WO2021003743A1 - Oled显示面板及显示装置 - Google Patents

Oled显示面板及显示装置 Download PDF

Info

Publication number
WO2021003743A1
WO2021003743A1 PCT/CN2019/095628 CN2019095628W WO2021003743A1 WO 2021003743 A1 WO2021003743 A1 WO 2021003743A1 CN 2019095628 W CN2019095628 W CN 2019095628W WO 2021003743 A1 WO2021003743 A1 WO 2021003743A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
oled display
substrate
distribution density
area
Prior art date
Application number
PCT/CN2019/095628
Other languages
English (en)
French (fr)
Inventor
吴伊
邱昌明
马得贵
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2019/095628 priority Critical patent/WO2021003743A1/zh
Priority to CN201980090083.9A priority patent/CN113383439A/zh
Publication of WO2021003743A1 publication Critical patent/WO2021003743A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to the field of display technology, in particular to an OLED display panel and a display device.
  • OLED Organic Light-Emitting Diode
  • the embodiment of the invention discloses an OLED display panel and a display device.
  • a plurality of convex pillars are arranged on a substrate, and the plurality of convex pillars are non-uniformly distributed, which can prevent the mask plate from contacting and scratching the substrate.
  • an OLED display panel including a substrate, a pixel definition layer formed on the surface of the substrate, and a spacer layer formed on the surface of the pixel definition layer, the pixel definition layer separates the substrate into a plurality of light-emitting regions;
  • the spacer layer includes a plurality of convex pillars spaced apart, and the plurality of convex pillars are non-uniformly distributed on the substrate.
  • a plurality of pixel regions are defined on the substrate, each pixel region corresponds to a pixel unit of the OLED display panel, and each pixel region includes a plurality of the light-emitting regions, wherein
  • the ratio of the number of the convex pillars distributed on the substrate to the number of pixel regions defined on the substrate ranges from 3:1 to 1:50.
  • the pitch of each adjacent convex pillar distributed on the substrate ranges from 10 ⁇ m to 1000 ⁇ m.
  • At least two regions of the substrate have different distribution densities of the protrusions.
  • the distribution density of the convex pillars in the middle area of the substrate is smaller than the distribution density of the convex pillars in the two end areas of the substrate.
  • the distribution density of the protrusions is different.
  • the distribution density of the protrusions along the same direction of the substrate is the same.
  • the OLED display panel is a foldable panel.
  • the OLED display panel is divided into a folding area and a panel area on both sides of the folding area.
  • the overall distribution density of the convex pillars in the folding area is less than that in the folding area.
  • the overall distribution density of the panel area is less than that in the folding area.
  • the folding direction of the OLED display panel is the X direction
  • the direction perpendicular to the X direction on the OLED display panel is the Y direction
  • the convex pillars extend along the Y direction.
  • the distribution density is smaller than the distribution density along the X direction.
  • the protrusions are evenly distributed along the Y direction and also evenly distributed along the X direction.
  • the distribution density of the convex pillars in the folding area along the X direction and the Y direction is less than the distribution density in the panel area.
  • the convex pillars are distributed in parallel in multiple rows, and the direction of the convex pillars in each row is parallel to the folding direction of the OLED display panel.
  • the distribution density of the convex pillars along the folding direction is less than the distribution density of the convex pillars in the even-numbered rows along the folding direction, and the row spacing of adjacent rows is greater than the spacing between the adjacent convex pillars in the even-numbered rows .
  • the distribution density of the convex columns in each odd-numbered row along the folding direction is the same, and the distribution density of the convex columns in each even-numbered row along the folding direction is the same.
  • the convex pillars are distributed in parallel in multiple rows, and the direction of each row of the convex pillars forms an acute angle with the folding direction of the OLED display panel, wherein ,
  • the row spacing of adjacent rows is greater than the spacing between the adjacent protrusions in each row, and the distribution density of the protrusions in each row is the same.
  • the plurality of light-emitting regions includes a plurality of red light-emitting regions, a plurality of green light-emitting regions, and a plurality of blue light-emitting regions.
  • the OLED display panel further includes an evaporated film layer, and the evaporated film layer is formed on the surface of the substrate.
  • the substrate is a glass substrate or a flexible substrate.
  • a display device in a second aspect, includes the aforementioned OLED display panel; the display device further includes a control module for inputting data signals and scan signals to the OLED display panel, To control the display of the OLED display panel.
  • a plurality of convex pillars are formed on the surface of the pixel definition layer of the OLED display panel, and the convex pillars can support the mask plate during vapor deposition, avoid the contact between the mask plate and the substrate, thereby reducing the contact between the mask plate and the substrate.
  • the friction of the substrate can also prevent foreign matter on the metal mask from sticking to the substrate through the contact between the mask and the substrate, causing poor vapor deposition or packaging failure; further, the multiple bumps are unevenly distributed, so that it can be set as needed
  • the density of the convex pillars at different positions of the substrate can take into account the role of the convex pillars supporting the mask plate and the function of preventing color mixing and black spots.
  • FIG. 1 is a schematic cross-sectional view of an OLED display panel according to an embodiment of the invention.
  • FIG. 2 is a schematic diagram of the distribution of protrusions on an OLED display panel according to an embodiment of the invention.
  • FIG. 3 is a schematic structural diagram of an OLED display panel according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram of a distribution of bumps in the panel area of the OLED display panel of FIG. 3 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a convex pillar distribution in the folding area of the OLED display panel of FIG. 3 according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of yet another convex column distribution in the folding area of the OLED display panel of FIG. 3 according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • the embodiment of the technical solution provides an OLED display panel 1.
  • the OLED display panel includes a substrate 2, a pixel definition layer 3 formed on the surface of the substrate 2, and a pixel definition layer 3 formed on the surface of the pixel definition layer 3.
  • the pixel defining layer 3 separates the substrate 2 into a plurality of light emitting regions 21, wherein the pixel defining layer 3 surrounds each of the light emitting regions 21, so that the plurality of light emitting regions 21 are exposed to the pixel definition Layer 3.
  • the spacer layer 4 includes a plurality of protrusions 41 spaced apart from each other, and the plurality of protrusions 41 are non-uniformly distributed on the substrate 2.
  • the substrate 2 may be a glass substrate or a flexible substrate.
  • the plurality of light emitting regions 21 may include a plurality of red light emitting regions, a plurality of green light emitting regions, and a plurality of blue light emitting regions.
  • the pixel defining layer 3 can be formed by depositing a pixel defining layer material and etching the pixel defining layer material; the material for making the pixel defining layer can be a photoresist material formed by a mixture of resin, sensitizer, solvent, and the like.
  • the spacer layer 4 is a plurality of protrusions 41 spaced apart from each other.
  • the material of the spacer layer 4 can be an organic material or an inorganic material; preferably, an organic material; more preferably, a polyimide resin, a polystyrene resin, a polymethacrylic resin, a silicone material, etc. One or more.
  • the convex pillar 41 can support the mask plate during evaporation to avoid contact between the mask plate and the substrate 2, thereby reducing the friction between the mask plate and the substrate 2, and preventing foreign objects on the metal mask plate.
  • the mask is stuck to the substrate 2 through the contact between the mask and the substrate 2, resulting in poor vapor deposition.
  • the mask will be lifted up, causing local Color mixing and adhesion of foreign objects on the bumps 41 will also cause package failure, which will cause the panel to show black spots.
  • the bumps 41 can support the mask, if the density is too high, the color mixing caused by foreign objects will cause The risk of black spots is greater; the inventor of this technical solution found that different positions of the substrate are bonded with foreign objects, resulting in different evaporation color mixing and black spots. Therefore, a plurality of protrusions 41 are designed to be unevenly distributed.
  • the density of the convex pillars 41 at different positions of the substrate 2 can be set as required, so that the role of the convex pillars 41 of supporting the mask and the function of preventing color mixing and black spots can be taken into consideration.
  • a plurality of pixel regions 22 are defined on the substrate 2 (only one is shown in FIG. 1), each pixel region 22 corresponds to a pixel unit of the OLED display panel, and each pixel region 22 includes a plurality of the light-emitting regions 21; the ratio of the number of the protrusions 41 distributed on the substrate 2 to the number of the pixel regions 22 defined on the substrate ranges from 3:1 to 1:50.
  • the distance between the adjacent protrusions 41 distributed on the substrate 2 ranges from 10 ⁇ m to 1000 ⁇ m.
  • the distribution density of the convex pillars 41 in the foregoing embodiment is relatively small, so that the probability of foreign matter of the mask plate adhering to the convex pillars 41 can be reduced, and the risk of local color mixing and black spots can be reduced.
  • each pixel area 22 includes three light-emitting areas 21, and the three light-emitting areas 21 are respectively a red light-emitting area, a green light-emitting area, and a blue light-emitting area.
  • At least two regions of the substrate 2 have different distribution densities of the protrusions 41.
  • the protrusions 41 of different densities can be arranged according to the characteristics of different regions of the substrate 2.
  • the distribution density of the protrusions 41 in the middle area 201 of the substrate 2 is less than the distribution density of the protrusions 41 in the two end areas 202 of the substrate 2 to strengthen the The supporting effect of the two end regions 202 of the substrate 2 reduces the probability of defects in the middle region 201 of the substrate 2 during vapor deposition.
  • the distribution density of the protrusions 41 is different.
  • the distribution density of the protruding pillars 41 in different directions can be set according to the characteristics of the substrate 2. For example, along the direction of the stretching direction of the corresponding metal mask on the substrate 2, and in the direction of the non-stretching direction of the corresponding metal mask on the substrate 2, the distribution of the protrusions 41 The density is different.
  • the distribution density of the convex pillars 41 is different, and along the same direction of the substrate 2, the distribution density of the convex pillars 41 is the same.
  • the metal mask is prone to wrinkles, and the wrinkled area is easily in contact with the substrate 2, resulting in the aforementioned series of defects; therefore, on the substrate 2 corresponding to the area of the mask that is prone to wrinkles, The distribution density of the convex pillars 41 cannot be too small.
  • the mask includes at least one wrinkle area, the distance between each of the adjacent protrusions 41 corresponding to the wrinkle area is defined as K, the half wave width of the wrinkle in the wrinkle area is L, and the wrinkle
  • K is less than L*a/H; that is, the distance between the protrusions 41 and the wrinkle area is less than L*a/H to ensure that
  • the distribution density of the protrusions 41 in the area corresponding to the wrinkle is not too small, so as to support the mask, so that the wrinkles in the wrinkle area of the mask are at a distance from the substrate 2, thereby preventing evaporation during evaporation.
  • the wrinkles in the wrinkle area of the mask plate are in contact with the substrate 2.
  • FIG. 3 is a schematic diagram of the distribution of the convex pillars of the OLED display panel 1 of another embodiment, wherein the OLED display panel 1 is a foldable panel, and the OLED display panel 1 is divided into a folding area 11 and a folding area Panel area 12 on both sides.
  • the folding direction is defined as the X direction
  • the direction perpendicular to the X direction is defined as the Y direction.
  • the characteristics of the foldable panel cause stress concentration in the foldable panel in the X direction, which may cause packaging cracks; therefore, in this embodiment, please refer to FIGS. 3 and 4 together.
  • the The distribution density of the convex pillars 41 along the Y direction is smaller than the distribution density along the X direction, that is, the distribution density of the convex pillars 41 in the X direction where stress concentration is likely to occur is greater.
  • the protrusions 41 are evenly distributed along the Y direction and also evenly distributed along the X direction.
  • the folding area 11 of the foldable panel is more sensitive to foreign matter. That is to say, if the foreign matter on the mask plate corresponding to the folding area 11 sticks to the convex pillar 41 during evaporation, it will affect the panel's quality. Therefore, in this embodiment, the overall distribution density of the protrusions 41 in the folding area 11 is less than the overall distribution density in the panel area 12, so as to reduce the adhesion of foreign objects on the mask to the folding area. 11 the probability of the boss 41 on.
  • the convex columns 41 are distributed in parallel in multiple rows, and the direction of the convex columns 41 in each row is parallel to the X direction.
  • the distribution density of the convex pillars 41 in odd rows along the X direction is smaller than the distribution density of the convex pillars 41 in even rows along the X direction, and the row spacing of adjacent rows is larger than that of adjacent convex pillars in even rows.
  • the convex columns 41 are distributed in multiple rows in parallel, and the direction of the convex columns 41 in each row is aligned with the X direction.
  • An acute angle wherein the row spacing between adjacent rows is greater than the spacing between adjacent protrusions 41 in each row, and the distribution density of the protrusions 41 in each row is the same.
  • the OLED display panel 1 further includes an evaporated film layer 5, and the evaporated film layer 5 is formed on the surface of the substrate 2.
  • the vapor-deposited film layer 5 may be a single-layer film layer, or may include multiple film layers, and FIG. 1 only shows one vapor-deposited film layer 5.
  • the vapor-deposited film layer when it includes multiple film layers, it may include a bottom electrode layer, a first organic layer, a light emitting layer, a second organic layer, a top electrode layer, etc., which are sequentially formed, wherein the first organic layer The layer, the light-emitting layer, and the second organic layer may also have a multilayer structure; no details are repeated here; wherein, the bottom electrode layer may be an anode, and the anode may be located in each of the light-emitting regions 21, each The anodes in the light-emitting area 21 are all partitioned and surrounded by the pixel defining layer 3, that is, the anodes in each light-emitting area 21 are separated by the pixel defining layer 3; it can be understood that the first An organic layer, a light-emitting layer, a second organic layer, a top electrode layer, etc. may not be limited to the positions shown in FIG. 1, that is, they may be formed on other positions of the substrate.
  • an embodiment of the present technical solution also provides a display device 100, the display device 100 includes the aforementioned OLED display panel 1, the display device 100 further includes a control module 110, the control module 110 is used to The OLED display panel 1 inputs data signals and scan signals to control the display of the OLED display panel 1.
  • the display device 100 provided in the embodiment of the present invention may be a display device with a display function such as a mobile phone, a computer, a television, a vehicle-mounted display device, etc., which is not specifically limited in the present invention.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种OLED显示面板,包括基板、形成于基板表面的像素定义层、以及形成于像素定义层表面的间隔层,所述像素定义层将所述基板分隔出多个发光区域;其中,所述间隔层包括多个相互间隔的凸柱,所述多个凸柱在所述基板上呈非均匀分布。本申请还提供一种包含所述OLED显示面板的显色装置。本申请的OLED显示面板及显示装置的蒸镀膜层的品质较好。

Description

OLED显示面板及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED显示面板及显示装置。
背景技术
目前,有机电激光显示(Organic Light-Emitting Diode,OLED)面板通常采用掩模板如金属掩模板对基板进行蒸镀。然而,在使用掩模板对基板进行蒸镀时,掩模板容易刮伤基板,且掩模板容易接触到基板从而将掩模板上的灰尘粘到基板上,从而降低了蒸镀膜的品质。
发明内容
本发明实施例公开一种OLED显示面板及显示装置,其基板上设置多个凸柱,且多个凸柱呈非均匀分布,可以防止掩模板接触及刮伤基板。
第一方面,提供一种OLED显示面板,包括基板、形成于基板表面的像素定义层、以及形成于像素定义层表面的间隔层,所述像素定义层将所述基板分隔出多个发光区域;其中,所述间隔层包括多个相互间隔的凸柱,所述多个凸柱在所述基板上呈非均匀分布。
在一实施例中,所述基板上定义有多个像素区域,每个像素区域对应所述OLED显示面板的一个像素单元,每个所述像素区域包括有多个所述发光区域,其中,所述基板上分布的所述凸柱的数量与所述基板上定义的像素区域的数量的比值范围为3:1至1:50。
在一实施例中,所述基板上分布的各相邻所述凸柱的间距的范围为10微米至1000微米。
在一实施例中,所述基板的至少有两个区域的所述凸柱的分布密度不同。
在一实施例中,所述基板的中间区域的所述凸柱的分布密度小于所述基板的两端区域的所述凸柱的分布密度。
在一实施例中,沿所述基板上的不同方向,所述凸柱的分布密度不同。
在一实施例中,沿所述基板的相同方向的所述凸柱的分布密度相同。
在一实施例中,所述OLED显示面板为可折叠面板,所述OLED显示面板上划分有折叠区及折叠区两侧的面板区,所述凸柱在所述折叠区的整体分布密度小于在所述面板区的整体分布密度。
在一实施例中,定义所述OLED显示面板的折叠方向为X方向,所述OLED显示面板上与X方向垂直的方向为Y方向,在所述面板区内,所述凸柱沿Y方向的分布密度小于沿X方向的分布密度。
在一实施例中,在所述面板区内,所述凸柱沿Y方向均匀分布,沿X方向也均匀分布。
在一实施例中,所述凸柱沿X方向及沿Y方向在所述折叠区的分布密度均小于在所述面板区的分布密度。
在一实施例中,在所述折叠区,所述凸柱呈多行平行分布,每行所述凸柱所在的方向均与所述OLED显示面板的折叠方向相平行,其中,奇数行的所述凸柱沿所述折叠方向的分布密度小于偶数行的所述凸柱沿所述折叠方向的分布密度,且相邻行的行间距大于偶数行中相邻的所述凸柱之间的间距。
在一实施例中,各奇数行的所述凸柱沿所述折叠方向的分布密度相同,各偶数行的所述凸柱沿所述折叠方向的分布密度相同。
在一实施例中,在所述折叠区,所述凸柱呈多行平行分布,每行所述凸柱所在的方向均与所述OLED显示面板的折叠方向呈一为锐角的夹角,其中,相邻行的行间距大于每行中相邻的所述凸柱之间的间距,各行的所述凸柱的分布密度相同。
在一实施例中,所述多个发光区域包括多个红色发光区域、多个绿色发光区域及多个蓝色发光区域。
在一实施例中,所述OLED显示面板还包括蒸镀膜层,所述蒸镀膜层形成于所述基板的表面。
在一实施例中,所述基板为玻璃基板或柔性基板。
第二方面,提供一种显示装置,所述显示装置包括如前述的OLED显示 面板;所述显示装置还包括控制模块,所述控制模块用于向所述OLED显示面板输入数据信号和扫描信号,以控制所述OLED显示面板的显示。
本申请实施例中,在OLED显示面板的像素定义层表面形成有多个凸柱,所述凸柱可以在蒸镀时撑起掩模板,避免掩模板与基板相接触,进而能减少掩模板与基板的摩擦,也能防止金属掩膜板上的异物通过掩模板与基板的接触粘到基板上,造成蒸镀不良或封装失效;进一步,多个凸柱呈非均匀分布,这样可以按照需要设置基板的不同位置的凸柱的密度,从而可以兼顾凸柱的撑起掩模板的作用和防止混色、黑点的作用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例的OLED显示面板的剖视示意图。
图2为本发明一实施例的OLED显示面板上的凸柱的分布示意图。
图3为本发明一实施例的OLED显示面板的结构示意图。
图4为本发明实施例的图3的OLED显示面板的面板区的一种凸柱分布示意图。
图5为本发明实施例的图3的OLED显示面板的折叠区的一种凸柱分布示意图。
图6为本发明实施例的图3的OLED显示面板的折叠区的又一种凸柱分布的示意图。
图7为本发明实施例的一种显示装置的结构示意图。
具体实施方式
下面将结合本发明技术方案实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本技术方案实施例提供一种OLED显示面板1,所述OLED显示面板包括基板2、形成于所述基板2表面的像素定义层3及形成于所述像素定义层3表面的间隔层4。所述像素定义层3将所述基板2分隔出多个发光区域21,其中,所述像素定义层3环绕每个所述发光区域21,从而所述多个发光区域21暴露于所述像素定义层3。所述间隔层4包括有多个相互间隔的凸柱41,所述多个凸柱41在所述基板2上呈非均匀分布。
其中,所述基板2可以为玻璃基板或柔性基板。
在一实施例中,所述多个发光区域21可以包括多个红色发光区域、多个绿色发光区域及多个蓝色发光区域。
所述像素定义层3可以通过沉积像素界定层材料并蚀刻所述像素界定层材料形成;制作所述像素界定层的材料可以为由树脂、感光剂及溶剂等混合形成的光阻材料。
在一实施例中,所述间隔层4为多个相互间隔的凸柱41。
所述间隔层4的材质可以为有机材料或无机材料;优选地,为有机材料;更优选地,为聚酰亚胺树脂、聚苯乙烯树脂、聚甲基丙烯酸树脂及有机硅材料等中的一种或多种。
本技术方案实施例中,凸柱41可以在蒸镀时撑起掩模板,避免掩模板与基板2相接触,进而能减少掩模板与基板2的摩擦,也能防止金属掩膜板上的异物通过掩模板与基板2的接触粘到基板2上,造成蒸镀不良;另外,在蒸镀时,如果掩模板的异物粘结到凸柱41上,则会使掩模板被顶起,导致局部混色,异物粘结在凸柱41上也会造成封装失效,进而使面板呈现黑点,也就是说凸柱41虽然有撑起掩模板的作用,但是如果其密度太大,异物造成的混色及黑点的风险就越大;本技术方案发明人发现,基板的不同位置粘结异物,导 致的蒸镀混色及黑点后果严重程度不同,故而设计了多个凸柱41呈非均匀分布,这样可以按照需要设置基板2的不同位置的凸柱41的密度,从而可以兼顾凸柱41的撑起掩模板的作用和防止混色、黑点的作用。
在一实施例中,所述基板2上定义有多个像素区域22(图1中仅示出一个),每个像素区域22对应所述OLED显示面板的一个像素单元,每个所述像素区域22包括有多个所述发光区域21;所述基板2上分布的所述凸柱41的数量与所述基板上定义的像素区域22的数量的比值范围为3:1至1:50。
在一实施例中,所述基板2上分布的各相邻所述凸柱41的间距的范围为10微米至1000微米。
其中,前述实施例中的所述凸柱41的的分布密度整体较小,从而可以减小掩模板的异物粘结到凸柱41上的几率,进而可以降低局部混色及黑点的风险。
在一实施例中,每个所述像素区域22包括有三个所述发光区域21,且三个所述发光区域21分别为红色发光区域、绿色发光区域及蓝色发光区域。
在一实施例中,所述基板2的至少两个区域的所述凸柱41的分布密度不同。也就是说,可以根据基板2的不同区域的特点设置不同密度的凸柱41。例如,请参图2所示,所述基板2的中间区域201的所述凸柱41的分布密度小于所述基板2的两端区域202的所述凸柱41的分布密度,以加强所述基板2的两端区域202的支撑效果,并降低所述基板2的中间区域201在蒸镀时的不良几率。
在一实施例中,沿所述基板2的不同方向,所述凸柱41的分布密度不同。其中,可以根据所述基板2的特点,设置不同方向上的凸柱41的分布密度。例如,沿所述基板2上的对应金属掩模板的拉伸方向的方向上,与沿所述基板2上的对应金属掩模板的非拉伸方向的方向上上,所述凸柱41的分布密度不同。
进一步,在一实施例中,沿所述基板2的不同方向,所述凸柱41的分布密度不同,且,沿所述基板2的相同方向,所述凸柱41的分布密度相同。
目前,在蒸镀时,金属掩模板容易产生褶皱,产生褶皱的区域就很容易与基板2接触,从而产生前述的一系列不良;故,在基板2上对应掩模板容易产生褶皱的区域,所述凸柱41的分布密度不能太小。在一实施例中,掩模板包括有至少一褶皱区域,定义各相邻的所述凸柱41对应所述褶皱区域内的间距为K,所述褶皱区域的褶皱的半波宽为L,褶皱的高度为H,所述间隔层的厚度为a,则K小于L*a/H;也就是说,所述凸柱41对应所述褶皱区域内的间距小于L*a/H,以保证所述凸柱41在对应所述褶皱区域内的分布密度不会太小,以能撑起所述掩模板,使得所述掩模板褶皱区域内的褶皱与基板2有一距离,从而防止在蒸镀时所述掩模板褶皱区域内的褶皱与基板2接触。
请参阅图3,为另一实施例的OLED显示面板1的凸柱的分布示意图,其中,所述OLED显示面板1为可折叠面板,所述OLED显示面板1上划分有折叠区11及折叠区两侧的面板区12。在所述实施例中,定义折叠方向为X方向,定义与所述X方向垂直的方向为Y方向。
可折叠面板的特性导致所述可折叠面板在X方向容易发生应力集中,进而引起封装裂纹;故,本实施例中,请一并参阅图3、4,在所述面板区12内,所述凸柱41沿Y方向的分布密度小于沿X方向的分布密度,也就是使所述凸柱41在容易发生应力集中的X方向的分布密度较大。
本实施例中,在所述面板区12内,所述凸柱41沿Y方向均匀分布,沿X方向也均匀分布。
可折叠面板的折叠区11对异物的敏感性更高,也就是说,在蒸镀时,对应所述折叠区11的掩模板上的异物如果粘到所述凸柱41上,对面板的良率影响更大;故,本实施例中,所述凸柱41在所述折叠区11的整体分布密度小于在所述面板区12的整体分布密度,以降低掩模板上的异物粘到折叠区11的所述凸柱41上的几率。
请一并参阅图3、5,在一实施例中,在所述折叠区11,所述凸柱41呈多行平行分布,每行所述凸柱41所在的方向均与X方向相平行,其中,奇数行的所述凸柱41沿X方向的分布密度小于偶数行的所述凸柱41沿X方向的分 布密度,且相邻行的行间距大于偶数行中相邻的所述凸柱41之间的间距。更优选地,各奇数行的所述凸柱41沿X方向的分布密度相同,各偶数行的所述凸柱41沿X方向的分布密度相同。
请一并参阅图3、6,在一实施例中,在所述折叠区11,所述凸柱41呈多行平行分布,每行所述凸柱41所在的方向均与X方向呈一为锐角的夹角,其中,相邻行的行间距大于每行中相邻的所述凸柱41之间的间距,各行的所述凸柱41的分布密度相同。
请再次参阅图1,在一实施例中,所述OLED显示面板1还包括蒸镀膜层5,所述蒸镀膜层5形成于所述基板2的表面。
可以理解,所述蒸镀膜层5可以为单层膜层,或可以为包括多层膜层,其中,图1仅示出了一层蒸镀膜层5。
可以理解,当所述蒸镀膜层包括多层膜层时,可以包括依次形成的底电极层、第一有机层、发光层、第二有机层、顶电极层等,其中,所述第一有机层、发光层、第二有机层又可以为多层结构;此处不做赘述;其中,所述底电极层可以为阳极,所述阳极可以位于各所述发光区域21内,每个所述发光区域21内的所述阳极均被所述像素定义层3隔断包围,也即,每个所述发光区域21内的所述阳极被所述像素定义层3所间隔;可以理解,所述第一有机层、发光层、第二有机层、顶电极层等可以不以图1所示的位置为限,即还可以形成于基板的其他位置。
其中,需要注意的是,本案前述的所有实施例,如果不相抵触,则都能够相互组合形成新的实施例,此处不再一一列举,但相互组合形成的实施例也应属于本案保护的范围。
请参阅图7,本技术方案实施例还提供一种显示装置100,所述显示装置100包括前述OLED显示面板1,所述显示装置100还包括控制模块110,所述控制模块110用于向所述OLED显示面板1输入数据信号和扫描信号,以控制所述OLED显示面板1的显示。
可以理解的是,本发明实施例提供的显示装置100,可以是手机、电脑、电视、车载显示装置等具有显示功能的显示装置,本发明对此不作具体限制。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (18)

  1. 一种OLED显示面板,包括基板、形成于基板表面的像素定义层、以及形成于像素定义层表面的间隔层,所述像素定义层将所述基板分隔出多个发光区域;其中,所述间隔层包括多个相互间隔的凸柱,所述多个凸柱在所述基板上呈非均匀分布。
  2. 如权利要求1所述的OLED显示面板,其中,所述基板上定义有多个像素区域,每个像素区域对应所述OLED显示面板的一个像素单元,每个所述像素区域包括有多个所述发光区域,其中,所述基板上分布的所述凸柱的数量与所述基板上定义的像素区域的数量的比值范围为3:1至1:50。
  3. 如权利要求1所述的OLED显示面板,其中,所述基板上分布的各相邻所述凸柱的间距的范围为10微米至1000微米。
  4. 如权利要求1所述的OLED显示面板,其中,所述基板的至少有两个区域的所述凸柱的分布密度不同。
  5. 如权利要求4所述的OLED显示面板,其中,所述基板的中间区域的所述凸柱的分布密度小于所述基板的两端区域的所述凸柱的分布密度。
  6. 如权利要求1所述的OLED显示面板,其中,沿所述基板上的不同方向,所述凸柱的分布密度不同。
  7. 如权利要求6所述的OLED显示面板,其中,沿所述基板的相同方向的所述凸柱的分布密度相同。
  8. 如权利要求1所述的OLED显示面板,其中,所述OLED显示面板为可折叠面板,所述OLED显示面板上划分有折叠区及折叠区两侧的面板区,所述凸柱在所述折叠区的整体分布密度小于在所述面板区的整体分布密度。
  9. 如权利要求8所述的OLED显示面板,其中,定义所述OLED显示面板的折叠方向为X方向,所述OLED显示面板上与X方向垂直的方向为Y方向,在所述面板区内,所述凸柱沿Y方向的分布密度小于沿X方向的分布密度。
  10. 如权利要求9所述的OLED显示面板,其中,在所述面板区内,所述凸柱沿Y方向均匀分布,沿X方向也均匀分布。
  11. 如权利要求9所述的OLED显示面板,其中,所述凸柱沿X方向及沿Y方向在所述折叠区的分布密度均小于在所述面板区的分布密度。
  12. 如权利要求8所述的OLED显示面板,其中,在所述折叠区,所述凸柱呈多行平行分布,每行所述凸柱所在的方向均与所述OLED显示面板的折叠方向相平行,其中,奇数行的所述凸柱沿所述折叠方向的分布密度小于偶数行的所述凸柱沿所述折叠方向的分布密度,且相邻行的行间距大于偶数行中相邻的所述凸柱之间的间距。
  13. 如权利要求12所述的OLED显示面板,其中,各奇数行的所述凸柱沿所述折叠方向的分布密度相同,各偶数行的所述凸柱沿所述折叠方向的分布密度相同。
  14. 如权利要求8所述的OLED显示面板,其中,在所述折叠区,所述凸柱呈多行平行分布,每行所述凸柱所在的方向均与所述OLED显示面板的折叠方向呈一为锐角的夹角,其中,相邻行的行间距大于每行中相邻的所述凸柱之间的间距,各行的所述凸柱的分布密度相同。
  15. 如权利要求1所述的OLED显示面板,其中,所述多个发光区域包括多个红色发光区域、多个绿色发光区域及多个蓝色发光区域。
  16. 如权利要求1所述的OLED显示面板,其中,所述OLED显示面板还包括蒸镀膜层,所述蒸镀膜层形成于所述基板的表面。
  17. 如权利要求1所述的OLED显示面板,其中,所述基板为玻璃基板或柔性基板。
  18. 一种显示装置,所述显示装置包括如权利要求1至17任一项所述的OLED显示面板;所述显示装置还包括控制模块,所述控制模块用于向所述OLED显示面板输入数据信号和扫描信号,以控制所述OLED显示面板的显示。
PCT/CN2019/095628 2019-07-11 2019-07-11 Oled显示面板及显示装置 WO2021003743A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/095628 WO2021003743A1 (zh) 2019-07-11 2019-07-11 Oled显示面板及显示装置
CN201980090083.9A CN113383439A (zh) 2019-07-11 2019-07-11 Oled显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095628 WO2021003743A1 (zh) 2019-07-11 2019-07-11 Oled显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021003743A1 true WO2021003743A1 (zh) 2021-01-14

Family

ID=74114346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095628 WO2021003743A1 (zh) 2019-07-11 2019-07-11 Oled显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN113383439A (zh)
WO (1) WO2021003743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344281A1 (en) * 2021-04-22 2022-10-27 Innolux Corporation Electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214284A1 (en) * 2014-01-28 2015-07-30 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
CN106206604A (zh) * 2016-07-29 2016-12-07 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
US20170098688A1 (en) * 2015-10-02 2017-04-06 Samsung Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN106910841A (zh) * 2017-03-31 2017-06-30 昆山国显光电有限公司 阵列基板及其制造方法和有机发光显示器
CN107359274A (zh) * 2017-06-27 2017-11-17 上海天马有机发光显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN109065596A (zh) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206225365U (zh) * 2016-12-16 2017-06-06 京东方科技集团股份有限公司 一种oled显示面板
CN107085323B (zh) * 2017-05-26 2020-05-26 厦门天马微电子有限公司 一种显示面板及其制作方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150214284A1 (en) * 2014-01-28 2015-07-30 Samsung Display Co., Ltd. Organic light emitting display device and manufacturing method thereof
US20170098688A1 (en) * 2015-10-02 2017-04-06 Samsung Display Co., Ltd. Organic light emitting diode display and method for manufacturing the same
CN106206604A (zh) * 2016-07-29 2016-12-07 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN106910841A (zh) * 2017-03-31 2017-06-30 昆山国显光电有限公司 阵列基板及其制造方法和有机发光显示器
CN107359274A (zh) * 2017-06-27 2017-11-17 上海天马有机发光显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN109065596A (zh) * 2018-08-17 2018-12-21 京东方科技集团股份有限公司 阵列基板、显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344281A1 (en) * 2021-04-22 2022-10-27 Innolux Corporation Electronic device
US11880100B2 (en) * 2021-04-22 2024-01-23 Innolux Corporation Electronic device

Also Published As

Publication number Publication date
CN113383439A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US10665641B2 (en) Color filter (CF) substrate, manufacturing method thereof, display panel and display device
US10957751B2 (en) Pixel defining layer and manufacturing method thereof, display substrate, display panel
US9653526B2 (en) Pixel defining layer and manufacturing method thereof, display panel and display device
US10886481B2 (en) Display substrate with angle-adjusting portion, manufacturing method thereof, and display device
US9761632B2 (en) Display substrate and method of manufacturing the same, and display device
US10263049B2 (en) Color filter substrate and method of manufacturing the same, organic light emitting display panel and display device
US10205121B2 (en) Organic electroluminescent display panel and display apparatus
US11056543B2 (en) Display panel and manufacturing method thereof
US10559635B2 (en) Pixel defining layer, production method thereof, and display substrate
US11276735B2 (en) Array substrate, method of fabricating array substrate, display panel, and display device
CN109920933B (zh) 显示基板及其制造方法,显示面板、显示装置
US20220158136A1 (en) Display panel, manufacturing method thereof, and displaying device
US11800744B2 (en) Display panel and display apparatus
KR20170079529A (ko) 유기 발광 표시 장치 및 이의 제조 방법
US20210288295A1 (en) Pixel defining layer, manufacturing method therefor, display substrate, and display device
WO2018040329A1 (zh) 一种发光面板及其制备方法
CN109950285B (zh) 一种阵列基板及其制作方法、显示装置
US20130286337A1 (en) Liquid crystal display device
US20210399067A1 (en) Display Substrate and Manufacturing Method Thereof, Display Device, and Inkjet Printing Method
WO2021003743A1 (zh) Oled显示面板及显示装置
US11114639B2 (en) Flexible display panel, fabricating method thereof and display apparatus
US11349107B2 (en) Display substrate, display device, and manufacturing method of display substrate
WO2018149023A1 (zh) 发光器件及显示装置
US20210249622A1 (en) Display device and method for manufacturing the same
US20220384543A1 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937202

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937202

Country of ref document: EP

Kind code of ref document: A1