WO2021004027A1 - 一种高压电池簇及其过流保护电路和开关盒 - Google Patents

一种高压电池簇及其过流保护电路和开关盒 Download PDF

Info

Publication number
WO2021004027A1
WO2021004027A1 PCT/CN2019/128525 CN2019128525W WO2021004027A1 WO 2021004027 A1 WO2021004027 A1 WO 2021004027A1 CN 2019128525 W CN2019128525 W CN 2019128525W WO 2021004027 A1 WO2021004027 A1 WO 2021004027A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
fuse module
voltage battery
positive
negative
Prior art date
Application number
PCT/CN2019/128525
Other languages
English (en)
French (fr)
Inventor
周俭节
曹仁贤
顾亦磊
杨善明
童辉
徐小虎
李金生
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to KR1020207029535A priority Critical patent/KR102541790B1/ko
Priority to US17/040,501 priority patent/US11942775B2/en
Priority to EP19920623.6A priority patent/EP3913763A4/en
Priority to JP2020551316A priority patent/JP7374919B2/ja
Priority to AU2019435043A priority patent/AU2019435043B2/en
Publication of WO2021004027A1 publication Critical patent/WO2021004027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • H02J7/0026
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of power electronics, in particular to a high-voltage battery cluster and its overcurrent protection circuit and switch box.
  • the prior art usually connects a fuse in series with the positive and negative loops of the high-voltage battery cluster, so as to ensure the high-voltage battery cluster when an over-current fault occurs in the circuit loop. Disconnect from the circuit loop.
  • the present invention provides a high-voltage battery cluster and its overcurrent protection circuit and switch box to reduce the current shock and voltage shock generated in the circuit loop when the fuse is blown in the prior art.
  • the first aspect of the present application provides an overcurrent protection circuit for a high-voltage battery cluster, including: a first fuse module and a second fuse module; wherein:
  • the first fuse module is arranged on the positive branch of the switch box of the high-voltage battery cluster
  • the second fuse module is arranged on the negative branch of the switch box of the high-voltage battery cluster
  • the withstand current-time curve of the first fuse module is different from the withstand current-time curve of the second fuse module.
  • the first fuse module is arranged between the DC switch on the positive branch and the output end of the positive branch; and the second fuse module is arranged between the DC switch on the negative branch And the input end of the negative branch;
  • the first fuse module is provided between the DC switch on the positive branch and the input end of the positive branch; and the second fuse module is provided between the DC switch on the negative branch and the negative Between the output ends of the branch.
  • the first fuse module is arranged between the DC switch on the positive branch and the output end of the positive branch; and the second fuse module is arranged between the DC switch on the negative branch And the output end of the negative branch;
  • the first fuse module is provided between the DC switch on the positive branch and the input end of the positive branch; and the second fuse module is provided between the DC switch on the negative branch and the negative Between the input ends of the branch.
  • any one of the first fuse module and the second fuse module is a fuse with a highly sensitive action.
  • the other one of the first fuse module and the second fuse module is a fuse with both overload breaking and short circuit breaking capabilities.
  • the fuse time of the first fuse module and the second fuse module are both less than the fuse time of the DC switch in the high-voltage battery cluster switch box.
  • the withstand current-time curve of the first fuse module and the withstand current-time curve of the second fuse module have an intersection.
  • it further includes: an RCD absorption circuit; wherein the input terminal of the RCD absorption circuit is connected to the positive input terminal of the switch box, and the output terminal of the RCD absorption circuit is connected to the negative input terminal of the switch box or The positive output terminal is connected.
  • the RCD absorption circuit includes: a resistor, a capacitor, and a diode; wherein:
  • One end of the resistor is connected to the anode of the diode, and the connection point is used as the input end of the RCD absorption circuit;
  • the other end of the resistor and the cathode of the diode are both connected to one end of the capacitor;
  • the other end of the capacitor serves as the output end of the RCD absorption circuit.
  • a second aspect of the present application provides a switch box for a high-voltage battery cluster, including: a positive electrode branch, a negative electrode branch, and the overcurrent protection circuit of the high-voltage battery cluster as described in any one of the above; wherein:
  • Corresponding DC switches are provided in the positive branch circuit and the negative branch circuit;
  • the input terminal of the positive branch is the positive input terminal of the switch box, and the output terminal of the positive branch is the positive output terminal of the switch box;
  • the input end of the negative branch is used as the negative input end of the switch box, and the output end of the negative branch is used as the negative output end of the switch box.
  • a third aspect of the present application provides a high-voltage battery cluster, including: N battery modules and the above-mentioned switch box; wherein:
  • N battery modules are connected in series to form a series branch, the positive electrode of the series branch is connected to the positive input terminal of the switch box, and the negative electrode of the series branch is connected to the negative input terminal of the switch box;
  • the positive output terminal of the switch box serves as the positive electrode of the high-voltage battery cluster
  • the negative output terminal of the switch box serves as the negative electrode of the high-voltage battery cluster.
  • This application provides an overcurrent protection circuit for a high-voltage battery cluster, which includes a first fuse module and a second fuse module; because the first fuse module and the second fuse module have different withstand current-time curves, when the high-voltage battery cluster occurs When an over-current fault occurs, one of the fuse modules will open the high-voltage battery cluster before the other fuse module to ensure that the high-voltage battery cluster will not be damaged by high current when an over-current fault occurs, and its power safety is guaranteed; Compared with the technology, in the present application, when an overcurrent fault occurs in the high-voltage battery cluster, only one fuse module disconnects the high-voltage battery cluster from the circuit loop. In the prior art, the two fuses are blown simultaneously.
  • FIG. 1 is a schematic diagram of a high-voltage battery cluster provided by an embodiment of this application;
  • FIG. 2 is a simplified schematic diagram of the circuit of the high-voltage battery cluster before two fuses or two fuse modules are not activated when the high-voltage battery cluster provided by the prior art and the embodiments of the present application are short-circuited;
  • FIG. 3 is a simplified schematic diagram of the circuit of the high-voltage battery cluster after both fuses are activated when the high-voltage battery cluster is short-circuited in the prior art;
  • FIG. 4 is a simplified schematic diagram of the circuit of the high-voltage battery cluster after any one of the two fuses operates when the high-voltage battery cluster is short-circuited in an embodiment of the application;
  • Fig. 5 is a schematic diagram of reverse voltage and short-circuit current at both ends of a high-voltage battery cluster
  • Figure 6 is a schematic diagram of the connections when the high-voltage battery cluster is in use
  • Figures 7 and 8 are current-time curves of the first fuse module 110, the second fuse module 120, and the DC switch;
  • 9a, 9b, and 9c are schematic diagrams of three high-voltage battery clusters provided by another embodiment of this application.
  • FIG. 10 is a simplified schematic diagram of a high-voltage battery cluster circuit with RCD absorption circuit provided by another embodiment of the application;
  • FIG. 11 is a simplified schematic diagram of a high-voltage battery cluster circuit with RCD absorption circuit provided by another embodiment of the application.
  • an embodiment of the present application provides an overcurrent protection circuit for a high-voltage battery cluster, as shown in FIG. 1, which specifically includes: A fuse module 110 and a second fuse module 120.
  • the first fuse module 110 is arranged on the positive branch 130 of the switch box 150 of the high-voltage battery cluster, and the second fuse module 120 is arranged on the negative branch 140 of the switch box 150 of the high-voltage battery cluster.
  • the withstand current-time curve of the first fuse module 110 is different from the withstand current-time curve of the second fuse module 120, that is, when the same withstand current, the first fuse module 110 and the second fuse module 120 can withstand The time is different. Therefore, when an overcurrent fault occurs in the high-voltage battery cluster, one of the first fuse module 110 and the second fuse module 120 disconnects the high-voltage battery cluster before the other to protect the high-voltage battery cluster from being damaged by high current.
  • L1 is the parasitic inductance of the series line between the battery modules in the high-voltage battery cluster
  • L2 is the parasitic inductance of the connecting line between the positive electrode of the battery module branch in the high-voltage battery cluster and the positive input terminal B+ of the switch box 150
  • L3 Is the parasitic inductance of the connection line between the negative electrode of the battery module branch in the high-voltage battery cluster and the negative input terminal B- of the switch box 150
  • L4 and L5 are the high-voltage battery cluster and the BCP (battery collection panel) and PCS (Power Conversion System, energy storage inverter) The parasitic inductance of the connected positive and negative leads.
  • the short-circuit fault occurs from the high-voltage battery cluster until either of the two fuse modules is about to operate.
  • the circuit loop resistance r decreases, so The terminal voltage of the high-voltage battery cluster decreases, and the short-circuit current Is rises rapidly.
  • the change curve of the short-circuit current Is and the reverse voltage U in this process is shown in the process A in FIG. 5; in addition, although the high-voltage battery cluster provided in this embodiment has The overcurrent protection circuit reduces the current impact and voltage impact generated in the circuit loop.
  • the high-voltage battery cluster passes through the longer positive and negative leads It is connected to the battery combiner cabinet BCP and the energy storage inverter PCS (as shown in Figure 6), and the series connection between the battery modules in the high-voltage battery cluster is realized through a series line, so the inductance L in the circuit loop is large, which makes the fuse
  • the change curve of short-circuit current Is and reverse voltage U in this process is shown in process B in Fig. 5.
  • the pre-arc and post-arc time mainly depend on the material characteristics and fusing mechanism of the selected fuse.
  • the current combiner cabinet BCP includes: a first fuse 310, a second fuse 320, a first DC switch S3, and a second DC switch S4; the first fuse 310 and the first DC switch S3 are connected in series and connected in series. One end is used as the positive input end of the battery combiner cabinet BCP, and the other end in series is used as the positive output end of the battery combiner cabinet BCP; the second fuse 320 is connected in series with the second DC switch S4, and one end of the series is used as the negative input end of the current combiner cabinet BCP , The other end of the series is used as the negative output end of the current combiner cabinet BCP.
  • the energy storage inverter PCS includes: a third fuse 330, a fourth fuse 340, a third DC switch S5, a fourth DC switch S6, and an inverter 350; a third fuse 330 and a third DC switch S5 is connected in series, one end of the series is used as the positive input end of the energy storage inverter PCS, and the other end of the series is connected to the positive input end of the inverter 350; the fourth fuse 340 is connected in series with the fourth DC switch S6, and one end of the series is used as The negative input end of the energy storage inverter PCS, the other end of the series is connected to the negative input end of the inverter 350; the first output end of the inverter 350 is used as the first output end of the energy storage inverter PCS, and is connected to the grid
  • the second output terminal of the inverter 350 is used as the second output terminal of the energy storage inverter PCS and is connected to the second input terminal of the power grid; the third output terminal of the inverter 350 is used as energy
  • the maximum short-circuit current Imax has a great impact on the safety and life of the battery. In severe cases, it may cause power hazards such as battery thermal runaway. Therefore, the first Either one of the fuse module 110 and the second fuse module 120 is selected as a fuse with a highly sensitive action, and the maximum short-circuit current Imax is controlled within a small range; and, in order to control the current change rate di/dt within a small range, And to reduce the peak value Umax of the reverse voltage U, it is also necessary to select a fuse with a high sensitivity action with moderate pre-arc and post-arc time.
  • the first fuse module 110 and the second fuse module 120 are fused with both overload breaking and short circuit breaking capabilities.
  • the highly sensitive action fuse can be an AR fast-blow fuse; the fuse with both overload breaking and short-circuit breaking capabilities can be a gPV slow-blow fuse.
  • the withstand current-time curve of the first fuse module 110 and the second fuse module 120 The withstand current-time curve is shown in Figure 7: when the high-voltage battery cluster has a short-circuit fault, the first fuse module 110 is blown before the second fuse module 120, and the high-voltage battery cluster is disconnected; when the high-voltage battery cluster has an overload fault , Making the second fuse module 120 fuse before the first fuse module 110 to disconnect the high-voltage battery cluster.
  • the withstand current-time curve of the first fuse module 110 and the second fuse module 120 The withstand current-time curve is shown in Figure 8: when the high-voltage battery cluster has a short-circuit fault, the second fuse module 120 is blown before the first fuse module 110, and the high-voltage battery cluster is disconnected; when the high-voltage battery cluster has an overload fault , Making the first fuse module 110 fuse before the second fuse module 120 to disconnect the high-voltage battery cluster.
  • the fuse curves of the first fuse module 110 and the second fuse module 120 should be below the withstand current-time curve of the DC switch, that is, the fuse time of the first fuse module 110 and the second fuse module 120 under the same withstand current , Are less than the fusing time of the DC switch in the high-voltage battery cluster switch box 150, as shown in Figure 7 or Figure 8, before the DC switch is destroyed, the first fuse module 110 or the second fuse module 120 will fuse before the DC switch, and the high voltage The connection between the battery cluster and the circuit loop is disconnected to ensure the safe operation of the DC switch in the switch box 150 of the high-voltage battery cluster.
  • the first setting method is shown in FIG. 1, specifically:
  • the first fuse module 110 is arranged between the DC switch S1 on the positive branch 130 and the output end of the positive branch 130, and the second fuse module 120 is arranged between the DC switch S2 on the negative branch 140 and the negative branch 140. Between the output terminals.
  • the second setting method is specifically:
  • the first fuse module 110 is arranged between the DC switch S1 on the positive branch 130 and the input end of the positive branch 130, and the second fuse module 120 is arranged between the DC switch S2 on the negative branch 140 and the negative branch 140. Between the inputs.
  • the third setting method is specifically:
  • the first fuse module 110 is arranged between the DC switch S1 on the positive branch 130 and the output end of the positive branch 130, and the second fuse module 120 is arranged between the DC switch S2 on the negative branch 140 and the negative branch 140. Between the inputs.
  • the fourth setting method is specifically:
  • the first fuse module 110 is arranged between the DC switch S1 on the positive branch 130 and the input end of the positive branch 130, and the second fuse module 120 is arranged between the DC switch S2 on the negative branch 140 and the negative branch 140. Between the output terminals.
  • the four setting modes of the relative positions between the first fuse 110 and the second fuse 120 provided in this embodiment can all cause a short-circuit fault outside the high-voltage battery cluster, that is, a short-circuit fault occurs at the short-circuit point B1 It protects the power safety of the high-voltage battery cluster, and protects the high-voltage battery cluster from being damaged due to excessive short-circuit current Is and excessive current and voltage shocks during the fuse blowing process; however, the second One setting method, the third setting method and the fourth setting method can also cause a short-circuit fault inside the high-voltage battery cluster, that is, when a short-circuit fault occurs at the short-circuit point B2, it protects the power safety of the high-voltage battery cluster and protects the high-voltage battery The cluster will not be damaged due to excessive short-circuit current Is and excessive current and voltage surges during the fuse fusing process; in addition, between the first fuse 110 and the second fuse 120 provided in this embodiment The four setting methods of the relative position
  • an overcurrent protection circuit for a high-voltage battery cluster is provided.
  • the overcurrent protection circuit further includes: an RCD absorption circuit 210, as shown in FIG. 10 or FIG. 11 (The switch box 150 is not shown in Figure 10 or Figure 11).
  • the input terminal of the RCD absorption circuit 210 is connected to the positive input terminal B+ of the switch box 150 in the high-voltage battery cluster, and the output terminal of the RCD absorption circuit 210 is connected to the negative input terminal B- of the switch box 150 in the high-voltage battery cluster (as shown in FIG. Show) or the positive output terminal P+ (as shown in Figure 11).
  • the RCD absorption circuit 210 can further absorb the reverse voltage U generated during the fuse fusing process, reduce the peak value Umax of the reverse voltage U, and reduce the current shock and voltage shock generated in the circuit loop.
  • the RCD absorption circuit 210 includes a resistor R, a capacitor C, and a diode D; wherein one end of the capacitor C serves as the output terminal of the RCD absorption circuit 210, and the other end of the capacitor C is connected to one end of the resistor R and the cathode of the diode D. The other end of the resistor R is connected to the anode of the diode D, and the connection point is used as the input end of the RCD absorption circuit 210.
  • a switch box for a high-voltage battery cluster is provided, as shown in FIG. 1, FIG. 9a, FIG. 9b or FIG. 9c.
  • the specific structure includes: a positive electrode branch 130, a negative electrode branch 140, and any of the foregoing implementations.
  • the positive branch 130 is provided with a DC switch S1
  • the negative branch 140 is provided with a DC switch S2.
  • the input terminal of the positive branch 130 serves as the positive input terminal B+ of the switch box 150, and the output terminal of the positive branch 130 serves as the positive output terminal P+ of the switch box 150.
  • the input terminal of the negative branch 140 serves as the negative input terminal B- of the switch box 150, and the output terminal of the negative branch 140 serves as the negative output terminal P- of the switch box 150.
  • the RCD absorption circuit 210 in the overcurrent protection circuit of the high-voltage battery cluster can be arranged in the switch box 150 to facilitate the installation of the high-voltage battery cluster; in addition, the RCD absorption circuit 210 can also be arranged outside the switch box 150. According to the actual situation, it is decided whether to install the RCD absorption circuit 210 for easy disassembly; the two setting modes of the RCD absorption circuit 210 can be determined according to specific conditions, and no specific limitation is made here.
  • a high-voltage battery cluster is provided, as shown in Figure 1, Figure 9a, Figure 9b or Figure 9c.
  • the specific structure includes: N battery modules (first string battery module, second string battery module... The m-th string of battery modules) and the switch box 150 of the high-voltage battery cluster provided in the above embodiments.
  • the N battery modules are connected in series to form a battery module branch.
  • the positive electrode of the battery module branch is connected to the positive input port B+ of the switch box 150, and the negative electrode of the battery module branch is connected to the negative input port B- of the switch box 150.
  • the positive output terminal P+ of the switch box 150 serves as the positive electrode of the high-voltage battery cluster and is connected to the positive electrode of the circuit loop;
  • the negative output terminal P- of the switch box 150 serves as the negative electrode of the high-voltage battery cluster and is connected to the negative electrode of the circuit loop.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Fuses (AREA)

Abstract

本申请提供一种高压电池簇及其过流保护电路和开关盒,其过流保护电路包括第一熔断模块和第二熔断模块;由于两个熔断模块的承受电流-时间曲线不同,所以,当高压电池簇发生过流故障时,其中一个熔断模块会先于另外一个熔断模块使高压电池簇断路,确保高压电池簇在其发生过流故障时,不会被大电流冲击破坏;另外,与现有技术相比,本申请在高压电池簇发生过流故障时,仅由一个熔断模块将高压电池簇与电路回路的连接断开,不会出现现有技术中,因两个熔断器同时熔断而引起电流变化率叠加的问题,进而使得在该连接断开过程中,电路回路中的电流变化率均低于现有技术中两个熔断器同时熔断的情况,从而降低了电流回路中产生的电流冲击和电压冲击。

Description

一种高压电池簇及其过流保护电路和开关盒
本申请要求于2019年7月8日提交中国专利局、申请号为201910609878.8、发明名称为“一种高压电池簇及其过流保护电路和开关盒”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子技术领域,特别是涉及一种高压电池簇及其过流保护电路和开关盒。
背景技术
目前,电化学储能在电力系统中也相应得到大规模发展。当前典型应用的容量逐渐达到单台集装箱MWh级,单个电池组端口电压达到1000V,甚至1500V,单个电池组充放电流达到几百安培。因此,在高电压、大电流的工作环境下,当电路回路出现短路或过载等过流故障时,会造成更加严重的电路安全事故。
为了避免在电路回路出现过流故障时,引起严重的电路安全事故,现有技术通常为高压电池簇正负极回路各串联一个熔断器,以便在电路回路发生过流故障时,确保高压电池簇与电路回路断开。
但是,采用上述方法,当电路回路发生过流故障时,两个熔断器均熔断,产生的拉弧会引起电流变化率较大变化。并且,在电路回路寄生电感的作用下,导致电压变化率较大,进而会在高压电池簇的两端产生较大的反向电压,其峰值可达到高压电池簇额定电压的2-5倍,直接对高压电池簇的电气安全造成威胁。
发明内容
有鉴于此,本发明提供一种高压电池簇及其过流保护电路和开关盒,以降低现有技术中在熔断器熔断时电路回路中产生的电流冲击和电压冲击。
为实现上述目的,本发明实施例提供如下技术方案:
本申请第一方面提供一种高压电池簇的过流保护电路,包括:第一熔断模块和第二熔断模块;其中:
所述第一熔断模块设置于所述高压电池簇的开关盒的正极支路上;
所述第二熔断模块设置于所述高压电池簇的开关盒的负极支路上;
所述第一熔断模块的承受电流-时间曲线与所述第二熔断模块的承受电流-时间曲线不同。
可选的,所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输出端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输入端之间;
或者,
所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输入端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输出端之间。
可选的,所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输出端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输出端之间;
或者,
所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输入端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输入端之间。
可选的,所述第一熔断模块和所述第二熔断模块中的任意一个为高灵敏动作的熔断器。
可选的,所述第一熔断模块和所述第二熔断模块中的另外一个为兼具过载分断与短路分断能力的熔断器。
可选的,在相同承受电流下,所述第一熔断模块和所述第二熔断模块的熔断时间,均小于所述高压电池簇开关盒中直流开关的熔断时间。
可选的,所述第一熔断模块的承受电流-时间曲线和所述第二熔断模块的承受电流-时间曲线存在交点。
可选的,还包括:RCD吸收电路;其中,所述RCD吸收电路的输入端与所述开关盒的正输入端相连,所述RCD吸收电路的输出端与所述开关盒的负输入端或正输出端相连。
可选的,所述RCD吸收电路包括:电阻、电容以及二极管;其中:
所述电阻的一端与所述二极管的正极相连,连接点作为所述RCD吸收电 路的输入端;
所述电阻的另一端和所述二极管的负极均与所述电容的一端相连;
所述电容的另一端作为所述RCD吸收电路的输出端。
本申请第二方面提供一种高压电池簇的开关盒,包括:正极支路,负极支路以及如上述任一项所述的高压电池簇的过流保护电路;其中:
所述正极支路和所述负极支路中均设置有相应的设置有直流开关;
所述正极支路的输入端为所述开关盒的正输入端,所述正极支路的输出端作为所述开关盒的正输出端;
所述负极支路的输入端作为所述开关盒的负输入端,所述负极支路的输出端作为所述开关盒的负输出端。
本申请第三方面提供一种高压电池簇,包括:N个电池模块以及上述中所述的开关盒;其中:
N个电池模块依次串联,形成串联支路,所述串联支路的正极与所述开关盒的正输入端相连,所述串联支路的负极与所述开关盒的负输入端相连;
所述开关盒的正输出端作为所述高压电池簇的正极;
所述开关盒的负输出端作为所述高压电池簇的负极。
本申请提供一种高压电池簇的过流保护电路,包括第一熔断模块和第二熔断模块;由于第一熔断模块和第二熔断模块的承受电流-时间曲线不同,所以,当高压电池簇发生过流故障时,其中一个熔断模块会先于另外一个熔断模块使高压电池簇断路,确保高压电池簇在其发生过流故障时,不会被大电流破坏,保证其电力安全;另外,与现有技术相比,本申请在高压电池簇发生过流故障时,仅由一个熔断模块将高压电池簇与电路回路的连接断开,不会出现现有技术中,因两个熔断器同时熔断而引起电流变化率叠加的问题,进而使得在该连接断开过程中,电路回路中的电流变化率均低于现有技术中两个熔断器同时熔断的情况,从而降低了电流回路中产生的电流冲击和电压冲击,解决了现有技术中的问题。
附图说明
图1为本申请实施例提供的一种高压电池簇的示意图;
图2为现有技术和本申请实施例提供的高压电池簇短路时,两个熔断器或 两个熔断模块均没有动作前的高压电池簇电路的简化示意图;
图3为现有技术中,高压电池簇短路时两个熔断器均动作后的高压电池簇电路的简化示意图;
图4为本申请实施例中,高压电池簇短路时两个熔断器中任意一个熔断器动作后的高压电池簇电路的简化示意图;
图5为高压电池簇两端的反向电压和短路电流的示意图;
图6为高压电池簇使用时的连接示意图;
图7和图8为第一熔断模块110、第二熔断模块120以及直流开关的承受电流-时间曲线图;
图9a、图9b以及图9c为本申请另一实施例提供的三种高压电池簇的示意图;
图10为本申请另一实施例提供的一种带RCD吸收电路的高压电池簇电路的简化示意图;
图11为本申请另一实施例提供的一种带RCD吸收电路的高压电池簇电路的简化示意图。
具体实施方式
为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
采用现有技术中的方法,当高压电池簇发生短路或过载的过流故障时,由于两个熔断器几乎同时熔断,所以两者产生的拉弧引起的电路回路中的电流变化率叠加,使得电路回路中的电流变化率较大,进而电路回路中的电压变化率较大,从而使电路回路中产生的对高压电池簇的正极和负极的电流冲击以及电压冲击较大,对高压电池簇的电力安全造成威胁。
为了解决现有技术中在熔断器熔断时电路回路中产生较大的电流冲击和电压冲击的问题,本申请实施例提供一种高压电池簇的过流保护电路,如图1,具体包括:第一熔断模块110和第二熔断模块120。
第一熔断模块110设置于高压电池簇的开关盒150的正极支路130上,第二熔断模块120设置于高压电池簇的开关盒150的负极支路140上。
其中,由于第一熔断模块110的承受电流-时间曲线与第二熔断模块120的承受电流-时间曲线不同,即在相同承受电流时,第一熔断模块110和第二熔断模块120所能够承受的时间不同,因此当高压电池簇发生过流故障时,第一熔断模块110和第二熔断模块120中的一个先于另一个将高压电池簇断路,保护高压电池簇不被大电流破坏。
与现有技术相比,本申请在高压电池簇发生短路故障时,仅由一个熔断模块将高压电池簇与电路回路的连接断开,不会出现现有技术中,因两个熔断器同时熔断而引起电流变化率叠加的问题,进而使得在该连接断开过程中,电路回路中的电流变化率均低于现有技术中两个熔断器同时熔断的情况,从而降低了电流回路中产生的电流冲击和电压冲击,解决了现有技术中的问题。
若高压电池簇发生短路故障时,在现有技术和本申请中,当两个熔断器或两个熔断模块均未动作前,将电路结构简化,如图2,图中F1和F2在现有技术中分别代表两个熔断器,在本申请中分别代表两个熔断模块。
在现有技术中,当高压电池簇发生短路故障,且两个熔断器均动作后,将电路结构简化,如图3,此时形成的回路电感L =L1+L2+L3;而在本实施例中,当高压电池簇发生短路故障,且两个熔断模块中的任意一个动作后,将电路结构简化,如图4,此时形成的回路电感L =L1+L2+L3+L4+L5,大于现有技术中形成的回路电感L ,阻碍电路回路中电流变化的能力更强,使电流变化的更缓慢,使熔断时间延长,因此,进一步使得电流变化率di/dt降低,从而进一步降低电路回路中产生的电流冲击和电压冲击。
其中,L1为高压电池簇中各电池模块间的串联线的寄生电感,L2为高压电池簇中电池模块支路的正极与开关盒150的正输入端B+之间的连接线的寄生电感,L3为高压电池簇中电池模块支路的负极与开关盒150的负输入端B-之间的连接线的寄生电感;L4和L5为高压电池簇与BCP(battery collection panel,电池汇流柜)以及PCS(Power Conversion System,储能逆变器)相连的正负引线的寄生电感。
若高压电池簇发生过载故障时,与上述过程相同,此处不再一一赘述。
还有,在本实施例中,若高压电池簇发生短路故障,则从高压电池簇开始发生短路故障,到两个熔断模块中任意一个将要动作时的过程中,由于电路回 路电阻r降低,所以高压电池簇的端电压降低,短路电流Is快速上升,此过程中的短路电流Is和反向电压U的变化曲线,如图5中的过程A;另外,虽然本实施例提供的高压电池簇的过流保护电路使得电路回路中产生的电流冲击和电压冲击降低,但是,从两个熔断模块中任意一个动作,到该熔断模块熔断的过程中,由于高压电池簇通过较长的正负极引线与电池汇流柜BCP以及储能逆变器PCS相连(如图6),并且,高压电池簇内部各电池模块之间的串联通过串联线实现,因此电路回路中的电感L较大,使得该熔断模块在弧前和弧后的时间内产生较大的电流变化率di/dt,一般持续几十微秒到几百微秒,进而会产生较大的反向电压U=L*di/dt,该过程中的短路电流Is和反向电压U的变化曲线如图5中的过程B。
其中,弧前和弧后的时间主要取决于所选熔断器自身材料特性与熔断机制。
具体的,电流汇流柜BCP包括:第一熔断器310、第二熔断器320、第一直流开关S3以及第二直流开关S4;第一熔断器310与第一直流开关S3串联,串联的一端作为电池汇流柜BCP的正输入端,串联的另一端作为电池汇流柜BCP的正输出端;第二熔断器320与第二直流开关S4串联,串联的一端作为电流汇流柜BCP的负输入端,串联的另一端作为电流汇流柜BCP的负输出端。
具体的,储能逆变器PCS包括:第三熔断器330、第四熔断器340、第三直流开关S5、第四直流开关S6以及逆变器350;第三熔断器330与第三直流开关S5串联,串联的一端作为储能逆变器PCS的正输入端,串联的另一端与逆变器350的正输入端相连;第四熔断器340与第四直流开关S6串联,串联的一端作为储能逆变器PCS的负输入端,串联的另一端与逆变器350的负输入端相连;逆变器350的第一输出端作为储能逆变器PCS的第一输出端,与电网的第一输入端相连;逆变器350的第二输出端作为储能逆变器PCS的第二输出端,与电网的第二输入端相连;逆变器350的第三输出端作为储能逆变器PCS的第三输出端,与电网的第三输入端相连。
可选的,因为当高压电池簇发生短路故障时,最大短路电流Imax对电池的安全及寿命有很大的影响,严重时,可能会引起电池热失控等电力危害,所以,可以通过将第一熔断模块110和第二熔断模块120中的任意一个选择为高灵敏 动作的熔断器,把最大短路电流Imax控制在较小范围内;并且,为了将电流变化率di/dt控制在较小范围,以及降低反向电压U的峰值Umax,还需要选择弧前和弧后时间适中的高灵敏动作的熔断器。
需要说明的是,当高压电池簇发生短路故障时,高灵敏动作的熔断器会先于另一熔断器熔断,将高压电池簇断路。
可选的,为了在高压电池簇发生过载故障时,可以保证高压电池簇的电力安全,以及兼顾电路回路的过流能力与动作灵敏度的要求,可以将第一熔断模块110和第二熔断模块120中的另一个选择为兼具过载分断与短路分断能力的熔断器。
需要说明的是,当高压电池簇发生过载故障时,兼具过载分断与短路分断能力的熔断器会先于另一熔断器熔断,将高压电池簇断路。
可选的,高灵敏动作的熔断器可以为AR类快融型熔断器;兼具过载分断与短路分断能力的熔断器可以为gPV类慢融型熔断器。
还有,在实际应用中,第一熔断模块110的承受电流-时间曲线与第二熔断模块120的承受电流-时间曲线存在交点,如图7或图8所示。
当第一熔断模块110为高灵敏动作的熔断器,第二熔断模块120为兼具过载分断与短路分断能力的熔断器时,第一熔断模块110的承受电流-时间曲线与第二熔断模块120的承受电流-时间曲线如图7所示:在高压电池簇发生短路故障时,使得第一熔断模块110先于第二熔断模块120熔断,将高压电池簇断路;在高压电池簇发生过载故障时,使得第二熔断模块120先于第一熔断模块110熔断,将高压电池簇断路。
当第一熔断模块110为兼具过载分断与短路分断能力的熔断器,第二熔断模块120为高灵敏动作的熔断器时,第一熔断模块110的承受电流-时间曲线与第二熔断模块120的承受电流-时间曲线如图8所示:在高压电池簇发生短路故障时,使得第二熔断模块120先于第一熔断模块110熔断,将高压电池簇断路;在高压电池簇发生过载故障时,使得第一熔断模块110先于第二熔断模块120熔断,将高压电池簇断路。
最后,第一熔断模块110和第二熔断模块120的熔断曲线均应该在直流开关的承受电流-时间曲线以下,即在相同承受电流下,第一熔断模块110和第二熔 断模块120的熔断时间,均小于高压电池簇开关盒150中直流开关的熔断时间,如图7或图8,在直流开关被破坏之前,第一熔断模块110或第二熔断模块120会先于直流开关熔断,将高压电池簇与电路回路的连接断开,保证高压电池簇的开关盒150中的直流开关的运行安全。
在本申请另一实施例中,提供第一熔断模块110和第二熔断模块120之间相对位置的四种设置方式,第一种设置方式,如图1,具体为:
第一熔断模块110设置于正极支路130上的直流开关S1和正极支路130的输出端之间,而第二熔断模块120设置于负极支路140上的直流开关S2和负极支路140的输出端之间。
第二种设置方式,如图9a,具体为:
第一熔断模块110设置于正极支路130上的直流开关S1和正极支路130的输入端之间,而第二熔断模块120设置于负极支路140上的直流开关S2和负极支路140的输入端之间。
第三种设置方式,如图9b,具体为:
第一熔断模块110设置于正极支路130上的直流开关S1和正极支路130的输出端之间,而第二熔断模块120设置于负极支路140上的直流开关S2和负极支路140的输入端之间。
第四种设置方式,如图9c,具体为:
第一熔断模块110设置于正极支路130上的直流开关S1和正极支路130的输入端之间,而第二熔断模块120设置于负极支路140上的直流开关S2和负极支路140的输出端之间。
需要说明的是,四种设置方式可视具体情况进行选取,此处不做具体限定。
值得说明的是,本实施例提供的第一熔断器110和第二熔断器120之间相对位置的四种设置方式均可以在高压电池簇外部发生短路故障,即在短路点B1处发生短路故障时,对高压电池簇的电力安全起保护作用,保护高压电池簇不会因短路电流Is过大以及在熔断器熔断过程中承受过大的电流冲击和电压冲击,而被损坏;但是,第二种设置方式、第三种设置方式以及第四种设置方式还可以在高压电池簇内部发生短路故障,即在短路点B2发生短路故障时,对 高压电池簇的电力安全起保护作用,保护高压电池簇不会因短路电流Is过大以及在熔断器熔断过程中承受过大的电流冲击和电压冲击,而被损坏;另外,本实施例提供的第一熔断器110和第二熔断器120之间相对位置的四种设置方式均可以在高压电池簇发生过载故障时,对高压电池簇的电力安全起保护作用,保护高压电池簇不会因大电流以及在熔断器熔断过程中承受过大的电流冲击和电压冲击,而被损坏。
其余结构和工作原理与上述实施例相同,此处不再一一赘述。
在本申请另一实施例中,提供一种高压电池簇的过流保护电路,该过流保护电路在上述任一实施例的基础上,还包括:RCD吸收电路210,如图10或图11(图10或图11中均未画出开关盒150)。
RCD吸收电路210的输入端与高压电池簇中的开关盒150的正输入端B+相连,RCD吸收电路210的输出端与高压电池簇中的开关盒150的负输入端B-(如图10所示)或者正输出端P+(如图11所示)相连。
需要说明的是,RCD吸收电路210可以进一步吸收在熔断器熔断过程中产生的反向电压U,降低反向电压U的峰值Umax,降低电路回路中产生的电流冲击和电压冲击。
具体的,RCD吸收电路210包括电阻R、电容C以及二极管D;其中,电容C的一端作为RCD吸收电路210的输出端,电容C的另一端与电阻R的一端以及二极管D的负极均相连,电阻R的另一端与二极管D的正极相连,连接点作为RCD吸收电路210的输入端。
其余结构和工作原理与上述实施例相同,此处不再一一赘述。
在本申请另一实施例中,提供一种高压电池簇的开关盒,如图1、图9a、图9b或图9c,具体结构包括:正极支路130,负极支路140以及上述任一实施例提供的高压电池簇的过流保护电路。
正极支路130中设置有直流开关S1,负极支路140中设置有直流开关S2。
正极支路130的输入端作为开关盒150的正输入端B+,正极支路130的输出端作为开关盒150的正输出端P+。
负极支路140的输入端作为开关盒150的负输入端B-,负极支路140的输出端作为开关盒150的负输出端P-。
需要说明的是,高压电池簇的过流保护电路中的RCD吸收电路210可以设置于开关盒150里,方便高压电池簇的安装;另外,RCD吸收电路210也可以设置于开关盒150外,可以根据实际情况,决定是否设置RCD吸收电路210,便于拆卸;RCD吸收电路210的两种设置方式可视具体情况而定,此处不做具体限定。
其余结构和工作原理与上述实施例相同,此处不再一一赘述。
在本申请另一实施例中,提供一种高压电池簇,如图1、图9a、图9b或图9c,具体结构包括:N个电池模块(第一串电池模块、第二串电池模块…第m串电池模块)以及上述实施例提供的高压电池簇的开关盒150。
N个电池模块依次串联,形成电池模块支路,电池模块支路的正极与开关盒150的正输入端口B+相连,电池模块支路的负极与开关盒150的负输入端口B-相连。
开关盒150的正输出端P+作为高压电池簇的正极,与电路回路的正极相连;
开关盒150的负输出端P-作为高压电池簇的负极,与电路回路的负极相连。
其余结构和工作原理与上述实施例相同,此处不再一一赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种高压电池簇的过流保护电路,其特征在于,包括:第一熔断模块和第二熔断模块;其中:
    所述第一熔断模块设置于所述高压电池簇的开关盒的正极支路上;
    所述第二熔断模块设置于所述高压电池簇的开关盒的负极支路上;
    所述第一熔断模块的承受电流-时间曲线与所述第二熔断模块的承受电流-时间曲线不同。
  2. 根据权利要求1所述的过流保护电路,其特征在于,所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输出端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输入端之间;
    或者,
    所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输入端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输出端之间。
  3. 根据权利要求1所述的过流保护电路,其特征在于,所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输出端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输出端之间;
    或者,
    所述第一熔断模块设置于所述正极支路上的直流开关和所述正极支路的输入端之间;并且,所述第二熔断模块设置于所述负极支路上的直流开关和所述负极支路的输入端之间。
  4. 根据权利要求1所述的过流保护电路,其特征在于,所述第一熔断模块和所述第二熔断模块中的任意一个为高灵敏动作的熔断器。
  5. 根据权利要4所述的过流保护电路,其特征在于,所述第一熔断模块和所述第二熔断模块中的另外一个为兼具过载分断与短路分断能力的熔断器。
  6. 根据权利要求1所述的过流保护电路,其特征在于,在相同承受电流 下,所述第一熔断模块和所述第二熔断模块的熔断时间,均小于所述高压电池簇开关盒中直流开关的熔断时间。
  7. 根据权利要求6所述的过流保护电路,其特征在于,所述第一熔断模块的承受电流-时间曲线和所述第二熔断模块的承受电流-时间曲线存在交点。
  8. 根据权利要求1-7任一项所述的过流保护电路,其特征在于,还包括:RCD吸收电路;其中,所述RCD吸收电路的输入端与所述开关盒的正输入端相连,所述RCD吸收电路的输出端与所述开关盒的负输入端或正输出端相连。
  9. 根据权利要求8所述的过流保护电路,其特征在于,所述RCD吸收电路包括:电阻、电容以及二极管;其中:
    所述电阻的一端与所述二极管的正极相连,连接点作为所述RCD吸收电路的输入端;
    所述电阻的另一端和所述二极管的负极均与所述电容的一端相连;
    所述电容的另一端作为所述RCD吸收电路的输出端。
  10. 一种高压电池簇的开关盒,其特征在于,包括:正极支路,负极支路以及如权利要求1-9任一项所述的高压电池簇的过流保护电路;其中:
    所述正极支路和所述负极支路中均设置有相应的直流开关;
    所述正极支路的输入端为所述开关盒的正输入端,所述正极支路的输出端作为所述开关盒的正输出端;
    所述负极支路的输入端作为所述开关盒的负输入端,所述负极支路的输出端作为所述开关盒的负输出端。
  11. 一种高压电池簇,其特征在于,包括:N个电池模块以及如权利要求10所述的开关盒;其中:
    N个电池模块依次串联,形成串联支路,所述串联支路的正极与所述开关盒的正输入端相连,所述串联支路的负极与所述开关盒的负输入端相连;
    所述开关盒的正输出端作为所述高压电池簇的正极;
    所述开关盒的负输出端作为所述高压电池簇的负极。
PCT/CN2019/128525 2019-07-08 2019-12-26 一种高压电池簇及其过流保护电路和开关盒 WO2021004027A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207029535A KR102541790B1 (ko) 2019-07-08 2019-12-26 고전압 배터리 클러스터 및 과전류 보호 회로 및 고전압 배터리 클러스터의 스위치 박스
US17/040,501 US11942775B2 (en) 2019-07-08 2019-12-26 High voltage battery cluster, and overcurrent protection circuit and switch box thereof
EP19920623.6A EP3913763A4 (en) 2019-07-08 2019-12-26 HIGH VOLTAGE BATTERY CLUSTER AND OVERCURRENT PROTECTION CIRCUIT AND CONTROL BOX THEREFOR
JP2020551316A JP7374919B2 (ja) 2019-07-08 2019-12-26 高電圧バッテリクラスター及びその過電流保護回路、スイッチボックス
AU2019435043A AU2019435043B2 (en) 2019-07-08 2019-12-26 High voltage battery cluster, and overcurrent protection circuit and switch box thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910609878.8 2019-07-08
CN201910609878.8A CN110299744B (zh) 2019-07-08 2019-07-08 一种高压电池簇及其过流保护电路和开关盒

Publications (1)

Publication Number Publication Date
WO2021004027A1 true WO2021004027A1 (zh) 2021-01-14

Family

ID=68030619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128525 WO2021004027A1 (zh) 2019-07-08 2019-12-26 一种高压电池簇及其过流保护电路和开关盒

Country Status (7)

Country Link
US (1) US11942775B2 (zh)
EP (1) EP3913763A4 (zh)
JP (1) JP7374919B2 (zh)
KR (1) KR102541790B1 (zh)
CN (1) CN110299744B (zh)
AU (1) AU2019435043B2 (zh)
WO (1) WO2021004027A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299744B (zh) 2019-07-08 2021-12-10 阳光电源股份有限公司 一种高压电池簇及其过流保护电路和开关盒
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能系统
CN113300009A (zh) * 2021-05-21 2021-08-24 阳光电源股份有限公司 一种电池簇及储能系统
CN115833192A (zh) * 2021-09-16 2023-03-21 台达电子企业管理(上海)有限公司 储能系统
CN113839402A (zh) * 2021-09-24 2021-12-24 远景能源有限公司 一种储能电池簇及储能系统
CN115173372B (zh) * 2022-07-26 2024-09-03 广州小鹏汽车科技有限公司 短路保护电路、动力电池包以及车辆
CN117747374A (zh) * 2024-01-29 2024-03-22 北京广发电气有限公司 一种自动化高压熔断器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030107851A1 (en) * 2001-10-26 2003-06-12 Magnus Grimm Mobile high voltage network
CN102097796A (zh) * 2010-12-30 2011-06-15 广东易事特电源股份有限公司 太阳能充电控制器的功率开关管的电压尖峰吸收保护电路
CN102570389A (zh) * 2012-02-20 2012-07-11 优利德科技(中国)有限公司 一种万用电表高压误测保护方法及万用电表
CN204367903U (zh) * 2015-01-13 2015-06-03 安徽江淮汽车股份有限公司 一种动力电池包
CN104836191A (zh) * 2014-11-05 2015-08-12 北汽福田汽车股份有限公司 电路熔断器的选取方法
CN107591829A (zh) * 2017-09-25 2018-01-16 中天储能科技有限公司 一种大型储能用直流高压控制系统及其控制方法
CN110299744A (zh) * 2019-07-08 2019-10-01 阳光电源股份有限公司 一种高压电池簇及其过流保护电路和开关盒

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285717A (ja) * 2004-03-31 2005-10-13 Matsushita Electric Ind Co Ltd 回路保護装置
DE102009007969A1 (de) * 2009-02-06 2010-08-19 Siemens Aktiengesellschaft Kurzschluss-Schutzvorrichtung und Schaltanlage mit derartigen Schutzvorrichtungen
CN202839883U (zh) * 2012-09-28 2013-03-27 比亚迪股份有限公司 一种动力电池组
JP2014235997A (ja) 2013-06-05 2014-12-15 パナソニックIpマネジメント株式会社 遮断装置および電力変換システム
CN205961494U (zh) 2014-09-28 2017-02-15 嘉兴山蒲照明电器有限公司 Led直管灯
JP2016144340A (ja) 2015-02-03 2016-08-08 株式会社サムスン日本研究所 スナバ回路
US9882401B2 (en) 2015-11-04 2018-01-30 Powin Energy Corporation Battery energy storage system
CN206442130U (zh) * 2016-12-05 2017-08-25 深圳无限能源科技有限公司 动力电池充电保护装置
DE102017106058A1 (de) 2017-03-21 2018-09-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriesystem und Verfahren zu dessen Betrieb
KR102176100B1 (ko) * 2017-05-23 2020-11-09 엘에스일렉트릭(주) 전력 변환 장치
CN108879027B (zh) * 2018-05-22 2021-08-17 宁德时代新能源科技股份有限公司 加热系统和功率开关器件
CN113036317A (zh) * 2021-03-02 2021-06-25 阳光电源股份有限公司 一种电池簇及储能系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030107851A1 (en) * 2001-10-26 2003-06-12 Magnus Grimm Mobile high voltage network
CN102097796A (zh) * 2010-12-30 2011-06-15 广东易事特电源股份有限公司 太阳能充电控制器的功率开关管的电压尖峰吸收保护电路
CN102570389A (zh) * 2012-02-20 2012-07-11 优利德科技(中国)有限公司 一种万用电表高压误测保护方法及万用电表
CN104836191A (zh) * 2014-11-05 2015-08-12 北汽福田汽车股份有限公司 电路熔断器的选取方法
CN204367903U (zh) * 2015-01-13 2015-06-03 安徽江淮汽车股份有限公司 一种动力电池包
CN107591829A (zh) * 2017-09-25 2018-01-16 中天储能科技有限公司 一种大型储能用直流高压控制系统及其控制方法
CN110299744A (zh) * 2019-07-08 2019-10-01 阳光电源股份有限公司 一种高压电池簇及其过流保护电路和开关盒

Also Published As

Publication number Publication date
CN110299744A (zh) 2019-10-01
JP2021532707A (ja) 2021-11-25
AU2019435043B2 (en) 2021-11-04
US20230107559A1 (en) 2023-04-06
US11942775B2 (en) 2024-03-26
AU2019435043A1 (en) 2021-02-04
JP7374919B2 (ja) 2023-11-07
CN110299744B (zh) 2021-12-10
EP3913763A1 (en) 2021-11-24
EP3913763A4 (en) 2022-12-14
KR102541790B1 (ko) 2023-06-12
KR20210008334A (ko) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2021004027A1 (zh) 一种高压电池簇及其过流保护电路和开关盒
KR101653847B1 (ko) 독립형 직류 전력 공급망 내 고출력 배터리를 위한 고속 스위칭 장치
KR20180103181A (ko) 직류 전류 차단장치 및 제어 방법
US9478974B2 (en) DC voltage circuit breaker
CN104756339A (zh) 电路中断设备
WO2022183772A1 (zh) 一种电池簇及储能系统
EP3363092B1 (en) Method and arrangement for facilitating clearing of a pole fault and isolation of a faulted pole in a power transmission system
CN111987706B (zh) 一种限流型可控避雷器、换流器、输电系统以及控制方法
US20220376520A1 (en) Device and method for blocking current using disconnector
JP6456575B1 (ja) 直流遮断器
CN113422360A (zh) 一种直流断路器及控制方法
KR101740242B1 (ko) 고전압 배터리 팩용 보호 회로 모듈 및 이를 이용한 에너지 저장 시스템
CN111668892A (zh) 一种电池堆集的外围电路
JP7465997B2 (ja) 固体絶縁スイッチ
JP5185181B2 (ja) 電流分配装置および直流用遮断器
TWI699026B (zh) 二次電池及其保護元件
CN217406169U (zh) 开关保护电路、开关盒以及储能组件
CN210224996U (zh) 一种ups电池组充电回路保护装置
CN113659533A (zh) 功率变换器并联系统和储能系统
CN102868144A (zh) 光伏逆变器接地故障保护电路
CN216017272U (zh) 一种电路板与电池组
CN113659524B (zh) 保险主动熔断电路和电池组件
CN219875075U (zh) 光伏逆变器组串反接保护电路
CN218733306U (zh) 充电宝
CN215498253U (zh) 一种直流断路器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020551316

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019435043

Country of ref document: AU

Date of ref document: 20191226

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019920623

Country of ref document: EP

Effective date: 20201015