WO2021004092A1 - 一种通信抗干扰检测方法及装置 - Google Patents

一种通信抗干扰检测方法及装置 Download PDF

Info

Publication number
WO2021004092A1
WO2021004092A1 PCT/CN2020/081197 CN2020081197W WO2021004092A1 WO 2021004092 A1 WO2021004092 A1 WO 2021004092A1 CN 2020081197 W CN2020081197 W CN 2020081197W WO 2021004092 A1 WO2021004092 A1 WO 2021004092A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
radio frequency
detection
input radio
Prior art date
Application number
PCT/CN2020/081197
Other languages
English (en)
French (fr)
Inventor
蔡凌云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/615,884 priority Critical patent/US11942976B2/en
Priority to EP20837092.4A priority patent/EP3972137A4/en
Publication of WO2021004092A1 publication Critical patent/WO2021004092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0491Circuits with frequency synthesizers, frequency converters or modulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the 5G field, the communication field and the signal detection field, and in particular to a detection method and device for anti-interference of a communication signal.
  • FIG. 1 is a block diagram of the main flow according to an embodiment of the present invention, as shown in FIG. 1, including the following steps.
  • S103 Perform convolution processing on the following objects to obtain a detection signal to detect whether there is an interference signal in the input radio frequency signal: a first signal, a second signal; wherein the first signal is a Fourier operation on the demodulated signal The signal after leaf inverse transformation, and the second signal is a signal obtained by inverting a preset baseband signal.
  • a signal anti-interference method using the signal interference detection method described in any one of the above, and the signal anti-interference method further includes: the presence of the interference in the radio frequency signal
  • the following objects are processed to obtain a third signal: the interference detection signal, the first signal; the third signal is modulated to obtain an output radio frequency signal.
  • a communication anti-interference detection device including: a demodulation module, an interference detection module, an anti-interference module, and a radio frequency circuit processing module; the input radio frequency signal is demodulated by the demodulation module Then, enter the interference detection module to obtain the detection signal, and when the detection signal has interference, enter the anti-interference module to obtain the third signal, and modulate the third signal to obtain the output
  • the radio frequency signal is processed by the radio frequency circuit processing module.
  • An electronic device includes a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute the method described in any one of the above.
  • Figure 1 is a block diagram of the main flow according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an anti-interference detection method according to an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of an anti-interference detection device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a demodulation module and an interference detection module according to an embodiment of the present invention
  • Figure 5 is a schematic structural diagram of an anti-interference module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the overall process framework of wireless communication anti-interference detection according to an embodiment of the present invention.
  • Fig. 7 is a detailed framework diagram of a wireless communication anti-interference detection system according to an embodiment of the present invention.
  • the embodiment of the present invention provides a communication anti-interference detection method, which includes: radio frequency signal demodulation, interference detection, inverse Fourier transform, convolution, and then enter the logic control switch, and the interference signal is filtered through the anti-interference circuit Then, the useful signal is modulated to a radio frequency signal; if there is no interference signal, the radio frequency signal is processed by the radio frequency circuit.
  • the present invention proposes a new type of wireless communication anti-interference detection module. For two adjacent frequency bands, especially the current 5G and 4G, or the future 5G and 6G frequency bands working at the same time, the interval bandwidth is narrow and the interference signal is strong. The interference signal is detected and filtered to make it have good radio frequency performance, thereby alleviating the shortcomings of the existing technology.
  • the solution of the invention has low cost, strong operability, easy realization, good effect and high cost performance.
  • FIG. 2 is a schematic diagram of the anti-interference detection method according to an embodiment of the present invention. As shown in FIG. 2, the specific steps are as follows.
  • A100 demodulate the input radio frequency signal to obtain a demodulated signal.
  • B100 Perform convolution processing on the following objects to obtain detection signals to detect whether there is an interference signal in the input radio frequency signal: a first signal, a second signal; wherein the first signal is Fourier for the demodulated signal The signal after leaf inverse transformation, and the second signal is a signal obtained by inverting a preset baseband signal.
  • the input radio frequency signal includes: a first input radio frequency signal and/or a second input radio frequency signal, and the first input radio frequency signal and the second input radio frequency signal adopt different formats.
  • a method for demodulating an input radio frequency signal includes: after the input radio frequency signal is subjected to attenuation processing, demodulation processing is performed to obtain the demodulated signal.
  • detecting whether there is an interference signal in the input radio frequency signal includes: performing an inverse Fourier transform on the demodulated signal to obtain the first signal, wherein performing Fourier transform on the demodulated signal
  • the method of inverse leaf transform includes superimposing the demodulated signal by the inverse Fourier transform into sine waves of different frequencies; inverting a preset baseband signal to obtain the second signal; A signal is convolved with the second signal to remove useful sine wave signals to obtain the detection signal; and determine whether there is interference in the detection signal.
  • C110 In the case that the detection signal has interference, perform anti-interference processing on the interference detection signal.
  • the input radio frequency signal enters the radio frequency circuit through a non-interference path for processing.
  • a signal anti-interference method using the signal interference detection method described in any one of the above, and the signal anti-interference method further includes: When the interference signal exists in the signal, the following objects are processed to obtain the third signal: the interference detection signal, the first signal; and the third signal is modulated to obtain an output radio frequency signal.
  • the method for obtaining the third signal further includes: performing deconvolution processing on the interference detection signal, subtracting or inversely superimposing it with the first signal, and filtering out the interference Signal to obtain the third signal.
  • FIG. 3 is a schematic structural diagram of an anti-interference detection device according to an embodiment of the present invention. As shown in FIG. 3, it includes: A100 solution Tuning module, B100 interference detection module, C100 anti-interference module, D100 radio frequency circuit processing module.
  • the input radio frequency signal After the input radio frequency signal is demodulated by the demodulation module, it enters the interference detection module to obtain the detection signal, and when the detection signal has interference, it enters the anti-interference module to obtain the third signal, The third signal is modulated to obtain the output radio frequency signal, which is processed by the radio frequency circuit processing module.
  • the demodulation module is a schematic structural diagram of a demodulation module and an interference detection module according to an embodiment of the present invention, including: A101 first antenna and/or second antenna, A103 attenuator, A104 Demodulator; the first antenna and/or the second antenna are used to receive the input radio frequency signal; the attenuator performs attenuation processing on the input radio frequency signal; the demodulator performs on the signal Demodulation processing; the attenuator and demodulator through which the input radio frequency signal received by the first antenna and the second antenna pass share or use two or more different sets.
  • Any antennas, attenuators, and demodulators that have the functions and can perform the requirements are all suitable for the embodiments of the present invention, and the present invention is not specifically limited.
  • the interference detection module is a schematic structural diagram of a demodulation module and an interference detection module according to an embodiment of the present invention, and includes: an interference detection circuit, the interference detection circuit includes B101 inverse Fourier transform , B201 memory, B202 inverter and B102 convolver; the demodulated signal is transformed into the superposition of sine waves of different frequencies by the inverse Fourier transform to obtain the first signal; the memory is preset The baseband signal is inverted by the inverter to obtain the second signal; the first signal and the second signal are subjected to convolution processing by the convolver to remove useful sine wave signals to obtain the The detection signal after convolution; determine whether the detection signal has interference; in the case of interference in the detection signal, the interference detection signal enters the anti-interference circuit through the B300 logic control switch for anti-interference processing; When there is no interference in the detection signal, the input radio frequency signal enters the radio frequency circuit processing module through a non-interference path for processing; the inverse Fourier transform, the
  • Any module with a function similar to the inverse Fourier transform that can perform the requirements is suitable for the embodiment of the present invention; any memory, inverter, and convolver with the function and can perform the requirements are suitable for this embodiment
  • the embodiments of the invention do not specifically limit the invention.
  • the anti-jamming module is a schematic structural diagram of the anti-jamming module according to an embodiment of the present invention, including: an anti-jamming circuit, a Fourier transform, and a demodulator; the anti-jamming circuit includes C111 Deconvolution and C112 subtractor; The deconvolution process the interference detection signal; The interference detection signal passes through the deconvolution and is compared with the inverse Fourier transformed signal Subtract or reverse superimpose, and filter out the interference signal to obtain the third signal; the third signal is modulated by C120 Fourier transform and C130 demodulator to obtain the output radio frequency signal; the convolver, The subtractor, the Fourier transform, and the demodulator share or use two or more sets of signals of different formats.
  • Any module with a function similar to Fourier transform that can perform the requirements is applicable to the embodiment of the present invention; any deconvolution, subtractor, and demodulator that has the function and can perform the requirements are applicable
  • the embodiment of the present invention does not specifically limit the present invention.
  • FIG. 6 is a schematic diagram of the overall process framework of wireless communication anti-interference detection according to an embodiment of the present invention.
  • the radio frequency circuit processing module includes: D101 radio frequency Circuit, D102 radio frequency chip; the output radio frequency signal is processed by the radio frequency circuit; in the case that there is no interference in the detection signal, the input radio frequency signal enters the radio frequency circuit through an interference-free path for processing.
  • radio frequency circuit or radio frequency chip that has the function and can perform the requirements is suitable for the embodiment of the present invention, and the present invention is not specifically limited.
  • An electronic device comprising a memory and a processor, the memory storing a computer program, and the processor is configured to run the computer program to execute the method described in any one of the above; Both the memory and the processor that execute the requirements are adapted to the embodiment of the present invention, and the present invention is not specifically limited.
  • the embodiments of the present invention also provide a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, when the program instructions are When executed by a computer, the computer is caused to execute the method in any of the foregoing method embodiments.
  • FIG. 6 is a schematic diagram of the overall process framework of wireless communication anti-interference detection according to an embodiment of the present invention. As shown in FIG. 6, the specific steps are as follows.
  • the radio frequency signal received by the first antenna and/or the second antenna of A101 passes through the A102 coupler, through the B100 anti-interference detection module, determines whether its value is zero or whether the signal has interference, and controls the B300 logic control switch, such as the SP2T switch, if If the value is zero or there is no interference, the A102 coupler is directly controlled, and the received RF signal is directly processed by the D101 RF circuit; if the value is not zero or there is interference, the interference signal is filtered out through the C100 anti-interference module, and finally The useful signal is modulated to the radio frequency signal and processed by the D101 radio frequency circuit.
  • the B300 logic control switch such as the SP2T switch
  • FIG. 7 is a detailed framework diagram of a wireless communication anti-interference detection system according to an embodiment of the present invention. As shown in FIG. 7, the specific steps are as follows.
  • the RF signal received by the first antenna and/or the second antenna of A101 passes through the A102 coupler to the A103 attenuator, and the signal after the A104 demodulator undergoes the inverse Fourier transformation of B101 into the superposition of sine waves of different frequencies.
  • the specific baseband signal after the phase inversion of the B202 inverter in the B201 memory is convolved by the B102 convolution, to determine whether its value is zero or whether the signal has interference, and control the B300 logic control switch, such as the SP2T switch, if it is zero or There is no interference, directly control the A102 coupler, and the received RF signal is directly processed by the D101 RF circuit; if the convolution value is not zero or there is interference, then the interference signal is filtered out through the C110 anti-interference circuit, and then passed through the C120 The leaf transform and C130 modulator finally modulate the useful signal to a radio frequency signal and process it by the D101 radio frequency circuit.
  • the B300 logic control switch such as the SP2T switch
  • a communication anti-interference detection method is provided.
  • the following is an embodiment to illustrate an example of an application scenario of the method of the present invention, to further explain the present invention, and does not impose any limitation on the method of the present invention.
  • Band 41 has a full-band bandwidth of 196MHz.
  • the protection bandwidth between the Sub6G N41 and LTE Band41 bands is only 36MHz.
  • Sub6G When Sub6G is transmitting, its sideband noise may fall into the receiving band of LTE; similarly, when LTE is transmitting, the sideband noise of LTE may also fall into the receiving band of Sub6G.
  • the demodulated signal of the radio frequency signal undergoes inverse Fourier transformation into the superposition of sine waves of different frequencies, which is inverted and convolved with the specific signal in the memory to obtain the convolved interference signal, which is judged by the comparator after convolution Whether the signal of N41 is zero or whether there is interference, if it is not zero or there is radio frequency interference, control the SP2T switch and pass the additional C110 anti-interference circuit to reverse the received N41 signal and the interference signal obtained by the deconvolution After superposition, it is filtered out, and then the useful signal is modulated to the radio frequency signal.
  • the interference detection module includes an attenuator, a demodulator, an inverse Fourier transform module, a convolver, and a memory module.
  • the inverse Fourier transform module needs to transform the demodulated radio frequency signal into a superposition of sine waves of different frequencies.
  • the antenna circuit includes 2G, 3G, 4G, 5G, 6G antennas.
  • the anti-interference circuit includes a deconvolver and a subtractor.
  • a communication anti-jamming detection method is provided.
  • the following is an embodiment to illustrate an example of an application scenario of the method of the present invention, and to further explain the present invention. Do any restrictions.
  • the transmission frequency band of Band 7 is 2500MHz-2570MHz
  • the frequency band of WIFI 2.4G is 2400MHz-2483MHz.
  • the protection bandwidth between the frequency bands is 17MHz.
  • Band7 When Band7 is transmitting, its sideband noise may fall into the receiving band of WIFI 2.4G; similarly, when WIFI 2.4G is transmitting, its sideband noise may also fall into the receiving band of Band7.
  • LTE and WIFI communication work at the same time.
  • LTE works on the first antenna
  • WIFI works on the second antenna.
  • the modulated signal undergoes inverse Fourier transformation into a superposition of sine waves of different frequencies
  • an and bn are the amplitudes of sinusoids of different frequencies, which are inverted and convolved with the specific signal in the memory to obtain the convolved interference signal, which is judged by the comparator after convolution If the signal is zero, if it is not zero, radio frequency interference does exist. Control the SP2T switch and pass through an additional anti-interference circuit to perform inverse superposition and filtering of the received LTE Band7 signal and the interference signal obtained by the deconvolution Output, and then modulate the useful signal to a radio frequency signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本发明提供了一种通信抗干扰检测方法及装置,其主要包括:对输入射频信号进行解调以获取解调信号;对以下对象进行卷积处理获取检测信号以检测所述输入射频信号中是否存在干扰信号:第一信号,第二信号;其中,所述第一信号为对所述解调信号进行傅里叶逆变换后的信号,所述第二信号为对预设的基带信号进行倒相后的信号;对存在干扰的信号进行抗干扰处理,所述信号抗干扰方法还包括:对存在干扰的所述检测信号进行反卷积处理后,与所述第一信号相减或反向叠加,并滤出干扰信号,获取所述第三信号;对所述第三信号进行调制以获取输出射频信号。

Description

一种通信抗干扰检测方法及装置
交叉引用
本发明要求在2019年07月05日提交中国专利局、申请号为201910608780.0、发明名称为“一种通信抗干扰检测方法及装置”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及5G领域、通信领域与信号检测领域,特别涉及一种通信信号抗干扰的检测方法及装置。
背景技术
随着当下4G/4G+(第四代通信系统)的迅速发展与成熟,频率资源紧缺、能源的巨大消耗以及网络的优化问题,难以满足未来移动通信的需求,各国、各机构已将研发的重心转移到未来的5G通信(第五代通信系统)上来。在5G系统下,峰值速率、用户体验速率、频谱效率和一些新的指标都将得到极大的提升,在关键技术方面,超密集组网、大规模MIMO、非正交传输、高频段通信、C-RAN、SDN/NFV、内容分发网络(CDN)等均被认为是5G的潜在关键技术。这无疑对智能终端设备提出了更高的要求。在能支持5G通信系统的终端中,目前流行的4G LTE通讯系统将被保留,也就是说在未来的终端中,4G LTE将会和5G共存,甚至在以后出现的第六代通信系统共存的情况下,各种潜在干扰不断产生。干扰成为限制和影响移动通信系统容量和质量的重要因素,移动通信网络的射频干扰问题是普遍存在且必须解决的,这就需要对干扰信号进行检测,采用有效的方法滤出干扰信号。
针对上述急迫需要有抗干扰模块滤出和解决干扰的问题,现有5G的高带外抑制滤波器价格昂贵,相关技术中暂未提出既能检测又能滤除干扰的解决方案。
发明内容
为了解决现有技术中,两种制式共存带来信号干扰不断的问题,本发明实施例提供了一种通信抗干扰检测方法及装置,根据本发明的一个实施例,提供了一种通信抗干扰检测方法,图1是根据本发明实施例的主流程框图,如图1所示,包括以下步骤。
S102,对输入射频信号进行解调以获取解调信号。
S103,对以下对象进行卷积处理获取检测信号以检测所述输入射频信号中是否存在干扰信号:第一信号,第二信号;其中,所述第一信号为对所述解调信号进行傅里叶逆变换后的信号,所述第二信号为对预设的基带信号进行倒相后的信号。
根据本发明的一个实施例,提供了一种信号抗干扰方法,采用上述任一项中所述的信号干扰检测方法,所述信号抗干扰方法还包括:在所述射频信号中存在所述干扰信号的情形下,对以下对象进行处理以获取第三信号:存在干扰的所述检测信号,所述第一信号;对所述第三信号进行调制以获取输出射频信号。
根据本发明的一个实施例,提供了一种通信抗干扰检测装置,包括:解调模块,干扰检测模块,抗干扰模块,射频电路处理模块;所述输入射频信号经所述解调模块解调后,进入所述干扰检测模块,获取所述检测信号,所述检测信号存在干扰的情形下,进入抗干扰模块,获取所述第三信号,对所述第三信号进行调制以获取所述输出射频信号,并通过所述射频电路处理模块进行处理。
一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项中所述的方法。
一种电子装置,包括存储器与处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项中所述的方法。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的主流程框图;
图2是根据本发明实施例的抗干扰检测方法示意图;
图3是根据本发明实施例的抗干扰检测装置结构示意图;
图4是根据本发明实施例的解调模块与干扰检测模块结构示意图;
图5是根据本发明实施例的抗干扰模块结构示意图;
图6是根据本发明实施例的无线通信抗干扰检测整体流程框架示意图;
图7是根据本发明实施例的无线通信抗干扰检测系统详情框架示意图。
具体实施方式
本发明实施例提供了一种通信抗干扰检测方法,包括:射频信号解调后进行干扰检测,经傅里叶逆变换,卷积后进入逻辑控制开关,将存在干扰的信号通过抗干扰电路滤出,将有用信号调制到射频信号;如果不存在干扰信号,所述射频信号通过射频电路进行处理。本发明提出一种新型无线通信抗干扰检测模块,对于两个相邻频段,特别是目前的5G与4G,或未来的5G与6G频段同时工作时,其间隔带宽窄,干扰信号强,本发明对其干扰信号进行检测,并滤波,使其具有良好的射频性能,从而缓解现有技术之不足。且本发明方案成本低,可操作性强,易实现,效果好,性价比高。
根据本发明的一个实施例,提供了一种通信抗干扰检测方法,图2是根据本发明实施例的抗干扰检测方法示意图,如图2所示,具体步骤如下。
A100,对输入射频信号进行解调以获取解调信号。
B100,对以下对象进行卷积处理获取检测信号以检测所述输入射频信号 中是否存在干扰信号:第一信号,第二信号;其中,所述第一信号为对所述解调信号进行傅里叶逆变换后的信号,所述第二信号为对预设的基带信号进行倒相后的信号。
在一实施例中,所述输入射频信号包括:第一输入射频信号与/或第二输入射频信号,所述第一输入射频信号与所述第二输入射频信号采用不同制式。
在一实施例中,对输入射频信号进行解调的方法,包括:所述输入射频信号经过衰减处理后进行解调处理以获取所述解调信号。
在一实施例中,检测所述输入射频信号中是否存在干扰信号,包括:对所述解调信号进行傅里叶逆变换获取所述第一信号,其中,对所述解调信号进行傅里叶逆变换的方法,包括所述解调信号进行所述傅里叶逆变换成不同频率的正弦波的叠加;对预设的基带信号进行倒相获取所述第二信号;对所述第一信号与所述第二信号进行卷积,除去有用正弦波信号,获取所述检测信号;判断所述检测信号是否存在干扰。
C110,所述检测信号存在干扰的情形下,对存在干扰的所述检测信号进行抗干扰处理。
D101,所述检测信号不存在干扰的情形下,所述输入射频信号通过无干扰通路进入射频电路进行处理。
在一实施例中,根据本发明的一个实施例,提供了一种信号抗干扰方法,采用上述任一项中所述的信号干扰检测方法,所述信号抗干扰方法还包括:在所述射频信号中存在所述干扰信号的情形下,对以下对象进行处理以获取第三信号:存在干扰的所述检测信号,所述第一信号;对所述第三信号进行调制以获取输出射频信号。
在一实施例中,获取所述第三信号的方法,还包括:对存在干扰的所述检测信号进行反卷积处理后,与所述第一信号相减或反向叠加,并滤出干扰信号,获取所述第三信号。
在一实施例中,根据本发明的一个实施例,提供了一种通信抗干扰检测 装置,图3是根据本发明实施例的抗干扰检测装置结构示意图,如图3所示,包括:A100解调模块,B100干扰检测模块,C100抗干扰模块,D100射频电路处理模块。
所述输入射频信号经所述解调模块解调后,进入所述干扰检测模块,获取所述检测信号,所述检测信号存在干扰的情形下,进入抗干扰模块,获取所述第三信号,对所述第三信号进行调制以获取所述输出射频信号,并通过所述射频电路处理模块进行处理。
在一实施例中,所述解调模块,如图4是根据本发明实施例的解调模块与干扰检测模块结构示意图,包括:A101第一天线和/或第二天线,A103衰减器,A104解调器;所述第一天线和/或所述第二天线用来接收所述输入射频信号;所述衰减器对所述输入射频信号进行衰减处理;所述解调器对所述信号进行解调处理;所述第一天线与所述第二天线接收到的所述输入射频信号经过的所述衰减器、所述解调器共用或使用不同的两套或多套。
任何具备所述作用能执行所述要求的天线、衰减器、解调器均适应本发明实施例,本发明不做具体限定。
在一实施例中,所述干扰检测模块,如图4是根据本发明实施例的解调模块与干扰检测模块结构示意图,包括:干扰检测电路,所述干扰检测电路包括B101傅里叶逆变换、B201存储器、B202反相器与B102卷积器;所述解调信号经所述傅里叶逆变换成不同频率的正弦波的叠加,获取所述第一信号;所述存储器中预设的基带信号经所述反相器倒相,获取所述第二信号;所述第一信号与所述第二信号经所述卷积器进行卷积处理,除去有用正弦波信号,得到所述卷积后的所述检测信号;判断所述检测信号是否存在干扰;所述检测信号存在干扰的情形下,存在干扰的所述检测信号通过B300逻辑控制开关进入抗干扰电路,进行抗干扰处理;所述检测信号不存在干扰的情形下,所述输入射频信号通过无干扰通路进入所述射频电路处理模块进行处理;所述傅里叶逆变换、所述存储器、所述反相器、所述卷积器与所述逻辑 控制开关不同制式的信号共用或使用不同的两套或多套。
任何具备所述作用能执行所述要求的类似傅里叶逆变换作用的模块均适应本发明实施例;任何具备所述作用能执行所述要求的存储器、反相器与卷积器均适应本发明实施例,本发明不做具体限定。
在一实施例中,所述抗干扰模块,如图5是根据本发明实施例的抗干扰模块结构示意图,包括:抗干扰电路、傅里叶变换与解调器;所述抗干扰电路包括C111反卷积器与C112减法器;所述反卷积器对存在干扰的所述检测信号进行处理;存在干扰的所述检测信号经过反卷积器后与所述傅里叶逆变换的信号相减或反向叠加,并滤出干扰信号,获取所述第三信号;所述第三信号经C120傅里叶变换与C130解调器调制后获取所述输出射频信号;所述卷积器、所述减法器、所述傅里叶变换与所述解调器不同制式的信号共用或使用不同的两套或多套。
任何具备所述作用能执行所述要求的类似傅里叶变换作用的模块均适应本发明实施例;任何具备所述作用能执行所述要求的反卷积器、减法器、解调器均适应本发明实施例,本发明不做具体限定。
在一实施例中,根据本发明的一个实施例,图6是根据本发明实施例的无线通信抗干扰检测整体流程框架示意图,如图6所示,所述射频电路处理模块,包括:D101射频电路、D102射频芯片;所述输出射频信号通过所述射频电路进行处理;所述检测信号不存在干扰的情形下,所述输入射频信号通过无干扰通路进入所述射频电路进行处理。
任何具备所述作用能执行所述要求的射频电路、射频芯片均适应本发明实施例,本发明不做具体限定。
一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项中所述的方法;任何具备所述作用能执行所述要求的存储介质均适应本发明实施例,本发明不做具体限定。
一种电子装置,包括存储器与处理器,所述存储器中存储有计算机程序, 所述处理器被设置为运行所述计算机程序以执行上述任一项中所述的方法;任何具备所述作用能执行所述要求的存储器与处理器均适应本发明实施例,本发明不做具体限定。
此外,本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意方法实施例中的方法。
以下结合附图对本发明进行详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中,提供了一种通信抗干扰检测方法,图6是根据本发明实施例的无线通信抗干扰检测整体流程框架示意图,如图6所示,具体步骤如下。
A101第一天线和/或第二天线接收到的射频信号经过A102耦合器,通过B100抗干扰检测模块,判断其值是否为零或信号是否存在干扰,控制B300逻辑控制开关,如SP2T开关,如果值为零或不存在干扰,直接控制A102耦合器,接收到的射频信号直接通过D101射频电路进行处理;如果值不为零或存在干扰,那么干扰信号通过C100抗干扰模块进行滤出,最后将有用信号调制到射频信号经过D101射频电路处理。
在本实施例中,图7是根据本发明实施例的无线通信抗干扰检测系统详情框架示意图,如图7所示,具体步骤如下。
A101第一天线和/或第二天线接收到的射频信号经过A102耦合器到A103衰减器,通过A104解调器后的信号进行B101傅里叶逆变换成不同频率的正弦波的叠加,同B201存储器中B202反相器倒相后的特定的基带信号经B102卷积器进行卷积,判断其值是否为零或信号是否存在干扰,控制B300 逻辑控制开关,如SP2T开关,如果为零或不存在干扰,直接控制A102耦合器,接收到的射频信号直接通过D101射频电路进行处理;如果卷积值不为零或存在干扰,那么干扰信号通过C110抗干扰电路进行滤出,再经C120傅里叶变换和C130调制器最后将有用信号调制到射频信号经过D101射频电路处理。
在本实施例中,提供了一种通信抗干扰检测方法,以下是一种实施例,说明本发明方法的一种应用场景示例,进一步阐释本发明,并不对本发明方法做任何限制。例如,Band 41全频段带宽196MHz,按照目前某运营商的需求(Sub6G 100MHz,LTE 60MHz)划分,Sub6G N41与LTE Band41频段中间保护带宽只有36MHz。Sub6G发射时,其边带噪声可能会落入LTE的接收带内;同理,LTE发射时,LTE的边带噪声也可能会落入Sub6G的接收带内。
如图6、图7所示,4G和5G通信同时工作,当N41工作在A101第一天线时,B41工作在第二天线,两信号进入开关后分别经过A103衰减器,A104解调器,将射频信号解调后的信号进行傅里叶逆变换成不同频率的正弦波的叠加,同存储器中特定的信号倒相后卷积,得到卷积后的干扰信号,通过比较器判断卷积后的信号是否为零或是否存在干扰,如果不为零或存在射频干扰,控制SP2T开关,经过附加的C110抗干扰电路,将接收到的N41的信号和反卷积器得到的干扰信号进行反相叠加后滤出,然后将有用信号调制到射频信号。
多制式通信同时工作时,两个频段间可能存在干扰。当其中一个制式工作在第一天线时,另一个制式工作在第二天线,两信号进入耦合器后分别经过衰减器,解调器,将射频信号解调后的信号进行傅里叶逆变换成不同频率的正弦波的叠加,然后和存储器中特定的倒相信号进行卷积,除去有用正弦波信号,得到的卷积后的干扰信号,判断是否存在干扰。傅里叶变换公式如下
Figure PCTCN2020081197-appb-000001
称为f的傅里叶变换,记为卷(u)。在一些书中,积分前面的因子用代替,假定函数f∈(-∞,∞),所以上式中的积分是存在的。
如果存在干扰,将控制SP2T开关打开抗干扰电路,卷积后的干扰信号经过反卷积器后与傅里叶变换的信号相减,从而滤出干扰信号,最后将有用信号调制到射频信号;如果不存在干扰,直接控制从SP2T开关到射频电路。
在一实施例中,所述干扰检测模块包括了衰减器、解调器、傅里叶逆变换模块、卷积器和存储器模块。
在一实施例中,所述的傅里叶逆变换模块需要将解调后的射频信号变换成不同频率的正弦波的叠加。
在一实施例中,所述天线电路包括2G、3G、4G、5G、6G天线。
在一实施例中,所述抗干扰电路包括反卷积器和减法器。
在一实施例中,在本实施例中,提供了一种通信抗干扰检测方法,以下是一种实施例,说明本发明方法的一种应用场景示例,进一步阐释本发明,并不对本发明方法做任何限制。例如,Band 7的发射频段是2500MHz-2570MHz,而WIFI 2.4G的频段是2400MHz-2483MHz,两个频段同时工作时,频段间的保护带宽是17MHz。当Band7发射时,其边带噪声可能会落入WIFI 2.4G的接收带内;同理,WIFI 2.4G发射时,其边带噪声也可能会落入Band7的接收带内。
如图6、图7所示,LTE和WIFI通信同时工作,当LTE工作在第一天线时,WIFI工作在第二天线,两信号进入开关后分别经过衰减器,解调器,将射频信号解调后的信号进行傅里叶逆变换成不同频率的正弦波的叠加,
其中C就是上面提到的所述直流分量,an和bn就是不同频率的正弦的幅度,同存储器中特定的信号倒相后卷积,得到卷积后的干扰信号,通过比较器判断卷积后的信号是否为零,如果不为零就确实存在射频干扰,控制SP2T开关,经过附加的抗干扰电路,将接收到的LTE Band7的信号和反卷积器得到的干扰信号进行反相叠加后滤出,然后将有用信号调制到射频信号。
以上所述仅为本发明应用于5G手机等无线终端接入产品一个实施例而已,凡在本发明方法的精神和原则之内,不同制式频段组合以及连接方式的变换等方面所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种信号干扰检测方法,其中,包括:
    对输入射频信号进行解调以获取解调信号;
    对以下对象进行卷积处理获取检测信号以检测所述输入射频信号中是否存在干扰信号:第一信号,第二信号;其中,所述第一信号为对所述解调信号进行傅里叶逆变换后的信号,所述第二信号为对预设的基带信号进行倒相后的信号。
  2. 根据权利要求1所述的方法,其中,所述输入射频信号包括:第一输入射频信号与/或第二输入射频信号,所述第一输入射频信号与所述第二输入射频信号采用不同制式。
  3. 根据权利要求1所述的方法,其中,对输入射频信号进行解调,包括:
    所述输入射频信号经过衰减处理后进行解调处理以获取所述解调信号。
  4. 根据权利要求1所述的方法,其中,检测所述输入射频信号中是否存在干扰信号,包括:
    对所述解调信号进行傅里叶逆变换获取所述第一信号,其中,对所述解调信号进行傅里叶逆变换的方法,包括所述解调信号进行所述傅里叶逆变换成不同频率的正弦波的叠加;
    对预设的基带信号进行倒相获取所述第二信号;
    对所述第一信号与所述第二信号进行卷积,除去有用正弦波信号,获取所述检测信号;
    判断所述检测信号是否存在干扰;
    所述检测信号存在干扰的情形下,对存在干扰的所述检测信号进行抗干扰处理;
    所述检测信号不存在干扰的情形下,所述输入射频信号通过无干扰通路进入射频电路进行处理。
  5. 一种信号抗干扰方法,其中,采用权利要求1至4任一项中所述的信 号干扰检测方法,所述信号抗干扰方法还包括:
    在所述射频信号中存在所述干扰信号的情形下,对以下对象进行处理以获取第三信号:存在干扰的所述检测信号,所述第一信号;
    对所述第三信号进行调制以获取输出射频信号。
  6. 根据权利要求5所述的方法,其中,获取所述第三信号的方法,还包括:
    对存在干扰的所述检测信号进行反卷积处理后,与所述第一信号相减或反向叠加,并滤出干扰信号,获取所述第三信号。
  7. 一种通信抗干扰检测装置,其中,包括:
    解调模块,干扰检测模块,抗干扰模块,射频电路处理模块;
    所述输入射频信号经所述解调模块解调后,进入所述干扰检测模块,获取所述检测信号,所述检测信号存在干扰的情形下,进入抗干扰模块,获取所述第三信号,对所述第三信号进行调制以获取所述输出射频信号,并通过所述射频电路处理模块进行处理。
  8. 根据权利要求7所述的装置,其中,所述解调模块,包括:
    第一天线和/或第二天线,衰减器,解调器;
    所述第一天线和/或所述第二天线用来接收所述输入射频信号;
    所述衰减器对所述输入射频信号进行衰减处理;
    所述解调器对所述信号进行解调处理;
    所述第一天线与所述第二天线接收到的所述输入射频信号经过的所述衰减器、所述解调器共用或使用不同的两套或多套。
  9. 根据权利要求7所述的装置,其中,所述干扰检测模块,包括:
    干扰检测电路,所述干扰检测电路包括傅里叶逆变换、存储器、反相器与卷积器;
    所述傅里叶逆变换对所述解调信号进行处理,获取所述第一信号;
    所述存储器中存储预设的基带信号;
    所述反相器对所述预设信号进行倒相,获取所述第二信号;
    所述第一信号与所述第二信号经所述卷积器进行卷积处理,除去有用正弦波信号,得到所述卷积后的所述检测信号;
    所述傅里叶逆变换、所述存储器、所述反相器、所述卷积器与所述逻辑控制开关不同制式的信号共用或使用不同的两套或多套。
  10. 根据权利要求7所述的装置,其中,所述抗干扰模块,包括:
    抗干扰电路、傅里叶变换与解调器;
    所述抗干扰电路包括反卷积器与减法器;
    所述反卷积器对存在干扰的所述检测信号进行处理;
    所述减法器对反卷积后的信号与所述第一信号进行处理,并滤出干扰信号,获取所述第三信号;
    所述傅里叶变换与所述解调器对所述第三信号进行处理;
    所述卷积器、所述减法器、所述傅里叶变换与所述解调器不同制式的信号共用或使用不同的两套或多套。
  11. 根据权利要求7所述的装置,其中,所述射频电路处理模块,包括:
    射频电路、射频芯片;
    所述射频电路对所述输出射频信号或无干扰的所述输入射频信号进行处理。
  12. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至11任一项中所述的方法。
  13. 一种电子装置,包括存储器与处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至11任一项中所述的方法。
PCT/CN2020/081197 2019-07-05 2020-03-25 一种通信抗干扰检测方法及装置 WO2021004092A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/615,884 US11942976B2 (en) 2019-07-05 2020-03-25 Communication anti-interference detection method and device
EP20837092.4A EP3972137A4 (en) 2019-07-05 2020-03-25 METHOD AND DEVICE FOR ANTI-COMMUNICATION INTERFERENCE DETECTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910608780.0A CN112187298A (zh) 2019-07-05 2019-07-05 一种通信抗干扰检测方法及装置
CN201910608780.0 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021004092A1 true WO2021004092A1 (zh) 2021-01-14

Family

ID=73919327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081197 WO2021004092A1 (zh) 2019-07-05 2020-03-25 一种通信抗干扰检测方法及装置

Country Status (4)

Country Link
US (1) US11942976B2 (zh)
EP (1) EP3972137A4 (zh)
CN (1) CN112187298A (zh)
WO (1) WO2021004092A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513215B (zh) * 2022-02-18 2023-12-01 维沃移动通信有限公司 电子设备的信号处理方法和电子设备
CN116366169B (zh) * 2023-06-01 2023-10-24 浙江大学 超声波信道建模方法、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414847A (zh) * 2007-10-18 2009-04-22 联发科技股份有限公司 干扰检测器及干扰检测方法
CN102684737A (zh) * 2011-03-10 2012-09-19 北京化工大学 基于并行干扰抵消算法的多用户扩频电台实现方法
CN108683466A (zh) * 2018-04-26 2018-10-19 深圳市盛路物联通讯技术有限公司 一种智能终端及射频干扰检测方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062317A1 (en) * 2001-08-28 2004-04-01 Mitsuru Uesugi Multi-pass interference removal apparatus and mult-pass interference removal method
KR20090025112A (ko) * 2007-09-05 2009-03-10 삼성전자주식회사 Rf 수신기 및 그 간섭신호 제거방법
CN102025382B (zh) * 2009-09-11 2013-08-21 澜起科技(上海)有限公司 信号处理方法及接收机
WO2012157140A1 (ja) * 2011-05-16 2012-11-22 古野電気株式会社 妨害波信号除去装置、gnss受信装置、移動端末、妨害波信号除去プログラム、および妨害波信号除去方法
WO2014003598A1 (en) * 2012-06-28 2014-01-03 Intel Corporation Inter-carrier interference phase noise compensation
US9319916B2 (en) * 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
US9647719B2 (en) * 2015-02-16 2017-05-09 Federated Wireless, Inc. Method, system, and apparatus for spectrum sensing of radar signals
US10742371B2 (en) * 2017-02-23 2020-08-11 Hitachi Kokusai Electric Inc. Wireless communication system
CN107171742B (zh) * 2017-05-09 2019-03-26 Oppo广东移动通信有限公司 终端信号处理方法、存储介质及终端
US11101843B1 (en) * 2020-02-28 2021-08-24 Amazon Technologies, Inc. Selective narrowband interference cancellation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414847A (zh) * 2007-10-18 2009-04-22 联发科技股份有限公司 干扰检测器及干扰检测方法
CN102684737A (zh) * 2011-03-10 2012-09-19 北京化工大学 基于并行干扰抵消算法的多用户扩频电台实现方法
CN108683466A (zh) * 2018-04-26 2018-10-19 深圳市盛路物联通讯技术有限公司 一种智能终端及射频干扰检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Discussion on RS design for RIM", 3GPP TSG RAN WG1 MEETING #94 R1-1808842, 24 August 2018 (2018-08-24), XP051516215, DOI: 20200612174749 *
See also references of EP3972137A4 *

Also Published As

Publication number Publication date
US11942976B2 (en) 2024-03-26
US20220311463A1 (en) 2022-09-29
CN112187298A (zh) 2021-01-05
EP3972137A1 (en) 2022-03-23
EP3972137A4 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
EP3499744B1 (en) Diversity receiver and terminal
WO2021004092A1 (zh) 一种通信抗干扰检测方法及装置
EP1367735A1 (en) Direct conversion receiver
EP2871774A1 (en) Tunable RF N-path filter
WO2010000603A1 (en) Signal processing device and method
WO2010047998A2 (en) Method and device for detecting presence of a carrier in a received signal
CN115298978B (zh) 用于谐波干扰消除的基带芯片和无线通信方法
CN114285433B (zh) 一种无线通信组件、方法及终端设备
US10440608B2 (en) Method and apparatus for downlink and uplink compression of nonstandard bandwidth of LTE system
WO2020220196A1 (zh) 控制谐波干扰的方法和装置
JP6011251B2 (ja) 無線通信装置及び無線通信方法
JP2004328639A (ja) 信号強度測定装置およびそれを利用した受信装置
CN102571653B (zh) 通信信号处理方法和通信接收机
Rich et al. Cochannel FM interference suppression using adaptive notch filters
WO2014100180A1 (en) Agile active interference cancellation (aaic) for multi-radio mobile devices
CN111416917B (zh) 模拟电视信号处理方法和装置
CN204131508U (zh) 一种无线电超短波通信接收机
CN108199996B (zh) 基于fpga的独立边带调制信号解调方法
CN107294551B (zh) 抗干扰方法、单元以及系统
US10326480B2 (en) Communication receiver and method
CN112769454A (zh) 干扰消除装置、同时同频全双工系统和无线终端
CN110895797B (zh) 智能化网络收发平台
WO2017036161A1 (zh) 一种自适应滤波方法和装置
US12003270B2 (en) Passive intermodulation distortion filtering
US20230071403A1 (en) Passive Intermodulation Distortion Filtering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837092

Country of ref document: EP

Effective date: 20211215