WO2021004851A1 - Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine - Google Patents

Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine Download PDF

Info

Publication number
WO2021004851A1
WO2021004851A1 PCT/EP2020/068503 EP2020068503W WO2021004851A1 WO 2021004851 A1 WO2021004851 A1 WO 2021004851A1 EP 2020068503 W EP2020068503 W EP 2020068503W WO 2021004851 A1 WO2021004851 A1 WO 2021004851A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite component
fiber composite
test
signal
component
Prior art date
Application number
PCT/EP2020/068503
Other languages
German (de)
English (en)
Inventor
Linda Klein
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021004851A1 publication Critical patent/WO2021004851A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0066Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing

Definitions

  • the present invention relates to a method for testing a
  • Fiber composite component Fiber composite component, a corresponding device, a corresponding computer program and a corresponding machine-readable
  • DE 10 2016 220 032 A1 discloses a sensor device for a vehicle, in particular a motor vehicle, with at least one sensor module and with at least one connection line connected to the sensor module for making electrical contact with the sensor module.
  • connection line is designed as a conductor foil on which several different sensor modules are arranged and contacted by one or a common conductor foil.
  • a sensor module for detecting an acceleration for example a
  • MEMS microelectromechanical systems
  • a changed state of the component in which the acceleration sensor is integrated in the form of a sensor device can possibly not be recognized with sufficient accuracy on the basis of a change in the course of the time signal (acceleration over time). This depends on the strength of the change in state of the component or the
  • the present invention creates a method for testing a fiber composite component, the fiber composite component having a sensor device integrated into the fiber composite component, the
  • Sensor device has a flexible circuit carrier with a sensor module, in particular with a micromechanical sensor module for detecting an acceleration.
  • the flexible circuit carrier it is conceivable here for the flexible circuit carrier to have several sensor modules.
  • the procedure includes the following steps
  • test signal as a result of an offset of the
  • Fiber composite component is recorded in a test vibration.
  • the transfer to a test oscillation can take place by introducing a test pulse to a test location of the fiber composite component.
  • the sensor signals in the frequency range that is, the frequency spectra of the signals, can be analyzed qualitatively as well as quantitatively with regard to characteristic quantities. Significant changes in the characteristics are sought out:
  • the location or frequency at which maximum spectral components occur can be considered.
  • the size, i.e. the magnitudes, of the maximum spectral components can be considered.
  • the slope of the envelope over the frequency response in the vicinity of the maximum spectral components can be observed.
  • the area sum over all spectral components can be considered, below the envelope of the spectral components over the frequency response.
  • the method has the advantage that the analysis of the test signal in the frequency range, i. H. After the spectral analysis, characteristics of the signal are more visible or even visible at all compared to the signal in the time domain.
  • Fiber composite component for example. When used on a vehicle, if the fiber composite component is a body part of the vehicle.
  • a fiber composite component can be understood to mean a component that consists of a fiber composite material.
  • Fiber composite material is generally created by a
  • the matrix is
  • Filler and adhesive for the fibers or for the semi-finished textile product It is typical of fiber composite materials that the interaction of the composite creates a material that has higher-quality properties compared to the properties of the fibers and the filler.
  • the fiber composite component can be a body part for a vehicle; For example, a bumper component or a component on the long side of the vehicle.
  • the fiber composite component can include a component. from the field of mechanical and plant engineering, medical technology, the fields of aerospace technology, energy, offshore, robotic, sports equipment and consumer products.
  • the fiber composite component can be a piece of sports equipment.
  • the fiber composite component according to the present invention can in
  • LCM process liquid composite molding process
  • a flexible circuit carrier can comprise silicones, polyurethanes, polyamides or thermoplastics.
  • the flexible circuit carrier can easily be elastically or plastically deformed, in particular the integrated conductor track structure can be correspondingly plastically deformed, whereby the Essentially, the flexible circuit carrier can be adapted to a geometry or shape of the fiber composite component.
  • the flexible circuit carrier can be a conductor foil.
  • a sensor module can be an electronic or
  • a sensor module can be designed to detect an acceleration or a rotational acceleration.
  • the senor module In principle, it is conceivable for the sensor module to be designed to detect one or more physical effects.
  • the sensor module can be a micromechanical component for detecting an acceleration, thus a micromechanical acceleration sensor of the microelectromechanical system (M EMS) type.
  • M EMS microelectromechanical system
  • the method according to the present invention forms an extended safety function of a fiber composite component with an in
  • Fiber composite component integrated sensor device This safety function is particularly suitable for such fiber composite components as body components of a vehicle.
  • Sensor values of the sensor device in particular acceleration values of a corresponding sensor device
  • Acquisition of acceleration values could not only be used to implement a protective function for road users such as the occupants of the vehicle or other road users, but also beyond that can be used as an extended safety function for testing the fiber composite component.
  • this difference can be determined by the method of the present invention and thus a direct conclusion about the state of the component or, more generally, about the character of the component.
  • the signal in the is used for determination or detection
  • Fiber composite component integrated sensor device as this reacts directly to the changed component character.
  • the reference signal can be generated in that the
  • Fiber composite component is set in a reference oscillation and the
  • Reference vibration is detected by means of the sensor device and the detected signal or a signal derived therefrom is the reference signal.
  • the reference signal is used for follow-up examinations or tests of the fiber composite component.
  • Fiber composite component is generated. This can result in a later subsequent testing of the fiber composite component according to the method of the present invention by comparing the test signal with the
  • Reference signal a change in the component characteristics can be determined. Based on the determined component characteristics, conclusions can be drawn about the state or a change in state of the component at the time the method for testing the fiber composite component is carried out in comparison to its new state. With this information, an appropriate measure can be taken.
  • the state or this change of state of the fiber composite component determined in this way can be output by means of a state signal which suitably represents the state or the change in state.
  • a suitable measure can be the recommendation to visit a workshop for inspection or repair.
  • the vehicle is also conceivable as a suitable measure.
  • the spectral analysis is carried out by means of a discrete Fourier transform (DFT).
  • DFT discrete Fourier transform
  • the starting point is the discrete sensor signal in the time domain z.
  • B. by applying the Discrete Fourier Transform (DFT) in the discrete
  • the DFT can e.g. B. be done via a Fast Fourier Transformation (FFT).
  • FFT Fast Fourier Transformation
  • the FFT is a faster version of the DFT and has comparable properties.
  • the representation is described mathematically as follows:
  • zero padding is understood to mean that the test signal im
  • Time range is padded with zeros.
  • the observation interval can be increased as a result, whereby a narrower sampling can be achieved after the application of the Fast Fourier transform. Although this does not improve the quality of the signal, the closer sampling enables a better representation of the signal in the frequency domain.
  • the test signal and the reference signal are only considered on one side.
  • the step of determining the determination takes place as a function of significant changes in the characteristic of the frequency spectrum.
  • the test oscillation lies within a measurement range under consideration
  • an environment can include, for example
  • Clamping device for the fiber composite component the suspension device for the fiber composite component on a vehicle, but also others
  • Measuring range (frequency range) of the sensor module Especially if the acceleration sensor has a high or low pass filter. This can be done, for example, by means of vibration isolation.
  • Acceleration sensor signal no frequency components are superimposed by natural oscillation of the environment.
  • Another aspect of the present invention is a device which is designed to carry out all steps of the method according to the present invention.
  • Another aspect of the present invention is a computer program which is designed to carry out all steps of the method according to the present invention.
  • Another aspect of the present invention is a machine-readable storage medium on which the computer program according to the present invention is stored.
  • FIG. 1 shows a flow diagram of an embodiment of the method of the present invention.
  • FIG. 1 shows a flow chart of an embodiment of the method 100 for testing a fiber composite component according to the present invention.
  • step 101 the fiber composite component is subjected to a test vibration
  • the setting into a test vibration can be done by introducing a test pulse to a test location of the
  • Fiber composite component take place.
  • the process step is shown in dashed lines in the flowchart, since this step does not represent an essential step of the claimed process.
  • the test signal is recorded by means of a sensor device integrated into the fiber composite component.
  • the test signal can be used as a discrete sensor signal in the time domain, i. H. for example, as acceleration over time.
  • the recorded is zero-padding
  • step 104 the acquired test signal is transformed in the discrete time domain for representation in the discrete frequency domain.
  • Transformation can, for example, by means of a discrete Fourier transformation (DFT) z. B. be performed by applying the Fast Fourier Transform (FFT).
  • DFT discrete Fourier transformation
  • FFT Fast Fourier Transform
  • step 105 the frequency spectrum of the test signal is examined in the frequency range, in particular one-sided, in particular the real part.
  • the test signal is compared in the frequency range with respect to characteristic variables with a reference signal.
  • step 107 based on the comparison from step 106, a state or a change of state is determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, notamment un élément structural de carrosserie pour un véhicule. L'élément structural en matériau composite à base de fibres possède un dispositif de détection intégré dans l'élément structural en matériau composite à base de fibres, le dispositif de détection possédant un porte-circuit flexible pourvu d'un module de détection, notamment pourvu d'un module de détection micromécanique destiné à détecter une accélération. Le procédé comprend les étapes suivantes : acquisition d'un signal d'essai au moyen du dispositif de détection, notamment consécutivement à une mise en oscillation d'essai de l'élément structural en matériau composite à base de fibres, en particulier par application d'une impulsion d'essai sur un point d'essai de l'élément structural en matériau composite à base de fibres ; comparaison du signal d'essai avec un signal de référence. L'invention est caractérisée en ce que dans l'étape de comparaison, la comparaison du signal d'essai et du signal de référence est effectuée à l'aide d'une analyse spectrale dans la plage de fréquences, notamment dans la plage de fréquences discrètes.
PCT/EP2020/068503 2019-07-10 2020-07-01 Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine WO2021004851A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019210166.6A DE102019210166A1 (de) 2019-07-10 2019-07-10 Verfahren zur Prüfung eines Faserverbundbauteils, Vorrichtung, Computerprogramm und maschinenlesbares Speichermedium
DE102019210166.6 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021004851A1 true WO2021004851A1 (fr) 2021-01-14

Family

ID=71515131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/068503 WO2021004851A1 (fr) 2019-07-10 2020-07-01 Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine

Country Status (2)

Country Link
DE (1) DE102019210166A1 (fr)
WO (1) WO2021004851A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704866A (zh) * 2021-07-16 2021-11-26 江铃汽车股份有限公司 基于频率响应的保险杠系统强度分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533399A (en) * 1992-09-30 1996-07-09 Wayne State University Method and apparatus for non-destructive measurement of elastic properties of structural materials
DE102016220032A1 (de) 2016-10-14 2018-04-19 Robert Bosch Gmbh Sensorvorrichtung für ein Fahrzeug, Kraftfahrzeug

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533399A (en) * 1992-09-30 1996-07-09 Wayne State University Method and apparatus for non-destructive measurement of elastic properties of structural materials
DE102016220032A1 (de) 2016-10-14 2018-04-19 Robert Bosch Gmbh Sensorvorrichtung für ein Fahrzeug, Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PÉREZ MARCO A ET AL: "Impact damage identification in composite laminates using vibration testing", COMPOSITE STRUCTURES, ELSEVIER SCIENCE LTD, GB, vol. 108, 25 September 2013 (2013-09-25), pages 267 - 276, XP028790710, ISSN: 0263-8223, DOI: 10.1016/J.COMPSTRUCT.2013.09.025 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704866A (zh) * 2021-07-16 2021-11-26 江铃汽车股份有限公司 基于频率响应的保险杠系统强度分析方法
CN113704866B (zh) * 2021-07-16 2023-10-13 江铃汽车股份有限公司 基于频率响应的保险杠系统强度分析方法

Also Published As

Publication number Publication date
DE102019210166A1 (de) 2021-01-14

Similar Documents

Publication Publication Date Title
DE60025466T2 (de) Methode und messgerät zur untersuchung eines gebietes auf präsenz/absenz einer bestimmten geophysikalischen eigenschaft
DE102019210171A1 (de) Herstellungsverfahren für ein Faserverbundbauteil, Faserverbundbauteil, Prüfverfahren für ein Faserverbundbauteil, Computerprogramm, maschinenlesbares Speichermedium und Vorrichtung
EP2694792A1 (fr) Procédé de diagnostic d'un système de suralimentation de moteurs à combustion interne
WO2021004851A1 (fr) Procédé pour soumettre à essai un élément structural en matériau composite à base de fibres, dispositif, programme informatique et support d'enregistrement lisible par machine
EP3356813A1 (fr) Procédé permettant de déterminer la distribution granulométrique de granulés dans un flux de transport et dispositif de mesure
DE102017011478A1 (de) Verfahren sowie Svstem zur Schließkraftmessung eines Fahrzeugflügelelements
DE69008192T2 (de) Verfahren und vorrichtung zur speicherung intermittierender funktioneller fehler eines physikalischen systems und von kontextvariablen dieser fehler.
EP2317308A2 (fr) Dispositif et procédé de contrôle de dommages sur un composant
DE102011114058B4 (de) Verfahren und Vorrichtung zur akustischen Beurteilung eines Bauteils
DE102017212666B4 (de) Verfahren und Vorrichtung zur Bestimmung des Zustands eines mechanischen Bauteils
EP1209458B1 (fr) Procédé permettant de déterminer le niveau de bruit d'un moteur à combustion interne
DE102009004607A1 (de) Verfahren zur Analyse von Windgeräuschen an einem Fahrzeug
DE10344802A1 (de) Getriebeprüfeinrichtung und Verfahren zur Durchführung von Akustikprüfungen
WO2022069233A1 (fr) Procédé de test d'un capteur, et circuit électronique
DE102017212800A1 (de) Verfahren zum Testen eines Lenkgetriebes
DE102014108664B4 (de) Identifikation von Bauteilen
DE102020200936A1 (de) Verfahren, Vorrichtung und graphische Benutzeroberfläche zur Analyse eines mechanischen Objektes
DE102013005405A1 (de) Verfahren und Vorrichtung zur Ermittlung von Akustikeigenschaften eines Fahrzeuginnenraums
DE102019106425A1 (de) Messeinrichtung und Verfahren zur Feuchtigkeitsmessung
DE102019007911A1 (de) Vorrichtung und Verfahren zur Prüfung von Dichtringen und/oder Validierung von Werkstoffdaten von Dichtringen
WO2020115057A1 (fr) Élément composite renforcé de fibres, utilisation de l'élément composite renforcé de fibres, divers procédés
EP0727576B1 (fr) Procédé de détection de conditions d'erreur de dispositifs d'injection diesel
EP3633390B1 (fr) Procédé et dispositif de détection des perturbations d'un capteur
DE102018006634A1 (de) Verfahren zum Prüfen eines Fahrzeugbauteils
WO2016128118A1 (fr) Procédé de test pour détecter un endommagement d'un composant causé par la fragilisation due à l'hydrogene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20736958

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20736958

Country of ref document: EP

Kind code of ref document: A1