WO2021004374A1 - 数据发送的方法、数据接收的方法和设备 - Google Patents

数据发送的方法、数据接收的方法和设备 Download PDF

Info

Publication number
WO2021004374A1
WO2021004374A1 PCT/CN2020/100004 CN2020100004W WO2021004374A1 WO 2021004374 A1 WO2021004374 A1 WO 2021004374A1 CN 2020100004 W CN2020100004 W CN 2020100004W WO 2021004374 A1 WO2021004374 A1 WO 2021004374A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink grant
uplink
target
data packet
authorization
Prior art date
Application number
PCT/CN2020/100004
Other languages
English (en)
French (fr)
Inventor
吴昱民
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020227000097A priority Critical patent/KR20220015487A/ko
Priority to JP2021577144A priority patent/JP7288987B2/ja
Priority to EP20836051.1A priority patent/EP3996311A4/en
Publication of WO2021004374A1 publication Critical patent/WO2021004374A1/zh
Priority to US17/563,110 priority patent/US20220124790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present disclosure relates to the field of communication technology, and more specifically to a method of data transmission, a method and equipment of data receiving.
  • a terminal device When a terminal device wants to transmit more than two independent uplink channels at the same time, it needs to determine whether the uplink power of the terminal device is restricted, and whether the terminal device has the ability to transmit uplink channels at the same time. If the terminal device cannot transmit multiple uplink channels at the same time, the terminal device will send the uplink channel according to the transmission priority order of the physical layer uplink channel specified in the protocol.
  • the Medium Access Control (MAC) layer of the terminal device selects an uplink grant with a higher priority level for transmission according to the priority of each uplink grant for multiple uplink grants that conflict in uplink transmission.
  • the priority of the uplink authorization is determined by the data with the highest priority (for example, the priority of the logical channel) among the multiple data that can be sent through the uplink authorization.
  • the terminal device may discard some uplink authorizations, but for these discarded uplink authorization terminal devices have already generated MAC protocol data units (Protocol Data Unit, PDU), how to send the data in these MAC PDUs , So as not to cause data loss is a problem that needs to be solved.
  • PDU MAC protocol data units
  • the purpose of the embodiments of the present disclosure is to provide a data sending method, a data receiving method, and a device to solve the problem of how a terminal device sends data corresponding to a discarded uplink authorization.
  • a data transmission method which is applied to a terminal device, and the method includes:
  • the second uplink grant for sending the first data packet is determined according to the selection rule.
  • a data receiving method which is applied to a network device, and the method includes:
  • the retransmission instruction information indicates that the terminal device sends the first data packet through a third uplink authorization, and the second uplink authorization is generated by the terminal device according to the first uplink authorization. And when the uplink transmission corresponding to the first uplink authorization is abandoned, it is determined according to the selection rule.
  • a terminal device including:
  • the processing module is configured to determine the second uplink for sending the first data packet according to the selection rule when the first data packet is generated according to the first uplink authorization and the uplink transmission corresponding to the first uplink authorization is abandoned. Authorization.
  • a network device including:
  • a processing module configured to receive the first data packet through the second uplink authorization if the retransmission instruction information is not sent to the terminal device before receiving the first data packet through the second uplink authorization;
  • the retransmission instruction information indicates that the terminal device sends the first data packet through a third uplink authorization, and the second uplink authorization is generated by the terminal device according to the first uplink authorization. And when the uplink transmission corresponding to the first uplink authorization is abandoned, it is determined according to the selection rule.
  • a terminal device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor to realize The steps of the method described in one aspect.
  • a network device including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program When the computer program is executed by the processor, the following The steps of the method described in the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and the computer program implements the steps of the method described in the first aspect when the computer program is executed by a processor.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the method described in the second aspect are implemented.
  • the terminal device after the terminal device generates the first data packet according to the first uplink authorization, if the uplink transmission corresponding to the first uplink authorization is abandoned, the terminal device determines the second data packet used to send the first data packet according to the selection rule. Uplink authorization. In this way, the terminal device can independently select the uplink grant for sending the data packet corresponding to the abandoned uplink grant, which can avoid data loss.
  • Fig. 1 is a schematic flowchart of a data sending method according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram of a data transmission method according to a specific embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a data transmission method according to another specific embodiment of the present disclosure.
  • Fig. 4 is a schematic flowchart of a data receiving method according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • Fig. 6 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • Fig. 8 is another schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-advanced
  • NR New Radio
  • the terminal equipment in the embodiments of the present disclosure may also be referred to as a mobile terminal (Mobile Terminal), mobile user equipment, etc., and may be connected to one or the other via a radio access network (for example, Radio Access Network, RAN). Multiple core networks communicate.
  • User equipment can be mobile terminals, such as mobile phones (or "cellular" phones) and computers with mobile terminals. For example, they can be portable, pocket-sized, handheld, built-in computers, or vehicle-mounted. Mobile devices that exchange language and/or data with the wireless access network.
  • the network equipment in the embodiments of the present disclosure is a device deployed in a wireless access network device to provide wireless communication functions for terminal equipment.
  • the network equipment may be a base station, for example, and the base station may be an evolved base station (eNB or eNodeB) in LTE.
  • eNB evolved base station
  • gNB 5G base station
  • this disclosure is not limited to this.
  • Fig. 1 shows a data transmission method according to an embodiment of the present disclosure.
  • the method shown in Figure 1 can be executed by a terminal device.
  • the method includes:
  • the embodiment of the present disclosure does not limit the reason why the terminal device abandons the uplink transmission corresponding to the first uplink grant. For example, the terminal device may abandon the uplink transmission corresponding to the first uplink grant when the first uplink grant conflicts with other uplink grants. Or the terminal device may abandon the uplink transmission corresponding to the first uplink grant when the uplink power is limited.
  • the first uplink grant and the second uplink grant correspond to the same Hybrid Automatic Repeat ReQuest (HARQ) process number; or, the first uplink grant and the second uplink grant correspond to different HARQ process numbers.
  • HARQ Hybrid Automatic Repeat ReQuest
  • the selection rule includes one of the following rules: determining the uplink grant that conflicts with the first uplink grant to be the second uplink grant; and placing the uplink grant in the time domain after the first uplink grant The target uplink authorization for is determined as the second uplink authorization.
  • the selection rule includes: determining the uplink authorization that conflicts with the first uplink authorization as the second uplink authorization. For example, the terminal device generates a MAC PDU 1 according to the uplink authorization 1, and puts it into the buffer of HARQ process 1 to be sent. However, because the uplink grant 1 conflicts with the uplink grant 2, the terminal device abandons the uplink transmission corresponding to the uplink grant 1. In this case, the terminal equipment reconstructs MAC PDU 1 into MAC PDU 2 according to uplink authorization 2, and transmits MAC PDU 2 through uplink authorization 2.
  • the uplink grant 1 here can be a configured uplink grant (Configured Grant, CG), and the uplink grant 2 can be a dynamically scheduled uplink grant (Dynamic Grant, DG).
  • the selection rule includes: determining the target uplink authorization located after the first uplink authorization in the time domain as the second uplink authorization.
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant corresponds to the first uplink grant or the time point when the target uplink grant is used
  • the time interval is greater than or equal to the target time length, and the time interval between other uplink authorizations in the time domain before the target uplink authorization in the uplink authorization corresponding to the first configuration information and the first uplink authorization is less than the target time length, and the target time length is the terminal device
  • the minimum required duration of the reconstructed data packet is the minimum required duration of the reconstructed data packet.
  • the time point of determining the use of the target uplink authorization can be understood as: the time point of giving up the uplink transmission corresponding to the first uplink authorization.
  • judging the time point of using the target uplink authorization can be understood as: after giving up the uplink transmission corresponding to the first uplink authorization, the terminal device determines the time point at which the target uplink authorization is to be used to transmit the first data packet.
  • the terminal device gave up the uplink transmission corresponding to CG 1, but generated MAC PDU 1 according to CG 1, and the configuration information used to configure CG 1 is cgConfig-1, cgConfig- 1
  • the corresponding CG includes CG2 and CG3, but because the time interval between CG 2 and CG 1 is too short, the terminal device cannot reconstruct MAC PDU 1 according to CG 2 (for example, the terminal device reconstructs MAC PDU)
  • the shortest time requirement is 5ms, and the time interval between CG2 and CG1 is 3ms), and CG3 meets the shortest time requirement for terminal equipment to reconstruct MAC PDU1 (for example, the time interval between CG3 and CG1 is 6ms), the terminal device reconstructs MAC PDU 1 according to CG 3 to generate MAC PDU 3.
  • CG 1 and CG 2 may have the same HARQ process number, or CG 1 and CG 2 may have different HARQ process numbers.
  • CG 1 and CG 3 may have the same HARQ process number, or CG 1 and CG 3 may have different HARQ process numbers.
  • the selection rule includes: determining the target uplink authorization located after the first uplink authorization in the time domain as the second uplink authorization.
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the time interval between the target uplink grant and the first uplink grant is less than that corresponding to the first configuration information The time interval between other uplink grants in the uplink grant and the first uplink grant.
  • the type of the first uplink grant is the configured uplink grant
  • the configuration information used to configure the first uplink grant is the first configuration information
  • the terminal device places the uplink grant corresponding to the first configuration information next to the time domain.
  • the uplink authorization of the first uplink authorization is used as the second uplink authorization.
  • the uplink transmission corresponding to CG 1 of the terminal device is abandoned, and the terminal device generates MAC PDU 1 according to CG 1, and the configuration information used to configure CG 1 is cgConfig-1, and the CG corresponding to cgConfig-1 Only the uplink authorization next to CG 1 is CG 2 (CG 1 and CG 2 can have the same HARQ process number, or CG 1 and CG 2 can have different HARQ process numbers), then the terminal device pairs the MAC PDU according to CG 2 1 Perform reconstruction to generate MAC PDU 2, and send MAC PDU 2 through CG 2, or the terminal device sends MAC PDU 1 on CG 2.
  • the selection rule includes: determining the target uplink authorization located after the first uplink authorization in the time domain as the second uplink authorization.
  • the type of the first uplink grant is the configured uplink grant
  • the target uplink grant is the configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the time interval between the target uplink grant and the first uplink grant is less than the second configuration information
  • the type of the first uplink grant is the configured uplink grant
  • the configuration information used to configure the first uplink grant is the first configuration information
  • the terminal device places the uplink grant corresponding to the second configuration information in the time domain.
  • the uplink authorization of the first uplink authorization is used as the second uplink authorization.
  • the uplink transmission corresponding to CG 1 of the terminal device is abandoned, and the terminal device generates MAC PDU 1 according to CG 1.
  • the configuration information used to configure CG 1 is cgConfig-1, and CG 1 is next to it.
  • CG is CG 2
  • the configuration information used to configure CG 2 is cgConfig-2 (that is, the configuration of CG used for retransmission can be different from CG 1), then the terminal device uses CG 2 to reconstruct MAC PDU 1 to generate MAC PDU 2 is sent, or the terminal device sends MAC PDU 1 through CG 2.
  • the network device may configure multiple uplink authorization configuration information for the terminal device. For example, if the network device configures two uplink authorization configuration information for the terminal device, and the two uplink authorization configuration information are configuredGrantConfiguration-1 and configuredGrantConfiguration-2, respectively, the two uplink authorization configuration information belong to the second configuration information.
  • the selection rule includes: determining the target uplink authorization located after the first uplink authorization in the time domain as the second uplink authorization.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to second configuration information
  • the target uplink grant is the same as the first uplink grant
  • it is determined that the time interval between the time points at which the target uplink authorization is used is greater than or equal to the target duration
  • the uplink authorization corresponding to the second configuration information is in the time domain with other uplink authorizations before the target uplink authorization.
  • the time intervals between the first uplink grants are all less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet
  • the second configuration information includes at least one uplink authorization configuration information.
  • the time point of determining the use of the target uplink authorization can be understood as: the time point of giving up the uplink transmission corresponding to the first uplink authorization.
  • judging the time point of using the target uplink authorization can be understood as: after giving up the uplink transmission corresponding to the first uplink authorization, the terminal device determines the time point at which the target uplink authorization is to be used to transmit the first data packet.
  • the uplink transmission corresponding to CG 1 of the terminal device is abandoned, and the terminal device generates MAC PDU 1 according to CG 1.
  • the configuration information used to configure CG 1 is cgConfig-1, and CG 1 is next to it.
  • CG is CG 2
  • the configuration information used to configure CG 2 is cgConfig-2 (that is, the configuration of CG used for retransmission can be different from CG 1), but the time interval between CG 2 and CG 1 is too short, and the terminal The device cannot reconstruct MAC PDU 1 according to CG 2 into MAC PDU 2 (for example, the minimum time required for a terminal device to reconstruct MAC PDU is 5 ms, and the time interval between CG 2 and CG 1 is 3 ms), and CG 1 neighbor CG is CG 3, the configuration information used to configure CG 3 is cgConfig-3, and the time interval between CG 3 and CG 1 meets the shortest time requirement for terminal equipment to reconstruct MAC PDU 1 (for example, CG 3 and CG 1 The time interval is 6 ms), the terminal device reconstructs the MAC PDU 1 according to the CG 3 to generate the MAC PDU 3 and send it.
  • cgConfig-2 that is, the configuration of CG used for re
  • the selection rule includes: determining the target uplink authorization located after the first uplink authorization in the time domain as the second uplink authorization.
  • the target uplink grant is the uplink grant with the smallest time interval between the first uplink grant among all the uplink grants of the terminal device.
  • the terminal device determines that the second uplink authorization is the uplink authorization next to the first uplink authorization .
  • the first uplink grant may be a configured uplink grant or a scheduled uplink grant.
  • the second configuration grant may be a configured uplink grant or a scheduled uplink grant.
  • the transport block size (Transport Block Size, TBS) of the second uplink authorization is greater than or equal to the TBS of the first uplink authorization.
  • the method shown in Figure 1 further includes:
  • the second data packet After generating the second data packet according to the second uplink authorization, clear the first data packet or continue to save the first data packet.
  • the second data packet includes the data in the first data packet.
  • the terminal device abandons the uplink transmission corresponding to the uplink grant 1, and generates MAC PDU 1 according to the uplink grant 1. After the terminal device reconstructs the MAC PDU 1 into MAC PDU 2 according to the uplink grant 2, the terminal device can PDU 1 performs one of the following operations:
  • Operation 1 Clear MAC PDU 1.
  • the MAC PDU 1 generated by the terminal device is stored in HARQ process 1.
  • the terminal device reconstructs the MAC PDU 1 into MAC PDU 2 according to the uplink authorization 2
  • the MAC PDU 2 can be stored in HARQ process 2
  • the terminal device can Clear the MAC PDU 1 buffered in HARQ process 1.
  • Operation 2 Continue to save MAC PDU 1.
  • the MAC PDU 1 generated by the terminal device is stored in HARQ process 1.
  • the terminal device reconstructs the MAC PDU 1 into MAC PDU 2 according to the uplink authorization 2
  • the MAC PDU 2 can be stored in HARQ process 2
  • the terminal device can Continue to save the MAC PDU 1 buffered in HARQ process 1.
  • the method shown in FIG. 1 further includes:
  • the first data packet is sent through the second uplink authorization; wherein, the retransmission instruction information instructs the terminal device to send the first data packet through the third uplink authorization. data pack.
  • the terminal device sending the first data packet through the second uplink authorization may directly send the first data packet, or may send a data packet reconstructed from the first data packet.
  • the target mode includes one of the following methods:
  • the first data is transmitted through the second uplink authorization and the third uplink authorization which occupies less transmission resources; and,
  • the first data is sent through the second uplink authorization and the third uplink authorization.
  • the terminal device determines by itself to use the subsequent uplink authorization to send the first data packet, before the data sends the first data packet, if it receives the retransmission instruction for the first data packet designated by the network device After that, the terminal device sends the first data packet in the target mode.
  • the terminal device abandons the uplink transmission corresponding to CG 1 at time T1, but has already generated MAC PDU 1 according to CG 1, and the terminal device determines to use CG 2 to perform MAC PDU 1 at time T2.
  • Method 1 The terminal device gives up sending MAC PDU 1 through CG 2 and uses DG 3 to send MAC PDU 1.
  • Method 2 The terminal device gives up sending MAC PDU 1 through DG 3, and uses CG 2 to send MAC PDU 1. Or it can be understood that the terminal device abandons the retransmission indicated by the network side, and transmits the MAC PDU 1 through the uplink authorization determined by itself.
  • Method 3 The terminal device selects the nearest CG 1 among CG 2 and DG 3 to send MAC PDU 1. For example, as shown in FIG. 3, the terminal device transmits MAC PDU 1 through CG 2.
  • Method 4 The terminal device selects the one of CG 2 and DG 3 with higher transmission reliability to send MAC PDU 1. For example, if the transmission reliability of CG 2 is higher than that of DG 3, MAC PDU 1 is sent through CG 2, and the uplink transmission corresponding to DG 3 is abandoned.
  • Method 5 The terminal device selects the larger TBS of CG 2 and DG 3 to send MAC PDU 1. For example, if the TBS of CG 2 is greater than the TBS of DG 3, MAC PDU 1 is sent through CG 2 and the uplink transmission corresponding to DG 3 is abandoned.
  • Method 6 The terminal device selects the one of CG 2 and DG 3 that occupies less transmission resources to transmit MAC PDU 1. For example, if the physical resource block occupied by CG 2 is less than DG 3, MAC PDU 1 is sent through CG 2, and the uplink transmission corresponding to DG 3 is abandoned.
  • Manner 7 The terminal device sends MAC PDU 1 through CG 2 and DG 3, that is, the terminal device sends MAC PDU 1 through CG 2 and MAC PDU 1 through DG 3. In other words, the terminal device sends the MAC PDU 1 according to the retransmission opportunity indicated by the network side, and also sends the MAC PDU 1 through the uplink authorization it determines by itself.
  • the method for sending data according to an embodiment of the present disclosure has been described in detail from the terminal device side with reference to FIGS. 1 to 3 above.
  • the method for receiving data according to an embodiment of the present disclosure will be described in detail from the network device side with reference to FIG. 4. It should be noted that the interaction between the terminal device and the network device described from the network device side is the same as the description on the slave terminal device side. To avoid repetition, relevant descriptions are appropriately omitted.
  • Fig. 4 is a schematic flowchart of a data receiving method according to an embodiment of the present disclosure.
  • the method shown in Figure 4 can be executed by a network device.
  • the method includes:
  • the selection rule includes one of the following rules:
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink authorization or the time point at which the target uplink authorization is determined to be used is greater than or equal to the target duration, and the uplink authorization corresponding to the first configuration information is located in the target uplink authorization in the time domain
  • the time interval between other previous uplink grants and the first uplink grant is all less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet.
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the first configuration information and the first uplink grant.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the second configuration information and the first uplink grant;
  • the second configuration information includes at least one uplink authorization configuration information.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant or the time point at which the target uplink grant is judged to be used is greater than or equal to the target duration, and the uplink grant corresponding to the second configuration information is located on the target in the time domain
  • the time interval between other uplink authorizations before the uplink authorization and the first uplink authorization is less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet
  • the second configuration information includes at least one uplink authorization configuration information.
  • the target uplink grant is an uplink grant with the smallest time interval between all uplink grants of the terminal device and the first uplink grant resource.
  • the first uplink grant and the second uplink grant correspond to the same hybrid automatic repeat request HARQ process number; or,
  • the first uplink grant and the second uplink grant correspond to different HARQ process numbers.
  • the transport block size TBS of the second uplink grant is greater than or equal to the TBS of the first uplink grant.
  • the method shown in FIG. 4 further includes:
  • the retransmission instruction information is sent to the terminal device before receiving the first data packet through the second uplink authorization, then the first data packet is received in a target mode;
  • the target mode includes one of the following modes:
  • Fig. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 5, the terminal device 50 includes:
  • the processing module 51 is configured to determine the second data packet used to send the first data packet according to the selection rule when the first data packet is generated according to the first uplink authorization and the uplink transmission corresponding to the first uplink authorization is abandoned. Uplink authorization.
  • the selection rule includes one of the following rules:
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink authorization or the point at which the target uplink authorization is determined to be used is greater than or equal to the target duration, and the uplink authorization corresponding to the first configuration information is located before the target uplink authorization in the time domain
  • the time intervals between the other uplink grants and the first uplink grant are all less than the target duration, and the target duration is the minimum required duration for the terminal device to reconstruct a data packet.
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the first configuration information and the first uplink grant.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the second configuration information and the first uplink grant;
  • the second configuration information includes at least one uplink authorization configuration information.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant or the time point at which the target uplink grant is judged to be used is greater than or equal to the target duration, and the uplink grant corresponding to the second configuration information is located on the target in the time domain
  • the time interval between other uplink authorizations before the uplink authorization and the first uplink authorization is less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet
  • the second configuration information includes at least one uplink authorization configuration information.
  • the target uplink grant is the uplink grant with the smallest time interval between the first uplink grant and all the uplink grants of the terminal device.
  • the first uplink grant and the second uplink grant correspond to the same hybrid automatic repeat request HARQ process number; or,
  • the first uplink grant and the second uplink grant correspond to different HARQ process numbers.
  • the transport block size TBS of the second uplink grant is greater than or equal to the TBS of the first uplink grant.
  • processing module 51 is further configured to:
  • the terminal device 50 further includes:
  • the transceiver module 52 is configured to send the first data packet through the second uplink authorization if the retransmission instruction information is not received before sending the first data packet through the second uplink authorization;
  • the retransmission instruction information indicates that the terminal device sends the first data packet through a third uplink authorization.
  • the terminal device 50 further includes a transceiving module 52, configured to receive the retransmission module before sending the first data packet through the second uplink authorization. If the instruction information is transmitted, the first data packet is sent in a target mode;
  • the target mode includes one of the following modes:
  • the terminal device provided by the embodiment of the present disclosure can implement each process implemented by the terminal device in the method embodiments shown in FIG. 1 to FIG. 3, and to avoid repetition, details are not described herein again.
  • Fig. 7 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 7, the network device 70 includes:
  • the processing module 71 is configured to receive the first data packet through the second uplink authorization if the retransmission instruction information is not sent to the terminal device before receiving the first data packet through the second uplink authorization;
  • the retransmission instruction information indicates that the terminal device sends the first data packet through a third uplink authorization, and the second uplink authorization is generated by the terminal device according to the first uplink authorization. And when the uplink transmission corresponding to the first uplink authorization is abandoned, it is determined according to the selection rule.
  • the selection rule includes one of the following rules:
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink authorization or the time point at which the target uplink authorization is determined to be used is greater than or equal to the target duration, and the uplink authorization corresponding to the first configuration information is located in the target uplink authorization in the time domain
  • the time interval between other previous uplink grants and the first uplink grant is all less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet.
  • the type of the first uplink grant is configured uplink grant
  • the target uplink grant corresponds to the first configuration information used to configure the first uplink grant
  • the target uplink grant The time interval between the first uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the first configuration information and the first uplink grant.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant is smaller than the time interval between other uplink grants in the uplink grant corresponding to the second configuration information and the first uplink grant;
  • the second configuration information includes at least one uplink authorization configuration information.
  • the type of the first uplink grant is a configured uplink grant
  • the target uplink grant is a configured uplink grant
  • the target uplink grant corresponds to the second configuration information
  • the target The time interval between the uplink grant and the first uplink grant or the time point at which the target uplink grant is judged to be used is greater than or equal to the target duration, and the uplink grant corresponding to the second configuration information is located on the target in the time domain
  • the time interval between other uplink authorizations before the uplink authorization and the first uplink authorization is less than the target duration
  • the target duration is the minimum required duration for the terminal device to reconstruct a data packet
  • the second configuration information includes at least one uplink authorization configuration information.
  • the target uplink grant is an uplink grant with the smallest time interval between all uplink grants of the terminal device and the first uplink grant resource.
  • the first uplink grant and the second uplink grant correspond to the same hybrid automatic repeat request HARQ process number; or,
  • the first uplink grant and the second uplink grant correspond to different HARQ process numbers.
  • the transport block size TBS of the second uplink grant is greater than or equal to the TBS of the first uplink grant.
  • the network device 70 further includes a transceiving module 72, configured to send the retransmission module to the terminal device before receiving the first data packet through the second uplink authorization. If the instruction information is transmitted, the first data packet is received in a target mode;
  • the target mode includes one of the following modes:
  • the network device provided by the embodiment of the present disclosure can implement each process implemented by the network device in the method embodiment shown in FIG. 4, and to avoid repetition, details are not described herein again.
  • Fig. 9 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 900 shown in FIG. 9 includes: at least one processor 901, a memory 902, a user interface 903, and at least one network interface 904.
  • the various components in the terminal device 900 are coupled together through the bus system 905.
  • the bus system 905 is used to implement connection and communication between these components.
  • the bus system 905 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 905 in FIG. 9.
  • the user interface 903 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 902 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 902 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 9021 and application programs 9022.
  • the operating system 9021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application 9022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiments of the present disclosure may be included in the application 9022.
  • the terminal device 900 further includes: a computer program stored in the memory 902 and capable of running on the processor 901, and the computer program is executed by the processor 901 to implement each process of the method described in FIG. And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 901 or implemented by the processor 901.
  • the processor 901 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 901 or instructions in the form of software.
  • the aforementioned processor 901 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA field Programmable Gate Array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer readable storage medium in the field, such as random access memory, flash memory, read only memory, programmable read only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 902, and the processor 901 reads information in the memory 902, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 901, each step of the method embodiment described in FIG. 1 is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this disclosure Electronic unit or its combination.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure can be implemented through modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • Fig. 10 shows a schematic structural diagram of a network device according to another embodiment of the present disclosure.
  • the network device 1000 includes a processor 1001, a transceiver 1002, a memory 1003, and a bus interface. among them:
  • the network device 1000 further includes: a computer program that is stored in the memory 1003 and can run on the processor 1001, and when the computer program is executed by the processor 1001, the computer program shown in FIG.
  • a computer program that is stored in the memory 1003 and can run on the processor 1001, and when the computer program is executed by the processor 1001, the computer program shown in FIG.
  • Each process in the method can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 1002 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the method embodiment shown in FIGS. 1 to 4 is realized. And can achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk or optical disk, etc.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present disclosure.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种数据发送的方法、数据接收的方法和设备,该方法包括:在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。本公开实施例的方法,终端设备可以自主选择用于发送被放弃的上行授权对应的数据包的上行授权,能够避免数据丢失。

Description

数据发送的方法、数据接收的方法和设备
本申请要求于2019年07月05日提交国家知识产权局、申请号为201910606024.4、申请名称为“数据发送的方法、数据接收的方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,更具体地涉及数据发送的方法、数据接收的方法和设备。
背景技术
当终端设备同时要进行两个以上独立的上行信道的发送的时候,需要判断终端设备的上行功率是否受到限制,以及终端设备是否有同时进行上行信道的发送能力。如果终端设备不能将多个上行信道同时发送,终端设备将会根据协议规定的物理层的上行信道的发送优先顺序进行上行信道的发送。
进一步地,终端设备的媒体接入控制(Medium Access Control,MAC)层对于上行发送冲突的多个上行授权(Uplink Grant),根据各上行授权的优先级,选择优先级别高的上行授权进行发送。这里上行授权的优先级由能够通过该上行授权发送的多个数据中优先级最高(如,逻辑信道的优先级最高)的数据确定。
在上述的情况下,终端设备可能会丢弃一些上行授权,但对于这些被丢弃的上行授权终端设备已经生成了MAC协议数据单元(Protocol Data Unit,PDU),如何将这些MAC PDU中的数据进行发送,从而不会导致数据丢失是需要解决的问题。
发明内容
本公开实施例的目的是提供一种数据发送的方法、数据接收的方法和设备,以解决终端设备如何将被丢弃的上行授权对应的数据进行发送的问题。
为了解决上述问题,本公开实施例是这样实现的:
第一方面,提供了一种数据发送的方法,应用于终端设备,该方法包括:
在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
第二方面,提供了一种数据接收的方法,应用于网络设备,该方法包括:
若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示信息,则通过所述第二上行授权接收所述第一数据包;
其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
第三方面,提供了一种终端设备,包括:
处理模块,用于在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
第四方面,提供了一种网络设备,包括:
处理模块,用于若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示信息,则通过所述第二上行授权接收所述第一数据包;
其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
第五方面,提供了一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第二方面所述的方法的步骤。
在本公开实施例中,终端设备在根据第一上行授权生成第一数据包之后,如果放弃第一上行授权对应的上行发送,则终端设备根据选择规则确定用于发送第一数据包的第二上行授权。由此,终端设备可以自主选择用于发送被放弃的上行授权对应的数据包的上行授权,能够避免数据丢失。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的一个实施例的数据发送的方法的示意性流程图。
图2是根据本公开一个具体实施例的数据发送的方法的示意图。
图3是根据本公开的另一个具体实施例的数据发送的方法的示意图。
图4是根据本公开的一个实施例的数据接收的方法的示意性流程图。
图5是根据本公开的一个实施例的终端设备的结构示意图。
图6是根据本公开的一个实施例的终端设备的另一结构示意图。
图7是根据本公开的一个实施例的网络设备的结构示意图。
图8是根据本公开的一个实施例的网络设备的另一结构示意图。
图9是根据本公开的另一个实施例的终端设备的结构示意图。
图10是根据本公开的另一个实施例的网络设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)/增强长期演进(Long Term Evolution-advanced,LTE-A)系统,新无线(New Radio,NR)系统以及后续演进通信系统等。
本公开实施例中的终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
本公开实施例中的网络设备一种部署在无线接入网设中用于为终端设备提供无线通信功能的装置,网络设备例如可以是基站,基站可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),或者是后续演进版本的网络端设备,本公开不以此为限。
以下结合附图,详细说明本公开各实施例提供的技术方案。
图1示出了根据本公开一个实施例的数据发送的方法。图1所示的方法可以由终端设备执行。如图1所示,方法包括:
S110,在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
需要说明的是,本公开实施例对终端设备放弃第一上行授权对应的上行发送的原因不作限定。例如,终端设备可以在第一上行授权与其他上行授权冲突的情况下,放弃第一上行授权对应的上行发送。或者终端设备可以在上行功率受限的情况下,放弃第一上行授权对应的上行发送。
在S110中,第一上行授权与第二上行授权对应相同的混合自动重传请求(Hybrid Automatic Repeat ReQuest,HARQ)进程编号;或,第一上行授权与第二上行授权对应不同的HARQ进程编号。
可选地,在一些实施例中,选择规则包括以下规则中的一种:将与第一上行授权冲突的上行授权,确定为第二上行授权;以及,将时域上位于第一上行授权之后的目标上行授权,确定为第二上行授权。
下面将结合具体的例子,详细描述选择规则以及终端设备如何根据选择规则确定第二上行授权的方法。
例子a:
选择规则包括:将与第一上行授权冲突的上行授权,确定为第二上行授权。例如,终端设备根据上行授权1生成了MAC PDU 1,并放入HARQ进程1的缓存中等待发送。但由于上行授权1与上行授权2冲突,终端设备放弃了上行授权1对应的上行发送。在这种情况下,终端设备根据上行授权2将MAC PDU 1重构成MAC PDU 2,并通过上行授权2进行MAC PDU 2的发送。这里的上行授权1可以是配置的上行授权(Configured Grant,CG),上行授权2可以是动态调度的上行授权(Dynamic Grant, DG)。
例子b:
选择规则包括:将时域上位于第一上行授权之后的目标上行授权,确定为第二上行授权。第一上行授权的类型为配置的上行授权,目标上行授权与用于配置第一上行授权的第一配置信息对应,目标上行授权与第一上行授权或判断使用目标上行授权的时间点之间的时间间隔大于或等于目标时长,且第一配置信息对应的上行授权中时域上位于目标上行授权之前的其他上行授权与第一上行授权之间的时间间隔均小于目标时长,目标时长为终端设备重构数据包的最短需求时长。
需要说明的是,判断使用目标上行授权的时间点可以理解为:放弃第一上行授权对应的上行发送的时间点。或,判断使用目标上行授权的时间点可以理解为:放弃第一上行授权对应的上行发送之后,终端设备确定要采用目标上行授权对第一数据包进行发送的时间点。
作为一个具体的例子,如图2所示出的,终端设备放弃了CG 1对应的上行发送,但根据CG 1生成了MAC PDU 1,用于配置CG 1的配置信息为cgConfig-1,cgConfig-1对应的CG中包括CG2和CG3,但是由于CG 2与CG 1之间的时间间隔太短,终端设备无法将MAC PDU 1根据CG 2重构成MAC PDU 2(例如,终端设备重构MAC PDU的最短时间需求为5ms,而CG 2与CG 1之间的时间间隔为3ms),而CG 3满足终端设备重构MAC PDU 1的最短时间需求(例如,CG 3与CG 1之间的时间间隔为6ms),则终端设备根据CG 3对MAC PDU 1进行重构生成MAC PDU 3。
在上述的具体例子中,CG 1与CG 2可以具有相同的HARQ进程编号,或者CG 1与CG 2可以具有不同额HARQ进程编号。CG 1与CG 3可以具有相同的HARQ进程编号,或者CG 1与CG 3可以具有不同的HARQ进程编号。
例子c:
选择规则包括:将时域上位于第一上行授权之后的目标上行授权,确定为第二上行授权。第一上行授权的类型为配置的上行授权,目标上行授权与用于配置第一上行授权的第一配置信息对应,目标上行授权与第一上行授权之间的时间间隔小于第一配置信息对应的上行授权中的其他上行授权与第一上行授权之间的时间间隔。
换句话说,第一上行授权的类型为配置的上行授权,用于配置第一上行授权的配置信息为第一配置信息,终端设备将第一配置信息对应的上行授权中在时域上紧挨着第一上行授权的上行授权作为第二上行授权。
作为一个具体的例子,终端设备的CG 1对应的上行发送被放弃了,且终端设备根据CG 1生成了MAC PDU 1,用于配置CG 1的配置信息为cgConfig-1,cgConfig-1对应的CG中仅挨着CG 1的上行授权为CG 2(CG 1与CG 2可以具有相同的HARQ进程编号,或者CG 1与CG 2可以具有不同的HARQ进程编号),则终端设备根据CG 2对MAC PDU 1进行重构生成MAC PDU 2,并通过CG 2发送MAC PDU 2,或者终端设备在CG 2上发送MAC PDU 1。
例子d:
选择规则包括:将时域上位于第一上行授权之后的目标上行授权,确定为第二上行授权。第一上行授权的类型为配置的上行授权,目标上行授权为配置的上行授权, 且目标上行授权与第二配置信息对应,目标上行授权与第一上行授权之间的时间间隔小于第二配置信息对应的上行授权中的其他上行授权与第一上行授权之间的时间间隔;其中,第二配置信息包括至少一个上行授权配置信息(Configured Grant Configuration)。
换句话说,第一上行授权的类型为配置的上行授权,用于配置第一上行授权的配置信息为第一配置信息,终端设备将第二配置信息对应的上行授权中在时域上紧挨着第一上行授权的上行授权作为第二上行授权。
作为一个具体的例子,终端设备的CG 1对应的上行发送被放弃了,且终端设备根据CG 1生成了MAC PDU 1,用于配置CG 1的配置信息为cgConfig-1,CG 1紧挨着的CG为CG 2,用于配置CG 2的配置信息为cgConfig-2(即,用于重传的CG的配置可以与CG 1不同),则终端设备采用CG 2对MAC PDU 1进行重构生成MAC PDU 2进行发送,或者终端设备通过CG 2对MAC PDU 1进行发送。
作为另一个具体的例子,网络设备可以给终端设备配置多个上行授权配置信息。例如,网络设备给终端设备配置了两个上行授权配置信息,这两个上行授权配置信息分别为configuredGrantConfiguration-1和configuredGrantConfiguration-2,则这两个上行授权配置信息均属于第二配置信息。
例子e:
选择规则包括:将时域上位于第一上行授权之后的目标上行授权,确定为第二上行授权。所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
其中,所述第二配置信息包括至少一个上行授权配置信息。
需要说明的是,判断使用目标上行授权的时间点可以理解为:放弃第一上行授权对应的上行发送的时间点。或,判断使用目标上行授权的时间点可以理解为:放弃第一上行授权对应的上行发送之后,终端设备确定要采用目标上行授权对第一数据包进行发送的时间点。
作为一个具体的例子,终端设备的CG 1对应的上行发送被放弃了,且终端设备根据CG 1生成了MAC PDU 1,用于配置CG 1的配置信息为cgConfig-1,CG 1紧挨着的CG为CG 2,用于配置CG 2的配置信息为cgConfig-2(即,用于重传的CG的配置可以与CG 1不同),但是CG 2与CG 1之间的时间间隔太短,终端设备无法将MAC PDU 1根据CG 2重构成MAC PDU 2(例如,终端设备重构MAC PDU的最短时间需求为5ms,而CG 2与CG 1之间的时间间隔为3ms),而CG 1次近邻的CG为CG 3,用于配置CG 3的配置信息为cgConfig-3,且CG 3与CG 1之间的时间间隔满足终端设备重构MAC PDU 1的最短时间需求(例如,CG 3与CG 1之间的时间间隔为6ms),则终端设备根据CG 3对MAC PDU 1进行重构生成MAC PDU 3并进行发送。
例子f:
选择规则包括:将时域上位于第一上行授权之后的目标上行授权,确定为第二上 行授权。目标上行授权为终端设备的所有上行授权中与第一上行授权之间的时间间隔最小的上行授权。
换句话说,如果第一上行授权对应的上行发送被放弃,且终端设备已经根据第一上行授权生成第一数据包,则终端设备确定第二上行授权为紧挨着第一上行授权的上行授权。
可以理解的是,第一上行授权可以是配置的上行授权,也可以是调度的上行授权。第二配置授权可以是配置的上行授权,也可以是调度的上行授权。
作为一个例子,在上述的例子d-例子f中,第二上行授权的传输块大小(Transport Block Size,TBS)大于或等于第一上行授权的TBS。
进一步地,在上述所有例子的基础上,图1所示的方法还包括:
在根据第二上行授权生成第二数据包之后,清除第一数据包或继续保存第一,第二数据包中包括第一数据包中的数据。
举例来说,终端设备放弃上行授权1对应的上行发送,且根据上行授权1生成了MAC PDU 1,则当终端设备根据上行授权2对MAC PDU1重构为MAC PDU 2之后,终端设备可以对MAC PDU 1进行以下操作中的一种:
操作1:清除MAC PDU 1。例如,终端设备生成的MAC PDU 1存储在HARQ进行1中,在终端设备根据上行授权2将MAC PDU 1重构成MAC PDU 2之后,可以将MAC PDU 2存储在HARQ进程2中,且终端设备可以将HARQ进程1中缓存的MAC PDU 1清除。
操作2:继续保存MAC PDU 1。例如,终端设备生成的MAC PDU 1存储在HARQ进行1中,在终端设备根据上行授权2将MAC PDU 1重构成MAC PDU 2之后,可以将MAC PDU 2存储在HARQ进程2中,且终端设备可以将HARQ进程1中缓存的MAC PDU 1继续保存。
在上述所有实施例的基础上,图1所示的方法还包括:
若在通过第二上行授权发送第一数据包之前未接收到重传指示信息,则通过第二上行授权发送第一数据包;其中,重传指示信息指示终端设备通过第三上行授权发送第一数据包。
可以理解的是,终端设备通过第二上行授权发送第一数据包可以是直接发送第一数据包,也可以是发送将第一数据包重构成的数据包。
或者,若在通过第二上行授权发送第一数据包之前接收到重传指示信息,则通过目标方式进行第一数据包的发送;其中,目标方式包括以下方式中的一种:
放弃通过第二上行授权对第一数据包进行发送,且通过第三上行授权发送第一数据包;
放弃通过第三上行授权对第一数据包进行发送,且通过第二上行授权发送第一数据包;
通过第二上行授权和第三上行授权中与第一上行授权之间的时间间隔较小的一个对第一数据包进行发送;
通过第二上行授权和第三上行授权中对应的发送可靠性较高的一个对第一数据包进行发送;
通过第二上行授权和第三上行授权中对应的TBS较大的一个对第一数据进行发送;
通过第二上行授权和第三上行授权中占用发送资源较少的一个对第一数据进行发送;以及,
通过第二上行授权和第三上行授权对第一数据进行发送。
换句话说,如果终端设备在自行确定采用后续的上行授权对第一数据包进行发送后,在数据发送第一数据包之前,如果接收到网络设备指定的对该第一数据包的重传指示后,终端设备通过目标方式进行第一数据包的发送。
作为一个例子,如图3所示出的,终端设备在T1时刻放弃CG 1对应的上行发送,但已经根据CG 1生成了MAC PDU 1,终端设备在T2时刻确定采用CG 2对MAC PDU 1进行发送,CG 2的发送时刻为T4,但终端设备在T3时刻接收到了重传指示,重传指示指示对MAC PDU 1进行重传,且重传对应的上行授权为DG3,则终端设备可以采用以下方式中的一种进行MAC PDU 1的发送:
方式一:终端设备放弃通过CG 2对MAC PDU 1进行发送,采用DG 3对MAC PDU 1进行发送。
方式二:终端设备放弃通过DG 3对MAC PDU 1进行发送,采用CG 2对MAC PDU 1进行发送。或者可以理解为,终端设备放弃网络侧指示的重传,通过自行确定的上行授权进行MAC PDU 1的传输。
方式三:终端设备选择CG 2和DG 3中最邻近CG 1的一个进行MAC PDU 1的发送。例如,图3中所示出的,终端设备通过CG 2进行MAC PDU 1的发送。
方式四:终端设备选择CG 2和DG 3中发送可靠性较高的一个进行MAC PDU 1的发送。例如,如果CG 2的发送可靠性高于DG 3的发送可靠性,则通过CG 2发送MAC PDU 1,且放弃DG 3对应的上行发送。
方式五:终端设备选择CG 2和DG 3中TBS较大的一个进行MAC PDU 1的发送。例如,如果CG 2的TBS大于DG 3的TBS,则通过CG 2发送MAC PDU 1,且放弃DG 3对应的上行发送。
方式六:终端设备选择CG 2和DG 3中占用发送资源较少的一个对MAC PDU 1进行发送。例如,如果CG 2占用的物理资源块少于DG 3,则通过CG 2发送MAC PDU 1,且放弃DG 3对应的上行发送。
方式七:终端设备通过CG 2和DG 3对MAC PDU 1进行发送,即终端设备既通过CG 2发送MAC PDU 1,也通过DG 3发送MAC PDU 1。换言之,终端设备根据网络侧指示的重传机会进行MAC PDU 1的发送,也通过其自行确定的上行授权进行MAC PDU 1的发送。
以上结合图1至图3从终端设备侧详细描述了根据本公开一个实施例的数据发送的方法。下面将结合图4从网络设备侧详细描述根据本公开的一个实施例的数据接收的方法。需要说明的是,从网络设备侧描述的终端设备与网络设备的交互与从终端设备侧的描述相同,为避免重复,适当省略相关描述。
图4是根据本公开的一个实施例的数据接收的方法的示意性流程图。图4所示的方法可以由网络设备执行。如图4所示出的,方法包括:
S210,在若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示 信息,则通过所述第二上行授权接收所述第一数据包;其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
可选地,作为一个实施例,所述选择规则包括以下规则中的一种:
将与所述第一上行授权冲突的上行授权,确定为所述第二上行授权;以及,
将时域上位于所述第一上行授权之后的目标上行授权,确定为所述第二上行授权。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第一配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第一配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第二配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述目标上行授权为所述终端设备的所有上行授权中与所述第一上行授权资源之间的时间间隔最小的上行授权。
可选地,作为一个实施例,所述第一上行授权与所述第二上行授权对应相同的混合自动重传请求HARQ进程编号;或,
所述第一上行授权与所述第二上行授权对应不同的HARQ进程编号。
可选地,作为一个实施例,所述第二上行授权的传输块大小TBS大于或等于所述第一上行授权的TBS。
可选地,作为一个实施例,图4所示的方法还包括:
若在通过所述第二上行授权接收第一数据包之前向终端设备发送所述重传指示信息,则通过目标方式进行所述第一数据包的接收;
其中,所述目标方式包括以下方式中的一种:
放弃通过所述第二上行授权对所述第一数据包进行接收,且通过所述第三上行授权接收所述第一数据包;
放弃通过所述第三上行授权对所述第一数据包进行接收,且通过所述第二上行授权接收所述第一数据包;
通过所述第二上行授权和所述第三上行授权中与所述第一上行授权之间的时间间隔较小的一个对所述第一数据包进行接收;
通过所述第二上行授权和所述第三上行授权中对应的发送可靠性较高的一个对所述第一数据包进行接收;
通过所述第二上行授权和所述第三上行授权中对应的TBS较大的一个对所述第一数据进行接收;
通过所述第二上行授权和所述第三上行授权中占用发送资源较少的一个对所述第一数据进行接收;以及,
通过所述第二上行授权和所述第三上行授权对所述第一数据进行接收。
以上结合图1至图4详细描述了根据本公开实施例的数据发送的方法和数据接收的方法,下面将结合图5详细描述根据本公开实施例的终端设备。
图5是根据本公开的一个实施例的终端设备的结构示意图。如图5所示出的,终端设备50包括:
处理模块51,用于在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
可选地,作为一个实施例,所述选择规则包括以下规则中的一种:
将与所述第一上行授权冲突的上行授权,确定为所述第二上行授权;以及,
将时域上位于所述第一上行授权之后的目标上行授权,确定为所述第二上行授权。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的点之间的时间间隔大于或等于目标时长,且所述第一配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第一配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第二配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述目标上行授权为所述终端设备的所有上行授权中与所述第一上行授权之间的时间间隔最小的上行授权。
可选地,作为一个实施例,所述第一上行授权与所述第二上行授权对应相同的混合自动重传请求HARQ进程编号;或,
所述第一上行授权与所述第二上行授权对应不同的HARQ进程编号。
可选地,作为一个实施例,所述第二上行授权的传输块大小TBS大于或等于所述第一上行授权的TBS。
可选地,作为一个实施例,所述处理模块51还用于:
在根据所述第二上行授权生成第二数据包之后,清除所述第一数据包或继续保存所述第一数据包,所述第二数据包中包括所述第一数据包中的数据。
可选地,作为一个实施例,如图6所示出的,终端设备50还包括:
收发模块52,用于若在通过所述第二上行授权发送所述第一数据包之前未接收到重传指示信息,则通过所述第二上行授权发送所述第一数据包;
其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包。
可选地,作为一个实施例,如图6所示出的,终端设备50还包括收发模块52,用于若在通过所述第二上行授权发送所述第一数据包之前接收到所述重传指示信息,则通过目标方式进行所述第一数据包的发送;
其中,所述目标方式包括以下方式中的一种:
放弃通过所述第二上行授权对所述第一数据包进行发送,且通过所述第三上行授权发送所述第一数据包;
放弃通过所述第三上行授权对所述第一数据包进行发送,且通过所述第二上行授权发送所述第一数据包;
通过所述第二上行授权和所述第三上行授权中与所述第一上行授权之间的时间间隔较小的一个对所述第一数据包进行发送;
通过所述第二上行授权和所述第三上行授权中对应的发送可靠性较高的一个对所述第一数据包进行发送;
通过所述第二上行授权和所述第三上行授权中对应的TBS较大的一个对所述第一数据进行发送;
通过所述第二上行授权和所述第三上行授权中占用发送资源较少的一个对所述第一数据进行发送;以及,
通过所述第二上行授权和所述第三上行授权对所述第一数据进行发送。
本公开实施例提供的终端设备能够实现图1至图3所示的方法实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
图7是根据本公开的一个实施例的网络设备的结构示意图。如图7所示出的,网络设备70包括:
处理模块71,用于若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示信息,则通过所述第二上行授权接收所述第一数据包;
其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
可选地,作为一个实施例,所述选择规则包括以下规则中的一种:
将与所述第一上行授权冲突的上行授权,确定为所述第二上行授权;以及,
将时域上位于所述第一上行授权之后的目标上行授权,确定为所述第二上行授权。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第一配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第一配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第二配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
其中,所述第二配置信息包括至少一个上行授权配置信息。
可选地,作为一个实施例,所述目标上行授权为所述终端设备的所有上行授权中与所述第一上行授权资源之间的时间间隔最小的上行授权。
可选地,作为一个实施例,所述第一上行授权与所述第二上行授权对应相同的混合自动重传请求HARQ进程编号;或,
所述第一上行授权与所述第二上行授权对应不同的HARQ进程编号。
可选地,作为一个实施例,所述第二上行授权的传输块大小TBS大于或等于所述第一上行授权的TBS。
可选地,作为一个实施例,如图8所示出的,网络设备70还包括收发模块72,用于若在通过所述第二上行授权接收第一数据包之前向终端设备发送所述重传指示信息,则通过目标方式进行所述第一数据包的接收;
其中,所述目标方式包括以下方式中的一种:
放弃通过所述第二上行授权对所述第一数据包进行接收,且通过所述第三上行授权接收所述第一数据包;
放弃通过所述第三上行授权对所述第一数据包进行接收,且通过所述第二上行授权接收所述第一数据包;
通过所述第二上行授权和所述第三上行授权中与所述第一上行授权之间的时间间隔较小的一个对所述第一数据包进行接收;
通过所述第二上行授权和所述第三上行授权中对应的发送可靠性较高的一个对所述第一数据包进行接收;
通过所述第二上行授权和所述第三上行授权中对应的TBS较大的一个对所述第一数据进行接收;
通过所述第二上行授权和所述第三上行授权中占用发送资源较少的一个对所述第一数据进行接收;以及,
通过所述第二上行授权和所述第三上行授权对所述第一数据进行接收。
本公开实施例提供的网络设备能够实现图4所示的方法实施例中网络设备实现的各个过程,为避免重复,这里不再赘述。
图9是本公开另一个实施例的终端设备的框图。图9所示的终端设备900包括:至少一个处理器901、存储器902、用户接口903和至少一个网络接口904。终端设备900中的各个组件通过总线系统905耦合在一起。可理解,总线系统905用于实现这些组件之间的连接通信。总线系统905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统905。
其中,用户接口903可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器902可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步 连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器902旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器902存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统9021和应用程序9022。
其中,操作系统9021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序9022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序9022中。
在本公开实施例中,终端设备900还包括:存储在存储器902上并可在处理器901上运行的计算机程序,计算机程序被处理器901执行时实现上述图1所述的方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器901可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器901执行时实现如上述图1所述的方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
图10示出了根据本公开另一实施例的网络设备的结构示意图。如图10所示,网络设备1000包括处理器1001、收发机1002、存储器1003和总线接口。其中:
在本公开实施例中,网络设备1000还包括:存储在存储器1003上并可在所述处理器1001上运行的计算机程序,所述计算机程序被所述处理器1001执行时实现上述图2所示的方法中的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1至图4所示的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (27)

  1. 一种数据发送的方法,应用于终端设备,包括:
    在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
  2. 根据权利要求1所述的方法,其中,所述选择规则包括以下规则中的一种:
    将与所述第一上行授权冲突的上行授权,确定为所述第二上行授权;以及,
    将时域上位于所述第一上行授权之后的目标上行授权,确定为所述第二上行授权。
  3. 根据权利要求2所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第一配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长。
  4. 根据权利要求2所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第一配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔。
  5. 根据权利要求2所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第二配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔;
    其中,所述第二配置信息包括至少一个上行授权配置信息。
  6. 根据权利要求2所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
    其中,所述第二配置信息包括至少一个上行授权配置信息。
  7. 根据权利要求2所述的方法,其中,所述目标上行授权为所述终端设备的所有上行授权中与所述第一上行授权之间的时间间隔最小的上行授权。
  8. 根据权利要求1至6中任一项所述的方法,其中,所述第一上行授权与所述第二上行授权对应相同的混合自动重传请求HARQ进程编号;或,
    所述第一上行授权与所述第二上行授权对应不同的HARQ进程编号。
  9. 根据权利要求5至7中任一项所述的方法,其中,所述第二上行授权的传输块大小TBS大于或等于所述第一上行授权的TBS。
  10. 根据权利要求1至7中任一项所述的方法,其中,所述方法还包括:
    在根据所述第二上行授权生成第二数据包之后,清除所述第一数据包或继续保存所述第一数据包,所述第二数据包中包括所述第一数据包中的数据。
  11. 根据权利要求1至7中任一项所述的方法,其中,所述方法还包括:
    若在通过所述第二上行授权发送所述第一数据包之前未接收到重传指示信息,则通过所述第二上行授权发送所述第一数据包;
    其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    若在通过所述第二上行授权发送所述第一数据包之前接收到所述重传指示信息,则通过目标方式进行所述第一数据包的发送;
    其中,所述目标方式包括以下方式中的一种:
    放弃通过所述第二上行授权对所述第一数据包进行发送,且通过所述第三上行授权发送所述第一数据包;
    放弃通过所述第三上行授权对所述第一数据包进行发送,且通过所述第二上行授权发送所述第一数据包;
    通过所述第二上行授权和所述第三上行授权中与所述第一上行授权之间的时间间隔较小的一个对所述第一数据包进行发送;
    通过所述第二上行授权和所述第三上行授权中对应的发送可靠性较高的一个对所述第一数据包进行发送;
    通过所述第二上行授权和所述第三上行授权中对应的TBS较大的一个对所述第一数据进行发送;
    通过所述第二上行授权和所述第三上行授权中占用发送资源较少的一个对所述第一数据进行发送;以及,
    通过所述第二上行授权和所述第三上行授权对所述第一数据进行发送。
  13. 一种数据接收的方法,应用于网络设备,包括:
    若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示信息,则通过所述第二上行授权接收所述第一数据包;
    其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
  14. 根据权利要求13所述的方法,其中,所述选择规则包括以下规则中的一种:
    将与所述第一上行授权冲突的上行授权,确定为所述第二上行授权;以及,
    将时域上位于所述第一上行授权之后的目标上行授权,确定为所述第二上行授权。
  15. 根据权利要求14所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第一配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长。
  16. 根据权利要求14所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权与用于配置所述第一上行授权的第一配置信息对应,所述目 标上行授权与所述第一上行授权之间的时间间隔小于所述第一配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔。
  17. 根据权利要求14所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权之间的时间间隔小于所述第二配置信息对应的上行授权中的其他上行授权与所述第一上行授权之间的时间间隔;
    其中,所述第二配置信息包括至少一个上行授权配置信息。
  18. 根据权利要求14所述的方法,其中,所述第一上行授权的类型为配置的上行授权,所述目标上行授权为配置的上行授权,且所述目标上行授权与第二配置信息对应,所述目标上行授权与所述第一上行授权或判断使用所述目标上行授权的时间点之间的时间间隔大于或等于目标时长,且所述第二配置信息对应的上行授权中时域上位于所述目标上行授权之前的其他上行授权与所述第一上行授权之间的时间间隔均小于所述目标时长,所述目标时长为终端设备重构数据包的最短需求时长;
    其中,所述第二配置信息包括至少一个上行授权配置信息。
  19. 根据权利要求14所述的方法,其中,所述目标上行授权为所述终端设备的所有上行授权中与所述第一上行授权资源之间的时间间隔最小的上行授权。
  20. 根据权利要求13至19中任一项所述的方法,其中,所述第一上行授权与所述第二上行授权对应相同的混合自动重传请求HARQ进程编号;或,
    所述第一上行授权与所述第二上行授权对应不同的HARQ进程编号。
  21. 根据权利要求17至19中任一项所述的方法,其中,所述第二上行授权的传输块大小TBS大于或等于所述第一上行授权的TBS。
  22. 根据权利要求13至19中任一项所述的方法,其中,所述方法还包括:
    若在通过所述第二上行授权接收第一数据包之前向终端设备发送所述重传指示信息,则通过目标方式进行所述第一数据包的接收;
    其中,所述目标方式包括以下方式中的一种:
    放弃通过所述第二上行授权对所述第一数据包进行接收,且通过所述第三上行授权接收所述第一数据包;
    放弃通过所述第三上行授权对所述第一数据包进行接收,且通过所述第二上行授权接收所述第一数据包;
    通过所述第二上行授权和所述第三上行授权中与所述第一上行授权之间的时间间隔较小的一个对所述第一数据包进行接收;
    通过所述第二上行授权和所述第三上行授权中对应的发送可靠性较高的一个对所述第一数据包进行接收;
    通过所述第二上行授权和所述第三上行授权中对应的TBS较大的一个对所述第一数据进行接收;
    通过所述第二上行授权和所述第三上行授权中占用发送资源较少的一个对所述第一数据进行接收;以及,
    通过所述第二上行授权和所述第三上行授权对所述第一数据进行接收。
  23. 一种终端设备,包括:
    处理模块,用于在根据第一上行授权生成第一数据包,且放弃所述第一上行授权对应的上行发送的情况下,根据选择规则确定用于发送所述第一数据包的第二上行授权。
  24. 一种网络设备,包括:
    处理模块,用于若在通过第二上行授权接收第一数据包之前未向终端设备发送重传指示信息,则通过所述第二上行授权接收所述第一数据包;
    其中,所述重传指示信息指示所述终端设备通过第三上行授权发送所述第一数据包,所述第二上行授权由所述终端设备在根据第一上行授权生成所述第一数据包且放弃所述第一上行授权对应的上行发送的情况下根据选择规则确定。
  25. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的数据发送的方法的步骤。
  26. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求13至22中任一项所述的数据接收的方法的步骤。
  27. 一种计算机可读介质,所述计算机可读介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一项所述的数据发送的方法;或实现如权利要求13至22中任一项所述的数据接收的方法。
PCT/CN2020/100004 2019-07-05 2020-07-02 数据发送的方法、数据接收的方法和设备 WO2021004374A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227000097A KR20220015487A (ko) 2019-07-05 2020-07-02 데이터 전송 방법, 데이터 수신 방법 및 장치
JP2021577144A JP7288987B2 (ja) 2019-07-05 2020-07-02 データ送信方法、データ受信方法及び機器
EP20836051.1A EP3996311A4 (en) 2019-07-05 2020-07-02 DATA TRANSMISSION METHOD, DATA RECEIVING METHOD AND DEVICE
US17/563,110 US20220124790A1 (en) 2019-07-05 2021-12-28 Method for data transmission, method for data reception, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910606024.4A CN111800237B (zh) 2019-07-05 2019-07-05 数据发送的方法、数据接收的方法和设备
CN201910606024.4 2019-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,110 Continuation US20220124790A1 (en) 2019-07-05 2021-12-28 Method for data transmission, method for data reception, and device

Publications (1)

Publication Number Publication Date
WO2021004374A1 true WO2021004374A1 (zh) 2021-01-14

Family

ID=72805363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100004 WO2021004374A1 (zh) 2019-07-05 2020-07-02 数据发送的方法、数据接收的方法和设备

Country Status (6)

Country Link
US (1) US20220124790A1 (zh)
EP (1) EP3996311A4 (zh)
JP (1) JP7288987B2 (zh)
KR (1) KR20220015487A (zh)
CN (1) CN111800237B (zh)
WO (1) WO2021004374A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225923A1 (en) * 2022-05-25 2023-11-30 Nokia Shanghai Bell Co., Ltd. Enabling retransmission of initial transmission of the cg-sdt

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010712A1 (en) * 2009-12-10 2013-01-10 Soeng-Hun Kim Apparatus and method for performing contention based access in mobile communication system
CN108207032A (zh) * 2016-12-16 2018-06-26 华硕电脑股份有限公司 在无线通信系统中处置上行链路资源冲突的方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721015B1 (ko) * 2010-06-21 2017-03-29 삼성전자주식회사 이동 통신 시스템에서 블라인드 스케쥴링 장치 및 방법
EP2888918B1 (en) * 2012-08-23 2020-11-18 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites
EP3499767A4 (en) * 2016-08-10 2019-08-28 Huawei Technologies Co., Ltd. HYBRID AUTOMATIC REPEAT REQUEST PROCESS AND DEVICE DEVICE
CN108173632B (zh) * 2016-12-07 2020-12-04 华为技术有限公司 数据处理的方法、发送设备和接收设备
CN108617001B (zh) * 2017-01-20 2022-11-18 中兴通讯股份有限公司 上行数据传输方法及装置
CN109088704A (zh) * 2017-06-14 2018-12-25 深圳市中兴微电子技术有限公司 基于窄带物联网的上行资源分配方法及系统
US10674528B2 (en) * 2017-06-15 2020-06-02 Mediatek Singapore Pte. Ltd. Method and apparatus for transmission without dynamic scheduling in mobile communications
CN109392097B (zh) * 2017-08-04 2020-10-30 维沃移动通信有限公司 一种数据传输方法及装置
US10645610B2 (en) * 2017-11-24 2020-05-05 Mediatek Singapore Pte. Ltd. Method and apparatus for skipping uplink transmission in mobile communications
CA3071723A1 (en) * 2019-02-07 2020-08-07 Comcast Cable Communications, Llc Pre-emption of signal transmission
CA3071984A1 (en) * 2019-02-11 2020-08-11 Comcast Cable Communications, Llc Power control and retransmission
WO2020168235A1 (en) * 2019-02-14 2020-08-20 Hua Zhou Uplink transmission with uplink grant processing prioritization
CN116456481A (zh) * 2019-10-29 2023-07-18 维沃移动通信有限公司 上行传输的方法、上行传输指示的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010712A1 (en) * 2009-12-10 2013-01-10 Soeng-Hun Kim Apparatus and method for performing contention based access in mobile communication system
CN108207032A (zh) * 2016-12-16 2018-06-26 华硕电脑股份有限公司 在无线通信系统中处置上行链路资源冲突的方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.;: "Handling on simultaneous scheduled grant and configured AUL grant;", 3GPP TSG-RAN2 MEETING #101BIS R2-1805811;, 20 April 2018 (2018-04-20), XP051429429, DOI: 20200918143532A *
INTEL CORPORATION;: "Further consideration on Configured UL grant enhancement;", 3GPP TSG-RAN WG2 106 R2-1906274;, 17 May 2019 (2019-05-17), XP051729741, DOI: 20200918143728X *
See also references of EP3996311A4
ZTE ET AL. ;: "Consideration on Intra-UE Multiplexing Including Re-transmission;", 3GPP TSG-RAN WG2 MEETING #106 R2-1906121;, 17 May 2019 (2019-05-17), XP051729597, DOI: 20200918143845A *

Also Published As

Publication number Publication date
JP2022538276A (ja) 2022-09-01
CN111800237B (zh) 2021-10-12
EP3996311A1 (en) 2022-05-11
US20220124790A1 (en) 2022-04-21
JP7288987B2 (ja) 2023-06-08
CN111800237A (zh) 2020-10-20
EP3996311A4 (en) 2022-08-10
KR20220015487A (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
JP7018513B6 (ja) Harq-ackフィードバック時間の特定方法と指示方法、端末機器及びネットワーク機器
WO2019192596A1 (zh) 传输数据的方法及其装置和系统
WO2020192213A1 (zh) 共享信道占用时间的方法和设备
WO2019154357A1 (zh) 上行传输方法和设备
WO2021032203A1 (zh) Pucch传输方法、终端设备和网络设备
WO2021204208A1 (zh) 信道状态信息csi报告的确定方法和通信设备
WO2020098381A1 (zh) 无线通信的方法和设备
WO2021164729A1 (zh) 一种确定反馈资源的方法和通信设备
WO2021088873A1 (zh) 共享cot的信息传输方法、通信设备
WO2020140289A1 (zh) 资源分配的方法、终端设备和网络设备
WO2019154265A1 (zh) 数据传输方法和设备
US20220361149A1 (en) Resource selection method, terminal device, and storage medium
KR20220067550A (ko) 피드백 정보 전송 방법 및 장치
WO2019024114A1 (zh) 数据传输的方法、终端设备和网络设备
CN110661603A (zh) Pucch的传输方法、终端设备和网络设备
CN113541901A (zh) 非周期srs的时隙偏移指示方法和设备
WO2021088795A1 (zh) Harq-ack反馈信息的传输方法和设备
WO2021004374A1 (zh) 数据发送的方法、数据接收的方法和设备
WO2021004272A1 (zh) 随机接入的方法和设备
WO2019061982A1 (zh) 用于资源分配的方法、网络设备和通信设备
WO2019028842A1 (zh) 通信方法、终端设备及网络设备
WO2020088520A1 (zh) 上行传输方法和终端设备
WO2021062638A1 (zh) 发送、接收反馈信息的方法和设备
US20220360413A1 (en) Physical sidelink feedback information determining method and communication device
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577144

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000097

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020836051

Country of ref document: EP

Effective date: 20220207