WO2021003720A1 - 一种光学成像系统及电子装置 - Google Patents

一种光学成像系统及电子装置 Download PDF

Info

Publication number
WO2021003720A1
WO2021003720A1 PCT/CN2019/095492 CN2019095492W WO2021003720A1 WO 2021003720 A1 WO2021003720 A1 WO 2021003720A1 CN 2019095492 W CN2019095492 W CN 2019095492W WO 2021003720 A1 WO2021003720 A1 WO 2021003720A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
image side
object side
Prior art date
Application number
PCT/CN2019/095492
Other languages
English (en)
French (fr)
Inventor
毛庆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980031220.1A priority Critical patent/CN112154363B/zh
Priority to PCT/CN2019/095492 priority patent/WO2021003720A1/zh
Publication of WO2021003720A1 publication Critical patent/WO2021003720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention generally relates to the field of optical imaging, in particular to an optical imaging system and an electronic device.
  • one aspect of the present invention provides an optical imaging system, which sequentially includes from the object side to the image side:
  • a first lens with negative refractive power the object side of the first lens is convex, and the image side is concave;
  • a second lens with positive refractive power the object side of the second lens is convex and the image side is concave;
  • a third lens with positive refractive power, the object side of the third lens is convex
  • a fourth lens with positive refractive power the object side of the fourth lens is convex, and the image side is convex;
  • a fifth lens with positive refractive power the object side of the fifth lens is concave and the image side is convex;
  • a sixth lens with positive refractive power, the image side surface of the sixth lens is convex
  • a seventh lens with negative refractive power, and the image side surface of the seventh lens is concave.
  • the electronic device includes the above-mentioned optical imaging system and a photosensitive element, which is arranged on the image side of the optical imaging system.
  • optical imaging system and the electronic device of the present invention are highly miniaturized, light in overall weight, and have better imaging quality.
  • Fig. 1 shows a schematic diagram of an optical imaging system according to an embodiment of the present invention
  • Fig. 2 shows a positional chromatic aberration distribution diagram of an optical imaging system according to an embodiment of the present invention
  • FIG. 3 shows a distribution diagram of chromatic aberration of magnification of an optical imaging system according to an embodiment of the present invention
  • FIGS. 4A and 4B show diagrams of field curvature and distortion of an optical imaging system according to an embodiment of the present invention.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens.
  • the thickness, size, and shape of the lens have been slightly exaggerated for ease of description.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the paraxial area refers to the area near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
  • the lenses that are compatible with 1 inch and above photosensitive elements and large apertures are mainly digital lenses. These lenses are all-glass design, heavy in weight, and low in miniaturization, making it difficult to achieve portability.
  • the maximum F number of the existing lens (the focal length of the lens/the diameter of the effective aperture of the lens) is usually above 2.8 or 2.8.
  • the ambient light is insufficient (such as rainy days, dusk, etc.), the shot The overall performance of the picture is not ideal.
  • most of the current miniaturized lenses on the market have adapted photosensitive elements below 1/1.7 and a constant aperture, which cannot meet the needs of more professional users.
  • the present invention provides an optical imaging system, which has a high degree of miniaturization, a light overall weight, and a better imaging quality.
  • the lens has a positive refractive power, indicating that its refractive power is convergent; the lens has a negative refractive power, indicating that its refractive power is divergent.
  • Convex object side of the lens means that any point on the surface of the object side of the lens is cut. The surface is always on the right side of the tangent surface, and its radius of curvature is positive.
  • the object side is concave and its radius of curvature is negative; if the lens surface is convex And when the convex surface position is not defined, it means that the lens surface can be convex at the paraxial position; if the lens surface is concave and the concave surface position is not defined, it means that the lens surface can be concave at the paraxial position. If the refractive power or focal length of the lens does not define its regional position, it means that the refractive power or focal length of the lens can be the refractive power or focal length of the lens at the paraxial position.
  • the optical imaging system 100 of an embodiment of the present invention includes seven lenses, from the object side to the image side, the first lens 101, the second lens 102, the third lens 103, the fourth lens 104, and the The five lens 105, the sixth lens 106, and the seventh lens 107 have a space between any two adjacent lenses.
  • the light from the object side sequentially passes through the first lens 101, the second lens 102, the third lens 103, the fourth lens 104, the fifth lens 105, the sixth lens 106 and the seventh lens 107 and then forms an image on the seventh lens 107.
  • the imaging surface on the image side is the first lens 101, the second lens 102, the third lens 103, the fourth lens 104, the fifth lens 105, the sixth lens 106 and the seventh lens 107.
  • the first lens 101 has negative refractive power, its object side is convex, and the image side is concave;
  • the second lens 102 has positive refractive power, its object side is convex, and the image side is concave;
  • the third lens 103 has positive refractive power , The object side surface is convex;
  • the fourth lens 104 has positive refractive power, the object side surface is convex, and the image side surface is convex;
  • the fifth lens 105 has positive refractive power, its object side surface is concave, and the image side surface is convex;
  • the sixth lens 106 has a positive refractive power, and its image side surface is convex;
  • the seventh lens 107 has a negative refractive power, and its image side surface is concave.
  • the above seven lenses are all plastic lenses.
  • the optical imaging system 100 of the embodiment of the present invention adopts an all-plastic lens design solution, which is beneficial to reduce the weight of the optical imaging system, facilitate the miniaturization of equipment, and reduce production costs, and the plastic lens has a lighter weight and requires power consumption for focusing. Smaller, thereby reducing equipment heating.
  • the optical imaging system of this embodiment satisfies 0.4 ⁇ f/TTL ⁇ 1.0.
  • f is the effective focal length of the optical imaging system
  • TTL is the distance from the object side of the first lens 101 to the imaging surface on the optical axis. Satisfying the above conditions is conducive to maintaining high imaging quality while effectively shortening the length of the system.
  • the first lens 101 has a negative refractive power and can provide a larger viewing angle; its object side is convex, which can reduce the incident angle of peripheral light on the first lens 101, help reduce surface reflection, and make the optical imaging system more suitable for wide-angle design.
  • the first lens 101 satisfies the following conditions: 0.25 ⁇
  • the second lens 102 has a positive refractive power and is used for condensing the light emitted by the first lens 101, which can balance the aberration generated by the first lens 101.
  • the object side surface of the second lens 102 is convex, and the image side surface is concave.
  • the image side surface of the first lens 101 and the object side surface of the second lens 102 have substantially the same radius of curvature, which can reduce the lens Sensitivity, to further suppress aberrations, and at the same time facilitate the assembly of the lens.
  • the first lens 101 and the second lens 102 satisfy the following conditions: 0 ⁇
  • R21 is the radius of curvature of the object side surface of the second lens 102
  • R12 is The radius of curvature of the image side surface of the first lens 101.
  • the third lens 103 has a positive refractive power, which can buffer the light emitted by the second lens 102.
  • the third lens 103 satisfies the following condition: 3.0 ⁇ f3/f ⁇ 5.0, where f is the effective focal length of the optical imaging system 100 and f3 is the effective focal length of the third lens 103. In this way, the size of the refractive power can be configured to be more balanced, and the total length of the optical imaging system can be controlled.
  • the fourth lens 104 is an aspherical lens, which can effectively improve off-axis aberrations, and at the same time, is beneficial to correct the angle of light emitted by the lens, and can better match the photosensitive element. Furthermore, the fourth lens 104 also satisfies the following condition: 1.5 ⁇ nd ⁇ 1.8, where nd is the refractive index of the fourth lens 104. Satisfying the above conditions is conducive to the reduction of aberrations. In addition, due to the requirement of miniaturization of the lens, the total length of the lens is very short. Therefore, setting the fourth lens 104 with such a high refractive index is beneficial to quickly change the direction of light and achieve the chief light angle (CRA, Chief Ray Angle) defined by the photosensitive element. Match the purpose.
  • CRA chief light angle
  • the fifth lens 105 has a positive refractive power, which satisfies the following condition: 0.15 ⁇ CT5 ⁇ 0.35, where CT5 is the central thickness of the fifth lens 105. Satisfying the above conditions is beneficial to the molding process of the lens, especially to the moldability and homogeneity of the plastic lens, so that the system has a good imaging quality. In addition, setting the thickness of the fifth lens 105 within the above-mentioned range can avoid the ghost phenomenon.
  • the sixth lens 106 satisfies the following condition: 0 ⁇
  • CT6 is the center thickness of the sixth lens 106
  • ET6 is the edge thickness of the sixth lens 106.
  • the distance between the sixth lens 106 and the seventh lens 107 also satisfies 0 ⁇ L67/TTL ⁇ 0.1, where TTL is the on-axis distance from the object side of the first lens 101 to the imaging surface, and L67 is the image side of the sixth lens 106 The on-axis distance to the object side of the seventh lens 107. Satisfying this requirement is beneficial to reducing the reflection between the sixth lens 106 and the seventh lens 107, and at the same time, it is beneficial to correct the angle of the emitted light of the optical imaging system, and can better match the photosensitive element.
  • the seventh lens 107 has negative refractive power.
  • both the object side and the image side of the seventh lens 107 have at least one inflection point, which can effectively suppress the angle of the off-axis field of view light incident on the photosensitive element, thereby correcting the off-axis aberration to improve the peripheral image quality .
  • the image side surface of the seventh lens 107 changes from a concave surface to a convex surface from the paraxial position to the periphery, and this shape helps reduce the total reflection of light.
  • the object side surface of the seventh lens 107 is a concave surface, and its shape matches the image side surface of the sixth lens 106 relatively.
  • the seventh lens 107 satisfies the following condition:
  • the optical imaging system of the embodiment of the present invention may be provided with at least one diaphragm to reduce stray light and improve image quality.
  • the diaphragm may be an iris diaphragm, but is not limited to an iris diaphragm, but may also be an invariable diaphragm.
  • the aperture configuration may be front or center. The front of the diaphragm is more conducive to correcting CRA (that is, the maximum angle of the chief ray incident on the electronic photosensitive element).
  • the diaphragm is arranged in front of the object side of the third lens 103. Further, the diaphragm can be arranged in front of the object side of the first lens 101 to reduce the number of lens barrels and reduce costs.
  • a filter element is further provided between the seventh lens 107 and the imaging surface.
  • the filter element includes an infrared filter, which is used to filter the infrared wave band light entering the optical lens group, so as to prevent the infrared light from being irradiated on the photosensitive chip to generate noise.
  • the material of the filter element includes glass, which does not affect the focal length of the optical imaging system.
  • each lens of the optical imaging system of an embodiment of the present invention is specifically shown in Table 1.
  • Table 1 the unit of the radius of curvature and the thickness is mm.
  • Surfaces 1-18 represent the surfaces from the object side to the image side in turn, and surfaces 1-18 represent the diaphragm, the object side of the first lens, and the first lens image in turn.
  • lens focal length ability 1 14.5 0.07 2 -23.9 -0.04 3 31.0 0.03 4 12.5 0.08 5 -12.2 -0.08 6 4.1 0.24 7 -3.8 -0.27
  • each lens mostly adopts an aspheric mirror surface, that is, the curvature is continuously changed from the center of the lens to the periphery of the lens.
  • an aspheric lens has better curvature radius characteristics and has the advantages of improving distortion and astigmatism.
  • the aberrations that occur during imaging can be eliminated as much as possible, thereby improving the imaging quality.
  • at least one of the object side surface and the image side surface of each of the first lens 101 to the seventh lens 107 may be an aspheric surface. Further, the object side surface and the image side surface of each of the first lens 101 to the seventh lens 107 are aspherical.
  • the aspheric coefficients of each lens in this embodiment are specifically shown in Table 3.
  • A4-A16 respectively represent the coefficients of the 4th-16th order aspheric surface terms of each lens surface.
  • Figure 2 shows the positional chromatic aberration distribution diagram of the optical imaging system according to the embodiment of the present invention
  • Figure 3 shows the magnification chromatic aberration distribution diagram of the optical imaging system according to the embodiment of the present invention
  • Figure 4A and Figure 4B show the embodiment of the present invention The curvature and distortion map of the optical imaging system.
  • FIGS. 2 to 4B those skilled in the art can understand that the optical imaging system of the embodiment of the present invention has relatively small chromatic aberration and distortion, and has excellent imaging effects.
  • the optical imaging system of the embodiment of the present invention adopts an all-plastic lens design, which is highly miniaturized, light in overall weight, and has better imaging quality.
  • the optical imaging system 100 of the embodiment of the present invention may be applied to an electronic device. Therefore, the embodiments of the present invention may also provide an electronic device.
  • the electronic devices in the embodiments of the present invention may include, but are not limited to, smart phones, mobile phones, personal digital assistants (Personal Digital Assistant, PDA), game consoles, and personal computers (Personal Computers). Computer, PC), cameras, smart watches, tablet computers, handheld PTZ and other information terminal equipment or home appliances with camera functions, etc.
  • the electronic device of the embodiment of the present invention includes the optical imaging system 100 and the photosensitive element (not shown) as described in the various embodiments above, and the photosensitive element is arranged on the image side of the optical imaging system 100.
  • the photosensitive element may provide an imaging surface on which the light refracted by the lens is imaged.
  • the photosensitive element can convert the optical signal imaged on the imaging surface into an electrical signal for use by a computer or other suitable electronic devices.
  • the photosensitive element may be a Complementary Metal Oxide Semiconductor (CMOS) image sensor or a Charge-coupled Device (CCD, Charge-coupled Device) image sensor, etc.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the size of the photosensitive element is greater than or equal to 1 inch.
  • the optical imaging system 100 adopts an all-plastic design, the optical length of the lens can be less than 20 mm, and the aperture can be 2.0.
  • the electronic device of the embodiment of the present invention further includes a focus motor (not shown) for driving the optical imaging system 100 to focus.
  • the focus motor is an Ultra-Sonic Motor (USM).
  • the electronic device of the embodiment of the present invention realizes the requirements of miniaturization, large aperture, variable aperture, small distortion, and high pixels on the basis of satisfying large-size photosensitive elements. Moreover, the use of USM motor focus can improve the image shake problem while also making the overall module meet the miniaturization.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统及电子装置,光学成像系统(100)由物侧至像侧依次包括:具有负屈折力的第一透镜(101),物侧面为凸面,像侧面为凹面;具有正屈折力的第二透镜(102),物侧面为凸面,像侧面为凹面;具有正屈折力的第三透镜(103),物侧面为凸面;具有正屈折力的第四透镜(104),物侧面为凸面,像侧面为凸面;具有正屈折力的第五透镜(105),物侧面为凹面,像侧面为凸面;具有正屈折力的第六透镜(106),像侧面为凸面;具有负屈折力的第七透镜(107),像侧面为凹面。光学成像系统及电子装置小型化程度高,整体重量轻,并且具有较佳的成像品质。

Description

一种光学成像系统及电子装置 技术领域
本发明总地涉及光学成像领域,具体而言涉及一种光学成像系统及电子装置。
背景技术
近年来,随着科技的发展,便携式电子产品逐渐兴起,这同时推动了应用在便携式电子装置上的摄像产品的发展,具有小型化高像素大光圈的摄像广角镜头产品得到更多人们的青睐。
随着电子产品的发展,目前市面上对大尺寸CMOS配置的电子产品需求越来越高。随着CMOS尺寸的增大,在同样的光圈下,景深会越来越浅,无法应对不同环境,不同场景的需求。
此外,目前市面满足一英寸CMOS及以上的镜头,多采用全玻璃镜片,小型化程度低,整体重量大。
因此,鉴于上述技术问题的存在,有必要提出一种新的光学成像系统及电子装置。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
针对现有技术的不足,本发明一方面提供了一种光学成像系统,由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
具有正屈折力的第二透镜,所述第二透镜的物侧面为凸面,像侧面为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面为凸面;
具有正屈折力的第四透镜,所述第四透镜的物侧面为凸面,像侧面为凸面;
具有正屈折力的第五透镜,所述第五透镜的物侧面为凹面,像侧面为凸面;
具有正屈折力的第六透镜,所述第六透镜的像侧面为凸面;
具有负屈折力的第七透镜,所述第七透镜的像侧面为凹面。
本发明另一方面提供了一种电子装置,所述电子装置包括上述光学成像系统,以及感光元件,其设置在所述光学成像系统的像侧。
本发明的光学成像系统及电子装置小型化程度高,整体重量轻,并且具有较佳的成像品质。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明一个实施例的光学成像系统的示意图;
图2示出了根据本发明一个实施例的光学成像系统的位置色差分布图;
图3示出了根据本发明一个实施例的光学成像系统的倍率色差分布图;
图4A、图4B示出了根据本发明一个实施例的光学成像系统的像面弯曲和畸变图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完 全,并且将本发明的范围完全地传递给本领域技术人员。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。例如,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近被摄物的表面称为该透镜的物侧面,每个透镜中最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以 理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
目前市面上适配1英寸及以上感光元件及大光圈的镜头,主要集中在数码镜头,这类镜头均采用全玻璃设计,重量大,小型化程度低,导致产品难以实现便携化。为了满足小型化的要求,现有镜头的最大F数(镜头的焦距/镜头的有效口径的直径)通常在2.8或者2.8以上,在环境光线不足时(如阴雨天,黄昏等),所拍摄的画面整体表现不理想。此外,目前市面上小型化的镜头,多数适配的感光元件在1/1.7以下,光圈恒定,无法满足更专业的用户需求。
针对上述问题,本发明提供一种光学成像系统,其小型化程度高,整体重量轻,并且具有较佳的成像品质。
下面,参考图1-图4B对本发明一实施例的光学成像系统做详细说明。在下文的描述中,透镜具有正屈折力,表明其对光线的屈折是汇聚性的;透镜具有负屈折力,表明其对光线的屈折是发散性的。透镜物侧面为凸面是指透镜物侧面过面上任意一点做切面,表面总是在切面的右边,其曲率半径为正,反之物侧面则为凹面,其曲率半径为负;若透镜表面为凸面且未界定凸面位置时,则表示透镜表面可于近轴处为凸面;若透镜表面为凹面且未界定凹面位置时,则表示透镜表面可于近轴处为凹面。若透镜的屈折力或焦距未界定其区域位置时,则表示透镜的屈折力或焦距可为透镜于近轴处的屈折力或焦距。
如图1所示,本发明一个实施例的光学成像系统100包括七枚透镜,由物侧至像侧依次为第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106和第七透镜107,其中任意的两个相邻透镜之间具有间隔。来自物侧方的光线依次经过第一透镜101、第二透镜102、第三透镜103、第四透镜104、第五透镜105、第六透镜106和第七透镜107之后成像到位于第七透镜107像侧的成像面上。
其中,第一透镜101具有负屈折力,其物侧面为凸面,像侧面为凹面;第二透镜102具有正屈折力,其物侧面为凸面,像侧面为凹面; 第三透镜103具有正屈折力,其物侧面为凸面;第四透镜104具有正屈折力,其物侧面为凸面,像侧面为凸面;第五透镜105具有正屈折力,其物侧面为凹面,像侧面为凸面;第六透镜106具有正屈折力,其像侧面为凸面;第七透镜107具有负屈折力,其像侧面为凹面。本发明实施例通过对上述七枚透镜的合理设置,使光学成像系统100具有小畸变、高像素的优点,并且还能够满足小型化的需求。
在一个实施例中,上述七枚透镜均为塑胶镜片。本发明实施例的光学成像系统100采用全塑胶镜片设计方案,有利于减轻光学成像系统的重量,有利于设备的小型化,以及降低生产成本,并且塑胶镜片重量较轻,对焦所需的功耗较小,从而减少了设备发热。
本实施例的光学成像系统满足0.4<f/TTL<1.0。其中,f为所述光学成像系统的有效焦距,TTL为第一透镜101的物侧面至成像面于光轴上的距离。满足上述条件有利于在有效地缩短系统长度的情况下维持高成像品质。
第一透镜101具负屈折力,可提供较大的视角;其物侧面为凸面,可降低周边光线于第一透镜101的入射角,有助于减少面反射,使光学成像系统更适用于广角设计。
在一个实施例中,第一透镜101满足以下条件:0.25<|(R11-R12)/(R11+R12)|<0.5,其中R11为第一透镜101的物侧面的曲率半径,R12为第一透镜101的像侧面的曲率半径。满足上述条件可以在保证较佳的消畸变能力的同时,也使得光学成像系统具有较好的平场曲能力。
第二透镜102具正屈折力,用于汇聚第一透镜101出射的光线,其可平衡第一透镜101所产生的像差。第二透镜102的物侧面为凸面,像侧面为凹面,并且在一个实施例中,第一透镜101的像侧面与第二透镜102的物侧面具有基本相同的曲率半径,从而可以降低透镜镜片的敏感度,进一步抑制像差,同时有利于透镜镜片的装配。
进一步地,第一透镜101与第二透镜102满足以下条件:0<|(R12-R21)/(R21+R12)|<0.3,其中R21为第二透镜102的物侧面的曲率半径,R12为第一透镜101的像侧面的曲率半径。通过使第二透镜102物侧面的曲率半径与第一透镜101像侧面的曲率半径满足上述 关系,能够使第二透镜102与第一透镜101更好地配合,有利于抑制像差,同时能够降低镜片敏感度,有利于镜片装配。第二透镜102的出射光束经由第三透镜103至第七透镜107的配合作用之后,能够使以预定的角度范围入射到传感器。
第三透镜103具有正屈折力,其能够对第二透镜102的出射光线进行缓冲。在一个实施例中,第三透镜103满足以下条件:3.0≤f3/f≤5.0,其中,f为光学成像系统100的有效焦距,f3为第三透镜103的有效焦距。由此,可使屈折力大小配置较为平衡,进而控制光学成像系统的总长度。
第四透镜104为非球面透镜,可以有效改善轴外像差,同时有利于矫正镜头出射光线角度,能更好的匹配感光元件。进一步地,第四透镜104还满足以下条件:1.5<nd≤1.8,其中,nd为第四透镜104的折射率。满足上述条件,有利于像差的减小。并且由于镜头小型化要求,镜头的总长要求很短,因此将第四透镜104设置这样的高折射率有利于快速改变光线方向,达到与感光元件所定义的主光角(CRA,Chief Ray Angle)相匹配的目的。
第五透镜105具有正屈折力,其满足以下条件:0.15≤CT5≤0.35,其中CT5为第五透镜105的中心厚度。满足上述条件有利于镜片的成型工艺,尤其是有利于塑胶镜片的成型性与均质性,使系统具有良好的成像品质。并且,将第五透镜105的厚度设置在上述范围内能够避免鬼影现象的产生。
第六透镜106满足以下条件:0≤|CT6/ET6|≤3.0,其中,CT6为第六透镜106的中心厚度,ET6为第六透镜106的边缘厚度。第六透镜106与第七透镜107之间的距离还满足0<L67/TTL<0.1,其中TTL为第一透镜101的物侧面至成像面的轴上距离,L67为第六透镜106的像侧面至第七透镜107的物侧面的轴上距离。满足该要求有利于降低第六透镜106和第七透镜107之间的反射,同时也有利于矫正光学成像系统的出射光线角度,可以更好的匹配感光元件。
第七透镜107具有负屈折力。并且,第七透镜107的物侧面和像侧面均具有至少一个反曲点,从而可以有效地压制离轴视场的光线入射于感光元件上的角度,进而修正离轴像差以提升周边成像品质。第 七透镜107的像侧面由近轴处至周边处存在凹面转凸面的变化,该形状有利于减少光线的全反射。进一步地,第七透镜107的物侧面为凹面,其形状与第六透镜106的像侧面较为匹配。
进一步地,第七透镜107满足如下条件:|f7|<f其中,f为光学成像系统的有效焦距,f7为第七透镜107的有效焦距,满足该条件有利于光学成像系统的小型化。
本发明实施例的光学成像系统可设置至少一光阑,以减少杂散光,提升影像品质。所述光阑可以是可变光阑,但不限于可变光阑,而也可以是不可变光阑。在本发明实施例的光学成像系统中,光圈配置可为前置或中置。光阑的位置越靠前,越有利于矫正CRA(即主光线入射于电子感光元件上的最大角度),光阑的位置越靠后,系统的FOV(最大视场角)越大,有利于满足光学成像系统的广角特性,为了使二者达到一个较佳的平衡,在一个较佳实施例中,光阑设置在第三透镜103的物侧面前方。进一步地,光阑可以设置在第一透镜101物侧面前方,以减少镜筒数量,降低成本。
在一个实施例中,在第七透镜107与成像面之间还设置有滤光元件。所述滤光元件包括红外滤光片,用于滤除进入光学透镜组中的红外波段光,避免红外光照射到感光芯片上产生噪声。滤光元件的材质包括玻璃,其不影响光学成像系统的焦距。
本发明一个实施例光学成像系统各透镜的结构参数具体如表1所示。在表1中,曲率半径和厚度的单位为mm,其中面1-18依次表示由物侧至像侧各表面,其中表面1-18依次表示光阑、第一透镜物侧面、第一透镜像侧面、第二透镜物侧面、第二透镜像侧面、第三透镜物侧面、第三透镜像侧面、第四透镜物侧面、第四透镜像侧面、第五透镜物侧面、第五透镜像侧面、第六透镜物侧面、第六透镜像侧面、第七透镜物侧面、第七透镜像侧面、红外滤光片物侧面、红外滤光片像侧面以及像侧面。
表1
  曲率半径 厚度 折射率 色散系数
被摄物   无限 无限    
光阑 1 无限 0.200    
  2 4.59387 0.620 1.54 56
  3 10.36205 0.371    
  4 7.17341 0.511 1.64 23.9
  5 4.75234 0.507    
  6 15.25597 0.521 1.54 56
  7 149.72220 0.488    
  8 14.61557 0.963 1.54 56
  9 -12.43810 0.430    
  10 -2.36649 0.300 1.64 23.9
  11 -3.56322 0.796    
  12 12.91300 1.850 1.54 56
  13 -2.59776 0.700    
  14 -13.83622 0.801 1.54 56
  15 2.472279 2.000    
  16 无限 0.210 1.52 64.2
  17 无限 0.393    
  18 无限 ——    
本发明实施例中各透镜的焦距以及能力分布如表2所示:
表2
透镜 焦距 能力
1 14.5 0.07
2 -23.9 -0.04
3 31.0 0.03
4 12.5 0.08
5 -12.2 -0.08
6 4.1 0.24
7 -3.8 -0.27
在本发明实施例中,各透镜多采用非球面镜面,即从透镜中心到透镜周边,曲率是连续变化的。与具有恒定曲率的球面透镜相比,非 球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜101至第七透镜107中的每个透镜的物侧面和像侧面中的至少一个可为非球面。进一步地,第一透镜101至第七透镜107中的每个透镜的物侧面和像侧面均为非球面。
本实施例中各透镜的非球面系数具体如表3所示,表中A4-A16分别表示各透镜表面第4-16阶非球面高次项系数。
表3
  K A2 A4 A6 A8 A10 A12 A14 A16
2面 -1.213245 0 0.000753607 0.000693717 0.000475241 -0.0003621 0.000265315 -2.1392E-05 1.37E-06
3面 18.29263 0 -0.003239808 0.001915399 -0.002579668 -1.812E-05 0.000228359 -2.92314E-07 6.4E-07
4面 -5.143015 0 -0.01427584 0.002652598 -0.004798855 0.00029835 -3.3437E-05 1.10863E-05 -1.6E-06
5面 -6.268841 0 -0.00748751 0.001347934 -0.001577331 -0.000203 2.21942E-05 3.2503E-07 -3.7E-07
6面 -11.23375 0 -0.00127599 -0.000289602 0.000390144 -4.809E-05 -1.50841E-05 -3.77501E-06 -1.6E-07
7面 0 0 -0.003463266 7.39124E-05 -0.000248091 2.5455E-06 -3.52975E-06 -4.97451E-07 -1.7E-07
8面 -20.938893 0 -0.005309207 -0.000238138 0.000370728 -8.139E-05 -8.58703E-06 1.52836E-06 -1E-08
9面 14.161061 0 -0.001543806 -0.000675079 0.000314455 -1.18E-05 -2.16521E-06 -1.83343E-08 1.61E-08
10面 -1.648706 0 0.01424837 -0.003922875 0.006110576 -0.0006478 5.1664E-05 -2.09629E-06 6.96E-09
11面 -4.14219 0 0.003766462 -0.001269523 0.001824573 -0.000165 1.14879E-05 -3.36458E-07 -7.9E-10
12面 -2.669956 0 -0.006292392 0.000763933 -0.000507174 1.0967E-05 1.04337E-07 -4.13694E-09 3.28E-11
13面 -3.94611 0 -0.001689916 1.64643E-05 0.000589108 -5.884E-05 2.23586E-06 -3.0699E-08 -9.1E-13
14面 -101.699343 0 -0.005329653 0.000167578 -7.97919E-06 2.8644E-07 5.57428E-09 -5.24994E-10 1.86E-13
15面 -4.781084 0 -0.003058406 0.000131082 -4.11373E-05 7.8666E-07 -1.03635E-08 7.25439E-11 4.99E-14
图2示出了本发明实施例的光学成像系统的位置色差分布图;图3示出了本发明实施例的光学成像系统的倍率色差分布图;图4A、图4B示出了本发明实施例的光学成像系统的像面弯曲和畸变图。根据图2-图4B,本领域技术人员可以了解到,本发明实施例的光学成像系统色差和畸变较小,具有优良的成像效果。
综上,本发明实施例的光学成像系统采用全塑胶镜片设计方案,小型化程度高,整体重量轻,并且具有较佳的成像品质。
本发明实施例的光学成像系统100可以应用于电子装置。因此,本发明实施例还可以提供一种电子装置,本发明实施例的电子装置可以包括但不限于智能电话、移动电话、个人数字助理(Personal Digital Assistant,PDA)、游戏机、个人计算机(Personal Computer,PC)、相机、智能手表、平板电脑、手持云台等信息终端设备或具有拍照功能的家电产品等。
本发明实施例的电子装置包括如上各种实施例所述的光学成像系统100以及感光元件(未图示),感光元件设置在光学成像系统100 的像侧。
感光元件可以提供使通过透镜折射的光在其上成像的成像面。此外,感光元件可以将成像在成像面上的光信号转换为供计算机或其他合适的电子装置使用的电信号。感光元件可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器等。
在一些实施例中,感光元件的尺寸大于或等于1英寸。
在本发明实施例的电子装置中,光学成像系统100采用全塑胶设计,镜头光学长度可以达到小于20mm,并且光圈可以实现2.0。
本发明实施例的电子装置还包括用于驱动所述光学成像系统100进行对焦的对焦马达(未图示)。在一些实施例中,对焦马达为超声波马达(USM,Ultra-Sonic Motor)。
本发明实施例的电子装置在满足大尺寸感光元件的基础上实现小型化、大光圈、光圈可变、小畸变、高像素的需求。而且,使用USM马达对焦在改善画面抖动问题的同时也使整体模组满足小型化。
本发明实施例的电子装置的其他有益技术效果与上述光学成像系统100相类似,故在此不再赘述。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本实用新型的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用 于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (20)

  1. 一种光学成像系统,其特征在于,由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    具有正屈折力的第二透镜,所述第二透镜的物侧面为凸面,像侧面为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面为凸面;
    具有正屈折力的第四透镜,所述第四透镜的物侧面为凸面,像侧面为凸面;
    具有正屈折力的第五透镜,所述第五透镜的物侧面为凹面,像侧面为凸面;
    具有正屈折力的第六透镜,所述第六透镜的像侧面为凸面;
    具有负屈折力的第七透镜,所述第七透镜的像侧面为凹面。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的透镜数量为七枚,并且所述第一透镜至所述第七透镜均为塑胶镜片。
  3. 根据权利要求1所述的光学成像系统,其特征在于,还包括光阑,所述光阑位于所述第三透镜的物侧面前方。
  4. 根据权利要求3所述的光学成像系统,其特征在于,所述光阑位于所述第一透镜的物侧面前方。
  5. 根据权利要求3所述的光学成像系统,其特征在于,所述光阑为可变光阑或不可变光阑。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述第七透镜的物侧面和像侧面均存在至少一个反曲点。
  7. 根据权利要求6所述的光学成像系统,其特征在于,所述第 七透镜的像侧面由近轴处至周边处存在凹面转凸面的变化。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足:0.4<f/TTL<1.0,其中,f为所述光学成像系统的有效焦距,TTL为所述第一透镜的物侧面至成像面的轴上距离。
  9. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜满足:0.25<|(R11-R12)/(R11+R12)|<0.5,其中R11为所述第一透镜的物侧面的曲率半径,R12为所述第一透镜的像侧面的曲率半径。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述第二透镜满足:0<|(R12-R21)/(R21+R12)|<0.3,其中R21为所述第二透镜的物侧面的曲率半径,R12为所述第一透镜的像侧面的曲率半径。
  11. 根据权利要求1所述的光学成像系统,其特征在于,所述第三透镜满足:3.0≤f3/f≤5.0,其中,f为所述光学成像系统的有效焦距,f3为所述第三透镜的有效焦距。
  12. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜满足:1.5<nd≤1.8,其中nd为所述第四透镜的折射率。
  13. 根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜满足:0.15≤CT5≤0.35,其中CT5为所述第五透镜的中心厚度。
  14. 根据权利要求1所述的光学成像系统,其特征在于,所述第六透镜满足:0≤|CT6/ET6|≤3.0,其中CT6为所述第六透镜的中心厚度,ET6为所述第六透镜的边缘厚度。
  15. 根据权利要求1所述的光学成像系统,其特征在于,所述第 六透镜满足:0<L67/TTL<0.1,其中TTL为所述第一透镜的物侧表面至成像面的轴上距离,L67为所述第六透镜的像侧面至所述第七透镜的物侧面的轴上距离。
  16. 根据权利要求1所述的光学成像系统,其特征在于,所述第四透镜为非球面镜片。
  17. 根据权利要求16所述的光学成像系统,其特征在于,所述第一透镜至所述第七透镜均为非球面镜片。
  18. 一种电子装置,其特征在于,包括:
    根据权利要求1至17中任一项所述的光学成像系统;及
    感光元件,其设置在所述光学成像系统的像侧。
  19. 根据权利要求18所述的电子装置,其特征在于,所述感光元件的尺寸大于或等于1英寸。
  20. 根据权利要求18所述的电子装置,其特征在于,还包括:用于驱动所述光学成像系统进行对焦的对焦马达,所述对焦马达为超声波马达。
PCT/CN2019/095492 2019-07-10 2019-07-10 一种光学成像系统及电子装置 WO2021003720A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031220.1A CN112154363B (zh) 2019-07-10 2019-07-10 一种光学成像系统及电子装置
PCT/CN2019/095492 WO2021003720A1 (zh) 2019-07-10 2019-07-10 一种光学成像系统及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095492 WO2021003720A1 (zh) 2019-07-10 2019-07-10 一种光学成像系统及电子装置

Publications (1)

Publication Number Publication Date
WO2021003720A1 true WO2021003720A1 (zh) 2021-01-14

Family

ID=73891425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095492 WO2021003720A1 (zh) 2019-07-10 2019-07-10 一种光学成像系统及电子装置

Country Status (2)

Country Link
CN (1) CN112154363B (zh)
WO (1) WO2021003720A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325545A (zh) * 2021-04-20 2021-08-31 浙江舜宇光学有限公司 光学成像镜头
CN114911031A (zh) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 光学成像系统、取像模组及电子装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126255B (zh) * 2021-04-20 2022-08-16 浙江舜宇光学有限公司 光学成像透镜组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029959A (zh) * 2006-02-28 2007-09-05 卡西欧计算机株式会社 变焦透镜及利用该变焦透镜的照相机
US20160377846A1 (en) * 2015-06-25 2016-12-29 Young Optics Inc. Projection lens system
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头
CN107807436A (zh) * 2017-11-18 2018-03-16 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108427173A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
US20180239117A1 (en) * 2017-02-17 2018-08-23 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头
CN108983388A (zh) * 2017-06-03 2018-12-11 大立光电股份有限公司 影像撷取系统镜头组、取像装置及电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570467B (zh) * 2012-07-06 2017-02-11 大立光電股份有限公司 光學影像拾取系統組
TWI604210B (zh) * 2015-09-17 2017-11-01 先進光電科技股份有限公司 光學成像系統(二)
TWI629532B (zh) * 2015-12-09 2018-07-11 先進光電科技股份有限公司 光學成像系統(一)
CN115903185A (zh) * 2018-05-29 2023-04-04 三星电机株式会社 光学成像系统
CN109445073A (zh) * 2018-12-26 2019-03-08 浙江舜宇光学有限公司 光学成像系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029959A (zh) * 2006-02-28 2007-09-05 卡西欧计算机株式会社 变焦透镜及利用该变焦透镜的照相机
US20160377846A1 (en) * 2015-06-25 2016-12-29 Young Optics Inc. Projection lens system
CN108427173A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
US20180239117A1 (en) * 2017-02-17 2018-08-23 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN108983388A (zh) * 2017-06-03 2018-12-11 大立光电股份有限公司 影像撷取系统镜头组、取像装置及电子装置
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头
CN107807436A (zh) * 2017-11-18 2018-03-16 瑞声科技(新加坡)有限公司 摄像光学镜头
CN108919463A (zh) * 2018-08-02 2018-11-30 浙江舜宇光学有限公司 光学成像镜头

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911031A (zh) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 光学成像系统、取像模组及电子装置
CN113325545A (zh) * 2021-04-20 2021-08-31 浙江舜宇光学有限公司 光学成像镜头
CN113325545B (zh) * 2021-04-20 2022-08-16 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN112154363A (zh) 2020-12-29
CN112154363B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
TWI449947B (zh) 影像鏡片系統組
TWI406027B (zh) 取像用光學鏡頭
TWI435135B (zh) 光學透鏡系統
TWI434096B (zh) 光學攝像透鏡組
TWI401485B (zh) 成像光學鏡片組
TWI472826B (zh) 光學影像透鏡系統組
TWI477805B (zh) 影像拾取系統鏡片組及取像裝置
TWI487937B (zh) 成像系統透鏡組
TWI431352B (zh) 光學成像鏡頭
TWI482991B (zh) 成像鏡頭組
TW201305651A (zh) 光學影像擷取系統
TWM487440U (zh) 攝像透鏡及包含攝像透鏡的攝像裝置
TWM488643U (zh) 攝像透鏡及包含攝像透鏡的攝像裝置
WO2021003720A1 (zh) 一种光学成像系统及电子装置
CN113484983B (zh) 光学系统、镜头模组和电子设备
WO2019024490A1 (zh) 光学成像镜头
TW201305650A (zh) 攝影系統鏡頭組
TWI418870B (zh) 薄型化攝像鏡頭
CN110967805B (zh) 光学摄像镜头组、取像模组及电子装置
TWI689747B (zh) 四片式雙波段成像鏡片組
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN111142240A (zh) 光学系统、镜头模组和电子设备
TW201809792A (zh) 光學攝遠成像鏡頭
WO2021003721A1 (zh) 一种光学成像系统及电子装置
KR20170045864A (ko) 촬상 렌즈, 이를 포함하는 카메라 모듈 및 디지털 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937339

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937339

Country of ref document: EP

Kind code of ref document: A1