WO2021002491A1 - 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치 - Google Patents

차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치 Download PDF

Info

Publication number
WO2021002491A1
WO2021002491A1 PCT/KR2019/007977 KR2019007977W WO2021002491A1 WO 2021002491 A1 WO2021002491 A1 WO 2021002491A1 KR 2019007977 W KR2019007977 W KR 2019007977W WO 2021002491 A1 WO2021002491 A1 WO 2021002491A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
user
camera
image
information
Prior art date
Application number
PCT/KR2019/007977
Other languages
English (en)
French (fr)
Inventor
박민식
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/490,525 priority Critical patent/US20210382969A1/en
Priority to PCT/KR2019/007977 priority patent/WO2021002491A1/ko
Priority to KR1020190098444A priority patent/KR20190101331A/ko
Publication of WO2021002491A1 publication Critical patent/WO2021002491A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/45Structures or tools for the administration of authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/107Static hand or arm
    • G06V40/11Hand-related biometrics; Hand pose recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/61Control of cameras or camera modules based on recognised objects
    • H04N23/611Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/10Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the type of camera system used
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/107Static hand or arm
    • G06V40/117Biometrics derived from hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/197Matching; Classification

Definitions

  • the present invention relates to a vehicle system, and more particularly, to a biometric authentication method and apparatus using a plurality of cameras in a vehicle.
  • Vehicles can be classified into internal combustion engine vehicles, external combustion engine vehicles, gas turbine vehicles, or electric vehicles, depending on the type of prime mover used.
  • Autonomous Vehicle refers to a vehicle that can operate on its own without driver or passenger manipulation
  • Automated Vehicle & Highway Systems is a system that monitors and controls such autonomous vehicles so that they can operate on their own.
  • An object of the present invention is to propose a method of implementing a low-cost biometric authentication system using a plurality of cameras in a vehicle system.
  • an object of the present invention is to propose a method of performing biometric authentication by tracking movement even in a situation where a user in a vehicle moves freely.
  • a method of performing biometric authentication in a vehicle system comprising: setting a region of interest for a user in the vehicle based on an image captured by a first camera; Adjusting a view angle of the second camera based on the region of interest; Acquiring an image required for biometric recognition of a user in the vehicle using the second camera; And performing biometric authentication based on the image required for the biometric recognition, wherein the region of interest may be set for at least one of a face or a hand of the user in the vehicle.
  • an image required for biometric recognition may correspond to an image of an iris.
  • the first camera corresponds to a wide-angle camera supporting a field of view (FOV) of 130 degrees or more
  • the second camera is a UHD (Ultra High Definition) or higher. It may correspond to a high-resolution narrow-angle camera that supports resolution.
  • information on a user who has completed the biometric authentication may be provided to at least one of a display system, a cargo system, a seat system, and a payment system included in the vehicle system.
  • the method includes: obtaining another image necessary for biometric recognition of the user in the vehicle using the second camera; And performing additional biometric authentication based on the another image.
  • the another image may correspond to an image of a vein of a user's hand in the vehicle.
  • the additional biometric authentication may be performed when an in-vehicle payment request signaling is received.
  • the payment for the payment request may be completed.
  • the device includes a memory for storing data, an imaging device including a first camera and a second camera for image capturing, and the memory and And a processor functionally connected to the imaging device, wherein the processor sets a region of interest for a user in the vehicle based on an image captured by the first camera, and the second region of interest is configured based on the region of interest. Adjust the view angle of the camera, acquire an image required for biometric recognition of the user in the vehicle using the second camera, and perform biometric authentication based on the image required for the biometric recognition, wherein the region of interest May be set for at least one of the user's face or hand in the vehicle.
  • the first camera corresponds to a wide-angle camera supporting a field of view (FOV) of 130 degrees or more
  • the second camera is an Ultra High Definition (UHD) or higher. It may correspond to a high-resolution narrow-angle camera that supports resolution.
  • FOV field of view
  • UHD Ultra High Definition
  • the processor acquires another image necessary for biometric recognition of the user in the vehicle using the second camera, and based on the another image Additional biometric authentication can be performed.
  • an image required for biometric recognition may correspond to an image of an iris, and the other image may correspond to an image of a vein of a user's hand in the vehicle. .
  • the additional biometric authentication may be performed when the processor receives an in-vehicle payment request signaling.
  • the processor may control to complete the payment for the payment request.
  • the device may communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than the device.
  • biometric recognition for several occupants may be possible, and biometric recognition may be possible without a special motion of the occupants.
  • FIG. 1 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • FIG. 2 shows an example of a signal transmission/reception method in a wireless communication system.
  • FIG 3 shows an example of a basic operation of an autonomous vehicle and a 5G network in a 5G communication system.
  • FIG. 5 is a view showing a vehicle according to an embodiment of the present invention.
  • FIG. 6 is a control block diagram of a vehicle according to an embodiment of the present invention.
  • FIG. 7 is a control block diagram of an autonomous driving apparatus according to an embodiment of the present invention.
  • FIG. 8 is a signal flow diagram of an autonomous vehicle according to an embodiment of the present invention.
  • FIG. 9 is a view showing the interior of a vehicle according to an embodiment of the present invention.
  • FIG. 10 is a block diagram referenced to explain a vehicle cabin system according to an embodiment of the present invention.
  • FIG. 11 is a diagram referenced to explain a usage scenario of a user according to an embodiment of the present invention.
  • FIG. 13 shows an example of an operation and signaling procedure between a camera and a processor when biometric authentication is performed in a vehicle system to which the present invention can be applied.
  • FIG. 14 shows an example of a device configuration diagram to which the present invention can be applied.
  • FIG. 1 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • a device including an autonomous driving module is defined as a first communication device (910 in FIG. 1 ), and a processor 911 may perform a detailed autonomous driving operation.
  • a 5G network including other vehicles that communicate with the autonomous driving device may be defined as a second communication device (920 in FIG. 1), and the processor 921 may perform detailed autonomous driving operation.
  • the 5G network may be referred to as a first communication device and an autonomous driving device may be referred to as a second communication device.
  • the first communication device or the second communication device may be a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, an autonomous driving device, and the like.
  • a terminal or a user equipment is a vehicle, a mobile phone, a smart phone, a laptop computer, a terminal for digital broadcasting, personal digital assistants (PDA), and a portable multimedia player (PMP).
  • PDA personal digital assistants
  • PMP portable multimedia player
  • Navigation slate PC, tablet PC, ultrabook
  • wearable device for example, a smartwatch, a smart glass, HMD ( head mounted display)).
  • the HMD may be a display device worn on the head.
  • HMD can be used to implement VR, AR or MR. Referring to FIG.
  • a first communication device 910 and a second communication device 920 include a processor (processor, 911,921), a memory (memory, 914,924), one or more Tx/Rx RF modules (radio frequency modules, 915,925). , Tx processors 912 and 922, Rx processors 913 and 923, and antennas 916 and 926.
  • the Tx/Rx module is also called a transceiver. Each Tx/Rx module 915 transmits a signal through a respective antenna 926.
  • the processor implements the previously salpin functions, processes and/or methods.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • the transmission (TX) processor 912 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the receive (RX) processor implements the various signal processing functions of L1 (ie, the physical layer).
  • the UL (communication from the second communication device to the first communication device) is handled in the first communication device 910 in a manner similar to that described with respect to the receiver function in the second communication device 920.
  • Each Tx/Rx module 925 receives a signal through a respective antenna 926.
  • Each Tx/Rx module provides an RF carrier and information to the RX processor 923.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • FIG. 2 is a diagram showing an example of a signal transmission/reception method in a wireless communication system.
  • the UE when the UE is powered on or newly enters a cell, the UE performs an initial cell search operation such as synchronizing with the BS (S201). To this end, the UE receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the BS, synchronizes with the BS, and obtains information such as cell ID. can do.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the UE may obtain intra-cell broadcast information by receiving a physical broadcast channel (PBCH) from the BS.
  • PBCH physical broadcast channel
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the UE may perform a random access procedure (RACH) for the BS (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and a random access response for the preamble through the PDCCH and the corresponding PDSCH (random access response, RAR) message can be received (S204 and S206).
  • PRACH physical random access channel
  • RAR random access response
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH (S207) and physical uplink shared channel (PUSCH)/physical uplink control channel as a general uplink/downlink signal transmission process.
  • Uplink control channel, PUCCH) transmission (S208) may be performed.
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the UE monitors the set of PDCCH candidates from monitoring opportunities set in one or more control element sets (CORESET) on the serving cell according to the corresponding search space configurations.
  • the set of PDCCH candidates to be monitored by the UE is defined in terms of search space sets, and the search space set may be a common search space set or a UE-specific search space set.
  • the CORESET consists of a set of (physical) resource blocks with a time duration of 1 to 3 OFDM symbols.
  • the network can configure the UE to have multiple CORESETs.
  • the UE monitors PDCCH candidates in one or more search space sets. Here, monitoring means attempting to decode PDCCH candidate(s) in the search space.
  • the UE determines that the PDCCH is detected in the corresponding PDCCH candidate, and performs PDSCH reception or PUSCH transmission based on the detected DCI in the PDCCH.
  • the PDCCH can be used to schedule DL transmissions on the PDSCH and UL transmissions on the PUSCH.
  • the DCI on the PDCCH is a downlink assignment (i.e., downlink grant; DL grant) including at least information on modulation and coding format and resource allocation related to a downlink shared channel, or uplink It includes an uplink grant (UL grant) including modulation and coding format and resource allocation information related to the shared channel.
  • downlink grant i.e., downlink grant; DL grant
  • UL grant uplink grant
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB consists of PSS, SSS and PBCH.
  • the SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH or PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Cell discovery refers to a process in which the UE acquires time/frequency synchronization of a cell and detects a cell identifier (eg, Physical layer Cell ID, PCI) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • 336 cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information on the cell ID group to which the cell ID of the cell belongs is provided/obtained through the SSS of the cell, and information on the cell ID among 336 cells in the cell ID is provided/obtained through the PSS.
  • the SSB is transmitted periodically according to the SSB period.
  • the SSB basic period assumed by the UE during initial cell search is defined as 20 ms. After cell access, the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (eg, BS).
  • SI is divided into a master information block (MIB) and a plurality of system information blocks (SIB). SI other than MIB may be referred to as RMSI (Remaining Minimum System Information).
  • the MIB includes information/parameters for monitoring a PDCCH scheduling a PDSCH carrying a System Information Block1 (SIB1), and is transmitted by the BS through the PBCH of the SSB.
  • SIB1 includes information related to availability and scheduling (eg, transmission period, SI-window size) of the remaining SIBs (hereinafter, SIBx, x is an integer greater than or equal to 2). SIBx is included in the SI message and is transmitted through the PDSCH. Each SI message is transmitted within a periodic time window (ie, SI-window).
  • RA random access
  • the random access process is used for various purposes.
  • the random access procedure may be used for initial network access, handover, and UE-triggered UL data transmission.
  • the UE may acquire UL synchronization and UL transmission resources through a random access process.
  • the random access process is divided into a contention-based random access process and a contention free random access process.
  • the detailed procedure for the contention-based random access process is as follows.
  • the UE may transmit the random access preamble as Msg1 in the random access procedure in the UL through the PRACH.
  • Random access preamble sequences having two different lengths are supported. Long sequence length 839 is applied for subcarrier spacing of 1.25 and 5 kHz, and short sequence length 139 is applied for subcarrier spacing of 15, 30, 60 and 120 kHz.
  • the BS When the BS receives the random access preamble from the UE, the BS transmits a random access response (RAR) message (Msg2) to the UE.
  • RAR random access response
  • the PDCCH for scheduling the PDSCH carrying the RAR is transmitted after being CRC masked with a random access (RA) radio network temporary identifier (RNTI) (RA-RNTI).
  • RA-RNTI random access radio network temporary identifier
  • a UE that detects a PDCCH masked with RA-RNTI may receive an RAR from a PDSCH scheduled by a DCI carried by the PDCCH.
  • the UE checks whether the preamble transmitted by the UE, that is, random access response information for Msg1, is in the RAR.
  • Whether there is random access information for Msg1 transmitted by the UE may be determined based on whether a random access preamble ID for a preamble transmitted by the UE exists. If there is no response to Msg1, the UE may retransmit the RACH preamble within a predetermined number of times while performing power ramping. The UE calculates the PRACH transmission power for retransmission of the preamble based on the most recent path loss and power ramping counter.
  • the UE may transmit UL transmission as Msg3 in a random access procedure on an uplink shared channel based on random access response information.
  • Msg3 may include an RRC connection request and a UE identifier.
  • the network may send Msg4, which may be treated as a contention resolution message on the DL. By receiving Msg4, the UE can enter the RRC connected state.
  • the BM process may be divided into (1) a DL BM process using SSB or CSI-RS and (2) a UL BM process using a sounding reference signal (SRS).
  • each BM process may include Tx beam sweeping to determine the Tx beam and Rx beam sweeping to determine the Rx beam.
  • CSI channel state information
  • the UE receives a CSI-ResourceConfig IE including CSI-SSB-ResourceSetList for SSB resources used for BM from BS.
  • the RRC parameter csi-SSB-ResourceSetList represents a list of SSB resources used for beam management and reporting in one resource set.
  • the SSB resource set may be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ⁇ .
  • the SSB index may be defined from 0 to 63.
  • the UE receives signals on SSB resources from the BS based on the CSI-SSB-ResourceSetList.
  • the UE reports the best SSBRI and the corresponding RSRP to the BS.
  • the reportQuantity of the CSI-RS reportConfig IE is set to'ssb-Index-RSRP', the UE reports the best SSBRI and corresponding RSRP to the BS.
  • the UE When the UE is configured with CSI-RS resources in the same OFDM symbol(s) as the SSB, and'QCL-TypeD' is applicable, the UE is similarly co-located in terms of'QCL-TypeD' of the CSI-RS and SSB ( quasi co-located, QCL).
  • QCL-TypeD may mean that QCL is performed between antenna ports in terms of a spatial Rx parameter.
  • the Rx beam determination (or refinement) process of the UE using CSI-RS and the Tx beam sweeping process of the BS are sequentially described.
  • the repetition parameter is set to'ON'
  • the repetition parameter is set to'OFF'.
  • the UE receives the NZP CSI-RS resource set IE including the RRC parameter for'repetition' from the BS through RRC signaling.
  • the RRC parameter'repetition' is set to'ON'.
  • the UE repeats signals on the resource(s) in the CSI-RS resource set in which the RRC parameter'repetition' is set to'ON' in different OFDM symbols through the same Tx beam (or DL spatial domain transmission filter) of the BS Receive.
  • the UE determines its own Rx beam.
  • the UE omits CSI reporting. That is, the UE may omit CSI reporting when the shopping price RRC parameter'repetition' is set to'ON'.
  • the UE receives the NZP CSI-RS resource set IE including the RRC parameter for'repetition' from the BS through RRC signaling.
  • the RRC parameter'repetition' is set to'OFF', and is related to the Tx beam sweeping process of the BS.
  • the UE receives signals on resources in the CSI-RS resource set in which the RRC parameter'repetition' is set to'OFF' through different Tx beams (DL spatial domain transmission filters) of the BS.
  • Tx beams DL spatial domain transmission filters
  • the UE selects (or determines) the best beam.
  • the UE reports the ID (eg, CRI) and related quality information (eg, RSRP) for the selected beam to the BS. That is, when the CSI-RS is transmitted for the BM, the UE reports the CRI and the RSRP for it to the BS.
  • ID eg, CRI
  • RSRP related quality information
  • the UE receives RRC signaling (eg, SRS-Config IE) including a usage parameter set as'beam management' (RRC parameter) from the BS.
  • SRS-Config IE is used for SRS transmission configuration.
  • SRS-Config IE includes a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resources.
  • the UE determines Tx beamforming for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE.
  • SRS-SpatialRelation Info is set for each SRS resource, and indicates whether to apply the same beamforming as the beamforming used in SSB, CSI-RS or SRS for each SRS resource.
  • SRS-SpatialRelationInfo is set in the SRS resource, the same beamforming as that used in SSB, CSI-RS or SRS is applied and transmitted. However, if SRS-SpatialRelationInfo is not set in the SRS resource, the UE randomly determines Tx beamforming and transmits the SRS through the determined Tx beamforming.
  • BFR beam failure recovery
  • Radio Link Failure may frequently occur due to rotation, movement, or beamforming blockage of the UE. Therefore, BFR is supported in NR to prevent frequent RLF from occurring. BFR is similar to the radio link failure recovery process, and may be supported when the UE knows the new candidate beam(s).
  • the BS sets beam failure detection reference signals to the UE, and the UE sets the number of beam failure indications from the physical layer of the UE within a period set by RRC signaling of the BS. When a threshold set by RRC signaling is reached (reach), a beam failure is declared.
  • the UE triggers beam failure recovery by initiating a random access process on the PCell; Beam failure recovery is performed by selecting a suitable beam (if the BS has provided dedicated random access resources for certain beams, they are prioritized by the UE). Upon completion of the random access procedure, it is considered that beam failure recovery is complete.
  • URLLC transmission as defined by NR is (1) relatively low traffic size, (2) relatively low arrival rate, (3) extremely low latency requirement (e.g. 0.5, 1ms), (4) It may mean a relatively short transmission duration (eg, 2 OFDM symbols), and (5) transmission of an urgent service/message.
  • transmission for a specific type of traffic e.g., URLLC
  • eMBB previously scheduled transmission
  • eMBB and URLLC services can be scheduled on non-overlapping time/frequency resources, and URLLC transmission can occur on resources scheduled for ongoing eMBB traffic.
  • the eMBB UE may not be able to know whether the PDSCH transmission of the UE is partially punctured, and the UE may not be able to decode the PDSCH due to corrupted coded bits.
  • the NR provides a preemption indication.
  • the preemption indication may be referred to as an interrupted transmission indication.
  • the UE receives the DownlinkPreemption IE through RRC signaling from the BS.
  • the UE is configured with the INT-RNTI provided by the parameter int-RNTI in the DownlinkPreemption IE for monitoring of the PDCCH carrying DCI format 2_1.
  • the UE is additionally configured with a set of serving cells by an INT-ConfigurationPerServing Cell including a set of serving cell indexes provided by servingCellID and a corresponding set of positions for fields in DCI format 2_1 by positionInDCI, and dci-PayloadSize It is set with the information payload size for DCI format 2_1 by, and is set with the indication granularity of time-frequency resources by timeFrequencySect.
  • the UE receives DCI format 2_1 from the BS based on the DownlinkPreemption IE.
  • the UE When the UE detects the DCI format 2_1 for the serving cell in the set set of serving cells, the UE is the DCI format among the set of PRBs and symbols in the monitoring period last monitoring period to which the DCI format 2_1 belongs. It can be assumed that there is no transmission to the UE in the PRBs and symbols indicated by 2_1. For example, the UE sees that the signal in the time-frequency resource indicated by the preemption is not a DL transmission scheduled to it, and decodes data based on the signals received in the remaining resource regions.
  • Massive Machine Type Communication is one of the 5G scenarios to support hyper-connection services that simultaneously communicate with a large number of UEs.
  • the UE communicates intermittently with a very low transmission rate and mobility. Therefore, mMTC aims at how long the UE can be driven at a low cost.
  • 3GPP deals with MTC and NB (NarrowBand)-IoT.
  • the mMTC technology has features such as repetitive transmission of PDCCH, PUCCH, physical downlink shared channel (PDSCH), PUSCH, etc., frequency hopping, retuning, and guard period.
  • a PUSCH (or PUCCH (especially, long PUCCH) or PRACH) including specific information and a PDSCH (or PDCCH) including a response to specific information are repeatedly transmitted.
  • Repetitive transmission is performed through frequency hopping, and for repetitive transmission, (RF) retuning is performed in a guard period from a first frequency resource to a second frequency resource, and specific information
  • RF repetitive transmission
  • the response to specific information may be transmitted/received through a narrowband (ex. 6 resource block (RB) or 1 RB).
  • FIG. 3 shows an example of a basic operation of an autonomous vehicle and a 5G network in a 5G communication system. For convenience of explanation, it is only described based on the 5G communication system, and does not limit the technical idea of the present invention.
  • the autonomous vehicle transmits specific information transmission to the 5G network (S1).
  • the specific information may include autonomous driving related information.
  • the 5G network may determine whether to remotely control the vehicle (S2).
  • the 5G network may include a server or module that performs remote control related to autonomous driving.
  • the 5G network may transmit information (or signals) related to remote control to the autonomous vehicle (S3).
  • the autonomous vehicle performs an initial access procedure with the 5G network before step S1 of FIG. 3. And a random access procedure.
  • the autonomous vehicle performs an initial access procedure with the 5G network based on the SSB in order to obtain DL synchronization and system information.
  • a beam management (BM) process and a beam failure recovery process may be added.
  • the QCL QCL Relationships can be added.
  • the autonomous vehicle performs a random access procedure with the 5G network to acquire UL synchronization and/or transmit UL.
  • the 5G network may transmit a UL grant for scheduling transmission of specific information to the autonomous vehicle.
  • the autonomous vehicle transmits specific information to the 5G network based on the UL grant.
  • the 5G network transmits a DL grant for scheduling transmission of a 5G processing result for the specific information to the autonomous vehicle.
  • the 5G network may transmit information (or signals) related to remote control to the autonomous vehicle based on the DL grant.
  • the autonomous vehicle may receive a DownlinkPreemption IE from the 5G network.
  • the autonomous vehicle receives DCI format 2_1 including a pre-emption indication from the 5G network based on the DownlinkPreemption IE.
  • the autonomous vehicle does not perform (or expect or assume) the reception of eMBB data in the resource (PRB and/or OFDM symbol) indicated by the pre-emption indication. Thereafter, the autonomous vehicle may receive a UL grant from the 5G network when it is necessary to transmit specific information.
  • the autonomous vehicle receives a UL grant from the 5G network to transmit specific information to the 5G network.
  • the UL grant includes information on the number of repetitions for transmission of the specific information, and the specific information may be repeatedly transmitted based on the information on the number of repetitions. That is, the autonomous vehicle transmits specific information to the 5G network based on the UL grant.
  • repetitive transmission of specific information may be performed through frequency hopping, transmission of first specific information may be transmitted in a first frequency resource, and transmission of second specific information may be transmitted in a second frequency resource.
  • the specific information may be transmitted through a narrowband of 6RB (Resource Block) or 1RB (Resource Block).
  • FIG. 4 illustrates an example of a vehicle-to-vehicle basic operation using 5G communication.
  • the first vehicle transmits specific information to the second vehicle (S61).
  • the second vehicle transmits a response to the specific information to the first vehicle (S62).
  • vehicle-to-vehicle application operation Composition may vary depending on whether the 5G network directly (side link communication transmission mode 3) or indirectly (sidelink communication transmission mode 4) is involved in resource allocation of the specific information and response to the specific information.
  • the 5G network may transmit DCI format 5A to the first vehicle for scheduling of mode 3 transmission (PSCCH and/or PSSCH transmission).
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the first vehicle transmits SCI format 1 for scheduling specific information transmission to the second vehicle on the PSCCH. Then, the first vehicle transmits specific information to the second vehicle on the PSSCH.
  • the first vehicle senses a resource for mode 4 transmission in a first window. Then, the first vehicle selects a resource for mode 4 transmission in the second window based on the sensing result.
  • the first window means a sensing window
  • the second window means a selection window.
  • the first vehicle transmits SCI format 1 for scheduling specific information transmission to the second vehicle on the PSCCH based on the selected resource. Then, the first vehicle transmits specific information to the second vehicle on the PSSCH.
  • FIG. 5 is a view showing a vehicle according to an embodiment of the present invention.
  • a vehicle 10 is defined as a transportation means traveling on a road or track.
  • the vehicle 10 is a concept including a car, a train, and a motorcycle.
  • the vehicle 10 may be a concept including both an internal combustion engine vehicle including an engine as a power source, a hybrid vehicle including an engine and an electric motor as a power source, and an electric vehicle including an electric motor as a power source.
  • the vehicle 10 may be a vehicle owned by an individual.
  • the vehicle 10 may be a shared vehicle.
  • the vehicle 10 may be an autonomous vehicle.
  • FIG. 6 is a control block diagram of a vehicle according to an embodiment of the present invention.
  • the vehicle 10 includes a user interface device 200, an object detection device 210, a communication device 220, a driving operation device 230, a main ECU 240, and a drive control device 250. ), an autonomous driving device 260, a sensing unit 270, and a location data generating device 280.
  • Each of 280 may be implemented as an electronic device that generates an electrical signal and exchanges electrical signals with each other.
  • the user interface device 200 is a device for communicating with the vehicle 10 and a user.
  • the user interface device 200 may receive a user input and provide information generated in the vehicle 10 to the user.
  • the vehicle 10 may implement a user interface (UI) or a user experience (UX) through the user interface device 200.
  • the user interface device 200 may include an input device, an output device, and a user monitoring device.
  • the object detection device 210 may generate information on an object outside the vehicle 10.
  • the information on the object may include at least one of information on the existence of the object, location information of the object, distance information between the vehicle 10 and the object, and relative speed information between the vehicle 10 and the object. .
  • the object detection device 210 may detect an object outside the vehicle 10.
  • the object detection device 210 may include at least one sensor capable of detecting an object outside the vehicle 10.
  • the object detection device 210 may include at least one of a camera, a radar, a lidar, an ultrasonic sensor, and an infrared sensor.
  • the object detection device 210 may provide data on an object generated based on a sensing signal generated by a sensor to at least one electronic device included in the vehicle.
  • the camera may generate information on an object outside the vehicle 10 by using the image.
  • the camera may include at least one lens, at least one image sensor, and at least one processor that is electrically connected to the image sensor and processes a received signal, and generates data about an object based on the processed signal.
  • the camera may be at least one of a mono camera, a stereo camera, and an AVM (Around View Monitoring) camera.
  • the camera may use various image processing algorithms to obtain position information of an object, distance information to an object, or information on a relative speed to an object. For example, from the acquired image, the camera may acquire distance information and relative speed information from the object based on a change in the size of the object over time. For example, the camera may obtain distance information and relative speed information with an object through a pin hole model, road surface profiling, or the like. For example, the camera may obtain distance information and relative speed information with an object based on disparity information from a stereo image obtained from a stereo camera.
  • the camera may be mounted in a position where field of view (FOV) can be secured in the vehicle to photograph the outside of the vehicle.
  • the camera may be placed in the interior of the vehicle, close to the front windshield, to acquire an image of the front of the vehicle.
  • the camera can be placed around the front bumper or radiator grille.
  • the camera may be placed in the interior of the vehicle, close to the rear glass, in order to acquire an image of the rear of the vehicle.
  • the camera can be placed around the rear bumper, trunk or tailgate.
  • the camera may be disposed adjacent to at least one of the side windows in the interior of the vehicle in order to acquire an image of the vehicle side.
  • the camera may be disposed around a side mirror, a fender, or a door.
  • the radar may generate information on an object outside the vehicle 10 using radio waves.
  • the radar may include at least one processor that is electrically connected to the electromagnetic wave transmitter, the electromagnetic wave receiver, and the electromagnetic wave transmitter and the electromagnetic wave receiver, processes a received signal, and generates data for an object based on the processed signal.
  • the radar may be implemented in a pulse radar method or a continuous wave radar method according to the principle of radio wave emission.
  • the radar may be implemented in a frequency modulated continuous wave (FMCW) method or a frequency shift keyong (FSK) method according to a signal waveform among continuous wave radar methods.
  • FMCW frequency modulated continuous wave
  • FSK frequency shift keyong
  • the radar detects an object by means of an electromagnetic wave, a time of flight (TOF) method or a phase-shift method, and detects the position of the detected object, the distance to the detected object, and the relative speed.
  • TOF time of flight
  • the radar may be placed at a suitable location outside of the vehicle to detect objects located in front, rear or side of the vehicle.
  • the lidar may generate information on an object outside the vehicle 10 using laser light.
  • the radar may include at least one processor that is electrically connected to the optical transmitter, the optical receiver, and the optical transmitter and the optical receiver, processes a received signal, and generates data for an object based on the processed signal. .
  • the rider may be implemented in a TOF (Time of Flight) method or a phase-shift method.
  • the lidar can be implemented either driven or non-driven. When implemented as a drive type, the lidar is rotated by a motor, and objects around the vehicle 10 can be detected. When implemented in a non-driven manner, the lidar can detect an object located within a predetermined range with respect to the vehicle by optical steering.
  • the vehicle 10 may include a plurality of non-driven lidars.
  • the radar detects an object based on a time of flight (TOF) method or a phase-shift method by means of a laser light, and determines the position of the detected object, the distance to the detected object, and the relative speed. Can be detected.
  • the lidar may be placed at an appropriate location outside the vehicle to detect objects located in front, rear or side of the vehicle.
  • the communication device 220 may exchange signals with devices located outside the vehicle 10.
  • the communication device 220 may exchange signals with at least one of an infrastructure (eg, a server, a broadcasting station), another vehicle, and a terminal.
  • the communication device 220 may include at least one of a transmission antenna, a reception antenna, a radio frequency (RF) circuit capable of implementing various communication protocols, and an RF element to perform communication.
  • RF radio frequency
  • the communication device may exchange signals with external devices based on C-V2X (Cellular V2X) technology.
  • C-V2X technology may include LTE-based sidelink communication and/or NR-based sidelink communication. Contents related to C-V2X will be described later.
  • a communication device can communicate with external devices based on the IEEE 802.11p PHY/MAC layer technology and the Dedicated Short Range Communications (DSRC) technology based on the IEEE 1609 Network/Transport layer technology, or the Wireless Access in Vehicular Environment (WAVE) standard. Can be exchanged.
  • DSRC or WAVE standard
  • ITS Intelligent Transport System
  • DSRC technology may use a frequency of 5.9GHz band, and may be a communication method having a data transmission rate of 3Mbps ⁇ 27Mbps.
  • IEEE 802.11p technology can be combined with IEEE 1609 technology to support DSRC technology (or WAVE standard).
  • the communication apparatus of the present invention can exchange signals with an external device using only either C-V2X technology or DSRC technology.
  • the communication device of the present invention may exchange signals with external devices by hybridizing C-V2X technology and DSRC technology.
  • the driving operation device 230 is a device that receives a user input for driving. In the case of the manual mode, the vehicle 10 may be driven based on a signal provided by the driving operation device 230.
  • the driving operation device 230 may include a steering input device (eg, a steering wheel), an acceleration input device (eg, an accelerator pedal), and a brake input device (eg, a brake pedal).
  • the main ECU 240 may control the overall operation of at least one electronic device provided in the vehicle 10.
  • the drive control device 250 is a device that electrically controls various vehicle drive devices in the vehicle 10.
  • the drive control device 250 may include a power train drive control device, a chassis drive control device, a door/window drive control device, a safety device drive control device, a lamp drive control device, and an air conditioning drive control device.
  • the power train drive control device may include a power source drive control device and a transmission drive control device.
  • the chassis drive control device may include a steering drive control device, a brake drive control device, and a suspension drive control device.
  • the safety device driving control device may include a safety belt driving control device for controlling the safety belt.
  • the drive control device 250 includes at least one electronic control device (eg, a control Electronic Control Unit (ECU)).
  • ECU control Electronic Control Unit
  • the vehicle type control device 250 may control the vehicle driving device based on a signal received from the autonomous driving device 260.
  • the control device 250 may control a power train, a steering device, and a brake device based on a signal received from the autonomous driving device 260.
  • the autonomous driving device 260 may generate a path for autonomous driving based on the acquired data.
  • the autonomous driving device 260 may generate a driving plan for driving along the generated route.
  • the autonomous driving device 260 may generate a signal for controlling the movement of the vehicle according to the driving plan.
  • the autonomous driving device 260 may provide the generated signal to the driving control device 250.
  • the autonomous driving device 260 may implement at least one ADAS (Advanced Driver Assistance System) function.
  • ADAS includes Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Forward Collision Warning (FCW), and Lane Keeping Assist (LKA). ), Lane Change Assist (LCA), Target Following Assist (TFA), Blind Spot Detection (BSD), Adaptive High Beam Control System (HBA: High Beam Assist) , Auto Parking System (APS), PD collision warning system (PD collision warning system), Traffic Sign Recognition (TSR), Traffic Sign Assist (TSA), Night Vision System At least one of (NV: Night Vision), Driver Status Monitoring (DSM), and Traffic Jam Assist (TJA) may be implemented.
  • ACC Adaptive Cruise Control
  • AEB Autonomous Emergency Braking
  • FCW Forward Collision Warning
  • LKA Lane Keeping Assist
  • LKA Lane Change Assist
  • TSA Traffic Spot Detection
  • HBA High Beam Ass
  • the autonomous driving device 260 may perform a switching operation from an autonomous driving mode to a manual driving mode or a switching operation from a manual driving mode to an autonomous driving mode. For example, the autonomous driving device 260 may change the mode of the vehicle 10 from the autonomous driving mode to the manual driving mode or the autonomous driving mode from the manual driving mode based on a signal received from the user interface device 200. Can be switched to.
  • the sensing unit 270 may sense the state of the vehicle.
  • the sensing unit 270 includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, a tilt sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle. It may include at least one of a forward/reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, and a pedal position sensor. Meanwhile, the inertial measurement unit (IMU) sensor may include one or more of an acceleration sensor, a gyro sensor, and a magnetic sensor.
  • IMU inertial measurement unit
  • the sensing unit 270 may generate state data of the vehicle based on a signal generated by at least one sensor.
  • the vehicle state data may be information generated based on data sensed by various sensors provided inside the vehicle.
  • the sensing unit 270 includes vehicle attitude data, vehicle motion data, vehicle yaw data, vehicle roll data, vehicle pitch data, vehicle collision data, vehicle direction data, vehicle angle data, and vehicle speed.
  • the location data generating device 280 may generate location data of the vehicle 10.
  • the location data generating apparatus 280 may include at least one of a Global Positioning System (GPS) and a Differential Global Positioning System (DGPS).
  • GPS Global Positioning System
  • DGPS Differential Global Positioning System
  • the location data generating apparatus 280 may generate location data of the vehicle 10 based on a signal generated by at least one of GPS and DGPS.
  • the location data generating apparatus 280 may correct the location data based on at least one of an IMU (Inertial Measurement Unit) of the sensing unit 270 and a camera of the object detection apparatus 210.
  • the location data generating device 280 may be referred to as a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • Vehicle 10 may include an internal communication system 50.
  • a plurality of electronic devices included in the vehicle 10 may exchange signals through the internal communication system 50.
  • the signal may contain data.
  • the internal communication system 50 may use at least one communication protocol (eg, CAN, LIN, FlexRay, MOST, Ethernet).
  • FIG. 7 is a control block diagram of an autonomous driving apparatus according to an embodiment of the present invention.
  • the autonomous driving device 260 may include a memory 140, a processor 170, an interface unit 180, and a power supply unit 190.
  • the memory 140 is electrically connected to the processor 170.
  • the memory 140 may store basic data for a unit, control data for controlling the operation of the unit, and input/output data.
  • the memory 140 may store data processed by the processor 170.
  • the memory 140 may be configured with at least one of ROM, RAM, EPROM, flash drive, and hard drive.
  • the memory 140 may store various data for the overall operation of the autonomous driving device 260, such as a program for processing or controlling the processor 170.
  • the memory 140 may be implemented integrally with the processor 170. Depending on the embodiment, the memory 140 may be classified as a sub-element of the processor 170.
  • the interface unit 180 may exchange signals with at least one electronic device provided in the vehicle 10 by wire or wirelessly.
  • the interface unit 180 includes an object detection device 210, a communication device 220, a driving operation device 230, a main ECU 240, a driving control device 250, a sensing unit 270, and a position data generating device.
  • a signal may be exchanged with at least one of 280 by wire or wirelessly.
  • the interface unit 180 may be configured with at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element, and a device.
  • the power supply unit 190 may supply power to the autonomous driving device 260.
  • the power supply unit 190 may receive power from a power source (eg, a battery) included in the vehicle 10 and supply power to each unit of the autonomous driving device 260.
  • the power supply unit 190 may be operated according to a control signal provided from the main ECU 240.
  • the power supply unit 190 may include a switched-mode power supply (SMPS).
  • SMPS switched-mode power supply
  • the processor 170 may be electrically connected to the memory 140, the interface unit 180, and the power supply unit 190 to exchange signals.
  • the processor 170 includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, and controllers. It may be implemented using at least one of (controllers), micro-controllers, microprocessors, and electrical units for performing other functions.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors and controllers. It may be implemented using at least one of (controllers), micro-controllers, microprocessors, and electrical units for performing other functions.
  • the processor 170 may be driven by power provided from the power supply unit 190.
  • the processor 170 may receive data, process data, generate a signal, and provide a signal while power is supplied by the power supply unit 190.
  • the processor 170 may receive information from another electronic device in the vehicle 10 through the interface unit 180.
  • the processor 170 may provide a control signal to another electronic device in the vehicle 10 through the interface unit 180.
  • the autonomous driving device 260 may include at least one printed circuit board (PCB).
  • the memory 140, the interface unit 180, the power supply unit 190, and the processor 170 may be electrically connected to a printed circuit board.
  • FIG. 8 is a signal flow diagram of an autonomous vehicle according to an embodiment of the present invention.
  • the processor 170 may perform a reception operation.
  • the processor 170 may receive data from at least one of the object detection device 210, the communication device 220, the sensing unit 270, and the location data generation device 280 through the interface unit 180. I can.
  • the processor 170 may receive object data from the object detection apparatus 210.
  • the processor 170 may receive HD map data from the communication device 220.
  • the processor 170 may receive vehicle state data from the sensing unit 270.
  • the processor 170 may receive location data from the location data generating device 280.
  • the processor 170 may perform a processing/determining operation.
  • the processor 170 may perform a processing/determining operation based on the driving situation information.
  • the processor 170 may perform a processing/decision operation based on at least one of object data, HD map data, vehicle state data, and location data.
  • the processor 170 may generate driving plan data.
  • the processor 170 may generate electronic horizon data.
  • Electronic horizon data is understood as driving plan data within a range from the point where the vehicle 10 is located to the horizon.
  • Horizon may be understood as a point in front of a preset distance from a point at which the vehicle 10 is located, based on a preset driving route.
  • the horizon is a point where the vehicle 10 is positioned along a preset driving route. It may mean a point at which the vehicle 10 can reach after a predetermined time from the point.
  • the electronic horizon data may include horizon map data and horizon pass data.
  • the horizon map data may include at least one of topology data, road data, HD map data, and dynamic data.
  • the horizon map data may include a plurality of layers.
  • the horizon map data may include a layer matching topology data, a second layer matching road data, a third layer matching HD map data, and a fourth layer matching dynamic data.
  • the horizon map data may further include static object data.
  • Topology data can be described as a map created by connecting the center of the road.
  • the topology data is suitable for roughly indicating the position of the vehicle, and may be in the form of data mainly used in a navigation for a driver.
  • the topology data may be understood as data about road information excluding information about a lane.
  • the topology data may be generated based on data received from an external server through the communication device 220.
  • the topology data may be based on data stored in at least one memory provided in the vehicle 10.
  • the road data may include at least one of slope data of a road, curvature data of a road, and speed limit data of a road.
  • the road data may further include overtaking prohibited section data.
  • Road data may be based on data received from an external server through the communication device 220.
  • the road data may be based on data generated by the object detection apparatus 210.
  • the HD map data includes detailed lane-level topology information of the road, connection information of each lane, and feature information for localization of the vehicle (e.g., traffic signs, lane marking/attributes, road furniture, etc.). I can.
  • the HD map data may be based on data received from an external server through the communication device 220.
  • the dynamic data may include various dynamic information that may be generated on a road.
  • the dynamic data may include construction information, variable speed lane information, road surface condition information, traffic information, moving object information, and the like.
  • the dynamic data may be based on data received from an external server through the communication device 220.
  • the dynamic data may be based on data generated by the object detection apparatus 210.
  • the processor 170 may provide map data within a range from the point where the vehicle 10 is located to the horizon.
  • the horizon pass data may be described as a trajectory that the vehicle 10 can take within a range from the point where the vehicle 10 is located to the horizon.
  • the horizon pass data may include data representing a relative probability of selecting any one road from a decision point (eg, a crossroads, a junction, an intersection, etc.).
  • the relative probability can be calculated based on the time it takes to reach the final destination. For example, at the decision point, if the first road is selected and the time it takes to reach the final destination is less than the second road is selected, the probability of selecting the first road is less than the probability of selecting the second road. Can be calculated higher.
  • Horizon pass data may include a main pass and a sub pass.
  • the main path can be understood as a trajectory connecting roads with a high relative probability to be selected.
  • the sub-path may be branched at at least one decision point on the main path.
  • the sub-path may be understood as a trajectory connecting at least one road having a low relative probability of being selected from at least one decision point on the main path.
  • the processor 170 may perform a control signal generation operation.
  • the processor 170 may generate a control signal based on electronic horizon data.
  • the processor 170 may generate at least one of a powertrain control signal, a brake device control signal, and a steering device control signal based on the electronic horizon data.
  • the processor 170 may transmit the generated control signal to the driving control device 250 through the interface unit 180.
  • the drive control device 250 may transmit a control signal to at least one of the power train 251, the brake device 252, and the steering device 253.
  • FIG. 9 is a view showing the interior of a vehicle according to an embodiment of the present invention.
  • 10 is a block diagram referenced to explain a vehicle cabin system according to an embodiment of the present invention.
  • the vehicle cabin system 300 (hereinafter, the cabin system) may be defined as a convenience system for a user using the vehicle 10.
  • the cabin system 300 may be described as a top-level system including a display system 350, a cargo system 355, a seat system 360, and a payment system 365.
  • the cabin system 300 includes a main controller 370, a memory 340, an interface unit 380, a power supply unit 390, an input device 310, an imaging device 320, a communication device 330, and a display system. 350, a cargo system 355, a seat system 360, and a payment system 365.
  • the cabin system 300 may further include other components other than the components described herein, or may not include some of the described components.
  • the main controller 370 is electrically connected to the input device 310, the communication device 330, the display system 350, the cargo system 355, the seat system 360, and the payment system 365 to exchange signals. can do.
  • the main controller 370 may control the input device 310, the communication device 330, the display system 350, the cargo system 355, the seat system 360, and the payment system 365.
  • the main controller 370 includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, It may be implemented using at least one of controllers, micro-controllers, microprocessors, and electrical units for performing other functions.
  • the main controller 370 may be configured with at least one sub-controller. According to an embodiment, the main controller 370 may include a plurality of sub-controllers. Each of the plurality of sub-controllers may individually control devices and systems included in the grouped cabin system 300. Devices and systems included in the cabin system 300 may be grouped by function or may be grouped based on seatable seats.
  • the main controller 370 may include at least one processor 371. 6 illustrates that the main controller 370 includes one processor 371, the main controller 371 may include a plurality of processors. The processor 371 may be classified as one of the above-described sub-controllers.
  • the processor 371 may receive signals, information, or data from a user terminal through the communication device 330.
  • the user terminal may transmit signals, information, or data to the cabin system 300.
  • the processor 371 may specify a user based on image data received from at least one of an internal camera and an external camera included in the imaging device.
  • the processor 371 may specify a user by applying an image processing algorithm to image data.
  • the processor 371 may compare information received from the user terminal with image data to identify a user.
  • the information may include at least one of route information, body information, passenger information, luggage information, location information, preferred content information, preferred food information, disability information, and usage history information of the user. .
  • the main controller 370 may include an artificial intelligence agent 372.
  • the artificial intelligence agent 372 may perform machine learning based on data acquired through the input device 310.
  • the artificial intelligence agent 372 may control at least one of the display system 350, the cargo system 355, the seat system 360, and the payment system 365 based on the machine learning result.
  • the memory 340 is electrically connected to the main controller 370.
  • the memory 340 may store basic data for a unit, control data for controlling the operation of the unit, and input/output data.
  • the memory 340 may store data processed by the main controller 370.
  • the memory 340 may be configured with at least one of ROM, RAM, EPROM, flash drive, and hard drive.
  • the memory 340 may store various data for overall operation of the cabin system 300, such as a program for processing or controlling the main controller 370.
  • the memory 340 may be implemented integrally with the main controller 370.
  • the interface unit 380 may exchange signals with at least one electronic device provided in the vehicle 10 by wire or wirelessly.
  • the interface unit 380 may be composed of at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element, and a device.
  • the power supply unit 390 may supply power to the cabin system 300.
  • the power supply unit 390 may receive power from a power source (eg, a battery) included in the vehicle 10 and supply power to each unit of the cabin system 300.
  • the power supply unit 390 may be operated according to a control signal provided from the main controller 370.
  • the power supply unit 390 may be implemented as a switched-mode power supply (SMPS).
  • SMPS switched-mode power supply
  • the cabin system 300 may include at least one printed circuit board (PCB).
  • PCB printed circuit board
  • the main controller 370, the memory 340, the interface unit 380, and the power supply unit 390 may be mounted on at least one printed circuit board.
  • the input device 310 may receive a user input.
  • the input device 310 may convert a user input into an electrical signal.
  • the electrical signal converted by the input device 310 may be converted into a control signal and provided to at least one of the display system 350, the cargo system 355, the seat system 360, and the payment system 365.
  • At least one processor included in the main controller 370 or the cabin system 300 may generate a control signal based on an electrical signal received from the input device 310.
  • the input device 310 may include at least one of a touch input unit, a gesture input unit, a mechanical input unit, and a voice input unit.
  • the touch input unit may convert a user's touch input into an electrical signal.
  • the touch input unit may include at least one touch sensor to detect a user's touch input.
  • the touch input unit is integrally formed with at least one display included in the display system 350, thereby implementing a touch screen.
  • Such a touch screen may provide an input interface and an output interface between the cabin system 300 and a user.
  • the gesture input unit may convert a user's gesture input into an electrical signal.
  • the gesture input unit may include at least one of an infrared sensor and an image sensor for detecting a user's gesture input.
  • the gesture input unit may detect a user's 3D gesture input.
  • the gesture input unit may include a light output unit that outputs a plurality of infrared light or a plurality of image sensors.
  • the gesture input unit may detect a user's 3D gesture input through a time of flight (TOF) method, a structured light method, or a disparity method.
  • the mechanical input unit may convert a user's physical input (eg, pressing or rotating) through a mechanical device into an electrical signal.
  • the mechanical input unit may include at least one of a button, a dome switch, a jog wheel, and a jog switch. Meanwhile, the gesture input unit and the mechanical input unit may be integrally formed.
  • the input device 310 may include a gesture sensor, and may include a jog dial device formed to be in and out of a portion of a surrounding structure (eg, at least one of a seat, an armrest, and a door). .
  • a jog dial device formed to be in and out of a portion of a surrounding structure (eg, at least one of a seat, an armrest, and a door).
  • the jog dial device may function as a gesture input unit.
  • the jog dial device protrudes compared to the surrounding structure, the jog dial device may function as a mechanical input unit.
  • the voice input unit may convert a user's voice input into an electrical signal.
  • the voice input unit may include at least one microphone.
  • the voice input unit may include a beam foaming microphone.
  • the imaging device 320 may include at least one camera.
  • the imaging device 320 may include at least one of an internal camera and an external camera.
  • the internal camera can take an image inside the cabin.
  • the external camera may capture an image outside the vehicle.
  • the internal camera can acquire an image in the cabin.
  • the imaging device 320 may include at least one internal camera. It is preferable that the imaging device 320 includes a number of cameras corresponding to the number of passengers capable of boarding.
  • the imaging device 320 may provide an image acquired by an internal camera.
  • At least one processor included in the main controller 370 or the cabin system 300 detects the user's motion based on the image acquired by the internal camera, generates a signal based on the detected motion, and generates a display system.
  • the external camera may acquire an image outside the vehicle.
  • the imaging device 320 may include at least one external camera. It is preferable that the imaging device 320 includes a number of cameras corresponding to the boarding door.
  • the imaging device 320 may provide an image acquired by an external camera.
  • At least one processor included in the main controller 370 or the cabin system 300 may acquire user information based on an image acquired by an external camera.
  • At least one processor included in the main controller 370 or the cabin system 300 authenticates the user based on the user information, or the user's body information (for example, height information, weight information, etc.), Passenger information, user's luggage information, etc. can be obtained.
  • the communication device 330 can wirelessly exchange signals with an external device.
  • the communication device 330 may exchange signals with an external device through a network network or may directly exchange signals with an external device.
  • the external device may include at least one of a server, a mobile terminal, and another vehicle.
  • the communication device 330 may exchange signals with at least one user terminal.
  • the communication device 330 may include at least one of an antenna, a radio frequency (RF) circuit capable of implementing at least one communication protocol, and an RF element in order to perform communication.
  • RF radio frequency
  • the communication device 330 may use a plurality of communication protocols.
  • the communication device 330 may switch the communication protocol according to the distance to the mobile terminal.
  • the communication device may exchange signals with external devices based on C-V2X (Cellular V2X) technology.
  • C-V2X technology may include LTE-based sidelink communication and/or NR-based sidelink communication. Contents related to C-V2X will be described later.
  • a communication device can communicate with external devices based on the IEEE 802.11p PHY/MAC layer technology and the Dedicated Short Range Communications (DSRC) technology based on the IEEE 1609 Network/Transport layer technology, or the Wireless Access in Vehicular Environment (WAVE) standard. Can be exchanged.
  • DSRC or WAVE standard
  • ITS Intelligent Transport System
  • DSRC technology may use a frequency of 5.9GHz band, and may be a communication method having a data transmission rate of 3Mbps ⁇ 27Mbps.
  • IEEE 802.11p technology can be combined with IEEE 1609 technology to support DSRC technology (or WAVE standard).
  • the communication apparatus of the present invention can exchange signals with an external device using only either C-V2X technology or DSRC technology.
  • the communication device of the present invention may exchange signals with external devices by hybridizing C-V2X technology and DSRC technology.
  • the display system 350 may display a graphic object.
  • the display system 350 may include at least one display device.
  • the display system 350 may include a first display device 410 that can be commonly used and a second display device 420 that can be used individually.
  • the first display device 410 may include at least one display 411 that outputs visual content.
  • the display 411 included in the first display device 410 is a flat panel display. It may be implemented as at least one of a curved display, a rollable display, and a flexible display.
  • the first display device 410 may include a first display 411 positioned at the rear of a seat and formed to be in and out of a cabin, and a first mechanism for moving the first display 411.
  • the first display 411 may be disposed in a slot formed in the main frame of the sheet so as to be retractable.
  • the first display device 410 may further include a flexible area control mechanism.
  • the first display may be formed to be flexible, and the flexible area of the first display may be adjusted according to the user's position.
  • the first display device 410 may include a second display positioned on a ceiling in a cabin and formed to be rollable, and a second mechanism for winding or unwinding the second display.
  • the second display may be formed to enable screen output on both sides.
  • the first display device 410 may include a third display positioned on a ceiling in a cabin and formed to be flexible, and a third mechanism for bending or unfolding the third display.
  • the display system 350 may further include at least one processor that provides a control signal to at least one of the first display device 410 and the second display device 420.
  • the processor included in the display system 350 may generate a control signal based on a signal received from at least one of the main controller 370, the input device 310, the imaging device 320, and the communication device 330. I can.
  • the display area of the display included in the first display device 410 may be divided into a first area 411a and a second area 411b.
  • the first area 411a may define content as a display area.
  • the first area 411 may display at least one of entertainment contents (eg, movies, sports, shopping, music, etc.), video conferences, food menus, and graphic objects corresponding to the augmented reality screen. I can.
  • the first area 411a may display a graphic object corresponding to driving situation information of the vehicle 10.
  • the driving situation information may include at least one of object information outside the vehicle, navigation information, and vehicle status information.
  • the object information outside the vehicle may include information on the presence or absence of the object, location information of the object, distance information between the vehicle 300 and the object, and relative speed information between the vehicle 300 and the object.
  • the navigation information may include at least one of map information, set destination information, route information according to the destination setting, information on various objects on the route, lane information, and current location information of the vehicle.
  • the vehicle status information includes vehicle attitude information, vehicle speed information, vehicle tilt information, vehicle weight information, vehicle direction information, vehicle battery information, vehicle fuel information, vehicle tire pressure information, vehicle steering information , Vehicle interior temperature information, vehicle interior humidity information, pedal position information, vehicle engine temperature information, and the like.
  • the second area 411b may be defined as a user interface area.
  • the second area 411b may output an artificial intelligence agent screen.
  • the second area 411b may be located in an area divided by a sheet frame.
  • the user can view the content displayed in the second area 411b between the plurality of sheets.
  • the first display device 410 may provide holographic content.
  • the first display device 410 may provide holographic content for each of a plurality of users so that only a user who has requested the content can view the content.
  • the second display device 420 may include at least one display 421.
  • the second display device 420 may provide the display 421 at a location where only individual passengers can check the display contents.
  • the display 421 may be disposed on the arm rest of the seat.
  • the second display device 420 may display a graphic object corresponding to the user's personal information.
  • the second display device 420 may include a number of displays 421 corresponding to the number of persons allowed to ride.
  • the second display device 420 may implement a touch screen by forming a layer structure or integrally with the touch sensor.
  • the second display device 420 may display a graphic object for receiving a user input for seat adjustment or room temperature adjustment.
  • the cargo system 355 may provide a product to a user according to a user's request.
  • the cargo system 355 may be operated based on an electrical signal generated by the input device 310 or the communication device 330.
  • the cargo system 355 may include a cargo box.
  • the cargo box may be concealed in a portion of the lower portion of the seat while the goods are loaded.
  • the cargo box may be exposed as a cabin.
  • the user can select a necessary product among the items loaded in the exposed cargo box.
  • the cargo system 355 may include a sliding moving mechanism and a product pop-up mechanism to expose a cargo box according to a user input.
  • the cargo system 355 may include a plurality of cargo boxes to provide various types of goods.
  • a weight sensor for determining whether to be provided for each product may be built into the cargo box.
  • the seat system 360 may provide a user with a customized sheet to the user.
  • the seat system 360 may be operated based on an electrical signal generated by the input device 310 or the communication device 330.
  • the seat system 360 may adjust at least one element of the seat based on the acquired user body data.
  • the seat system 360 may include a user detection sensor (eg, a pressure sensor) to determine whether the user is seated.
  • the seat system 360 may include a plurality of seats each of which a plurality of users can seat. Any one of the plurality of sheets may be disposed to face at least the other. At least two users inside the cabin may sit facing each other.
  • the payment system 365 may provide a payment service to a user.
  • the payment system 365 may be operated based on an electrical signal generated by the input device 310 or the communication device 330.
  • the payment system 365 may calculate a price for at least one service used by the user and request that the calculated price be paid.
  • FIG. 11 is a diagram referenced to explain a usage scenario of a user according to an embodiment of the present invention.
  • the first scenario S111 is a user's destination prediction scenario.
  • the user terminal may install an application capable of interworking with the cabin system 300.
  • the user terminal may predict the user's destination through the application, based on user's contextual information.
  • the user terminal may provide information on empty seats in the cabin through an application.
  • the second scenario S112 is a cabin interior layout preparation scenario.
  • the cabin system 300 may further include a scanning device for acquiring data on a user located outside the vehicle 300.
  • the scanning device may scan the user to obtain body data and baggage data of the user.
  • the user's body data and baggage data can be used to set the layout.
  • the user's body data may be used for user authentication.
  • the scanning device may include at least one image sensor.
  • the image sensor may acquire a user image by using light in the visible or infrared band.
  • the seat system 360 may set a layout in the cabin based on at least one of a user's body data and baggage data.
  • the seat system 360 may provide a luggage storage space or a car seat installation space.
  • the third scenario S113 is a user welcome scenario.
  • the cabin system 300 may further include at least one guide light.
  • the guide light may be disposed on the floor in the cabin.
  • the cabin system 300 may output a guide light to allow the user to sit on a preset seat among a plurality of seats.
  • the main controller 370 may implement a moving light by sequentially lighting a plurality of light sources over time from an opened door to a preset user seat.
  • the fourth scenario S114 is a seat adjustment service scenario.
  • the seat system 360 may adjust at least one element of a seat matching the user based on the acquired body information.
  • the fifth scenario S115 is a personal content providing scenario.
  • the display system 350 may receive user personal data through the input device 310 or the communication device 330.
  • the display system 350 may provide content corresponding to user personal data.
  • the sixth scenario S116 is a product provision scenario.
  • the cargo system 355 may receive user data through the input device 310 or the communication device 330.
  • the user data may include user preference data and user destination data.
  • the cargo system 355 may provide a product based on user data.
  • the seventh scenario S117 is a payment scenario.
  • the payment system 365 may receive data for price calculation from at least one of the input device 310, the communication device 330, and the cargo system 355.
  • the payment system 365 may calculate a vehicle usage price of the user based on the received data.
  • the payment system 365 may request payment from a user (eg, a user's mobile terminal) at the calculated price.
  • the eighth scenario S118 is a user's display system control scenario.
  • the input device 310 may receive a user input in at least one form and convert it into an electrical signal.
  • the display system 350 may control displayed content based on an electrical signal.
  • the ninth scenario S119 is a multi-channel artificial intelligence (AI) agent scenario for a plurality of users.
  • the artificial intelligence agent 372 may classify a user input for each of a plurality of users.
  • the artificial intelligence agent 372 is at least one of the display system 350, the cargo system 355, the seat system 360, and the payment system 365 based on the electrical signals converted from a plurality of user individual user inputs. Can be controlled.
  • a tenth scenario S120 is a scenario for providing multimedia contents targeting a plurality of users.
  • the display system 350 may provide content that all users can watch together. In this case, the display system 350 may individually provide the same sound to a plurality of users through speakers provided for each sheet.
  • the display system 350 may provide content that can be individually viewed by a plurality of users. In this case, the display system 350 may provide individual sounds through speakers provided for each sheet.
  • the eleventh scenario S121 is a user safety securing scenario.
  • the main controller 370 may control to output an alarm for objects around the vehicle through the display system 350.
  • a twelfth scenario is a scenario for preventing the user's belongings from being lost.
  • the main controller 370 may acquire data on the user's belongings through the input device 310.
  • the main controller 370 may acquire user motion data through the input device 310.
  • the main controller 370 may determine whether the user leaves the belongings and alights based on the data and movement data on the belongings.
  • the main controller 370 may control an alarm regarding belongings to be output through the display system 350.
  • the thirteenth scenario S123 is a getting off report scenario.
  • the main controller 370 may receive a user's getting off data through the input device 310. After getting off the user, the main controller 370 may provide report data according to the getting off to the user's mobile terminal through the communication device 330.
  • the report data may include data on the total usage fee of the vehicle 10.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) system, MC-FDMA (multi carrier frequency division multiple access) system, and the like.
  • Sidelink refers to a communication method in which a direct link is established between terminals (User Equipment, UEs), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • the sidelink is being considered as a method that can solve the burden of the base station due to rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • RAT radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with wireless technologies such as IEEE (institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink.
  • -Adopt FDMA is an evolution of 3GPP LTE.
  • 5G NR is the successor technology of LTE-A, and is a new clean-slate type mobile communication system with features such as high performance, low latency, and high availability.
  • 5G NR can utilize all available spectrum resources, from low frequency bands of less than 1 GHz to intermediate frequency bands of 1 GHz to 10 GHz and high frequency (millimeter wave) bands of 24 GHz or higher.
  • LTE-A or 5G NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • Biometrics may be considered as one of user recognition and authentication methods.
  • Biometric recognition technology refers to a technology that recognizes a user based on one or more unique physical and behavioral characteristics of the user. Biometrics technology can be replaced with various terms such as biometric authentication, biometric authentication, biometrics, biometrics, biometrics, and biometrics.
  • Physical characteristics used in biometrics include fingerprints, irises, faces, and veins, and behavioral characteristics include voices and signatures.
  • facial recognition may be performed through a step of basically extracting and selecting features of an object, and then classifying the object.
  • the face recognition algorithm can identify facial features by extracting marks or features from an image of a subject's face.
  • the facial recognition algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones and jaw. Features can be extracted from this, and can be used to find other images (objects) with features that match the feature.
  • Three-dimensional face recognition technology can use 3D sensors to capture information about the shape of a face. This information can be used to identify features of the facial surface, such as the contours of the eyeball, nose and jaw.
  • the 3D data points of the face can greatly improve the accuracy of face recognition.
  • the 3D sensor can perform 3D face recognition by projecting structured light onto the face and capturing different parts of the spectrum through multiple image sensors.
  • 3D images can be captured using three tracking cameras pointing at different angles. One camera points to the front of the subject, the second to one side, and the third to the other side, and all of these cameras work together to track the subject's face in real time and recognize the face. .
  • the Skin Texture Analysis technology which uses the visual details of the skin, can mathematically express the unique lines, patterns, and spots seen on the human skin and operate in the same way as facial recognition. By photographing a patch called a skin print, and expressing the patch in a mathematical and measurable manner using an algorithm, it is possible to distinguish skin lines, pores, and actual skin texture.
  • biometric recognition technology using an iris can be applied.
  • the iris is a tissue around the pupil, representing a donut-shaped red fiber that controls the amount of light entering the eye by controlling the size of the pupil through contraction and relaxation.
  • the iris has a unique pattern that depends on the direction of the radius and angle.
  • Iris recognition is an automated biometric recognition method that uses mathematical pattern recognition technology for images on two or one side of a person's eyes. Complex patterns are unique, stable, and can be observed from a certain distance.
  • Iris recognition uses a video camera technology with near-infrared illumination function to acquire a pattern of a detailed and complex structure of the iris visible from the outside. These patterns are encoded into digital templates through mathematical and statistical algorithms, and users can be identified by searching through a matcher engine in a registered template database.
  • Vein matching is a biometric recognition technology through analysis of distribution patterns of blood vessels, especially veins, visible on the surface of the skin. The user can be identified based on the peculiar patterns of veins by scanning blood vessels such as fingers, back of hands, palms, etc.
  • users can use fingerprints, elongated shapes (e.g., palm width, finger length, etc.), retina scan (e.g., recognizing the capillary pattern of the retina of the eye), and ear shape (e.g., the shape of the pinna). Can be identified.
  • elongated shapes e.g., palm width, finger length, etc.
  • retina scan e.g., recognizing the capillary pattern of the retina of the eye
  • ear shape e.g., the shape of the pinna
  • the area of the object to be recognized is limited, it may be difficult to perform recognition when the user moves, and a large cost was required to configure the biometric system.
  • a low-cost biometrics solution capable of performing biometric recognition using a wide-angle camera and a high-resolution narrow-angle camera even in an environment in which the user moves freely Suggest a device.
  • description will be made focusing on iris recognition and vein recognition, but this is for convenience of description and does not limit the technical idea of the present invention. Therefore, it can be applied to other biometric recognition technologies based on images captured from an in-vehicle camera.
  • the cabin system 300 may include an imaging device 320.
  • the imaging device 320 may include an internal camera, and the internal camera may capture an image inside the cabin.
  • a method of performing biometric identification of a user who boards a vehicle using an internal camera may be considered.
  • the internal camera may include a wide-angle camera (for example, a first camera) capable of photographing the entire interior of the cabin to perform biometric authentication, and a high-resolution narrow-angle camera (for example, a second camera) for photographing an image required for biometric authentication.
  • 12 shows an example of performing biometric authentication in a vehicle system proposed in the present invention.
  • 13 is an example of an operation and signaling procedure between a processor performing biometric authentication and an internal camera in the autonomous driving system proposed in the present invention. 12 and 13 are only examples for understanding the present invention, and do not limit the technical idea of the present invention.
  • information on a user who has boarded a vehicle may be obtained using an internal camera of the vehicle.
  • Information on the user who boards the vehicle may be obtained by a wide-angle camera among internal cameras.
  • the wide-angle camera may acquire an image by photographing the entire interior of the cabin (S1310).
  • the wide-angle camera can support a field of view (FOV) of 130 degrees or higher and a resolution of 1920x720 (FHD) or higher so that the entire interior of the cabin can be photographed.
  • the wide-angle camera may be configured in a form in which an RGB sensor and a depth sensor are combined so as to recognize a depth of a subject (eg, a user).
  • the wide-angle camera may be fixed and installed at a specific location of the vehicle so that the entire interior of the vehicle can be photographed. For example, it may be located in the center of the vehicle's dashboard.
  • the wide-angle camera may provide the acquired image to the main controller 370 or at least one processor included in the cabin system 300 (S1320). At least one processor included in the main controller 370 or the cabin system 300 may recognize the number of users in the vehicle from the image acquired by the wide-angle camera. In addition, an ROI may be set for each user from an image acquired by the wide-angle camera (S1330).
  • At least one processor included in the main controller 370 or the cabin system 300 forms a skeleton model for each user from an image acquired by a wide-angle camera, and A location of an area including a (eg, face, hand, etc.) can be distinguished and set as a region of interest.
  • the number of users, location, and location information of each of the joints of each user may be extracted from the image captured by the wide-angle camera as a whole inside the cabin, and one skeleton from the location information of each of the joints thus extracted (skeleton) model can be formed.
  • a location of an area including an object for biometric recognition such as a face, a hand, etc. may be classified and set as an area of interest.
  • a region of interest set at a location such as a user's face or hand may be extracted with a size of 100x100 or more.
  • the region of interest may be set simultaneously for the user's face and hand. Alternatively, if a region of interest is set for the face for iris recognition, and a message requesting a higher security level such as a payment request is received thereafter, the region of interest may be additionally set for the hand to perform additional authentication. May be.
  • the region of interest may be set only for the driver, may be set for a user located in the front seat of the vehicle, or may be set for all users in the vehicle.
  • biometric recognition for user recognition may be performed.
  • An image for performing biometric recognition may be captured by a high-resolution narrow angle camera among internal cameras of the cabin.
  • At least one processor included in the main controller 370 or the cabin system 300 may adjust the view angle of the high resolution narrow angle camera according to the location of the region of interest (S1340). Therefore, the high-resolution narrow-angle camera needs to be located in the operation unit so that the user can be photographed by tracking the region of interest that changes according to the user's movement. Alternatively, the high-resolution narrow-angle camera itself may rotate and move.
  • a high-resolution narrow-angle camera can support high resolution because it must be able to photograph human eyes (e.g., iris) and veins, and specifically, it can support a FOV of 30° or higher and a resolution of 4096x1716 (UHD) or higher.
  • the high-resolution narrow-angle camera may also be configured as a stereo camera to simultaneously perform iris recognition for both eyes.
  • the high-resolution narrow angle camera may acquire an image for biometric recognition according to the region of interest and the adjusted view angle (S1350).
  • a position of a face of a user who boards a vehicle may be set as the region of interest.
  • At least one processor included in the main controller 370 or the cabin system 300 moves the high resolution narrow angle camera itself or the operation unit (or mechanism unit) including the high resolution narrow angle camera according to the movement of the face based on the region of interest.
  • the viewing angle of the high-resolution narrow-angle camera can be adjusted.
  • the user's iris can be photographed by matching the view angle of the high-resolution narrow-angle camera to the position of the eye in the face.
  • the minimum eye size may be extracted with a resolution of 160x160 pixels or more.
  • the high-resolution narrow angle camera may provide the acquired image to the main controller 370 or at least one processor included in the cabin system 300 (S1360). At least one processor included in the main controller 370 or the cabin system 300 may perform a biometric recognition algorithm based on the image, and perform user authentication (or identification) and personalization (S1370). That is, a user can be identified through an iris recognition algorithm, a vein authentication algorithm, and the like.
  • the user information identified through the above-described biometrics may be provided to at least one of the display system 350, the cargo system 355, the seat system 360, and the payment system 365 included in the cabin system 300. have.
  • Each system can provide an optimized service to users based on user information identified through biometric recognition.
  • information identified through biometrics may be transmitted to the sheet system 360 to adjust at least one element of the sheet matching the user.
  • in-vehicle devices such as seat height and angle suitable for the driver may be customized to the driver.
  • information identified through biometric authentication may be delivered to the display system 350 to provide content matching a user.
  • multimedia eg, music playback
  • a connection between the user's personal device and a vehicle eg, BT, voice recognition, etc.
  • the vehicle owner or the registered right holder can receive a new user through the vehicle network (e.g., V2X, etc.). Information related to the user can be transmitted. Vehicle owners or registered right holders can control whether new users are authorized to use the vehicle. Alternatively, a new user's access notification may be transmitted to a security system connected to the vehicle network.
  • V2X vehicle network
  • information identified through biometric authentication may be transmitted to the payment system 365 to provide a payment service to a user.
  • a price for at least one service used by the user may be calculated, and the calculated price may be requested to be paid.
  • user authentication security may be enhanced by performing additional biometric authentication in addition to the above-described iris authentication method.
  • additional biometric authentication in addition to the above-described iris authentication method.
  • the region of interest for the user who boards the vehicle may be set based on the image acquired by the wide-angle camera. That is, the location of the user's face, hand, etc. may be set as the region of interest.
  • security can be enhanced by additionally performing vein authentication using a high-resolution narrow angle camera.
  • the position of the hand may be set as the region of interest based on the image acquired by the wide-angle camera.
  • at least one processor included in the main controller 370 or the cabin system 300 receives signaling for a payment request, at least one processor included in the main controller 370 or the cabin system 300 is By controlling the camera itself or the operating unit including the high-resolution narrow-angle camera, the viewing angle of the high-resolution narrow-angle camera can be adjusted according to the hand position.
  • the high-resolution narrow-angle camera may photograph veins of fingers, backs of hands, palms, etc. and transmit the corresponding image to the main controller 370 or at least one processor included in the cabin system 300.
  • a message requesting the user to close his or her hand toward the camera or open his palm may be displayed through an in-vehicle display or voice.
  • At least one processor included in the main controller 370 or the cabin system 300 may perform a vein authentication algorithm based on the image. Payment can be completed if the user information through iris recognition and the user information through vein recognition match.
  • a price is calculated for at least one service used by a user while driving a vehicle (e.g., fuel injection, parking fee, vehicle sharing service cost, etc.), and when payment of the calculated price is requested, the interest set for the hand
  • a view angle of the high resolution narrow angle camera may be adjusted as a region, and a vein authentication algorithm may be performed based on a vein image acquired by the high resolution narrow angle camera.
  • the requested amount may be paid.
  • the user's personal device may receive a message for a payment request.
  • the user authentication request may be transmitted to at least one processor included in the main controller 370 or the cabin system 300 through a vehicle network or a 5G network.
  • the user can complete the biometric authentication through the in-vehicle biometric authentication method described above, and at least one processor included in the main controller 370 or the cabin system 300 can be used as the user's personal device through a vehicle network or a 5G network. You can send the authenticated result.
  • a wide-angle camera and a high-resolution narrow-angle camera for performing biometric authentication may be included in one structure installed inside a vehicle.
  • a specific structure may be included in the center of a dashboard of a vehicle, and the specific structure may be composed of a fixing part and an operation part.
  • the fixing part may be located under a specific structure, and the wide-angle camera may be in a position to secure the FOV in the fixing part.
  • the operation unit may be located above a specific structure, and a high-resolution narrow angle camera may be included in the operation unit to enable adjustment of the view angle.
  • the operation unit can be rotated 360 degrees based on the hemispherical center point, and can also rotate in the vertical, left, and right directions.
  • the structure may be included in a vehicle dashboard in a pop-up form. Alternatively, it may be configured as a separate device for performing biometric authentication.
  • FIG 14 shows an example of an apparatus for performing in-vehicle biometric authentication.
  • an apparatus 1400 for performing in-vehicle biometric authentication includes a memory 1421, a processor 1422, an interface unit 1423 and a power supply unit 1424, and an imaging device 1415,1425. can do.
  • the memory 1421 is electrically connected to the processor 1422.
  • the memory 1421 may store basic data for a unit, control data for controlling the operation of the unit, and input/output data.
  • the memory 1421 may store data processed by the processor 1422.
  • the memory 1421 may be configured in hardware, at least one of ROM, RAM, EPROM, flash drive, and hard drive.
  • the memory 1421 may store various data for overall operations of the apparatus 1400 that performs biometric authentication in a vehicle, such as a program for processing or controlling the processor 1422.
  • the memory 1421 may be implemented integrally with the processor 1422. Depending on the embodiment, the memory 1421 may be classified as a sub-element of the processor 1422.
  • the interface unit 1423 may exchange signals with at least one electronic device provided in the vehicle 10 by wire or wirelessly.
  • the interface unit 1423 may exchange signals with at least one of the memory 1421, the processor 1422, the power supply unit 1424, and the imaging devices 1415 and 1425 by wire or wirelessly.
  • the interface unit 1423 may be composed of at least one of a communication module, a terminal, a pin, a cable, a port, a circuit, an element, and a device.
  • the power supply unit 1424 may supply power to the device 1400 that performs in-vehicle biometric authentication.
  • the power supply unit 1424 may receive power from a power source (eg, a battery) included in the vehicle 10 and supply power to each unit of the device 1400 that performs in-vehicle biometric authentication.
  • a power source eg, a battery
  • the processor 1422 may be electrically connected to the memory 1421, the interface unit 1423, and the power supply unit 1424 to exchange signals.
  • the processor 1422 includes application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, and controllers. It may be implemented using at least one of (controllers), micro-controllers, microprocessors, and electrical units for performing other functions.
  • the processor 1422 may be driven by power provided from the power supply 1429.
  • the processor 1422 may receive data, process data, generate a signal, and provide a signal while power is supplied by the power supply unit 1429.
  • the processor 1422 may receive information from another electronic device in the vehicle 10 through the interface unit 1423.
  • the processor 1422 may provide a control signal to another electronic device in the vehicle 10 through the interface unit 1423.
  • the imaging devices 1415 and 1425 may include a first camera 1425 and a second camera 1415.
  • the first camera 1425 and the second camera 1425 may have different angles of view.
  • the first camera 1425 and the second camera 1425 may have different resolutions.
  • the first camera 1425 may correspond to a wide-angle camera capable of photographing the entire interior of the cabin in order to perform biometric authentication.
  • the first camera 1425 may support a field of view (FOV) of 130° or higher and a resolution of 1920x720 (FHD) or higher.
  • the first camera 1425 may be a wide-angle camera in a form in which an RGB sensor and a depth sensor are combined so as to recognize a depth of an object to be photographed.
  • the second camera 1415 may correspond to a high-resolution narrow-angle camera for capturing an image or an image required for biometric authentication. Specifically, the second camera 1415 may support a FOV of 30° or more and a resolution of 4096x1716 (UHD) or more. The second camera 1415 may be configured as a stereo camera.
  • the apparatus 1400 for performing in-vehicle biometric authentication may be mechanically composed of an operation unit 1410 and a fixing unit 1420.
  • the fixing part 1420 may be located under the biometric recognition device 1400 in a vehicle, and the operation part 1410 may be located above.
  • the operation unit 1410 can be rotated 360 degrees based on the hemispherical center point, and can also rotate in the vertical, left, and right directions.
  • the first camera 1425 may be positioned on the fixing unit 1420, and the second camera 1415 may be positioned on the operation unit 1410.
  • the view angle of the second camera 1415 may be adjusted according to the vertical and horizontal rotation of the operation unit 1410.
  • FIG. 15 shows an example of a flowchart in which an apparatus 1400 for performing in-vehicle biometric authentication operates.
  • an apparatus 1400 for performing in-vehicle biometric authentication operates.
  • a specific method of operating the apparatus 1400 for performing in-vehicle biometric authentication will be described with reference to FIG. 15.
  • a device that performs in-vehicle biometric authentication may be located on an in-vehicle dashboard, and this will be assumed and described. However, this is for convenience only, and does not limit the technical idea of the present invention.
  • the first camera 1425 may photograph the entire interior of the cabin.
  • the image acquired by the first camera may be transmitted to the processor 1422 through the interface unit 1423.
  • the processor may distinguish a location of an object for obtaining biometric information such as the number of users in the vehicle, the location of the user, the user's face, and the hand from the image acquired by the first camera.
  • the processor 1422 may set the location of at least one of the user's face and hand as the ROI based on the image acquired by the first camera (S1510).
  • the region of interest for the face and the hand may be set at the same time, or the region of interest for the hand may be additionally set when additional authentication such as a payment request is required after the region of interest for the face is set.
  • the processor 1422 may adjust the view angle of the second camera 1415 by controlling the operation unit 1410 based on the set region of interest (S1520).
  • the operation unit may be moved to an ROI set at the driver's face position to set the view angle of the second camera to the driver's eye position.
  • the second camera may acquire the user's iris image.
  • the image acquired by the second camera may be transmitted to the processor through the interface unit (S1530).
  • the processor may perform an iris recognition algorithm based on the image acquired by the second camera (S1540).
  • the user information for which biometric authentication is completed through the iris recognition algorithm is transmitted through the interface unit 1423 to the display system 350, the cargo system 355, the seat system 360, and the payment system included in the cabin system 300 of the vehicle. 365) may be provided to at least one of.
  • a service suitable for the user may be provided according to the examples of the autonomous driving scenario described above.
  • information on a new user may be transmitted to the vehicle owner or registered right holder through a vehicle network or a 5G network, and authority settings for a new user may be transmitted and received.
  • the device for performing in-vehicle biometric authentication may perform additional biometric authentication.
  • the payment related request is a payment related to vehicle operation and may be transmitted through a vehicle network. Alternatively, an authentication request for payment may be transmitted from a user terminal connected to the vehicle.
  • the processor may move the operation unit to adjust the view angle of the second camera to the position of the hand in order to perform additional biometric authentication.
  • a region of interest for the hand may be set using the first camera. Alternatively, if the region of interest for the corresponding biometric information has already been set, this process may be omitted.
  • the region of interest for face and hand may be set at the same time.
  • the second camera may take a vein photograph of a hand (eg, a finger, a back of a hand, a palm, etc.) according to the adjusted viewing angle and transmit it to the processor.
  • the processor may perform a vein authentication algorithm based on the received vein image. If the vein authentication information and the iris authentication information match, payment can be completed. If the authentication information does not match, a message requesting re-authentication may be displayed.
  • each structural element or function may be considered selectively.
  • Each of the structural elements or features may be performed without being combined with other structural elements or features. Further, some structural elements and/or features may be combined with each other to constitute implementations of the present invention.
  • the order of operations described in the implementation of the present invention may be changed. Some structural elements or features of one implementation may be included in other implementations, or may be replaced with structural elements or features corresponding to other implementations.
  • Implementations in the present invention may be made by various techniques, for example hardware, firmware, software, or combinations thereof.
  • the method according to the implementation of the present invention includes one or more Application Specific Integrated Circuits (ASICs), one or more Digital Signal Processors (DSPs), one or more Digital Signal Processing Devices (DSPD), and one or more Programmable Logic Devices (PLDs).
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPD Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors one or more controllers
  • microcontrollers one or more microcontrollers, and the like.
  • implementations of the present invention may be implemented in the form of modules, procedures, functions, and the like.
  • the software code can be stored in memory and executed by a processor.
  • the memory may be located inside or outside the processor, and may transmit and receive data from the processor in various ways.
  • the method of performing biometric authentication in the vehicle system of the present invention has been described focusing on examples applied to iris recognition and vein recognition, but it may be applied to various authentication methods and vehicle systems.

Abstract

본 발명은 차량 시스템에서 생체 인증을 수행하는 방법 및 장치가 개시된다. 본 발명의 일례는 상기 차량 시스템에서 차량 시스템에서 제1 카메라가 촬영한 영상(Image)를 기반으로 차량 내 사용자에 대한 관심 영역을 설정하고, 상기 관심 영역은 상기 차량 내 사용자의 얼굴 또는 손 중 적어도 하나에 대해 설정되며, 상기 관심 영역에 기반하여 제2 카메라의 뷰 앵글을 조절하여, 상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 영상(image)를 획득하고, 상기 생체 인식에 필요한 영상을 기반으로 생체 인증을 수행하는 방법이다. 본 발명의 일 실시예에 따르면, 차량 내 생체 인증 시스템을 구현하는 비용을 절감할 수 있는 효과가 있다. 본 발명의 자율 주행 차량, 사용자 단말기 및 서버 중 하나 이상이 인공지능(Artificial Intelligence) 모듈, 드론 (Unmmanned Aerial Vehicle, UAV) 로봇, 증강 현실 (Augmented Reality, AR) 장치, 가상 현실(Virtual reality, VR) 장치, 5G 서비스와 관련된 장치 등과 연계될 수 있다.

Description

차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치
본 발명은 차량 시스템에 관한 것으로서, 보다 상세하게 차량 내 복수의 카메라를 이용한 생체 인증 방법 및 장치에 관한 것이다.
자동차는 사용되는 원동기의 종류에 따라, 내연기관(internal combustion engine) 자동차, 외연기관(external combustion engine) 자동차, 가스터빈(gas turbine) 자동차 또는 전기자동차(electric vehicle) 등으로 분류될 수 있다.
자율주행자동차(Autonomous Vehicle)란 운전자 또는 승객의 조작 없이 자동차 스스로 운행이 가능한 자동차를 말하며, 자율주행시스템(Automated Vehicle & Highway Systems)은 이러한 자율주행자동차가 스스로 운행될 수 있도록 모니터링하고 제어하는 시스템을 말한다.
본 발명의 목적은, 차량 시스템에서 복수의 카메라를 이용하여 저가의 생체 인증 시스템을 구현하는 방법을 제안한다.
또한, 본 발명의 목적은, 차량 내 사용자가 자유롭게 움직이는 상황에서도 움직임을 트래킹(tracking)하여 생체 인증을 수행하는 방법을 제안한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예에 따른 차량 시스템에서 생체 인증을 수행하는 방법에 있어서, 제1 카메라가 촬영한 영상(Image)를 기반으로 차량 내 사용자에 대한 관심 영역을 설정하는 단계; 상기 관심 영역에 기반하여 제2 카메라의 뷰 앵글을 조절하는 단계; 상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 영상(image)를 획득하는 단계; 및 상기 생체 인식에 필요한 영상을 기반으로 생체 인증을 수행하는 단계를 포함하되, 상기 관심 영역은 상기 차량 내 사용자의 얼굴 또는 손 중 적어도 하나에 대해 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 생체 인식에 필요한 영상은 홍채에 대한 영상에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제1 카메라는 FOV(field of view)가 130도 이상을 지원하는 광각 카메라에 해당하고, 상기 제2 카메라는 UHD(Ultra High definition) 이상의 해상도를 지원하는 고해상도 협각 카메라에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 생체 인증이 완료된 사용자에 대한 정보를 차량 시스템에 포함된 디스플레이 시스템, 카고 시스템, 시트 시스템 및 페이먼트 시스템 중 적어도 어느 하나에 제공할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 또 다른 영상(image)를 획득하는 단계; 및 상기 또 다른 영상을 기반으로 추가적인 생체 인증을 수행하는 단계를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 또 다른 영상은 상기 차량 내 사용자의 손의 정맥에 대한 영상에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 추가적인 생체 인증은 차량 내 결제 요청 시그널링을 수신하는 경우 수행될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 생체 인증의 결과와 상기 추가적인 생체 인증의 결과가 동일한 경우, 상기 결제 요청에 대한 지불을 완료할 수 있다.
본 발명의 실시예에 따른 차량 시스템에서 생체 인증을 수행하는 장치에 있어서, 상기 장치는 데이터를 저장하기 위한 메모리, 영상 촬영을 위한 제1 카메라와 제2 카메라를 포함하는 영상 장치, 및 상기 메모리 및 상기 영상 장치와 기능적으로 연결된 프로세서를 포함하되, 상기 프로세서는, 상기 제1 카메라가 촬영한 영상(Image)를 기반으로 차량 내 사용자에 대한 관심 영역을 설정하고, 상기 관심 영역에 기반하여 상기 제2 카메라의 뷰 앵글을 조절하며, 상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 영상(image)를 획득하고, 상기 생체 인식에 필요한 영상을 기반으로 생체 인증을 수행하되, 상기 관심 영역은 상기 차량 내 사용자의 얼굴 또는 손 중 적어도 하나에 대해 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 제1 카메라는 FOV(field of view)가 130도 이상을 지원하는 광각 카메라에 해당하고, 상기 제2 카메라는 UHD(Ultra High definition) 이상의 해상도를 지원하는 고해상도 협각 카메라에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 프로세서는 상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 또 다른 영상(image)를 획득하고, 상기 또 다른 영상을 기반으로 추가적인 생체 인증을 수행할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 생체 인식에 필요한 영상은 홍채에 대한 영상에 해당하고, 상기 또 다른 영상은 상기 차량 내 사용자의 손의 정맥에 대한 영상에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 추가적인 생체 인증은 상기 프로세서가 차량 내 결제 요청 시그널링을 수신하는 경우 수행될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 생체 인증의 결과와 상기 추가적인 생체 인증의 결과가 동일한 경우, 상기 프로세서가 상기 결제 요청에 대한 지불을 완료하도록 제어할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 장치에 있어서, 상기 장치는 이동 단말기, 네트워크 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신할 수 있다.
본 발명의 일 실시예에 따르면, 차량 내 멀티 카메라를 이용한 생체 인증 방법을 통해 생체 인증 시스템 구성의 비용을 줄일 수 있는 효과가 있다.
또한, 본 발명의 일 실시예에 따르면, 여러 명의 탑승자에 대한 생체 인식이 가능하며, 탑승자의 특별한 동작 없이도 생체 인식이 가능할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸다.
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다.
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 나타낸다.
도 5는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 6은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 7은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 8은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
도 9는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다.
도 10은 본 발명의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
도 11은 본 발명의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
도 12는 본 발명이 적용될 수 있는 차량 내 생체 인증을 수행하는 일례를 나타낸다.
도 13은 본 발명이 적용될 수 있는 차량 시스템에서 생체 인증이 수행될 때 카메라와 프로세서 간의 동작 및 시그널링 절차의 일례를 나타낸다.
도 14는 본 발명이 적용될 수 있는 장치 구성도의 일례를 나타낸다.
도 15는 본 발명이 적용될 수 있는 장치의 동작 순서도의 일례를 나타낸다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
A. UE 및 5G 네트워크 블록도 예시
도 1은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 1을 참조하면, 자율 주행 모듈을 포함하는 장치(자율 주행 장치)를 제1 통신 장치로 정의(도 1의 910)하고, 프로세서(911)가 자율 주행 상세 동작을 수행할 수 있다.
자율 주행 장치와 통신하는 다른 차량을 포함하는 5G 네트워크를 제2 통신 장치로 정의(도 1의 920)하고, 프로세서(921)가 자율 주행 상세 동작을 수행할 수 있다.
5G 네트워크가 제 1 통신 장치로, 자율 주행 장치가 제 2 통신 장치로 표현될 수도 있다.
예를 들어, 상기 제 1 통신 장치 또는 상기 제 2 통신 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 자율 주행 장치 등일 수 있다.
예를 들어, 단말 또는 UE(User Equipment)는 차량(vehicle), 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다. 도 1을 참고하면, 제 1 통신 장치(910)와 제 2 통신 장치(920)은 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. Tx/Rx 모듈은 트랜시버라고도 한다. 각각의 Tx/Rx 모듈(915)는 각각의 안테나(926)을 통해 신호를 전송한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 전송(TX) 프로세서(912)는 L1 계층(즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 수신(RX) 프로세서는 L1(즉, 물리 계층)의 다양한 신호 프로세싱 기능을 구현한다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
B. 무선 통신 시스템에서 신호 송/수신 방법
도 2는 무선 통신 시스템에서 신호 송/수신 방법의 일례를 나타낸 도이다.
도 2를 참고하면, UE는 전원이 켜지거나 새로이 셀에 진입한 경우 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다(S201). 이를 위해, UE는 BS로부터 1차 동기 채널(primary synchronization channel, P-SCH) 및 2차 동기 채널(secondary synchronization channel, S-SCH)을 수신하여 BS와 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. LTE 시스템과 NR 시스템에서 P-SCH와 S-SCH는 각각 1차 동기 신호(primary synchronization signal, PSS)와 2차 동기 신호(secondary synchronization signal, SSS)로 불린다. 초기 셀 탐색 후, UE는 BS로부터 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 수신하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 단계에서 하향링크 참조 신호(downlink reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다. 초기 셀 탐색을 마친 UE는 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(physical downlink shared Channel, PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, BS에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 UE는 BS에 대해 임의 접속 과정(random access procedure, RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, UE는 물리 임의 접속 채널(physical random access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로서 전송하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 임의 접속 응답(random access response, RAR) 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 과정(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 과정을 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(physical uplink shared Channel, PUSCH)/물리 상향링크 제어 채널(physical uplink control channel, PUCCH) 전송(S208)을 수행할 수 있다. 특히 UE는 PDCCH를 통하여 하향링크 제어 정보(downlink control information, DCI)를 수신한다. UE는 해당 탐색 공간 설정(configuration)들에 따라 서빙 셀 상의 하나 이상의 제어 요소 세트(control element set, CORESET)들에 설정된 모니터링 기회(occasion)들에서 PDCCH 후보(candidate)들의 세트를 모니터링한다. UE가 모니터할 PDCCH 후보들의 세트는 탐색 공간 세트들의 면에서 정의되며, 탐색 공간 세트는 공통 탐색 공간 세트 또는 UE-특정 탐색 공간 세트일 수 있다. CORESET은 1~3개 OFDM 심볼들의 시간 지속기간을 갖는 (물리) 자원 블록들의 세트로 구성된다. 네트워크는 UE가 복수의 CORESET들을 갖도록 설정할 수 있다. UE는 하나 이상의 탐색 공간 세트들 내 PDCCH 후보들을 모니터링한다. 여기서 모니터링이라 함은 탐색 공간 내 PDCCH 후보(들)에 대한 디코딩 시도하는 것을 의미한다. UE가 탐색 공간 내 PDCCH 후보들 중 하나에 대한 디코딩에 성공하면, 상기 UE는 해당 PDCCH 후보에서 PDCCH를 검출했다고 판단하고, 상기 검출된 PDCCH 내 DCI를 기반으로 PDSCH 수신 혹은 PUSCH 전송을 수행한다. PDCCH는 PDSCH 상의 DL 전송들 및 PUSCH 상의 UL 전송들을 스케줄링하는 데 사용될 수 있다. 여기서 PDCCH 상의 DCI는 하향링크 공유 채널과 관련된, 변조(modulation) 및 코딩 포맷과 자원 할당(resource allocation) 정보를 적어도 포함하는 하향링크 배정(assignment)(즉, downlink grant; DL grant), 또는 상향링크 공유 채널과 관련된, 변조 및 코딩 포맷과 자원 할당 정보를 포함하는 상향링크 그랜트(uplink grant; UL grant)를 포함한다.
도 2를 참고하여, 5G 통신 시스템에서의 초기 접속(Initial Access, IA) 절차에 대해 추가적으로 살펴본다.
UE는 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼들에 구성되며, OFDM 심볼별로 PSS, PBCH, SSS/PBCH 또는 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파들로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파들로 구성된다.
셀 탐색은 UE가 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCI)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다.
다음으로, 시스템 정보 (system information; SI) 획득에 대해 살펴본다.
SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. MIB는 SIB1(SystemInformationBlock1)을 나르는 PDSCH를 스케줄링하는 PDCCH의 모니터링을 위한 정보/파라미터를 포함하며 SSB의 PBCH를 통해 BS에 의해 전송된다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성(availability) 및 스케줄링(예, 전송 주기, SI-윈도우 크기)과 관련된 정보를 포함한다. SIBx는 SI 메시지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메시지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 2를 참고하여, 5G 통신 시스템에서의 임의 접속(Random Access, RA) 과정에 대해 추가적으로 살펴본다.
임의 접속 과정은 다양한 용도로 사용된다. 예를 들어, 임의 접속 과정은 네트워크 초기 접속, 핸드오버, UE-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. UE는 임의 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 임의 접속 과정은 경쟁 기반(contention-based) 임의 접속 과정과 경쟁 프리(contention free) 임의 접속 과정으로 구분된다. 경쟁 기반의 임의 접속 과정에 대한 구체적인 절차는 아래와 같다.
UE가 UL에서 임의 접속 과정의 Msg1로서 임의 접속 프리앰블을 PRACH를 통해 전송할 수 있다. 서로 다른 두 길이를 가지는 임의 접속 프리앰블 시퀀스들이 지원된다. 긴 시퀀스 길이 839는 1.25 및 5 kHz의 부반송파 간격(subcarrier spacing)에 대해 적용되며, 짧은 시퀀스 길이 139는 15, 30, 60 및 120 kHz의 부반송파 간격에 대해 적용된다.
BS가 UE로부터 임의 접속 프리앰블을 수신하면, BS는 임의 접속 응답(random access response, RAR) 메시지(Msg2)를 상기 UE에게 전송한다. RAR을 나르는 PDSCH를 스케줄링하는 PDCCH는 임의 접속(random access, RA) 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)(RA-RNTI)로 CRC 마스킹되어 전송된다. RA-RNTI로 마스킹된 PDCCH를 검출한 UE는 상기 PDCCH가 나르는 DCI가 스케줄링하는 PDSCH로부터 RAR을 수신할 수 있다. UE는 자신이 전송한 프리앰블, 즉, Msg1에 대한 임의 접속 응답 정보가 상기 RAR 내에 있는지 확인한다. 자신이 전송한 Msg1에 대한 임의 접속 정보가 존재하는지 여부는 상기 UE가 전송한 프리앰블에 대한 임의 접속 프리앰블 ID가 존재하는지 여부에 의해 판단될 수 있다. Msg1에 대한 응답이 없으면, UE는 전력 램핑(power ramping)을 수행하면서 RACH 프리앰블을 소정의 횟수 이내에서 재전송할 수 있다. UE는 가장 최근의 경로 손실 및 전력 램핑 카운터를 기반으로 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다.
상기 UE는 임의 접속 응답 정보를 기반으로 상향링크 공유 채널 상에서 UL 전송을 임의 접속 과정의 Msg3로서 전송할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다. Msg3에 대한 응답으로서, 네트워크는 Msg4를 전송할 수 있으며, 이는 DL 상에서의 경쟁 해결 메시지로 취급될 수 있다. Msg4를 수신함으로써, UE는 RRC 연결된 상태에 진입할 수 있다.
C. 5G 통신 시스템의 빔 관리(Beam Management, BM) 절차
BM 과정은 (1) SSB 또는 CSI-RS를 이용하는 DL BM 과정과, (2) SRS(sounding reference signal)을 이용하는 UL BM 과정으로 구분될 수 있다. 또한, 각 BM 과정은 Tx 빔을 결정하기 위한 Tx 빔 스위핑과 Rx 빔을 결정하기 위한 Rx 빔 스위핑을 포함할 수 있다.
SSB를 이용한 DL BM 과정에 대해 살펴본다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC_CONNECTED에서 채널 상태 정보(channel state information, CSI)/빔 설정 시에 수행된다.
- UE는 BM을 위해 사용되는 SSB 자원들에 대한 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 BS로부터 수신한다. RRC 파라미터 csi-SSB-ResourceSetList는 하나의 자원 세트에서 빔 관리 및 보고을 위해 사용되는 SSB 자원들의 리스트를 나타낸다. 여기서, SSB 자원 세트는 {SSBx1, SSBx2, SSBx3, SSBx4, 쪋}으로 설정될 수 있다. SSB 인덱스는 0부터 63까지 정의될 수 있다.
- UE는 상기 CSI-SSB-ResourceSetList에 기초하여 SSB 자원들 상의 신호들을 상기 BS로부터 수신한다.
- SSBRI 및 참조 신호 수신 전력(reference signal received power, RSRP)에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 UE는 최선(best) SSBRI 및 이에 대응하는 RSRP를 BS에게 보고한다. 예를 들어, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, UE는 BS으로 최선 SSBRI 및 이에 대응하는 RSRP를 보고한다.
UE는 SSB와 동일한 OFDM 심볼(들)에 CSI-RS 자원이 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 UE는 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 유사 동일 위치된(quasi co-located, QCL) 것으로 가정할 수 있다. 여기서, QCL-TypeD는 공간(spatial) Rx 파라미터 관점에서 안테나 포트들 간에 QCL되어 있음을 의미할 수 있다. UE가 QCL-TypeD 관계에 있는 복수의 DL 안테나 포트들의 신호들을 수신 시에는 동일한 수신 빔을 적용해도 무방하다.
다음으로, CSI-RS를 이용한 DL BM 과정에 대해 살펴본다.
CSI-RS를 이용한 UE의 Rx 빔 결정(또는 정제(refinement)) 과정과 BS의 Tx 빔 스위핑 과정에 대해 차례대로 살펴본다. UE의 Rx 빔 결정 과정은 반복 파라미터가 'ON'으로 설정되며, BS의 Tx 빔 스위핑 과정은 반복 파라미터가 'OFF'로 설정된다.
먼저, UE의 Rx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'ON'으로 세팅되어 있다.
- UE는 상기 RRC 파라미터 'repetition'이 'ON'으로 설정된 CSI-RS 자원 세트 내의 자원(들) 상에서의 신호들을 BS의 동일 Tx 빔(또는 DL 공간 도메인 전송 필터)을 통해 서로 다른 OFDM 심볼에서 반복 수신한다.
- UE는 자신의 Rx 빔을 결정한다.
- UE는 CSI 보고를 생략한다. 즉, UE는 상가 RRC 파라미터 'repetition'이 'ON'으로 설정된 경우, CSI 보고를 생략할 수 있다.
다음으로, BS의 Tx 빔 결정 과정에 대해 살펴본다.
- UE는 'repetition'에 관한 RRC 파라미터를 포함하는 NZP CSI-RS resource set IE를 RRC 시그널링을 통해 BS로부터 수신한다. 여기서, 상기 RRC 파라미터 'repetition'이 'OFF'로 세팅되어 있으며, BS의 Tx 빔 스위핑 과정과 관련된다.
- UE는 상기 RRC 파라미터 'repetition'이 'OFF'로 설정된 CSI-RS 자원 세트 내의 자원들 상에서의 신호들을 BS의 서로 다른 Tx 빔(DL 공간 도메인 전송 필터)을 통해 수신한다.
- UE는 최상의(best) 빔을 선택(또는 결정)한다.
- UE는 선택된 빔에 대한 ID(예, CRI) 및 관련 품질 정보(예, RSRP)를 BS으로 보고한다. 즉, UE는 CSI-RS가 BM을 위해 전송되는 경우 CRI와 이에 대한 RSRP를 BS으로 보고한다.
다음으로, SRS를 이용한 UL BM 과정에 대해 살펴본다.
- UE는 'beam management'로 설정된 (RRC 파라미터) 용도 파라미터를 포함하는 RRC 시그널링(예, SRS-Config IE)를 BS로부터 수신한다. SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 리스트와 SRS-ResourceSet들의 리스트를 포함한다. 각 SRS 자원 세트는 SRS-resource들의 세트를 의미한다.
- UE는 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS 자원에 대한 Tx 빔포밍을 결정한다. 여기서, SRS-SpatialRelation Info는 SRS 자원별로 설정되고, SRS 자원별로 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용할지를 나타낸다.
- 만약 SRS 자원에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 빔포밍과 동일한 빔포밍을 적용하여 전송한다. 하지만, SRS 자원에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 UE는 임의로 Tx 빔포밍을 결정하여 결정된 Tx 빔포밍을 통해 SRS를 전송한다.
다음으로, 빔 실패 복구(beam failure recovery, BFR) 과정에 대해 살펴본다.
빔포밍된 시스템에서, RLF(Radio Link Failure)는 UE의 회전(rotation), 이동(movement) 또는 빔포밍 블로키지(blockage)로 인해 자주 발생할 수 있다. 따라서, 잦은 RLF가 발생하는 것을 방지하기 위해 BFR이 NR에서 지원된다. BFR은 무선 링크 실패 복구 과정과 유사하고, UE가 새로운 후보 빔(들)을 아는 경우에 지원될 수 있다. 빔 실패 검출을 위해, BS는 UE에게 빔 실패 검출 참조 신호들을 설정하고, 상기 UE는 상기 UE의 물리 계층으로부터의 빔 실패 지시(indication)들의 횟수가 BS의 RRC 시그널링에 의해 설정된 기간(period) 내에 RRC 시그널링에 의해 설정된 임계치(threshold)에 이르면(reach), 빔 실패를 선언(declare)한다. 빔 실패가 검출된 후, 상기 UE는 PCell 상의 임의 접속 과정을 개시(initiate)함으로써 빔 실패 복구를 트리거하고; 적절한(suitable) 빔을 선택하여 빔 실패 복구를 수행한다(BS가 어떤(certain) 빔들에 대해 전용 임의 접속 자원들을 제공한 경우, 이들이 상기 UE에 의해 우선화된다). 상기 임의 접속 절차의 완료(completion) 시, 빔 실패 복구가 완료된 것으로 간주된다.
D. URLLC (Ultra-Reliable and Low Latency Communication)
NR에서 정의하는 URLLC 전송은 (1) 상대적으로 낮은 트래픽 크기, (2) 상대적으로 낮은 도착 레이트(low arrival rate), (3) 극도의 낮은 레이턴시 요구사항(requirement)(예, 0.5, 1ms), (4) 상대적으로 짧은 전송 지속기간(duration)(예, 2 OFDM symbols), (5) 긴급한 서비스/메시지 등에 대한 전송을 의미할 수 있다. UL의 경우, 보다 엄격(stringent)한 레이턴시 요구 사항(latency requirement)을 만족시키기 위해 특정 타입의 트래픽(예컨대, URLLC)에 대한 전송이 앞서서 스케줄링된 다른 전송(예컨대, eMBB)과 다중화(multiplexing)되어야 할 필요가 있다. 이와 관련하여 한 가지 방안으로, 앞서 스케줄링 받은 UE에게 특정 자원에 대해서 프리엠션(preemption)될 것이라는 정보를 주고, 해당 자원을 URLLC UE가 UL 전송에 사용하도록 한다.
NR의 경우, eMBB와 URLLC 사이의 동적 자원 공유(sharing)이 지원된다. eMBB와 URLLC 서비스들은 비-중첩(non-overlapping) 시간/주파수 자원들 상에서 스케줄될 수 있으며, URLLC 전송은 진행 중인(ongoing) eMBB 트래픽에 대해 스케줄된 자원들에서 발생할 수 있다. eMBB UE는 해당 UE의 PDSCH 전송이 부분적으로 펑처링(puncturing)되었는지 여부를 알 수 없을 수 있고, 손상된 코딩된 비트(corrupted coded bit)들로 인해 UE는 PDSCH를 디코딩하지 못할 수 있다. 이 점을 고려하여, NR에서는 프리엠션 지시(preemption indication)을 제공한다. 상기 프리엠션 지시(preemption indication)는 중단된 전송 지시(interrupted transmission indication)으로 지칭될 수도 있다.
프리엠션 지시와 관련하여, UE는 BS로부터의 RRC 시그널링을 통해 DownlinkPreemption IE를 수신한다. UE가 DownlinkPreemption IE를 제공받으면, DCI 포맷 2_1을 운반(convey)하는 PDCCH의 모니터링을 위해 상기 UE는 DownlinkPreemption IE 내 파라미터 int-RNTI에 의해 제공된 INT-RNTI를 가지고 설정된다. 상기 UE는 추가적으로 servingCellID에 의해 제공되는 서빙 셀 인덱스들의 세트를 포함하는 INT-ConfigurationPerServing Cell에 의해 서빙 셀들의 세트와 positionInDCI에 의해 DCI 포맷 2_1 내 필드들을 위한 위치들의 해당 세트를 가지고 설정되고, dci-PayloadSize에 의해 DCI 포맷 2_1을 위한 정보 페이로드 크기를 가지고 설졍되며, timeFrequencySect에 의한 시간-주파수 자원들의 지시 입도(granularity)를 가지고 설정된다.
상기 UE는 상기 DownlinkPreemption IE에 기초하여 DCI 포맷 2_1을 상기 BS로부터 수신한다.
UE가 서빙 셀들의 설정된 세트 내 서빙 셀에 대한 DCI 포맷 2_1을 검출하면, 상기 UE는 상기 DCI 포맷 2_1이 속한 모니터링 기간의 바로 앞(last) 모니터링 기간의 PRB들의 세트 및 심볼들의 세트 중 상기 DCI 포맷 2_1에 의해 지시되는 PRB들 및 심볼들 내에는 상기 UE로의 아무런 전송도 없다고 가정할 수 있다. 예를 들어, UE는 프리엠션에 의해 지시된 시간-주파수 자원 내 신호는 자신에게 스케줄링된 DL 전송이 아니라고 보고 나머지 자원 영역에서 수신된 신호들을 기반으로 데이터를 디코딩한다.
E. mMTC (massive MTC)
mMTC(massive Machine Type Communication)은 많은 수의 UE와 동시에 통신하는 초연결 서비스를 지원하기 위한 5G의 시나리오 중 하나이다. 이 환경에서, UE는 굉장히 낮은 전송 속도와 이동성을 가지고 간헐적으로 통신하게 된다. 따라서, mMTC는 UE를 얼마나 낮은 비용으로 오랫동안 구동할 수 있는지를 주요 목표로 하고 있다. mMTC 기술과 관련하여 3GPP에서는 MTC와 NB(NarrowBand)-IoT를 다루고 있다.
mMTC 기술은 PDCCH, PUCCH, PDSCH(physical downlink shared channel), PUSCH 등의 반복 전송, 주파수 호핑(hopping), 리튜닝(retuning), 가드 구간(guard period) 등의 특징을 가진다.
즉, 특정 정보를 포함하는 PUSCH(또는 PUCCH(특히, long PUCCH) 또는 PRACH) 및 특정 정보에 대한 응답을 포함하는 PDSCH(또는 PDCCH)가 반복 전송된다. 반복 전송은 주파수 호핑(frequency hopping)을 통해 수행되며, 반복 전송을 위해, 제 1 주파수 자원에서 제 2 주파수 자원으로 가드 구간(guard period)에서 (RF) 리튜닝(retuning)이 수행되고, 특정 정보 및 특정 정보에 대한 응답은 협대역(narrowband)(ex. 6 RB (resource block) or 1 RB)를 통해 송/수신될 수 있다.
F. 5G 통신을 이용한 자율 주행 차량 간 기본 동작
도 3은 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크의 기본 동작의 일 예를 나타낸다. 설명의 편의를 위해서 5G 통신 시스템을 기준으로 설명하는 것일 뿐, 본 발명의 기술적 사상을 제한하는 것은 아니다.
자율 주행 차량(Autonomous Vehicle)은 특정 정보 전송을 5G 네트워크로 전송한다(S1). 상기 특정 정보는 자율 주행 관련 정보를 포함할 수 있다. 그리고, 상기 5G 네트워크는 차량의 원격 제어 여부를 결정할 수 있다(S2). 여기서, 상기 5G 네트워크는 자율 주행 관련 원격 제어를 수행하는 서버 또는 모듈을 포함할 수 있다. 그리고, 상기 5G 네트워크는 원격 제어와 관련된 정보(또는 신호)를 상기 자율 주행 차량으로 전송할 수 있다(S3).
G. 5G 통신 시스템에서 자율 주행 차량과 5G 네트워크 간의 응용 동작
이하, 도 1 및 도 2와 앞서 살핀 무선 통신 기술(BM 절차, URLLC, Mmtc 등)을 참고하여 5G 통신을 이용한 자율 주행 차량의 동작에 대해 보다 구체적으로 살펴본다.
먼저, 후술할 본 발명에서 제안하는 방법과 5G 통신의 eMBB 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 S1 단계 및 S3 단계와 같이, 자율 주행 차량이 5G 네트워크와 신호, 정보 등을 송/수신하기 위해, 자율 주행 차량은 도 3의 S1 단계 이전에 5G 네트워크와 초기 접속(initial access) 절차 및 임의 접속(random access) 절차를 수행한다.
보다 구체적으로, 자율 주행 차량은 DL 동기 및 시스템 정보를 획득하기 위해 SSB에 기초하여 5G 네트워크와 초기 접속 절차를 수행한다. 상기 초기 접속 절차 과정에서 빔 관리(beam management, BM) 과정, 빔 실패 복구(beam failure recovery) 과정이 추가될 수 있으며, 자율 주행 차량이 5G 네트워크로부터 신호를 수신하는 과정에서 QCL(quasi-co location) 관계가 추가될 수 있다.
또한, 자율 주행 차량은 UL 동기 획득 및/또는 UL 전송을 위해 5G 네트워크와 임의 접속 절차를 수행한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 특정 정보의 전송을 스케쥴링하기 위한 UL grant를 전송할 수 있다. 따라서, 상기 자율 주행 차량은 상기 UL grant에 기초하여 상기 5G 네트워크로 특정 정보를 전송한다. 그리고, 상기 5G 네트워크는 상기 자율 주행 차량으로 상기 특정 정보에 대한 5G 프로세싱 결과의 전송을 스케쥴링하기 위한 DL grant를 전송한다. 따라서, 상기 5G 네트워크는 상기 DL grant에 기초하여 상기 자율 주행 차량으로 원격 제어와 관련된 정보(또는 신호)를 전송할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 URLLC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
앞서 설명한 바와 같이, 자율 주행 차량은 5G 네트워크와 초기 접속 절차 및/또는 임의 접속 절차를 수행한 후, 자율 주행 차량은 5G 네트워크로부터 DownlinkPreemption IE를 수신할 수 있다. 그리고, 자율 주행 차량은 DownlinkPreemption IE에 기초하여 프리엠션 지시(pre-emption indication)을 포함하는 DCI 포맷 2_1을 5G 네트워크로부터 수신한다. 그리고, 자율 주행 차량은 프리엠션 지시(pre-emption indication)에 의해 지시된 자원(PRB 및/또는 OFDM 심볼)에서 eMBB data의 수신을 수행(또는 기대 또는 가정)하지 않는다. 이후, 자율 주행 차량은 특정 정보를 전송할 필요가 있는 경우 5G 네트워크로부터 UL grant를 수신할 수 있다.
다음으로, 후술할 본 발명에서 제안하는 방법과 5G 통신의 mMTC 기술이 적용되는 응용 동작의 기본 절차에 대해 설명한다.
도 3의 단계들 중 mMTC 기술의 적용으로 달라지는 부분 위주로 설명하기로 한다.
도 3의 S1 단계에서, 자율 주행 차량은 특정 정보를 5G 네트워크로 전송하기 위해 5G 네트워크로부터 UL grant를 수신한다. 여기서, 상기 UL grant는 상기 특정 정보의 전송에 대한 반복 횟수에 대한 정보를 포함하고, 상기 특정 정보는 상기 반복 횟수에 대한 정보에 기초하여 반복하여 전송될 수 있다. 즉, 상기 자율 주행 차량은 상기 UL grant에 기초하여 특정 정보를 5G 네트워크로 전송한다. 그리고, 특정 정보의 반복 전송은 주파수 호핑을 통해 수행되고, 첫 번째 특정 정보의 전송은 제 1 주파수 자원에서, 두 번째 특정 정보의 전송은 제 2 주파수 자원에서 전송될 수 있다. 상기 특정 정보는 6RB(Resource Block) 또는 1RB(Resource Block)의 협대역(narrowband)을 통해 전송될 수 있다.
H. 5G 통신을 이용한 차량 대 차량 간의 자율 주행 동작
도 4는 5G 통신을 이용한 차량 대 차량 간의 기본 동작의 일 예를 예시한다.
제1 차량은 특정 정보를 제2 차량으로 전송한다(S61). 제2 차량은 특정 정보에 대한 응답을 제1 차량으로 전송한다(S62).
한편, 5G 네트워크가 상기 특정 정보, 상기 특정 정보에 대한 응답의 자원 할당에 직접적(사이드 링크 통신 전송 모드 3) 또는 간접적으로(사이드링크 통신 전송 모드 4) 관여하는지에 따라 차량 대 차량 간 응용 동작의 구성이 달라질 수 있다.
다음으로, 5G 통신을 이용한 차량 대 차량 간의 응용 동작에 대해 살펴본다.
먼저, 5G 네트워크가 차량 대 차량 간의 신호 전송/수신의 자원 할당에 직접적으로 관여하는 방법을 설명한다.
5G 네트워크는, 모드 3 전송(PSCCH 및/또는 PSSCH 전송)의 스케줄링을 위해 DCI 포맷 5A를 제1 차량에 전송할 수 있다. 여기서, PSCCH(physical sidelink control channel)는 특정 정보 전송의 스케줄링을 위한 5G 물리 채널이고, PSSCH(physical sidelink shared channel)는 특정 정보를 전송하는 5G 물리 채널이다. 그리고, 제1 차량은 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량이 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
다음으로, 5G 네트워크가 신호 전송/수신의 자원 할당에 간접적으로 관여하는 방법에 대해 살펴본다.
제1 차량은 모드 4 전송을 위한 자원을 제1 윈도우에서 센싱한다. 그리고, 제1 차량은, 상기 센싱 결과에 기초하여 제2 윈도우에서 모드 4 전송을 위한 자원을 선택한다. 여기서, 제1 윈도우는 센싱 윈도우(sensing window)를 의미하고, 제2 윈도우는 선택 윈도우(selection window)를 의미한다. 제1 차량은 상기 선택된 자원을 기초로 특정 정보 전송의 스케줄링을 위한 SCI 포맷 1을 PSCCH 상에서 제2 차량으로 전송한다. 그리고, 제1 차량은 특정 정보를 PSSCH 상에서 제2 차량으로 전송한다.
앞서 살핀 5G 통신 기술은 후술할 본 발명에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 발명에서 제안하는 방법들의 기술적 특징을 구체화하거나 명확하게 하는데 보충될 수 있다.
주행
(1) 차량 외관
도 5는 본 발명의 실시예에 따른 차량을 도시한 도면이다.
도 5를 참조하면, 본 발명의 실시예에 따른 차량(10)은, 도로나 선로 위를 주행하는 수송 수단으로 정의된다. 차량(10)은, 자동차, 기차, 오토바이를 포함하는 개념이다. 차량(10)은, 동력원으로서 엔진을 구비하는 내연기관 차량, 동력원으로서 엔진과 전기 모터를 구비하는 하이브리드 차량, 동력원으로서 전기 모터를 구비하는 전기 차량등을 모두 포함하는 개념일 수 있다. 차량(10)은 개인이 소유한 차량일 수 있다. 차량(10)은, 공유형 차량일 수 있다. 차량(10)은 자율 주행 차량일 수 있다.
(2) 차량의 구성 요소
도 6은 본 발명의 실시예에 따른 차량의 제어 블럭도이다.
도 6을 참조하면, 차량(10)은, 사용자 인터페이스 장치(200), 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)를 포함할 수 있다. 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 자율 주행 장치(260), 센싱부(270) 및 위치 데이터 생성 장치(280)는 각각이 전기적 신호를 생성하고, 상호간에 전기적 신호를 교환하는 전자 장치로 구현될 수 있다.
1) 사용자 인터페이스 장치
사용자 인터페이스 장치(200)는, 차량(10)과 사용자와의 소통을 위한 장치이다. 사용자 인터페이스 장치(200)는, 사용자 입력을 수신하고, 사용자에게 차량(10)에서 생성된 정보를 제공할 수 있다. 차량(10)은, 사용자 인터페이스 장치(200)를 통해, UI(User Interface) 또는 UX(User Experience)를 구현할 수 있다. 사용자 인터페이스 장치(200)는, 입력 장치, 출력 장치 및 사용자 모니터링 장치를 포함할 수 있다.
2) 오브젝트 검출 장치
오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 오브젝트에 대한 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(10)과 오브젝트와의 거리 정보 및 차량(10)과 오브젝트와의 상대 속도 정보 중 적어도 어느 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있다. 오브젝트 검출 장치(210)는, 차량(10) 외부의 오브젝트를 검출할 수 있는 적어도 하나의 센서를 포함할 수 있다. 오브젝트 검출 장치(210)는, 카메라, 레이다, 라이다, 초음파 센서 및 적외선 센서 중 적어도 하나를 포함할 수 있다. 오브젝트 검출 장치(210)는, 센서에서 생성되는 센싱 신호에 기초하여 생성된 오브젝트에 대한 데이터를 차량에 포함된 적어도 하나의 전자 장치에 제공할 수 있다.
2.1) 카메라
카메라는 영상을 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 카메라는 적어도 하나의 렌즈, 적어도 하나의 이미지 센서 및 이미지 센서와 전기적으로 연결되어 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다.
카메라는, 모노 카메라, 스테레오 카메라, AVM(Around View Monitoring) 카메라 중 적어도 어느 하나일 수 있다. 카메라는, 다양한 영상 처리 알고리즘을 이용하여, 오브젝트의 위치 정보, 오브젝트와의 거리 정보 또는 오브젝트와의 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 획득된 영상에서, 시간에 따른 오브젝트 크기의 변화를 기초로, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 핀홀(pin hole) 모델, 노면 프로파일링 등을 통해, 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다. 예를 들면, 카메라는, 스테레오 카메라에서 획득된 스테레오 영상에서 디스패러티(disparity) 정보를 기초로 오브젝트와의 거리 정보 및 상대 속도 정보를 획득할 수 있다.
카메라는, 차량 외부를 촬영하기 위해 차량에서 FOV(field of view) 확보가 가능한 위치에 장착될 수 있다. 카메라는, 차량 전방의 영상을 획득하기 위해, 차량의 실내에서, 프런트 윈드 쉴드에 근접하게 배치될 수 있다. 카메라는, 프런트 범퍼 또는 라디에이터 그릴 주변에 배치될 수 있다. 카메라는, 차량 후방의 영상을 획득하기 위해, 차량의 실내에서, 리어 글라스에 근접하게 배치될 수 있다. 카메라는, 리어 범퍼, 트렁크 또는 테일 게이트 주변에 배치될 수 있다. 카메라는, 차량 측방의 영상을 획득하기 위해, 차량의 실내에서 사이드 윈도우 중 적어도 어느 하나에 근접하게 배치될 수 있다. 또는, 카메라는, 사이드 미러, 휀더 또는 도어 주변에 배치될 수 있다.
2.2) 레이다
레이다는 전파를 이용하여 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 레이다는, 전자파 송신부, 전자파 수신부 및 전자파 송신부 및 전자파 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리되는 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 레이다는 전파 발사 원리상 펄스 레이다(Pulse Radar) 방식 또는 연속파 레이다(Continuous Wave Radar) 방식으로 구현될 수 있다. 레이다는 연속파 레이다 방식 중에서 신호 파형에 따라 FMCW(Frequency Modulated Continuous Wave)방식 또는 FSK(Frequency Shift Keyong) 방식으로 구현될 수 있다. 레이다는 전자파를 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 레이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
2.3) 라이다
라이다는, 레이저 광을 이용하여, 차량(10) 외부의 오브젝트에 대한 정보를 생성할 수 있다. 라이다는, 광 송신부, 광 수신부 및 광 송신부 및 광 수신부와 전기적으로 연결되어, 수신되는 신호를 처리하고, 처리된 신호에 기초하여 오브젝트에 대한 데이터를 생성하는 적어도 하나의 프로세서를 포함할 수 있다. 라이다는, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식으로 구현될 수 있다. 라이다는, 구동식 또는 비구동식으로 구현될 수 있다. 구동식으로 구현되는 경우, 라이다는, 모터에 의해 회전되며, 차량(10) 주변의 오브젝트를 검출할 수 있다. 비구동식으로 구현되는 경우, 라이다는, 광 스티어링에 의해, 차량을 기준으로 소정 범위 내에 위치하는 오브젝트를 검출할 수 있다. 차량(10)은 복수의 비구동식 라이다를 포함할 수 있다. 라이다는, 레이저 광 매개로, TOF(Time of Flight) 방식 또는 페이즈 쉬프트(phase-shift) 방식에 기초하여, 오브젝트를 검출하고, 검출된 오브젝트의 위치, 검출된 오브젝트와의 거리 및 상대 속도를 검출할 수 있다. 라이다는, 차량의 전방, 후방 또는 측방에 위치하는 오브젝트를 감지하기 위해 차량의 외부의 적절한 위치에 배치될 수 있다.
3) 통신 장치
통신 장치(220)는, 차량(10) 외부에 위치하는 디바이스와 신호를 교환할 수 있다. 통신 장치(220)는, 인프라(예를 들면, 서버, 방송국), 타 차량, 단말기 중 적어도 어느 하나와 신호를 교환할 수 있다. 통신 장치(220)는, 통신을 수행하기 위해 송신 안테나, 수신 안테나, 각종 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 발명의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 발명의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
4) 운전 조작 장치
운전 조작 장치(230)는, 운전을 위한 사용자 입력을 수신하는 장치이다. 메뉴얼 모드인 경우, 차량(10)은, 운전 조작 장치(230)에 의해 제공되는 신호에 기초하여 운행될 수 있다. 운전 조작 장치(230)는, 조향 입력 장치(예를 들면, 스티어링 휠), 가속 입력 장치(예를 들면, 가속 페달) 및 브레이크 입력 장치(예를 들면, 브레이크 페달)를 포함할 수 있다.
5) 메인 ECU
메인 ECU(240)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치의 전반적인 동작을 제어할 수 있다.
6) 구동 제어 장치
구동 제어 장치(250)는, 차량(10)내 각종 차량 구동 장치를 전기적으로 제어하는 장치이다. 구동 제어 장치(250)는, 파워 트레인 구동 제어 장치, 샤시 구동 제어 장치, 도어/윈도우 구동 제어 장치, 안전 장치 구동 제어 장치, 램프 구동 제어 장치 및 공조 구동 제어 장치를 포함할 수 있다. 파워 트레인 구동 제어 장치는, 동력원 구동 제어 장치 및 변속기 구동 제어 장치를 포함할 수 있다. 샤시 구동 제어 장치는, 조향 구동 제어 장치, 브레이크 구동 제어 장치 및 서스펜션 구동 제어 장치를 포함할 수 있다. 한편, 안전 장치 구동 제어 장치는, 안전 벨트 제어를 위한 안전 벨트 구동 제어 장치를 포함할 수 있다.
구동 제어 장치(250)는, 적어도 하나의 전자적 제어 장치(예를 들면, 제어 ECU(Electronic Control Unit))를 포함한다.
구종 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 차량 구동 장치를 제어할 수 있다. 예를 들면, 제어 장치(250)는, 자율 주행 장치(260)에서 수신되는 신호에 기초하여, 파워 트레인, 조향 장치 및 브레이크 장치를 제어할 수 있다.
7) 자율 주행 장치
자율 주행 장치(260)는, 획득된 데이터에 기초하여, 자율 주행을 위한 패스를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 경로를 따라 주행하기 위한 드라이빙 플랜을 생성 할 수 있다. 자율 주행 장치(260)는, 드라이빙 플랜에 따른 차량의 움직임을 제어하기 위한 신호를 생성할 수 있다. 자율 주행 장치(260)는, 생성된 신호를 구동 제어 장치(250)에 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현할 수 있다. ADAS는, 적응형 크루즈 컨트롤 시스템(ACC : Adaptive Cruise Control), 자동 비상 제동 시스템(AEB : Autonomous Emergency Braking), 전방 충돌 알림 시스템(FCW : Foward Collision Warning), 차선 유지 보조 시스템(LKA : Lane Keeping Assist), 차선 변경 보조 시스템(LCA : Lane Change Assist), 타겟 추종 보조 시스템(TFA : Target Following Assist), 사각 지대 감시 시스템(BSD : Blind Spot Detection), 적응형 하이빔 제어 시스템(HBA : High Beam Assist), 자동 주차 시스템(APS : Auto Parking System), 보행자 충돌 알림 시스템(PD collision warning system), 교통 신호 검출 시스템(TSR : Traffic Sign Recognition), 교통 신호 보조 시스템(TSA : Trafffic Sign Assist), 나이트 비전 시스템(NV : Night Vision), 운전자 상태 모니터링 시스템(DSM : Driver Status Monitoring) 및 교통 정체 지원 시스템(TJA : Traffic Jam Assist) 중 적어도 어느 하나를 구현할 수 있다.
자율 주행 장치(260)는, 자율 주행 모드에서 수동 주행 모드로의 전환 동작 또는 수동 주행 모드에서 자율 주행 모드로의 전환 동작을 수행할 수 있다. 예를 들면, 자율 주행 장치(260)는, 사용자 인터페이스 장치(200)로부터 수신되는 신호에 기초하여, 차량(10)의 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 수동 주행 모드에서 자율 주행 모드로 전환할 수 있다.
8) 센싱부
센싱부(270)는, 차량의 상태를 센싱할 수 있다. 센싱부(270)는, IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 중 적어도 어느 하나를 포함할 수 있다. 한편, IMU(inertial measurement unit) 센서는, 가속도 센서, 자이로 센서, 자기 센서 중 하나 이상을 포함할 수 있다.
센싱부(270)는, 적어도 하나의 센서에서 생성되는 신호에 기초하여, 차량의 상태 데이터를 생성할 수 있다. 차량 상태 데이터는, 차량 내부에 구비된 각종 센서에서 감지된 데이터를 기초로 생성된 정보일 수 있다. 센싱부(270)는, 차량 자세 데이터, 차량 모션 데이터, 차량 요(yaw) 데이터, 차량 롤(roll) 데이터, 차량 피치(pitch) 데이터, 차량 충돌 데이터, 차량 방향 데이터, 차량 각도 데이터, 차량 속도 데이터, 차량 가속도 데이터, 차량 기울기 데이터, 차량 전진/후진 데이터, 차량의 중량 데이터, 배터리 데이터, 연료 데이터, 타이어 공기압 데이터, 차량 내부 온도 데이터, 차량 내부 습도 데이터, 스티어링 휠 회전 각도 데이터, 차량 외부 조도 데이터, 가속 페달에 가해지는 압력 데이터, 브레이크 페달에 가해지는 압력 데이터 등을 생성할 수 있다.
9) 위치 데이터 생성 장치
위치 데이터 생성 장치(280)는, 차량(10)의 위치 데이터를 생성할 수 있다. 위치 데이터 생성 장치(280)는, GPS(Global Positioning System) 및 DGPS(Differential Global Positioning System) 중 적어도 어느 하나를 포함할 수 있다. 위치 데이터 생성 장치(280)는, GPS 및 DGPS 중 적어도 어느 하나에서 생성되는 신호에 기초하여 차량(10)의 위치 데이터를 생성할 수 있다. 실시예에 따라, 위치 데이터 생성 장치(280)는, 센싱부(270)의 IMU(Inertial Measurement Unit) 및 오브젝트 검출 장치(210)의 카메라 중 적어도 어느 하나에 기초하여 위치 데이터를 보정할 수 있다. 위치 데이터 생성 장치(280)는, GNSS(Global Navigation Satellite System)로 명명될 수 있다.
차량(10)은, 내부 통신 시스템(50)을 포함할 수 있다. 차량(10)에 포함되는 복수의 전자 장치는 내부 통신 시스템(50)을 매개로 신호를 교환할 수 있다. 신호에는 데이터가 포함될 수 있다. 내부 통신 시스템(50)은, 적어도 하나의 통신 프로토콜(예를 들면, CAN, LIN, FlexRay, MOST, 이더넷)을 이용할 수 있다.
(3) 자율 주행 장치의 구성 요소
도 7은 본 발명의 실시예에 따른 자율 주행 장치의 제어 블럭도이다.
도 7을 참조하면, 자율 주행 장치(260)는, 메모리(140), 프로세서(170), 인터페이스부(180) 및 전원 공급부(190)를 포함할 수 있다.
메모리(140)는, 프로세서(170)와 전기적으로 연결된다. 메모리(140)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)에서 처리된 데이터를 저장할 수 있다. 메모리(140)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(140)는 프로세서(170)의 처리 또는 제어를 위한 프로그램 등, 자율 주행 장치(260) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(140)는, 프로세서(170)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(140)는, 프로세서(170)의 하위 구성으로 분류될 수 있다.
인터페이스부(180)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(180)는, 오브젝트 검출 장치(210), 통신 장치(220), 운전 조작 장치(230), 메인 ECU(240), 구동 제어 장치(250), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(180)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(190)는, 자율 주행 장치(260)에 전원을 공급할 수 있다. 전원 공급부(190)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 자율 주행 장치(260)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(190)는, 메인 ECU(240)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 전원 공급부(190)는, SMPS(switched-mode power supply)를 포함할 수 있다.
프로세서(170)는, 메모리(140), 인터페이스부(180), 전원 공급부(190)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(170)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(170)는, 전원 공급부(190)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(170)는, 전원 공급부(190)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
자율 주행 장치(260)는, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메모리(140), 인터페이스부(180), 전원 공급부(190) 및 프로세서(170)는, 인쇄 회로 기판에 전기적으로 연결될 수 있다.
(4) 자율 주행 장치의 동작
도 8은 본 발명의 실시예에 따른 자율 주행 차량의 신호 흐름도이다.
1) 수신 동작
도 8을 참조하면, 프로세서(170)는, 수신 동작을 수행할 수 있다. 프로세서(170)는, 인터페이스부(180)를 통해, 오브젝트 검출 장치(210), 통신 장치(220), 센싱부(270) 및 위치 데이터 생성 장치(280) 중 적어도 어느 하나로부터, 데이터를 수신할 수 있다. 프로세서(170)는, 오브젝트 검출 장치(210)로부터, 오브젝트 데이터를 수신할 수 있다. 프로세서(170)는, 통신 장치(220)로부터, HD 맵 데이터를 수신할 수 있다. 프로세서(170)는, 센싱부(270)로부터, 차량 상태 데이터를 수신할 수 있다. 프로세서(170)는, 위치 데이터 생성 장치(280)로부터 위치 데이터를 수신할 수 있다.
2) 처리/판단 동작
프로세서(170)는, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 주행 상황 정보에 기초하여, 처리/판단 동작을 수행할 수 있다. 프로세서(170)는, 오브젝트 데이터, HD 맵 데이터, 차량 상태 데이터 및 위치 데이터 중 적어도 어느 하나에 기초하여, 처리/판단 동작을 수행할 수 있다.
2.1) 드라이빙 플랜 데이터 생성 동작
프로세서(170)는, 드라이빙 플랜 데이터(driving plan data)를 생성할 수 있다. 예를 들면, 프로세서(170는, 일렉트로닉 호라이즌 데이터(Electronic Horizon Data)를 생성할 수 있다. 일렉트로닉 호라이즌 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌(horizon)까지 범위 내에서의 드라이빙 플랜 데이터로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 기준으로, 차량(10)이 위치한 지점에서 기설정된 거리 앞의 지점으로 이해될 수 있다. 호라이즌은, 기 설정된 주행 경로를 따라 차량(10)이 위치한 지점에서부터 차량(10)이 소정 시간 이후에 도달할 수 있는 지점을 의미할 수 있다.
일렉트로닉 호라이즌 데이터는, 호라이즌 맵 데이터 및 호라이즌 패스 데이터를 포함할 수 있다.
2.1.1) 호라이즌 맵 데이터
호라이즌 맵 데이터는, 토폴로지 데이터(topology data), 도로 데이터, HD 맵 데이터 및 다이나믹 데이터(dynamic data) 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 호라이즌 맵 데이터는, 복수의 레이어를 포함할 수 있다. 예를 들면, 호라이즌 맵 데이터는, 토폴로지 데이터에 매칭되는 1 레이어, 도로 데이터에 매칭되는 제2 레이어, HD 맵 데이터에 매칭되는 제3 레이어 및 다이나믹 데이터에 매칭되는 제4 레이어를 포함할 수 있다. 호라이즌 맵 데이터는, 스태이틱 오브젝트(static object) 데이터를 더 포함할 수 있다.
토폴로지 데이터는, 도로 중심을 연결해 만든 지도로 설명될 수 있다. 토폴로지 데이터는, 차량의 위치를 대략적으로 표시하기에 알맞으며, 주로 운전자를 위한 내비게이션에서 사용하는 데이터의 형태일 수 있다. 토폴로지 데이터는, 차로에 대한 정보가 제외된 도로 정보에 대한 데이터로 이해될 수 있다. 토폴로지 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초하여 생성될 수 있다. 토폴로지 데이터는, 차량(10)에 구비된 적어도 하나의 메모리에 저장된 데이터에 기초할 수 있다.
도로 데이터는, 도로의 경사 데이터, 도로의 곡률 데이터, 도로의 제한 속도 데이터 중 적어도 어느 하나를 포함할 수 있다. 도로 데이터는, 추월 금지 구간 데이터를 더 포함할 수 있다. 도로 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 도로 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
HD 맵 데이터는, 도로의 상세한 차선 단위의 토폴로지 정보, 각 차선의 연결 정보, 차량의 로컬라이제이션(localization)을 위한 특징 정보(예를 들면, 교통 표지판, Lane Marking/속성, Road furniture 등)를 포함할 수 있다. HD 맵 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다.
다이나믹 데이터는, 도로상에서 발생될 수 있는 다양한 동적 정보를 포함할 수 있다. 예를 들면, 다이나믹 데이터는, 공사 정보, 가변 속도 차로 정보, 노면 상태 정보, 트래픽 정보, 무빙 오브젝트 정보 등을 포함할 수 있다. 다이나믹 데이터는, 통신 장치(220)를 통해, 외부 서버에서 수신된 데이터에 기초할 수 있다. 다이나믹 데이터는, 오브젝트 검출 장치(210)에서 생성된 데이터에 기초할 수 있다.
프로세서(170)는, 차량(10)이 위치한 지점에서부터 호라이즌까지 범위 내에서의 맵 데이터를 제공할 수 있다.
2.1.2) 호라이즌 패스 데이터
호라이즌 패스 데이터는, 차량(10)이 위치한 지점에서부터 호라이즌까지의 범위 내에서 차량(10)이 취할 수 있는 궤도로 설명될 수 있다. 호라이즌 패스 데이터는, 디시전 포인트(decision point)(예를 들면, 갈림길, 분기점, 교차로 등)에서 어느 하나의 도로를 선택할 상대 확률을 나타내는 데이터를 포함할 수 있다. 상대 확률은, 최종 목적지까지 도착하는데 걸리는 시간에 기초하여 계산될 수 있다. 예를 들면, 디시전 포인트에서, 제1 도로를 선택하는 경우 제2 도로를 선택하는 경우보다 최종 목적지에 도착하는데 걸리는 시간이 더 작은 경우, 제1 도로를 선택할 확률은 제2 도로를 선택할 확률보다 더 높게 계산될 수 있다.
호라이즌 패스 데이터는, 메인 패스와 서브 패스를 포함할 수 있다. 메인 패스는, 선택될 상대적 확률이 높은 도로들을 연결한 궤도로 이해될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 분기될 수 있다. 서브 패스는, 메인 패스 상의 적어도 하나의 디시전 포인트에서 선택될 상대적 확률이 낮은 적어도 어느 하나의 도로를 연결한 궤도로 이해될 수 있다.
3) 제어 신호 생성 동작
프로세서(170)는, 제어 신호 생성 동작을 수행할 수 있다. 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 제어 신호를 생성할 수 있다. 예를 들면, 프로세서(170)는, 일렉트로닉 호라이즌 데이터에 기초하여, 파워트레인 제어 신호, 브라이크 장치 제어 신호 및 스티어링 장치 제어 신호 중 적어도 어느 하나를 생성할 수 있다.
프로세서(170)는, 인터페이스부(180)를 통해, 생성된 제어 신호를 구동 제어 장치(250)에 전송할 수 있다. 구동 제어 장치(250)는, 파워 트레인(251), 브레이크 장치(252) 및 스티어링 장치(253) 중 적어도 어느 하나에 제어 신호를 전송할 수 있다.
캐빈
도 9는 본 발명의 실시예에 따른 차량의 내부를 도시한 도면이다. 도 10은 본 발명의 실시예에 따른 차량용 캐빈 시스템을 설명하는데 참조되는 블럭도이다.
(1) 캐빈의 구성 요소
도 9 내지 도 10을 참조하면, 차량용 캐빈 시스템(300)(이하, 캐빈 시스템)은 차량(10)을 이용하는 사용자를 위한 편의 시스템으로 정의될 수 있다. 캐빈 시스템(300)은, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이 먼트 시스템(365)을 포함하는 최상위 시스템으로 설명될 수 있다. 캐빈 시스템(300)은, 메인 컨트롤러(370), 메모리(340), 인터페이스부(380), 전원 공급부(390), 입력 장치(310), 영상 장치(320), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 포함할 수 있다. 실시예에 따라, 캐빈 시스템(300)은, 본 명세서에서 설명되는 구성 요소외에 다른 구성 요소를 더 포함하거나, 설명되는 구성 요소 중 일부를 포함하지 않을 수 있다.
1) 메인 컨트롤러
메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)과 전기적으로 연결되어 신호를 교환할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310), 통신 장치(330), 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365)을 제어할 수 있다. 메인 컨트롤러(370)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 서브 컨트롤러로 구성될 수 있다. 실시예에 따라, 메인 컨트롤러(370)는, 복수의 서브 컨트롤러를 포함할 수 있다. 복수의 서브 컨트롤러는 각각이, 그루핑된 캐빈 시스템(300)에 포함된 장치 및 시스템을 개별적으로 제어할 수 있다. 캐빈 시스템(300)에 포함된 장치 및 시스템은, 기능별로 그루핑되거나, 착좌 가능한 시트를 기준으로 그루핑될 수 있다.
메인 컨트롤러(370)는, 적어도 하나의 프로세서(371)를 포함할 수 있다. 도 6에는 메인 컨트롤러(370)가 하나의 프로세서(371)를 포함하는 것으로 예시되나, 메인 컨트롤러(371)는, 복수의 프로세서를 포함할 수도 있다. 프로세서(371)는, 상술한 서브 컨트롤러 중 어느 하나로 분류될 수도 있다.
프로세서(371)는, 통신 장치(330)를 통해, 사용자 단말기로부터 신호, 정보 또는 데이터를 수신할 수 있다. 사용자 단말기는, 캐빈 시스템(300)에 신호, 정보 또는 데이터를 전송할 수 있다.
프로세서(371)는, 영상 장치에 포함된 내부 카메라 및 외부 카메 중 적어도 어느 하나에서 수신되는 영상 데이터에 기초하여, 사용자를 특정할 수 있다. 프로세서(371)는, 영상 데이터에 영상 처리 알고리즘을 적용하여 사용자를 특정할 수 있다. 예를 들면, 프로세서(371)는, 사용자 단말기로부터 수신되는 정보와 영상 데이터를 비교하여 사용자를 특정할 수 있다. 예를 들면, 정보는, 사용자의 경로 정보, 신체 정보, 동승자 정보, 짐 정보, 위치 정보, 선호하는 컨텐츠 정보, 선호하는 음식 정보, 장애 여부 정보 및 이용 이력 정보 중 적어도 어느 하나를 포함할 수 있다.
메인 컨트롤러(370)는, 인공지능 에이전트(artificial intelligence agent)(372)를 포함할 수 있다. 인공지능 에이전트(372)는, 입력 장치(310)를 통해 획득된 데이터를 기초로 기계 학습(machine learning)을 수행할 수 있다. 인공지능 에이전트(372)는, 기계 학습된 결과에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
2) 필수 구성 요소
메모리(340)는, 메인 컨트롤러(370)와 전기적으로 연결된다. 메모리(340)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)에서 처리된 데이터를 저장할 수 있다. 메모리(340)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(340)는 메인 컨트롤러(370)의 처리 또는 제어를 위한 프로그램 등, 캐빈 시스템(300) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(340)는, 메인 컨트롤러(370)와 일체형으로 구현될 수 있다.
인터페이스부(380)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(380)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(390)는, 캐빈 시스템(300)에 전원을 공급할 수 있다. 전원 공급부(390)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 캐빈 시스템(300)의 각 유닛에 전원을 공급할 수 있다. 전원 공급부(390)는, 메인 컨트롤러(370)로부터 제공되는 제어 신호에 따라 동작될 수 있다. 예를 들면, 전원 공급부(390)는, SMPS(switched-mode power supply)로 구현될 수 있다.
캐빈 시스템(300)은, 적어도 하나의 인쇄 회로 기판(printed circuit board, PCB)을 포함할 수 있다. 메인 컨트롤러(370), 메모리(340), 인터페이스부(380) 및 전원 공급부(390)는, 적어도 하나의 인쇄 회로 기판에 실장될 수 있다.
3) 입력 장치
입력 장치(310)는, 사용자 입력을 수신할 수 있다. 입력 장치(310)는, 사용자 입력을 전기적 신호로 전환할 수 있다. 입력 장치(310)에 의해 전환된 전기적 신호는 제어 신호로 전환되어 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 입력 장치(310)로부터 수신되는 전기적 신호에 기초한 제어 신호를 생성할 수 있다.
입력 장치(310)는, 터치 입력부, 제스쳐 입력부, 기계식 입력부 및 음성 입력부 중 적어도 어느 하나를 포함할 수 있다. 터치 입력부는, 사용자의 터치 입력을 전기적 신호로 전환할 수 있다. 터치 입력부는, 사용자의 터치 입력을 감지하기 위해 적어도 하나의 터치 센서를 포함할 수 있다. 실시예에 따라, 터치 입력부는 디스플레이 시스템(350)에 포함되는 적어도 하나의 디스플레이 와 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한, 터치 스크린은, 캐빈 시스템(300)과 사용자 사이의 입력 인터페이스 및 출력 인터페이스를 함께 제공할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 전기적 신호로 전환할 수 있다. 제스쳐 입력부는, 사용자의 제스쳐 입력을 감지하기 위한 적외선 센서 및 이미지 센서 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 제스쳐 입력부는, 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 이를 위해, 제스쳐 입력부는, 복수의 적외선 광을 출력하는 광출력부 또는 복수의 이미지 센서를 포함할 수 있다. 제스쳐 입력부는, TOF(Time of Flight) 방식, 구조광(Structured light) 방식 또는 디스패러티(Disparity) 방식을 통해 사용자의 3차원 제스쳐 입력을 감지할 수 있다. 기계식 입력부는, 기계식 장치를 통한 사용자의 물리적인 입력(예를 들면, 누름 또는 회전)을 전기적 신호로 전환할 수 있다. 기계식 입력부는, 버튼, 돔 스위치(dome switch), 조그 휠 및 조그 스위치 중 적어도 어느 하나를 포함할 수 있다. 한편, 제스쳐 입력부와 기계식 입력부는 일체형으로 형성될 수 있다. 예를 들면, 입력 장치(310)는, 제스쳐 센서가 포함되고, 주변 구조물(예를 들면, 시트, 암레스트 및 도어 중 적어도 어느 하나)의 일부분에서 출납 가능하게 형성된 조그 다이얼 장치를 포함할 수 있다. 조그 다이얼 장치가 주변 구조물과 평평한 상태를 이룬 경우, 조그 다이얼 장치는 제스쳐 입력부로 기능할 수 있다. 조그 다이얼 장치가 주변 구조물에 비해 돌출된 상태의 경우, 조그 다이얼 장치는 기계식 입력부로 기능할 수 있다. 음성 입력부는, 사용자의 음성 입력을 전기적 신호로 전환할 수 있다. 음성 입력부는, 적어도 하나의 마이크로 폰을 포함할 수 있다. 음성 입력부는, 빔 포밍 마이크(Beam foaming MIC)를 포함할 수 있다.
4) 영상 장치
영상 장치(320)는, 적어도 하나의 카메라를 포함할 수 있다. 영상 장치(320)는, 내부 카메라 및 외부 카메라 중 적어도 어느 하나를 포함할 수 있다. 내부 카메라는, 캐빈 내의 영상을 촬영할 수 있다. 외부 카메라는, 차량 외부 영상을 촬영할 수 있다. 내부 카메라는, 캐빈 내의 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 내부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 가능 인원에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 내부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 내부 카메라에 의해 획득된 영상에 기초하여 사용자의 모션을 검출하고, 검출된 모션에 기초하여 신호를 생성하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공할 수 있다. 외부 카메라는, 차량 외부 영상을 획득할 수 있다. 영상 장치(320)는, 적어도 하나의 외부 카메라를 포함할 수 있다. 영상 장치(320)는, 탑승 도어에 대응되는 갯수의 카메라를 포함하는 것이 바람직하다. 영상 장치(320)는, 외부 카메라에 의해 획득된 영상을 제공할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 외부 카메라에 의해 획득된 영상에 기초하여 사용자 정보를 획득할 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 사용자 정보에 기초하여, 사용자를 인증하거나, 사용자의 신체 정보(예를 들면, 신장 정보, 체중 정보 등), 사용자의 동승자 정보, 사용자의 짐 정보 등을 획득할 수 있다.
5) 통신 장치
통신 장치(330)는, 외부 디바이스와 무선으로 신호를 교환할 수 있다. 통신 장치(330)는, 네트워크 망을 통해 외부 디바이스와 신호를 교환하거나, 직접 외부 디바이스와 신호를 교환할 수 있다. 외부 디바이스는, 서버, 이동 단말기 및 타 차량 중 적어도 어느 하나를 포함할 수 있다. 통신 장치(330)는, 적어도 하나의 사용자 단말기와 신호를 교환할 수 있다. 통신 장치(330)는, 통신을 수행하기 위해 안테나, 적어도 하나의 통신 프로토콜이 구현 가능한 RF(Radio Frequency) 회로 및 RF 소자 중 적어도 어느 하나를 포함할 수 있다. 실시예에 따라, 통신 장치(330)는, 복수의 통신 프로토콜을 이용할 수도 있다. 통신 장치(330)는, 이동 단말기와의 거리에 따라 통신 프로토콜을 전환할 수 있다.
예를 들어, 통신 장치는 C-V2X(Cellular V2X) 기술을 기반으로 외부 디바이스와 신호를 교환할 수 있다. 예를 들어, C-V2X 기술은 LTE 기반의 사이드링크 통신 및/또는 NR 기반의 사이드링크 통신을 포함할 수 있다. C-V2X와 관련된 내용은 후술한다.
예를 들어, 통신 장치는 IEEE 802.11p PHY/MAC 계층 기술과 IEEE 1609 Network/Transport 계층 기술 기반의 DSRC(Dedicated Short Range Communications) 기술 또는 WAVE(Wireless Access in Vehicular Environment) 표준을 기반으로 외부 디바이스와 신호를 교환할 수 있다. DSRC (또는 WAVE 표준) 기술은 차량 탑재 장치 간 혹은 노변 장치와 차량 탑재 장치 간의 단거리 전용 통신을 통해 ITS(Intelligent Transport System) 서비스를 제공하기 위해 마련된 통신 규격이다. DSRC 기술은 5.9GHz 대역의 주파수를 사용할 수 있고, 3Mbps~27Mbps의 데이터 전송 속도를 가지는 통신 방식일 수 있다. IEEE 802.11p 기술은 IEEE 1609 기술과 결합되어 DSRC 기술 (혹은 WAVE 표준)을 지원할 수 있다.
본 발명의 통신 장치는 C-V2X 기술 또는 DSRC 기술 중 어느 하나만을 이용하여 외부 디바이스와 신호를 교환할 수 있다. 또는, 본 발명의 통신 장치는 C-V2X 기술 및 DSRC 기술을 하이브리드하여 외부 디바이스와 신호를 교환할 수 있다.
6) 디스플레이 시스템
디스플레이 시스템(350)은, 그래픽 객체를 표시할 수 있다. 디스플레이 시스템(350)은, 적어도 하나의 디스플레이 장치를 포함할 수 있다. 예를 들면, 디스플레이 시스템(350)은, 공용으로 이용 가능한 제1 디스플레이 장치(410)와 개별 이용 가능한 제2 디스플레이 장치(420)를 포함할 수 있다.
6.1) 공용 디스플레이 장치
제1 디스플레이 장치(410)는, 시각적 컨텐츠를 출력하는 적어도 하나의 디스플레이(411)를 포함할 수 있다. 제1 디스플레이 장치(410)에 포함되는 디스플레이(411)는, 평면 디스플레이. 곡면 디스플레이, 롤러블 디스플레이 및 플렉서블 디스플레이 중 적어도 어느 하나로 구현될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 시트 후방에 위치하고, 캐빈 내로 출납 가능하게 형성된 제1 디스플레이(411) 및 상기 제1 디스플레이(411)를 이동시키기 위한 제1 메카니즘를 포함할 수 있다. 제1 디스플레이(411)는, 시트 메인 프레임에 형성된 슬롯에 출납 가능하게 배치될 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 플렉서블 영역 조절 메카니즘을 더 포함할 수 있다. 제1 디스플레이는, 플렉서블하게 형성될 수 있고, 사용자의 위치에 따라, 제1 디스플레이의 플렉서블 영역이 조절될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 롤러블(rollable)하게 형성된 제2 디스플레이 및 상기 제2 디스플레이를 감거나 풀기 위한 제2 메카니즘을 포함할 수 있다. 제2 디스플레이는, 양면에 화면 출력이 가능하게 형성될 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 캐빈내 천장에 위치하고, 플렉서블(flexible)하게 형성된 제3 디스플레이 및 상기 제3 디스플레이를 휘거나 펴기위한 제3 메카니즘을 포함할 수 있다. 실시예에 따라, 디스플레이 시스템(350)은, 제1 디스플레이 장치(410) 및 제2 디스플레이 장치(420) 중 적어도 어느 하나에 제어 신호를 제공하는 적어도 하나의 프로세서를 더 포함할 수 있다. 디스플레이 시스템(350)에 포함되는 프로세서는, 메인 컨트롤러(370), 입력 장치(310), 영상 장치(320) 및 통신 장치(330) 중 적어도 어느 하나로부터 수신되는 신호에 기초하여 제어 신호를 생성할 수 있다.
제1 디스플레이 장치(410)에 포함되는 디스플레이의 표시 영역은, 제1 영역(411a) 및 제2 영역(411b)으로 구분될 수 있다. 제1 영역(411a)은, 컨텐츠를 표시 영역으로 정의될 수 있다. 예를 들면, 제 1영역(411)은, 엔터테인먼트 컨텐츠(예를 들면, 영화, 스포츠, 쇼핑, 음악 등), 화상 회의, 음식 메뉴 및 증강 현실 화면에 대응하는 그래픽 객체 중 적어도 어느 하나를 표시할 수 있다. 제1 영역(411a)은, 차량(10)의 주행 상황 정보에 대응하는 그래픽 객체를 표시할 수 있다. 주행 상황 정보는, 주행 상황 정보는, 차량 외부의 오브젝트 정보, 내비게이션 정보 및 차량 상태 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 외부의 오브젝트 정보는, 오브젝트의 존재 유무에 대한 정보, 오브젝트의 위치 정보, 차량(300)과 오브젝트와의 거리 정보 및 차량(300)과 오브젝트와의 상대 속도 정보를 포함할 수 있다. 내비게이션 정보는, 맵(map) 정보, 설정된 목적지 정보, 상기 목적지 설정 따른 경로 정보, 경로 상의 다양한 오브젝트에 대한 정보, 차선 정보 및 차량의 현재 위치 정보 중 적어도 어느 하나를 포함할 수 있다. 차량 상태 정보는, 차량의 자세 정보, 차량의 속도 정보, 차량의 기울기 정보, 차량의 중량 정보, 차량의 방향 정보, 차량의 배터리 정보, 차량의 연료 정보, 차량의 타이어 공기압 정보, 차량의 스티어링 정보, 차량 실내 온도 정보, 차량 실내 습도 정보, 페달 포지션 정보 및 차량 엔진 온도 정보 등을 포함할 수 있다. 제2 영역(411b)은, 사용자 인터페이스 영역으로 정의될 수 있다. 예를 들면, 제2 영역(411b)은, 인공 지능 에이전트 화면을 출력할 수 있다. 실시예에 따라, 제2 영역(411b)은, 시트 프레임으로 구분되는 영역에 위치할 수 있다. 이경우, 사용자는, 복수의 시트 사이로 제2 영역(411b)에 표시되는 컨텐츠를 바라볼 수 있다. 실시예에 따라, 제1 디스플레이 장치(410)는, 홀로그램 컨텐츠를 제공할 수 있다. 예를 들면, 제1 디스플레이 장치(410)는, 복수의 사용자별로 홀로그램 컨텐츠를 제공하여 컨텐츠를 요청한 사용자만 해당 컨텐츠를 시청하게 할 수 있다.
6.2) 개인용 디스플레이 장치
제2 디스플레이 장치(420)는, 적어도 하나의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 개개의 탑승자만 디스플레이 내용을 확인할 수 있는 위치에 디스플레이(421)을 제공할 수 있다. 예를 들면, 디스플레이(421)은, 시트의 암 레스트에 배치될 수 있다. 제2 디스플레이 장치(420)는, 사용자의 개인 정보에 대응되는 그래픽 객체를 표시할 수 있다. 제2 디스플레이 장치(420)는, 탑승 가능 인원에 대응되는 갯수의 디스플레이(421)을 포함할 수 있다. 제2 디스플레이 장치(420)는, 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 제2 디스플레이 장치(420)는, 시트 조정 또는 실내 온도 조정의 사용자 입력을 수신하기 위한 그래픽 객체를 표시할 수 있다.
7) 카고 시스템
카고 시스템(355)은, 사용자의 요청에 따라 상품을 사용자에게 제공할 수 있다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 카고 시스템(355)은, 카고 박스를 포함할 수 있다. 카고 박스는, 상품들이 적재된 상태로 시트 하단의 일 부분에 은닉될 수 있다. 사용자 입력에 기초한 전기적 신호가 수신되는 경우, 카고 박스는, 캐빈으로 노출될 수 있다. 사용자는 노출된 카고 박스에 적재된 물품 중 필요한 상품을 선택할 수 있다. 카고 시스템(355)은, 사용자 입력에 따른 카고 박스의 노출을 위해, 슬라이딩 무빙 메카니즘, 상품 팝업 메카니즘을 포함할 수 있다. 카고 시스템은(355)은, 다양한 종류의 상품을 제공하기 위해 복수의 카고 박스를 포함할 수 있다. 카고 박스에는, 상품별로 제공 여부를 판단하기 위한 무게 센서가 내장될 수 있다.
8) 시트 시스템
시트 시스템(360)은, 사용자에 맞춤형 시트를 사용자에게 제공할 수 있다. 시트 시스템(360)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 시트 시스템(360)은, 획득된 사용자 신체 데이터에 기초하여, 시트의 적어도 하나의 요소를 조정할 수 있다. 시트 시스템(360)은 사용자의 착좌 여부를 판단하기 위한 사용자 감지 센서(예를 들면, 압력 센서)를 포함할 수 있다. 시트 시스템(360)은, 복수의 사용자가 각각 착좌할 수 있는 복수의 시트를 포함할 수 있다. 복수의 시트 중 어느 하나는 적어도 다른 하나와 마주보게 배치될 수 있다. 캐빈 내부의 적어도 두명의 사용자는 서로 마주보고 앉을 수 있다.
9) 페이먼트 시스템
페이먼트 시스템(365)은, 결제 서비스를 사용자에게 제공할 수 있다. 페이먼트 시스템(365)은, 입력 장치(310) 또는 통신 장치(330)에 의해 생성되는 전기적 신호에 기초하여 동작될 수 있다. 페이먼트 시스템(365)은, 사용자가 이용한 적어도 하나의 서비스에 대한 가격을 산정하고, 산정된 가격이 지불되도록 요청할 수 있다.
(2) 자율 주행 차량 이용 시나리오
도 11은 본 발명의 실시예에 따라 사용자의 이용 시나리오를 설명하는데 참조되는 도면이다.
1) 목적지 예측 시나리오
제1 시나리오(S111)는, 사용자의 목적지 예측 시나리오이다. 사용자 단말기는 캐빈 시스템(300)과 연동 가능한 애플리케이션을 설치할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 사용자의 컨텍스트추얼 정보(user's contextual information)를 기초로, 사용자의 목적지를 예측할 수 있다. 사용자 단말기는, 애플리케이션을 통해, 캐빈 내의 빈자리 정보를 제공할 수 있다.
2) 캐빈 인테리어 레이아웃 준비 시나리오
제2 시나리오(S112)는, 캐빈 인테리어 레이아웃 준비 시나리오이다. 캐빈 시스템(300)은, 차량(300) 외부에 위치하는 사용자에 대한 데이터를 획득하기 위한 스캐닝 장치를 더 포함할 수 있다. 스캐닝 장치는, 사용자를 스캐닝하여, 사용자의 신체 데이터 및 수하물 데이터를 획득할 수 있다. 사용자의 신체 데이터 및 수하물 데이터는, 레이아웃을 설정하는데 이용될 수 있다. 사용자의 신체 데이터는, 사용자 인증에 이용될 수 있다. 스캐닝 장치는, 적어도 하나의 이미지 센서를 포함할 수 있다. 이미지 센서는, 가시광 대역 또는 적외선 대역의 광을 이용하여 사용자 이미지를 획득할 수 있다.
시트 시스템(360)은, 사용자의 신체 데이터 및 수하물 데이터 중 적어도 어느 하나에 기초하여, 캐빈 내 레이아웃을 설정할 수 있다. 예를 들면, 시트 시스템(360)은, 수하물 적재 공간 또는 카시트 설치 공간을 마련할 수 있다.
3) 사용자 환영 시나리오
제3 시나리오(S113)는, 사용자 환영 시나리오이다. 캐빈 시스템(300)은, 적어도 하나의 가이드 라이트를 더 포함할 수 있다. 가이드 라이트는, 캐빈 내 바닥에 배치될 수 있다. 캐빈 시스템(300)은, 사용자의 탑승이 감지되는 경우, 복수의 시트 중 기 설정된 시트에 사용자가 착석하도록 가이드 라이트를 출력할 수 있다. 예를 들면, 메인 컨트롤러(370)는, 오픈된 도어에서부터 기 설정된 사용자 시트까지 시간에 따른 복수의 광원에 대한 순차 점등을 통해, 무빙 라이트를 구현할 수 있다.
4) 시트 조절 서비스 시나리오
제4 시나리오(S114)는, 시트 조절 서비스 시나리오이다. 시트 시스템(360)은, 획득된 신체 정보에 기초하여, 사용자와 매칭되는 시트의 적어도 하나의 요소를 조절할 수 있다.
5) 개인 컨텐츠 제공 시나리오
제5 시나리오(S115)는, 개인 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 개인 데이터를 수신할 수 있다. 디스플레이 시스템(350)은, 사용자 개인 데이터에 대응되는 컨텐츠를 제공할 수 있다.
6) 상품 제공 시나리오
제6 시나리오(S116)는, 상품 제공 시나리오이다. 카고 시스템(355)은, 입력 장치(310) 또는 통신 장치(330)를 통해, 사용자 데이터를 수신할 수 있다. 사용자 데이터는, 사용자의 선호도 데이터 및 사용자의 목적지 데이터 등을 포함할 수 있다. 카고 시스템(355)은, 사용자 데이터에 기초하여, 상품을 제공할 수 있다.
7) 페이먼트 시나리오
제7 시나리오(S117)는, 페이먼트 시나리오이다. 페이먼트 시스템(365)은, 입력 장치(310), 통신 장치(330) 및 카고 시스템(355) 중 적어도 어느 하나로부터 가격 산정을 위한 데이터를 수신할 수 있다. 페이먼트 시스템(365)은, 수신된 데이터에 기초하여, 사용자의 차량 이용 가격을 산정할 수 있다. 페이먼트 시스템(365)은, 산정된 가격으로 사용자(예를 들면, 사용자의 이동 단말기)에 요금 지불을 요청할 수 있다.
8) 사용자의 디스플레이 시스템 제어 시나리오
제8 시나리오(S118)는, 사용자의 디스플레이 시스템 제어 시나리오이다. 입력 장치(310)는, 적어도 어느 하나의 형태로 이루어진 사용자 입력을 수신하여, 전기적 신호로 전환할 수 있다. 디스플레이 시스템(350)은, 전기적 신호에 기초하여, 표시되는 컨텐츠를 제어할 수 있다.
9) AI 에이전트 시나리오
제9 시나리오(S119)는, 복수의 사용자를 위한 멀티 채널 인공지능(artificial intelligence, AI) 에이전트 시나리오이다. 인공 지능 에이전트(372)는, 복수의 사용자 별로 사용자 입력을 구분할 수 있다. 인공 지능 에이전트(372)는, 복수의 사용자 개별 사용자 입력이 전환된 전기적 신호에 기초하여, 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나를 제어할 수 있다.
10) 복수 사용자를 위한 멀티미디어 컨텐츠 제공 시나리오
제10 시나리오(S120)는, 복수의 사용자를 대상으로 하는 멀티미디어 컨텐츠 제공 시나리오이다. 디스플레이 시스템(350)은, 모든 사용자가 함께 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)은, 시트별로 구비된 스피커를 통해, 동일한 사운드를 복수의 사용자 개별적으로 제공할 수 있다. 디스플레이 시스템(350)은, 복수의 사용자가 개별적으로 시청할 수 있는 컨텐츠를 제공할 수 있다. 이경우, 디스플레이 시스템(350)는, 시트별로 구비된 스피커를 통해, 개별적 사운드를 제공할 수 있다.
11) 사용자 안전 확보 시나리오
제11 시나리오(S121)는, 사용자 안전 확보 시나리오이다. 사용자에게 위협이되는 차량 주변 오브젝트 정보를 획득하는 경우, 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 차량 주변 오브젝트에 대한 알람이 출력되도록 제어할 수 있다.
12) 소지품 분실 예방 시나리오
제12 시나리오(S122)는, 사용자의 소지품 분실 예방 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 소지품에 대한 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 움직임 데이터를 획득할 수 있다. 메인 컨트롤러(370)는, 소지품에 대한 데이터 및 움직임 데이터에 기초하여, 사용자가 소지품을 두고 하차 하는지 여부를 판단할 수 있다. 메인 컨트롤러(370)는, 디스플레이 시스템(350)을 통해, 소지품에 관한 알람이 출력되도록 제어할 수 있다.
13) 하차 리포트 시나리오
제13 시나리오(S123)는, 하차 리포트 시나리오이다. 메인 컨트롤러(370)는, 입력 장치(310)를 통해, 사용자의 하차 데이터를 수신할 수 있다. 사용자 하차 이후, 메인 컨트롤러(370)는, 통신 장치(330)를 통해, 사용자의 이동 단말기에 하차에 따른 리포트 데이터를 제공할 수 있다. 리포트 데이터는, 차량(10) 전체 이용 요금 데이터를 포함할 수 있다.
C-V2X
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
사이드링크(sidelink)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. 사이드링크는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, LTE-A 또는 5G NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
상술한 자율 주행 차량 이용 시나리오의 예들을 포함하여, 자율 주행 시스템에서 최적의 사용자 경험(User experience)를 제공하기 위해 사용자에 대한 인식 및 인증 방법이 필요할 수 있다. 사용자에 대한 인식 및 인증 방법 중 하나로 생체 인식 기술(biometrics)이 고려될 수 있다. 생체 인식 기술은 사용자의 하나 이상의 고유한 신체적, 행동적 특징에 기반하여 사용자를 인식하는 기술을 말한다. 생체 인식 기술은 생체 인증, 바이오 인증, 생물 측정학, 바이오 인식, 생체 인식, 생체 측량 등 다양한 용어로 대체될 수 있다. 생체 인식 기술에 사용되는 신체적 특성으로는 지문, 홍채, 얼굴, 정맥 등이 있으며 행동적 특성으로는 목소리, 서명 등이 있다.
예를 들어, 얼굴 인식은 기본적으로 대상의 특징을 추출 및 선택하고, 이후 대상을 분류하는 단계를 거쳐 수행될 수 있다. 얼굴 인식 알고리즘은 피사체 얼굴의 이미지에서 표식이나 특징을 추출하여 얼굴 특징을 식별할 수 있다. 상기 얼굴 인식 알고리즘은 눈, 코, 광대뼈 및 턱의 상대 위치, 크기 및 / 또는 모양을 분석 할 수 있다. 이로부터 특징을 추출할 수 있고, 해당 특징과 일치하는 특징을 가진 다른 이미지(대상)을 찾기 위하여 이용될 수 있다.
3 차원 얼굴 인식 기술은 3D 센서를 사용하여 얼굴 모양에 대한 정보를 캡처할 수 있다. 이 정보는 안구, 코 및 턱의 윤곽과 같이 얼굴 표면의 특징을 식별하는 데 사용될 수 있다. 얼굴의 3 차원 데이터 포인트는 얼굴 인식의 정확성을 크게 향상시킬 수 있다. 3D 센서는 구조화 된 빛을 얼굴에 투사하고 다수의 이미지 센서를 통해 스펙트럼의 다른 부분들을 캡쳐하여 3차원 얼굴 인식을 할 수 있다. 또는, 서로 다른 각도를 가리키는 3 개의 추적 카메라를 사용하여 3D 이미지를 캡처할 수 있다. 하나의 카메라는 피사체의 정면을 가리키고, 두 번째 카메라는 한 쪽 측면을, 세 번째 카메라는 반대쪽 측면을 가리키게 하고, 이 모든 카메라가 함께 작동하여 피사체의 얼굴을 실시간으로 추적하고 얼굴을 인식 할 수 있다.
피부의 시각적 세부 사항을 이용하는 피부 텍스쳐 분석(Skin Texture Analysis) 기술은 사람의 피부에서 보이는 독특한 선, 패턴 및 반점을 수학적으로 표현하고, 얼굴 인식과 동일한 방식으로 동작할 수 있다. 스킨 프린트라고 하는 패치를 촬영하고, 알고리즘을 사용하여 패치를 수학적이고 측정 가능하도록 표현하여 피부의 선, 모공 및 실제 피부 질감 등을 구별할 수 있다.
또 다른 예로, 홍채를 이용한 생체 인식 기술을 적용할 수 있다. 홍채(iris)는 동공 주위 조직으로서, 수축과 이완을 통해 동공의 크기를 조절하여 눈으로 들어오는 빛의 양을 조절하는 도넛 모양의 붉은 색의 섬유질을 나타낸다. 홍채는 반지름과 각도 방향에 따라 달라지는 독특한 패턴을 가진다. 홍채 인식(iris recognition)은 사람의 눈 두 쪽 또는 한 쪽의 상에 대해 수학적 패턴 인식 기술을 사용하는 자동화된 생체 인식 방식으로, 복잡한 패턴이 고유하고 안정적이며 일정한 거리에서 관찰이 가능하다. 홍채 인식은 근적외선 조명 기능을 갖춘 비디오 카메라 기술을 사용하여 바깥에서 보이는 세세하고 복잡한 구조의 홍채의 패턴을 취득할 수 있다. 수학적, 통계적 알고리즘을 통해 이러한 패턴들을 디지털 템플릿으로 인코딩하고, 등록된 템플릿 데이터베이스에서 매처(matcher) 엔진을 통해 검색 하여 사용자를 식별할 수 있다.
또 다른 예로, 정맥 인식(Vein matching, vascular technology)은 피부의 표면에서 볼 수 있는 혈관, 그 중 특히 정맥의 분포 패턴의 분석을 통한 생체 인식 기술이다. 손가락, 손등, 손바닥 등의 혈관을 스캔하여 정맥이 가지는 특이한 패턴들을 기반으로 사용자를 식별할 수 있다.
이 외에도, 지문, 장형(예: 손바닥의 폭, 손가락의 길이 등), 망막 스캔(예: 눈의 망막의 모세혈관의 패턴을 인식), 귀의 모양(예: 귓바퀴의 형태) 등을 이용해서 사용자를 식별할 수 있다.
종래의 차량 내 영상 기반 생체 인식 방법은 인식 대상의 영역이 제약적이고, 사용자가 움직이는 경우 인식을 수행하기 어려울 수 있으며, 생체 인식 시스템 구성을 위해 많은 비용이 소요되었다. 본 명세서에서는 차량 시스템에서 차량 내 생체 인식 기술에 기반하는 사용자 인증 시스템을 구현하는데 있어서, 사용자가 자유롭게 움직이는 환경에서도 광각 카메라와 고해상도 협각 카메라를 이용하여 생체 인식을 수행할 수 있는 저가의 생체 인식 솔루션 및 장치를 제안한다. 이하에서, 홍채 인식과 정맥 인식을 중심으로 설명되나, 이는 설명의 편의를 위한 것일 뿐 본 발명의 기술적 사상을 제한하는 것은 아니다. 따라서, 차량 내부 카메라로부터 촬영된 영상에 기반하는 다른 생체 인식 기술에도 적용 가능하다.
상술한 바와 같이 캐빈 시스템(300)은 영상 장치(320)를 포함할 수 있다. 영상 장치(320)는 내부 카메라를 포함할 수 있으며, 내부 카메라는 캐빈 내 영상을 촬영할 수 있다. 내부 카메라를 이용하여 차량에 탑승하는 사용자에 대한 생체 인식을 수행하는 방법을 고려할 수 있다. 내부카메라는 생체 인증을 수행하기 위해 캐빈 안을 전체적으로 촬영할 수 있는 광각 카메라(예: 제1 카메라)와 생체 인증에 필요한 영상을 촬영하기 위한 고해상도 협각 카메라(예: 제2 카메라)를 포함할 수 있다.
도 12는 본 발명에서 제안하는 차량 시스템에서 생체 인증을 수행하는 일례를 나타낸다. 도 13은 본 발명에서 제안하는 자율 주행 시스템에서 생체 인증을 수행하는 프로세서와 내부 카메라 간의 동작 및 시그널링 절차의 예시이다. 도 12 및 도 13은 본 발명의 이해를 위한 예시일 뿐, 본 발명의 기술적 사상을 제한하는 것은 아니다.
도 12 및 도 13을 참고하면, 차량의 내부 카메라를 이용하여 차량에 탑승한 사용자에 대한 정보를 획득할 수 있다. 차량에 탑승한 사용자에 대한 정보는 내부 카메라 중 광각 카메라에 의해 획득될 수 있다. 광각 카메라는 캐빈 내부를 전체적으로 촬영하여 영상을 획득할 수 있다(S1310). 광각 카메라는 캐빈 내부를 전체적으로 촬영할 수 있도록, FOV(Field of View)가 130도 이상, 해상도는 1920x720(FHD) 이상의 성능을 지원할 수 있다. 광각 카메라는 촬영 대상(예: 사용자)에 대한 뎁스(depth)를 인식할 수 있도록 RGB 센서와 뎁스 센서가 결합한 형태로 구성될 수도 있다. 광각 카메라는 차량 내부를 전체적으로 촬영할 수 있도록 차량의 특정 위치에 고정되어 설치될 수 있다. 일례로, 차량의 대쉬보드(dashboard) 중앙에 위치할 수 있다.
광각 카메라는 획득한 영상을 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서로 제공할 수 있다(S1320). 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는, 광각 카메라에 의해 획득한 영상으로부터 차량에 탑승한 사용자의 수를 인식할 수 있다. 또한, 광각 카메라에 의해 획득한 영상으로부터 각 사용자에 대하여 관심 영역을 설정할 수 있다(S1330).
예를 들어, 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 광각 카메라에 의해 획득된 영상으로부터 각 사용자에 대한 스켈레톤(skeleton) 모형을 형성하고, 사용자의 생체 인식의 대상을 포함하는 영역(예: 얼굴, 손 등)의 위치를 구분하여 관심 영역으로 설정할 수 있다. 구체적으로, 광각 카메라에 의해 캐빈 내부를 전체적으로 촬영된 영상으로부터 사용자의 수, 위치, 각 사용자의 관절들 각각의 위치 정보가 추출될 수 있고, 이렇게 추출된 상기 관절들 각각의 위치 정보로부터 하나의 스켈레톤(skeleton) 모형이 형성될 수 있다. 형성된 스켈레톤 모형에 기반하여 얼굴, 손 등과 같은 생체 인식의 대상을 포함하는 영역의 위치를 구분하여 관심 영역으로 설정할 수 있다. 또한, 상기 스켈레톤 모형의 움직임을 통해 사용자의 움직임을 인식하여 관심 영역으로 설정된 영역의 변화를 추적할 수 있고, 이에 따라 관심 영역 설정을 업데이트 할 수 있다. 사용자의 얼굴, 손 등의 위치에 설정된 관심 영역은 100x100 픽셀 크기 이상으로 추출될 수 있다.
관심 영역은 사용자의 얼굴과 손에 대해 동시에 설정될 수 있다. 또는, 홍채 인식을 위하여 얼굴에 대해 관심 영역이 설정되고, 이후 페이먼트(payment) 요청과 같은 더 높은 보안 수준을 요구하는 메시지를 수신한 경우, 추가적인 인증 수행을 위해 손에 대해 관심 영역이 추가적으로 설정될 수도 있다.
또한, 관심 영역은 운전자에 대해서만 설정될 수도 있고, 차량의 앞 좌석에 위치한 사용자에 대해서 설정될 수도 있으며, 차량에 탑승한 전체 사용자에 대해서 설정될 수도 있다.
설정된 관심 영역을 기반으로, 사용자 인식을 위한 생체 인식이 수행될 수 있다. 생체 인식을 수행하기 위한 영상은 캐빈의 내부 카메라 중 고해상도 협각 카메라에 의해 촬영될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 관심 영역의 위치에 따라 고해상도 협각 카메라의 뷰 앵글을 조절할 수 있다(S1340). 따라서, 고해상도 협각 카메라는 사용자의 움직임에 따라 변하는 관심 영역을 트래킹(tracking)하여 사용자를 촬영할 수 있도록 동작부에 위치할 필요가 있다. 또는, 고해상도 협각 카메라 자체가 회전 및 움직일 수도 있다. 고해상도 협각 카메라는 사람의 안구(예: 홍채), 정맥 등을 촬영할 수 있어야 하므로 고해상도를 지원할 수 있으며, 구체적으로 FOV는 30°이상, 해상도는 4096x1716 (UHD) 이상의 성능을 지원할 수 있다. 고해상도 협각 카메라는 양쪽 눈에 대한 홍채 인식을 동시에 수행할 수 있도록 스테레오 카메라로 구성될 수도 있다. 관심 영역과 조절된 뷰 앵글에 맞추어 고해상도 협각 카메라는 생체 인식을 위한 영상을 획득할 수 있다(S1350).
예를 들어, 광각 카메라에 의해 획득된 영상으로부터 차량에 탑승한 사용자의 얼굴의 위치가 관심 영역으로 설정될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 상기 관심 영역에 기반하여 얼굴의 움직임에 따라 고해상도 협각 카메라 자체 또는 고해상도 협각 카메라가 포함된 동작부 (또는, 기구부)를 움직여 고해상도 협각 카메라의 뷰 앵글을 조절할 수 있다. 고해상도 협각 카메라의 뷰 앵글을 얼굴 내 눈의 위치로 맞추어, 사용자의 홍채를 촬영할 수 있다. 이때, 최소 눈의 크기는 160x160 픽셀 크기 이상의 해상도로 추출될 수 있다.
고해상도 협각 카메라는 획득한 영상을 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서로 제공할 수 있다(S1360). 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 상기 영상을 기초로 생체 인식 알고리즘을 수행하고 사용자 인증(또는 식별) 및 개인화 작업을 수행할 수 있다(S1370). 즉, 홍채 인식 알고리즘, 정맥 인증 알고리즘 등을 통해 사용자를 식별할 수 있다.
상술한 생체 인식을 통해 식별된 사용자 정보는 캐빈 시스템(300)에 포함된 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공될 수 있다. 각각의 시스템에서는 생체 인식을 통해 식별된 사용자 정보를 바탕으로, 사용자에게 최적화 된 서비스를 제공할 수 있다.
일례로, 생체 인식을 통해 식별된 정보는 시트 시스템(360)으로 전달되어 사용자와 매칭되는 시트의 적어도 하나의 요소를 조절할 수 있다. 구체적으로, 생체 인식을 통해 식별된 사용자 정보가 운전자에 해당하는 경우, 운전자에 맞는 시트 높이, 각도 등 차량 내 장치를 운전자 맞춤형으로 제공할 수 있다.
또 다른 예로, 생체 인증을 통해 식별된 정보는 디스플레이 시스템(350)으로 전달되어 사용자와 매칭되는 컨텐츠를 제공할 수 있다. 구체적으로, 사용자가 선호하는 멀티미디어(예: 음악 재생) 데이터를 설정할 수 있으며, 사용자의 개인 장치와 차량 간의 연결(예: BT, 음성인식 등)을 제공할 수 있다.
또 다른 예로, 차량에 탑승한 사용자가 기존 데이터 베이스에 저장되어 있는 사용자 풀(pool)에 존재하지 않는 새로운 사용자인 경우, 차량 네트워크(예: V2X 등)를 통해 차량의 소유주 또는 등록된 권리자에게 새로운 사용자와 관련된 정보를 전송할 수 있다. 차량의 소유주 또는 등록된 권리자는 새로운 사용자에 대하여 차량 사용에 대한 권한 허용 여부를 제어할 수 있다. 또는, 차량 네트워크와 연결된 보안 시스템으로 새로운 사용자의 접근 알림을 전송할 수도 있다.
또 다른 예로, 생체 인증을 통해 식별된 정보는 페이먼트 시스템(365)으로 전달되어 사용자에게 결제 서비스를 제공할 수 있다. 구체적으로, 사용자가 이용한 적어도 하나의 서비스에 대한 가격을 산정하고, 산정된 가격이 지불되도록 요청할 수 있다.
한편, 결제 서비스 제공과 같이 높은 수준의 보안이 요구 되는 경우, 상술한 홍채 인증 방법 외에 추가적인 생체 인증을 수행하여 사용자 인증 보안을 강화할 수 있다. 이하에서, 홍채 인식 외에 추가적으로 정맥 인증을 통한 사용자 인증 방법을 설명한다.
상술한 바와 같이, 광각 카메라에 의해 획득된 영상에 기반하여 차량에 탑승한 사용자에 대한 관심 영역을 설정할 수 있다. 즉, 사용자의 얼굴, 손 등의 위치가 관심 영역으로 설정 될 수 있다. 차량 내 결제가 이루어지는 경우와 같이 강화된 사용자 인증 방법이 필요한 경우, 고해상도 협각 카메라를 이용하여 정맥 인증을 추가로 진행하여 보안을 강화할 수 있다.
구체적으로, 광각 카메라에 의해 획득된 영상에 기반하여 손의 위치가 관심 영역으로 설정될 수 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서가 지불 요구에 대한 시그널링을 수신한 경우, 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 고해상도 협각 카메라 자체 또는 고해상도 협각 카메라가 포함된 동작부를 제어하여 고해상도 협각 카메라의 뷰 앵글을 손 위치에 맞추어 조절할 수 있다. 고해상도 협각 카메라는 손가락, 손등, 손바닥 등의 정맥을 촬영하고 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서로 해당 영상을 전송할 수 있다. 더 정확한 촬영을 위하여 사용자에게 카메라를 향해 손을 가까이 하거나 손바닥을 펼치도록 요청하는 메시지를 차량 내 디스플레이 또는 음성 등을 통해 표시할 수도 있다. 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 상기 영상에 기반하여 정맥 인증 알고리즘을 수행할 수 있다. 홍채 인식을 통한 사용자 정보와 정맥 인식을 통한 사용자 정보가 일치 하는 경우 지불을 완료할 수 있다.
구체적인 예로, 차량 운행 중 사용자가 이용한 적어도 하나의 서비스(예: 연료 주입, 주차 요금, 차량 공유 서비스 이용 비용 등) 에 대한 가격을 산정하고, 산정된 가격 지불이 요청된 경우, 손에 대해 설정된 관심 영역으로 고해상도 협각 카메라의 뷰 앵글이 조절될 수 있고, 고해상도 협각 카메라가 획득한 정맥 영상을 기반으로 정맥 인증 알고리즘이 수행될 수 있다. 홍채 인식을 통한 사용자 정보와 정맥 인식을 통한 사용자 정보가 일치 하는 경우 요청된 금액이 지불될 수 있다.
또 다른 예로, 사용자의 개인 장치(예: 스마트 폰, 컴퓨터 등)는 지불 요청에 대한 메시지를 수신할 수 있다. 수신된 지불 요청을 승인하기 위해 사용자 인증 요청을 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서로 차량 네트워크 또는 5G 네트워크를 통해 전달할 수 있다. 사용자는 상술한 차량 내 생체 인증 방법을 통해 생체 인증을 완료할 수 있고, 메인 컨트롤러(370) 또는 캐빈 시스템(300)에 포함되는 적어도 하나의 프로세서는 차량 네트워크 또는 5G 네트워크를 통해 사용자의 개인 장치로 인증된 결과를 전송할 수 있다.
상술한 방법에 따라 생체 인증을 수행하기 위한 광각 카메라와 고해상도 협각 카메라는 차량 내부에 설치된 하나의 구조물에 포함될 수 있다. 예를 들어, 차량의 대쉬보드 중앙에 특정 구조물이 포함될 수 있고, 특정 구조물은 고정부와 동작부로 구성될 수 있다. 고정부는 특정 구조물에 하부에 위치할 수 있고, 광각 카메라는 고정부 내 FOV를 확보할 수 있는 위치에 있을 수 있다. 동작부는 특정 구조물의 상부에 위치할 수 있고, 고해상도 협각 카메라는 뷰 앵글 조정이 가능하도록 동작부에 포함될 수 있다. 동작부는 반 구 형태의 중심점을 기준으로 360도 회전이 가능하며, 상하좌우 방향으로도 회전할 수 있다. 상기 구조물은 차량 내 대쉬 보드에 팝업(pop-up) 형태로 포함될 수 있다. 또는, 생체 인증을 수행하기 위한 별개의 장치로 구성될 수도 있다.
< 실시 예>
도 14는 차량 내 생체 인증을 수행하는 장치의 일 예를 나타낸다.
도 14를 참조하면, 차량 내 생체 인증을 수행하는 장치(1400)는, 메모리(1421), 프로세서(1422), 인터페이스부(1423) 및 전원 공급부(1424), 영상 장치(1415,1425)를 포함할 수 있다.
메모리(1421)는, 프로세서(1422)와 전기적으로 연결된다. 메모리(1421)는 유닛에 대한 기본데이터, 유닛의 동작제어를 위한 제어데이터, 입출력되는 데이터를 저장할 수 있다. 메모리(1421)는, 프로세서(1422)에서 처리된 데이터를 저장할 수 있다. 메모리(1421)는, 하드웨어적으로, ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 중 적어도 어느 하나로 구성될 수 있다. 메모리(1421)는 프로세서(1422)의 처리 또는 제어를 위한 프로그램 등, 차량 내 생체 인증을 수행하는 장치(1400) 전반의 동작을 위한 다양한 데이터를 저장할 수 있다. 메모리(1421)는, 프로세서(1422)와 일체형으로 구현될 수 있다. 실시예에 따라, 메모리(1421)는, 프로세서(1422)의 하위 구성으로 분류될 수 있다.
인터페이스부(1423)는, 차량(10) 내에 구비되는 적어도 하나의 전자 장치와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(1423)는, 메모리(1421), 프로세서(1422), 전원 공급부(1424) 및 영상 장치(1415,1425) 중 적어도 어느 하나와 유선 또는 무선으로 신호를 교환할 수 있다. 인터페이스부(1423)는, 통신 모듈, 단자, 핀, 케이블, 포트, 회로, 소자 및 장치 중 적어도 어느 하나로 구성될 수 있다.
전원 공급부(1424)는, 차량 내 생체 인증을 수행하는 장치(1400)에 전원을 공급할 수 있다. 전원 공급부(1424)는, 차량(10)에 포함된 파워 소스(예를 들면, 배터리)로부터 전원을 공급받아, 차량 내 생체 인증을 수행하는 장치(1400)의 각 유닛에 전원을 공급할 수 있다.
프로세서(1422)는, 메모리(1421), 인터페이스부(1423), 전원 공급부(1424)와 전기적으로 연결되어 신호를 교환할 수 있다. 프로세서(1422)는, ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서(processors), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세서(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있다.
프로세서(1422)는, 전원 공급부(1429)로부터 제공되는 전원에 의해 구동될 수 있다. 프로세서(1422)는, 전원 공급부(1429)에 의해 전원이 공급되는 상태에서 데이터를 수신하고, 데이터를 처리하고, 신호를 생성하고, 신호를 제공할 수 있다.
프로세서(1422)는, 인터페이스부(1423)를 통해, 차량(10) 내 다른 전자 장치로부터 정보를 수신할 수 있다. 프로세서(1422)는, 인터페이스부(1423)를 통해, 차량(10) 내 다른 전자 장치로 제어 신호를 제공할 수 있다.
영상 장치(1415,1425)는 제1 카메라(1425)와 제2 카메라(1415)를 포함할 수 있다. 제1 카메라(1425)와 제2 카메라(1425)는 화각이 다를 수 있다. 또한, 제1 카메라(1425)와 제2 카메라(1425)는 해상도가 다를 수 있다. 제1 카메라(1425)는 생체 인증을 수행하기 위해 캐빈 안을 전체적으로 촬영할 수 있는 광각 카메라에 해당할 수 있다. 구체적으로, 제1 카메라(1425)는 FOV(Field of View)가 130°이상, 해상도는 1920x720(FHD) 이상을 지원할 수 있다. 제1 카메라(1425)는 촬영 대상에 대한 뎁스(depth)를 인식할 수 있도록 RGB 센서와 뎁스 센서가 결합한 형태의 광각 카메라일 수 있다. 제2 카메라(1415)는 생체 인증에 필요한 영상 또는 이미지를 촬영하기 위한 고해상도 협각 카메라에 해당할 수 있다. 구체적으로, 제2 카메라(1415)는 FOV가 30°이상, 해상도는 4096x1716 (UHD) 이상을 지원할 수 있다. 제2 카메라(1415)는 스테레오 카메라로 구성될 수도 있다.
또한, 차량 내 생체 인증을 수행하는 장치(1400)는 기구적으로 동작부(1410)와 고정부(1420)로 구성될 수 있다. 고정부(1420)는 차량 내 생체 인식 장치(1400)의 하부에 위치할 수 있고, 동작부(1410)는 상부에 위치할 수 있다. 동작부(1410)는 반 구 형태의 중심점을 기준으로 360도 회전이 가능하며, 상하좌우 방향으로도 회전할 수 있다. 제1 카메라(1425)는 고정부(1420)에 위치할 수 있으며, 제2 카메라(1415)는 동작부(1410)에 위치할 수 있다. 동작부(1410)의 상하좌우 회전에 따라 제2 카메라(1415)의 뷰 앵글이 조절될 수 있다.
도 15는 차량 내 생체 인증을 수행하는 장치(1400)가 동작하는 순서도의 일례를 나타낸다. 이하에서 도 15를 참고하여, 차량 내 생체 인증을 수행하는 장치(1400)가 동작하는 구체적인 방법에 대해 설명한다. 차량 내 생체 인증을 수행하는 장치는 차량 내 대쉬보드 상에 위치할 수 있으며 이를 가정하고 설명한다. 다만, 이는 설명 상의 편의일 뿐, 본 발명의 기술적 사상을 제한하지는 않는다.
차량에 사용자가 탑승한 경우, 제1 카메라(1425)는 캐빈의 내부를 전체적으로 촬영할 수 있다. 제1 카메라에 의해 획득된 영상은 인터페이스부(1423)를 통해 프로세서(1422)로 전달될 수 있다. 프로세서는 제1 카메라에 의해 획득된 영상으로부터 차량에 탑승한 사용자의 수, 사용자의 위치, 사용자의 얼굴, 손 등의 생체 정보 획득의 대상의 위치를 구분할 수 있다. 프로세서(1422)는 제1 카메라에 의해 획득된 영상에 기반하여 사용자의 얼굴, 손 중 적어도 하나의 위치를 관심 영역으로 설정할 수 있다(S1510). 얼굴과 손에 대한 관심 영역이 동시에 설정될 수도 있고, 얼굴에 대한 관심 영역이 설정되고, 이후 페이먼트 요청과 같은 추가적인 인증이 필요한 경우에 손에 대한 관심 영역이 추가적으로 설정될 수도 있다. 상기 관심 영역은 운전자에 대해서만 설정될 수도 있고, 차량의 앞 좌석에 앉은 사용자에 대해서 설정될 수도 있으며, 또는, 차량에 탑승한 전체 사용자에 대해서 설정될 수도 있다. 또한, 사용자의 움직임에 따라 상기 관심 영역의 변화를 추적하여 관심 영역을 업데이트 할 수 있다.
프로세서(1422)는 설정된 관심 영역에 기반하여 동작부(1410)를 제어하여 제2 카메라(1415)의 뷰 앵글을 조절할 수 있다(S1520). 운전자에 대한 인증을 수행하는 경우, 상기 운전자의 얼굴 위치에 설정된 관심 영역으로 동작부를 움직여 상기 제2 카메라의 뷰 앵글을 운전자의 눈 위치로 맞출 수 있다. 제2 카메라는 사용자의 홍채 영상을 획득할 수 있다. 제2 카메라에 의해 획득된 영상은 인터페이스부를 통해 프로세서로 전달될 수 있다(S1530).
프로세서는 제2 카메라에 의해 획득한 영상에 기반하여 홍채 인식 알고리즘을 수행할 수 있다(S1540). 홍채 인식 알고리즘을 통해 생체 인증이 완료된 사용자 정보는 인터페이스부(1423)을 통해 차량의 캐빈 시스템(300)에 포함된 디스플레이 시스템(350), 카고 시스템(355), 시트 시스템(360) 및 페이먼트 시스템(365) 중 적어도 어느 하나에 제공될 수 있다. 인증에 성공한 사용자에 대해서 상술한 자율 주행 시나리오의 예들에 따라 사용자에 적합한 서비스가 제공될 수 있다. 반면, 인증에 실패한 사용자에 대하여 재인증을 요구할 수 있다. 또는, 차량의 소유주 또는 등록된 권리자에게 새로운 사용자에 대한 정보를 차량 네트워크 또는 5G 네트워크를 통해 전송하고, 새로운 사용자에 대한 권한 설정을 송수신할 수도 있다.
차량 운행 중, 또는 차량 내에서 지불 관련 요청이 발생하는 경우, 차량 내 생체 인증을 수행하는 장치는 추가적인 생체 인증을 수행할 수 있다. 상기 지불 관련 요청은 차량 운행과 관련된 지불로써, 차량 네트워크를 통해 전달될 수 있다. 또는, 차량과 연결된 사용자 단말로부터 지불에 대한 인증 요청이 전달될 수도 있다. 지불 관련 요청이 발생하는 경우, 프로세서는 추가적인 생체 인증을 수행하기 위하여, 동작부를 움직여 제2 카메라의 뷰 앵글을 손의 위치로 조절할 수 있다. 그 전에, 상기 제1 카메라를 이용하여 손에 대한 관심 영역이 설정될 수 있다. 또는, 이미 해당 생체 정보에 대한 관심 영역이 설정되어 있는 경우는 이 과정이 생략될 수도 있다. 즉, 지불 관련 요청이 발생하기 전이라도 사용자 인증을 위한 관심 영역 설정 시 얼굴과 손에 대한 관심 영역이 동시에 설정될 수 있으며, 이 경우 지불 요청 후에 손에 대한 관심 영역을 설정하는 단계가 생략될 수 있다. 제2 카메라는 조절된 뷰 앵글에 맞추어 손(예: 손가락, 손등, 손바닥 등)에 대한 정맥 촬영을 하고, 이를 프로세서로 전송할 수 있다. 프로세서는 수신한 정맥 영상을 기반으로 정맥 인증 알고리즘을 수행할 수 있다. 정맥 인증 정보와 홍채 인증 정보가 일치하는 경우 지불을 완료할 수 있다. 인증 정보가 일치하지 않는 경우, 재 인증을 요청하는 메시지를 표시할 수 있다.
상술한 실시예는 홍채 인식을 수행하고, 추가적으로 정맥 인식을 수행하는 순서로 기술되어 있으나, 이는 일 실시예에 해당할 뿐, 본 발명의 기술적 사상을 제한하는 것은 아니다. 따라서, 정맥 인식을 수행하고 추가적으로 홍채 인식을 수행할 수도 있다.
상술한 방법 및 실시예를 통해, 차량 내 멀티 카메라를 이용하여 생체 인증 시스템을 구성함으로써, 비용을 절감할 수 있고, 여러 명의 탑승자에 대한 생체 인식이 가능하며, 탑승자의 특별한 동작 없이도 생체 인식이 가능할 수 있다.
전술한 구현 예들은 본 발명의 구조적 요소들 및 특징들을 다양한 방식으로 조합해서 만들어질 수 있다. 별도로 명시하지 않는 한, 각 구조 요소 또는 기능들은 선택적으로 고려될 수 있다. 구조적 요소들 또는 특징들 각각은 다른 구조적 요소들 또는 특징들과 결합되지 않고 수행될 수 있다. 또한, 일부 구조적 요소들 및/또는 특징들은 본 발명의 구현들을 구성하기 위해 서로 결합될 수 있다. 본 발명의 구현에서 기술된 동작 순서는 변경될 수 있다. 한 구현의 일부 구조적 요소 또는 특징은 다른 구현에 포함될 수 있거나, 다른 구현에 상응하는 구조적 요소 또는 특징으로 대체될 수 있다.
본 발명에서의 구현들은 다양한 기술들, 예를 들자면 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합들에 의해 이루어질 수 있다. 하드웨어 구성에서, 본 발명의 구현에 따른 방법은, 하나 이상의 ASIC(Application Specific Integrated Circuits), 하나 이상의 DSP(Digital Signal Processors), 하나 이상의 DSPD(Digital Signal Processing Devices), 하나 이상의 PLD(Programmable Logic Devices), 하나 이상의 FPGA(Field Programmable Gate Arrays), 하나 이상의 프로세서, 하나 이상의 컨트롤러, 하나 이상의 마이크로 컨트롤러, 하나 이상의 마이크로 프로세서 등에 의해 이루어질 수 있다.
펌웨어나 소프트웨어의 구성에서, 본 발명의 구현들은 모듈, 절차, 기능 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장될 수 있고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서의 내부 또는 외부에 위치할 수 있고, 다양한 방법으로 프로세서로부터 데이터를 송수신할 수 있다.
통상의 기술자가 본 발명의 사상이나 범위를 벗어나지 않으면서 본 발명에서 만들어질 수 있는 다양한 변경 및 변형을 수행할 수 있음은 자명하다. 본 발명은 3GPP LTE/LTE-A 시스템 또는 5G 시스템(또는, NR 시스템)에 적용된 예를 참조하여 설명하였지만, 다른 다양한 무선 통신 시스템에도 적용 가능하다.
본 발명의 차량 시스템에서 생체 인증을 수행하는 방안은 홍채 인식, 정맥 인식에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 인증 방법 및 차량 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 차량 시스템에서 생체 인증을 수행하는 방법에 있어서,
    제1 카메라가 촬영한 영상(Image)를 기반으로 차량 내 사용자에 대한 관심 영역을 설정하는 단계;
    상기 관심 영역에 기반하여 제2 카메라의 뷰 앵글을 조절하는 단계;
    상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 영상(image)를 획득하는 단계; 및
    상기 생체 인식에 필요한 영상을 기반으로 생체 인증을 수행하는 단계를 포함하되,
    상기 관심 영역은 상기 차량 내 사용자의 얼굴 또는 손 중 적어도 하나에 대해 설정되는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 생체 인식에 필요한 영상은 홍채에 대한 영상에 해당하는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 제1 카메라는 FOV(field of view)가 130도 이상을 지원하는 광각 카메라에 해당하고, 상기 제2 카메라는 UHD(Ultra High definition) 이상의 해상도를 지원하는 고해상도 협각 카메라에 해당하는 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 생체 인증이 완료된 사용자에 대한 정보를 차량 시스템에 포함된 디스플레이 시스템, 카고 시스템, 시트 시스템 및 페이먼트 시스템 중 적어도 어느 하나에 제공하는 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 또 다른 영상(image)를 획득하는 단계; 및
    상기 또 다른 영상을 기반으로 추가적인 생체 인증을 수행하는 단계를 더 포함하는 방법.
  6. 제 5항에 있어서,
    상기 또 다른 영상은 상기 차량 내 사용자의 손의 정맥에 대한 영상에 해당하는 것을 특징으로 하는 방법.
  7. 제 5항에 있어서,
    상기 추가적인 생체 인증은 차량 내 결제 요청 시그널링을 수신하는 경우 수행되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 생체 인증의 결과와 상기 추가적인 생체 인증의 결과가 동일한 경우, 상기 결제 요청에 대한 지불을 완료하는 것을 특징으로 하는 방법.
  9. 차량 시스템에서 생체 인증을 수행하는 장치에 있어서, 상기 장치는
    데이터를 저장하기 위한 메모리,
    영상 촬영을 위한 제1 카메라와 제2 카메라를 포함하는 영상 장치, 및
    상기 메모리 및 상기 영상 장치와 기능적으로 연결된 프로세서를 포함하되,
    상기 프로세서는,
    상기 제1 카메라가 촬영한 영상(Image)를 기반으로 차량 내 사용자에 대한 관심 영역을 설정하고,
    상기 관심 영역에 기반하여 상기 제2 카메라의 뷰 앵글을 조절하며,
    상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 영상(image)를 획득하고,
    상기 생체 인식에 필요한 영상을 기반으로 생체 인증을 수행하되,
    상기 관심 영역은 상기 차량 내 사용자의 얼굴 또는 손 중 적어도 하나에 대해 설정되는 것을 특징으로 하는 장치.
  10. 제 9항에 있어서,
    상기 제1 카메라는 FOV(field of view)가 130도 이상을 지원하는 광각 카메라에 해당하고, 상기 제2 카메라는 UHD(Ultra High definition) 이상의 해상도를 지원하는 고해상도 협각 카메라에 해당하는 것을 특징으로 하는 장치.
  11. 제 9항에 있어서, 상기 프로세서는
    상기 제2 카메라를 이용하여 상기 차량 내 사용자의 생체 인식에 필요한 또 다른 영상(image)를 획득하고,
    상기 또 다른 영상을 기반으로 추가적인 생체 인증을 수행하는 것을 특징으로 하는 장치.
  12. 제 11항에 있어서,
    상기 생체 인식에 필요한 영상은 홍채에 대한 영상에 해당하고,
    상기 또 다른 영상은 상기 차량 내 사용자의 손의 정맥에 대한 영상에 해당하는 것을 특징으로 하는 장치.
  13. 제 11항에 있어서,
    상기 추가적인 생체 인증은 상기 프로세서가 차량 내 결제 요청 시그널링을 수신하는 경우 수행되는 것을 특징으로 하는 장치.
  14. 제 13항에 있어서,
    상기 생체 인증의 결과와 상기 추가적인 생체 인증의 결과가 동일한 경우, 상기 프로세서가 상기 결제 요청에 대한 지불을 완료하도록 제어하는 것을 특징으로 하는 장치.
  15. 제 9항에 있어서,
    상기 장치는 이동 단말기, 네트워크 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신하는 것을 특징으로 하는 장치.
PCT/KR2019/007977 2019-07-01 2019-07-01 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치 WO2021002491A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/490,525 US20210382969A1 (en) 2019-07-01 2019-07-01 Biometrics authentication method and apparatus using in-vehicle multi camera
PCT/KR2019/007977 WO2021002491A1 (ko) 2019-07-01 2019-07-01 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치
KR1020190098444A KR20190101331A (ko) 2019-07-01 2019-08-12 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/007977 WO2021002491A1 (ko) 2019-07-01 2019-07-01 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2021002491A1 true WO2021002491A1 (ko) 2021-01-07

Family

ID=67776463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007977 WO2021002491A1 (ko) 2019-07-01 2019-07-01 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치

Country Status (3)

Country Link
US (1) US20210382969A1 (ko)
KR (1) KR20190101331A (ko)
WO (1) WO2021002491A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11494820B2 (en) 2020-12-14 2022-11-08 Toyota Motor North America, Inc. Augmented reality automotive accessory customer collaborative design and manufacturing through 3D printing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190098795A (ko) * 2018-01-30 2019-08-23 엘지전자 주식회사 차량 단말기 및 그것을 포함하는 운송 시스템의 제어방법
KR20200100481A (ko) * 2019-02-18 2020-08-26 삼성전자주식회사 생체 정보를 인증하기 위한 전자 장치 및 그의 동작 방법
JP2021027590A (ja) * 2019-08-08 2021-02-22 シンクウェア コーポレーションThinkware Corporation コネクティッドサービスを提供するためのサーバ及び方法
KR102335887B1 (ko) * 2020-07-20 2021-12-03 심재영 현장 학습용 자율주행차
JP2022129156A (ja) * 2021-02-24 2022-09-05 株式会社Subaru 車両の車内モニタリング装置
CN115134533B (zh) * 2022-08-30 2022-11-18 宁波均联智行科技股份有限公司 自动调用车载图像采集装置的拍摄方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189149A (ja) * 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd 車両用個人認証装置
KR20040094984A (ko) * 2003-05-06 2004-11-12 한국전자통신연구원 인식 대상에 민감한 영상 처리 시스템
KR20130088654A (ko) * 2012-01-31 2013-08-08 한국전자통신연구원 다중 카메라 기반 시선 추적 장치 및 방법
KR20140118221A (ko) * 2013-03-28 2014-10-08 엘지전자 주식회사 사용자 인식 장치 및 그 방법
KR20180125733A (ko) * 2017-05-16 2018-11-26 현대자동차주식회사 차량 내에서의 주문 결재와 인증 방법 및 주문 결재와 인증 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189149A (ja) * 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd 車両用個人認証装置
KR20040094984A (ko) * 2003-05-06 2004-11-12 한국전자통신연구원 인식 대상에 민감한 영상 처리 시스템
KR20130088654A (ko) * 2012-01-31 2013-08-08 한국전자통신연구원 다중 카메라 기반 시선 추적 장치 및 방법
KR20140118221A (ko) * 2013-03-28 2014-10-08 엘지전자 주식회사 사용자 인식 장치 및 그 방법
KR20180125733A (ko) * 2017-05-16 2018-11-26 현대자동차주식회사 차량 내에서의 주문 결재와 인증 방법 및 주문 결재와 인증 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11494820B2 (en) 2020-12-14 2022-11-08 Toyota Motor North America, Inc. Augmented reality automotive accessory customer collaborative design and manufacturing through 3D printing

Also Published As

Publication number Publication date
US20210382969A1 (en) 2021-12-09
KR20190101331A (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2021002491A1 (ko) 차량 내 멀티 카메라를 이용한 생체 인증 방법 및 장치
WO2021025187A1 (ko) 자율주행 차량 해킹 대응 방법 및 그 장치
WO2020246637A1 (ko) 자율 주행 차량 제어 방법
WO2021006374A1 (ko) 자율 주행 시스템에서 차량의 브레이크 장치를 모니터링 하는 방법 및 장치
WO2020251082A1 (ko) 자율 주행 차량 제어 방법
WO2020262718A1 (ko) 자율주행시스템에서 원격주행을 위한 센싱정보 전송방법 및 이를 위한 장치
WO2021006401A1 (ko) 자율주행시스템에서 차량의 제어 방법 및 그 장치
WO2021006362A1 (ko) 운전자 시선 감지를 통한 차량의 주행 상황 표시 방법 및 이를 위한 장치
WO2021006365A1 (ko) 차량 제어 방법 및 차량을 제어하는 지능형 컴퓨팅 디바이스
WO2020256174A1 (ko) 자율주행시스템에서 차량의 리소스 관리 방법 및 이를 위한 장치
WO2020241932A1 (ko) 자율 주행 차량 제어 방법
WO2021015303A1 (ko) 자율주행 공유차량에서 분실물 관리 방법 및 장치
WO2021010530A1 (ko) 운전자 휴게 패턴에 따른 휴게 정보 제공 방법 및 이를 위한 장치
WO2020218636A1 (ko) 자율 주행 차량과 이를 이용한 서비스 제공 시스템 및 방법
WO2021006359A1 (ko) 자율주행시스템에서 장난감 장치를 활용한 차량 제어 방법 및 이를 위한 장치
WO2021020623A1 (ko) 자율주행시스템에서 차량에 구비된 v2x 통신 장치의 bsm 메시지 전송 방법
WO2020251091A1 (ko) 자율주행시스템에서 다른 자율주행차량을 이용한 원격주행 방법
WO2020226211A1 (ko) 자율 주행 차량 제어 방법
WO2020096435A1 (ko) 무선통신시스템에서 사이드 링크 단말이 피드백 신호를 전송하는 방법 및 장치
WO2021010494A1 (ko) 재난 상황에서의 차량 대피정보 제공 방법 및 이를 위한 장치
WO2021246546A1 (ko) 지능적인 빔 예측 방법
WO2019226026A1 (ko) 무선통신시스템에서 사이드 링크 신호를 전송하는 방법 및 장치
WO2020091346A1 (ko) 무선통신시스템에서 단말이 pssch를 전송하는 방법 및 장치
WO2020032764A1 (ko) 무선통신시스템에서 사이드 링크 단말이 복수의 패킷을 전송하는 방법 및 장치
WO2020235714A1 (ko) 자율 주행 차량과 이를 이용한 주행 제어 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936301

Country of ref document: EP

Kind code of ref document: A1