WO2021004193A1 - 能力信息以及信道状态信息的反馈方法和装置 - Google Patents

能力信息以及信道状态信息的反馈方法和装置 Download PDF

Info

Publication number
WO2021004193A1
WO2021004193A1 PCT/CN2020/093527 CN2020093527W WO2021004193A1 WO 2021004193 A1 WO2021004193 A1 WO 2021004193A1 CN 2020093527 W CN2020093527 W CN 2020093527W WO 2021004193 A1 WO2021004193 A1 WO 2021004193A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication node
index
channel state
state information
Prior art date
Application number
PCT/CN2020/093527
Other languages
English (en)
French (fr)
Inventor
郑国增
吴昊
李永
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/625,317 priority Critical patent/US11996911B2/en
Priority to KR1020227003636A priority patent/KR20220027232A/ko
Priority to EP20837596.4A priority patent/EP3998711A4/en
Publication of WO2021004193A1 publication Critical patent/WO2021004193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for feedback of capability information and channel state information.
  • the precoding matrix or beamforming vector needs to better match the channel, which requires the transmitter to be able to better obtain channel state information (CSI). Therefore, CSI feedback is a key technology to achieve high-performance precoding or beamforming in MIMO systems.
  • the quantized feedback of the channel matrix will bring relatively large feedback overhead. Since the base station cannot know the actual feedback rank of the terminal, the resources allocated by the base station for CSI feedback may be insufficient, and the terminal needs to discard part of the channel state information according to an agreed criterion. In addition, the computational complexity of high-performance precoding is relatively high, and different types of terminals have different computational capabilities. Therefore, it is necessary for the terminal to feed back its supported capability information to facilitate the scheduling of the base station.
  • the embodiment of the present invention provides a method and device for feedback of capability information and channel state information, so as to at least solve the problem of relatively large feedback overhead caused by quantization feedback of the channel matrix when CSI feedback is performed in the related art.
  • CSI quantization feedback technology is an important part of MIMO technology.
  • DFT vectors or variations of DFT vectors are usually used, for example, the Kronecker product of multiple DFT vectors, or the level of DFT vectors In the concatenated form, or the phase adjustment form of the cascaded DFT vector, the terminal reports the precoding indication information of the above form to the base station through quantization feedback.
  • This type of precoding codebook can be classified as the first type of codebook. This type of codebook has low overhead, but has low CSI quantization accuracy and limited performance.
  • Another type of codebook combines linear weighting of DFT vectors or Kronecker products of DFT vectors. The weighted combined vector is called the codebook base vector.
  • the codebook base vector information, the amplitude and phase information of the weighting coefficients As precoding indication information is fed back to the base station, such a precoding codebook can be classified as a second type of codebook.
  • the precoding codebook in adjacent frequency domain units obtained from the second type codebook has correlation. This correlation can be used to compress in the frequency domain using the DFT matrix to further reduce the overhead of the second type codebook.
  • This codebook is called the second type of frequency domain compression codebook.
  • the terminal usually feeds back rank information RI, indicating the number of layers it feeds back.
  • rank information RI indicating the number of layers it feeds back.
  • the second type of frequency domain compression codebook of a certain layer can be expressed as:
  • W 1 is the spatial basis vector, and the dimension of W 1 is 2N 1 N 2 ⁇ 2L, and its form is:
  • N 1 N 2 represents the number of reference signal ports
  • N 1 represents the number of horizontal reference signal ports
  • N 2 represents the number of vertical reference signal ports
  • the coefficient 2 represents dual polarization.
  • L(L ⁇ 2,4,6 ⁇ ) first basis vectors v 0 , v 1 ,..., v L-1 are orthogonal to each other, and the specific form is:
  • W 1 the information in W 1 is fed back by broadband, that is, for different frequency domain units and different layers in the entire CSI feedback bandwidth, the information in W 1 is the same.
  • W f represents the base vector in the frequency domain, the selection of each layer is independent, and its dimension is N 3 ⁇ M:
  • N 3 represents the number of precoding subbands
  • N SB represents the number of CQI subbands.
  • the second basis vector can be selected from the set of size N 3 ; if N 3 >19, then n ⁇ mod ⁇ (n 0 ,n 0 +1,...,n 0 +N′ 3 -1),N 3 ⁇ ( Scale Factor ), This time from the second base vector of size N 'selection set 3. It is the weighting coefficient of the first base vector and the second base vector, and its dimension is 2L ⁇ M, and its amplitude and phase need to be quantized and fed back. will Rows 1 to L are called the first antenna port group; The L+1 to 2L lines of the second antenna port group.
  • the antenna port group at the index position of the weighting coefficient reference amplitude is called the strong polarization direction, and correspondingly, the other antenna port group is called the weak polarization direction.
  • the amplitude of the weighting coefficient in the strong polarization direction is quantized, and differential quantization is performed with 1 as a reference.
  • a quantization reference amplitude is determined in the weighting coefficient of the weak polarization direction, and the amplitude of the weighting coefficient of the weak polarization direction is quantized, and the quantization reference amplitude is used as a reference for differential quantization.
  • the quantization overhead of the quantization reference amplitude is 4 bits
  • the amplitude quantization overhead of each weighted coefficient is 3 bits
  • the phase quantization overhead of each weighted coefficient is 3 bits or 4 bits.
  • the bitmap indicates the index position for selecting the weighting coefficient.
  • the terminal needs to feed back L first base vector selection instructions, M second base vector selection instructions for each layer, and weight coefficient information for each layer.
  • the weighting coefficient information includes: bitmap information, weighting coefficient amplitude information, weighting coefficient amplitude information, index position of weighting coefficient reference amplitude, and quantized reference amplitude.
  • the base station cannot know the actual rank fed back by the terminal, the resources allocated by the base station for feedback of channel state information may be insufficient, and the terminal needs to discard part of the channel state information according to an agreed criterion.
  • the computational complexity of high-performance precoding is relatively high, and different types of terminals have different computational capabilities. Therefore, it is necessary for the terminal to feed back its supported capability information to facilitate scheduling by the base station.
  • a capability information feedback method including: a first communication node sends capability information indicating the first communication node to a second communication node; and the first communication node receives the second communication node The parameter signaling corresponding to the capability of the first communication node sent by the communication node.
  • the capability information includes at least one of the following: the maximum number of reference signal ports, the maximum number of reference resources in each frequency band, the maximum support for the sum of all reference signal ports in each frequency band, and whether to support sub-band channel state information feedback , Maximum number of supported layers, maximum number of supported first base vectors, maximum number of supported second base vectors, maximum supported optional set size of second base vectors, maximum supported number of CQI subbands, maximum supported number of precoding subbands , The maximum support for the feedback ratio of the weighting coefficient, the maximum support for the size of the product of the first base vector number and the second base vector number, the number of CPUs, and the maximum number of CPUs that can be simultaneously occupied by a channel state information report.
  • the optional set of second basis vectors includes a greater number of basis vectors than the number of second basis vectors, and the second basis vectors are selected from the optional set of second basis vectors.
  • the number of CPUs is the number of channel state information processing units of the first communication node, wherein the channel state information processing units are used to reflect the ability of the first communication node to process channel state information.
  • the parameter signaling includes: the configuration information used for calculating the channel state information report, the channel carrying the channel state information report, and the resource size; wherein the channel carrying the channel state information report includes at least one of the following: one or more A control channel, a shared channel.
  • the configuration information used for calculating the channel state information report includes at least one of the following: a set of reference resources used for calculating the channel state information report, a reference signal resource used for calculating the channel state information report, the maximum feedback rank, and the first base
  • the second basis vector number related parameter is used to determine the second basis vector number.
  • the maximum feedbackable rank when the maximum feedbackable rank is not configured in the configuration information used for calculating the channel state information report, the maximum feedbackable rank defaults to the maximum number of supported layers in the capability information of the first communication node.
  • the configuration information used for calculating the channel state information report cannot exceed the capability of the first communication node.
  • the parameter signaling uses an index value to indicate part of the parameter information.
  • the partial parameter information includes at least one of the following: the number of the first basis vectors, the parameters related to the number of the second basis vectors, the feedback ratio of the weighting coefficient, and the scale factor.
  • the part of the parameter information indicated by the index value uses an index list jointly agreed by the first communication node and the second communication node.
  • the index list is one index list or multiple index lists.
  • the first communication node determines which list to use through specific parameters included in parameter signaling.
  • the specific parameter includes at least one: the number of ports of the reference signal, the maximum feedbackable rank, and the number of precoding subbands.
  • the embodiment of the present invention also provides a method for feeding back channel state information, including: a first communication node calculates channel state information, and sends a first type of signaling to a second communication node; wherein, the first type of signaling is sent The resource is less than the resource required to send the actual channel state information, and part of the precoding information is discarded according to the priority order.
  • the method before sending the first type of signaling to the second communication node, the method further includes: the first communication node receives parameter signaling of the second communication node, and the parameter signaling includes: Calculate the configuration information used for the channel state information report, the channel and resource size for sending the first type of signaling.
  • the first type of signaling includes one or more channel state information reports; wherein, the channel state information report includes at least one of the following: rank indication information, modulation and coding information, layer indication information, reference signal resource indication information , Precoding information.
  • the precoding information includes at least one of the following: the total number of weighting coefficients of all layers, the selection indication of the first base vector, the selection indication of the second base vector of each layer, and the weighting coefficient information of each layer;
  • the weighting coefficient is the weighting coefficient of the first basis vector and the second basis vector, and the weighting coefficient information of each layer includes: bitmap information, weighting coefficient amplitude information, weighting coefficient phase information, weighting coefficient reference amplitude The index position and the quantized reference amplitude.
  • the amplitude information of the weighting coefficient and the phase information of the weighting coefficient are quantized information of the weighting coefficient that needs to be fed back, and the bitmap information is used to indicate the index position of the weighting factor that needs to be fed back.
  • a channel state information report is composed of two parts, including the first part of channel state information and the second part of channel state information; wherein, the resource size occupied by the first part of channel state information is fixed, and is used to indicate the second part of channel state information.
  • the size of the resources occupied by the status information is composed of two parts, including the first part of channel state information and the second part of channel state information; wherein, the resource size occupied by the first part of channel state information is fixed, and is used to indicate the second part of channel state information. The size of the resources occupied by the status information.
  • the first part of channel state information includes: rank indication information and the total number of weighting coefficients of all layers in the second part of channel state information.
  • the second part of the channel state information includes: the selection indication of the first base vector, the selection indication of the second base vector of each layer, and the weight coefficient information of each layer.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted according to the priority principle;
  • the priority principle adopts one of the following methods: the priority is from the highest to the layer index, the first A base vector index, a second base vector index; the priority is the layer index, the second base vector index, and the first base vector index in order of priority; the priority is the first base vector index and the second base vector in order of priority Index, layer index; the priority is the second base vector index, the first base vector index, and the layer index in order of priority; the priority is the first base vector index, the second base vector index, and the antenna port group index in order of the highest priority.
  • Layer index priority from high to the second base vector index, first base vector index, antenna port group index, layer index; priority from high to the antenna port group index, first base vector index, Two base vector index and layer index; the priority is from high to the antenna port group index, the second base vector index, the first base vector index, and the layer index.
  • the actual channel state information is information calculated by the first communication node according to configuration information used for calculating the channel state information report.
  • the discarding part of the precoding information according to the priority order includes one of the following ways: discarding part of the amplitude information of the weighting coefficient with the lowest priority and the phase information of the weighting coefficient with the lowest priority, so that the resources for sending the first signaling , Enough to send the remaining actual channel state information; discard part of the amplitude information of the weighting coefficient with the lowest priority, the phase information of the weighting coefficient with the lowest priority, and the bitmap information with the lowest priority, so that the resources for sending the first signaling are sufficient Send the remaining actual channel state information.
  • the embodiment of the present invention also provides a parameter signaling sending method, including: a second communication node receives the capability information used to indicate the first communication node sent by the first communication node; and the second communication node sends the The first communication node sends parameter signaling corresponding to the capability of the first communication node.
  • the parameter signaling includes: the configuration information used for calculating the channel state information report, the channel carrying the channel state information report, and the resource size; wherein the channel carrying the channel state information report includes at least one of the following: one or more A control channel, a shared channel.
  • the configuration information used for calculating the channel state information report includes at least one of the following: a set of reference resources used for calculating the channel state information report, reference signal resources used for calculating the channel state information report, the maximum feedbackable rank, and the first base
  • the second basis vector number related parameter is used to determine the second basis vector number.
  • the parameter signaling uses an index value to indicate part of the parameter information.
  • the partial parameter information includes at least one of the following: the number of the first basis vector, the parameters related to the number of the second basis vector, the feedback ratio of the weighting coefficient, and the scale factor.
  • the part of the parameter information indicated by the index value uses an index list jointly agreed by the first communication node and the second communication node.
  • the index list is one index list or multiple index lists.
  • the first communication node determines which list to use through specific parameters included in the parameter signaling.
  • the specific parameter includes at least one: the number of ports of the reference signal, the maximum feedbackable rank, and the number of precoding subbands.
  • the embodiment of the present invention also provides a channel state information feedback device, which is located at a first communication node, and includes: a sending module configured to send to a second communication node the capability information of the first communication node; a receiving module, To receive parameter signaling corresponding to the capability of the first communication node sent by the second communication node.
  • the embodiment of the present invention also provides a feedback device for channel state information, which is located at a first communication node and includes: a calculation module configured to calculate channel state information and send the first type of signaling to the second communication node; The resources of the first type of signaling are less than the resources required for sending channel state information, and part of the precoding information is discarded according to the priority order.
  • the device also includes a receiving module configured to receive parameter signaling of the second communication node before the sending module sends the first type of signaling, where the parameter signaling is used to instruct to calculate a channel state information report The parameters used, the channel and resource size for sending the first type of signaling.
  • the embodiment of the present invention also provides a parameter signaling sending device, which is located in a second communication node, and includes: a receiving module configured to receive the capability information sent by the first communication node and used to indicate the first communication node; a sending module , Set to send parameter signaling corresponding to the capability of the first communication node to the first communication node.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in the foregoing method embodiment when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute the above method embodiments Steps in.
  • the first communication node feeds back its supported capability information to the second communication node, which is convenient for the second communication node to perform scheduling based on the capability of the first communication node.
  • the high-performance precoding configurable parameters are relatively low.
  • the second communication node can reduce the signaling overhead by configuring indexes of some parameter combinations.
  • Fig. 1 is a schematic structural diagram of a mobile terminal according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for feedback of capability information according to an embodiment of the present invention
  • Figure 3 is a flowchart of a method for channel state information feedback according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for feedback of capability information according to an embodiment of the present invention.
  • 5(a) and (b) are schematic diagrams of the weighting coefficients of the 0th layer and the first layer of feedback according to an embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a capability information feedback device according to an embodiment of the present invention.
  • Fig. 7 is a schematic structural diagram of a channel state information feedback device according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a signaling parameter sending apparatus according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of the hardware structure of the mobile terminal according to the method embodiment of the present invention.
  • the mobile terminal may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA. ) And a memory 104 for storing data.
  • the above mobile terminal may also include a transmission device 106 and an input/output device 108 for communication functions.
  • the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal 10 may also include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the corresponding computer programs in the method embodiments of the present invention.
  • the processor 102 executes various functions by running the computer programs stored in the memory 104 Application and data processing, namely to achieve the above method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory remotely provided with respect to the processor 102, and these remote memories may be connected to the mobile terminal 10 via a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above-mentioned specific example of the network may include a wireless network provided by the communication provider of the mobile terminal 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart according to an embodiment of the present invention.
  • the first communication node may be a mobile terminal
  • the second communication node The node may be a base station.
  • the process includes the following steps:
  • Step S202 The first communication node sends the capability information indicating the first communication node to the second communication node;
  • Step S204 The first communication node receives the parameter signaling corresponding to the capability of the first communication node sent by the second communication node.
  • FIG. 3 is a flowchart according to an embodiment of the present invention.
  • the first communication node may be a mobile terminal
  • the second communication node may be a base station.
  • the process includes the following steps:
  • Step S304 the first communication node calculates the channel state information, and sends the first type of signaling to the second communication node; wherein, the resources for sending the first type of signaling are less than the resources required for sending the actual channel state information, according to The priority order discards part of the precoding information.
  • the method further includes step S302: the first communication node receives parameter signaling of the second communication node, where the parameter signaling includes: configuration information used for calculating the channel state information report, sending the first type of information Make the channel and resource size.
  • FIG. 4 is a flowchart according to an embodiment of the present invention.
  • the first communication node may be a mobile terminal
  • the second communication node may be a base station.
  • the process includes the following steps:
  • Step S402 The second communication node receives the capability information used to indicate the first communication node sent by the first communication node;
  • Step S404 The second communication node sends parameter signaling corresponding to the capability of the first communication node to the first communication node.
  • the terminal can feed back capability information in the following manner.
  • the terminal feedbacks the following capability information: the maximum number of reference signal ports, the maximum number of reference resources in each frequency band, the maximum support for the sum of all reference signal ports in each frequency band, whether to support subband channel state information feedback, the maximum number of supported layers, And other terminal capability information.
  • the feedback of some other terminal capability information can take one of the following implementation modes:
  • the first base vector number L that can be processed is terminal capability information. As shown in Table 1 below, in an embodiment, under a certain number of ports, the terminal selects one of the terminal capability 1, the terminal capability 2, and the terminal capability 3 according to its own processing capability and feeds it back to the base station.
  • the terminal feeds back the maximum number L of first base vectors that can be supported.
  • the number of first base vectors L and the number of precoding subbands N 3 that can be processed are terminal capability information.
  • the terminal selects one of the terminal capability (L) 1, the terminal capability (L) 2, and the terminal capability (L) 3 according to its own processing capability. Then select one of terminal capability (N 3 ) 1 and terminal capability (N 3 ) 2, and feed it back to the base station.
  • the terminal selects one of terminal capabilities (L) 1, terminal capabilities (L) 2, and terminal capabilities (L) 3 according to its own processing capabilities , And then select one of terminal capabilities (N 3 ) 1, terminal capabilities (N 3 ) 2, and terminal capabilities (N 3 ) 3, and feed it back to the base station.
  • the terminal feeds back the maximum number of first base vectors L that can be supported and the maximum number of precoding subbands N 3 that can be supported.
  • the number of first base vectors L, the number of precoding subbands N 3 and the number of second base vectors M that can be processed are terminal capability information.
  • a specific embodiment is that, as shown in Table 4, under a specific number of ports, the terminal selects one of the terminal capability (L) 1, the terminal capability (L) 2, and the terminal capability (L) 3 according to its own processing capability. , Then select one of terminal capability (N 3 )1 and terminal capability (N 3 )2, and finally select one from terminal capability (M)1 and terminal capability (M)2, and feed it back to the base station.
  • the terminal selects one of terminal capabilities (L) 1, terminal capabilities (L) 2, and terminal capabilities (L) 3 according to its own processing capabilities. , Select one from terminal capability (N 3 ) 1, terminal capability (N 3 ) 2, and finally select one from terminal capability (M) 1, terminal capability (M) 2 and terminal capability (M) 3, and feed it back to the base station .
  • the terminal under a specific number of ports, the terminal selects one of terminal capabilities (L) 1, terminal capabilities (L) 2, and terminal capabilities (L) 3 according to its own processing capabilities. Then select one of terminal capability (N 3 ) 1, terminal capability (N 3 ) 2 and terminal capability (N 3 ) 3, and finally select one from terminal capability (M) 1, terminal capability (M) 2, and feed it back to Base station.
  • the terminal selects from terminal capability (L) 1, terminal capability (L) 2, and terminal capability (L) 3 according to its own processing capability One, and then select one from terminal capability (N 3 ) 1, terminal capability (N 3 ) 2 and terminal capability (N 3 ) 3, and finally from terminal capability (M) 1, terminal capability (M) 2 and terminal capability ( M) Select one of 3 and feed it back to the base station.
  • the terminal feeds back the maximum number of first base vectors that can be supported L, the maximum number of precoding subbands that can be supported N 3 and the maximum number of second base vectors that can be supported M.
  • Embodiment 1-4
  • the number of first base vectors that can be processed L, the number of precoding subbands N 3, the number of second base vectors M is terminal capability information, and the feedback ratio ⁇ of weighting coefficients is capability information.
  • the terminal feedbacks the maximum number of first base vectors that can be supported L, the maximum number of precoding subbands that can be supported N 3 , and the maximum number of second base vectors that can be supported M And the maximum supportable weighting coefficient feedback ratio ⁇ .
  • part of the parameter information configured by the base station to calculate the channel state information report can be in the form of an index table.
  • the terminal can obtain part of the parameter information used for calculating the channel state information report through one of the following embodiments.
  • Embodiment 2-1
  • the configuration of ⁇ the number of first base vectors L, the parameter p, the feedback ratio ⁇ of the weighting coefficient ⁇ is determined.
  • the number of ports of the reference signal in Table 8 is less than 32
  • the number of ports of the reference signal in Table 9 is greater than or equal to 32, and the number of ports of the reference signal can be determined to be used. Is it Table 8 or Table 9, and then the configuration of ⁇ L,(v 0 ,y 0 ), ⁇ or ⁇ L,v 0 , ⁇ can be determined according to the index value.
  • the configuration of ⁇ the number of first base vectors L, the parameter p, the feedback ratio ⁇ of the weighting coefficient, the scale factor ⁇ is determined.
  • the number of ports of the reference signal in Table 10 is less than 32 and N 3 ⁇ 19, and the number of ports of the reference signal in Table 11 is greater than or equal to 32 and N 3 ⁇ 19.
  • the number of ports of the reference signal is less than 32 and N 3 >19
  • the number of ports of the reference signal is greater than or equal to 32 and N 3 >19.
  • the configuration of ⁇ the number L of the first base vector, the parameter p, the feedback ratio ⁇ of the weighting coefficient, the scale factor ⁇ is determined.
  • the number of ports of the reference signal in Table 14 is less than 32, and the number of ports of the reference signal in Table 15 is greater than or equal to 32. According to the number of reference signal ports, you can determine which table is used, and then according to the index value, you can determine ⁇ L,v 0 , ⁇ , ⁇ or ⁇ L,(v 0 ,y 0 ), ⁇ , ⁇ Configuration. Where ⁇ 1 ⁇ 2 , and
  • the index value can only be configured as an even number or only an odd number, and the value of the default scale factor ⁇ is invalid; when the number of precoding subbands N 3 ⁇ 19 , The value of the scale factor ⁇ is valid.
  • the configuration of ⁇ number of first basis vectors L, parameter p, feedback ratio ⁇ of weighting coefficient ⁇ is determined.
  • a specific implementation is that, as shown in Table 16 and Table 17, the maximum feedback rank of Table 16 is 2, and the maximum feedback rank of Table 17 is 4. According to the maximum rank that can be fed back, you can determine whether to use Table 16 or Table 17, and then determine the configuration of ⁇ L, v 0 , ⁇ or ⁇ L, (v 0 , y 0 ), ⁇ according to the index value .
  • the configuration of ⁇ the number of first base vectors L, parameter P, weighted coefficient feedback ratio ⁇ , parameter ⁇ is determined.
  • a specific implementation is that, as shown in Tables 18, 19, 20, and 21, the maximum feedback rank in Table 18 is 2 and N 3 ⁇ 19, and the maximum feedback rank in Table 19 is 2 and N 3 >19.
  • the rank of the maximum feedback in Table 20 is 4 and N 3 ⁇ 19
  • the rank of the maximum feedback in Table 21 is 4 and N 3 >19.
  • the configuration of ⁇ the number of first basis vectors L, the parameter p, the feedback ratio ⁇ of the weighting coefficient, the parameter ⁇ is determined according to the size and index value of the maximum rank that can be fed back.
  • a specific implementation is that, as shown in Tables 22 and 23, the maximum feedback rank in Table 22 is 2, and the maximum feedback rank in Table 23 is 4. According to the maximum feedback rank and the number of precoding subbands, it is possible to determine which table is used, and then according to the index value, ⁇ L,v 0 , ⁇ , ⁇ or ⁇ L,(v 0 , y 0 ), ⁇ , ⁇ configuration. Where ⁇ 1 ⁇ 2 , and In addition, when the number of precoding subbands N 3 ⁇ 19, the index value can only be configured as an even number or only an odd number, and the value of the default scale factor ⁇ is invalid; when the number of precoding subbands N 3 ⁇ 19 , The value of the scale factor ⁇ is valid.
  • the terminal and the base station agree to adopt one of the following implementation manners to feed back the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted in the order of priority from high to low of the layer index, the first base vector index, and the second base vector index.
  • the priority of the layer index refers to that the weighting coefficient with the lowest layer index corresponds to the highest priority; the first basis vector index corresponds to the matrix The row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority; the second base vector index corresponds to the matrix The column index of the column index with the lowest weighting coefficient corresponds to the highest priority.
  • the bitmap information, the magnitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted in the order of priority from high to low of the layer index, the second base vector index, and the first base vector index.
  • the priority of the layer index refers to that the weighting coefficient with the lowest layer index corresponds to the highest priority; the second base vector index corresponds to the matrix Column index, the weighting coefficient with the lowest column index corresponds to the highest priority; the first basis vector index corresponds to the matrix The row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority.
  • Embodiment 3-3 is a diagrammatic representation of Embodiment 3-3.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted in the order of the first base vector index, the second base vector index, and the priority of the layer index from high to low.
  • the first basis vector index corresponds to the matrix
  • the row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority
  • the second basis vector index corresponds to the matrix
  • the priority of the layer index refers to the priority corresponding to the weighting coefficient with the lowest layer index.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted in the order of priority of the second base vector index, the first base vector index, and the layer index from high to low.
  • the second basis vector index corresponds to the matrix
  • the column index of the column index, the weighting coefficient with the lowest column index corresponds to the highest priority
  • the first basis vector index corresponds to the matrix
  • the priority of the layer index refers to the priority corresponding to the weighting coefficient with the lowest layer index.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted according to the priority order of the first base vector index, the second base vector index, the antenna port group index, and the layer index.
  • the first basis vector index corresponds to the matrix The row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority; the second basis vector index corresponds to the matrix The priority of the weighting coefficient corresponding to the lowest column index is the highest; the priority of the antenna port group index, wherein the priority of the weighting coefficient of the strong polarization direction is higher than the weighting coefficient of the weak polarization direction; the layer
  • the priority of the index refers to the priority corresponding to the lowest weighting coefficient of the layer index.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted in the order of priority from high to low of the second base vector index, the first base vector index, the antenna port group index, and the layer index.
  • the second basis vector index corresponds to the matrix
  • the column index of the column index, the weighting coefficient with the lowest column index corresponds to the highest priority
  • the first basis vector index corresponds to the matrix
  • the priority of the weighting coefficient with the lowest row index corresponds to the highest priority
  • the priority of the antenna port group index wherein the priority of the weighting coefficient of the strong polarization direction is higher than that of the weak polarization direction
  • the layer The priority of the index refers to the priority corresponding to the lowest weighting coefficient of the layer index.
  • the bitmap information, the amplitude information of the weighting coefficient, and the phase information of the weighting coefficient are each sorted according to the priority order of the antenna port group index, the first base vector index, the second base vector index, and the layer index from high to low.
  • the priority of the antenna port group index wherein the priority of the weighting coefficient of the strong polarization direction is higher than the weighting coefficient of the weak polarization direction;
  • the first basis vector index corresponds to the matrix
  • the row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority;
  • the second basis vector index corresponds to the matrix
  • the priority of the layer index refers to the priority corresponding to the weighting coefficient with the lowest layer index.
  • the bitmap information, the amplitude information of the weighting coefficients, and the phase information of the weighting coefficients are each sorted according to the priority order of the antenna port group index, the second base vector index, the first base vector index, and the layer index.
  • the priority of the antenna port group index wherein the priority of the weighting coefficient of the strong polarization direction is higher than the weighting coefficient of the weak polarization direction; the second basis vector index corresponds to the matrix Column index, the weighting coefficient with the lowest column index corresponds to the highest priority; the first basis vector index corresponds to the matrix For the row index of the row index, the weighting coefficient with the lowest row index corresponds to the highest priority; the priority of the layer index refers to the priority corresponding to the weighting coefficient with the lowest layer index.
  • a channel state information report consists of two parts.
  • the first part of the channel state information occupies a fixed size of resources and is used to indicate the resource size of the second part of the channel state information.
  • the first part of channel state information includes, but is not limited to: rank indication information, and the total number of weighting coefficients of all layers in the second part of channel state information.
  • the second part of the channel state information includes but is not limited to: the selection indication of the first base vector, the selection indication of the second base vector of each layer, and the weighting coefficient of each layer. Since the base station cannot know the actual feedback rank of the terminal, the resources allocated by the base station for feedback of the channel state information report may be insufficient, and the terminal needs to discard part of the precoding information according to the priority order. Specifically, the discarding principle can choose one of the following two implementation manners.
  • Embodiment 4-1 is a diagrammatic representation of Embodiment 4-1:
  • Sub-embodiment 4-1-1 part of the amplitude information of the weighting coefficient with the lowest priority and the phase information of the weighting coefficient with the lowest priority are discarded. According to the above criteria, until the resources for transmitting the first type of signaling are sufficient to transmit the actual channel state information. At the same time, the total number of weighting coefficients for all layers is recalculated, and the total number of weighting coefficients for all layers in the first part of the channel state information is updated.
  • Sub-embodiment 4-1-2 A part of the amplitude information of the weighting coefficient with the lowest priority and the phase information of the weighting coefficient with the lowest priority are discarded. According to the above criteria, until the resources for transmitting the first type of signaling are sufficient to transmit the actual channel state information. At the same time, the total number of weighting coefficients of all layers in the first part of the channel state information is not updated, and feedback is still performed according to the total number of weighting coefficients of all layers before discarding. In this way, the base station can implicitly know the number of weighting coefficients discarded by the terminal, which is beneficial to the base station for scheduling.
  • Embodiment 4-2 is a diagrammatic representation of Embodiment 4-2.
  • Sub-embodiment 4-2-1 A part of the amplitude information of the weighting coefficient with the lowest priority and the phase information of the weighting coefficient with the lowest priority are discarded. At the same time, part of the bitmap information with the lowest priority is discarded. The part of the bitmap information with the lowest priority refers to discarding the part of the bitmap information corresponding to the weighting coefficient with the lowest priority. According to the above criteria, until the resources for transmitting the first type of signaling are sufficient to transmit the actual channel state information. At the same time, the total number of weighting coefficients for all layers is recalculated, and the total number of weighting coefficients for all layers in the first part of the channel state information is updated.
  • Sub-embodiment 4-2-2 A part of the amplitude information of the weighting coefficient with the lowest priority and the phase information of the weighting coefficient with the lowest priority are discarded. At the same time, part of the bitmap information with the lowest priority is discarded. The part of the bitmap information with the lowest priority refers to discarding the part of the bitmap information corresponding to the weighting coefficient with the lowest priority. At the same time, the total number of weighting coefficients of all layers in the first part of the channel state information is not updated, and feedback is still performed according to the total number of weighting coefficients of all layers before discarding. In this way, the base station can implicitly know the number of weighting coefficients discarded by the terminal, which is beneficial to the base station for scheduling.
  • the weighting coefficients that need to be fed back are the weighting coefficients marked with serial numbers as shown in Figure 5(a) and (b), where Figure 5(a) and (b) represent the 0th layer and the 1st layer, respectively.
  • the weighting coefficients numbered 2 and 8 are the index positions of the reference amplitudes of the weighting coefficients of layer 0 and layer 1, respectively.
  • the shaded parts indicate the strong polarization direction of each layer.
  • the bitmap information is: 11001110 01100000 00000011 01110110; if the index position of the weighting coefficient reference amplitude of each layer does not need to feed back the bitmap information, the bitmap information is : 100110 01100000 00000011 01110110.
  • the amplitude information of the weighting coefficients and the phase information of the weighting coefficients are as shown in Table 24, wherein the weighting coefficients indicated by the index positions of the reference amplitudes of the weighting coefficients of each layer do not need to feed back the amplitude and phase information.
  • the bitmap information after discarding is: 11001110 01110000000000000011 01100; if the index position of the weighting coefficient reference amplitude of each layer does not need to feed back the bitmap information, discard it The following bitmap information is: 100110 01100000 00000011 01100.
  • the amplitude information of the weighting coefficients and the phase information of the weighting coefficients are shown in Table 25. The weighting coefficients indicated by the index positions of the reference amplitudes of the weighting coefficients of each layer do not need to feed back the amplitude and phase information:
  • the bitmap information is: 11100100 00100111 11000010 00010110; if the index position of the weighting coefficient reference amplitude of each layer does not need to feed back the bitmap information, the bitmap information is : 100100 00100111 11000010 00010110.
  • the amplitude information of the weighting coefficients and the phase information of the weighting coefficients are shown in Table 26, where the weighting coefficients indicated by the index positions of the reference amplitudes of the weighting coefficients of each layer do not need to feedback the amplitude and phase information:
  • the bitmap information after discarding is: 11100100 00100111 11000010 00000; if the index position of the weighting coefficient reference amplitude of each layer does not need to feed back the bitmap information, discard it The following bitmap information is: 100100 00100111 11000010 00000.
  • the amplitude information of the weighting coefficients and the phase information of the weighting coefficients are shown in Table 27, where the weighting coefficients indicated by the index positions of the reference amplitudes of the weighting coefficients of each layer do not need to feedback the amplitude and phase information:
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a capability information and channel state information feedback device is also provided.
  • the device is configured to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the terms “module” and “unit” can be a combination of software and/or hardware that implements predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 6 is a structural block diagram of a capability information feedback device according to an embodiment of the present invention, and the device is located at a first communication node.
  • the first communication node may be a mobile terminal, and the second communication node may be a base station.
  • the device includes a sending module 10 and a receiving module 20.
  • the sending module 10 is configured to send the capability information indicating the first communication node to the second communication node.
  • the receiving module 20 is configured to receive parameter signaling corresponding to the capability of the first communication node sent by the second communication node.
  • Fig. 7 is a structural block diagram of a device for feedback of channel state information according to an embodiment of the present invention, and the device is located at a first communication node.
  • the first communication node may be a mobile terminal, and the second communication node may be a base station.
  • the device includes a calculation module 40.
  • the calculation module 40 is configured to calculate the channel state information and send the first type of signaling to the second communication node; wherein, the resources for sending the first type of signaling are less than the resources required for sending the channel state information, according to the priority order Some precoding information is discarded.
  • the device may further include a receiving module 30.
  • the receiving module 30 is configured to receive parameter signaling of the second communication node before the sending module sends the first type of signaling, where the parameter signaling is used to indicate the parameters used for calculating the channel state information report and the sending Channel and resource size of the first type of signaling.
  • Fig. 8 is a structural block diagram of a parameter signaling sending device according to an embodiment of the present invention, and the device is located at a second communication node.
  • the first communication node may be a mobile terminal, and the second communication node may be a base station.
  • the device includes a receiving module 50 and a sending module 60.
  • the receiving module 50 is configured to receive the capability information used for indicating the first communication node sent by the first communication node.
  • the sending module 60 is configured to send parameter signaling corresponding to the capability of the first communication node to the first communication node.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any combination The forms are located in different processors.
  • the embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in the foregoing method embodiment when running.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • An embodiment of the present invention also provides an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute the steps in the above method embodiment.
  • modules or steps of the present invention can be implemented by a general computing device. They can be concentrated on a single computing device or distributed in a network composed of multiple computing devices. Above, alternatively, they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here. Perform the steps shown or described, or fabricate them into individual integrated circuit modules, or fabricate multiple modules or steps of them into a single integrated circuit module to achieve. In this way, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种能力信息、以及信道状态信息反馈方法和装置,该能力信息反馈方法包括:第一通信节点向第二通信节点发送指示所述第一通信节点的能力信息;所述第一通信节点接收所述第二通信节点发送的与所述第一通信节点的能力相对应的参数信令。在本发明中,第一通信节点向第二通信节点反馈其支持的能力信息,便于第二通信节点基于第一通信节点的能力进行调度,减小了系统开销,提供了系统的性能。

Description

能力信息以及信道状态信息的反馈方法和装置 技术领域
本发明涉及通信领域,具体而言,涉及一种能力信息以及信道状态信息的反馈方法及装置。
背景技术
在MIMO无线通信系统中,通过对多根发送天线进行预编码或波束成型,可以达到提升传输效率和可靠性的目的。为了实现高性能的预编码或波束成型,预编码矩阵或波束成型矢量需要比较好的匹配信道,这就需要发射端能较好的获得信道状态信息(CSI)。因此,CSI反馈是在MIMO系统中实现高性能预编码或波束成型的关键技术。
然而,在进行CSI反馈的时候,对信道矩阵的量化反馈会带来比较大的反馈开销。由于基站无法知道终端实际反馈的秩,基站分配的用于反馈CSI的资源可能不足,则终端需要根据约定准则,丢弃部分信道状态信息。另外,高性能预编码的计算复杂度比较高,不同类型的终端计算能力不同,因此,终端有必要反馈其支持的能力信息,方便基站进行调度。
发明内容
本发明实施例提供了一种能力信息以及信道状态信息的反馈方法及装置,以至少解决相关技术中在进行CSI反馈的时候,对信道矩阵的量化反馈会带来比较大的反馈开销的问题。
CSI量化反馈技术是MIMO技术的一个重要组成部分,在传统的无线通信系统中,通常使用DFT矢量或者DFT矢量的变化形式,例如,多个DFT矢量的克罗内克积,或者DFT矢量的级联形式,或者对级联的DFT矢量进行相位调整的形式,终端通过量化反馈,将上述形式的预编码指示信息上报给基站。这种类型的预编码码本可以归类为第一类码本,这种码本开销较小,但是CSI量化精度较低,性能较为受限。另一种码本通过对 DFT矢量或者DFT矢量的克罗内克积进行线性加权合并,被加权合并的矢量称为码本基矢量,将码本基矢量相关信息、加权系数的幅度和相位信息作为预编码指示信息反馈给基站,这样的预编码码本可归类为第二类码本。此外,第二类码本得到的相邻频域单元内预编码码本,具有相关性,可以利用该相关性,在频域采用DFT矩阵进行压缩,进一步减小第二类码本的开销,将这种码本称之为第二类频域压缩码本。其具体的实现方式如下:
终端通常会反馈秩信息RI,指示其反馈的层数。某一层的第二类频域压缩码本,可以表示为:
Figure PCTCN2020093527-appb-000001
其中,W 1为空域基矢量,W 1维度为2N 1N 2×2L,其形式为:
Figure PCTCN2020093527-appb-000002
其中2N 1N 2表示参考信号的端口数,N 1表示水平的参考信号的端口数,N 2表示垂直的参考信号的端口数,系数2表示双极化。L(L∈{2,4,6})个第一基矢量v 0,v 1,…,v L-1彼此正交,其具体形式为:
Figure PCTCN2020093527-appb-000003
Figure PCTCN2020093527-appb-000004
Figure PCTCN2020093527-appb-000005
符号
Figure PCTCN2020093527-appb-000006
表示克罗内克积,O 1,O 2为过采样因子。一般来说,W 1中的信息是宽带反馈的,即对于整个CSI反馈带宽中不同的频域单位及不同层,W 1中的信息是相同的。W f表示频域基矢量,每一层的选择是各自独立的,其维度为N 3×M:
W f=[f 0 f 1 … f M-1]
其中N 3表示预编码子带数目,N 3=R×N SB(R=1或者2),N SB表示CQI子带数目。第二基矢量的数目M由参数p和参数R确定,
Figure PCTCN2020093527-appb-000007
其中 RI=1,2时,p=v 0;RI=3,4时,p=y 0,且
Figure PCTCN2020093527-appb-000008
M个第二基矢量f 0,f 1,...,f M-1彼此正交,其具体形式为:
Figure PCTCN2020093527-appb-000009
f m=u n;m=0,1,...,M-1
其中,如果N 3≤19,n∈{0,1,...,N 3-1},此时第二基矢量可从大小为N 3的集合中进行选择;如果N 3>19,则n∈mod{(n 0,n 0+1,...,n 0+N′ 3-1),N 3}(
Figure PCTCN2020093527-appb-000010
比例因子
Figure PCTCN2020093527-appb-000011
),此时第二基矢量可从大小为N′ 3的集合中进行选择。
Figure PCTCN2020093527-appb-000012
为第一基矢量和第二基矢量的加权系数,其维度为2L×M,需要将其幅度和相位进行量化反馈。将
Figure PCTCN2020093527-appb-000013
的第1到L行称为第一天线端口组;
Figure PCTCN2020093527-appb-000014
的第L+1到2L行为第二天线端口组。将
Figure PCTCN2020093527-appb-000015
进行量化反馈:首先,找到加权系数参考幅度的索引位置,将其对应加权系数的幅度和相位分别归一化为1和0,通过一些数学操作,可以默认其位于
Figure PCTCN2020093527-appb-000016
的第一列。加权系数参考幅度的索引位置的天线端口组称为强极化方向,相应地,另一个天线端口组称为弱极化方向。接着,强极化方向的加权系数的幅度量化,以1为参考进行差分量化。最后,在弱极化方向的加权系数中确定一个量化参考幅度,弱极化方向的加权系数的幅度量化,以量化参考幅度为参考进行差分量化。其中量化参考幅度的量化开销为4比特,每一个加权系数的幅度量化开销为3比特,每一个加权系数的相位量化开销为3比特或者4比特。
由于很多加权系数的幅度很可能被量化为0,无法携带信道信息。因此只需选取
Figure PCTCN2020093527-appb-000017
的部分加权系数进行反馈,未反馈的加权系数默认为0。基站配置参数β,则
Figure PCTCN2020093527-appb-000018
其中
Figure PCTCN2020093527-appb-000019
当终端反馈的RI为1时,反馈的总共加权系数数目不能超过K 0个;当终端反馈的RI为2或则3或者4时,所有层反馈的总共加权系数数目不能超过2K 0个。通过比特图指示其选择加权系数的索引位置。
总的来说,预编码信息的反馈,终端需要反馈L个第一基矢量的选择指示、每一层的M个第二基矢量的选择指示、每一层的加权系数信息。其中,加权系数信息包括:比特图信息、加权系数的幅度信息、加权系数 的幅度信息、加权系数参考幅度的索引位置、量化的参考幅度。
由于基站无法知道终端实际反馈的秩,基站分配的用于反馈信道状态信息的资源可能不足,则终端需要根据约定准则,丢弃部分信道状态信息。另外,高性能预编码的计算复杂度比较高,不同类型的终端计算能力不同,因此终端有必要反馈其支持的能力信息,方便基站进行调度。高性能预编码可配置的参数较多,为了避免过多高层参数的配置,基站可以通过配置一些参数组合的索引,减小信令开销。本发明旨在解决上述问题。
根据本发明的实施例,提供了一种能力信息反馈方法,包括:第一通信节点向第二通信节点发送指示所述第一通信节点的能力信息;所述第一通信节点接收所述第二通信节点发送的与所述第一通信节点的能力相对应的参数信令。
其中,所述能力信息包括至少以下之一:参考信号的最大端口数、每个频带内最多的参考资源数目、最大支持每个频带内所有参考信号端口的总和、是否支持子带信道状态信息反馈、最大支持层数、最大支持第一基矢量数目、最大支持第二基矢量数目、最大支持第二基矢量的可选集合大小、最大支持CQI子带的数目、最大支持预编码子带的数目、最大支持加权系数的反馈比例、最大支持第一基矢量数目和第二基矢量数目乘积的大小、CPU数目、一个信道状态信息报告最大能同时占用的CPU数目。
其中,所述第二基矢量可选的集合包含的基矢量数目大于第二基矢量数目,第二基矢量在所述第二基矢量可选的集合中进行选取。
其中,所述CPU数目为所述第一通信节点信道状态信息处理单元的数目,其中,所述信道状态信息处理单元用于反映第一通信节点处理信道状态信息的能力。
其中,所述参数信令包括:计算信道状态信息报告所用的配置信息、承载信道状态信息报告的信道及资源大小;其中,所述承载信道状态信息报告的信道包括以下至少之一:一个或者多个控制信道、共享信道。
其中,所述计算信道状态信息报告所用的配置信息至少包括以下之一: 计算信道状态信息报告所用的参考资源集合、计算信道状态信息报告所用的参考信号资源、最大能反馈的秩、第一基矢量数目、需要反馈CQI的子带、预编码子带大小、第二基矢量数目相关参数、加权系数的反馈比例、第二基矢量可选集合的大小、一个信道状态信息报告同时占用的CPU数目;其中,所述第二基矢量数目相关参数用于确定第二基矢量数目。
其中,所述计算信道状态信息报告所用的配置信息中没有配置最大能反馈的秩时,最大能反馈的秩默认为第一通信节点的能力信息中的最大支持层数。
其中,所述计算信道状态信息报告所用的配置信息不能超过第一通信节点的能力。
其中,所述参数信令使用索引值指示部分参数信息。
其中,所述部分参数信息至少包括以下之一:第一基矢量数目、第二基矢量数目相关参数、加权系数的反馈比例、比例因子。
其中,所述索引值指示的部分参数信息使用所述第一通信节点和所述第二通信节点共同约定的索引列表。
其中,所述索引列表为一个索引列表或者多个索引列表。
其中,对于所述多个索引列表,所述第一通信节点通过参数信令包含的特定参数,确定使用哪一个列表。
其中,所述特定参数包含至少之一:参考信号的端口数、最大能反馈的秩、预编码子带的数目。
本发明实施例还提供了一种信道状态信息的反馈方法,包括:第一通信节点计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送实际信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
其中,在向所述第二通信节点所述发送所述第一类信令之前,还包括:所述第一通信节点接收所述第二通信节点的参数信令,所述参数信令包括: 计算信道状态信息报告所用的配置信息、发送第一类信令的信道及资源大小。
其中,所述第一类信令包括一个或者多个信道状态信息报告;其中,所述信道状态信息报告至少包含以下之一:秩指示信息、调制编码信息、层指示信息、参考信号资源指示信息、预编码信息。
其中,所述的预编码信息至少包括以下之一:所有层加权系数的总共数目、第一基矢量的选择指示、每一层第二基矢量的选择指示、每一层的加权系数信息;其中,所述加权系数为第一基矢量和第二基矢量的加权系数,所述每一层的加权系数信息包括:比特图信息、加权系数的幅度信息、加权系数的相位信息、加权系数参考幅度的索引位置、量化的参考幅度。
其中,所述加权系数的幅度信息和加权系数的相位信息为需要反馈的加权系数进行量化后的信息,所述比特图信息用于指示需要反馈的加权系数的索引位置。
其中,一个信道状态信息报告由两个部分组成,包括第一部分信道状态信息和第二部分信道状态信息;其中,所述第一部分信道状态信息所占的资源大小固定,用于指示第二部分信道状态信息占用的资源大小。
其中,所述第一部分信道状态信息包括:秩指示信息、第二部分信道状态信息中所有层加权系数的总共数目。
其中,所述第二部分信道状态信息包括:第一基矢量的选择指示、每一层第二基矢量的选择指示、每一层的加权系数信息。
其中,所述比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照优先级原则进行排序;所述的优先级原则采取以下方式之一:优先级从高到依次是层索引、第一基矢量索引、第二基矢量索引;优先级从高到依次是层索引、第二基矢量索引、第一基矢量索引;优先级从高到依次是第一基矢量索引、第二基矢量索引、层索引;优先级从高到依次是第二基矢量索引、第一基矢量索引、层索引;优先级从高到依次是第一基矢量索引、第二基矢量索引、天线端口组索引、层索引;优先级从高到依次 是第二基矢量索引、第一基矢量索引、天线端口组索引、层索引;优先级从高到依次是天线端口组索引、第一基矢量索引、第二基矢量索引、层索引;优先级从高到依次是天线端口组索引、第二基矢量索引、第一基矢量索引、层索引。
其中,所述实际信道状态信息为所述第一通信节点根据计算信道状态信息报告所用的配置信息,计算得到的信息。
其中,所述依据优先级顺序丢弃部分预编码信息,包含以下方式之一:丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息,使得发送第一信令的资源,足够发送剩余的实际信道状态信息;丢弃部分优先级最低的加权系数的幅度信息、优先级最低的加权系数的相位信息和优先级最低的比特图信息,使得发送第一信令的资源,足够发送剩余的实际信道状态信息。
本发明实施例还提供了一种参数信令发送方法,包括:第二通信节点接收第一通信节点发送的用于指示所述第一通信节的能力信息;所述第二通信节点向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
其中,所述参数信令包括:计算信道状态信息报告所用的配置信息、承载信道状态信息报告的信道及资源大小;其中,所述承载信道状态信息报告的信道包括以下至少之一:一个或者多个控制信道、共享信道。
其中,所述计算信道状态信息报告所用的配置信息至少包括以下之一:计算信道状态信息报告所用的参考资源集合、计算信道状态信息报告所用的参考信号资源、最大能反馈的秩、第一基矢量数目、需要反馈CQI的子带、预编码子带大小、第二基矢量数目相关参数、加权系数的反馈比例、第二基矢量可选集合的大小、一个信道状态信息报告同时占用的CPU数目;其中,所述第二基矢量数目相关参数用于确定第二基矢量数目。
其中,所述参数信令使用索引值指示部分参数信息。
其中,所述部分参数信息至少包括以下之一:第一基矢量数目、第二 基矢量数目相关参数、加权系数的反馈比例、比例因子。
其中,所述索引值指示的部分参数信息使用所述第一通信节点和所述第二通信节点共同约定的索引列表。
其中,所述索引列表为一个索引列表或者多个索引列表。
其中,对于所述多个索引列表,第一通信节点通过参数信令包含的特定参数,确定使用哪一个列表。
其中,所述特定参数包含至少之一:参考信号的端口数、最大能反馈的秩、预编码子带的数目。
本发明实施例还提供了一种信道状态信息的反馈装置,位于第一通信节点,包括:发送模块,设置为向第二通信节点发送指示所述第一通信节点的能力信息;接收模块,设置为接收所述第二通信节点发送的与所述第一通信节点的能力对应的参数信令。
本发明实施例还提供了一种信道状态信息的反馈装置,位于第一通信节点,包括:计算模块,设置为计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
该装置还包括,接收模块,设置为在所述发送模块发送所述第一类信令之前,接收所述第二通信节点的参数信令,所述参数信令用于指示计算信道状态信息报告所用的参数、发送第一类信令的信道及资源大小。
本发明实施例还提供了一种参数信令发送装置,位于第二通信节点,包括:接收模块,设置为接收第一通信节点发送的用于指示所述第一通信节点的能力信息;发送模块,设置为向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述方法实施例中的步骤。
在本发明的上述实施例中,第一通信节点向第二通信节点反馈其支持的能力信息,便于第二通信节点基于第一通信节点的能力进行调度,另外高性能预编码可配置的参数较多,为了避免过多高层参数的配置,第二通信节点可以通过配置一些参数组合的索引,减小信令开销。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的移动终端的结构示意图;
图2是根据本发明实施例的能力信息反馈方法流程图;
图3是根据本发明实施例的信道状态信息反馈方法流程图;
图4是根据本发明实施例的能力信息反馈方法流程图;
图5(a)和(b)是根据本发明实施例的反馈的第0层和第1层加权系数示意图;
图6是根据本发明实施例的能力信息反馈装置结构示意图;
图7是根据本发明实施例的信道状态信息反馈装置结构示意图;
图8是根据本发明实施例的信令参数发送装置结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序 或先后次序。
本申请实施例一所提供的方法实施例可以在移动终端或者类似的通信装置中执行。以运行在移动终端上为例,图1是本发明方法实施例的移动终端的硬件结构框图。如图1所示,该移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本发明方法实施例中对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的能力信息反馈方法,图2是根据本发明实施例的流程图,在本实施例中,第一通信节点可以为 移动终端,第二通信节点可以为基站。如图2所示,该流程包括如下步骤:
步骤S202,第一通信节点向第二通信节点发送指示所述第一通信节点的能力信息;
步骤S204,所述第一通信节点接收所述第二通信节点发送的与所述第一通信节点的能力相对应的参数信令。
在本实施例中提供了一种信道状态信息的反馈方法,图3是根据本发明实施例的流程图。在本实施例中,第一通信节点可以为移动终端,第二通信节点可以为基站。如图3所示,该流程包括如下步骤:
步骤S304,第一通信节点计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送实际信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
在步骤S304之前,还包括步骤S302:所述第一通信节点接收所述第二通信节点的参数信令,所述参数信令包括:计算信道状态信息报告所用的配置信息、发送第一类信令的信道及资源大小。
本实施例中提供了一种参数信令发送方法,图4是根据本发明实施例的流程图。在本实施例中,第一通信节点可以为移动终端,第二通信节点可以为基站。如图4所示,该流程包括如下步骤:
步骤S402,第二通信节点接收第一通信节点发送的用于指示所述第一通信节的能力信息;
步骤S404,所述第二通信节点向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
下面将通过具体的实施例,从终端能力信息的上报方式、基站参数信令的配置方式、比特图信息、加权系数的幅度信息和加权系数的相位信息的排序方式和丢弃部分预编码信息的方式这四个方面进行详细的描述。
1.终端能力信息的上报方式
如前文中所描述的,由于高精度信道状态信息的计算复杂度较高,不 同类型终端的计算能力不同,基站需要知道终端的能力信息。在本发明如下的实施例中,终端可以通过如下方式反馈能力信息。
终端反馈如下能力信息:参考信号的最大端口数、每个频带内最多的参考资源数目、最大支持每个频带内所有参考信号端口的总和、是否支持子带信道状态信息反馈、最大支持层数、以及其它的终端的能力信息。在本实施例,一些其它的终端能力信息的反馈可以采取以下实施方式之一:
实施方式1-1:
不同参考信号的端口数目下,所能处理的第一基矢量数目L是终端能力信息。如下表1所示,一个实施例中,在特定端口数目下,终端根据自身处理能力,从终端能力1、终端能力2、和终端能力3中选择一个反馈给基站。
表1
端口数 终端能力1 终端能力2 终端能力3
4 支持L=2 不支持 不支持
8 支持L=2 支持L=2和L=4 不支持
12 支持L=2 支持L=2和L=4 不支持
16 支持L=2 支持L=2和L=4 不支持
24 支持L=2 支持L=2和L=4 不支持
32 支持L=2 支持L=2和L=4 支持L=2、L=4和L=6
另一个实施例中,不同参考信号的端口数目下,终端反馈最大能支持的第一基矢量数目L。
实施方式1-2:
不同参考信号的端口数目下,所能处理的第一基矢量数目L和预编码子带数目N 3是终端能力信息。在一个实施例中,如表2所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、终端能力(N 3)2中选择一个,反馈给基站。
表2
Figure PCTCN2020093527-appb-000020
在另一实施例中,如表3所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、终端能力(N 3)2、终端能力(N 3)3中选择一个,反馈给基站。
表3
Figure PCTCN2020093527-appb-000021
在另一个实施例中,不同参考信号的端口数目下,终端反馈最大能支持的第一基矢量数目L和最大能支持的预编码子带个数N 3
实施方式1-3:
不同参考信号的端口数目下,所能处理的第一基矢量数目L、预编码子带数目N 3和第二基矢量数目M是终端能力信息。一个具体的实施例是,如表4所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、 终端能力(N 3)2中选择一个,最后从终端能力(M)1和终端能力(M)2中选择一个,反馈给基站。
表4
Figure PCTCN2020093527-appb-000022
在另一个实施例中,如表5所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、终端能力(N 3)2选择一个,最后从终端能力(M)1、终端能力(M)2和终端能力(M)3中选择一个,反馈给基站。
表5
Figure PCTCN2020093527-appb-000023
Figure PCTCN2020093527-appb-000024
在一个实施例中,如表6所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、终端能力(N 3)2和终端能力(N 3)3中选择一个,最后从终端能力(M)1、终端能力(M)2中选择一个,反馈给基站。
表6
Figure PCTCN2020093527-appb-000025
在一个具体的实施例中,如表7所示,在特定端口数目下,终端根据自身处理能力,从终端能力(L)1、终端能力(L)2、和终端能力(L)3中选择一个,再从终端能力(N 3)1、终端能力(N 3)2和终端能力(N 3)3中选择一个,最后从终端能力(M)1、终端能力(M)2和终端能力(M)3中 选择一个,反馈给基站。
表7
Figure PCTCN2020093527-appb-000026
在另一个实施例中,不同参考信号的端口数目下,终端反馈最大能支持的第一基矢量数目L、最大能支持的预编码子带个数N 3和最大能支持的第二基矢量数目M。
实施方式1-4:
不同参考信号的端口数下,所能处理的第一基矢量数目L、预编码子带数目N 3第二基矢量数目M是终端能力信息和加权系数的反馈比例β是能力信息。一个具体的例子是,不同参考信号的端口数目下,终端反馈最 大能支持的第一基矢量数目L、最大能支持的预编码子带个数N 3、最大能支持的第二基矢量数目M和最大能支持的加权系数的反馈比例β。
2.基站参数信令的配置方式
为了减少高层信令的开销,基站配置用于计算信道状态信息报告的部分参数信息可以采用索引表格的方式。在本发明如下的实施例中,终端通过以下实施方式之一,可以获得计算信道状态信息报告所用的部分参数信息。
实施方式2-1:
根据参考信号的端口数和索引值,确定{第一基矢量的数目L,参数p,加权系数的反馈比例β}的配置。
在一个具体实施例中,如表8和表9所示,其中,表8中参考信号的端口数小于32,表9中参考信号的端口数大于等于32,根据参考信号的端口数可以确定使用的是表8还是表9,再根据索引值可以确定{L,(v 0,y 0),β}或者{L,v 0,β}的配置。
表8.
索引值 {L,(v 0,y 0),β}
0 {2,(1/4,1/8),1/4}
1 {2,(1/4,1/8),1/2}
2 {2,(1/4,1/8),3/4}
3 {2,(1/4,1/4),1/4}
4 {2,(1/4,1/4),1/2}
5 {2,(1/4,1/4),3/4}
6 {2,(1/2,1/2),1/4}
7 {2,(1/2,1/2),1/2}
8 {2,(1/2,1/2),3/4}
9 {4,(1/4,1/8),1/4}
10 {4,(1/4,1/8),1/2}
11 {4,(1/4,1/8),3/4}
12 {4,(1/4,1/4),1/4}
13 {4,(1/4,1/4),1/2}
14 {4,(1/4,1/4),3/4}
15 {4,(1/2,1/4),1/4}
16 {4,(1/2,1/4),1/2}
17 {4,(1/2,1/4),3/4}
表9
索引值 {L,v 0,β}
0 {2,1/4,1/4}
1 {2,1/4,1/2}
2 {2,1/4,3/4}
3 {2,1/2,1/4}
4 {2,1/2,1/2}
5 {2,1/2,3/4}
6 {4,1/4,1/4}
7 {4,1/4,1/2}
8 {4,1/4,3/4}
9 {4,1/2,1/4}
10 {4,1/2,1/2}
11 {4,1/2,3/4}
12 {6,1/4,1/4}
13 {6,1/4,1/2}
14 {6,1/4,3/4}
15 {6,1/2,1/4}
实施方式2-2:
根据参考信号的端口数目、预编码子带的数目和索引值,确定{第一基矢量的数目L,参数p,加权系数的反馈比例β,比例因子α}的配置。
在一个实施例中,如表10、11、12和13所示,表10中参考信号的端口数小于32且N 3≤19,表11中参考信号的端口数大于或者等于32且N 3≤19,在表12中参考信号的端口数小于32且N 3>19,在表13中参考信号的端口数大于或者等于32且N 3>19。根据参考信号的端口数目和预编码子带的数目,可以确定使用的是哪一张表格,再根据索引值可以确定{L,v 0,β},或者{L,v 0,β,α},或者{L,(v 0,y 0),β},或者{L,(v 0,y 0),β,α}的配置。其中,α 1<α 2,且
Figure PCTCN2020093527-appb-000027
表10
索引值 {L,(v 0,y 0),β}
0 {2,(1/4,1/8),1/4}
1 {2,(1/4,1/8),1/2}
2 {2,(1/4,1/8),3/4}
3 {2,(1/4,1/4),1/4}
4 {2,(1/4,1/4),1/2}
5 {2,(1/4,1/4),3/4}
6 {2,(1/2,1/2),1/4}
7 {2,(1/2,1/2),1/2}
8 {2,(1/2,1/2),3/4}
9 {4,(1/4,1/8),1/4}
10 {4,(1/4,1/8),1/2}
11 {4,(1/4,1/8),3/4}
12 {4,(1/4,1/4),1/4}
13 {4,(1/4,1/4),1/2}
14 {4,(1/4,1/4),3/4}
15 {4,(1/2,1/4),1/4}
16 {4,(1/2,1/4),1/2}
17 {4,(1/2,1/4),3/4}
表11
索引值 {L,v 0,β}
0 {2,1/4,1/4}
1 {2,1/4,1/2}
2 {2,1/4,3/4}
3 {2,1/2,1/4}
4 {2,1/2,1/2}
5 {2,1/2,3/4}
6 {4,1/4,1/4}
7 {4,1/4,1/2}
8 {4,1/4,3/4}
9 {4,1/2,1/4}
10 {4,1/2,1/2}
11 {4,1/2,3/4}
12 {6,1/4,1/4}
13 {6,1/4,1/2}
14 {6,1/4,3/4}
15 {6,1/2,1/4}
表12
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
表13
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
24 {6,1/4,1/4,α 1}
25 {6,1/4,1/4,α 2}
26 {6,1/4,1/2,α 1}
27 {6,1/4,1/2,α 2}
28 {6,1/4,3/4,α 1}
29 {6,1/4,3/4,α 2}
30 {6,1/2,1/4,α 1}
31 {6,1/2,1/4,α 2}
实施方式2-3:
根据参考信号的端口数目和索引值,确定{第一基矢量的数目L,参数p,加权系数的反馈比例β,比例因子α}的配置。
在一个具体的实施例中,如表14和15所示,在表14中参考信号的端口数小于32,在表15中参考信号的端口数大于或者等于32。根据参考信号的端口数目,可以确定使用的是哪一张表格,再根据索引值可以确定{L,v 0,β,α}或者{L,(v 0,y 0),β,α}的配置。其中,α 1<α 2,且
Figure PCTCN2020093527-appb-000028
此外,当预编码子带数目N 3<19时,索引值只能配置为偶数或者只能配置为奇数,且默认比例因子α的值是无效的;当预编码子带数目N 3≥19时,比例因子α的值是有效的。
表14
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
表15
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
24 {6,1/4,1/4,α 1}
25 {6,1/4,1/4,α 2}
26 {6,1/4,1/2,α 1}
27 {6,1/4,1/2,α 2}
28 {6,1/4,3/4,α 1}
29 {6,1/4,3/4,α 2}
30 {6,1/2,1/4,α 1}
31 {6,1/2,1/4,α 2}
实施方式2-4:
根据最大能反馈的秩和索引值,确定{第一基矢量的数目L,参数p,加权系数的反馈比例β}的配置。一个具体的实现方式是,如表16和表17所示,表16最大能反馈的秩为2,表17最大能反馈的秩为4。根据最大能反馈的秩的大小,可以确定使用的是表16还是表17,再根据索引值可以确定{L,v 0,β}或者{L,(v 0,y 0),β}的配置。
表16
索引值 {L,v 0,β}
0 {2,1/4,1/4}
1 {2,1/4,1/2}
2 {2,1/4,3/4}
3 {2,1/2,1/4}
4 {2,1/2,1/2}
5 {2,1/2,3/4}
6 {4,1/4,1/4}
7 {4,1/4,1/2}
8 {4,1/4,3/4}
9 {4,1/2,1/4}
10 {4,1/2,1/2}
11 {4,1/2,3/4}
12 {6,1/4,1/4}
13 {6,1/4,1/2}
14 {6,1/4,3/4}
15 {6,1/2,1/4}
表17
索引值 {L,(v 0,y 0),β}
0 {2,(1/4,1/8),1/4}
1 {2,(1/4,1/8),1/2}
2 {2,(1/4,1/8),3/4}
3 {2,(1/4,1/4),1/4}
4 {2,(1/4,1/4),1/2}
5 {2,(1/4,1/4),3/4}
6 {2,(1/2,1/2),1/4}
7 {2,(1/2,1/2),1/2}
8 {2,(1/2,1/2),3/4}
9 {4,(1/4,1/8),1/4}
10 {4,(1/4,1/8),1/2}
11 {4,(1/4,1/8),3/4}
12 {4,(1/4,1/4),1/4}
13 {4,(1/4,1/4),1/2}
14 {4,(1/4,1/4),3/4}
15 {6,(1/4,0),1/4}
16 {6,(1/4,0),1/2}
17 {6,(1/4,0),3/4}
18 {6,(1/2,0),1/4}
实施方式2-5:
根据最大能反馈的秩、预编码子带数目和索引值,确定{第一基矢量的数目L,参数P,加权系数的反馈比例β,参数α}的配置。
一个具体的实现方式是,如表18、19、20和21所示,表18中最大 能反馈的秩为2且N 3≤19,表19中最大能反馈的秩为2且N 3>19,表20中最大能反馈的秩为4且N 3≤19,表21中最大能反馈的秩为4且N 3>19。根据最大能反馈的秩的大小和预编码子带的数目,可以确定使用的是哪一张表格,再根据索引值可以确定{L,v 0,β},或者{L,v 0,β,α},或者{L,(v 0,y 0),β},或者{L,(v 0,y 0),β,α}的配置。其中,α 1<α 2,且
Figure PCTCN2020093527-appb-000029
表18
索引值 {L,v 0,β}
0 {2,1/4,1/4}
1 {2,1/4,1/2}
2 {2,1/4,3/4}
3 {2,1/2,1/4}
4 {2,1/2,1/2}
5 {2,1/2,3/4}
6 {4,1/4,1/4}
7 {4,1/4,1/2}
8 {4,1/4,3/4}
9 {4,1/2,1/4}
10 {4,1/2,1/2}
11 {4,1/2,3/4}
12 {6,1/4,1/4}
13 {6,1/4,1/2}
14 {6,1/4,3/4}
15 {6,1/2,1/4}
表19
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
24 {6,1/4,1/4,α 1}
25 {6,1/4,1/4,α 2}
26 {6,1/4,1/2,α 1}
27 {6,1/4,1/2,α 2}
28 {6,1/4,3/4,α 1}
29 {6,1/4,3/4,α 2}
30 {6,1/2,1/4,α 1}
31 {6,1/2,1/4,α 2}
表20
索引值 {L,(v 0,y 0),β}
0 {2,(1/4,1/8),1/4}
1 {2,(1/4,1/8),1/2}
2 {2,(1/4,1/8),3/4}
3 {2,(1/4,1/4),1/4}
4 {2,(1/4,1/4),1/2}
5 {2,(1/4,1/4),3/4}
6 {2,(1/2,1/2),1/4}
7 {2,(1/2,1/2),1/2}
8 {2,(1/2,1/2),3/4}
9 {4,(1/4,1/8),1/4}
10 {4,(1/4,1/8),1/2}
11 {4,(1/4,1/8),3/4}
12 {4,(1/4,1/4),1/4}
13 {4,(1/4,1/4),1/2}
14 {4,(1/4,1/4),3/4}
15 {6,(1/4,0),1/4}
16 {6,(1/4,0),1/2}
17 {6,(1/4,0),3/4}
18 {6,(1/2,0),1/4}
表21
索引值 {L,(v 0,y 0),β,α}
0 {2,(1/4,1/8),1/4,α 1}
1 {2,(1/4,1/8),1/4,α 2}
2 {2,(1/4,1/8),1/2,α 1}
3 {2,(1/4,1/8),1/2,α 2}
4 {2,(1/4,1/8),3/4,α 1}
5 {2,(1/4,1/8),3/4,α 2}
6 {2,(1/4,1/4),1/4,α 1}
7 {2,(1/4,1/4),1/4,α 2}
8 {2,(1/4,1/4),1/2,α 1}
9 {2,(1/4,1/4),3/4,α 1}
10 {2,(1/4,1/4),3/4,α 2}
11 {2,(1/2,1/2),1/4,α 1}
12 {2,(1/2,1/2),1/4,α 2}
13 {2,(1/2,1/2),1/2,α 1}
14 {2,(1/2,1/2),1/2,α 2}
15 {2,(1/2,1/2),3/4,α 1}
16 {2,(1/2,1/2),3/4,α 2}
17 {4,(1/4,1/8),1/4,α 1}
18 {4,(1/4,1/8),1/4,α 2}
19 {4,(1/4,1/8),1/2,α 1}
20 {4,(1/4,1/8),1/2,α 2}
21 {4,(1/4,1/8),3/4,α 1}
22 {4,(1/4,1/8),3/4,α 2}
23 {4,(1/4,1/4),1/4,α 1}
24 {4,(1/4,1/4),1/4,α 2}
25 {4,(1/4,1/4),1/2,α 1}
26 {4,(1/4,1/4),1/2,α 2}
27 {4,(1/4,1/4),3/4,α 1}
28 {4,(1/4,1/4),3/4,α 2}
29 {6,(1/4,0),1/4,α 1}
30 {6,(1/4,0),1/4,α 2}
31 {6,(1/4,0),1/2,α 1}
32 {6,(1/4,0),1/2,α 2}
33 {6,(1/4,0),3/4,α 1}
34 {6,(1/4,0),3/4,α 2}
35 {6,(1/2,0),1/4,α 1}
36 {6,(1/2,0),1/4,α 2}
实施方式2-6
根据最大能反馈的秩的大小和索引值,确定{第一基矢量的数目L,参数p,加权系数的反馈比例β,参数α}的配置。
一个具体的实现方式是,如表22、23所示,表22中最大能反馈的秩为2,表23中最大能反馈的秩为4。根据最大能反馈的秩的大小和预编码子带的数目,可以确定使用的是哪一张表格,再根据索引值可以确定{L,v 0,β,α}或者{L,(v 0,y 0),β,α}的配置。其中α 1<α 2,且
Figure PCTCN2020093527-appb-000030
此外,当预编码子带数目N 3<19时,索引值只能配置为偶数或者只能配置为奇数,且默认比例因子α的值是无效的;当预编码子带数目N 3≥19时,比例因子α的值是有效的。
表22
索引值 {L,v 0,β,α}
0 {2,1/4,1/4,α 1}
1 {2,1/4,1/4,α 2}
2 {2,1/4,1/2,α 1}
3 {2,1/4,1/2,α 2}
4 {2,1/4,3/4,α 1}
5 {2,1/4,3/4,α 2}
6 {2,1/2,1/4,α 1}
7 {2,1/2,1/4,α 2}
8 {2,1/2,1/2,α 1}
9 {2,1/2,1/2,α 2}
10 {2,1/2,3/4,α 1}
11 {2,1/2,3/4,α 2}
12 {4,1/4,1/4,α 1}
13 {4,1/4,1/4,α 2}
14 {4,1/4,1/2,α 1}
15 {4,1/4,1/2,α 2}
16 {4,1/4,3/4,α 1}
17 {4,1/4,3/4,α 2}
18 {4,1/2,1/4,α 1}
19 {4,1/2,1/4,α 2}
20 {4,1/2,1/2,α 1}
21 {4,1/2,1/2,α 2}
22 {4,1/2,3/4,α 1}
23 {4,1/2,3/4,α 2}
24 {6,1/4,1/4,α 1}
25 {6,1/4,1/4,α 2}
26 {6,1/4,1/2,α 1}
27 {6,1/4,1/2,α 2}
28 {6,1/4,3/4,α 1}
29 {6,1/4,3/4,α 2}
30 {6,1/2,1/4,α 1}
31 {6,1/2,1/4,α 2}
表23
索引值 {L,(v 0,y 0),β,α}
0 {2,(1/4,1/8),1/4,α 1}
1 {2,(1/4,1/8),1/4,α 2}
2 {2,(1/4,1/8),1/2,α 1}
3 {2,(1/4,1/8),1/2,α 2}
4 {2,(1/4,1/8),3/4,α 1}
5 {2,(1/4,1/8),3/4,α 2}
6 {2,(1/4,1/4),1/4,α 1}
7 {2,(1/4,1/4),1/4,α 2}
8 {2,(1/4,1/4),1/2,α 1}
9 {2,(1/4,1/4),3/4,α 1}
10 {2,(1/4,1/4),3/4,α 2}
11 {2,(1/2,1/2),1/4,α 1}
12 {2,(1/2,1/2),1/4,α 2}
13 {2,(1/2,1/2),1/2,α 1}
14 {2,(1/2,1/2),1/2,α 2}
15 {2,(1/2,1/2),3/4,α 1}
16 {2,(1/2,1/2),3/4,α 2}
17 {4,(1/4,1/8),1/4,α 1}
18 {4,(1/4,1/8),1/4,α 2}
19 {4,(1/4,1/8),1/2,α 1}
20 {4,(1/4,1/8),1/2,α 2}
21 {4,(1/4,1/8),3/4,α 1}
22 {4,(1/4,1/8),3/4,α 2}
23 {4,(1/4,1/4),1/4,α 1}
24 {4,(1/4,1/4),1/4,α 2}
25 {4,(1/4,1/4),1/2,α 1}
26 {4,(1/4,1/4),1/2,α 2}
27 {4,(1/4,1/4),3/4,α 1}
28 {4,(1/4,1/4),3/4,α 2}
29 {6,(1/4,0),1/4,α 1}
30 {6,(1/4,0),1/4,α 2}
31 {6,(1/4,0),1/2,α 1}
32 {6,(1/4,0),1/2,α 2}
33 {6,(1/4,0),3/4,α 1}
34 {6,(1/4,0),3/4,α 2}
35 {6,(1/2,0),1/4,α 1}
36 {6,(1/2,0),1/4,α 2}
3.比特图信息、加权系数的幅度信息和加权系数的相位信息的排序方式。
本发明的如下实施例中,终端与基站约定采用如下实施方式之一,反馈比特图信息、加权系数的幅度信息和加权系数的相位信息。
实施方式3-1:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照层索引、第一基矢量索引、第二基矢量索引的优先级从高到低的顺序进行排序。所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000031
的行索引,行索引最低的加权系数对应的优先级最高;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000032
的列索引,列索引最低的加权系数对应的优先级最高。
实施方式3-2:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照层索引、第二基矢量索引、第一基矢量索引的优先级从高到低的顺序进行排序。所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000033
的列索引,列索引最低的加权系数对应的优先级最高;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000034
的行索引,行索引最低的加权系数对应的优先级最高。
实施方式3-3:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照第一基矢量索引、第二基矢量索引、层索引的优先级从高到低的顺序进行排序。第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000035
的行索引,行索引最低的加权系数对应的优先级最高;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000036
的列索引,列索引最低的加权系数对应的优先级最高;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
实施方式3-4:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照第二基矢量索引、第一基矢量索引、层索引的优先级从高到低的顺序进行排序。第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000037
的列索引,列索引最低的加权系数对应的优先级最高;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000038
的行索引,行索引最低的加权系数对应的优先级最高;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
实施方式3-5:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照第一基矢量索引、第二基矢量索引、天线端口组索引、层索引的优先级从高到低的顺序进行排序。第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000039
的行索引,行索引最低的加权系数对应的优先级最高;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000040
的列索引,列索引最低的加权系数对应的优先级最高;所述天线端口组索引的优先级,其中强极化方向的加权系数的优先级高于弱极化方向的加权系数;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
实施方式3-6:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照第二基矢量索引、第一基矢量索引、天线端口组索引、层索引的优先级从高到低的顺序进行排序。第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000041
的列索引,列索引最低的加权系数对应的优先级最高;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000042
的行索引,行索引最低的加权系数对应的优先级最高;所述天线端口组索引的优先级,其中强极化方向的加权系数的优先级高于弱极化方向的加权系数;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
实施方式3-7:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照天线端口组索引、第一基矢量索引、第二基矢量索引、层索引的优先级从高到低的顺序进行排序。所述天线端口组索引的优先级,其中强极化方向的加权系数的优先级高于弱极化方向的加权系数;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000043
的行索引,行索引最低的加权系数对应的优先级最高;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000044
的列索引,列索引最低的加权系数对应的优先级最高;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
实施方式3-8:
比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照天线端口组索引、第二基矢量索引、第一基矢量索引、层索引的优先级从高到低的顺序进行排序。所述天线端口组索引的优先级,其中强极化方向的加权系数的优先级高于弱极化方向的加权系数;第二基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000045
的列索引,列索引最低的加权系数对应的优先级最高;第一基矢量索引对应于矩阵
Figure PCTCN2020093527-appb-000046
的行索引,行索引最低的加权系数对应的优先级最高;所述层索引的优先级,指的是层索引最低的加权系数对应的优先级最高。
4.丢弃部分预编码信息的方式。
一个信道状态信息报告由两个部分组成,第一部分信道状态信息所占的资源大小固定,用于指示第二部分信道状态信息占用的资源大小。第一部分信道状态信息包括但不限于:秩指示信息、第二部分信道状态信息中所有层加权系数的总共数目。第二部分信道状态信息包括但不限于:第一基矢量的选择指示、每一层第二基矢量的选择指示、每一层的加权系数。由于基站无法知道终端实际反馈的秩,基站分配的用于反馈信道状态信息报告的资源可能不足,则终端需要根据优先级顺序,丢弃部分预编码信息。具体来说,丢弃的原则可以选择以下两种实施方式之一。
实施方式4-1:
子实施方式4-1-1:丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息。按照上述准则,直到传输第一类信令的资源足够传输实际信道状态信息。同时,重新计算所有层加权系数的总共数目,更新第一部分信道状态信息中的所有层加权系数的总共数目。
子实施方式4-1-2:丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息。按照上述准则,直到传输第一类信令的资源足够传输实际信道状态信息。同时,第一部分信道状态信息中的所有层加权系数的总共数目不做更新,仍然按丢弃之前的所有层加权系数的总共数目进行反馈。这种方式,基站可以隐含知道终端丢弃的加权系数的数目,有利于基站进行调度。
实施方式4-2:
子实施方式4-2-1:丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息。同时,丢弃部分优先级最低的比特图信息,所述部分优先级最低的比特图信息指的是丢弃部分优先级最低的加权系数对应的比特图信息。按照上述准则,直到传输第一类信令的资源足够传输实际信道状态信息。同时,重新计算所有层加权系数的总共数目,更新第一部分信道状态信息中的所有层加权系数的总共数目。
子实施方式4-2-2:丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息。同时,丢弃部分优先级最低的比特图信息,所述部分优先级最低的比特图信息指的是丢弃部分优先级最低的加权系数对应的比特图信息。同时,第一部分信道状态信息中的所有层加权系数的总共数目不做更新,仍然按丢弃之前的所有层加权系数的总共数目进行反馈。这种方式,基站可以隐含知道终端丢弃的加权系数的数目,有利于基站进行调度。
假设L=2、M=4、RI=2和
Figure PCTCN2020093527-appb-000047
时,需要反馈的加权系数,为如图5(a)和(b)所示标注序号的加权系数,其中,图5(a)和(b)分别表示第0层和第1层,图中标号为2和8的加权系数分别为第0层和第1层加权系数参考幅度的索引位置。阴影部分表示每一层的强极化方向。
如果采用上述实施方式3-4反馈比特图信息、加权系数的幅度信息和加权系数的相位信息。如果每一层加权系数参考幅度的索引位置需要反馈比特图信息,则比特图信息为:11001110 01100000 00000011 01110110;如果每一层加权系数参考幅度的索引位置无需反馈比特图信息,则比特图信息为:100110 01100000 00000011 01110110。加权系数的幅度信息和加权系数的相位信息为如表24所示,其中,每一层加权系数参考幅度的索引位置所指示的加权系数不需要反馈幅度和相位信息。
表24
Figure PCTCN2020093527-appb-000048
假设反馈的资源不足,需要丢弃3个加权系数。如果采用4-2-1的方式,则丢弃的加权系数的标号为7、14和13。如果每一层加权系数参考幅度的索引位置需要反馈比特图信息,则丢弃之后的比特图信息为:11001110 01100000 00000011 01100;如果每一层加权系数参考幅度的索引位置无需反馈比特图信息,则丢弃之后的比特图信息为:100110 01100000 00000011 01100。加权系数的幅度信息和加权系数的相位信息如表25所示,其中,每一层加权系数参考幅度的索引位置所指示的加权系数不需要反馈 幅度和相位信息:
表25
Figure PCTCN2020093527-appb-000049
如果采用上述方式3-6反馈比特图信息、加权系数的幅度信息和加权系数的相位信息。如果每一层加权系数参考幅度的索引位置需要反馈比特图信息,则比特图信息为:11100100 00100111 11000010 00010110;如果每一层加权系数参考幅度的索引位置无需反馈比特图信息,则比特图信息为:100100 00100111 11000010 00010110。加权系数的幅度信息和加权系数的相位信息如表26所示,其中,每一层加权系数参考幅度的索引位置所指示的加权系数不需要反馈幅度和相位信息:
表26
Figure PCTCN2020093527-appb-000050
Figure PCTCN2020093527-appb-000051
假设反馈的资源不足,需要丢弃3个加权系数。如果采用4-2-1的方式,则丢弃的加权系数的标号为6、14和11。如果每一层加权系数参考幅度的索引位置需要反馈比特图信息,则丢弃之后的比特图信息为:11100100 00100111 11000010 00000;如果每一层加权系数参考幅度的索引位置无需反馈比特图信息,则丢弃之后的比特图信息为:100100 00100111 11000010 00000。加权系数的幅度信息和加权系数的相位信息如表27所示,其中,每一层加权系数参考幅度的索引位置所指示的加权系数不需要反馈幅度和相位信息:
表27
Figure PCTCN2020093527-appb-000052
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如 ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种能力信息、以及信道状态信息反馈装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”和“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的能力信息反馈装置的结构框图,该装置位于第一通信节点。其中,第一通信节点可以为移动终端,第二通信节点可以为基站。如图6所示,该装置包括发送模块10和接收模块20。
发送模块10设置为向第二通信节点发送指示所述第一通信节点的能力信息。接收模块20设置为接收所述第二通信节点发送的与所述第一通信节点的能力对应的参数信令。
图7是根据本发明实施例的信道状态信息的反馈装置的结构框图,该装置位于第一通信节点。其中,第一通信节点可以为移动终端,第二通信节点可以为基站。如图7所示,该装置包括计算模块40。计算模块40设置为计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
该装置还可以进一步包括接收模块30。接收模块30设置为在所述发送模块发送所述第一类信令之前,接收所述第二通信节点的参数信令,所述参数信令用于指示计算信道状态信息报告所用的参数、发送第一类信令的信道及资源大小。
图8是根据本发明实施例的参数信令发送装置的结构框图,该装置位于第二通信节点。其中,第一通信节点可以为移动终端,第二通信节点可以为基站。如图8所示,该装置包括接收模块50和发送模块60。
接收模块50设置为接收第一通信节点发送的用于指示所述第一通信节点的能力信息。发送模块60设置为向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述方法实施例中的步骤。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 一种能力信息反馈方法,包括:
    第一通信节点向第二通信节点发送指示所述第一通信节点的能力信息;
    所述第一通信节点接收所述第二通信节点发送的与所述第一通信节点的能力相对应的参数信令。
  2. 根据权利要求1所述的方法,其中,所述能力信息包括至少以下之一:参考信号的最大端口数、每个频带内最多的参考资源数目、最大支持每个频带内所有参考信号端口的总和、是否支持子带信道状态信息反馈、最大支持层数、最大支持第一基矢量数目、最大支持第二基矢量数目、最大支持第二基矢量的可选集合大小、最大支持CQI子带的数目、最大支持预编码子带的数目、最大支持加权系数的反馈比例、最大支持第一基矢量数目和第二基矢量数目乘积的大小、CPU数目、一个信道状态信息报告最大能同时占用的CPU数目。
  3. 根据权利要求2所述的方法,其中,所述第二基矢量可选的集合包含的基矢量数目大于第二基矢量数目,第二基矢量在所述第二基矢量可选的集合中进行选取。
  4. 根据权利要求2所述的方法,其中,所述CPU数目为所述第一通信节点信道状态信息处理单元的数目,其中,所述信道状态信息处理单元用于反映第一通信节点处理信道状态信息的能力。
  5. 根据权利要求1所述的方法,其中,所述参数信令包括:计算信道状态信息报告所用的配置信息、承载信道状态信息报告的信道及资源大小;其中,所述承载信道状态信息报告的信道包括以下至少之一:一个或者多个控制信道、共享信道。
  6. 根据权利要求5所述的方法,其中,所述计算信道状态信息报告所用的配置信息至少包括以下之一:
    计算信道状态信息报告所用的参考资源集合、计算信道状态信息报告所用的参考信号资源、最大能反馈的秩、第一基矢量数目、需要反馈CQI的子带、预编码子带大小、第二基矢量数目相关参数、加权系数的反馈比例、第二基矢量可选集合的大小、一个信道状态信息报告同时占用的CPU数目;其中,所述第二基矢量数目相关参数用于确定第二基矢量数目。
  7. 根据权利要求6所述的方法,其中,所述计算信道状态信息报告所用的配置信息不能超过第一通信节点的能力。
  8. 根据权利要求1所述的方法,其中,所述参数信令使用索引值指示部分参数信息。
  9. 根据权利要求8所述的方法,其中,所述部分参数信息至少包括以下之一:第一基矢量数目、第二基矢量数目相关参数、加权系数的反馈比例、比例因子。
  10. 根据权利要求8所述的方法,其中,所述索引值指示的部分参数信息使用所述第一通信节点和所述第二通信节点共同约定的索引列表。
  11. 根据权利要求10所述的方法,其中,所述索引列表为一个索引列表或者多个索引列表。
  12. 根据权利要求11所述的方法,其中,对于所述多个索引列表,第一通信节点通过参数信令包含的特定参数,确定使用哪一个列表。
  13. 根据权利要求12所述的方法,其中,所述特定参数包含至少之一:参考信号的端口数、最大能反馈的秩、预编码子带的数目。
  14. 一种信道状态信息的反馈方法,包括:
    第一通信节点计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送实际信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
  15. 根据权利要求14所述的方法,其中,在向所述第二通信节点所述发送所述第一类信令之前,还包括:
    所述第一通信节点接收所述第二通信节点的参数信令,所述参数信令包括:计算信道状态信息报告所用的配置信息、发送第一类信令的信道及资源大小。
  16. 根据权利要求15所述的方法,其中,所述第一类信令包括一个或者多个信道状态信息报告;其中,所述信道状态信息报告至少包含以下之一:秩指示信息、调制编码信息、层指示信息、参考信号资源指示信息、预编码信息。
  17. 根据权利要求16所述的方法,其中,所述的预编码信息至少包括以下之一:所有层加权系数的总共数目、第一基矢量的选择指示、每一层第二基矢量的选择指示、每一层的加权系数信息;其中,所述加权系数为第一基矢量和第二基矢量的加权系数,所述每一层的加权系数信息包括:比特图信息、加权系数的幅度信息、加权系数的相位信息、加权系数参考幅度的索引位置、量化的参考幅度。
  18. 根据权利要求17所述的方法,所述加权系数的幅度信息和加权系数的相位信息为需要反馈的加权系数进行量化后的信息,其中,所述比特图信息用于指示需要反馈的加权系数的索引位置。
  19. 根据权利要求16所述的方法,一个信道状态信息报告由两个部分组成,包括第一部分信道状态信息和第二部分信道状态信息;其中,所述第一部分信道状态信息所占的资源大小固定,用于指示第二部分信道状态信息占用的资源大小。
  20. 根据权利要求19所述的方法,所述第一部分信道状态信息包括:秩指示信息、第二部分信道状态信息中所有层加权系数的总共数目。
  21. 根据权利要求19所述的方法,所述第二部分信道状态信息包括:第一基矢量的选择指示、每一层第二基矢量的选择指示、每一层 的加权系数信息。
  22. 根据权利要求17所述的方法,所述比特图信息、加权系数的幅度信息和加权系数的相位信息各自按照优先级原则进行排序;其中,所述的优先级原则,采取以下方式之一:
    优先级从高到依次是层索引、第一基矢量索引、第二基矢量索引;
    优先级从高到依次是层索引、第二基矢量索引、第一基矢量索引;
    优先级从高到依次是第一基矢量索引、第二基矢量索引、层索引;
    优先级从高到依次是第二基矢量索引、第一基矢量索引、层索引;
    优先级从高到依次是第一基矢量索引、第二基矢量索引、天线端口组索引、层索引;
    优先级从高到依次是第二基矢量索引、第一基矢量索引、天线端口组索引、层索引;
    优先级从高到依次是天线端口组索引、第一基矢量索引、第二基矢量索引、层索引;
    优先级从高到依次是天线端口组索引、第二基矢量索引、第一基矢量索引、层索引。
  23. 根据权利要求14所述的方法,所述实际信道状态信息为所述第一通信节点根据计算信道状态信息报告所用的配置信息,计算得到的信息。
  24. 根据权利要求14所述的方法,其中,所述依据优先级顺序丢弃部分预编码信息,包含以下方式之一:
    丢弃部分优先级最低的加权系数的幅度信息和优先级最低的加权系数的相位信息,使得发送第一信令的资源,足够发送剩余的实际信道状态信息;
    丢弃部分优先级最低的加权系数的幅度信息、优先级最低的加权系数的相位信息和优先级最低的比特图信息,使得发送第一信令的资 源,足够发送剩余的实际信道状态信息。
  25. 一种参数信令发送方法,包括:
    第二通信节点接收第一通信节点发送的设置为指示所述第一通信节的能力信息;
    所述第二通信节点向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
  26. 根据权利要求25所述的方法,其中,所述参数信令包括:计算信道状态信息报告所用的配置信息、承载信道状态信息报告的信道及资源大小;其中,所述承载信道状态信息报告的信道包括以下至少之一:一个或者多个控制信道、共享信道。
  27. 根据权利要求26所述的方法,其中,所述计算信道状态信息报告所用的配置信息至少包括以下之一:
    计算信道状态信息报告所用的参考资源集合、计算信道状态信息报告所用的参考信号资源、最大能反馈的秩、第一基矢量数目、需要反馈CQI的子带、预编码子带大小、第二基矢量数目相关参数、加权系数的反馈比例、第二基矢量可选集合的大小、一个信道状态信息报告同时占用的CPU数目;其中,所述第二基矢量数目相关参数用于确定第二基矢量数目。
  28. 根据权利要求25所述的方法,其中,所述参数信令使用索引值指示部分参数信息。
  29. 根据权利要求28所述的方法,其中,所述部分参数信息至少包括以下之一:第一基矢量数目、第二基矢量数目相关参数、加权系数的反馈比例、比例因子。
  30. 根据权利要求28所述的方法,其中,所述索引值指示的部分参数信息使用所述第一通信节点和所述第二通信节点共同约定的索引 列表。
  31. 根据权利要求30所述的方法,其中,所述索引列表为一个索引列表或者多个索引列表。
  32. 根据权利要求31所述的方法,其中所述多个索引列表,第一通信节点通过参数信令包含的特定参数,确定使用哪一个列表。
  33. 根据权利要求12所述的方法,其中所述特定参数包含至少之一:参考信号的端口数、最大能反馈的秩、预编码子带的数目。
  34. 一种能力信息反馈装置,位于第一通信节点,包括:
    发送模块,设置为向第二通信节点发送指示所述第一通信节点的能力信息;
    接收模块,设置为接收所述第二通信节点发送的与所述第一通信节点的能力对应的参数信令。
  35. 一种信道状态信息的反馈装置,位于第一通信节点,包括:
    计算模块,设置为计算信道状态信息,并向第二通信节点发送第一类信令;其中,发送所述第一类信令的资源,小于发送信道状态信息所需要的资源,依据优先级顺序丢弃部分预编码信息。
  36. 根据权利要求35所述的装置,还包括:
    接收模块,设置为在所述发送模块发送所述第一类信令之前,接收所述第二通信节点的参数信令,所述参数信令用于指示计算信道状态信息报告所用的参数、发送第一类信令的信道及资源大小。
  37. 一种参数信令发送装置,位于第二通信节点,包括:
    接收模块,设置为接收第一通信节点发送的用于指示所述第一通信节点的能力信息;
    发送模块,设置为向所述第一通信节点发送与所述第一通信节点的能力对应的参数信令。
  38. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至33任一项中所述的方法。
  39. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至33任一项中所述的方法。
PCT/CN2020/093527 2019-07-09 2020-05-29 能力信息以及信道状态信息的反馈方法和装置 WO2021004193A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/625,317 US11996911B2 (en) 2019-07-09 2020-05-29 Channel state information feedback method and apparatus
KR1020227003636A KR20220027232A (ko) 2019-07-09 2020-05-29 능력 정보 및 채널 상태 정보의 피드백 방법 및 장치
EP20837596.4A EP3998711A4 (en) 2019-07-09 2020-05-29 CAPACITY INFORMATION RETURN METHOD AND APPARATUS, AND CHANNEL STATE INFORMATION RETURN METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910615960.1A CN111082839A (zh) 2019-07-09 2019-07-09 能力信息以及信道状态信息的反馈方法和装置
CN201910615960.1 2019-07-09

Publications (1)

Publication Number Publication Date
WO2021004193A1 true WO2021004193A1 (zh) 2021-01-14

Family

ID=70310440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093527 WO2021004193A1 (zh) 2019-07-09 2020-05-29 能力信息以及信道状态信息的反馈方法和装置

Country Status (5)

Country Link
US (1) US11996911B2 (zh)
EP (1) EP3998711A4 (zh)
KR (1) KR20220027232A (zh)
CN (1) CN111082839A (zh)
WO (1) WO2021004193A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082839A (zh) * 2019-07-09 2020-04-28 中兴通讯股份有限公司 能力信息以及信道状态信息的反馈方法和装置
US20220124537A1 (en) * 2020-10-20 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting based on a port selection codebook
WO2022147669A1 (zh) * 2021-01-05 2022-07-14 华为技术有限公司 一种通信方法和通信装置
US20220376759A1 (en) * 2021-05-17 2022-11-24 Samsung Electronics Co., Ltd. Method and apparatus for uci multiplexing
CN115967417A (zh) * 2021-10-11 2023-04-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN117640036A (zh) * 2022-08-12 2024-03-01 大唐移动通信设备有限公司 Csi报告方法、终端设备、网络设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062217A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 数据传输方法、终端设备以及网络设备
CN111082839A (zh) * 2019-07-09 2020-04-28 中兴通讯股份有限公司 能力信息以及信道状态信息的反馈方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10432287B2 (en) * 2015-10-07 2019-10-01 Lg Electronics Inc. Method for transmitting/receiving channel state information in wireless communication system, and device for same
WO2017069564A1 (ko) * 2015-10-23 2017-04-27 삼성전자 주식회사 이동 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
CN110945799B (zh) * 2017-09-29 2023-11-28 Lg电子株式会社 用于在无线通信系统中报告信道状态信息的方法及其装置
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及系统
EP3963736A1 (en) * 2019-05-03 2022-03-09 Telefonaktiebolaget Lm Ericsson (Publ) Csi omission rules for enhanced type ii csi reporting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019062217A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 数据传输方法、终端设备以及网络设备
CN111082839A (zh) * 2019-07-09 2020-04-28 中兴通讯股份有限公司 能力信息以及信道状态信息的反馈方法和装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On CSI omission procedure", 3GPP TSG RAN WG1 MEETING RAN1#97 R1-1907076, 17 May 2019 (2019-05-17), XP051728522, DOI: 20200817103903X *
HUAWEI ET AL.: "On UE capability reporting for DFT-based compression codebook", 3GPP TSG RAN WG1 MEETING #97 R1-1906035, 17 May 2019 (2019-05-17), XP051727492, DOI: 20200817103732X *
INTEL CORPORATION: "On CSI Enhancements for MU-MIMO", 3GPP TSG RAN WG1 #96B R1-1904312, 12 April 2019 (2019-04-12), XP051699614, DOI: 20200817104017X *
SAMSUNG: "CSI enhancement for MU-MIMO", 3GPP TSG RAN WG1 MEETING #96BIS R1-1904447, 12 April 2019 (2019-04-12), XP051699702, DOI: 20200817104112X *
SAMSUNG: "Feature lead summary for MU-MIMO CSI", 3GPP TSG RAN WG1 96BIS R1-1904448, 16 April 2019 (2019-04-16), XP051707224, DOI: 20200817104213X *
See also references of EP3998711A4 *

Also Published As

Publication number Publication date
EP3998711A1 (en) 2022-05-18
US20220271803A1 (en) 2022-08-25
US11996911B2 (en) 2024-05-28
KR20220027232A (ko) 2022-03-07
CN111082839A (zh) 2020-04-28
EP3998711A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2021004193A1 (zh) 能力信息以及信道状态信息的反馈方法和装置
WO2020125655A1 (zh) 一种通信方法及设备
RU2707735C1 (ru) Система и способ передачи информации о выборе подпространства
CN104488210B (zh) 预编码矩阵指示的反馈方法、接收端和发射端
CN108631847A (zh) 传输信道状态信息的方法、终端设备和网络设备
WO2017152785A1 (zh) 一种csi反馈方法、预编码方法及装置
CN108111211B (zh) 信道状态信息的反馈方法、装置及管理设备
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
WO2022077487A1 (zh) 信息发送方法、信息接收方法及相关设备
CN111800172A (zh) 一种通信方法及装置
WO2018127067A1 (zh) 一种发射分集的方法、终端和基站
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
CN112187324A (zh) 一种信道状态信息反馈方法及装置
CN108282204B (zh) 通信方法、装置及系统
WO2019047946A1 (zh) 一种码本子集限制的方法
WO2020143446A1 (zh) 一种信道状态信息发送及接收方法、终端设备和网络设备
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
KR20210083338A (ko) 안테나 포트 가중치 벡터의 보고 방법 및 장치, 안테나 포트 가중치 벡터의 획득 방법 및 장치, 처리 장치 및 저장 매체
CN114303322A (zh) 用于上行链路控制信令的装置、方法和计算机程序
WO2022238612A1 (en) Precoding information
WO2020143815A1 (zh) 一种通信方法及设备
WO2020258518A1 (zh) 数据处理方法、装置、设备及存储介质
WO2020155116A1 (zh) 一种pmi上报方法及通信装置
TWI784462B (zh) 上行功率、調度資訊確定方法、終端和網路側設備
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837596

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227003636

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020837596

Country of ref document: EP

Effective date: 20220209