials such as silicon carbide (silicon carbide); hydroxide-based materials such as hydroxyapatite; and the like.
  • a ceramic material having the same or excellent affinity as the ceramic base material is preferable.
  • the content ratio of the ceramic material in the core-shell particles may be, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the metal material in the core portion.
  • the average particle size (nominal value) of the conductive powder is determined in consideration of the exposure performance (for example, light absorption and photocurability). It may be approximately 0.1 to 10 ⁇ m. By setting the average particle size (nominal value) in the above range, fine wire-shaped wiring can be formed more stably.
  • the average particle size of the conductive powder (nominal value, for example, measurement of laser diffraction / scattering method or SEM observation) , Etc.) may be, for example, 0.5 ⁇ m or more, 1 ⁇ m or more, 1.5 ⁇ m or more, and 2 ⁇ m or more.
  • the average particle size (nominal value) of the conductive powder is, for example, 5 ⁇ m or less, 4.5 ⁇ m or less. It may be 4 ⁇ m or less.
  • the conductive powder is typically a substantially spherical shape having an average aspect ratio of about 1 to 2, preferably 1 to 1.5, for example, 1 to 1.3.
  • the "average aspect ratio” is an arithmetic mean value (major axis / major axis / major axis) of the aspect ratio calculated from an observation image obtained by observing a plurality of conductive particles constituting the conductive powder with an electron microscope. Minority ratio).
  • spherical means a form that can be generally regarded as a sphere (ball) as a whole, and may include an elliptical shape, a polygonal shape, a disk spherical shape, and the like.
  • the conductive powder is preferably having a lightness L * of 50 or more in the L * a * b * color system based on JIS Z 8781: 2013.
  • the light can reach the deep part of the uncured conductive film stably at the time of exposure, and for example, a thick conductive layer having a film thickness of 5 ⁇ m or more and further 10 ⁇ m or more is stably formed. can do.
  • the lightness L * of the conductive powder may be approximately 55 or more, for example 60 or more.
  • the brightness L * can be measured by, for example, a spectrocolorimeter based on JIS Z 8722: 2009.
  • the average particle size of the conductive powder used is actually measured.
  • the method for measuring the average particle size, the measuring device, the measuring conditions, and the analysis conditions for the measurement results may be unified with those at the time of calculating the first correlation equation described later.
  • the prediction accuracy in the subsequent step of confirming the expected deviation width (step S2) can be improved.
  • the particle size distribution is measured using a particle size distribution measuring device based on the laser diffraction / scattering method. For example, by using the Microtrack MT-3000II series manufactured by Microtrack Bell Co., Ltd., it is possible to measure a particle size range of approximately 0.02 to 2800 ⁇ m.
  • the particle size distribution By measuring the particle size distribution, a volume-based particle size distribution of the conductive powder can be obtained. Then, in the particle size distribution, the particle size (D50 particle size) corresponding to the integrated value of 50% from the side with the smaller particle size is defined as the “average particle size (actual measurement value)”. As described above, the average particle size (measured value) of the conductive powder used for producing the photosensitive composition is obtained.
  • the first correlation equation is prepared.
  • the first correlation equation is prepared in advance for each type of conductive powder (for example, for each product name).
  • the correlation coefficient R 2 is generally 0.85 or more, preferably 0.9 or more, for example 0.92 or more.
  • the first correlation equation can be prepared, for example, as follows.
  • a plurality of conductive powders having different production lots and / or average particle diameters (nominal values) are prepared.
  • physical characteristics other than the particle size of the plurality of conductive powders for example, the metal type, average aspect ratio, and brightness of the conductive powder that can have a comparatively large effect on the exposure performance (for example, light absorption and photocurability).
  • the average particle diameters of the prepared plurality of conductive powders are individually measured.
  • the average particle size can be measured by a conventionally known measuring method. For example, it can be performed using a particle size distribution measuring device based on a laser diffraction / scattering method.
  • each photosensitive composition is prepared using a plurality of conductive powders whose average particle size has been actually measured. For example, first, a predetermined vehicle containing an organic component is prepared, and a conductive powder is dispersed therein to prepare a photosensitive composition. As a result, components other than the conductive powder and their blending ratios are unified, and a plurality of photosensitive compositions different only in the type of the conductive powder are prepared. Next, the prepared photosensitive compositions are applied onto the substrate, respectively, and photocured and etched. As a result, a thin wire-shaped wiring is formed.
  • the line width is measured for a plurality of fields of view, and the arithmetic mean value is taken as the solid line width (actual line width).
  • the data is plotted on a graph of "average particle size (measured value) X-solid line width Y" in which the average particle size (measured value) of the conductive powder is taken on the horizontal axis X and the solid line width is taken on the vertical axis Y. To do. From this graph, the correlation formula between the average particle size (measured value) and the solid line width is calculated. In this way, the first correlation equation is prepared.
  • the measured value obtained in step S1 is compared with the first correlation equation relating to the same type of conductive powder. Then, the expected deviation width (expected deviation width) with respect to the predetermined target line width is confirmed. For example, first, the measured value obtained in step S1 is interpolated into the correlation equation between the average particle size (measured value) and the solid line width to calculate the expected line width. Then, the difference between the expected line width and the desired target line width is calculated as the expected deviation width.
  • the target line width can be set arbitrarily. In this way, the expected deviation width is confirmed.
  • a second correlation equation is prepared.
  • the second correlation equation is prepared in advance for each type of conductive powder (for example, for each product name).
  • the correlation coefficient R 2 is generally 0.85 or more, preferably 0.9 or more, for example 0.92 or more.
  • the second correlation equation may be represented by a linear function. In a linear function, two variables are in a proportional relationship. Therefore, the compounding ratio can be calculated simply and easily.
  • the second correlation equation can be prepared, for example, as follows. That is, first, at least one of the organic components used in the production of the photosensitive composition is prepared. For example, at least one of the organic components contained in the vehicle used in the calculation of the first correlation equation is prepared.
  • the organic component to be prepared may be one kind or, for example, two or more kinds.
  • the organic component prepared at this time is a component that affects the curing rate of the photosensitive composition, for example, the light absorption of the photosensitive composition other than the organic binder and the photocurable compound. It is preferable to contain an organic component (curing rate adjusting agent) that adjusts at least one of photopolymerizability.
  • the organic component to be prepared may contain, for example, at least one of (A) a photopolymerization initiator, (B) a sensitizer, (C) a light absorber, and (D) a polymerization inhibitor. Among them, it is preferable to include at least one of a polymerization initiator system, that is, (A) a photopolymerization initiator and (B) a sensitizer.
  • the organic component to be prepared may be, for example, the first component having the highest compounding ratio in the vehicle among the components (A) to (D), or may further contain the second component having the second highest compounding ratio. ..
  • the photopolymerization initiator is a component that is decomposed by light irradiation to generate active species such as radicals and cations to promote the polymerization reaction of the photocurable component.
  • the photopolymerization initiator is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, accelerates the polymerization reaction).
  • the photopolymerization initiator one of the conventionally known ones may be used alone or two or more thereof may be appropriately combined depending on, for example, the type of photocurable component.
  • the photopolymerization initiator may be a photoradical polymerization initiator, a photocationic polymerization initiator, or a photoanionic polymerization initiator.
  • a photoradical polymerization initiator is preferable because it has a high reaction rate and does not require curing by heat.
  • Typical examples are benzoin-based photopolymerization initiators, ⁇ -hydroxyacetophenone-based photopolymerization initiators, ⁇ -aminoalkylphenone-based photopolymerization initiators, benzylketal-based photopolymerization initiators, ⁇ -hydroxyacetophenone-based photopolymerization initiators, ⁇ -Aminoacetophenone-based photopolymerization initiator, acylphosphine oxide-based photopolymerization initiator, titanosen-based photopolymerization initiator, 0-acyloxime-based photopolymerization initiator, oxime ester-based photopolymerization initiator, benzophenone-based photopolymerization initiator , Acrydin-based photopolymerization initiator and the like.
  • a sensitizer (also referred to as an accelerator, a reaction accelerator, etc.) is a component that transfers the energy obtained by absorbing light to a photo-curing component to promote the polymerization reaction of the photo-curing component.
  • the sensitizer is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, accelerates the polymerization reaction).
  • the sensitizer one of the conventionally known sensitizers may be used alone or two or more thereof may be appropriately used in combination, depending on, for example, the wavelength of the light to be irradiated. Typical examples include anthracene-based sensitizers, aromatic ketone-based sensitizers, biphenyl-based sensitizers, anthraquinone-based sensitizers, and the like.
  • a light absorber (also referred to as a colorant, an organic pigment, etc.) is a component that adjusts the light absorption of the photosensitive composition.
  • the light absorber is a component that typically changes the color of the photosensitive composition to adjust the rate of light penetration.
  • the light absorber may be an ultraviolet absorber that absorbs part or all of the light having an ultraviolet wavelength, or may be an infrared absorber that absorbs part or all of the light having an infrared wavelength, and is of visible light. It may be a visible light absorber (for example, a blackening agent) that absorbs a part or all of the light of a wavelength.
  • the light absorber one of the conventionally known ones can be used alone or two or more of them can be used in combination, for example, depending on the wavelength range of the light to be irradiated.
  • Typical examples are benzotriazole-based light absorbers, triazine-based light absorbers, benzophenone-based light absorbers, benzoate-based light absorbers, salicylate ester-based light absorbers, cyanoacrylate-based light absorbers, resorcinol-based light absorbers, and hindered amines.
  • examples include system light absorbers.
  • the ultraviolet absorber one having a high absorption coefficient in the wavelength range of 250 to 520 nm is preferable, and among them, an organic dye having a high absorption coefficient in the wavelength range of 350 to 450 nm is preferable.
  • organic dyes include azo, benzophenone, aminoketone, xanthene, quinoline, aminoketone, anthraquinone, diphenylcyanoacrylate, triazine, p-aminobenzoic acid and the like. Of these, azo-based and benzophenone-based organic dyes are preferable.
  • Examples of the azo-based organic dye include Sudan Blue, Sudan R, Sudan II, Sudan III, Sudan IV, Oil Orange SS, Oil Violet, Oil Yellow OB, and the like.
  • Examples of the benzophenone-based organic dye include Ubinal (registered trademark) D-50 (2,2', 4,4'-tetrahydrooxybenzophenone) manufactured by BASF, and Ubinal (registered trademark) MS40 (2-hydroxy-4). -Methoxybenzophenone 5-sulphonic acid), ubinal (registered trademark) DS49 (2,2-dihydroxy-4,4'-dimethoxybenzophenone-5,5'-sodium dissulphonate) and the like.
  • the polymerization inhibitor (also referred to as a banning agent, a light stabilizer, a stabilizer, a radical scavenger, an oxygen scavenger, etc.) inhibits the polymerization reaction of the photocurable component and has weather resistance of the photosensitive composition. , A component that improves at least one of heat resistance and storage stability.
  • the polymerization inhibitor is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, slows down the polymerization reaction).
  • the polymerization inhibitor one of the conventionally known ones can be used alone, or two or more thereof can be used in combination as appropriate. Typical examples include hydroquinone and its derivatives, and phenol derivatives.
  • the blending ratio of the prepared organic components is changed stepwise to prepare a plurality of photosensitive compositions.
  • the prepared photosensitive compositions are applied onto the substrate, and photocuring and etching are performed. As a result, a thin wire-shaped wiring is formed.
  • the wiring on the base material is observed with a laser microscope, and the line width of the wiring is measured from the obtained observation image. At this time, the line width is measured for a plurality of fields of view, and the arithmetic mean value is taken as the solid line width (actual line width).
  • the data is plotted on a graph of "organic component compounding ratio X-solid line width Y" in which the horizontal axis X is the compounding ratio of the organic components in the photosensitive composition and the vertical axis Y is the solid line width. From this graph, the correlation formula between the compounding ratio of the organic component and the solid line width is calculated. In this way, the second correlation equation is prepared.
  • the second correlation equation is used to determine the blending ratio of the organic component in the photosensitive composition so as to cancel the expected deviation width confirmed in step S2.
  • the blending ratio of the organic component in the photosensitive composition is determined so as to induce the target line width.
  • the formulation of the vehicle used in the calculation of the first correlation equation is used as a base.
  • the compounding ratio is changed from the base vehicle.
  • the expected deviation width confirmed in step S2 can be cancelled.
  • the organic component that does not change the blending ratio may be the same as the base vehicle.
  • the blending ratio may be changed by one type. For example, when the expected deviation width is large, the blending ratio of two or more kinds of organic components is changed little by little to predict the whole. The deviation width may be canceled out.
  • a correlation equation between the compounding ratio of the polymerization initiator system and the solid line width as the second correlation equation.
  • two equations are prepared: a correlation equation between the compounding ratio of the photopolymerization initiator and the solid line width, and a correlation equation between the compounding ratio of the sensitizer and the solid line width.
  • this correlation equation it is assumed that the compounding ratio of the polymerization initiator system and the solid line width have a positive correlation.
  • the compounding ratio of the polymerization initiator system is reduced from the compounding of the base vehicle so as to cancel the expected deviation width based on the correlation equation.
  • the compounding ratio of the polymerization initiator system is increased so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation.
  • the compounding ratio of the polymerization inhibitor when canceling the expected deviation width by using a polymerization inhibitor, first prepare a correlation equation between the compounding ratio of the polymerization inhibitor and the solid line width as the second correlation equation.
  • this correlation equation it is assumed that the compounding ratio of the polymerization inhibitor and the solid line width have a negative correlation.
  • the compounding ratio of the polymerization inhibitor is increased so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation.
  • the compounding ratio of the polymerization inhibitor is reduced so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation.
  • the compounding ratio of the organic component in the photosensitive composition is determined.
  • the organic component for which the compounding ratio is adjusted in this step is not limited to the components (A) to (D) described above.
  • the compounding ratio of at least one of the photocurable resin and the photocurable compound described later may be adjusted as long as other performances (for example, the tackiness of the conductive film with respect to the substrate) are not significantly deteriorated.
  • the blending ratio of other additive components described later may be adjusted.
  • a photosensitive composition is prepared using the conductive powder whose average particle size was actually measured in step S1.
  • an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, a light absorber, a polymerization inhibitor, and other additive components used as needed are mixed as an organic dispersion medium.
  • a liquid vehicle a liquid vehicle.
  • each component is added so that the photosensitive composition has the blending ratio determined in step S3.
  • the conductive powder and the vehicle are mixed at a predetermined blending ratio. This prepares a photosensitive composition.
  • the organic binder (polymer component) is a component that enhances the adhesiveness between the base material and the uncured conductive film.
  • the organic binder may or may not have photosensitive (a property of causing a chemical or structural change by light, for example, photocurability).
  • the organic binder includes a photopolymerizable oligomer (prepolymer) having a weight average molecular weight of 2000 or more and less than 5000, and a photopolymerizable polymer having a weight average molecular weight of 5000 or more.
  • the organic binder one of the conventionally known binders can be used alone or two or more thereof can be appropriately used depending on, for example, the base material, the photopolymerizable compound, the type of the photopolymerization initiator, and the like. ..
  • the organic binder is preferably one that can be easily removed with a developing solution in the developing step.
  • organic binders include cellulosic polymers such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and hydroxymethyl cellulose, acrylic resins, phenol resins, alkyd resins, polyvinyl alcohol, polyvinyl butyral and the like.
  • cellulosic polymers such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and hydroxymethyl cellulose
  • acrylic resins phenol resins, alkyd resins, polyvinyl alcohol, polyvinyl butyral and the like.
  • hydrophilic organic binders such as cellulosic polymers and acrylic resins are preferable from the viewpoint of easy removal in the developing process.
  • a photocurable resin may be used as the organic binder.
  • a photocurable resin is a photocurable component that is polymerized and cured by an active species generated from a photopolymerization initiator.
  • Photocurable resins typically have at least one of unsaturated bonds and a cyclic structure.
  • the photocurable resin one of the conventionally known ones can be used alone, or two or more of them can be used in combination as appropriate.
  • Typical examples include resins having an ethylenic double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group, such as an acrylic resin and an epoxy resin.
  • (meth) acryloyl” is a term including "methacryloyl” and "acryloyl”.
  • the acrylic resin include homopolymers of alkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate, and alkyl (meth) acrylate as the main monomer (largest mass ratio).
  • alkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate, and alkyl (meth) acrylate as the main monomer (largest mass ratio).
  • the monomer include a copolymer containing a submonomer having copolymerizability in the main monomer.
  • a photocurable compound is a photocurable component that is polymerized and cured by an active species generated from a photopolymerization initiator.
  • the polymerization reaction may be, for example, addition polymerization or ring-opening polymerization.
  • the photocurable compound may be radically polymerizable or cationically polymerizable.
  • the photocurable compound is a monomer having a weight average molecular weight of less than 2000.
  • the photocurable compound one of the conventionally known compounds can be used alone, or two or more thereof can be used in combination as appropriate.
  • a typical example is a (meth) acrylate monomer having a (meth) acryloyl group.
  • the (meth) acrylate monomer includes a monofunctional (meth) acrylate having one functional group per molecule, a polyfunctional (meth) acrylate having two or more functional groups per molecule, and modified products thereof. To do.
  • Specific examples of the (meth) acrylate monomer include polyfunctional (meth) acrylate, urethane-modified (meth) acrylate having a urethane bond, epoxy-modified (meth) acrylate, silicone-modified (meth) acrylate, and the like.
  • “(meth) acrylate” is a term including "methacrylate” and "acrylate”.
  • the organic dispersion medium is a component that imparts appropriate viscosity and fluidity to the photosensitive composition and improves the handleability of the photosensitive composition and the workability when molding the conductive film.
  • the organic dispersion medium one of the conventionally known ones can be used alone, or two or more of them can be used in combination as appropriate.
  • Typical examples include organic solvents such as alcohol solvents, glycol solvents, ether solvents, ester solvents, hydrocarbon solvents, and mineral spirits. Among them, an organic solvent having a boiling point of 150 ° C. or higher, and further an organic solvent having a boiling point of 170 ° C. or higher are preferable from the viewpoint of improving the storage stability of the photosensitive composition and the handleability at the time of molding the conductive film.
  • an organic solvent having a boiling point of 250 ° C. or lower, and further an organic solvent having a boiling point of 220 ° C. or lower are preferable.
  • one of the conventionally known components can be used alone, or two or more thereof can be used in combination as appropriate.
  • antioxidants plasticizers, surfactants, leveling agents, thickeners, wetting agents, dispersants, defoamers, antistatic agents, antigels, preservatives, fillers (organic or inorganic fillers).
  • Glass powder ceramic powder (Al 2 O 3 , ZrO 2 , SiO 2, etc.), organic metal compound (metal resinate) and the like.
  • the blending ratio of the conductive powder in the photosensitive composition is predetermined.
  • the blending ratio of the conductive powder may be approximately 50% by mass or more, typically 60 to 95% by mass, for example, 70 to 90% by mass.
  • a conductive layer having high density and electrical conductivity can be formed.
  • the handleability of the photosensitive composition and the workability when molding the conductive film can be improved.
  • the proportion of the polymerization initiator system in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5. It may be mass%, 0.05 to 0.2 mass%.
  • the proportion of the light absorber may be approximately 0.5% by mass or less, typically 0.1% by mass or less, for example, 0.01% by mass or less, and further may be 0.001% by mass or less.
  • the proportion of the polymerization inhibitor may be approximately 0.5% by mass or less, typically 0.1% by mass or less, for example 0.001% by mass or less.
  • the proportion of the photocurable resin in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5% by mass, 0.03 to 0.03 to It may be 0.2% by mass.
  • the proportion of the photocurable compound in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5% by mass, 0.03 to 0.03 to It may be 0.2% by mass.
  • the blending ratio of the photocurable resin and the photocurable compound may be approximately 1:10 to 10: 1, for example, 1: 3 to 3: 1, and further 1: 2 to 2: 1.
  • the proportion of the organic dispersion medium may be approximately 1 to 50% by mass, typically 3 to 30% by mass, for example, 5 to 20% by mass.
  • the ratio of other additive components may be about 5% by mass or less, for example, 3% by mass or less.
  • the photosensitive composition disclosed herein can be suitably used for forming a conductive layer in various electronic components such as an inductance component, a capacitor component, and a multilayer circuit board.
  • the electronic component may be of various mounting forms such as a surface mount type and a through-hole mount type.
  • the electronic component may be a laminated type, a wound type, or a thin film type.
  • Typical examples of inductance components include high-frequency filters, common-mode filters, inductors for high-frequency circuits (coils), inductors for general circuits (coils), high-frequency filters, choke coils, transformers, and the like.
  • a photosensitive composition in which the conductive powder contains metal-ceramic core-shell particles can be suitably used for forming a conductive layer of a ceramic electronic component.
  • the "ceramic electronic component” includes all electronic components having an amorphous ceramic base material (glass ceramic base material) or a crystalline (that is, non-glass) ceramic base material.
  • a high-frequency filter having a ceramic base material, a ceramic inductor (coil), a ceramic capacitor, a low-temperature co-fired ceramics substrate (LTCC base material), and a high-temperature fired laminated ceramic base material (LTCC base material) High Temperature Co-fired Ceramics Substrate (HTCC base material) and the like can be mentioned.
  • FIG. 3 is a cross-sectional view schematically showing the structure of the laminated chip inductor 10.
  • the dimensional relationship (length, width, thickness, etc.) in FIG. 3 does not necessarily reflect the actual dimensional relationship.
  • the reference numerals X and Y in the drawings represent the horizontal direction and the vertical direction, respectively. However, this is just for convenience of explanation.
  • the laminated chip inductor 10 includes a main body portion 11 and external electrodes 20 provided on both side surface portions of the main body portion 11 in the left-right direction X.
  • the shape of the laminated chip inductor 10 is, for example, a size such as 1608 shape (1.6 mm ⁇ 0.8 mm) or 2520 shape (2.5 mm ⁇ 2.0 mm).
  • the main body 11 has a structure in which a ceramic layer (dielectric layer) 12 and an internal electrode layer 14 are integrated.
  • the ceramic layer 12 is made of, for example, a ceramic material as described above as being capable of forming a coating portion of a conductive powder.
  • the internal electrode layer 14 is arranged between the ceramic layers 12.
  • the internal electrode layer 14 is formed by using the above-mentioned photosensitive composition.
  • the internal electrode layers 14 adjacent to each other in the vertical direction Y with the ceramic layer 12 interposed therebetween are conducted through vias 16 provided in the ceramic layer 12.
  • the internal electrode layer 14 is formed in a three-dimensional spiral shape (spiral shape). Both ends of the internal electrode layer 14 are connected to the external electrode 20.
  • the laminated chip inductor 10 can be manufactured, for example, by the following procedure. That is, first, a paste containing a ceramic material as a raw material, a binder resin, and an organic solvent is prepared and supplied onto a carrier sheet to form a ceramic green sheet. Next, after rolling this ceramic green sheet, it is cut to a desired size to obtain a plurality of ceramic layer forming green sheets. Next, via holes are appropriately formed at predetermined positions of the plurality of ceramic layer forming green sheets by using a drilling machine or the like. Next, using the above-mentioned photosensitive composition, a conductive film having a predetermined coil pattern is formed at a predetermined position on a plurality of green sheets for forming a ceramic layer.
  • Step A A step of forming a conductive film made of a dried product of the photosensitive composition by applying the photosensitive composition on a green sheet for forming a ceramic layer and drying it; (step).
  • B) A step of covering the conductive film with a photomask having a predetermined opening pattern, exposing the conductive film through the photomask, and partially photocuring the conductive film: (step C) The conductive film after photocuring has not been etched.
  • the photosensitive composition can be applied by using various printing methods such as screen printing, a bar coater, or the like. Drying of the photosensitive composition is typically carried out at 50-100 ° C.
  • an exposure machine that emits radiation such as visible light, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays can be used for exposure.
  • an exposure machine that emits light rays in the wavelength range of 10 to 400 nm, for example, an ultraviolet irradiation lamp such as a high-pressure mercury lamp, a metal halide lamp, or a xenon lamp can be used.
  • an aqueous solution containing an alkaline component such as sodium hydroxide or sodium carbonate can be used for etching.
  • a plurality of green sheets for forming a ceramic layer on which a conductive film in an unfired state is formed are laminated and pressure-bonded.
  • a laminated body of unfired ceramic green sheets is produced.
  • the laminated body of the ceramic green sheet is fired at, for example, 600 to 1000 ° C.
  • the ceramic green sheet is integrally sintered, and the main body 11 including the ceramic layer 12 and the internal electrode layer 14 made of the fired body of the photosensitive composition is formed.
  • an appropriate external electrode forming paste is applied to both ends of the main body portion 11 and fired to form the external electrode 20. In this way, the laminated chip inductor 10 can be manufactured.
  • FIG. 4 is a functional block diagram of the compounding ratio determining device 30.
  • the blending ratio determining device 30 disclosed here includes an input unit 31, a storage unit 32, a first calculation unit 33, a second calculation unit 34, and a display unit 35.
  • Each part of the compounding ratio determining device 30 is configured to be able to communicate with each other.
  • Each part of the compounding ratio determining device 30 may be composed of software or hardware.
  • Each part of the compounding ratio determining device 30 may be performed by a processor or may be incorporated in a circuit.
  • the input unit 31 can receive an operation input of a user (for example, a worker who prepares a photosensitive composition) and input the type and average particle size (measured value) of the conductive powder to be used and the target line width. It is configured as follows. When a plurality of conductive powders are used in combination, the mixing ratio thereof can be further input.
  • the type of the conductive powder is, for example, information represented by a purchaser, an item name (product name), a product number, or the like.
  • the type of conductive powder is, for example, information represented by physical properties such as the structure of the conductive powder (whether or not it has a core-shell structure), average particle size (nominal value), average aspect ratio, and brightness L *. May be good.
  • the input unit 31 includes, for example, a keyboard having cursor keys, number input keys, and the like, a pointing device such as a mouse, and an input device (not shown) such as buttons.
  • the input unit 31 may be configured so that the type of the conductive powder can be selected from, for example, the pull-down menu displayed on the display unit 35.
  • the input unit 31 may be configured so that the above-mentioned information can be taken in from an external device such as a host computer or a network connected by wire or wirelessly.
  • the "target line width" is an example of a predetermined target level.
  • the storage unit 32 stores the first correlation equation and the second correlation equation.
  • the first correlation equation and the second correlation equation are stored in advance in the storage unit 32 for each type of conductive powder (for example, for each product name). Therefore, the first correlation equation and the second correlation equation stored in the storage unit 32 are typically a plurality of each.
  • the first correlation equation may be expressed by a linear function.
  • the first correlation equation is, for example, a correlation equation between the average particle size (actual measurement value) of the above-mentioned conductive powder and the solid line width.
  • the second correlation equation has a predetermined slope (rate of change).
  • the second correlation equation may be expressed by a linear function.
  • the second correlation equation is, for example, a correlation equation between the compounding ratio of the above-mentioned organic component (for example, a polymerization initiator system) and the solid line width.
  • the storage unit 32 may further store the composition of the base vehicle, that is, the type and blending ratio of each organic component contained in the vehicle.
  • the first calculation unit 33 stores the first correlation in the storage unit 32. From the formulas, the first correlation formula relating to the same type of conductive powder as the input conductive powder is referred to. Then, the expected deviation width with respect to the target line width is calculated from the average particle size (actual measurement value) input to the input unit 31. For example, when the first correlation equation is expressed by the correlation equation between the average particle size (actual measurement value) of the conductive powder and the solid line width, the average particle size (actual measurement value) input to the input unit 31 is first corresponded. The expected line width is calculated by interpolating into the first correlation equation. Then, the difference between the expected line width and the target line width input from the input unit 31 by the user is calculated as the expected deviation width. In this embodiment, the "expected deviation width" is an example of the expected deviation value.
  • the second calculation unit 34 has the same type of conductivity as the input conductive powder from the second correlation equation stored in the storage unit 32. Refer to the second correlation equation for powder. Then, the compounding ratio of the organic component is calculated based on the expected deviation width calculated by the first calculation unit 33. For example, when the second correlation equation is indicated by the correlation equation between the compounding ratio of the polymerization initiator system and the solid line width, the expected deviation width is divided by the slope of the second correlation equation to cancel the expected deviation width. Calculate the compounding ratio of the polymerization initiator system. Then, the compounding ratio for canceling the expected deviation width is increased or decreased from the compounding ratio of the photopolymerization initiator system contained in the vehicle to obtain the final compounding ratio.
  • the compounding ratio determining device 30 is, for example, a computer, and stores an interface (I / F) for a user, a central processing unit (CPU: central processing unit) that executes instructions of a control program, and a program executed by the CPU. It is equipped with a CPU (read only memory), a RAM (random access memory) used as a working area for deploying programs, and a storage device such as a memory for storing the above programs and various data.
  • the compounding ratio determining device 30 may be a computer program configured to operate the CPU of the computer as each part of the compounding ratio determining device 30. Such a computer program may be a recording medium on which the operation of the compounding ratio determining device 30 is written and can be read by a computer.
  • the recording medium examples include a semiconductor recording medium (for example, ROM, non-volatile memory card), an optical recording medium (for example, DVD, MO, MD, CD, BD), and a magnetic recording medium (for example, magnetic tape, flexible disk). Etc. are exemplified.
  • the computer program can be transmitted to the server computer via the recording medium or a network such as the Internet or an intranet.
  • the server computer is also a form of the compounding ratio determining device 30.
  • Example 1 When one kind of conductive powder is used alone>
  • a first correlation equation and a second correlation equation corresponding to the conductive powder to be used were prepared.
  • the first correlation equation shown in FIG. 5 and the second correlation equation shown in FIG. 6 were prepared.
  • FIG. 6 is a second correlation equation for adjusting the compounding ratio of the photopolymerization initiator system.
  • the first correlation equation shown in FIG. 5 was prepared as follows. That is, first, as conductive powder, a plurality of commercially available silver powders (15 types in this case) having an average particle size (nominal value) of about 3 ⁇ m were prepared. Next, a wet measurement in a dispersion solvent is performed using a particle size distribution measuring device (model "MT-3000II” manufactured by Microtrac Bell Co., Ltd., measuring range: 0.02 to 2800 ⁇ m) based on the laser diffraction / scattering method. The average particle size of each of the 15 types of silver powder was actually measured.
  • a particle size distribution measuring device model "MT-3000II” manufactured by Microtrac Bell Co., Ltd., measuring range: 0.02 to 2800 ⁇ m
  • an alcohol solvent specifically, ethanol
  • ethanol ethanol
  • the particle size distribution was typically monomodal with only one mode diameter (mode diameter). From the particle size distribution, the average particle size (measured value) of 15 types of silver powder was read.
  • an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, an ultraviolet absorber as a light absorber, and a polymerization inhibitor were added to an organic dispersion medium having the composition shown in Table 1. It was melted and a vehicle was prepared. Next, the 15 kinds of silver powders prepared above and the vehicle were mixed at a mass ratio of 77:23 to prepare photosensitive compositions.
  • the wiring pattern was observed with a laser microscope, and the line width of the wiring was measured from the obtained observation image.
  • the line width was measured for multiple fields of view, and the arithmetic mean value was taken as the solid line width (actual line width).
  • the average particle size (measured value) of the silver powder is proportional to the solid line width obtained by using the photosensitive composition containing the silver powder (correlation coefficient: 0.92). doing.
  • the first correlation equation shown in FIG. 5 is represented by a linear function.
  • the average particle size (measured value) and the solid line width have a positive correlation. That is, as the average particle size (measured value) of the silver powder increases, the line width increases linearly.
  • the second correlation equation in FIG. 6 was prepared as follows. That is, first, a predetermined silver powder was prepared as the conductive powder. Further, an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, an ultraviolet absorber, a polymerization inhibitor, and an organic dispersion medium are mixed at the blending ratios shown in Table 1 above. I prepared a base vehicle. Next, the silver powder and the vehicle were mixed at a mass ratio of 77:23 to prepare a base photosensitive composition.
  • the compounding ratio of the photopolymerization initiator system (photopolymerization initiator and sensitizer) was changed from the base photosensitive composition as shown in Table 2.
  • the amount by which the compounding ratio of the photopolymerization initiator was increased or decreased was adjusted by increasing or decreasing the amount of the organic dispersion medium. For example, when the compounding ratio of the photopolymerization initiator system was reduced from 0.550 to 0.515, the amount of the organic dispersion medium was increased by that amount (0.035).
  • a plurality of such photosensitive compositions (here, 5 patterns) were prepared.
  • the compounding ratio of the photopolymerization initiator system was changed, the ratio of the photopolymerization initiator and the sensitizer was kept constant.
  • the compounding ratio of the polymerization initiator system in the photosensitive composition and the solid line width are proportional (correlation coefficient: 0.96).
  • the second correlation equation in FIG. 6 is represented by a linear function.
  • the compounding ratio of the polymerization initiator system and the solid line width have a positive correlation. That is, it can be seen that the line width increases linearly as the compounding ratio of the polymerization initiator system increases.
  • Example 1 after aligning the first correlation equation and the second correlation equation as described above, silver powder (average particle size (nominal value): 3 ⁇ m) used for the photosensitive composition is prepared as step S1. did. Next, the average particle size of the silver powder was actually measured under the same measurement and analysis conditions using the same particle size distribution measuring device as when calculating the first correlation equation. Then, the average particle size (measured value) of the silver powder was read from the volume-based particle size distribution. Here, the measured value was 3.17 ⁇ m.
  • step S2 the actually measured value obtained in step S1 was compared with the first correlation equation of FIG. Then, the expected deviation width with respect to the predetermined target line width was confirmed.
  • the expected line width is calculated to be 28.92 ⁇ m. Therefore, when the target line width is 27.3 ⁇ m, the expected deviation width is calculated as +1.62 ⁇ m by (expected line width 28.92 ⁇ m) ⁇ (target line width 27.3 ⁇ m). That is, it can be seen that if the photosensitive composition is prepared with the same vehicle composition as the base as it is, there is a high possibility that the line width becomes thicker by 1.62 ⁇ m from the target line width.
  • step S3 the blending ratio of the organic components was changed so as to cancel the expected deviation width and bring it closer to the target line width.
  • step S4 a vehicle in which the compounding ratio of the polymerization initiator system was changed was prepared as shown in Table 3.
  • the silver powder whose average particle size was actually measured in step S1 and the vehicle were mixed to prepare a photosensitive composition.
  • a wiring pattern was formed and the solid line width was measured. As a result, the solid line width was 27.4 ⁇ m. That is, the result was that the line width (27.3 ⁇ m) was much closer than the line width (29.0 ⁇ m) expected in step S2.
  • a photosensitive composition was prepared by applying the technique disclosed here in the same manner as above, and the solid line width was measured. That is, after obtaining the measured value of the average particle size of the silver powder in step S1, confirming the expected deviation width in step S2, determining the blending ratio of the polymerization initiator system in step S3, and adjusting the blending of the vehicle. , A photosensitive composition was prepared, and the solid line width was measured. The results are shown in Table 4. The right end of Table 4 is the result of Example 1 described above. Further, as a reference example, the solid line width ( ⁇ m) when the base vehicle is used as it is (that is, the compounding ratio of the polymerization initiator system is kept constant without adjusting) without applying the technique disclosed here. Is listed at the bottom.
  • FIG. 7 is a graph summarizing the results of Table 4 and comparing the solid line widths with and without the application of the technology disclosed here.
  • the production lot of the conductive powder is relatively higher than that in the case where the techniques disclosed here are not applied (reference example). It was possible to suppress the variation in line width by buffering the fluctuation between them.
  • the fluctuation of the line width could be suppressed to ⁇ 1 ⁇ m or less, and further to ⁇ 0.5 ⁇ m or less.
  • the fine wire-shaped wiring could be stably formed near the target line width.
  • Such results show the significance of the techniques disclosed herein.
  • Example 2 When two types of conductive powders are mixed and used>
  • a photosensitive composition is produced using a mixed powder obtained by mixing two types of conductive powders will be described.
  • first, two first correlation equations corresponding to the two conductive powders to be used were prepared. Specifically, the first correlation equation shown by the solid line is prepared in FIGS. 8 and 9.
  • a second correlation equation was also prepared. As the second correlation equation, the same one as shown in FIG. 6 was prepared.
  • the first correlation equation shown by the solid line in FIG. 8 is prepared as follows. That is, first, as the first conductive powder, a plurality of first silver powders (here, seven types) having an average particle size (nominal value) of about 2.9 ⁇ m were prepared. Then, the average particle size (measured value) of the seven types of first silver powder was actually measured in the same manner as in the calculation of the first correlation equation of FIG. 5 of Example 1 described above. Further, as the second conductive powder, a second silver powder having an average particle size (measured value) of 2.56 ⁇ m was prepared. Next, the mixed powder was prepared by mixing the first silver powder and the second silver powder at a mass ratio of a predetermined ratio (here, 40:60).
  • the average particle size (actual measurement value) of the changed silver powder and the solid line width are proportional to each other, as in the first correlation equation of FIG. 5 in Example 1. (Correlation coefficient: 0.92 or more).
  • the first correlation equation shown by the solid line in FIGS. 8 and 9 is shown by a linear function. In FIGS. 8 and 9, the average particle size (measured value) and the solid line width have a positive correlation.
  • the expected deviation widths ⁇ 1 and ⁇ 2 with respect to the target line width (here, set to 30.0 ⁇ m) were calculated. That is, assuming that the measured values of the first silver powder and the second silver powder are x1 and x2 and the expected line widths are y1 and y2, the expected deviation widths ⁇ 1 and ⁇ 2 are obtained from the following equations.
  • the expected deviation width ⁇ ( ⁇ m) when the two types of conductive powders were mixed and used was calculated from the following formula using the above expected deviation widths ⁇ 1 and ⁇ 2.
  • ⁇ 1 + ⁇ 2
  • step S3 the compounding ratio of the polymerization initiator system contained in the vehicle was adjusted as shown in Tables 5 and 6 in the same manner as in Example 1 described above.
  • step S4 a photosensitive composition was prepared in the same manner as in Example 1 described above. Then, a wiring pattern was formed and the solid line width was measured.
  • the first correlation equation shown by the broken line in FIGS. 8 and 9 is a case where the first silver powder and the second silver powder are mixed at a mass ratio of 70:30, respectively. Even when the mixing ratio is changed in this way, the average particle size (actual measurement value) of the changed silver powder and the solid line width are proportional to each other by a linear function, as in the first correlation equation shown by the solid line. (Correlation coefficient: 0.95 or more). The average particle size (measured value) and the solid line width have a positive correlation. From this, it is considered that the techniques disclosed herein can be applied to various mixed powders regardless of the mixing ratio.
  • the target level factor was defined by the "line width", but the factor is not limited to this.
  • the target level factor may be due to the light absorption degree or the photocurability of the conductive film, and may be, for example, the film thickness of the conductive film, the electrode cross-sectional area, the curing shrinkage rate, the resistance value, or the like. That is, from FIGS. 1 (A) and 1 (B), the scattering of light changes depending on the difference in the particle size of the conductive powder, and as a result, the light absorption of the conductive film changes, so that the degree of photocurability changes. You can see that it does.
  • references 1 to 3 Reference 1: Takashi Ukaji, CMC Technical Library 206, Plastic Surface Treatment Technology and Materials, P.M. 67, Correlation diagram between the light transmittance (%) of the coating film and the particle size ( ⁇ m); -Reference 2: Yamamoto Precious Metal Bullion Co., Ltd., Polymer Technology Report, Vol. 5 (2011), P.M. 20, FIG. 15 (Relationship between the reaction rate of hexanediol diacrylate and the curing time when the intensity of irradiation light is changed); -Reference 3: Published by Information Technology Association, UV curable resin formulation design, characterization and new applications, P.M. 470, FIG. 16 (change in film thickness during curing shrinkage of UV resist); It is thought that this is also supported by such factors.
  • the factors of light absorption and photocurability increase or decrease monotonically as the particle size of the conductive powder changes.
  • the fluctuation of the line width due to the displacement of the particle size and their displacement have a high correlation with a proportional or constant function.
  • buffering variations in line width is synonymous with suppressing variations in factors related to light absorption and photocuring.
  • the "target level” may be a target line width, a target film thickness, a target cross-sectional area, a target curing shrinkage rate, or a target resistance value. It is considered well.
  • the "expected deviation value" may be the deviation width, the deviation thickness, the deviation cross-sectional area, the deviation curing shrinkage rate, or the deviation resistance value according to the target level. Conceivable.
  • step S3 was carried out after step S2, but the present invention is not limited to this.
  • a determination step of comparing the expected deviation width with the preset threshold value may be included. Then, when it is determined in the determination step that the expected deviation width is smaller than the threshold value, step S3 may be omitted and step S4 may be performed.
  • the correlation equation between the average particle size (measured value) and the solid line width is exemplified as the first correlation equation, but the present invention is not limited to this.
  • the expected deviation width obtained by subtracting the target line width from the solid line width may be used. That is, the first correlation equation may be expressed by a correlation equation between the average particle size (measured value) and the expected deviation width.
  • the measured value obtained in step S1 may be interpolated into the correlation equation to directly confirm the expected deviation width.
  • the correlation equation between the compounding ratio of the organic component in the photosensitive composition and the solid line width is exemplified, but the present invention is not limited to this.
  • the expected deviation width may be used as in the case of the first correlation equation.
  • the compounding ratio of the organic component may be expressed not in the photosensitive composition but in, for example, the compounding ratio in the vehicle.
  • the blending ratio determining device 30 includes an input unit 31, a storage unit 32, a first calculation unit 33, and a second calculation unit 34, but the present invention is not limited thereto.
  • the compounding ratio determining device 30 sets at least one of the following: a first setting unit that sets a first correlation equation for a predetermined type of conductive powder and stores it in the storage unit 32; A second setting unit that sets a second correlation equation for the type of conductive powder and stores it in the storage unit 32; a first correlation equation or a second correlation equation of the same type as the input conductive powder is stored in the storage unit.
  • a notification unit; or the like, which notifies the user of an error when it is not stored in 32 may be provided.
  • silver powder was used as the conductive powder, but the present invention is not limited to this.
  • the mechanism that when a conductive powder having a large average particle size is used, the irradiation light tends to spread in the horizontal direction of the conductive film in the exposure process and the line width of the wiring tends to be thick is the same for other metal types. ..
  • the technique disclosed herein can be applied not only to silver powder but also to powders containing the above-mentioned various metals such as copper, platinum, palladium, aluminum and nickel.
  • the average particle size (D50 particle size) of the conductive powder specifically, corresponds to an integrated value of 50% from the smaller particle size side in the volume-based particle size distribution.
  • the particle size was measured, but is not limited to this.
  • a number-based particle size distribution or the like may be used instead of the volume-based particle size distribution.
  • the particle size factor is, for example, D40 particle size (particle size corresponding to the integrated value of 40% from the smaller particle size side in the particle size distribution) and D60 particle size (particle size) instead of the average particle size (D50 particle size).
  • the particle size may be such that the particle size corresponds to an integrated value of 60% from the side with the smallest particle size in the distribution.
  • the first correlation equation may be represented by "D40 particle size (measured value) X-solid line width Y", "D60 particle size (measured value) X-solid line width Y", or the like.
  • the particle size factor is a particle size further distant from the average particle size, for example, D5 particle size (integrated from the smaller particle size side in the particle size distribution).
  • Particle size corresponding to a value of 5% D90 particle size (particle size corresponding to an integrated value of 90% from the smaller particle size side in the particle size distribution), D95 particle size (integrated value 90 from the smaller particle size side in the particle size distribution)
  • the particle size corresponding to%) may be used.
  • step S3 a second correlation equation relating to the polymerization initiator system was prepared, and the blending ratio of the photopolymerization initiator system was adjusted to suppress the variation in line width.
  • the organic component for which the compounding ratio is adjusted may be, for example, either a photopolymerization initiator or a sensitizer.
  • the second correlation equation relating to the polymerization initiator system was prepared in step S3, but instead of or in addition to this, for example, the second correlation relating to the light absorber.
  • the compounding ratio of the ultraviolet absorber in the photosensitive composition and the solid line width are shown by a logarithmic curve. Since the logarithmic curve changes rapidly, for example, when the expected deviation width is large, there is an advantage that only a slight change in the compounding ratio is required. Further, for example, by preparing a second correlation equation (see FIG.
  • the compounding ratio of the photopolymerization inhibitor in the photosensitive composition and the solid line width are proportional (correlation coefficient: 0.99).
  • the second correlation equation shown in FIG. 11 is represented by a linear function.
  • the compounding ratio of the polymerization inhibitor and the solid line width have a negative correlation. That is, it can be seen that the line width becomes linearly narrower as the compounding ratio of the polymerization inhibitor system increases.
  • Such a second correlation equation can also be suitably used in the technique disclosed herein, similarly to the second correlation equation of FIGS. 6 and 7 described above.
  • Multilayer chip inductor 11
  • Main body 12
  • Internal electrode layer 20
  • External electrode 30
  • Mixing ratio determination device 31
  • Input unit 32
  • Storage unit 33
  • 1st calculation unit 34
  • 2nd calculation unit 35 Display unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention provides a photosensitive composition production method comprising: the step of measuring the particle size of a conductive powder to be used to obtain an actually measured value (step S1); the step of comparing the actually measured value with a first correlation formula, which represents the correlation between particles size for the conductive powder and any factor among factors that change in correlation with change in particle size, to identify a predicted offset value for the factor relative to a pre-determined target level (step S2); and the step of determining a mixing ratio for an organic component to cancel out the predicted offset value on the basis of a second correlation formula, which represents the correlation between the factor in the first correlation formula and said organic component, said organic component being any of the organic components included in the photosensitive composition and for which changes in the mixing ratio are correlated with changes in the factor (step S3).

Description

感光性組成物の製造方法、ペースト状の感光性組成物、電子部品の製造方法および電子部品、ならびに感光性組成物中の有機成分の配合比決定装置、コンピュータプログラムA method for producing a photosensitive composition, a paste-like photosensitive composition, a method for producing an electronic component and an electronic component, and a device for determining a blending ratio of organic components in the photosensitive composition, a computer program.
 本発明は、感光性組成物の製造方法、ペースト状の感光性組成物、電子部品の製造方法および電子部品、ならびに感光性組成物中の有機成分の配合比決定装置、コンピュータプログラムに関する。
 なお、本出願は、2019年7月10日に出願された日本国特許出願2019-128628号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a method for producing a photosensitive composition, a paste-like photosensitive composition, a method for producing an electronic component and an electronic component, a compounding ratio determining device for an organic component in the photosensitive composition, and a computer program.
It should be noted that this application claims priority based on Japanese Patent Application No. 2019-128628 filed on July 10, 2019, and the entire contents of the application are incorporated herein by reference. There is.
 インダクタ等の電子部品の製造では、導電性粉末と光重合性樹脂と光重合開始剤とを含む感光性組成物を用いて、フォトリソグラフィ法により基材上に導電層を形成する手法が知られている(例えば特許文献1、2参照)。かかる方法では、まず、基材上に感光性組成物を付与し、乾燥させて、導電膜を成形する(導電膜の成形工程)。次に、上記成形した導電膜に所定の開口パターンを有するフォトマスクを被せ、フォトマスクを介して導電膜を露光する(露光工程)。これによって、導電膜の露光部分を光硬化させる。次に、フォトマスクで遮光されていた未露光部分を、現像液で腐食して除去する(現像工程)。そして、所望のパターンとなった導電膜を焼成することで基材に焼き付ける(焼成工程)。以上のような工程を含むフォトリソグラフィ法によれば、従来の各種印刷法に比べて精細な導電層を形成することができる。 In the manufacture of electronic components such as inductors, a method of forming a conductive layer on a substrate by a photolithography method using a photosensitive composition containing a conductive powder, a photopolymerizable resin, and a photopolymerization initiator is known. (See, for example, Patent Documents 1 and 2). In such a method, first, a photosensitive composition is applied onto a base material and dried to form a conductive film (a conductive film forming step). Next, the molded conductive film is covered with a photomask having a predetermined aperture pattern, and the conductive film is exposed through the photomask (exposure step). As a result, the exposed portion of the conductive film is photocured. Next, the unexposed portion that has been shielded from light by the photomask is corroded with a developing solution and removed (development step). Then, the conductive film having a desired pattern is fired to be baked onto the base material (firing step). According to the photolithography method including the above steps, a finer conductive layer can be formed as compared with various conventional printing methods.
日本国特許第5163687号Japanese Patent No. 5163687 国際公開2015/122345号International Publication 2015/12234
 ところで近年、各種電子機器の小型化や高性能化が急速に進み、電子機器に実装される電子部品に対しても一層の小型化や高密度化が求められている。これに伴い、積層チップインダクタ等の電子部品の製造にあたっては、導電層の低抵抗化と共に、細線化(狭小化)が求められている。より具体的には、導電層を構成する配線の線幅と隣り合う配線間のスペース(ラインアンドスペース:L/S)を、30μm/30μm以下、さらには20μm/20μm以下にまで微細化することが求められている。導電層のL/Sが小さいと、配線の線幅が僅かに太くなっただけで隣り合う配線同士がつながってショート不良を生じたり、逆に配線の線幅が僅かに細くなっただけで剥離や断線を生じたりしやすくなる。このため、例えば積層チップインダクタ等の電子部品では、線幅のバラつきが大きいと製品特性に悪影響が出たり、歩留まりが低くなったりしうる。したがって、量産化の観点からは、現像後の導電膜の線幅のバラつきを低く抑えることで、焼成後の導電層の線幅のバラつきを抑え、電子部品における細線状の配線を再現性良く形成することが必要となる。 By the way, in recent years, various electronic devices have been rapidly miniaturized and improved in performance, and electronic components mounted on electronic devices are also required to be further miniaturized and have a higher density. Along with this, in the manufacture of electronic components such as multilayer chip inductors, it is required to reduce the resistance of the conductive layer and to make the wires thinner (narrower). More specifically, the line width of the wiring constituting the conductive layer and the space (line and space: L / S) between the adjacent wirings are reduced to 30 μm / 30 μm or less, and further to 20 μm / 20 μm or less. Is required. If the L / S of the conductive layer is small, even if the line width of the wiring is slightly thickened, adjacent wires will be connected to each other to cause a short circuit defect, or conversely, if the line width of the wiring is slightly narrowed, it will be peeled off. Or disconnection is likely to occur. Therefore, for electronic components such as multilayer chip inductors, if the line width varies widely, the product characteristics may be adversely affected or the yield may decrease. Therefore, from the viewpoint of mass production, by suppressing the variation in the line width of the conductive film after development to a low level, the variation in the line width of the conductive layer after firing is suppressed, and fine linear wiring in electronic components is formed with good reproducibility. It is necessary to do.
 本発明はかかる点に鑑みてなされたものであり、その目的は、所望の線幅で細線状の配線を再現性良く形成することができる感光性組成物を提供することである。また、関連する他の目的は、電子部品の製造方法および電子部品を提供することである。また、関連する他の目的は、感光性組成物中の有機成分の配合比決定装置およびコンピュータプログラムを提供することである。 The present invention has been made in view of this point, and an object of the present invention is to provide a photosensitive composition capable of forming fine line-shaped wiring with a desired line width with good reproducibility. Another related purpose is to provide a method of manufacturing electronic components and electronic components. Another related object is to provide a compounding ratio determining device and a computer program for organic components in a photosensitive composition.
 本発明者らが感光性組成物の各成分について鋭意検討を重ねたところ、新たに、導電性粉末の粒径が現像後の線幅を決定する1つの重要なファクターとなっていることが判明した。すなわち、図1(A)は、粒径が相対的に大きい導電性粉末1Aを用いた場合の露光工程の様子を表す模式的な側面図である。図1(A)に示すように、導電性粉末1Aの粒径が大きいと、フォトマスクの開口から導電膜の内部に侵入した光が導電性粉末1Aの表面で反射し、光散乱しやすい。このため、光が導電膜の水平方向に広がりやすくなる。その結果、フォトマスクの開口の周辺(フォトマスクで遮光した部分)にも光が届いてしまい、線幅がフォトマスクの開口の幅よりも太めになりやすい。これに対して、図1(B)は、粒径が相対的に小さい導電性粉末1Bを用いた場合の露光工程の様子を表す模式的な側面図である。図1(B)に示すように、導電性粉末1Bの粒径が小さいと、フォトマスクの開口から導電膜の内部に侵入した光が導電性粉末1Bの表面で反射されにくく、光の散乱が抑えられる。このため、光が導電膜の水平方向に広がりにくく、図1(A)に比べて線幅が相対的に細くなりやすい。このことから、線幅を安定させるためには、使用する導電性粉末の粒径を高度に管理することが望ましいといえる。 As a result of diligent studies on each component of the photosensitive composition, the present inventors have newly found that the particle size of the conductive powder is one important factor for determining the line width after development. did. That is, FIG. 1A is a schematic side view showing the state of the exposure process when the conductive powder 1A having a relatively large particle size is used. As shown in FIG. 1A, when the particle size of the conductive powder 1A is large, the light that has entered the inside of the conductive film through the opening of the photomask is reflected on the surface of the conductive powder 1A and is easily scattered. Therefore, the light tends to spread in the horizontal direction of the conductive film. As a result, the light reaches the periphery of the opening of the photomask (the portion shaded by the photomask), and the line width tends to be wider than the width of the opening of the photomask. On the other hand, FIG. 1B is a schematic side view showing a state of the exposure process when the conductive powder 1B having a relatively small particle size is used. As shown in FIG. 1B, when the particle size of the conductive powder 1B is small, the light that has entered the inside of the conductive film through the opening of the photomask is not easily reflected on the surface of the conductive powder 1B, and the light is scattered. It can be suppressed. Therefore, it is difficult for light to spread in the horizontal direction of the conductive film, and the line width tends to be relatively narrower than that in FIG. 1A. From this, it can be said that it is desirable to highly control the particle size of the conductive powder used in order to stabilize the line width.
 しかしながら、本発明者らの調査によれば、導電性粉末は、製造ロット(製品単位)が異なると多少なりとも粒径が変動する。例えば本発明者らが平均粒径(公称値)2.9μmのいくつかの製造ロットの導電性粉末を購入して実際に平均粒径を測定したところ、平均粒径(実測値)が公称値から±0.4μm程度変動していた。この変動は、製造工程でのバラつき等に起因するものと考えられる。したがって、このままでは導電性粉末の平均粒径(実測値)の変動により、線幅にバラつきが生じることが予想された。そこで本発明者らは、導電性粉末の製造ロット間の変動によって生じうる線幅のバラつきを、感光性組成物の製造時に緩衝できないかと考えた。そして、更なる検討を重ねた結果、本発明を創出するに至った。 However, according to the investigation by the present inventors, the particle size of the conductive powder varies to some extent depending on the production lot (product unit). For example, when the present inventors purchased conductive powders of several production lots having an average particle size (nominal value) of 2.9 μm and actually measured the average particle size, the average particle size (measured value) was the nominal value. It fluctuated by about ± 0.4 μm. This fluctuation is considered to be due to variations in the manufacturing process. Therefore, it was expected that the line width would vary due to fluctuations in the average particle size (measured value) of the conductive powder as it is. Therefore, the present inventors wondered if the variation in line width caused by the variation between production lots of the conductive powder could be buffered during the production of the photosensitive composition. As a result of further studies, the present invention has been created.
 本発明により、予め定められた配合比で導電性粉末を含む感光性組成物を製造する方法が提供される。この製造方法は、使用する導電性粉末の粒径を測定して、実測値を得る工程;上記実測値を、予め用意された第1相関式であって、上記導電性粉末の粒径と、導電膜の光吸収または光硬化に起因して変動する因子であって上記粒径の変位に相関して変動する何れかの因子との第1相関式と対比して、予め定められた目標レベルに対する上記因子の予想ズレ値を確認する工程;予め用意された第2相関式であって、上記第1相関式における因子と、上記感光性組成物に含まれる有機成分であって配合比の変動が上記因子の変動に相関する何れかの有機成分との第2相関式に基づいて、上記予想ズレ値を打ち消すように上記有機成分の配合比を決定する工程;を包含する。 INDUSTRIAL APPLICABILITY The present invention provides a method for producing a photosensitive composition containing a conductive powder at a predetermined compounding ratio. This manufacturing method is a step of measuring the particle size of the conductive powder to be used to obtain an actually measured value; the above measured value is a first correlation formula prepared in advance, and the particle size of the conductive powder and the above measured value are used. A predetermined target level in comparison with the first correlation equation with any factor that fluctuates due to light absorption or photocuring of the conductive film and fluctuates in correlation with the displacement of the particle size. Step of confirming the expected deviation value of the above-mentioned factors with respect to the above; a second correlation equation prepared in advance, in which the factors in the first correlation equation and the organic components contained in the photosensitive composition are varied in the compounding ratio. Includes the step of determining the blending ratio of the organic component so as to cancel the expected deviation value based on the second correlation equation with any organic component that correlates with the variation of the factor.
 上記製造方法では、感光性組成物の製造に使用する導電性粉末の粒径を事前に測定し、目標レベルに対する予想ズレ値をシミュレーションする。そして、シミュレーションの結果に基づいて予想ズレ値を打ち消すように有機成分の配合比を決定する。このことにより、導電性粉末の製造ロット間の変動による影響が小さくなり、導電性粉末の製造ロットの違いによって生じる線幅のバラつきを抑えることができる。したがって、導電性粉末の粒径をそれほど高度に管理する必要もなく、例えば購入する導電性粉末の生産ロットが途中で切り替わっても、所望の線幅を安定的に形成することが可能な感光性組成物を提供することができる。これにより、歩留まりを向上し量産性や生産性を向上することができる。 In the above manufacturing method, the particle size of the conductive powder used for manufacturing the photosensitive composition is measured in advance, and the expected deviation value with respect to the target level is simulated. Then, based on the result of the simulation, the blending ratio of the organic component is determined so as to cancel the expected deviation value. As a result, the influence of fluctuations between the production lots of the conductive powder is reduced, and the variation in line width caused by the difference in the production lots of the conductive powder can be suppressed. Therefore, it is not necessary to control the particle size of the conductive powder so highly, and even if the production lot of the conductive powder to be purchased is switched in the middle, the desired line width can be stably formed. The composition can be provided. As a result, the yield can be improved and mass productivity and productivity can be improved.
 ここで開示される好ましい一態様では、上記有機成分が、上記感光性組成物の光吸収性および光重合性のうちの少なくとも1つを調整する有機成分である。上記有機成分は、光重合開始剤系、光吸収剤、および重合禁止剤のうちの少なくとも1つであってもよい。上記有機成分は、光重合開始剤系であってもよい。このことにより、例えば感光性組成物中の光硬化成分(重合反応して硬化する成分。例えば光硬化性化合物。)の配合比を安定させることができ、導電膜の諸特性、例えば基材に対するタック性等を総じて高く維持したまま、ここに開示される技術の効果を奏することができる。 In a preferred embodiment disclosed herein, the organic component is an organic component that adjusts at least one of the light absorption and photopolymerizability of the photosensitive composition. The organic component may be at least one of a photopolymerization initiator system, a light absorber, and a polymerization inhibitor. The organic component may be a photopolymerization initiator system. This makes it possible to stabilize the blending ratio of, for example, a photocurable component (a component that cures by polymerization reaction, for example, a photocurable compound) in a photosensitive composition, and has various properties of a conductive film, for example, with respect to a substrate. The effects of the techniques disclosed herein can be achieved while maintaining high tackiness as a whole.
 ここで開示される好ましい一態様では、上記第1相関式における因子が、導電膜の線幅、膜厚、電極断面積、硬化収縮率、または抵抗値である。上記第1相関式における因子は、線幅であってもよい。 In a preferred embodiment disclosed here, the factors in the first correlation equation are the line width, film thickness, electrode cross-sectional area, curing shrinkage rate, or resistance value of the conductive film. The factor in the first correlation equation may be a line width.
 ここで開示される好ましい一態様では、上記第2相関式が、一次関数で示される。一次関数では2つの変数が比例関係にあるので、配合比の算出をシンプルかつ容易に行うことができる。 In a preferred embodiment disclosed here, the second correlation equation is represented by a linear function. Since the two variables are in a proportional relationship in the linear function, the compounding ratio can be calculated simply and easily.
 ここで開示される好ましい一態様では、上記導電性粉末が、銀系粒子を含む。このことにより、コストと低抵抗とのバランスに優れた導電層を実現することができる。 In a preferred embodiment disclosed herein, the conductive powder comprises silver-based particles. As a result, it is possible to realize a conductive layer having an excellent balance between cost and low resistance.
 ここで開示される好ましい一態様では、上記第1導電性粉末が、コアとなる金属材料と上記コアの表面の少なくとも一部を被覆するセラミック材料とを含んだコアシェル粒子である。このことにより、感光性組成物中での導電性粉末の安定性をより良く向上すると共に、高耐久性な導電層を実現することができる。また、例えばセラミック製の基材(セラミック基材)上に導電層を形成してセラミック電子部品を製造する用途では、セラミック基材との一体性を高めることができる。 In a preferred embodiment disclosed here, the first conductive powder is a core-shell particle containing a metal material as a core and a ceramic material covering at least a part of the surface of the core. As a result, the stability of the conductive powder in the photosensitive composition can be improved better, and a highly durable conductive layer can be realized. Further, for example, in an application in which a conductive layer is formed on a ceramic base material (ceramic base material) to manufacture a ceramic electronic component, the integrity with the ceramic base material can be enhanced.
 また、本発明により、上記感光性組成物を基材上に付与して、光硬化およびエッチングを行った後、焼成して、上記感光性組成物の焼成体からなる導電層を形成する工程を含む、電子部品の製造方法が提供される。このような製造方法によれば、小型および/または高密度な導電層を備えた電子部品を好適に製造することができる。 Further, according to the present invention, a step of applying the photosensitive composition onto a substrate, performing photocuring and etching, and then firing to form a conductive layer made of a fired body of the photosensitive composition. Methods for manufacturing electronic components are provided, including. According to such a manufacturing method, an electronic component having a small and / or high-density conductive layer can be suitably manufactured.
 また、本発明により、予め定められた配合比で導電性粉末を含む感光性組成物に対する有機成分の配合比を決定する配合比決定装置が提供される。この配合比決定装置は、利用者の入力を受け付けて、使用する導電性粉末の種類と粒径の実測値とが入力される入力部と、予め用意された第1相関式であって、上記導電性粉末の粒径と、導電膜の光吸収または光硬化に起因して変動する因子であって上記粒径の変位に相関して変動する何れかの因子との第1相関式、および、予め用意された第2相関式であって、上記第1相関式における因子と、上記感光性組成物に含まれる有機成分であって配合比の変動が上記因子の変動に相関する何れかの有機成分との第2相関式を記憶する記憶部と、上記第1相関式に基づいて、上記入力部に入力された上記実測値から、予め定められた目標レベルに対する上記第1相関式における因子の予想ズレ値を算出する第1算出部と、上記第2相関式に基づいて、上記予想ズレ値を打ち消す上記第2相関式における有機成分の配合比を算出する第2算出部と、を包含する。これにより、計算ミスを防止して、例えば作業に習熟していない作業者であっても、容易に有機成分の配合比を決定することができる。 Further, the present invention provides a blending ratio determining device for determining a blending ratio of an organic component with respect to a photosensitive composition containing a conductive powder at a predetermined blending ratio. This compounding ratio determining device is a first correlation equation prepared in advance with an input unit in which the type of conductive powder to be used and the measured value of the particle size are input in response to the input of the user. The first correlation equation between the particle size of the conductive powder and any factor that fluctuates due to light absorption or photocuring of the conductive film and that fluctuates in correlation with the displacement of the particle size, and A second correlation equation prepared in advance, one of the factors in the first correlation equation and any of the organic components contained in the photosensitive composition in which the fluctuation of the compounding ratio correlates with the fluctuation of the factor. A storage unit that stores the second correlation equation with the component, and a factor in the first correlation equation with respect to a predetermined target level from the actually measured value input to the input unit based on the first correlation equation. Includes a first calculation unit for calculating the expected deviation value and a second calculation unit for calculating the compounding ratio of the organic component in the second correlation equation that cancels the expected deviation value based on the second correlation equation. .. As a result, calculation errors can be prevented, and even an operator who is not proficient in the work can easily determine the blending ratio of the organic component.
 また、本発明により、コンピュータを、上記配合比決定装置として動作させるように構成されている、コンピュータプログラムが提供される。これにより、計算ミスを防止して、例えば作業に習熟していない作業者であっても、容易に有機成分の配合比を決定することができる。 Further, the present invention provides a computer program configured to operate a computer as the above-mentioned compounding ratio determining device. As a result, calculation errors can be prevented, and even an operator who is not proficient in the work can easily determine the blending ratio of the organic component.
 また、本発明により、上記感光性組成物の焼成体からなる導電層を備える、電子部品が提供される。上記感光性組成物によれば、細線状の配線を備えた導電層であっても安定して実現することができる。このため、上記感光性組成物によれば、小型および/または高密度な導電層を備えた電子部品を好適に実現することができる。 Further, according to the present invention, an electronic component including a conductive layer made of a fired body of the above photosensitive composition is provided. According to the above-mentioned photosensitive composition, even a conductive layer provided with fine wire-shaped wiring can be stably realized. Therefore, according to the above-mentioned photosensitive composition, it is possible to preferably realize an electronic component having a small size and / or a high-density conductive layer.
 また、本発明により、上記感光性組成物が有機系分散媒を含む、ペースト状の感光性組成物が提供される。ペースト状に調製することで、例えば塗布や印刷等の手段により、基材の所望の位置に所望の形態で上記感光性組成物を簡便に供給することができる。 Further, according to the present invention, there is provided a paste-like photosensitive composition in which the above-mentioned photosensitive composition contains an organic dispersion medium. By preparing the paste, the photosensitive composition can be easily supplied to a desired position of the base material in a desired form by means such as coating or printing.
図1は、導電膜の模式的な側面図であり、(A)は、平均粒径が大きい導電性粉末を用いた場合、(B)は、平均粒径が大きい導電性粉末を用いた場合の側面図である。1A and 1B are schematic side views of a conductive film. FIG. 1A shows a case where a conductive powder having a large average particle size is used, and FIG. 1B shows a case where a conductive powder having a large average particle size is used. It is a side view of. 図2は、本発明の一実施形態に係る製造方法のフローチャートである。FIG. 2 is a flowchart of a manufacturing method according to an embodiment of the present invention. 図3は、積層チップインダクタの構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the structure of the laminated chip inductor. 図4は、配合比決定装置の機能ブロック図である。FIG. 4 is a functional block diagram of the compounding ratio determining device. 図5は、実施例1に係る第1相関式の一例である。FIG. 5 is an example of the first correlation equation according to the first embodiment. 図6は、光重合開始剤系に係る第2相関式の一例である。FIG. 6 is an example of the second correlation equation relating to the photopolymerization initiator system. 図7は、実線幅を比較したグラフである。FIG. 7 is a graph comparing the solid line widths. 図8は、実施例2に係る第1相関式の一例である。FIG. 8 is an example of the first correlation equation according to the second embodiment. 図9は、実施例2に係る第1相関式の一例である。FIG. 9 is an example of the first correlation equation according to the second embodiment. 図10は、紫外線吸収剤に係る第2相関式の一例である。FIG. 10 is an example of the second correlation equation relating to the ultraviolet absorber. 図11は、光重合禁止剤に係る第2相関式の一例である。FIG. 11 is an example of the second correlation equation relating to the photopolymerization inhibitor.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、導電膜や導電層の形成方法、電子部品の製造方法等)は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて理解することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, a method for forming a conductive film or a conductive layer, a method for manufacturing an electronic component, etc.) are described in the present specification. It can be understood based on the technical content taught by the above and the general technical common sense of those skilled in the art in the field. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art.
 なお、本明細書において「導電膜」とは、感光性組成物を有機成分の沸点以下の温度(概ね200℃以下、例えば100℃以下)で乾燥させた膜状体(乾燥物)をいう。導電膜は、未焼成(焼成前)の膜状体全般を包含する。導電膜は、光硬化前の未硬化物であってもよく、光硬化後の硬化物であってもよい。また、本明細書において「導電層」とは、感光性組成物を導電性粉末の焼結温度以上で焼成した焼結体(焼成物)をいう。導電層は、配線(線状体)、配線パターン、ベタパターン、を包含する。また、本明細書において範囲を示す「A~B」の表記は、A以上B以下の意と共に、「好ましくはAより大きい」および「好ましくはBより小さい」の意を包含するものとする。 In the present specification, the "conductive film" refers to a film-like body (dried product) obtained by drying a photosensitive composition at a temperature equal to or lower than the boiling point of an organic component (generally 200 ° C. or lower, for example 100 ° C. or lower). The conductive film includes all unfired (before firing) film-like bodies. The conductive film may be an uncured product before photo-curing or a cured product after photo-curing. Further, in the present specification, the “conductive layer” refers to a sintered body (fired product) obtained by firing a photosensitive composition at a temperature equal to or higher than the sintering temperature of a conductive powder. The conductive layer includes wiring (linear body), wiring pattern, and solid pattern. In addition, the notation of "A to B" indicating the range in the present specification includes the meanings of "A or more and B or less", as well as "preferably larger than A" and "preferably smaller than B".
≪感光性組成物の製造方法≫
 本実施形態では、特に要求特性として線幅が重要であるという背景から、目標レベルの因子を線幅とした(線幅を対象とした)製造方法を説明する。すなわち、本実施形態において、予め定められた目標レベルは「目標線幅」で表され、予想ズレ値は「予想ズレ幅」で表される。ただし、後述するように、目標レベルの因子は、導電膜の光吸収度や光硬化度に起因するものであればよく、線幅に限定されるものではない。
<< Manufacturing method of photosensitive composition >>
In the present embodiment, a manufacturing method in which the target level factor is the line width (targeting the line width) will be described from the background that the line width is particularly important as a required characteristic. That is, in the present embodiment, the predetermined target level is represented by the "target line width", and the expected deviation value is represented by the "expected deviation width". However, as will be described later, the target level factor may be due to the light absorption degree or the photocurability degree of the conductive film, and is not limited to the line width.
 図2は、本実施形態に係る製造方法のフローチャートである。ここに開示される製造方法は、予め定められた配合比で導電性粉末を含む感光性組成物を製造する方法である。本実施形態において、かかる製造方法は、次のステップ:(ステップS1)平均粒径の測定工程;(ステップS2)予想ズレ幅の確認工程;(ステップS3)有機成分の配合比決定工程;(ステップS4)感光性組成物の調製工程;を包含する。以下、各工程について順に説明する。 FIG. 2 is a flowchart of the manufacturing method according to the present embodiment. The production method disclosed herein is a method for producing a photosensitive composition containing a conductive powder at a predetermined compounding ratio. In the present embodiment, such a production method is described in the following steps: (step S1) measurement step of average particle size; (step S2) confirmation step of expected deviation width; (step S3) step of determining compounding ratio of organic components; (step S3). S4) The step of preparing the photosensitive composition; Hereinafter, each step will be described in order.
<(ステップS1)平均粒径の測定工程>
 本工程では、まず、感光性組成物の製造に使用する導電性粉末を用意する。導電性粉末は、導電層に電気伝導性を付与する成分である。導電性粉末は、市販品を購入してもよく、従来公知の方法で自ら作製してもよい。導電性粉末の種類は特に限定されず、従来公知のものの中から、例えば用途等に応じて、1種類を単独で、または2種類以上を適宜組み合わせて用いることができる。
<(Step S1) Measurement step of average particle size>
In this step, first, a conductive powder used for producing a photosensitive composition is prepared. The conductive powder is a component that imparts electrical conductivity to the conductive layer. The conductive powder may be purchased as a commercially available product, or may be produced by itself by a conventionally known method. The type of the conductive powder is not particularly limited, and one of the conventionally known ones may be used alone or two or more of them may be appropriately combined depending on the intended use.
 導電性粉末としては、例えば、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、パラジウム(Pd)、アルミニウム(Al)、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、タングステン(W)、イリジウム(Ir)、オスミウム(Os)等の金属の単体、およびこれらの混合物や合金等が挙げられる。合金としては、例えば、銀-パラジウム(Ag-Pd)、銀-白金(Ag-Pt)、銀-銅(Ag-Cu)等の銀合金が挙げられる。好適な一態様では、導電性粉末が銀系粒子を含んでいる。銀は比較的コストが安く、かつ電気伝導度が高い。このため、導電性粉末が銀系粒子を含むことでコストと低抵抗とのバランスに優れた導電層を実現することができる。なお、本明細書において「銀系粒子」とは、銀成分を含むもの全般を包含する。銀系粒子の一例として、銀の単体、上記した銀合金、銀系粒子をコアとするコアシェル粒子、例えば銀-セラミックのコアシェル粒子等が挙げられる。 Examples of the conductive powder include gold (Au), silver (Ag), copper (Cu), platinum (Pt), palladium (Pd), aluminum (Al), nickel (Ni), ruthenium (Ru), and rhodium ( Examples thereof include simple metals such as Rh), tungsten (W), iridium (Ir), and osmium (Os), and mixtures and alloys thereof. Examples of the alloy include silver alloys such as silver-palladium (Ag-Pd), silver-platinum (Ag-Pt), and silver-copper (Ag-Cu). In a preferred embodiment, the conductive powder comprises silver-based particles. Silver is relatively inexpensive and has high electrical conductivity. Therefore, since the conductive powder contains silver-based particles, it is possible to realize a conductive layer having an excellent balance between cost and low resistance. In addition, in this specification, "silver-based particles" include all those containing a silver component. Examples of silver-based particles include silver alone, the above-mentioned silver alloy, and core-shell particles having silver-based particles as a core, for example, silver-ceramic core-shell particles and the like.
 導電性粉末は、その表面に有機表面処理剤が付着していてもよい。有機表面処理剤は、例えば、感光性組成物中における導電性粉末の分散性を向上する、導電性粉末と他の含有成分との親和性を高める、導電性粉末を構成する金属の表面酸化を防止する、のうちの少なくとも1つの目的で使用されうる。有機表面処理剤としては、例えば、カルボン酸等の脂肪酸、ベンゾトリアゾール系化合物等が挙げられる。 An organic surface treatment agent may be attached to the surface of the conductive powder. The organic surface treatment agent, for example, improves the dispersibility of the conductive powder in the photosensitive composition, enhances the affinity between the conductive powder and other contained components, and surface oxidizes the metal constituting the conductive powder. It can be used for at least one of the purposes of preventing. Examples of the organic surface treatment agent include fatty acids such as carboxylic acids and benzotriazole compounds.
 好適な一態様では、導電性粉末が、金属-セラミックのコアシェル粒子を含んでいる。金属-セラミックのコアシェル粒子は、金属材料を含むコア部と、セラミック材料を含み、コア部の表面の少なくとも一部を被覆する被覆部と、を有する。被覆部は、典型的には複数の微細なセラミック粒子を含んで構成されている。被覆部を構成するセラミック粒子の平均粒径は、典型的にはコア部を構成する金属材料の平均粒径よりも小さく、例えば金属材料の平均粒径の1/1000~1/2、さらには1/100~1/10程度であってもよい。セラミック材料は、化学的安定性や耐熱性、耐久性に優れる。このため、金属-セラミックのコアシェル粒子の形態を採用することにより、感光性組成物中での導電性粉末の安定性をより良く向上すると共に、高耐久性な導電層を実現することができる。また、例えばセラミック製の基材上に導電層を形成してセラミック電子部品を製造する用途では、セラミック基材との一体性を高めることができ、焼成後の導電層の剥離や断線を好適に抑えることができる。 In a preferred embodiment, the conductive powder contains metal-ceramic core-shell particles. Metal-ceramic core-shell particles have a core containing a metal material and a coating containing a ceramic material and covering at least a portion of the surface of the core. The coating is typically composed of a plurality of fine ceramic particles. The average particle size of the ceramic particles constituting the coating portion is typically smaller than the average particle size of the metal material constituting the core portion, for example, 1/1000 to 1/2 of the average particle size of the metal material, and further. It may be about 1/100 to 1/10. Ceramic materials are excellent in chemical stability, heat resistance, and durability. Therefore, by adopting the form of metal-ceramic core-shell particles, it is possible to better improve the stability of the conductive powder in the photosensitive composition and realize a highly durable conductive layer. Further, for example, in an application in which a conductive layer is formed on a ceramic base material to manufacture a ceramic electronic component, the integralness with the ceramic base material can be enhanced, and the conductive layer can be preferably peeled off or broken after firing. It can be suppressed.
 特に限定されるものではないが、コアシェル粒子の被覆部を構成するセラミック材料としては、例えば、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化セリウム(セリア)、酸化イットリウム(イットリア)、チタン酸バリウム等の酸化物系材料;コーディエライト、ムライト、フォルステライト、ステアタイト、サイアロン、ジルコン、フェライト等の複合酸化物系材料;窒化ケイ素(シリコンナイトライド)、窒化アルミニウム(アルミナイトライド)等の窒化物系材料;炭化ケイ素(シリコンカーバイド)等の炭化物系材料;ハイドロキシアパタイト等の水酸化物系材料;等が挙げられる。例えばセラミック製の基材上に導電層を形成して、セラミック電子部品を製造する用途では、セラミック基材と同じあるいは親和性に優れたセラミック材料が好ましい。特に限定されるものではないが、コアシェル粒子におけるセラミック材料の含有比率は、例えばコア部の金属材料100質量部に対して0.01~5.0質量部であってもよい。 Although not particularly limited, examples of the ceramic material constituting the coating portion of the core-shell particles include zirconium oxide (zirconia), magnesium oxide (magnesia), aluminum oxide (alumina), silicon oxide (silica), and titanium oxide. (Titania), cerium oxide (ceria), ittium oxide (itria), barium titanate and other oxide-based materials; cordierite, mulite, forsterite, steatite, sialon, zircone, ferrite and other composite oxide-based materials Nitride-based materials such as silicon nitride (silicon nitride) and aluminum nitride (aluminum nitride); carbide-based materials such as silicon carbide (silicon carbide); hydroxide-based materials such as hydroxyapatite; and the like. For example, in an application in which a conductive layer is formed on a ceramic base material to manufacture a ceramic electronic component, a ceramic material having the same or excellent affinity as the ceramic base material is preferable. Although not particularly limited, the content ratio of the ceramic material in the core-shell particles may be, for example, 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the metal material in the core portion.
 特に限定されるものではないが、市販の導電性粉末を使用する場合は、露光性能(例えば光吸収度や光硬化度)との兼ね合いから、導電性粉末の平均粒径(公称値)が、概ね0.1~10μmであってもよい。平均粒径(公称値)を上記範囲とすることで、細線状の配線を一層安定的に形成することができる。感光性組成物中での凝集を抑制して感光性組成物の保存安定性を向上する観点からは、導電性粉末の平均粒径(公称値、例えば、レーザー回折・散乱法の測定やSEM観察等に基づく値)が、例えば、0.5μm以上、1μm以上、1.5μm以上、2μm以上であってもよい。また、細線形成性を向上したり、導電層の緻密化や低抵抗化を進めたりする観点からは、導電性粉末の平均粒径(公称値)が、例えば、5μm以下、4.5μm以下、4μm以下であってもよい。 Although not particularly limited, when a commercially available conductive powder is used, the average particle size (nominal value) of the conductive powder is determined in consideration of the exposure performance (for example, light absorption and photocurability). It may be approximately 0.1 to 10 μm. By setting the average particle size (nominal value) in the above range, fine wire-shaped wiring can be formed more stably. From the viewpoint of suppressing aggregation in the photosensitive composition and improving the storage stability of the photosensitive composition, the average particle size of the conductive powder (nominal value, for example, measurement of laser diffraction / scattering method or SEM observation) , Etc.) may be, for example, 0.5 μm or more, 1 μm or more, 1.5 μm or more, and 2 μm or more. Further, from the viewpoint of improving the fine line forming property, densifying the conductive layer, and reducing the resistance, the average particle size (nominal value) of the conductive powder is, for example, 5 μm or less, 4.5 μm or less. It may be 4 μm or less.
 特に限定されるものではないが、導電性粉末は、典型的には、平均アスペクト比が概ね1~2の略球状、好ましくは1~1.5、例えば1~1.3の球状である。このことにより、露光性能をより安定的に実現することができる。なお、本明細書において「平均アスペクト比」とは、導電性粉末を構成する複数の導電性粒子を電子顕微鏡で観察し、得られた観察画像から算出されるアスペクト比の算術平均値(長径/短径比)をいう。また、本明細書において「球状」とは、全体として概ね球体(ボール)と見なせる形態であることを示し、楕円状、多角体状、円盤球状等をも含みうる。 Although not particularly limited, the conductive powder is typically a substantially spherical shape having an average aspect ratio of about 1 to 2, preferably 1 to 1.5, for example, 1 to 1.3. As a result, the exposure performance can be realized more stably. In the present specification, the "average aspect ratio" is an arithmetic mean value (major axis / major axis / major axis) of the aspect ratio calculated from an observation image obtained by observing a plurality of conductive particles constituting the conductive powder with an electron microscope. Minority ratio). Further, in the present specification, the term "spherical" means a form that can be generally regarded as a sphere (ball) as a whole, and may include an elliptical shape, a polygonal shape, a disk spherical shape, and the like.
 特に限定されるものではないが、導電性粉末は、JIS Z 8781:2013年に基づくL表色系において、明度Lが50以上であるとよい。このことにより、露光時に未硬化の導電膜の深部にまで安定して光が届くようになり、例えば、膜厚が5μm以上、さらには10μm以上のような厚めの導電層をも安定的に形成することができる。上記観点からは、導電性粉末の明度Lが、概ね55以上、例えば60以上であってもよい。なお、明度Lの測定は、例えばJIS Z 8722:2009年に準拠する分光測色計で行うことができる。 Although not particularly limited, the conductive powder is preferably having a lightness L * of 50 or more in the L * a * b * color system based on JIS Z 8781: 2013. As a result, the light can reach the deep part of the uncured conductive film stably at the time of exposure, and for example, a thick conductive layer having a film thickness of 5 μm or more and further 10 μm or more is stably formed. can do. From the above viewpoint, the lightness L * of the conductive powder may be approximately 55 or more, for example 60 or more. The brightness L * can be measured by, for example, a spectrocolorimeter based on JIS Z 8722: 2009.
 本工程では、次に、使用する導電性粉末の平均粒径を実測する。平均粒径の測定方法、測定装置および測定条件ならびに測定結果の解析条件は、後述する第1相関式の算出時と統一するとよい。これにより、後の予想ズレ幅の確認工程(ステップS2)における予想精度を向上することができる。一例では、レーザー回折・散乱法に基づく粒度分布測定装置を用いて粒度分布測定を行う。例えば、マイクロトラック・ベル株式会社製のマイクロトラックMT-3000IIシリーズを用いることにより、概ね0.02~2800μmの粒径範囲を測定することができる。粒度分布測定により、導電性粉末の体積基準の粒度分布が得られる。そして、粒度分布において、粒径の小さい側から積算値50%に相当する粒径(D50粒径)を「平均粒径(実測値)」とする。以上のようにして、感光性組成物の製造に使用する導電性粉末の平均粒径(実測値)を取得する。 In this step, next, the average particle size of the conductive powder used is actually measured. The method for measuring the average particle size, the measuring device, the measuring conditions, and the analysis conditions for the measurement results may be unified with those at the time of calculating the first correlation equation described later. As a result, the prediction accuracy in the subsequent step of confirming the expected deviation width (step S2) can be improved. In one example, the particle size distribution is measured using a particle size distribution measuring device based on the laser diffraction / scattering method. For example, by using the Microtrack MT-3000II series manufactured by Microtrack Bell Co., Ltd., it is possible to measure a particle size range of approximately 0.02 to 2800 μm. By measuring the particle size distribution, a volume-based particle size distribution of the conductive powder can be obtained. Then, in the particle size distribution, the particle size (D50 particle size) corresponding to the integrated value of 50% from the side with the smaller particle size is defined as the “average particle size (actual measurement value)”. As described above, the average particle size (measured value) of the conductive powder used for producing the photosensitive composition is obtained.
<(ステップS2)予想ズレ幅の確認工程>
 本工程では、まず、第1相関式を用意する。第1相関式は、例えば導電性粉末の種類ごと(例えば製品名ごと)に予め用意されている。第1相関式は、相関係数Rが概ね0.85以上、好ましくは0.9以上、例えば0.92以上であるとよい。第1相関式は、例えば次のようにして用意することができる。
<(Step S2) Confirmation process of expected deviation width>
In this step, first, the first correlation equation is prepared. The first correlation equation is prepared in advance for each type of conductive powder (for example, for each product name). In the first correlation equation, the correlation coefficient R 2 is generally 0.85 or more, preferably 0.9 or more, for example 0.92 or more. The first correlation equation can be prepared, for example, as follows.
 すなわち、まず製造ロットおよび/または平均粒径(公称値)の異なる複数の導電性粉末を用意する。このとき、複数の導電性粉末の粒径以外の物性、例えば、露光性能(例えば光吸収度や光硬化度)に比較的な大きな影響を与えうる導電性粉末の金属種、平均アスペクト比、明度L等については条件を統一(略同じく)することで、粒径以外のバイアスを取り除いて、粒径そのものの影響をクリアに評価することができる。次に、用意した複数の導電性粉末の平均粒径をそれぞれ個別に実測する。平均粒径の測定は、従来公知の測定方法で行うことができる。例えば、レーザー回折・散乱法に基づく粒度分布測定装置を用いて行うことができる。 That is, first, a plurality of conductive powders having different production lots and / or average particle diameters (nominal values) are prepared. At this time, physical characteristics other than the particle size of the plurality of conductive powders, for example, the metal type, average aspect ratio, and brightness of the conductive powder that can have a comparatively large effect on the exposure performance (for example, light absorption and photocurability). By unifying the conditions (substantially the same) for L * etc., it is possible to remove biases other than the particle size and clearly evaluate the influence of the particle size itself. Next, the average particle diameters of the prepared plurality of conductive powders are individually measured. The average particle size can be measured by a conventionally known measuring method. For example, it can be performed using a particle size distribution measuring device based on a laser diffraction / scattering method.
 次に、平均粒径を実測した複数の導電性粉末を用いて、それぞれ感光性組成物を調製する。例えば、まず有機成分を含む所定のベヒクルを調製し、そこに導電性粉末を分散させて、感光性組成物を調製する。これにより、導電性粉末以外の成分とその配合比が統一され、導電性粉末の種類のみが異なる複数の感光性組成物を調製する。次に、調製した感光性組成物をそれぞれ基材上に付与して、光硬化およびエッチングを行う。これにより、細線状の配線を形成する。 Next, each photosensitive composition is prepared using a plurality of conductive powders whose average particle size has been actually measured. For example, first, a predetermined vehicle containing an organic component is prepared, and a conductive powder is dispersed therein to prepare a photosensitive composition. As a result, components other than the conductive powder and their blending ratios are unified, and a plurality of photosensitive compositions different only in the type of the conductive powder are prepared. Next, the prepared photosensitive compositions are applied onto the substrate, respectively, and photocured and etched. As a result, a thin wire-shaped wiring is formed.
 次に、基材上の配線を観察し、得られた観察画像から配線の線幅を計測する。配線の観察には、例えばレーザー顕微鏡を用いることができる。このとき、線幅の計測は複数視野について行い、その算術平均値を実線幅(実際の線幅)とする。そして、例えば、横軸Xに導電性粉末の平均粒径(実測値)をとり縦軸Yに実線幅をとった「平均粒径(実測値)X-実線幅Y」のグラフにデータをプロットする。このグラフから、平均粒径(実測値)と実線幅との相関式を算出する。このようにして、第1相関式を用意する。 Next, observe the wiring on the base material and measure the line width of the wiring from the obtained observation image. For example, a laser microscope can be used for observing the wiring. At this time, the line width is measured for a plurality of fields of view, and the arithmetic mean value is taken as the solid line width (actual line width). Then, for example, the data is plotted on a graph of "average particle size (measured value) X-solid line width Y" in which the average particle size (measured value) of the conductive powder is taken on the horizontal axis X and the solid line width is taken on the vertical axis Y. To do. From this graph, the correlation formula between the average particle size (measured value) and the solid line width is calculated. In this way, the first correlation equation is prepared.
 本工程では、次に、ステップS1で得られた実測値を、同じ種類の導電性粉末に係る第1相関式と対比する。そして、予め定められた目標線幅に対して想定されるズレ幅(予想ズレ幅)を確認する。例えばまず、ステップS1で得られた実測値を、平均粒径(実測値)と実線幅との相関式に内挿して、予想される線幅を算出する。そして、予想される線幅と所望の目標線幅との差分を予想ズレ幅として算出する。なお、目標線幅は任意に設定することができる。このようにして、予想ズレ幅を確認する。 In this step, next, the measured value obtained in step S1 is compared with the first correlation equation relating to the same type of conductive powder. Then, the expected deviation width (expected deviation width) with respect to the predetermined target line width is confirmed. For example, first, the measured value obtained in step S1 is interpolated into the correlation equation between the average particle size (measured value) and the solid line width to calculate the expected line width. Then, the difference between the expected line width and the desired target line width is calculated as the expected deviation width. The target line width can be set arbitrarily. In this way, the expected deviation width is confirmed.
<(ステップS3)有機成分の配合比決定工程>
 本工程では、まず、第2相関式を用意する。第2相関式は、例えば導電性粉末の種類ごと(例えば製品名ごと)に予め用意されている。第2相関式は、相関係数Rが概ね0.85以上、好ましくは0.9以上、例えば0.92以上であるとよい。第2相関式は、一次関数で示されているとよい。一次関数では2つの変数が比例関係にある。このため、配合比の算出をシンプルかつ容易に行うことができる。第2相関式は、例えば次のようにして用意することができる。すなわち、まず感光性組成物の製造に使用する有機成分のうちの少なくとも1つを用意する。例えば、第1相関式の算出時に用いたベヒクルに含まれる有機成分のうちの少なくとも1つを用意する。用意する有機成分は、1種類であってもよいし、例えば2種類以上であってもよい。
<(Step S3) Step of determining the mixing ratio of organic components>
In this step, first, a second correlation equation is prepared. The second correlation equation is prepared in advance for each type of conductive powder (for example, for each product name). In the second correlation equation, the correlation coefficient R 2 is generally 0.85 or more, preferably 0.9 or more, for example 0.92 or more. The second correlation equation may be represented by a linear function. In a linear function, two variables are in a proportional relationship. Therefore, the compounding ratio can be calculated simply and easily. The second correlation equation can be prepared, for example, as follows. That is, first, at least one of the organic components used in the production of the photosensitive composition is prepared. For example, at least one of the organic components contained in the vehicle used in the calculation of the first correlation equation is prepared. The organic component to be prepared may be one kind or, for example, two or more kinds.
 特に限定されるものではないが、このとき用意する有機成分は、感光性組成物の硬化速度に影響を与える成分、例えば有機バインダおよび光硬化性化合物以外の、感光性組成物の光吸収性および光重合性のうちの少なくとも1つを調整する有機成分(硬化速度調整剤)を含むとよい。用意する有機成分は、例えば、(A)光重合開始剤、(B)増感剤、(C)光吸収剤、および(D)重合禁止剤のうちの少なくとも1つを含むとよい。なかでも、重合開始剤系、すなわち(A)光重合開始剤および(B)増感剤のうちの少なくとも1つを含むとよい。用意する有機成分は、例えば(A)~(D)の成分うち、ベヒクル中で最も配合比の高い第1成分であってもよく、2番目に配合比の高い第2成分をさらに含んでもよい。 Although not particularly limited, the organic component prepared at this time is a component that affects the curing rate of the photosensitive composition, for example, the light absorption of the photosensitive composition other than the organic binder and the photocurable compound. It is preferable to contain an organic component (curing rate adjusting agent) that adjusts at least one of photopolymerizability. The organic component to be prepared may contain, for example, at least one of (A) a photopolymerization initiator, (B) a sensitizer, (C) a light absorber, and (D) a polymerization inhibitor. Among them, it is preferable to include at least one of a polymerization initiator system, that is, (A) a photopolymerization initiator and (B) a sensitizer. The organic component to be prepared may be, for example, the first component having the highest compounding ratio in the vehicle among the components (A) to (D), or may further contain the second component having the second highest compounding ratio. ..
 (A)光重合開始剤は、光照射によって分解し、ラジカルや陽イオン等の活性種を発生させて光硬化成分の重合反応を進行させる成分である。光重合開始剤は、感光性組成物の光重合性を調整する(詳しくは重合反応を加速する)成分である。光重合開始剤としては、従来公知のものの中から、例えば光硬化成分の種類等に応じて、1種を単独で、または2種以上を適宜組み合わせて用いることができる。光重合開始剤は、光ラジカル重合開始剤であってもよく、光カチオン重合開始剤であってもよく、光アニオン重合開始剤であってもよい。特に、反応速度が速いことや熱による硬化が不要なことから、光ラジカル重合開始剤が好ましい。典型例として、ベンゾイン系光重合開始剤、α-ヒドロキシアセトフェノン系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、ベンジルケタール系光重合開始剤、α-ヒドロキシアセトフェノン系光重合開始剤、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、チタノセン系光重合開始剤、0-アシルオキシム系光重合開始剤、オキシムエステル系光重合開始剤、ベンゾフェノン系光重合開始剤、アクリジン系光重合開始剤等が挙げられる。 (A) The photopolymerization initiator is a component that is decomposed by light irradiation to generate active species such as radicals and cations to promote the polymerization reaction of the photocurable component. The photopolymerization initiator is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, accelerates the polymerization reaction). As the photopolymerization initiator, one of the conventionally known ones may be used alone or two or more thereof may be appropriately combined depending on, for example, the type of photocurable component. The photopolymerization initiator may be a photoradical polymerization initiator, a photocationic polymerization initiator, or a photoanionic polymerization initiator. In particular, a photoradical polymerization initiator is preferable because it has a high reaction rate and does not require curing by heat. Typical examples are benzoin-based photopolymerization initiators, α-hydroxyacetophenone-based photopolymerization initiators, α-aminoalkylphenone-based photopolymerization initiators, benzylketal-based photopolymerization initiators, α-hydroxyacetophenone-based photopolymerization initiators, α-Aminoacetophenone-based photopolymerization initiator, acylphosphine oxide-based photopolymerization initiator, titanosen-based photopolymerization initiator, 0-acyloxime-based photopolymerization initiator, oxime ester-based photopolymerization initiator, benzophenone-based photopolymerization initiator , Acrydin-based photopolymerization initiator and the like.
 (B)増感剤(促進剤、反応促進剤等ともいう。)は、光を吸収して得たエネルギーを光硬化成分に伝えて、光硬化成分の重合反応を促進させる成分である。増感剤は、感光性組成物の光重合性を調整する(詳しくは重合反応を加速する)成分である。増感剤としては、従来公知のものの中から、例えば照射する光の波長等に応じて、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、アントラセン系増感剤、芳香族ケトン系増感剤、ビフェニル系増感剤、アントラキノン系増感剤等が挙げられる。 (B) A sensitizer (also referred to as an accelerator, a reaction accelerator, etc.) is a component that transfers the energy obtained by absorbing light to a photo-curing component to promote the polymerization reaction of the photo-curing component. The sensitizer is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, accelerates the polymerization reaction). As the sensitizer, one of the conventionally known sensitizers may be used alone or two or more thereof may be appropriately used in combination, depending on, for example, the wavelength of the light to be irradiated. Typical examples include anthracene-based sensitizers, aromatic ketone-based sensitizers, biphenyl-based sensitizers, anthraquinone-based sensitizers, and the like.
 (C)光吸収剤(着色剤、有機顔料等ともいう。)は、感光性組成物の光吸収性を調整する成分である。光吸収剤は、典型的には感光性組成物の色みを変化させて、光の侵入率を調整する成分である。光吸収剤は、紫外線の波長の光を一部または全部吸収する紫外線吸収剤であってもよく、赤外線の波長の光を一部または全部吸収する赤外線吸収剤であってもよく、可視光の波長の光を一部または全部吸収する可視光吸収剤(例えば黒色剤)であってもよい。光吸収剤としては、従来公知のものの中から、例えば照射する光の波長範囲等に応じて、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、ベンゾトリアゾール系光吸収剤、トリアジン系光吸収剤、ベンゾフェノン系光吸収剤、ベンゾエート系光吸収剤、サリチル酸エステル系光吸収剤、シアノアクリレート系光吸収剤、レゾルシノール系光吸収剤、ヒンダードアミン系光吸収剤等が挙げられる。 (C) A light absorber (also referred to as a colorant, an organic pigment, etc.) is a component that adjusts the light absorption of the photosensitive composition. The light absorber is a component that typically changes the color of the photosensitive composition to adjust the rate of light penetration. The light absorber may be an ultraviolet absorber that absorbs part or all of the light having an ultraviolet wavelength, or may be an infrared absorber that absorbs part or all of the light having an infrared wavelength, and is of visible light. It may be a visible light absorber (for example, a blackening agent) that absorbs a part or all of the light of a wavelength. As the light absorber, one of the conventionally known ones can be used alone or two or more of them can be used in combination, for example, depending on the wavelength range of the light to be irradiated. Typical examples are benzotriazole-based light absorbers, triazine-based light absorbers, benzophenone-based light absorbers, benzoate-based light absorbers, salicylate ester-based light absorbers, cyanoacrylate-based light absorbers, resorcinol-based light absorbers, and hindered amines. Examples include system light absorbers.
 特に紫外線吸収剤は、紫外線露光を行うに当たり、フォトマスクの開口から導電膜の内部に侵入した光が散乱し、フォトマスクの遮光部分を硬化させ、線幅がフォトマスクの開口幅より太めになる現象を低減させる効果がある。 In particular, when UV absorbers are exposed to UV light, the light that has entered the inside of the conductive film is scattered through the opening of the photomask, hardening the light-shielding part of the photomask, and the line width becomes thicker than the opening width of the photomask. It has the effect of reducing the phenomenon.
 紫外線吸収剤としては250~520nmの波長範囲で高い吸収係数を有するものが好ましく、なかでも350~450nmの波長範囲で高い吸収係数を有する有機染料が好ましい。有機染料としてアゾ系、ベンゾフェノン系、アミノケトン系、キサンテン系、キノリン系、アミノケトン系、アントラキノン系、ジフェニルシアノアクリレート系、トリアジン系、p-アミノ安息香酸系等が挙げられる。なかでもアゾ系およびベンゾフェノン系の有機染料が好ましい。 As the ultraviolet absorber, one having a high absorption coefficient in the wavelength range of 250 to 520 nm is preferable, and among them, an organic dye having a high absorption coefficient in the wavelength range of 350 to 450 nm is preferable. Examples of organic dyes include azo, benzophenone, aminoketone, xanthene, quinoline, aminoketone, anthraquinone, diphenylcyanoacrylate, triazine, p-aminobenzoic acid and the like. Of these, azo-based and benzophenone-based organic dyes are preferable.
 アゾ系有機染料としては、例えば、スダンブルー、スダンR、スダンII、スダンIII、スダンIV、オイルオレンジSS、オイルバイオレット、オイルイエローOB等が挙げられる。ベンゾフェノン系有機染料としては、例えば、BASF社製のユビナール(登録商標)D-50(2,2’,4,4’-テトラハイドロオキシベンゾフェノン)、ユビナール(登録商標)MS40(2-ヒドロキシ-4-メトキシベンゾフェノン5-スルフォン酸)、ユビナール(登録商標)DS49(2,2-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン-5,5’-ジスルフォン酸ナトリウム)等が挙げられる。 Examples of the azo-based organic dye include Sudan Blue, Sudan R, Sudan II, Sudan III, Sudan IV, Oil Orange SS, Oil Violet, Oil Yellow OB, and the like. Examples of the benzophenone-based organic dye include Ubinal (registered trademark) D-50 (2,2', 4,4'-tetrahydrooxybenzophenone) manufactured by BASF, and Ubinal (registered trademark) MS40 (2-hydroxy-4). -Methoxybenzophenone 5-sulphonic acid), ubinal (registered trademark) DS49 (2,2-dihydroxy-4,4'-dimethoxybenzophenone-5,5'-sodium dissulphonate) and the like.
 (D)重合禁止剤(禁止剤、光安定剤、安定化剤、ラジカル捕捉剤、酸素捕捉剤等ともいう。)は、光硬化成分の重合反応を阻害して、感光性組成物の耐候性、耐熱性および保存安定性のうちの少なくとも1つを向上する成分である。重合禁止剤は、感光性組成物の光重合性を調整する(詳しくは重合反応を減速する)成分である。重合禁止剤としては、従来公知のものの中から、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、ヒドロキノンおよびその誘導体や、フェノール誘導体が挙げられる。 (D) The polymerization inhibitor (also referred to as a banning agent, a light stabilizer, a stabilizer, a radical scavenger, an oxygen scavenger, etc.) inhibits the polymerization reaction of the photocurable component and has weather resistance of the photosensitive composition. , A component that improves at least one of heat resistance and storage stability. The polymerization inhibitor is a component that adjusts the photopolymerizability of the photosensitive composition (specifically, slows down the polymerization reaction). As the polymerization inhibitor, one of the conventionally known ones can be used alone, or two or more thereof can be used in combination as appropriate. Typical examples include hydroquinone and its derivatives, and phenol derivatives.
 次に、所定の導電性粉末を用いて、用意した有機成分の配合比を段階的に変更して、複数の感光性組成物を調製する。次に、第1相関式の算出時と同様に、調製した感光性組成物をそれぞれ基材上に付与して、光硬化およびエッチングを行う。これにより、細線状の配線を形成する。次に、基材上の配線をレーザー顕微鏡で観察し、得られた観察画像から配線の線幅を計測する。このとき、線幅の計測は複数視野について行い、その算術平均値を実線幅(実際の線幅)とする。そして、例えば、横軸Xに感光性組成物中の有機成分の配合比をとり縦軸Yに実線幅をとった「有機成分の配合比X-実線幅Y」のグラフにデータをプロットする。このグラフから、有機成分の配合比と実線幅との相関式を算出する。このようにして、第2相関式を用意する。 Next, using a predetermined conductive powder, the blending ratio of the prepared organic components is changed stepwise to prepare a plurality of photosensitive compositions. Next, as in the calculation of the first correlation equation, the prepared photosensitive compositions are applied onto the substrate, and photocuring and etching are performed. As a result, a thin wire-shaped wiring is formed. Next, the wiring on the base material is observed with a laser microscope, and the line width of the wiring is measured from the obtained observation image. At this time, the line width is measured for a plurality of fields of view, and the arithmetic mean value is taken as the solid line width (actual line width). Then, for example, the data is plotted on a graph of "organic component compounding ratio X-solid line width Y" in which the horizontal axis X is the compounding ratio of the organic components in the photosensitive composition and the vertical axis Y is the solid line width. From this graph, the correlation formula between the compounding ratio of the organic component and the solid line width is calculated. In this way, the second correlation equation is prepared.
 本工程では、次に、第2相関式を用いて、ステップS2で確認された予想ズレ幅を打ち消すように感光性組成物における有機成分の配合比を決定する。言い換えれば、目標線幅に誘導するように、感光性組成物における有機成分の配合比を決定する。一例では、第1相関式の算出時に用いたベヒクルの配合をベースとする。そして、第2相関式を算出済みの有機成分のうちの少なくとも1つについて、ベースとなるベヒクルから配合比を変更する。このことにより、ステップS2で確認された予想ズレ幅がキャンセルされうる。なお、配合比を変更しない有機成分については、ベースとなるベヒクルと同じであってよい。配合比を変更する有機成分は、1種類であってもよいし、例えば予想ズレ幅が大きい場合等には、2種類以上の有機成分の配合比をそれぞれ少しずつ変更することにより、全体として予想ズレ幅を打ち消すようにしてもよい。 In this step, next, the second correlation equation is used to determine the blending ratio of the organic component in the photosensitive composition so as to cancel the expected deviation width confirmed in step S2. In other words, the blending ratio of the organic component in the photosensitive composition is determined so as to induce the target line width. In one example, the formulation of the vehicle used in the calculation of the first correlation equation is used as a base. Then, for at least one of the organic components for which the second correlation equation has been calculated, the compounding ratio is changed from the base vehicle. As a result, the expected deviation width confirmed in step S2 can be cancelled. The organic component that does not change the blending ratio may be the same as the base vehicle. The blending ratio may be changed by one type. For example, when the expected deviation width is large, the blending ratio of two or more kinds of organic components is changed little by little to predict the whole. The deviation width may be canceled out.
 例えば重合開始剤系を用いて予想ズレ幅を打ち消す場合は、まず第2相関式として、重合開始剤系の配合比と実線幅との相関式を用意する。例えば、光重合開始剤の配合比と実線幅との相関式、および、増感剤の配合比と実線幅との相関式の2つを用意する。この相関式において、重合開始剤系の配合比と実線幅とが正の相関を有すると仮定する。この場合、予想される線幅が目標線幅よりも大きければ、相関式に基づいて、ベースとなるベヒクルの配合から、予想ズレ幅を打ち消すように重合開始剤系の配合比を減らす。一方、予想される線幅が目標線幅よりも小さければ、相関式に基づいて、ベースとなるベヒクルの配合から、予想ズレ幅を打ち消すように重合開始剤系の配合比を増やす。 For example, when canceling the expected deviation width by using a polymerization initiator system, first prepare a correlation equation between the compounding ratio of the polymerization initiator system and the solid line width as the second correlation equation. For example, two equations are prepared: a correlation equation between the compounding ratio of the photopolymerization initiator and the solid line width, and a correlation equation between the compounding ratio of the sensitizer and the solid line width. In this correlation equation, it is assumed that the compounding ratio of the polymerization initiator system and the solid line width have a positive correlation. In this case, if the expected line width is larger than the target line width, the compounding ratio of the polymerization initiator system is reduced from the compounding of the base vehicle so as to cancel the expected deviation width based on the correlation equation. On the other hand, if the expected line width is smaller than the target line width, the compounding ratio of the polymerization initiator system is increased so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation.
 また、例えば重合禁止剤を用いて予想ズレ幅を打ち消す場合は、まず第2相関式として、重合禁止剤の配合比と実線幅との相関式を用意する。この相関式において、重合禁止剤の配合比と実線幅とが負の相関を有すると仮定する。この場合、予想される線幅が目標線幅よりも大きければ、相関式に基づいて、ベースとなるベヒクルの配合から予想ズレ幅を打ち消すように重合禁止剤の配合比を増やす。また、予想される線幅が目標線幅よりも小さければ、相関式に基づいて、ベースとなるベヒクルの配合から予想ズレ幅を打ち消すように重合禁止剤の配合比を減らす。以上のようにして、感光性組成物における有機成分の配合比を決定する。 Further, for example, when canceling the expected deviation width by using a polymerization inhibitor, first prepare a correlation equation between the compounding ratio of the polymerization inhibitor and the solid line width as the second correlation equation. In this correlation equation, it is assumed that the compounding ratio of the polymerization inhibitor and the solid line width have a negative correlation. In this case, if the expected line width is larger than the target line width, the compounding ratio of the polymerization inhibitor is increased so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation. If the expected line width is smaller than the target line width, the compounding ratio of the polymerization inhibitor is reduced so as to cancel the expected deviation width from the compounding of the base vehicle based on the correlation equation. As described above, the compounding ratio of the organic component in the photosensitive composition is determined.
 なお、本工程で配合比を調整する有機成分は、上記した(A)~(D)の成分に限定されない。例えば、他の性能(例えば基材に対する導電膜のタック性等)が著しく低下しない限りにおいて、後述する光硬化性樹脂および光硬化性化合物のうちの少なくとも1つの配合比を調整してもよい。また、例えば後述するその他添加成分の配合比を調整してもよい。 The organic component for which the compounding ratio is adjusted in this step is not limited to the components (A) to (D) described above. For example, the compounding ratio of at least one of the photocurable resin and the photocurable compound described later may be adjusted as long as other performances (for example, the tackiness of the conductive film with respect to the substrate) are not significantly deteriorated. Further, for example, the blending ratio of other additive components described later may be adjusted.
<(ステップS4)感光性組成物の調製工程>
 本工程では、ステップS1で平均粒径を実測した導電性粉末を用いて、感光性組成物を調製する。例えばまず、有機バインダと、光硬化性化合と、光重合開始剤と、増感剤と、光吸収剤と、重合禁止剤と、必要に応じて用いられるその他添加成分とを、有機系分散媒中で混合して、液状のベヒクルを調製する。このとき、感光性組成物がステップS3で決定された配合比となるように、各成分を添加する。次に、導電性粉末とベヒクルとを予め定められた配合比で混合する。これにより、感光性組成物を調製する。本実施形態では、有機系分散媒を含み、ペースト状(スラリー状、インク状を包含する。)に調製された感光性組成物(ペースト状の感光性組成物)を得ることができる。
<(Step S4) Preparation step of photosensitive composition>
In this step, a photosensitive composition is prepared using the conductive powder whose average particle size was actually measured in step S1. For example, first, an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, a light absorber, a polymerization inhibitor, and other additive components used as needed are mixed as an organic dispersion medium. Mix in to prepare a liquid vehicle. At this time, each component is added so that the photosensitive composition has the blending ratio determined in step S3. Next, the conductive powder and the vehicle are mixed at a predetermined blending ratio. This prepares a photosensitive composition. In the present embodiment, it is possible to obtain a photosensitive composition (paste-like photosensitive composition) containing an organic dispersion medium and prepared in the form of a paste (including slurry-like and ink-like).
 有機バインダ(ポリマー成分)は、基材と未硬化の導電膜との接着性を高める成分である。有機バインダは、感光性(光によって化学的または構造的な変化を生じる性質をいう。例えば光硬化性。)を有していてもよいし、有していなくてもよい。有機バインダは、重量平均分子量が2000以上5000未満の光重合性オリゴマー(プレポリマー)と、重量平均分子量が5000以上の光重合性ポリマーと、を包含する。有機バインダとしては、従来公知のものの中から、例えば基材や光重合性化合物、光重合開始剤の種類等に応じて、1種を単独で、または2種以上を適宜組み合わせて用いることができる。有機バインダとしては、現像工程において現像液で容易に除去可能なものが好ましい。例えば、現像工程においてアルカリ性の現像液を使用する場合には、ヒドロキシル基(-OH)、カルボキシル基(-C(=O)OH)、エステル結合(-C(=O)O-)、スルホ基(-SOH)等の、酸性を示す構造部分を有する化合物が好ましい。このことにより、未露光部分に残渣が残存し難くなり、例えばファインラインの間のスペースを安定して確保することができる。 The organic binder (polymer component) is a component that enhances the adhesiveness between the base material and the uncured conductive film. The organic binder may or may not have photosensitive (a property of causing a chemical or structural change by light, for example, photocurability). The organic binder includes a photopolymerizable oligomer (prepolymer) having a weight average molecular weight of 2000 or more and less than 5000, and a photopolymerizable polymer having a weight average molecular weight of 5000 or more. As the organic binder, one of the conventionally known binders can be used alone or two or more thereof can be appropriately used depending on, for example, the base material, the photopolymerizable compound, the type of the photopolymerization initiator, and the like. .. The organic binder is preferably one that can be easily removed with a developing solution in the developing step. For example, when an alkaline developer is used in the developing process, a hydroxyl group (-OH), a carboxyl group (-C (= O) OH), an ester bond (-C (= O) O-), and a sulfo group. of (-SO 3 H) or the like, a compound having a structural part showing acidity are preferable. As a result, the residue is less likely to remain in the unexposed portion, and for example, a space between fine lines can be stably secured.
 有機バインダの一好適例として、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース系高分子、アクリル樹脂、フェノール樹脂、アルキド樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。なかでも、現像工程において除去し易い観点から、親水性の有機バインダ、例えば、セルロース系高分子やアクリル樹脂等が好ましい。 Preferable examples of organic binders include cellulosic polymers such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose and hydroxymethyl cellulose, acrylic resins, phenol resins, alkyd resins, polyvinyl alcohol, polyvinyl butyral and the like. Of these, hydrophilic organic binders such as cellulosic polymers and acrylic resins are preferable from the viewpoint of easy removal in the developing process.
 また、有機バインダとして光硬化性樹脂を用いても良い。光硬化性樹脂は、光重合開始剤から生じた活性種によって重合し、硬化する光硬化成分である。光硬化性樹脂は、典型的には不飽和結合および環状構造のうちの少なくとも一方を1つ以上有する。光硬化性樹脂としては、従来公知のものの中から、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性二重結合を有する樹脂、例えば、アクリル樹脂、エポキシ樹脂等が挙げられる。なお、本明細書において、「(メタ)アクリロイル」とは、「メタクリロイル」および「アクリロイル」を包含する用語である。 Further, a photocurable resin may be used as the organic binder. A photocurable resin is a photocurable component that is polymerized and cured by an active species generated from a photopolymerization initiator. Photocurable resins typically have at least one of unsaturated bonds and a cyclic structure. As the photocurable resin, one of the conventionally known ones can be used alone, or two or more of them can be used in combination as appropriate. Typical examples include resins having an ethylenic double bond such as a (meth) acryloyl group, a vinyl group, and an allyl group, such as an acrylic resin and an epoxy resin. In addition, in this specification, "(meth) acryloyl" is a term including "methacryloyl" and "acryloyl".
 アクリル樹脂の具体例として、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のアルキル(メタ)アクリレートの単独重合体や、アルキル(メタ)アクリレートを主モノマー(最も大きな質量比を占めるモノマー)として、当該主モノマーに共重合性を有する副モノマーを含む共重合体が挙げられる。 Specific examples of the acrylic resin include homopolymers of alkyl (meth) acrylates such as polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate, and alkyl (meth) acrylate as the main monomer (largest mass ratio). Examples of the monomer) include a copolymer containing a submonomer having copolymerizability in the main monomer.
 光硬化性化合物(モノマー成分)は、光重合開始剤から生じた活性種によって重合し、硬化する光硬化成分である。重合反応は、例えば付加重合であってもよいし開環重合であってもよい。光硬化性化合物は、ラジカル重合性であってもよく、カチオン重合性であってもよい。光硬化性化合物は、重量平均分子量が2000未満のモノマーである。光硬化性化合物としては、従来公知のものの中から、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、(メタ)アクリロイル基を有する(メタ)アクリレートモノマーが挙げられる。(メタ)アクリレートモノマーは、1分子あたり1つの官能基を有する単官能(メタ)アクリレートと、1分子あたり2つ以上の官能基を有する多官能(メタ)アクリレートと、それらの変性物とを包含する。(メタ)アクリレートモノマーの具体例として、多官能(メタ)アクリレートや、ウレタン結合を有するウレタン変性(メタ)アクリレート、エポキシ変性(メタ)アクリレート、シリコーン変性(メタ)アクリレート等が挙げられる。なお、本明細書において、「(メタ)アクリレート」とは、「メタクリレート」および「アクリレート」を包含する用語である。 A photocurable compound (monomer component) is a photocurable component that is polymerized and cured by an active species generated from a photopolymerization initiator. The polymerization reaction may be, for example, addition polymerization or ring-opening polymerization. The photocurable compound may be radically polymerizable or cationically polymerizable. The photocurable compound is a monomer having a weight average molecular weight of less than 2000. As the photocurable compound, one of the conventionally known compounds can be used alone, or two or more thereof can be used in combination as appropriate. A typical example is a (meth) acrylate monomer having a (meth) acryloyl group. The (meth) acrylate monomer includes a monofunctional (meth) acrylate having one functional group per molecule, a polyfunctional (meth) acrylate having two or more functional groups per molecule, and modified products thereof. To do. Specific examples of the (meth) acrylate monomer include polyfunctional (meth) acrylate, urethane-modified (meth) acrylate having a urethane bond, epoxy-modified (meth) acrylate, silicone-modified (meth) acrylate, and the like. In addition, in this specification, "(meth) acrylate" is a term including "methacrylate" and "acrylate".
 有機系分散媒は、感光性組成物に適度な粘性や流動性を付与して、感光性組成物の取扱性や導電膜を成形する際の作業性を向上する成分である。有機系分散媒としては、従来公知のものの中から、1種を単独で、または2種以上を適宜組み合わせて用いることができる。典型例として、アルコール系溶剤、グリコール系溶剤、エーテル系溶剤、エステル系溶剤、炭化水素系溶剤、ミネラルスピリット等の有機溶剤が挙げられる。なかでも、感光性組成物の保存安定性や導電膜成形時の取扱性を向上する観点からは、沸点が150℃以上の有機溶剤、さらには170℃以上の有機溶剤が好ましい。また、他の一好適例として、導電膜を印刷した後の乾燥温度を低く抑える観点からは、沸点が250℃以下の有機溶剤、さらには沸点が220℃以下の有機溶剤が好ましい。 The organic dispersion medium is a component that imparts appropriate viscosity and fluidity to the photosensitive composition and improves the handleability of the photosensitive composition and the workability when molding the conductive film. As the organic dispersion medium, one of the conventionally known ones can be used alone, or two or more of them can be used in combination as appropriate. Typical examples include organic solvents such as alcohol solvents, glycol solvents, ether solvents, ester solvents, hydrocarbon solvents, and mineral spirits. Among them, an organic solvent having a boiling point of 150 ° C. or higher, and further an organic solvent having a boiling point of 170 ° C. or higher are preferable from the viewpoint of improving the storage stability of the photosensitive composition and the handleability at the time of molding the conductive film. Further, as another preferable example, from the viewpoint of keeping the drying temperature after printing the conductive film low, an organic solvent having a boiling point of 250 ° C. or lower, and further an organic solvent having a boiling point of 220 ° C. or lower are preferable.
 その他添加成分としては、従来公知のものの中から、1種を単独で、または2種以上を適宜組み合わせて用いることができる。一例として、酸化防止剤、可塑剤、界面活性剤、レベリング剤、増粘剤、湿潤剤、分散剤、消泡剤、帯電防止剤、ゲル化防止剤、防腐剤、充填剤(有機または無機フィラー)、ガラス粉末、セラミック粉末(Al、ZrO、SiO等)、有機金属化合物(金属レジネート)等が挙げられる。 As the other additive component, one of the conventionally known components can be used alone, or two or more thereof can be used in combination as appropriate. As an example, antioxidants, plasticizers, surfactants, leveling agents, thickeners, wetting agents, dispersants, defoamers, antistatic agents, antigels, preservatives, fillers (organic or inorganic fillers). ), Glass powder, ceramic powder (Al 2 O 3 , ZrO 2 , SiO 2, etc.), organic metal compound (metal resinate) and the like.
 本実施形態において、感光性組成物中の導電性粉末の配合比は予め定められている。特に限定されるものではないが、導電性粉末の配合比は、概ね50質量%以上、典型的には60~95質量%、例えば70~90質量%としてもよい。上記範囲を満たすことで、緻密性や電気伝導性の高い導電層を形成することができる。また、感光性組成物の取扱性や導電膜を成形する際の作業性を向上することができる。 In the present embodiment, the blending ratio of the conductive powder in the photosensitive composition is predetermined. Although not particularly limited, the blending ratio of the conductive powder may be approximately 50% by mass or more, typically 60 to 95% by mass, for example, 70 to 90% by mass. By satisfying the above range, a conductive layer having high density and electrical conductivity can be formed. In addition, the handleability of the photosensitive composition and the workability when molding the conductive film can be improved.
 特に限定されるものではないが、感光性組成物全体に占める重合開始剤系の割合は、概ね5質量%以下、典型的には0.01~1質量%、例えば0.02~0.5質量%、0.05~0.2質量%としてもよい。また、光吸収剤の割合は、概ね0.5質量%以下、典型的には0.1質量%以下、例えば0.01質量%以下、さらには0.001質量%以下としてもよい。また、重合禁止剤の割合は、概ね0.5質量%以下、典型的には0.1質量%以下、例えば0.001質量%以下としてもよい。また、感光性組成物全体に占める光硬化性樹脂の割合は、概ね5質量%以下、典型的には0.01~1質量%、例えば0.02~0.5質量%、0.03~0.2質量%としてもよい。また、感光性組成物全体に占める光硬化性化合物の割合は、概ね5質量%以下、典型的には0.01~1質量%、例えば0.02~0.5質量%、0.03~0.2質量%としてもよい。また、光硬化性樹脂と光硬化性化合物との配合比は、概ね1:10~10:1、例えば1:3~3:1、さらには1:2~2:1としてもよい。また、有機系分散媒の割合は、概ね1~50質量%、典型的には3~30質量%、例えば5~20質量%としてもよい。また、その他添加成分の割合は、概ね5質量%以下、例えば3質量%以下としてもよい。 Although not particularly limited, the proportion of the polymerization initiator system in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5. It may be mass%, 0.05 to 0.2 mass%. The proportion of the light absorber may be approximately 0.5% by mass or less, typically 0.1% by mass or less, for example, 0.01% by mass or less, and further may be 0.001% by mass or less. The proportion of the polymerization inhibitor may be approximately 0.5% by mass or less, typically 0.1% by mass or less, for example 0.001% by mass or less. The proportion of the photocurable resin in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5% by mass, 0.03 to 0.03 to It may be 0.2% by mass. The proportion of the photocurable compound in the entire photosensitive composition is approximately 5% by mass or less, typically 0.01 to 1% by mass, for example 0.02 to 0.5% by mass, 0.03 to 0.03 to It may be 0.2% by mass. The blending ratio of the photocurable resin and the photocurable compound may be approximately 1:10 to 10: 1, for example, 1: 3 to 3: 1, and further 1: 2 to 2: 1. The proportion of the organic dispersion medium may be approximately 1 to 50% by mass, typically 3 to 30% by mass, for example, 5 to 20% by mass. Moreover, the ratio of other additive components may be about 5% by mass or less, for example, 3% by mass or less.
≪感光性組成物の用途≫
 ここに開示される感光性組成物によれば、L/Sが30μm/30μmよりも微細な、さらにはL/Sが20μm/20μmよりも微細な導電層を安定して形成することができる。そのため、ここに開示される感光性組成物は、例えば、インダクタンス部品やコンデンサ部品、多層回路基板等の様々な電子部品における導電層の形成に好適に利用することができる。電子部品は、表面実装タイプやスルーホール実装タイプ等、各種の実装形態のものであってよい。電子部品は、積層型であってもよいし、巻線型であってもよいし、薄膜型であってもよい。インダクタンス部品の典型例としては、高周波フィルタ、コモンモードフィルタ、高周波回路用インダクタ(コイル)、一般回路用インダクタ(コイル)、高周波フィルタ、チョークコイル、トランス等が挙げられる。
≪Application of photosensitive composition≫
According to the photosensitive composition disclosed herein, it is possible to stably form a conductive layer having an L / S finer than 30 μm / 30 μm and further having an L / S finer than 20 μm / 20 μm. Therefore, the photosensitive composition disclosed herein can be suitably used for forming a conductive layer in various electronic components such as an inductance component, a capacitor component, and a multilayer circuit board. The electronic component may be of various mounting forms such as a surface mount type and a through-hole mount type. The electronic component may be a laminated type, a wound type, or a thin film type. Typical examples of inductance components include high-frequency filters, common-mode filters, inductors for high-frequency circuits (coils), inductors for general circuits (coils), high-frequency filters, choke coils, transformers, and the like.
 また、導電性粉末が金属-セラミックのコアシェル粒子を含む感光性組成物は、セラミック電子部品の導電層の形成に好適に利用することができる。なお、本明細書において、「セラミック電子部品」とは、非晶質のセラミック基材(ガラスセラミック基材)あるいは結晶質(すなわち非ガラス)のセラミック基材を有する電子部品全般を包含する。典型例として、セラミック製の基材を有する高周波フィルタ、セラミックインダクタ(コイル)、セラミックコンデンサ、低温焼成積層セラミック基材(Low Temperature Co-fired Ceramics Substrate:LTCC基材)、高温焼成積層セラミック基材(High Temperature Co-fired Ceramics Substrate:HTCC基材)等が挙げられる。 Further, a photosensitive composition in which the conductive powder contains metal-ceramic core-shell particles can be suitably used for forming a conductive layer of a ceramic electronic component. In the present specification, the "ceramic electronic component" includes all electronic components having an amorphous ceramic base material (glass ceramic base material) or a crystalline (that is, non-glass) ceramic base material. As a typical example, a high-frequency filter having a ceramic base material, a ceramic inductor (coil), a ceramic capacitor, a low-temperature co-fired ceramics substrate (LTCC base material), and a high-temperature fired laminated ceramic base material (LTCC base material) High Temperature Co-fired Ceramics Substrate (HTCC base material) and the like can be mentioned.
 図3は、積層チップインダクタ10の構造を模式的に示す断面図である。なお、図3における寸法関係(長さ、幅、厚み等)は必ずしも実際の寸法関係を反映するものではない。また、図面中の符号X、Yは、それぞれ左右方向、上下方向を表す。ただし、これは説明の便宜上の方向に過ぎない。 FIG. 3 is a cross-sectional view schematically showing the structure of the laminated chip inductor 10. The dimensional relationship (length, width, thickness, etc.) in FIG. 3 does not necessarily reflect the actual dimensional relationship. Further, the reference numerals X and Y in the drawings represent the horizontal direction and the vertical direction, respectively. However, this is just for convenience of explanation.
 積層チップインダクタ10は、本体部11と、本体部11の左右方向Xの両側面部分に設けられた外部電極20とを備えている。積層チップインダクタ10の形状は、例えば、1608形状(1.6mm×0.8mm)、2520形状(2.5mm×2.0mm)等のサイズである。本体部11は、セラミック層(誘電体層)12と内部電極層14とが一体化された構造を有する。セラミック層12は、例えば、導電性粉末の被覆部を構成しうるものとして上述したようなセラミック材料で構成されている。上下方向Yにおいて、セラミック層12の間には、内部電極層14が配置されている。内部電極層14は、上述の感光性組成物を用いて形成されている。セラミック層12を挟んで上下方向Yに隣り合う内部電極層14は、セラミック層12に設けられたビア16を通じて導通されている。このことにより、内部電極層14は、3次元的な渦巻き形状(螺旋状)に構成されている。内部電極層14の両端はそれぞれ外部電極20と接続されている。 The laminated chip inductor 10 includes a main body portion 11 and external electrodes 20 provided on both side surface portions of the main body portion 11 in the left-right direction X. The shape of the laminated chip inductor 10 is, for example, a size such as 1608 shape (1.6 mm × 0.8 mm) or 2520 shape (2.5 mm × 2.0 mm). The main body 11 has a structure in which a ceramic layer (dielectric layer) 12 and an internal electrode layer 14 are integrated. The ceramic layer 12 is made of, for example, a ceramic material as described above as being capable of forming a coating portion of a conductive powder. In the vertical direction Y, the internal electrode layer 14 is arranged between the ceramic layers 12. The internal electrode layer 14 is formed by using the above-mentioned photosensitive composition. The internal electrode layers 14 adjacent to each other in the vertical direction Y with the ceramic layer 12 interposed therebetween are conducted through vias 16 provided in the ceramic layer 12. As a result, the internal electrode layer 14 is formed in a three-dimensional spiral shape (spiral shape). Both ends of the internal electrode layer 14 are connected to the external electrode 20.
 積層チップインダクタ10は、例えば、以下の手順で製造することができる。すなわち、まず、原料となるセラミック材料とバインダ樹脂と有機溶剤とを含むペーストを調製し、これをキャリアシート上に供給して、セラミックグリーンシートを形成する。次いで、このセラミックグリーンシートを圧延後、所望のサイズにカットして、複数のセラミック層形成用グリーンシートを得る。次いで、複数のセラミック層形成用グリーンシートの所定の位置に、穿孔機等を用いて適宜ビアホールを形成する。次いで、上述の感光性組成物を用いて、複数のセラミック層形成用グリーンシートの所定の位置に、所定のコイルパターンの導電膜を形成する。一例として、以下の工程:(ステップA)感光性組成物をセラミック層形成用グリーンシート上に付与して乾燥することにより、感光性組成物の乾燥体からなる導電膜を成形する工程;(ステップB)導電膜に所定の開口パターンのフォトマスクを被せ、フォトマスクを介して露光し、導電膜を部分的に光硬化させる工程:(ステップC)光硬化後の導電膜をエッチングしての未硬化の部分を除去する工程;を包含する製造方法によって、未焼成の状態の導電膜を形成することができる。 The laminated chip inductor 10 can be manufactured, for example, by the following procedure. That is, first, a paste containing a ceramic material as a raw material, a binder resin, and an organic solvent is prepared and supplied onto a carrier sheet to form a ceramic green sheet. Next, after rolling this ceramic green sheet, it is cut to a desired size to obtain a plurality of ceramic layer forming green sheets. Next, via holes are appropriately formed at predetermined positions of the plurality of ceramic layer forming green sheets by using a drilling machine or the like. Next, using the above-mentioned photosensitive composition, a conductive film having a predetermined coil pattern is formed at a predetermined position on a plurality of green sheets for forming a ceramic layer. As an example, the following step: (Step A) A step of forming a conductive film made of a dried product of the photosensitive composition by applying the photosensitive composition on a green sheet for forming a ceramic layer and drying it; (step). B) A step of covering the conductive film with a photomask having a predetermined opening pattern, exposing the conductive film through the photomask, and partially photocuring the conductive film: (step C) The conductive film after photocuring has not been etched. By a production method including the step of removing the cured portion; the conductive film in an unfired state can be formed.
 なお、上記感光性組成物を用いて導電膜を形成するにあたっては、従来公知の手法を適宜用いることができる。例えば、(ステップA)において、感光性組成物の付与は、スクリーン印刷等の各種印刷法や、バーコータ等を用いて行うことができる。感光性組成物の乾燥は、典型的には50~100℃で行うとよい。(ステップB)において、露光には、可視光線、紫外線、X線、電子線、α線、β線、γ線のような放射線を発する露光機を用いることができる。一例として、10~400nmの波長範囲の光線を発する露光機、例えば高圧水銀灯、メタルハライドランプ、キセノンランプ等の紫外線照射灯を用いることができる。(ステップC)において、エッチングには、例えば水酸化ナトリウムや炭酸ナトリウム等のアルカリ成分を含む水溶液を用いることができる。 In forming a conductive film using the above photosensitive composition, a conventionally known method can be appropriately used. For example, in (Step A), the photosensitive composition can be applied by using various printing methods such as screen printing, a bar coater, or the like. Drying of the photosensitive composition is typically carried out at 50-100 ° C. In (step B), an exposure machine that emits radiation such as visible light, ultraviolet rays, X-rays, electron beams, α rays, β rays, and γ rays can be used for exposure. As an example, an exposure machine that emits light rays in the wavelength range of 10 to 400 nm, for example, an ultraviolet irradiation lamp such as a high-pressure mercury lamp, a metal halide lamp, or a xenon lamp can be used. In (step C), an aqueous solution containing an alkaline component such as sodium hydroxide or sodium carbonate can be used for etching.
 次いで、未焼成の状態の導電膜が形成されているセラミック層形成用グリーンシートを複数枚積層し、圧着する。このことによって、未焼成のセラミックグリーンシートの積層体を作製する。次いで、セラミックグリーンシートの積層体を、例えば600~1000℃で焼成する。これによって、セラミックグリーンシートが一体的に焼結され、セラミック層12と、感光性組成物の焼成体からなる内部電極層14とを備えた本体部11が形成される。そして、本体部11の両端部に適当な外部電極形成用ペーストを付与し、焼成することによって、外部電極20を形成する。このようにして、積層チップインダクタ10を製造することができる。 Next, a plurality of green sheets for forming a ceramic layer on which a conductive film in an unfired state is formed are laminated and pressure-bonded. As a result, a laminated body of unfired ceramic green sheets is produced. Next, the laminated body of the ceramic green sheet is fired at, for example, 600 to 1000 ° C. As a result, the ceramic green sheet is integrally sintered, and the main body 11 including the ceramic layer 12 and the internal electrode layer 14 made of the fired body of the photosensitive composition is formed. Then, an appropriate external electrode forming paste is applied to both ends of the main body portion 11 and fired to form the external electrode 20. In this way, the laminated chip inductor 10 can be manufactured.
≪配合比決定装置≫
 図4は、配合比決定装置30の機能ブロック図である。ここに開示される配合比決定装置30は、入力部31と、記憶部32と、第1算出部33と、第2算出部34と、表示部35と、を備えている。配合比決定装置30の各部は、相互に通信可能に構成されている。配合比決定装置30の各部は、ソフトウェアによって構成されていてもよいし、ハードウェアによって構成されていてもよい。配合比決定装置30の各部は、プロセッサによって行われるものであってもよいし、回路に組み込まれたものであってもよい。
≪Mixing ratio determination device≫
FIG. 4 is a functional block diagram of the compounding ratio determining device 30. The blending ratio determining device 30 disclosed here includes an input unit 31, a storage unit 32, a first calculation unit 33, a second calculation unit 34, and a display unit 35. Each part of the compounding ratio determining device 30 is configured to be able to communicate with each other. Each part of the compounding ratio determining device 30 may be composed of software or hardware. Each part of the compounding ratio determining device 30 may be performed by a processor or may be incorporated in a circuit.
 入力部31は、利用者(例えば感光性組成物を調製する作業者)の操作入力を受け付けて、使用する導電性粉末の種類および平均粒径(実測値)、ならびに目標線幅を入力可能なように構成されている。複数の導電性粉末を併用する場合には、さらにそれらの混合比率を入力可能なように構成されている。導電性粉末の種類は、例えば、購入先、品目名(製品名)、品番等で表される情報である。導電性粉末の種類は、例えば、導電性粉末の構造(コアシェル構造か否か)や、平均粒径(公称値)、平均アスペクト比、明度L等の物性値で表される情報であってもよい。入力部31は、例えば、カーソルキーや数字入力キー等を備えたキーボード、マウス等のポインティングデバイス、ボタン等の入力装置(図示せず)を備えている。入力部31は、例えば表示部35に表示されたプルダウンメニューのなかから、導電性粉末の種類を選択可能なように構成されていてもよい。入力部31は、例えば、ホストコンピュータ等の外部機器や有線または無線で接続されたネットワークから、上記したような情報を取り込み可能なように構成されていてもよい。なお、本実施形態において、「目標線幅」は、予め定められた目標レベルの一例である。 The input unit 31 can receive an operation input of a user (for example, a worker who prepares a photosensitive composition) and input the type and average particle size (measured value) of the conductive powder to be used and the target line width. It is configured as follows. When a plurality of conductive powders are used in combination, the mixing ratio thereof can be further input. The type of the conductive powder is, for example, information represented by a purchaser, an item name (product name), a product number, or the like. The type of conductive powder is, for example, information represented by physical properties such as the structure of the conductive powder (whether or not it has a core-shell structure), average particle size (nominal value), average aspect ratio, and brightness L *. May be good. The input unit 31 includes, for example, a keyboard having cursor keys, number input keys, and the like, a pointing device such as a mouse, and an input device (not shown) such as buttons. The input unit 31 may be configured so that the type of the conductive powder can be selected from, for example, the pull-down menu displayed on the display unit 35. The input unit 31 may be configured so that the above-mentioned information can be taken in from an external device such as a host computer or a network connected by wire or wirelessly. In this embodiment, the "target line width" is an example of a predetermined target level.
 記憶部32は、第1相関式および第2相関式を記憶している。第1相関式および第2相関式は、導電性粉末の種類ごと(例えば製品名ごと)に予め記憶部32に記憶されている。このため、記憶部32に記憶されている第1相関式および第2相関式は、典型的にはそれぞれ複数である。第1相関式は、一次関数で示されていてもよい。特に限定されるものではないが、第1相関式は、例えば上記した導電性粉末の平均粒径(実測値)と実線幅との相関式である。第2相関式は、所定の傾き(変化の割合)を有している。第2相関式は、一次関数で示されていてもよい。特に限定されるものではないが、第2相関式は、例えば、上記した有機成分(例えば重合開始剤系)の配合比と実線幅との相関式である。記憶部32は、さらにベースとなるベヒクルの組成、すなわちベヒクルに含まれる各有機成分の種類と配合比を記憶していてもよい。 The storage unit 32 stores the first correlation equation and the second correlation equation. The first correlation equation and the second correlation equation are stored in advance in the storage unit 32 for each type of conductive powder (for example, for each product name). Therefore, the first correlation equation and the second correlation equation stored in the storage unit 32 are typically a plurality of each. The first correlation equation may be expressed by a linear function. Although not particularly limited, the first correlation equation is, for example, a correlation equation between the average particle size (actual measurement value) of the above-mentioned conductive powder and the solid line width. The second correlation equation has a predetermined slope (rate of change). The second correlation equation may be expressed by a linear function. Although not particularly limited, the second correlation equation is, for example, a correlation equation between the compounding ratio of the above-mentioned organic component (for example, a polymerization initiator system) and the solid line width. The storage unit 32 may further store the composition of the base vehicle, that is, the type and blending ratio of each organic component contained in the vehicle.
 第1算出部33は、利用者によって、入力部31から、使用する導電性粉末の種類および平均粒径(実測値)の入力操作がなされると、記憶部32に記憶されている第1相関式のなかから、入力された導電性粉末と同じ種類の導電性粉末に係る第1相関式を参照する。そして、入力部31に入力された平均粒径(実測値)から、目標線幅に対する予想ズレ幅を算出する。例えば、第1相関式が導電性粉末の平均粒径(実測値)と実線幅との相関式で示されている場合は、まず入力部31に入力された平均粒径(実測値)を対応する第1相関式に内挿して、予想される線幅を算出する。そして、予想される線幅と、利用者によって入力部31から入力された目標線幅と、の差分を予想ズレ幅として算出する。なお、本実施形態において、「予想ズレ幅」は、予想ズレ値の一例である。 When the user inputs the type of conductive powder to be used and the average particle size (actual measurement value) from the input unit 31, the first calculation unit 33 stores the first correlation in the storage unit 32. From the formulas, the first correlation formula relating to the same type of conductive powder as the input conductive powder is referred to. Then, the expected deviation width with respect to the target line width is calculated from the average particle size (actual measurement value) input to the input unit 31. For example, when the first correlation equation is expressed by the correlation equation between the average particle size (actual measurement value) of the conductive powder and the solid line width, the average particle size (actual measurement value) input to the input unit 31 is first corresponded. The expected line width is calculated by interpolating into the first correlation equation. Then, the difference between the expected line width and the target line width input from the input unit 31 by the user is calculated as the expected deviation width. In this embodiment, the "expected deviation width" is an example of the expected deviation value.
 第2算出部34は、第1算出部33で予想ズレ幅が算出されると、記憶部32に記憶されている第2相関式のなかから、入力された導電性粉末と同じ種類の導電性粉末に係る第2相関式を参照する。そして、第1算出部33で算出された予想ズレ幅に基づいて、有機成分の配合比を算出する。例えば、第2相関式が重合開始剤系の配合比と実線幅との相関式とで示されている場合は、予想ズレ幅を第2相関式の傾きで割り、予想ズレ幅を打ち消すための重合開始剤系の配合比を算出する。そして、ベヒクルに含まれる光重合開始剤系の配合比から、上記予想ズレ幅を打ち消すための配合比を増減して最終的な配合比とする。 When the expected deviation width is calculated by the first calculation unit 33, the second calculation unit 34 has the same type of conductivity as the input conductive powder from the second correlation equation stored in the storage unit 32. Refer to the second correlation equation for powder. Then, the compounding ratio of the organic component is calculated based on the expected deviation width calculated by the first calculation unit 33. For example, when the second correlation equation is indicated by the correlation equation between the compounding ratio of the polymerization initiator system and the solid line width, the expected deviation width is divided by the slope of the second correlation equation to cancel the expected deviation width. Calculate the compounding ratio of the polymerization initiator system. Then, the compounding ratio for canceling the expected deviation width is increased or decreased from the compounding ratio of the photopolymerization initiator system contained in the vehicle to obtain the final compounding ratio.
 配合比決定装置30は、例えばコンピュータであり、利用者に対するインターフェイス(I/F)と、制御プログラムの命令を実行する中央演算処理装置(CPU:central processing unit)と、CPUが実行するプログラムを格納したROM(read only memory)と、プログラムを展開するワーキングエリアとして使用されるRAM(random access memory)と、上記プログラムや各種データを格納するメモリ等の記憶装置と、を備えている。配合比決定装置30は、コンピュータのCPUを、配合比決定装置30の各部として動作させるように構成されたコンピュータプログラムであってもよい。かかるコンピュータプログラムは、配合比決定装置30の動作が書き込まれ、コンピュータで読み取り可能な記録媒体であっていてもよい。 The compounding ratio determining device 30 is, for example, a computer, and stores an interface (I / F) for a user, a central processing unit (CPU: central processing unit) that executes instructions of a control program, and a program executed by the CPU. It is equipped with a CPU (read only memory), a RAM (random access memory) used as a working area for deploying programs, and a storage device such as a memory for storing the above programs and various data. The compounding ratio determining device 30 may be a computer program configured to operate the CPU of the computer as each part of the compounding ratio determining device 30. Such a computer program may be a recording medium on which the operation of the compounding ratio determining device 30 is written and can be read by a computer.
 記録媒体としては、例えば、半導体記録媒体(例えば、ROM、不揮発性メモリーカード)、光記録媒体(例えば、DVD、MO、MD、CD、BD)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク)等が例示される。また、上記コンピュータプログラムは、上記記録媒体あるいはインターネットやイントラネット等のネットワークを介して、サーバーコンピュータに送信することができる。この場合、サーバーコンピュータもまた、配合比決定装置30の一形態である。 Examples of the recording medium include a semiconductor recording medium (for example, ROM, non-volatile memory card), an optical recording medium (for example, DVD, MO, MD, CD, BD), and a magnetic recording medium (for example, magnetic tape, flexible disk). Etc. are exemplified. Further, the computer program can be transmitted to the server computer via the recording medium or a network such as the Internet or an intranet. In this case, the server computer is also a form of the compounding ratio determining device 30.
 以下、本発明に関するいくつかの実施例を説明するが、本発明を係る実施例に示すものに限定することを意図したものではない。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to those shown in the examples.
<実施例1:1種類の導電性粉末を単独で用いる場合>
 以下、1種類の導電性粉末を単独で用いて感光性組成物を製造する場合を説明する。ここでは事前準備として、まず使用する導電性粉末に対応した第1相関式および第2相関式を用意した。具体的には、図5に示す第1相関式と、図6の第2相関式と、を用意した。図6は、光重合開始剤系の配合比を調整するための第2相関式である。
<Example 1: When one kind of conductive powder is used alone>
Hereinafter, a case where a photosensitive composition is produced by using one kind of conductive powder alone will be described. Here, as a preliminary preparation, first, a first correlation equation and a second correlation equation corresponding to the conductive powder to be used were prepared. Specifically, the first correlation equation shown in FIG. 5 and the second correlation equation shown in FIG. 6 were prepared. FIG. 6 is a second correlation equation for adjusting the compounding ratio of the photopolymerization initiator system.
 図5に示す第1相関式は、次のようにして用意されたものである。すなわち、まず導電性粉末として、平均粒径(公称値)が概ね3μm前後である市販の銀粉末を複数(ここでは15種類)用意した。次に、レーザー回折・散乱法に基づく粒度分布測定装置(マイクロトラック・ベル株式会社製の型式「MT-3000II」、測定範囲:0.02~2800μm)を用いて、分散溶媒中での湿式測定によって15種類の銀粉末の平均粒径をそれぞれ実測した。分散溶媒としては、銀粉末の凝集を抑制して、個々の粒子を分散溶媒中に分散させる観点から、アルコール系溶媒(具体的には、エタノール)を用いた。そして、体積基準の粒度分布を得た。なお、粒度分布は、典型的にはモード径(最頻粒子径)が1つのみの単峰性であった。粒度分布から、15種類の銀粉末の平均粒径(実測値)をそれぞれ読みとった。 The first correlation equation shown in FIG. 5 was prepared as follows. That is, first, as conductive powder, a plurality of commercially available silver powders (15 types in this case) having an average particle size (nominal value) of about 3 μm were prepared. Next, a wet measurement in a dispersion solvent is performed using a particle size distribution measuring device (model "MT-3000II" manufactured by Microtrac Bell Co., Ltd., measuring range: 0.02 to 2800 μm) based on the laser diffraction / scattering method. The average particle size of each of the 15 types of silver powder was actually measured. As the dispersion solvent, an alcohol solvent (specifically, ethanol) was used from the viewpoint of suppressing aggregation of the silver powder and dispersing individual particles in the dispersion solvent. Then, a volume-based particle size distribution was obtained. The particle size distribution was typically monomodal with only one mode diameter (mode diameter). From the particle size distribution, the average particle size (measured value) of 15 types of silver powder was read.
 次に、有機バインダと、光硬化性化合物と、光重合開始剤と、増感剤と、光吸収剤としての紫外線吸収剤と、重合禁止剤とを、表1の組成で有機系分散媒に溶解させて、ベヒクルを用意した。次に、上記用意した15種類の銀粉末と、ベヒクルとを、77:23の質量比で混合することにより、それぞれ感光性組成物を調製した。 Next, an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, an ultraviolet absorber as a light absorber, and a polymerization inhibitor were added to an organic dispersion medium having the composition shown in Table 1. It was melted and a vehicle was prepared. Next, the 15 kinds of silver powders prepared above and the vehicle were mixed at a mass ratio of 77:23 to prepare photosensitive compositions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、スクリーン印刷により、上記調製した感光性組成物を市販のセラミックグリーンシート上にそれぞれ塗布した。次に、これを60℃で15分間乾燥させて、グリーンシート上に導電膜(ベタ膜)を成形した(導電膜の成形工程)。次に、導電膜の上からフォトマスクを被せた。フォトマスクとしては、L/S=25μm/25μmのものを使用した。このフォトマスクを導電膜の上に被せた状態で、紫外線露光機により、2500mJ/cmの強度で光を照射し、導電膜を部分的に硬化させた(露光工程)。露光後、セラミックグリーンシートに0.4質量%のNaCO水溶液を吹き付け、未硬化の導電膜部分をエッチング除去した後、純水で洗浄し、室温で乾燥させた(現像工程)。こうして、セラミックグリーンシート上に配線パターンを形成した。 Next, the photosensitive composition prepared above was applied onto a commercially available ceramic green sheet by screen printing. Next, this was dried at 60 ° C. for 15 minutes to form a conductive film (solid film) on the green sheet (conductive film forming step). Next, a photomask was put on the conductive film. As the photomask, one with L / S = 25 μm / 25 μm was used. With this photomask covered on the conductive film, light was irradiated with an intensity of 2500 mJ / cm 2 by an ultraviolet exposure machine to partially cure the conductive film (exposure step). After the exposure, a 0.4% by mass Na 2 CO 3 aqueous solution was sprayed on the ceramic green sheet, the uncured conductive film portion was removed by etching, washed with pure water, and dried at room temperature (development step). In this way, the wiring pattern was formed on the ceramic green sheet.
 次に、配線パターンをレーザー顕微鏡で観察し、得られた観察画像から配線の線幅を計測した。なお、線幅の計測は複数視野について行い、その算術平均値を実線幅(実際の線幅)とした。そして、図5に示すように、15種類の銀粉末の平均粒径(実測値)と実線幅との相関をグラフに表すと共に、相関式(Y=5.593X+11.192)を算出した。図5に示す第1相関式では、銀粉末の平均粒径(実測値)と、当該銀粉末を含んだ感光性組成物を用いてなる実線幅とが比例(相関係数:0.92)している。図5に示す第1相関式は、一次関数で示されている。図5において、平均粒径(実測値)と実線幅とは正の相関を有している。すなわち、銀粉末の平均粒径(実測値)が大きくなるにつれて、線幅はリニアに太くなっている。 Next, the wiring pattern was observed with a laser microscope, and the line width of the wiring was measured from the obtained observation image. The line width was measured for multiple fields of view, and the arithmetic mean value was taken as the solid line width (actual line width). Then, as shown in FIG. 5, the correlation between the average particle size (actual measurement value) of the 15 types of silver powder and the solid line width was shown in a graph, and the correlation equation (Y = 5.593X + 11.192) was calculated. In the first correlation equation shown in FIG. 5, the average particle size (measured value) of the silver powder is proportional to the solid line width obtained by using the photosensitive composition containing the silver powder (correlation coefficient: 0.92). doing. The first correlation equation shown in FIG. 5 is represented by a linear function. In FIG. 5, the average particle size (measured value) and the solid line width have a positive correlation. That is, as the average particle size (measured value) of the silver powder increases, the line width increases linearly.
 図6の第2相関式は、次のようにして用意されたものである。すなわち、まず、導電性粉末として所定の銀粉末を用意した。また、有機バインダと、光硬化性化合物と、光重合開始剤と、増感剤と、紫外線吸収剤と、重合禁止剤と、有機系分散媒とを、上記した表1の配合比で混合して、ベースとなるベヒクルを用意した。次に、銀粉末とベヒクルとを77:23の質量比で混合することにより、ベースとなる感光性組成物を調製した。 The second correlation equation in FIG. 6 was prepared as follows. That is, first, a predetermined silver powder was prepared as the conductive powder. Further, an organic binder, a photocurable compound, a photopolymerization initiator, a sensitizer, an ultraviolet absorber, a polymerization inhibitor, and an organic dispersion medium are mixed at the blending ratios shown in Table 1 above. I prepared a base vehicle. Next, the silver powder and the vehicle were mixed at a mass ratio of 77:23 to prepare a base photosensitive composition.
 次に、ベースとなる感光性組成物の中から、表2のように光重合開始剤系(光重合開始剤および増感剤)の配合比を変化させた。このとき光重合開始剤系の配合比を増減した分は、有機系分散媒の量を増減することで調整した。例えば、光重合開始剤系の配合比を0.550から0.515に減らした場合は、その分(0.035)だけ有機系分散媒の量を増やした。このような感光性組成物を複数(ここでは5パターン)調製した。なお、光重合開始剤系の配合比を変化させた際に、光重合開始剤と増感剤との比率は一定とした。次に、上記調製した複数の感光性組成物を用いて、上述した第1相関式の算出時と同様に配線パターンを形成し、実線幅を求めた。そして、5パターンの感光性組成物中の光重合開始剤の配合比と実線幅との相関をグラフに表すと共に、相関式(Y=74.927X+19.762)を算出した。 Next, the compounding ratio of the photopolymerization initiator system (photopolymerization initiator and sensitizer) was changed from the base photosensitive composition as shown in Table 2. At this time, the amount by which the compounding ratio of the photopolymerization initiator was increased or decreased was adjusted by increasing or decreasing the amount of the organic dispersion medium. For example, when the compounding ratio of the photopolymerization initiator system was reduced from 0.550 to 0.515, the amount of the organic dispersion medium was increased by that amount (0.035). A plurality of such photosensitive compositions (here, 5 patterns) were prepared. When the compounding ratio of the photopolymerization initiator system was changed, the ratio of the photopolymerization initiator and the sensitizer was kept constant. Next, using the plurality of photosensitive compositions prepared above, a wiring pattern was formed in the same manner as in the calculation of the first correlation equation described above, and the solid line width was determined. Then, the correlation between the compounding ratio of the photopolymerization initiator in the five patterns of the photosensitive composition and the solid line width was shown in a graph, and the correlation equation (Y = 74.927X + 19.762) was calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図6の第2相関式では、感光性組成物中の重合開始剤系の配合比と実線幅とが比例(相関係数:0.96)している。図6の第2相関式は、一次関数で示されている。図6において、重合開始剤系の配合比と実線幅とは、正の相関を有している。すなわち、重合開始剤系の配合比が大きくなるにつれて、線幅がリニアに太くなっていることがわかる。 In the second correlation equation of FIG. 6, the compounding ratio of the polymerization initiator system in the photosensitive composition and the solid line width are proportional (correlation coefficient: 0.96). The second correlation equation in FIG. 6 is represented by a linear function. In FIG. 6, the compounding ratio of the polymerization initiator system and the solid line width have a positive correlation. That is, it can be seen that the line width increases linearly as the compounding ratio of the polymerization initiator system increases.
 実施例1では、以上のように第1相関式と第2相関式とを揃えた後、ステップS1として、感光性組成物に使用する銀粉末(平均粒径(公称値):3μm)を用意した。次に、第1相関式の算出時と同じ粒度分布測定装置を用いて、同じ測定解析条件で、銀粉末の平均粒径を実測した。そして、体積基準の粒度分布から銀粉末の平均粒径(実測値)を読みとった。ここでは、実測値が3.17μmであった。 In Example 1, after aligning the first correlation equation and the second correlation equation as described above, silver powder (average particle size (nominal value): 3 μm) used for the photosensitive composition is prepared as step S1. did. Next, the average particle size of the silver powder was actually measured under the same measurement and analysis conditions using the same particle size distribution measuring device as when calculating the first correlation equation. Then, the average particle size (measured value) of the silver powder was read from the volume-based particle size distribution. Here, the measured value was 3.17 μm.
 次に、ステップS2として、ステップS1で得られた実測値を、図5の第1相関式と対比した。そして、予め定められた目標線幅に対する予想ズレ幅を確認した。ここでは、実測値が3.17μmを、図5の第1相関式(Y=5.593X+11.192)に内挿すると、予想される線幅が28.92μmと算出される。このため、目標線幅が27.3μmである場合、予想ズレ幅は、(予想される線幅28.92μm)-(目標線幅27.3μm)で、+1.62μmと算出される。すなわち、このままベース通りのベヒクルの組成で感光性組成物を調製すると、目標線幅から1.62μmの線幅の太りが生じる可能性が高いことがわかる。 Next, as step S2, the actually measured value obtained in step S1 was compared with the first correlation equation of FIG. Then, the expected deviation width with respect to the predetermined target line width was confirmed. Here, when the measured value of 3.17 μm is interpolated into the first correlation equation (Y = 5.593X + 11.192) in FIG. 5, the expected line width is calculated to be 28.92 μm. Therefore, when the target line width is 27.3 μm, the expected deviation width is calculated as +1.62 μm by (expected line width 28.92 μm) − (target line width 27.3 μm). That is, it can be seen that if the photosensitive composition is prepared with the same vehicle composition as the base as it is, there is a high possibility that the line width becomes thicker by 1.62 μm from the target line width.
 そこで、次に、ステップS3として、予想ズレ幅を打ち消して目標線幅に近づけるように、有機成分の配合比を変更した。ここでは、図6の第2相関式(Y=74.927X+19.762)に基づいて、重合開始剤系の配合比を調整した。すなわち、予想ズレ幅+1.62μmを第2相関式の傾き74.927で割った値(=1.62/74.927)=+0.022が、予想ズレ幅+1.62μm分を調整する重合開始剤系の量となる。したがって、予想ズレ幅を打ち消すために、ベースの感光性組成物から重合開始剤系の割合を0.022質量%減少させた。表3は、予想ズレ幅を考慮して決定された重合開始剤系の配合比の一例である。 Therefore, next, in step S3, the blending ratio of the organic components was changed so as to cancel the expected deviation width and bring it closer to the target line width. Here, the compounding ratio of the polymerization initiator system was adjusted based on the second correlation equation (Y = 74.927X + 19.762) in FIG. That is, the value obtained by dividing the expected deviation width +1.62 μm by the slope 74.927 of the second correlation equation (= 1.62 / 74.927) = +0.022 is the amount of the polymerization initiator system that adjusts the expected deviation width +1.62 μm. It becomes. Therefore, in order to cancel the expected deviation width, the proportion of the polymerization initiator system was reduced by 0.022% by mass from the photosensitive composition of the base. Table 3 shows an example of the compounding ratio of the polymerization initiator system determined in consideration of the expected deviation width.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次に、ステップS4として、表3のように重合開始剤系の配合比を変更したベヒクルを調製した。なお、表3に記載の無い有機成分、例えば、有機バインダ、光硬化性化合物、紫外線吸収剤、重合禁止剤については、ベースとなる感光性組成物の配合と同じである。次に、ステップS1で平均粒径を実測した銀粉末とベヒクルとを混合して、感光性組成物を調製した。そして、配線パターンを形成し、実線幅を計測した。その結果、実線幅は、27.4μmであった。すなわち、ステップS2で予想された線幅(29.0μm)よりも、目標線幅(27.3μm)に大きく近づく結果となった。 Next, as step S4, a vehicle in which the compounding ratio of the polymerization initiator system was changed was prepared as shown in Table 3. The organic components not listed in Table 3, for example, an organic binder, a photocurable compound, an ultraviolet absorber, and a polymerization inhibitor, are the same as the formulation of the base photosensitive composition. Next, the silver powder whose average particle size was actually measured in step S1 and the vehicle were mixed to prepare a photosensitive composition. Then, a wiring pattern was formed and the solid line width was measured. As a result, the solid line width was 27.4 μm. That is, the result was that the line width (27.3 μm) was much closer than the line width (29.0 μm) expected in step S2.
 さらに数種類の導電性粉末について、上記と同様に、ここで開示される技術を適用して、感光性組成物を調製し、実線幅を計測した。すなわち、ステップS1で銀粉末の平均粒径の実測値を取得し、ステップS2で予想ズレ幅を確認し、ステップS3で重合開始剤系の配合比を決定して、ベヒクルの配合を調整した後、感光性組成物を調製して、実線幅を計測した。結果を表4に示す。なお、表4の右端は、上記した実施例1の結果である。また、参考例として、ここで開示される技術を適用せず、ベースのベヒクルをそのまま使用した(すなわち、重合開始剤系の配合比を調整せずに一定とした)場合の実線幅(μm)を最下段に記載している。 For several more types of conductive powders, a photosensitive composition was prepared by applying the technique disclosed here in the same manner as above, and the solid line width was measured. That is, after obtaining the measured value of the average particle size of the silver powder in step S1, confirming the expected deviation width in step S2, determining the blending ratio of the polymerization initiator system in step S3, and adjusting the blending of the vehicle. , A photosensitive composition was prepared, and the solid line width was measured. The results are shown in Table 4. The right end of Table 4 is the result of Example 1 described above. Further, as a reference example, the solid line width (μm) when the base vehicle is used as it is (that is, the compounding ratio of the polymerization initiator system is kept constant without adjusting) without applying the technique disclosed here. Is listed at the bottom.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図7は、表4の結果を纏めて、ここで開示される技術の適用有無における実線幅を比較したグラフである。図7および表4から明らかなように、ここに開示される技術を適用することによって、ここに開示される技術を適用しない場合(参考例)と比べて、相対的に導電性粉末の製造ロット間の変動を緩衝して、線幅のバラつきを抑えることができた。ここでは、線幅の変動を±1μm以下、さらには±0.5μm以下に抑えることができた。言い換えれば、細線状の配線を目標線幅の付近で安定的に形成することができた。かかる結果は、ここに開示される技術の意義を示している。 FIG. 7 is a graph summarizing the results of Table 4 and comparing the solid line widths with and without the application of the technology disclosed here. As is clear from FIGS. 7 and 4, by applying the techniques disclosed herein, the production lot of the conductive powder is relatively higher than that in the case where the techniques disclosed here are not applied (reference example). It was possible to suppress the variation in line width by buffering the fluctuation between them. Here, the fluctuation of the line width could be suppressed to ± 1 μm or less, and further to ± 0.5 μm or less. In other words, the fine wire-shaped wiring could be stably formed near the target line width. Such results show the significance of the techniques disclosed herein.
<実施例2:2種類の導電性粉末を混合して用いる場合>
 以下、2種類の導電性粉末を混合した混合粉を用いて感光性組成物を製造する場合を説明する。ここでは事前準備として、まず使用する2つの導電性粉末に対応した2つの第1相関式を用意した。具体的には、図8、9に実線で示す第1相関式を用意した。また、あわせて第2相関式を用意した。なお、第2相関式については図6に示したものと同じものを用意した。
<Example 2: When two types of conductive powders are mixed and used>
Hereinafter, a case where a photosensitive composition is produced using a mixed powder obtained by mixing two types of conductive powders will be described. Here, as a preliminary preparation, first, two first correlation equations corresponding to the two conductive powders to be used were prepared. Specifically, the first correlation equation shown by the solid line is prepared in FIGS. 8 and 9. In addition, a second correlation equation was also prepared. As the second correlation equation, the same one as shown in FIG. 6 was prepared.
 図8に実線で示す第1相関式は、次のようにして用意されたものである。すなわち、まず第1の導電性粉末として、平均粒径(公称値)が概ね2.9μm前後である第1銀粉末を複数(ここでは7種類)用意した。そして、上記した実施例1の図5の第1相関式の算出時と同様に、7種類の第1銀粉末の平均粒径(実測値)をそれぞれ実測した。また、第2の導電性粉末として、平均粒径(実測値)が2.56μmである第2銀粉末を用意した。次に、第1銀粉末と第2銀粉末とを、所定の比率(ここでは40:60)の質量比で混合することにより、混合粉を調整した。この混合粉と表1に示したベヒクルとを77:23の質量比で混合することにより、感光性組成物を調製した。次に、この感光性組成物を用いて、上記した実施例1と同様に配線パターンを形成し、平均粒径(実測値)と実線幅との相関式(Y=1.89X+24.85)を算出した。 The first correlation equation shown by the solid line in FIG. 8 is prepared as follows. That is, first, as the first conductive powder, a plurality of first silver powders (here, seven types) having an average particle size (nominal value) of about 2.9 μm were prepared. Then, the average particle size (measured value) of the seven types of first silver powder was actually measured in the same manner as in the calculation of the first correlation equation of FIG. 5 of Example 1 described above. Further, as the second conductive powder, a second silver powder having an average particle size (measured value) of 2.56 μm was prepared. Next, the mixed powder was prepared by mixing the first silver powder and the second silver powder at a mass ratio of a predetermined ratio (here, 40:60). A photosensitive composition was prepared by mixing this mixed powder with the vehicle shown in Table 1 at a mass ratio of 77:23. Next, using this photosensitive composition, a wiring pattern is formed in the same manner as in Example 1 described above, and a correlation equation (Y = 1.89X + 24.85) between the average particle size (measured value) and the solid line width is calculated. did.
 図9に実線で示す第1相関式は、次のようにして用意されたものである。すなわち、まず第2の導電性粉末として、平均粒径(公称値)が概ね2.4μm前後である第2銀粉末を複数(ここでは5種類)用意した。そして、上記した実施例1の図5の第1相関式の算出時と同様に、5種類の第2銀粉末の平均粒径(実測値)をそれぞれ実測した。また、第1の導電性粉末として、平均粒径(実測値)が3.06μmである第1銀粉末を用意した。次に、第1銀粉末と第2銀粉末とを、40:60の質量比で混合することにより、混合粉を調整した。そして、上記した図8の第1相関式の算出時と同様に、平均粒径(実測値)と実線幅との相関式(Y=2.12X+24.72)を算出した。 The first correlation equation shown by the solid line in FIG. 9 was prepared as follows. That is, first, as the second conductive powder, a plurality of second silver powders (here, five types) having an average particle size (nominal value) of about 2.4 μm were prepared. Then, the average particle size (actual measurement value) of the five types of second silver powder was actually measured in the same manner as in the calculation of the first correlation equation of FIG. 5 of Example 1 described above. Further, as the first conductive powder, a first silver powder having an average particle size (measured value) of 3.06 μm was prepared. Next, the mixed powder was prepared by mixing the first silver powder and the second silver powder at a mass ratio of 40:60. Then, the correlation equation (Y = 2.12X + 24.72) between the average particle size (measured value) and the solid line width was calculated in the same manner as in the calculation of the first correlation equation in FIG.
 図8、9に実線で示す第1相関式は、実施例1の図5の第1相関式と同様に、変化させた銀粉末の平均粒径(実測値)と、実線幅とが、比例(相関係数:0.92以上)している。図8、9に実線で示す第1相関式は、一次関数で示されている。図8、9において、平均粒径(実測値)と実線幅とは、正の相関を有している。 In the first correlation equation shown by the solid lines in FIGS. 8 and 9, the average particle size (actual measurement value) of the changed silver powder and the solid line width are proportional to each other, as in the first correlation equation of FIG. 5 in Example 1. (Correlation coefficient: 0.92 or more). The first correlation equation shown by the solid line in FIGS. 8 and 9 is shown by a linear function. In FIGS. 8 and 9, the average particle size (measured value) and the solid line width have a positive correlation.
 実施例2では、以上のように2つの第1相関式を揃えた後、ステップS1として、感光性組成物に使用する第1銀粉末(平均粒径(公称値):2.9μm)と第2銀粉末(平均粒径(公称値):2.4μm)の2種類の導電性粉末を用意した。次に、図8、9の第1相関式の算出時と同様に、第1銀粉末および第2銀粉末の平均粒径をそれぞれ実測した。次に、ステップS2として、ステップS1で得られた第1銀粉末の実測値を、図8の第1相関式(Y=1.89X+24.85)と対比した。また、第2銀粉末の実測値を、図9の第1相関式(Y=2.12X+24.72)と対比した。次に、2種類の銀粉末のそれぞれについて、目標線幅(ここでは、30.0μmに設定した。)に対する予想ズレ幅α1、α2を算出した。すなわち、第1銀粉末および第2銀粉末の実測値をx1,x2とし、予想線幅をy1,y2とすると、予想ズレ幅α1、α2は、下記の式から求めた。
 α1 = y1-30.0 = 1.89×x1+24.85-30.0
 α2 = y2-30.0 = 2.12×x2+24.72-30.0
In Example 2, after preparing the two first correlation equations as described above, as step S1, the first silver powder (average particle size (nominal value): 2.9 μm) and the first silver powder used in the photosensitive composition are used. Two types of conductive powders of 2 silver powder (average particle size (nominal value): 2.4 μm) were prepared. Next, the average particle diameters of the first silver powder and the second silver powder were actually measured in the same manner as in the calculation of the first correlation equations in FIGS. 8 and 9. Next, in step S2, the actually measured value of the first silver powder obtained in step S1 was compared with the first correlation equation (Y = 1.89X + 24.85) in FIG. In addition, the measured values of the second silver powder were compared with the first correlation equation (Y = 2.12X + 24.72) in FIG. Next, for each of the two types of silver powder, the expected deviation widths α1 and α2 with respect to the target line width (here, set to 30.0 μm) were calculated. That is, assuming that the measured values of the first silver powder and the second silver powder are x1 and x2 and the expected line widths are y1 and y2, the expected deviation widths α1 and α2 are obtained from the following equations.
α1 = y1-30.0 = 1.89 × x1 + 24.85-30.0
α2 = y2-30.0 = 2.12 × x2 + 24.72-30.0
 そして、2種類の導電性粉末を混合して用いる場合の予想ズレ幅をβ(μm)は、上記の予想ズレ幅α1、α2を用いて、以下の式から求めた。
  β = α1+α2
Then, the expected deviation width β (μm) when the two types of conductive powders were mixed and used was calculated from the following formula using the above expected deviation widths α1 and α2.
β = α1 + α2
 次に、ステップS3として、上記した実施例1と同様に、ベヒクルに含まれる重合開始剤系の配合比を表5、6のように調整した。次に、ステップS4として、上記した実施例1と同様に、感光性組成物を調製した。そして、配線パターンを形成し、実線幅を計測した。 Next, as step S3, the compounding ratio of the polymerization initiator system contained in the vehicle was adjusted as shown in Tables 5 and 6 in the same manner as in Example 1 described above. Next, as step S4, a photosensitive composition was prepared in the same manner as in Example 1 described above. Then, a wiring pattern was formed and the solid line width was measured.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5、6から明らかなように、ここに開示される技術を適用することによって、2種類の導電性粉末を混合して用いる場合においても、導電性粉末の製造ロット間の変動を緩衝して、線幅のバラつきを抑えることができた。ここでは、線幅の変動を±1μm以下、さらには±0.5μm以下に抑えることができた。 As is clear from Tables 5 and 6, by applying the techniques disclosed herein, even when two types of conductive powders are mixed and used, fluctuations between production lots of the conductive powders are buffered. , I was able to suppress the variation in line width. Here, the fluctuation of the line width could be suppressed to ± 1 μm or less, and further to ± 0.5 μm or less.
 なお、図8、9に破線で示す第1相関式は、それぞれ第1銀粉末と第2銀粉末とを70:30の質量比で混合した場合のものである。このように混合比を変化させた場合であっても、実線で示す第1相関式と同様に、変化させた銀粉末の平均粒径(実測値)と、実線幅とが、一次関数で比例(相関係数:0.95以上)している。平均粒径(実測値)と実線幅とは、正の相関を有している。このことから、混合比に依らず、種々の混合粉についてここに開示される技術が適用可能であると考えられる。 The first correlation equation shown by the broken line in FIGS. 8 and 9 is a case where the first silver powder and the second silver powder are mixed at a mass ratio of 70:30, respectively. Even when the mixing ratio is changed in this way, the average particle size (actual measurement value) of the changed silver powder and the solid line width are proportional to each other by a linear function, as in the first correlation equation shown by the solid line. (Correlation coefficient: 0.95 or more). The average particle size (measured value) and the solid line width have a positive correlation. From this, it is considered that the techniques disclosed herein can be applied to various mixed powders regardless of the mixing ratio.
 以上、本発明の好適な実施形態について説明した。しかし、上述の実施形態は例示に過ぎず、本発明は他の種々の形態で実施することができる。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。請求の範囲に記載の技術には、上記に例示した実施形態を様々に変形、変更したものが含まれる。例えば、上記した実施形態の一部を組み合わせたり、他の変形態様に置き換えたりすることも可能である。また、その技術的特徴が必須なものとして説明されていなければ、適宜削除することも可能である。 The preferred embodiment of the present invention has been described above. However, the above-described embodiment is merely an example, and the present invention can be implemented in various other embodiments. The present invention can be carried out based on the contents disclosed in the present specification and common general technical knowledge in the art. The techniques described in the claims include various modifications and modifications of the embodiments illustrated above. For example, it is possible to combine some of the above-described embodiments or replace them with other modifications. Further, if the technical feature is not explained as essential, it can be deleted as appropriate.
 上記した実施形態では、目標レベルの因子が「線幅」で定められていたが、これには限定されない。目標レベルの因子は、導電膜の光吸収度や光硬化度に起因するものであればよく、例えば、導電膜の膜厚、電極断面積、硬化収縮率、抵抗値等であってもよい。すなわち、図1(A)、(B)から、導電性粉末の粒径の違いによって、光の散乱が変化し、その結果、導電膜の光吸収性が変化することで、光硬化度が変化することがわかる。この観点からすると、導電性粉末の粒径の違いによって、上記した線幅だけでなく、膜厚、断面積、硬化収縮率等も同様に変化しうることが、当業者には明らかである。また、それに伴い、抵抗値も同様に変化しうることが、当業者には明らかである。 In the above embodiment, the target level factor was defined by the "line width", but the factor is not limited to this. The target level factor may be due to the light absorption degree or the photocurability of the conductive film, and may be, for example, the film thickness of the conductive film, the electrode cross-sectional area, the curing shrinkage rate, the resistance value, or the like. That is, from FIGS. 1 (A) and 1 (B), the scattering of light changes depending on the difference in the particle size of the conductive powder, and as a result, the light absorption of the conductive film changes, so that the degree of photocurability changes. You can see that it does. From this point of view, it is clear to those skilled in the art that not only the above-mentioned line width but also the film thickness, cross-sectional area, curing shrinkage rate and the like can be similarly changed by the difference in the particle size of the conductive powder. It is also apparent to those skilled in the art that the resistance value can change accordingly.
 このことは、例えば、以下のような参考文献1~3:
・参考文献1:宇加治孝志著、CMCテクニカルライブラリー206、プラスチック表面処理技術と材料、P.67、塗膜の光透過率(%)と粒子径(μm)との相関図;
・参考文献2:山本貴金属地金 株式会社、高分子技術レポート、Vol.5(2011年)、P.20、図15(照射光の強度を変えた場合のヘキサンジオールジアクリレートの反応率と硬化時間の関係);
・参考文献3:情報技術協会発行、UV硬化樹脂の配合設計、特性評価と新しい応用、P.470、 図16(UVレジストの硬化収縮における膜厚の変化);
等からも裏づけられていると考えられる。
This means, for example, the following references 1 to 3:
Reference 1: Takashi Ukaji, CMC Technical Library 206, Plastic Surface Treatment Technology and Materials, P.M. 67, Correlation diagram between the light transmittance (%) of the coating film and the particle size (μm);
-Reference 2: Yamamoto Precious Metal Bullion Co., Ltd., Polymer Technology Report, Vol. 5 (2011), P.M. 20, FIG. 15 (Relationship between the reaction rate of hexanediol diacrylate and the curing time when the intensity of irradiation light is changed);
-Reference 3: Published by Information Technology Association, UV curable resin formulation design, characterization and new applications, P.M. 470, FIG. 16 (change in film thickness during curing shrinkage of UV resist);
It is thought that this is also supported by such factors.
 上記文献の記載を考慮すると、例えば0.1~10μmの範囲では、導電性粉末の粒径の変化にしたがって、光吸収度や光硬化度の因子が単調増加または単調減少することは明らかであると推認される。つまり、粒径の変位に伴う線幅の変動とそれらの変位は、比例、または一定の関数で相関の高い推移となると考えられる。以上のことから、線幅のバラつきを緩衝することは、光吸収度や光硬化度に関する因子のバラつきを抑制することと同義であるといえる。つまり、ここに開示される技術において、「目標レベル」は、目標線幅としてもよく、目標膜厚としてもよく、目標断面積としてもよく、目標硬化収縮率としてもよく、目標抵抗値としてもよくと考えられる。また、「予想ズレ値」は、目標レベルに対応して、ズレ幅としても良く、ズレ厚としてもよく、ズレ断面積としてもよく、ズレ硬化収縮率としてもよく、ズレ抵抗値としてもよくと考えられる。 Considering the description in the above literature, it is clear that, for example, in the range of 0.1 to 10 μm, the factors of light absorption and photocurability increase or decrease monotonically as the particle size of the conductive powder changes. Is presumed to be. That is, it is considered that the fluctuation of the line width due to the displacement of the particle size and their displacement have a high correlation with a proportional or constant function. From the above, it can be said that buffering variations in line width is synonymous with suppressing variations in factors related to light absorption and photocuring. That is, in the technique disclosed herein, the "target level" may be a target line width, a target film thickness, a target cross-sectional area, a target curing shrinkage rate, or a target resistance value. It is considered well. In addition, the "expected deviation value" may be the deviation width, the deviation thickness, the deviation cross-sectional area, the deviation curing shrinkage rate, or the deviation resistance value according to the target level. Conceivable.
 上記した実施形態では、ステップS2の後に続けてステップS3を実施していたが、これには限定されない。例えば、ステップS2の後に、予想ズレ幅と、予め設定された閾値と、を対比する判定工程を含んでもよい。そして、判定工程において予想ズレ幅が閾値よりも小さいと判定されたときに、ステップS3を省略してステップS4を行ってもよい。 In the above-described embodiment, step S3 was carried out after step S2, but the present invention is not limited to this. For example, after step S2, a determination step of comparing the expected deviation width with the preset threshold value may be included. Then, when it is determined in the determination step that the expected deviation width is smaller than the threshold value, step S3 may be omitted and step S4 may be performed.
 なお、上記した実施形態では、第1相関式として、平均粒径(実測値)と実線幅との相関式を例示したが、これには限定されない。平均粒径(実測値)と対比する変数としては、例えば実線幅から目標線幅を差し引いた予想ズレ幅としてもよい。すなわち、第1相関式は、平均粒径(実測値)と予想ズレ幅との相関式で表してもよい。この場合、ステップS1で得られた実測値を、相関式に内挿して、予想ズレ幅を直接確認してもよい。 In the above-described embodiment, the correlation equation between the average particle size (measured value) and the solid line width is exemplified as the first correlation equation, but the present invention is not limited to this. As a variable to be compared with the average particle size (measured value), for example, the expected deviation width obtained by subtracting the target line width from the solid line width may be used. That is, the first correlation equation may be expressed by a correlation equation between the average particle size (measured value) and the expected deviation width. In this case, the measured value obtained in step S1 may be interpolated into the correlation equation to directly confirm the expected deviation width.
 なお、上記した実施形態では、第2相関式として、感光性組成物中の有機成分の配合比と実線幅との相関式を例示したが、これには限定されない。有機成分の配合比と対比する変数としては、第1相関式の場合と同様に、例えば予想ズレ幅としてもよい。また、有機成分の配合比は、感光性組成物中のものではなく、例えばベヒクル中の配合比等で表してもよい。 In the above-described embodiment, as the second correlation equation, the correlation equation between the compounding ratio of the organic component in the photosensitive composition and the solid line width is exemplified, but the present invention is not limited to this. As a variable to be compared with the compounding ratio of the organic component, for example, the expected deviation width may be used as in the case of the first correlation equation. Further, the compounding ratio of the organic component may be expressed not in the photosensitive composition but in, for example, the compounding ratio in the vehicle.
 上記した実施形態では、配合比決定装置30は、入力部31と、記憶部32と、第1算出部33と、第2算出部34と、を備えていたが、これには限定されない。配合比決定装置30は、上記した各部に加えて、以下の少なくとも1つ:所定の種類の導電性粉末に対して第1相関式を設定し、記憶部32に記憶させる第1設定部;所定の種類の導電性粉末に対して第2相関式を設定し、記憶部32に記憶させる第2設定部;入力された導電性粉末と同じ種類の第1相関式または第2相関式が記憶部32に記憶されていない場合に、利用者にエラーを通知する通知部;等を備えていてもよい。 In the above-described embodiment, the blending ratio determining device 30 includes an input unit 31, a storage unit 32, a first calculation unit 33, and a second calculation unit 34, but the present invention is not limited thereto. In addition to the above-mentioned parts, the compounding ratio determining device 30 sets at least one of the following: a first setting unit that sets a first correlation equation for a predetermined type of conductive powder and stores it in the storage unit 32; A second setting unit that sets a second correlation equation for the type of conductive powder and stores it in the storage unit 32; a first correlation equation or a second correlation equation of the same type as the input conductive powder is stored in the storage unit. A notification unit; or the like, which notifies the user of an error when it is not stored in 32 may be provided.
 上記した実施例1、2では、導電性粉末として銀粉末を用いていたが、これには限定されない。平均粒径の大きい導電性粉末を用いると、露光工程において導電膜の水平方向に照射光が広がりやすく配線の線幅が太くなりがちである、という機構は、他の金属種についても同様である。ここに開示される技術は、銀粉末のみならず、上述した各種金属、例えば、銅、白金、パラジウム、アルミニウム、ニッケル等を含んだ粉末に対しても勿論適用可能である。 In Examples 1 and 2 described above, silver powder was used as the conductive powder, but the present invention is not limited to this. The mechanism that when a conductive powder having a large average particle size is used, the irradiation light tends to spread in the horizontal direction of the conductive film in the exposure process and the line width of the wiring tends to be thick is the same for other metal types. .. Of course, the technique disclosed herein can be applied not only to silver powder but also to powders containing the above-mentioned various metals such as copper, platinum, palladium, aluminum and nickel.
 上記した実施例1、2では、ステップS1において、導電性粉末の平均粒径(D50粒径)、具体的には、体積基準の粒度分布において粒径の小さい側から積算値50%に相当する粒径を測定したが、これには限定されない。ステップS1では、体積基準の粒度分布にかえて個数基準の粒度分布等を用いてもよい。また、粒径ファクターは、平均粒径(D50粒径)にかえて、例えば、D40粒径(粒度分布において粒径の小さい側から積算値40%に相当する粒径)、D60粒径(粒度分布において粒径の小さい側から積算値60%に相当する粒径)等であってもよい。この場合、第1相関式は、「D40粒径(実測値)X-実線幅Y」、「D60粒径(実測値)X-実線幅Y」等で示されていてもよい。さらに、例えば導電性粉末の粒度分布が単峰性であるとき等に、粒径ファクターは、平均粒径からさらに離れた粒径、例えば、D5粒径(粒度分布において粒径の小さい側から積算値5%に相当する粒径)、D90粒径(粒度分布において粒径の小さい側から積算値90%に相当する粒径)、D95粒径(粒度分布において粒径の小さい側から積算値90%に相当する粒径)等であってもよい。 In Examples 1 and 2 described above, in step S1, the average particle size (D50 particle size) of the conductive powder, specifically, corresponds to an integrated value of 50% from the smaller particle size side in the volume-based particle size distribution. The particle size was measured, but is not limited to this. In step S1, a number-based particle size distribution or the like may be used instead of the volume-based particle size distribution. The particle size factor is, for example, D40 particle size (particle size corresponding to the integrated value of 40% from the smaller particle size side in the particle size distribution) and D60 particle size (particle size) instead of the average particle size (D50 particle size). The particle size may be such that the particle size corresponds to an integrated value of 60% from the side with the smallest particle size in the distribution. In this case, the first correlation equation may be represented by "D40 particle size (measured value) X-solid line width Y", "D60 particle size (measured value) X-solid line width Y", or the like. Further, for example, when the particle size distribution of the conductive powder is monomodal, the particle size factor is a particle size further distant from the average particle size, for example, D5 particle size (integrated from the smaller particle size side in the particle size distribution). Particle size corresponding to a value of 5%), D90 particle size (particle size corresponding to an integrated value of 90% from the smaller particle size side in the particle size distribution), D95 particle size (integrated value 90 from the smaller particle size side in the particle size distribution) The particle size corresponding to%) may be used.
 上記した実施例1、2では、ステップS3において、重合開始剤系に係る第2相関式を用意し、光重合開始剤系の配合比を調整することで、線幅のバラつきを抑えていたが、これには限定されない。配合比を調整する有機成分は、例えば光重合開始剤および増感剤のうちのいずれか一方であってもよい。 In Examples 1 and 2 described above, in step S3, a second correlation equation relating to the polymerization initiator system was prepared, and the blending ratio of the photopolymerization initiator system was adjusted to suppress the variation in line width. , Not limited to this. The organic component for which the compounding ratio is adjusted may be, for example, either a photopolymerization initiator or a sensitizer.
 また、上記した実施例1、2では、ステップS3において、重合開始剤系に係る第2相関式を用意したが、これにかえて、あるいはこれに加えて、例えば光吸収剤に係る第2相関式(図10参照)を用意し、光吸収剤の配合比を調整することで、線幅のバラつきを抑えることもできる。図10に示す第2相関式では、感光性組成物中の紫外線吸収剤の配合比と、実線幅とが、対数曲線で示されている。対数曲線は変化が急激なため、例えば予想ズレ幅が大きい場合には、配合比を僅かに変更するだけで済む利点がある。また、例えば重合禁止剤に係る第2相関式(図11参照)を用意し、重合禁止剤の配合比を調整することで、線幅のバラつきを抑えることもできる。図11に示す第2相関式では、感光性組成物中の光重合禁止剤の配合比と、実線幅とが、比例(相関係数:0.99)している。図11に示す第2相関式は、一次関数で示されている。重合禁止剤の配合比と実線幅とは、負の相関を有している。すなわち、重合禁止剤系の配合比が大きくなるにつれて、線幅がリニアに細くなっていることがわかる。このような第2相関式もまた、上記した図6、7の第2相関式と同様に、ここに開示される技術で好適に用いることができる。 Further, in Examples 1 and 2 described above, the second correlation equation relating to the polymerization initiator system was prepared in step S3, but instead of or in addition to this, for example, the second correlation relating to the light absorber. By preparing a formula (see FIG. 10) and adjusting the compounding ratio of the light absorber, it is possible to suppress variations in line width. In the second correlation equation shown in FIG. 10, the compounding ratio of the ultraviolet absorber in the photosensitive composition and the solid line width are shown by a logarithmic curve. Since the logarithmic curve changes rapidly, for example, when the expected deviation width is large, there is an advantage that only a slight change in the compounding ratio is required. Further, for example, by preparing a second correlation equation (see FIG. 11) relating to the polymerization inhibitor and adjusting the blending ratio of the polymerization inhibitor, variation in line width can be suppressed. In the second correlation equation shown in FIG. 11, the compounding ratio of the photopolymerization inhibitor in the photosensitive composition and the solid line width are proportional (correlation coefficient: 0.99). The second correlation equation shown in FIG. 11 is represented by a linear function. The compounding ratio of the polymerization inhibitor and the solid line width have a negative correlation. That is, it can be seen that the line width becomes linearly narrower as the compounding ratio of the polymerization inhibitor system increases. Such a second correlation equation can also be suitably used in the technique disclosed herein, similarly to the second correlation equation of FIGS. 6 and 7 described above.
 10  積層チップインダクタ
 11  本体部
 12  セラミック層
 14  内部電極層
 20  外部電極
 30  配合比決定装置
 31  入力部
 32  記憶部
 33  第1算出部
 34  第2算出部
 35  表示部
10 Multilayer chip inductor 11 Main body 12 Ceramic layer 14 Internal electrode layer 20 External electrode 30 Mixing ratio determination device 31 Input unit 32 Storage unit 33 1st calculation unit 34 2nd calculation unit 35 Display unit

Claims (16)

  1.  予め定められた配合比で導電性粉末を含む感光性組成物を製造する方法であって、
     使用する導電性粉末の粒径を測定して、実測値を得る工程;
     前記実測値を、予め用意された第1相関式であって、前記導電性粉末の粒径と、導電膜の光吸収または光硬化に起因して変動する因子であって前記粒径の変位に相関して変動する何れかの因子との第1相関式と対比して、予め定められた目標レベルに対する前記因子の予想ズレ値を確認する工程;
     予め用意された第2相関式であって、前記第1相関式における因子と、前記感光性組成物に含まれる有機成分であって配合比の変動が前記因子の変動に相関する何れかの有機成分との第2相関式に基づいて、前記予想ズレ値を打ち消すように前記有機成分の配合比を決定する工程;
    を包含する、感光性組成物の製造方法。
    A method for producing a photosensitive composition containing a conductive powder at a predetermined compounding ratio.
    A process of measuring the particle size of the conductive powder used to obtain an actual measurement value;
    The measured value is a first correlation equation prepared in advance, and is a factor that fluctuates due to the particle size of the conductive powder and the light absorption or photocuring of the conductive film, and is used for the displacement of the particle size. A step of confirming the expected deviation value of the factor with respect to a predetermined target level by comparing with the first correlation formula with any of the factors that correlate and fluctuate;
    A second correlation equation prepared in advance, the factor in the first correlation equation, and any of the organic components contained in the photosensitive composition in which the variation in the compounding ratio correlates with the variation in the factor. A step of determining the blending ratio of the organic component so as to cancel the expected deviation value based on the second correlation equation with the component;
    A method for producing a photosensitive composition, which comprises.
  2.  前記有機成分が、前記感光性組成物の光吸収性および光重合性のうちの少なくとも1つを調整する有機成分である、
    請求項1に記載の感光性組成物の製造方法。
    The organic component is an organic component that adjusts at least one of the light absorption and photopolymerizability of the photosensitive composition.
    The method for producing a photosensitive composition according to claim 1.
  3.  前記有機成分が、光重合開始剤系、光吸収剤、および重合禁止剤のうちの少なくとも1つである、
    請求項1に記載の感光性組成物の製造方法。
    The organic component is at least one of a photopolymerization initiator system, a light absorber, and a polymerization inhibitor.
    The method for producing a photosensitive composition according to claim 1.
  4.  前記有機成分が、光重合開始剤系である、
    請求項1に記載の感光性組成物の製造方法。
    The organic component is a photopolymerization initiator system.
    The method for producing a photosensitive composition according to claim 1.
  5.  前記第1相関式における因子が、導電膜の線幅、膜厚、電極断面積、硬化収縮率、または抵抗値である、
    請求項1~4の何れか一つに記載の感光性組成物の製造方法。
    Factors in the first correlation equation are the line width, film thickness, electrode cross-sectional area, curing shrinkage rate, or resistance value of the conductive film.
    The method for producing a photosensitive composition according to any one of claims 1 to 4.
  6.  前記第1相関式における因子が、線幅である、
    請求項1~5の何れか一つに記載の感光性組成物の製造方法。
    The factor in the first correlation equation is the line width.
    The method for producing a photosensitive composition according to any one of claims 1 to 5.
  7.  前記第2相関式が、一次関数で示される、
    請求項1~6の何れか一つに記載の感光性組成物の製造方法。
    The second correlation equation is represented by a linear function.
    The method for producing a photosensitive composition according to any one of claims 1 to 6.
  8.  前記導電性粉末が、銀系粒子を含む、
    請求項1~7の何れか一つに記載の感光性組成物の製造方法。
    The conductive powder contains silver-based particles.
    The method for producing a photosensitive composition according to any one of claims 1 to 7.
  9.  前記導電性粉末が、コアとなる金属材料と前記コアの表面の少なくとも一部を被覆するセラミック材料とを含んだコアシェル粒子を含む、
    請求項1~8の何れか一つに記載の感光性組成物の製造方法。
    The conductive powder comprises core-shell particles containing a metal material to be a core and a ceramic material covering at least a part of the surface of the core.
    The method for producing a photosensitive composition according to any one of claims 1 to 8.
  10.  前記感光性組成物は、電極を形成する用途に用いられる、
     請求項1~9の何れか一つに記載の感光性組成物の製造方法。
    The photosensitive composition is used for forming electrodes.
    The method for producing a photosensitive composition according to any one of claims 1 to 9.
  11.  請求項1~10の何れか一つに記載の製造方法によって得られた感光性組成物を基材上に付与して、光硬化およびエッチングを行った後、焼成して、前記感光性組成物の焼成体からなる導電層を形成する工程、をさらに含む、電子部品の製造方法。 The photosensitive composition obtained by the production method according to any one of claims 1 to 10 is applied onto a substrate, photocured and etched, and then fired to obtain the photosensitive composition. A method for manufacturing an electronic component, further comprising a step of forming a conductive layer made of a fired body of.
  12.  予め定められた配合比で導電性粉末を含む感光性組成物に対する有機成分の配合比を決定する配合比決定装置であって、
     利用者の入力を受け付けて、使用する導電性粉末の種類と粒径の実測値とが入力される入力部と、
     予め用意された第1相関式であって、前記導電性粉末の粒径と、導電膜の光吸収または光硬化に起因して変動する因子であって前記粒径の変位に相関して変動する何れかの因子との第1相関式、および、予め用意された第2相関式であって、前記第1相関式における因子と、前記感光性組成物に含まれる有機成分であって配合比の変動が前記因子の変動に相関する何れかの有機成分との第2相関式を記憶する記憶部と、
     前記第1相関式に基づいて、前記入力部に入力された前記実測値から、予め定められた目標レベルに対する前記第1相関式における因子の予想ズレ値を算出する第1算出部と、
     前記第2相関式に基づいて、前記予想ズレ値を打ち消す前記第2相関式における有機成分の配合比を算出する第2算出部と、
    を包含する、配合比決定装置。
    A compounding ratio determining device that determines the compounding ratio of an organic component to a photosensitive composition containing a conductive powder at a predetermined compounding ratio.
    An input unit that accepts user input and inputs the type of conductive powder to be used and the measured value of particle size,
    It is a first correlation equation prepared in advance, and is a factor that fluctuates due to the particle size of the conductive powder and the light absorption or photocuring of the conductive film, and fluctuates in correlation with the displacement of the particle size. The first correlation equation with any of the factors and the second correlation equation prepared in advance, the factors in the first correlation equation and the organic components contained in the photosensitive composition, which are the blending ratios. A storage unit that stores a second correlation equation with any organic component whose fluctuation correlates with the fluctuation of the factor.
    Based on the first correlation equation, the first calculation unit that calculates the expected deviation value of the factor in the first correlation equation with respect to the predetermined target level from the actually measured value input to the input unit.
    Based on the second correlation equation, the second calculation unit that calculates the compounding ratio of the organic component in the second correlation equation that cancels the expected deviation value, and
    A compounding ratio determining device including.
  13.  前記第1相関式における因子が、導電膜の線幅、膜厚、電極断面積、硬化収縮率、または抵抗値である、
    請求項12に記載の配合比決定装置。
    Factors in the first correlation equation are the line width, film thickness, electrode cross-sectional area, curing shrinkage rate, or resistance value of the conductive film.
    The compounding ratio determining device according to claim 12.
  14.  コンピュータを、請求項12または13に記載の配合比決定装置として動作させるように構成されている、コンピュータプログラム。 A computer program configured to operate the computer as the compounding ratio determining device according to claim 12 or 13.
  15.  請求項1~10の何れか一つに記載の製造方法によって得られた感光性組成物の焼成体からなる導電層を備える、電子部品。 An electronic component comprising a conductive layer made of a fired body of a photosensitive composition obtained by the production method according to any one of claims 1 to 10.
  16.  請求項1~10の何れか一つに記載の製造方法によって得られた感光性組成物が有機系分散媒を含む、ペースト状の感光性組成物。 A paste-like photosensitive composition in which the photosensitive composition obtained by the production method according to any one of claims 1 to 10 contains an organic dispersion medium.
PCT/JP2020/021134 2019-07-10 2020-05-28 Photosensitive composition production method, pasty photosensitive composition, electronic component production method, electronic component, device for determining mixing ratio for organic component in photosensitive composition, and computer program WO2021005910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080049490.8A CN114096919A (en) 2019-07-10 2020-05-28 Method for producing photosensitive composition, paste-like photosensitive composition, method for producing electronic component, and device for determining mixing ratio of organic component in photosensitive composition, and computer program
KR1020227004215A KR20220034178A (en) 2019-07-10 2020-05-28 A method for producing a photosensitive composition, a paste-like photosensitive composition, a method for producing an electronic component and an electronic component, and an apparatus for determining the mixing ratio of organic components in the photosensitive composition, computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019128628A JP6694099B1 (en) 2019-07-10 2019-07-10 Method for producing photosensitive composition, photosensitive composition in paste form, method for producing electronic component and electronic component, device for determining blending ratio of organic components in photosensitive composition, computer program
JP2019-128628 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021005910A1 true WO2021005910A1 (en) 2021-01-14

Family

ID=70549804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021134 WO2021005910A1 (en) 2019-07-10 2020-05-28 Photosensitive composition production method, pasty photosensitive composition, electronic component production method, electronic component, device for determining mixing ratio for organic component in photosensitive composition, and computer program

Country Status (4)

Country Link
JP (1) JP6694099B1 (en)
KR (1) KR20220034178A (en)
CN (1) CN114096919A (en)
WO (1) WO2021005910A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232280B2 (en) 2021-03-25 2023-03-02 株式会社ノリタケカンパニーリミテド ELECTRONIC PRODUCTION KITS AND THEIR USE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118875A1 (en) * 2012-02-09 2013-08-15 ダイソー株式会社 Photocurable resin composition containing fine metal particles and use of same
JP2014170051A (en) * 2013-03-01 2014-09-18 Noritake Co Ltd Photosensitive paste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163687B2 (en) 2010-04-30 2013-03-13 株式会社村田製作所 Photosensitive conductive paste, method for manufacturing multilayer electronic component using the same, and multilayer electronic component
KR20150122345A (en) 2014-04-23 2015-11-02 (주)라누베 Skin Moisturizer and penetration enhancer with the distilled mineral water from thermal seawater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118875A1 (en) * 2012-02-09 2013-08-15 ダイソー株式会社 Photocurable resin composition containing fine metal particles and use of same
JP2014170051A (en) * 2013-03-01 2014-09-18 Noritake Co Ltd Photosensitive paste

Also Published As

Publication number Publication date
JP6694099B1 (en) 2020-05-13
TW202104867A (en) 2021-02-01
CN114096919A (en) 2022-02-25
JP2021015155A (en) 2021-02-12
KR20220034178A (en) 2022-03-17

Similar Documents

Publication Publication Date Title
TWI812688B (en) Photosensitive composition, complex, electronic part, and method for producing electronic part
WO2021005910A1 (en) Photosensitive composition production method, pasty photosensitive composition, electronic component production method, electronic component, device for determining mixing ratio for organic component in photosensitive composition, and computer program
JPH10112216A (en) Photosensitive conductive paste, electrode therewith and manufacture thereof
JP6814237B2 (en) Photosensitive compositions and their use
JP7446355B2 (en) Photosensitive composition and its use
TWI796424B (en) Photosensitive composition, complex, electronic part and manufacturing method thereof
JP2004054085A (en) Photosensitive conducttor paste
TWI843853B (en) Method for producing photosensitive composition, paste-like photosensitive composition, method for producing electronic component and electronic component, device for determining mixing ratio of organic components in photosensitive composition, non-transient computer-readable recording medium
TWI780277B (en) Photosensitive composition, composite, electronic component, and method for producing electronic component
JP7113779B2 (en) Photosensitive composition and its use
JP5983829B2 (en) Manufacturing method of electronic parts
JP7108778B1 (en) Photosensitive composition and its use
JP2022154879A (en) Electronic part production kit and use thereof
JP2001264964A (en) Photosensitive thick film composition, electronic parts and electronic device
JP6163876B2 (en) Photosensitive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004215

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20836112

Country of ref document: EP

Kind code of ref document: A1