WO2021002474A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2021002474A1
WO2021002474A1 PCT/JP2020/026313 JP2020026313W WO2021002474A1 WO 2021002474 A1 WO2021002474 A1 WO 2021002474A1 JP 2020026313 W JP2020026313 W JP 2020026313W WO 2021002474 A1 WO2021002474 A1 WO 2021002474A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
offset
medium
flow path
Prior art date
Application number
PCT/JP2020/026313
Other languages
French (fr)
Japanese (ja)
Inventor
威一郎 川村
坂井 耐事
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Priority to JP2021529208A priority Critical patent/JPWO2021002474A1/ja
Priority to CN202080042618.8A priority patent/CN113950605A/en
Priority to DE112020003195.0T priority patent/DE112020003195T5/en
Publication of WO2021002474A1 publication Critical patent/WO2021002474A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • a heat exchanger in which a plurality of dish-shaped plates are laminated, the first flow path and the second flow path are alternately arranged in the stacking direction, and offset fins are interposed in the first flow path.
  • a first flow path and a second flow path are formed between the laminated rectangular dish-shaped plates, and an inner fin is interposed in the first flow path. It is known that the entrance and exit of each flow path are provided at diagonal positions of the plate.
  • An example of the inner fin is an offset type, and in this offset type inner fin, the fluid flows and diffuses in the width direction of the fin through the gap of the offset part, but if it is not enough, the flow rate distribution Bias can occur, which can increase pressure loss.
  • an object of the present invention is to provide a heat exchanger having an offset type inner fin capable of making the flow rate distribution of the fluid uniform and reducing the pressure loss.
  • the first aspect of the present invention has a pair of long sides L facing each other and a pair of short sides M facing each other on the outer periphery, and the plane is formed in a rectangular dish shape. It has a large number of plates 3a, 3b in which a pair of first medium flow holes 1 are arranged diagonally and a second medium flow hole 2 is arranged in a second pair of diagonal positions, and each plate 3a, 3b is laminated, and the first flow path 4 of the first medium and the second flow path 5 of the second medium are alternately formed in the stacking direction, and the offset fin 6 is incorporated in the first flow path 4.
  • a heat exchanger in which the plates are liquid-tightly bonded and heat is exchanged between the two media.
  • the offset fins 6 are formed by bending a large number of waveforms 6a in which a metal plate advances in the short side M direction, and the adjacent waveforms 6a separated in the long side L direction are displaced from each other in the short side M direction. Then, the ridge line 6b of each waveform is arranged parallel to the long side L direction.
  • the aspect ratio b / a (aspect ratio) between the entrances and exits of the first medium of the plates 3a and 3b and the offset fins 6 is 0.12 ⁇ b / a ⁇ 0.33.
  • the fin pitch Pf of each waveform 6a of the offset fin 6 is 2 mm ⁇ Pf ⁇ 5 mm.
  • the heat exchanger is characterized in that the slit length SL of each waveform 6a of the offset fin 6 is 1 mm ⁇ SL ⁇ 3 mm.
  • the heat exchanger is an evaporator.
  • the heat exchanger according to claim 1 wherein the fin pitch Pf is 3 mm ⁇ Pf ⁇ 5 mm.
  • the heat exchanger is a condenser.
  • the invention of the heat exchanger according to claim 1 is an offset fin in a heat exchanger in which the aspect ratio b / a (aspect ratio) between the entrance and exit of the first medium is 0.12 ⁇ b / a ⁇ 0.33.
  • the fin pitch Pf of each waveform 6a of No. 6 is 2 mm ⁇ Pf ⁇ 5 mm, and the slit length SL of each waveform 6a of the offset fin 6 is 1 mm ⁇ SL ⁇ 3 mm.
  • the invention of the heat exchanger according to claim 2 is to provide an offset fin in an evaporator in which the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ⁇ b / a ⁇ 0.33.
  • the fin pitch Pf of each waveform is 3 mm ⁇ Pf ⁇ 5 mm, and the slit length SL of each waveform (6a) is 1 mm ⁇ SL ⁇ 3 mm.
  • the invention of the heat exchanger according to claim 3 is for offset fins in a condenser in which the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ⁇ b / a ⁇ 0.33.
  • the fin pitch Pf of each waveform is 2 mm ⁇ Pf ⁇ 3 mm, and the slit length SL of each waveform (6a) is 1 mm ⁇ SL ⁇ 3 mm.
  • FIG. 1 is a plan view (A) of a main part of the heat exchanger of the present invention, a perspective view (B) of the main part of the offset fin 6, and a CC arrow view (C) of (B).
  • FIG. 2 is an exploded perspective view of the heat exchanger.
  • FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 1 (A).
  • FIG. 4 shows the pressure drop ratio of the heat exchanger of the present invention, (A) shows a characteristic curve as an evaporator at each fin pitch Pf and a slit length SL, and (B) shows a characteristic curve as an evaporator. A characteristic curve showing the same pressure drop ratio.
  • FIG. 4 shows the pressure drop ratio of the heat exchanger of the present invention, (A) shows a characteristic curve as an evaporator at each fin pitch Pf and a slit length SL, and (B) shows a characteristic curve as an evaporator. A characteristic curve showing the same pressure drop ratio.
  • FIG. 5 shows the heat exchange amount ratio of the same heat exchanger, which is a characteristic curve for each fin pitch Pf and each slit length SL, (A) as a characteristic curve as an evaporator, and (B) as a condenser. Characteristic curve of.
  • FIG. 1A is a plan view of the heat exchanger plates 3a and 3b and the offset fins 6 interposed therein.
  • FIG. 1 (B) is an enlarged perspective view of the offset fin 6, and
  • FIG. 1 (C) is a view taken along the line CC of FIG. 1 (B).
  • FIG. 2 is an exploded perspective view of the heat exchanger.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 1 (A). As shown in FIGS.
  • the core of this heat exchanger is composed of a laminated body of plates 3a and 3b, and the first flow path 4 and the second flow path 5 are formed every other one of the plates, and the first flow path 5 is formed.
  • An offset fin 6 is interposed in the flow path 4.
  • the plates 3a and 3b have a substantially square flat surface and are formed in a dish shape, a pair of first medium flow holes 1 are formed at the first diagonal position, and a pair of second medium flow holes 1 are formed at the second diagonal position. 2 is formed.
  • An annular bulge 9 is projected from the hole edge of the second medium flow hole 2 on the plate 3a side, and an annular bulge 9 is projected from the hole edge of the first medium flow hole 1 on the plate 3b side. Will be done.
  • the offset fin 6 interposed in the first flow path 4 is provided with an opening 10 so as to be aligned with the first medium flow hole 1 and the second medium flow hole 2 of each plate. Then, when they are laminated, a communication hole is formed between the adjacent plates. As shown in FIG. 2, a top plate 12 is fitted to the upper end of the core of this heat exchanger in the stacking direction via an end plate 15, and a pipe 13 is provided on the top plate 12. Then, they are arranged on the substrate 11, and each component is integrally brazed and fixed. Then, the first medium 7 circulates in each of the first flow paths 4 from the pipe 13 of one first medium, and flows out from the pipe 13 of the other first medium.
  • the second medium 8 circulates in each of the second flow paths 5 from the pipe 13 of one second medium, and flows out from the pipe 13 of the other second medium.
  • the first medium 7 is supplied with a refrigerant that changes into two phases of gas and liquid
  • cooling water is supplied as the second medium 8
  • heat exchange is performed between the two media.
  • the offset fin 6 interposed in the first flow path 4 can be formed of an aluminum material (including an alloy of aluminum) or the like, and as shown in FIGS. 1B and 1C, the short plate 3a is formed.
  • the waveform 6a is formed by being bent so that the wave travels at a constant fin pitch Pf in the direction of the side M.
  • An offset gap is formed in which the phase of the ridge line 6b of the waveform 6a is displaced by several pitches with respect to the direction of the long side L.
  • the offset gap interval can be, for example, about 1/4 of the fin pitch Pf.
  • the height H of the waveform 6a can be set to about 1/2 of the fin pitch Pf as an example, and the plate thickness of the offset fin 6 can be set to 0.1 mm to 0.3 mm as an example. ..
  • the present inventor circulates the offset fin 6 of the first flow path 4 under the conditions of the aspect ratio b / a between the entrance and exit of the heat exchanger, the fin pitch Pf of the offset fin 6, and the slit length SL thereof.
  • a of the aspect ratio b / a is the distance between the centers of the doorways measured parallel to the long side L of each plate 3 in FIG. 1 (A), and b is the center of the doorway measured parallel to the short side M.
  • the slit length SL is the length of the ridge line 6b of each waveform 6a in FIG. 1 (B).
  • the aspect ratio (b / a) is in the range of 0.12 ⁇ b / a ⁇ 0.33
  • the fin pitch Pf is in the range of 2 mm, 3 mm, 4 mm, and 5 mm
  • the slit length SL is in the range of 1 mm to 7 mm. did.
  • the first medium 7 flowing through the first flow path 4 is Freon
  • the second medium 8 flowing through the second flow path 5 is cooling water.
  • the pressure loss when a heat exchanger was used as the evaporator and the pressure loss when the heat exchanger was used as the condenser were measured for each offset fin 6.
  • the minimum value (lower limit) of the slit length SL is set to 1 mm based on the limit of press working of the offset fin.
  • the lower limit of the fin pitch Pf is set to 2 mm in consideration of the minimum offset gap of the offset fins.
  • the upper limit of the fin pitch Pf is set to 5 mm because if the Pf of the offset fin becomes too large, the pressure resistance of the inner fin between the plates of the heat exchanger cannot be sufficiently obtained. As a result, the following became clear. FIG.
  • FIG. 4A shows a pressure loss ratio (pressure loss ratio) when used as an evaporator.
  • the vertical axis is the pressure drop ratio
  • the horizontal axis is the slit length SL.
  • FIG. 4B shows a pressure loss ratio (pressure loss ratio) when used as a condenser.
  • the vertical axis, the horizontal axis, and how to take the reference are the same as in FIG. In both cases of FIGS. 4 (A) and 4 (B), the pressure drop ratio is small in the range where the slit length is short (SL is in the range of 1 mm to 3 mm).
  • FIG. 5 (A) shows the exchange heat amount ratio when used as an evaporator.
  • the vertical axis is the exchange heat amount ratio
  • the horizontal axis is the slit length SL.
  • FIG. 5 (B) shows the exchange heat amount ratio when used as a condenser.
  • the vertical axis, the horizontal axis, and how to take the reference are the same as those in FIG. 5 (A).
  • the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ⁇ b / a ⁇ 0.33. It is optimal that the slit length SL of the offset fin 6 is 1 mm ⁇ SL ⁇ 3 mm and the fin pitch Pf of the offset fin 6 is in the range of 3 mm ⁇ Pf ⁇ 5 mm.
  • the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ⁇ b / a ⁇ 0.33, and the slit of the offset fin 6 It is optimal that the length SL is 1 mm ⁇ SL ⁇ 3 mm and the fin pitch Pf of the offset fin 6 is in the range of 2 mm ⁇ Pf ⁇ 3 mm.
  • a heat exchanger other than a condenser for example, an oil cooler (the first medium is oil), etc., it is between the inlet and outlet of the first medium.
  • the aspect ratio b / a (aspect ratio) is 0.12 ⁇ b / a ⁇ 0.33, the slit length SL of the offset fin 6 is 1 mm ⁇ SL ⁇ 3 mm, and the fin pitch Pf of the offset fin 6 is 2 mm ⁇ Pf.
  • the range can be ⁇ 5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The purpose of the present invention is to suppress the bias of flow distribution in the width direction of offset fins with respect to a heat exchanger that has flat rectangular dish-shaped plates with the offset fins interposed therebetween and has refrigerant inlets and outlets arranged diagonally on the plates. The fin pitch Pf is within the range of 2-5 mm and the slit length SL is within the range of 1-3 mm in cases where the aspect ratio b/a between the refrigerant inlets and outlets arranged diagonally falls within the range of 0.12-0.33.

Description

熱交換器Heat exchanger
 複数の皿状プレートを積層して、第1流路と第2流路が積層方向に交互に配置され、その第1流路にオフセットフィンが介装される熱交換器であって、特に、蒸発器又は凝縮器の熱交換に最適なものに関する。 A heat exchanger in which a plurality of dish-shaped plates are laminated, the first flow path and the second flow path are alternately arranged in the stacking direction, and offset fins are interposed in the first flow path. Optimal for heat exchange of evaporators or condensers.
 プレート積層型熱交換器は、一例として、積層された方形の皿状プレート間に第1流路と第2流路が形成されており、その第1流路にインナーフィンを介装し、当該プレートの対角位置に各流路の出入口を設けたものが知られている。
 インナーフィンの一例はオフセット型のものであり、このオフセット型インナーフィンにおいて、流体はオフセット部分の隙間を通ってフィンの幅方向にも流通、拡散するが、それが十分でない場合は、流量分布に偏りが生じ、それによって圧力損失が高まることがある。
In the plate laminated heat exchanger, as an example, a first flow path and a second flow path are formed between the laminated rectangular dish-shaped plates, and an inner fin is interposed in the first flow path. It is known that the entrance and exit of each flow path are provided at diagonal positions of the plate.
An example of the inner fin is an offset type, and in this offset type inner fin, the fluid flows and diffuses in the width direction of the fin through the gap of the offset part, but if it is not enough, the flow rate distribution Bias can occur, which can increase pressure loss.
 現在、このオフセット型インナーフィンを有する熱交換器に流通する流体の流量分布を均一化し、圧力損失を低減することが望まれている。
 そこで、本発明は流体の流量分布を均一化し、圧力損失を低減することができるオフセット型インナーフィンを有する熱交換器を提供することを課題とする。
At present, it is desired to make the flow rate distribution of the fluid flowing through the heat exchanger having the offset type inner fin uniform and reduce the pressure loss.
Therefore, an object of the present invention is to provide a heat exchanger having an offset type inner fin capable of making the flow rate distribution of the fluid uniform and reducing the pressure loss.
 請求項1に記載の本発明は、外周に、対向する一対の長辺Lと、対向する一対の短辺Mとを有して、平面が方形の皿状に形成され、その平面の第1の対角位置に一対の第1媒体流通孔1が配置され、第2の一対の対角位置に第2媒体流通孔2が配置された多数のプレート3a,3bを有し、各プレート3a,3bを積層して、積層方向に第1媒体の第1流路4と第2媒体の第2流路5とが交互に形成され、第1流路4には、オフセットフィン6が内装され、各プレート間が液密に接合されて、両媒体間に熱交換が行われる熱交換器において、
 前記オフセットフィン6は、金属板が前記短辺M方向に進行する多数の波形6aに曲折形成され、前記長辺L方向に離間して隣接する各波形6aが、互いに短辺M方向に位置ずれし、その各波形の稜線6bが前記長辺L方向に平行に配置され、
 前記各プレート3a,3b及びオフセットフィン6の第1媒体の出入口間の縦横比b/a(アスペクト比)が、0.12≦b/a≦0.33であり、
 前記オフセットフィン6の各波形6aのフィンピッチPfが、2mm≦Pf≦5mmであり、
 前記オフセットフィン6の各波形6aの前記スリット長さSLが、1mm≦SL≦3mmであることを特徴とする熱交換器である。
 請求項2に記載の本発明は、熱交換器が蒸発器であって、
 フィンピッチPfが、3mm≦Pf≦5mmである請求項1に記載の熱交換器である。
 請求項3に記載の本発明は、熱交換器が凝縮器であって、
 フィンピッチPfが、2mm≦Pf≦3mmである請求項1に記載の熱交換器である。
The first aspect of the present invention according to claim 1, has a pair of long sides L facing each other and a pair of short sides M facing each other on the outer periphery, and the plane is formed in a rectangular dish shape. It has a large number of plates 3a, 3b in which a pair of first medium flow holes 1 are arranged diagonally and a second medium flow hole 2 is arranged in a second pair of diagonal positions, and each plate 3a, 3b is laminated, and the first flow path 4 of the first medium and the second flow path 5 of the second medium are alternately formed in the stacking direction, and the offset fin 6 is incorporated in the first flow path 4. In a heat exchanger in which the plates are liquid-tightly bonded and heat is exchanged between the two media.
The offset fins 6 are formed by bending a large number of waveforms 6a in which a metal plate advances in the short side M direction, and the adjacent waveforms 6a separated in the long side L direction are displaced from each other in the short side M direction. Then, the ridge line 6b of each waveform is arranged parallel to the long side L direction.
The aspect ratio b / a (aspect ratio) between the entrances and exits of the first medium of the plates 3a and 3b and the offset fins 6 is 0.12 ≦ b / a ≦ 0.33.
The fin pitch Pf of each waveform 6a of the offset fin 6 is 2 mm ≦ Pf ≦ 5 mm.
The heat exchanger is characterized in that the slit length SL of each waveform 6a of the offset fin 6 is 1 mm ≦ SL ≦ 3 mm.
In the present invention according to claim 2, the heat exchanger is an evaporator.
The heat exchanger according to claim 1, wherein the fin pitch Pf is 3 mm ≦ Pf ≦ 5 mm.
In the present invention according to claim 3, the heat exchanger is a condenser.
The heat exchanger according to claim 1, wherein the fin pitch Pf is 2 mm ≦ Pf ≦ 3 mm.
 請求項1に記載の熱交換器の発明は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33である熱交換器において、オフセットフィン6の各波形6aのフィンピッチPfが2mm≦Pf≦5mmであり、オフセットフィン6の各波形6aのスリット長さSLが1mm≦SL≦3mmであることを特徴とする。
 それにより、オフセット部分の流路(隙間)およびインナーフィンによる補強効果が確保されると共に、波の稜線方向に直交する幅方向の流量分布の偏りが抑制され、熱交換器の流体の流量分布を均一化することができる。
 請求項2に記載の熱交換器の発明は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33である蒸発器において、オフセットフィンの各波形のフィンピッチPfが3mm≦Pf≦5mmであり、各波形(6a)のスリット長さSLが1mm≦SL≦3mmであることを特徴とする。
 それにより、蒸発器において、波の稜線方向に直交する幅方向の流量分布の偏りが抑制されるとともに、十分な熱交換量を確保することができる。
 請求項3に記載の熱交換器の発明は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33である凝縮器において、オフセットフィンの各波形のフィンピッチPfが2mm≦Pf≦3mmであり、各波形(6a)のスリット長さSLが1mm≦SL≦3mmであることを特徴とする。
 それにより、凝縮器において、波の稜線方向に直交する幅方向の流量分布の偏りが抑制されるとともに、十分な熱交換量を確保することができる。
The invention of the heat exchanger according to claim 1 is an offset fin in a heat exchanger in which the aspect ratio b / a (aspect ratio) between the entrance and exit of the first medium is 0.12 ≦ b / a ≦ 0.33. The fin pitch Pf of each waveform 6a of No. 6 is 2 mm ≦ Pf ≦ 5 mm, and the slit length SL of each waveform 6a of the offset fin 6 is 1 mm ≦ SL ≦ 3 mm.
As a result, the reinforcing effect of the flow path (gap) and the inner fin of the offset portion is secured, and the bias of the flow rate distribution in the width direction orthogonal to the ridgeline direction of the wave is suppressed, and the flow rate distribution of the fluid in the heat exchanger is suppressed. Can be homogenized.
The invention of the heat exchanger according to claim 2 is to provide an offset fin in an evaporator in which the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ≦ b / a ≦ 0.33. The fin pitch Pf of each waveform is 3 mm ≦ Pf ≦ 5 mm, and the slit length SL of each waveform (6a) is 1 mm ≦ SL ≦ 3 mm.
As a result, in the evaporator, the bias of the flow rate distribution in the width direction orthogonal to the ridgeline direction of the wave can be suppressed, and a sufficient amount of heat exchange can be secured.
The invention of the heat exchanger according to claim 3 is for offset fins in a condenser in which the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ≦ b / a ≦ 0.33. The fin pitch Pf of each waveform is 2 mm ≦ Pf ≦ 3 mm, and the slit length SL of each waveform (6a) is 1 mm ≦ SL ≦ 3 mm.
As a result, in the condenser, the bias of the flow rate distribution in the width direction orthogonal to the ridgeline direction of the wave can be suppressed, and a sufficient amount of heat exchange can be secured.
 図1は本発明の熱交換器の要部平面図(A)、そのオフセットフィン6の要部斜視図(B)、(B)のC−C矢視図(C)。
 図2は同熱交換器の分解斜視図。
 図3は図1(A)のIII−III矢視断面略図。
 図4は本発明の熱交換器の圧損比を示すものであって、(A)は各フィンピッチPf及びスリット長さSLにおける蒸発器としての特性曲線を示し、(B)は凝縮器としての同圧損比を示す特性曲線。
 図5は同熱交換器の熱交換量比を示し、各フィンピッチPf及び各スリット長さSLにおける特性曲線であって、(A)は蒸発器としての特性曲線、(B)は凝縮器としての特性曲線。
FIG. 1 is a plan view (A) of a main part of the heat exchanger of the present invention, a perspective view (B) of the main part of the offset fin 6, and a CC arrow view (C) of (B).
FIG. 2 is an exploded perspective view of the heat exchanger.
FIG. 3 is a schematic cross-sectional view taken along the line III-III of FIG. 1 (A).
FIG. 4 shows the pressure drop ratio of the heat exchanger of the present invention, (A) shows a characteristic curve as an evaporator at each fin pitch Pf and a slit length SL, and (B) shows a characteristic curve as an evaporator. A characteristic curve showing the same pressure drop ratio.
FIG. 5 shows the heat exchange amount ratio of the same heat exchanger, which is a characteristic curve for each fin pitch Pf and each slit length SL, (A) as a characteristic curve as an evaporator, and (B) as a condenser. Characteristic curve of.
 次に、図面に基づいて本発明の実施の形態につき、説明する。
 本発明の熱交換器は、流体の流通する流通路にオフセットフィンを有するものであって、蒸発器又は凝縮器として利用するのに適したものである。
 図1(A)は、熱交換器のプレート3a,3b及び、それらに介装されるオフセットフィン6の平面図である。そして、図1(B)はそのオフセットフィン6の拡大斜視図であり、図1(C)は同図(B)のC−C矢視図である。また、図2は同熱交換器の分解斜視図である。図3は、図1(A)のIII−III矢視断面図である。
 この熱交換器のコアは、図2、図3に示す如く、プレート3a,3bの積層体からなり、その一枚おきに第1流路4と第2流路5とが形成され、第1流路4内にオフセットフィン6が介装される。プレート3a,3bは、平面が略方形で皿状に形成され、第1の対角位置に一対の第1媒体流通孔1が形成され、第2の対角位置に一対の第2媒体流通孔2が形成される。プレート3a側には第2媒体流通孔2の孔縁部に環状膨出部9が突設され、プレート3b側には第1媒体流通孔1の孔縁部に環状膨出部9が突設される。第1流路4内に介装されるオフセットフィン6には、各プレートの第1媒体流通孔1と第2媒体流通孔2に整合するように、開口10が穿設されている。そして、それらを積層すると隣接するプレートとの間に連通孔が形成される。
 図2に示す如く、この熱交換器のコアの積層方向の上端には端プレート15を介して天板12が被嵌され、天板12にはパイプ13が設けられている。そして、それらが基板11上に配置され、各部品間が一体的にろう付固定される。
 そして、第1媒体7が一方の第1媒体のパイプ13から各第1流路4内を流通して、他方の第1媒体のパイプ13から流出する。また、第2媒体8が一方の第2媒体のパイプ13から各第2流路5内を流通し、他方の第2媒体のパイプ13から流出する。
 この例では、第1媒体7は気液二相に変化する冷媒が供給され、第2媒体8として冷却水が供給され、両媒体間に熱交換が行われるものである。
 第1流路4内に介装されるオフセットフィン6は、アルミニウム材(アルミニウムの合金を含む)等で形成することができ、図1(B)及び(C)に示す如く、プレート3aの短辺Mの方向に一定のフィンピッチPfで波が進行するように曲折されて波形6aが形成されている。その波形6aの稜線6bの位相が長辺Lの方向に対して、数ピッチ位置ずれしてオフセット隙間が形成されている。オフセット隙間の間隔は、例えば、フィンピッチPfの1/4程度とすることができる。
 また、波形6aの高さHは、一例として、フィンピッチPfの1/2程度とすることができ、オフセットフィン6の板厚は、一例として、0.1mm~0.3mmとすることができる。
 本発明者は、熱交換器の出入口間の縦横比(アスペクト比)b/a、オフセットフィン6のフィンピッチPf及びそのスリット長さSLの条件が、第1流路4のオフセットフィン6を流通する冷媒の流通抵抗(圧損比、圧力損失)及び熱交換量(交換熱量)に影響を与えることを見出した。
 ここで、アスペクト比b/aのaは図1(A)における各プレート3の長辺Lに平行に測った出入口の中心間距離であり、bは短辺Mに平行に測った出入口の中心間距離である。スリット長さSLとは、図1(B)における各波形6aの稜線6bの長さのことである。
 オフセットフィン6を有する熱交換器の実験条件は、下記のとおりである。
 アスペクト比(b/a)は0.12≦b/a≦0.33の範囲で、フィンピッチPfは2mm、3mm、4mm、5mmの範囲で、スリット長さSLは1mm~7mmまでの範囲とした。
 第1流路4に流通する第1媒体7はフロン、第2流路5に流通する第2媒体8は冷却水である。
 蒸発器として熱交換器を用いた場合の圧力損失、凝縮器として熱交換器を使用した場合の圧力損失を各オフセットフィン6毎に測定した。また、蒸発器として熱交換器を用いた場合の交換熱量、凝縮器として熱交換器を用いた場合の交換熱量を測定した。
 なお、スリット長さSLの最小値(下限)を1mmとしたのは、オフセットフィンのプレス加工の限度に基づく。
 また、フィンピッチPfの下限を2mmとしたのは、オフセットフィンのオフセット隙間の最小限度を考慮したものである。フィンピッチPfの上限を5mmとしたのは、オフセットフィンのPfが大きくなりすぎると、熱交換器のプレート間のインナーフィンによる耐圧性が十分に得られないからである。
 その結果、次のことが明らかとなった。
 図4(A)は、蒸発器として使用した場合の圧損比(圧力損失比)を示している。縦軸は圧損比、横軸にスリット長さSLをとったものである。ここで、フィンピッチPf=2mm、スリット長さSL=2mmの圧力損失を基準(100%)とする。また、図4(B)は凝縮器として使用した場合の圧損比(圧力損失比)を示している。縦軸、横軸、基準の取り方は同図(A)と同じである。
 図4(A)、図4(B)いずれに場合においても、スリット長さが短い範囲(SLが1mm~3mmの範囲)において、圧損比が小さくなっている。
 これは、基本的にスリット長さが短くなる程、冷媒の幅方向(図1(A)M)の流速分布が均一化されることよる。即ち、スリット長さが短い分、スリットを抜けた冷媒が、プレートの長手方向のみならず幅方向にも流れ易く、圧力損失が低減するためである。この傾向は、出入口間の縦横比(アスペクト比)がb/a=0.12の場合も、0.33の場合も同じであった。
 次に、図5(A)は蒸発器として使用した場合の交換熱量比を示している。縦軸は交換熱量比、横軸にスリット長さSLをとったものである。フィンピッチPf=2mm、スリット長さSL=2mmの交換熱量を基準(100%)とする。
 蒸発器として使用する時の交換熱量比の最適範囲は、網かけ部分(Pf=3mm~5mm)の範囲であり、フィンピッチPfが大きい程、熱交換量が大きい。
 これは、冷媒の作動圧力が蒸発器では200KPaG程度と低く、圧損により飽和温度が大きく変化するためである。そして、圧損が低い程、飽和温度の変化も小さく冷却水との温度差が大きく取れ、熱交換量も大きくなる。
 次に、図5(B)は凝縮器として使用した場合の交換熱量比を示している。縦軸、横軸、基準の取り方は図5(A)と同じである。
 凝縮器として使用する時の交換熱量比の最適範囲は、網かけ部分(Pf=2mm~3mm)の範囲であり、凝縮器では、フィンピッチが小さい程、熱交換量が大きい。
 これは、凝縮器の作動圧力が2000KPaG程度と高く、圧損による飽和温度の変化が小さいためである。また、蒸発器と異なり、凝縮器は熱交換器の中で気相状態が占める割合が大きい。よって、フィンピッチPfを小さくし、熱交換面積を増やすほど、気相の熱交換が進み、全体の熱交換量も増す。
 上記のことから、オフセットフィンを有する熱交換器を蒸発器として使用する場合は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33、オフセットフィン6のスリット長さSLが1mm≦SL≦3mm、且つ、オフセットフィン6のフィンピッチPfが3mm≦Pf≦5mmの範囲とすることが最適となる。
 次に、この熱交換器を凝縮器として使用する場合は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33、オフセットフィン6のスリット長さSLが1mm≦SL≦3mm、且つ、オフセットフィン6のフィンピッチPfが2mm≦Pf≦3mmの範囲とすることが最適となる。
 なお、オフセットフィンを有するプレート積層型熱交換器は、蒸発器、凝縮器以外の熱交換器、一例としてオイルクーラ(第1媒体がオイル)等に使用する場合は、第1媒体の出入口間の縦横比b/a(アスペクト比)が0.12≦b/a≦0.33、オフセットフィン6のスリット長さSLが1mm≦SL≦3mm、且つ、オフセットフィン6のフィンピッチPfを2mm≦Pf≦5mmの範囲とすることができる。
Next, an embodiment of the present invention will be described with reference to the drawings.
The heat exchanger of the present invention has offset fins in the flow path through which the fluid flows, and is suitable for use as an evaporator or a condenser.
FIG. 1A is a plan view of the heat exchanger plates 3a and 3b and the offset fins 6 interposed therein. FIG. 1 (B) is an enlarged perspective view of the offset fin 6, and FIG. 1 (C) is a view taken along the line CC of FIG. 1 (B). Further, FIG. 2 is an exploded perspective view of the heat exchanger. FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 1 (A).
As shown in FIGS. 2 and 3, the core of this heat exchanger is composed of a laminated body of plates 3a and 3b, and the first flow path 4 and the second flow path 5 are formed every other one of the plates, and the first flow path 5 is formed. An offset fin 6 is interposed in the flow path 4. The plates 3a and 3b have a substantially square flat surface and are formed in a dish shape, a pair of first medium flow holes 1 are formed at the first diagonal position, and a pair of second medium flow holes 1 are formed at the second diagonal position. 2 is formed. An annular bulge 9 is projected from the hole edge of the second medium flow hole 2 on the plate 3a side, and an annular bulge 9 is projected from the hole edge of the first medium flow hole 1 on the plate 3b side. Will be done. The offset fin 6 interposed in the first flow path 4 is provided with an opening 10 so as to be aligned with the first medium flow hole 1 and the second medium flow hole 2 of each plate. Then, when they are laminated, a communication hole is formed between the adjacent plates.
As shown in FIG. 2, a top plate 12 is fitted to the upper end of the core of this heat exchanger in the stacking direction via an end plate 15, and a pipe 13 is provided on the top plate 12. Then, they are arranged on the substrate 11, and each component is integrally brazed and fixed.
Then, the first medium 7 circulates in each of the first flow paths 4 from the pipe 13 of one first medium, and flows out from the pipe 13 of the other first medium. Further, the second medium 8 circulates in each of the second flow paths 5 from the pipe 13 of one second medium, and flows out from the pipe 13 of the other second medium.
In this example, the first medium 7 is supplied with a refrigerant that changes into two phases of gas and liquid, cooling water is supplied as the second medium 8, and heat exchange is performed between the two media.
The offset fin 6 interposed in the first flow path 4 can be formed of an aluminum material (including an alloy of aluminum) or the like, and as shown in FIGS. 1B and 1C, the short plate 3a is formed. The waveform 6a is formed by being bent so that the wave travels at a constant fin pitch Pf in the direction of the side M. An offset gap is formed in which the phase of the ridge line 6b of the waveform 6a is displaced by several pitches with respect to the direction of the long side L. The offset gap interval can be, for example, about 1/4 of the fin pitch Pf.
Further, the height H of the waveform 6a can be set to about 1/2 of the fin pitch Pf as an example, and the plate thickness of the offset fin 6 can be set to 0.1 mm to 0.3 mm as an example. ..
The present inventor circulates the offset fin 6 of the first flow path 4 under the conditions of the aspect ratio b / a between the entrance and exit of the heat exchanger, the fin pitch Pf of the offset fin 6, and the slit length SL thereof. It has been found that it affects the flow resistance (pressure loss ratio, pressure loss) and heat exchange amount (exchange heat amount) of the refrigerant.
Here, a of the aspect ratio b / a is the distance between the centers of the doorways measured parallel to the long side L of each plate 3 in FIG. 1 (A), and b is the center of the doorway measured parallel to the short side M. The distance. The slit length SL is the length of the ridge line 6b of each waveform 6a in FIG. 1 (B).
The experimental conditions of the heat exchanger having the offset fins 6 are as follows.
The aspect ratio (b / a) is in the range of 0.12 ≦ b / a ≦ 0.33, the fin pitch Pf is in the range of 2 mm, 3 mm, 4 mm, and 5 mm, and the slit length SL is in the range of 1 mm to 7 mm. did.
The first medium 7 flowing through the first flow path 4 is Freon, and the second medium 8 flowing through the second flow path 5 is cooling water.
The pressure loss when a heat exchanger was used as the evaporator and the pressure loss when the heat exchanger was used as the condenser were measured for each offset fin 6. In addition, the amount of heat exchanged when a heat exchanger was used as the evaporator and the amount of heat exchanged when a heat exchanger was used as the condenser were measured.
The minimum value (lower limit) of the slit length SL is set to 1 mm based on the limit of press working of the offset fin.
Further, the lower limit of the fin pitch Pf is set to 2 mm in consideration of the minimum offset gap of the offset fins. The upper limit of the fin pitch Pf is set to 5 mm because if the Pf of the offset fin becomes too large, the pressure resistance of the inner fin between the plates of the heat exchanger cannot be sufficiently obtained.
As a result, the following became clear.
FIG. 4A shows a pressure loss ratio (pressure loss ratio) when used as an evaporator. The vertical axis is the pressure drop ratio, and the horizontal axis is the slit length SL. Here, the pressure loss of fin pitch Pf = 2 mm and slit length SL = 2 mm is used as a reference (100%). Further, FIG. 4B shows a pressure loss ratio (pressure loss ratio) when used as a condenser. The vertical axis, the horizontal axis, and how to take the reference are the same as in FIG.
In both cases of FIGS. 4 (A) and 4 (B), the pressure drop ratio is small in the range where the slit length is short (SL is in the range of 1 mm to 3 mm).
This is basically because the shorter the slit length, the more uniform the flow velocity distribution in the width direction of the refrigerant (FIG. 1 (A) M). That is, because the slit length is short, the refrigerant that has passed through the slit easily flows not only in the longitudinal direction of the plate but also in the width direction, and the pressure loss is reduced. This tendency was the same when the aspect ratio between the entrances and exits was b / a = 0.12 and 0.33.
Next, FIG. 5 (A) shows the exchange heat amount ratio when used as an evaporator. The vertical axis is the exchange heat amount ratio, and the horizontal axis is the slit length SL. The amount of heat exchanged when the fin pitch Pf = 2 mm and the slit length SL = 2 mm is used as a reference (100%).
The optimum range of the exchange heat amount ratio when used as an evaporator is the range of the shaded portion (Pf = 3 mm to 5 mm), and the larger the fin pitch Pf, the larger the heat exchange amount.
This is because the operating pressure of the refrigerant is as low as about 200 KPaG in the evaporator, and the saturation temperature changes greatly due to the pressure loss. The lower the pressure loss, the smaller the change in saturation temperature, the larger the temperature difference with the cooling water, and the larger the amount of heat exchange.
Next, FIG. 5 (B) shows the exchange heat amount ratio when used as a condenser. The vertical axis, the horizontal axis, and how to take the reference are the same as those in FIG. 5 (A).
The optimum range of the exchange heat amount ratio when used as a condenser is the range of the shaded portion (Pf = 2 mm to 3 mm), and in the condenser, the smaller the fin pitch, the larger the heat exchange amount.
This is because the operating pressure of the condenser is as high as about 2000 KPaG, and the change in saturation temperature due to pressure loss is small. Also, unlike the evaporator, the condenser has a large proportion of the gas phase state in the heat exchanger. Therefore, as the fin pitch Pf is reduced and the heat exchange area is increased, the heat exchange of the gas phase proceeds and the total heat exchange amount also increases.
From the above, when a heat exchanger having offset fins is used as an evaporator, the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ≦ b / a ≦ 0.33. It is optimal that the slit length SL of the offset fin 6 is 1 mm ≦ SL ≦ 3 mm and the fin pitch Pf of the offset fin 6 is in the range of 3 mm ≦ Pf ≦ 5 mm.
Next, when this heat exchanger is used as a condenser, the aspect ratio b / a (aspect ratio) between the inlet and outlet of the first medium is 0.12 ≦ b / a ≦ 0.33, and the slit of the offset fin 6 It is optimal that the length SL is 1 mm ≦ SL ≦ 3 mm and the fin pitch Pf of the offset fin 6 is in the range of 2 mm ≦ Pf ≦ 3 mm.
When the plate laminated heat exchanger having offset fins is used for an evaporator, a heat exchanger other than a condenser, for example, an oil cooler (the first medium is oil), etc., it is between the inlet and outlet of the first medium. The aspect ratio b / a (aspect ratio) is 0.12 ≦ b / a ≦ 0.33, the slit length SL of the offset fin 6 is 1 mm ≦ SL ≦ 3 mm, and the fin pitch Pf of the offset fin 6 is 2 mm ≦ Pf. The range can be ≤5 mm.
 1 第1媒体流通孔
 2 第2媒体流通孔
 3a、3b プレート
 4 第1流路
 5 第2流路
 6 オフセットフィン
 6a 波形
 6b 稜線
 7 第1媒体
 8 第2媒体
 9 環状膨出部
 10 開口
 11 基板
 12 天板
 13 パイプ
 14 ディンプル
 15 端プレート
 b/a 出入口間の縦横比(アスペクト比)
 Pf フィンピッチ
 SL スリット長さ
 L 長辺
 M 短辺
 H 高さ
1 1st medium flow hole 2 2nd medium flow hole 3a, 3b plate 4 1st flow path 5 2nd flow path 6 offset fin 6a waveform 6b ridgeline 7 1st medium 8 2nd medium 9 annular bulge 10 opening 11 substrate 12 Top plate 13 Pipe 14 Dimple 15 End plate b / a Aspect ratio between doorways (aspect ratio)
Pf Fin pitch SL Slit length L Long side M Short side H Height

Claims (3)

  1.  外周に、対向する一対の長辺(L)と、対向する一対の短辺(M)とを有して、平面が方形の皿状に形成され、その平面の第1の対角位置に一対の第1媒体流通孔(1)が配置され、第2の一対の対角位置に第2媒体流通孔(2)が配置された多数のプレート(3a)(3b)を有し、各プレート(3a)(3b)を積層して、積層方向に第1媒体の第1流路(4)と第2媒体の第2流路(5)とが交互に形成され、第1流路(4)には、オフセットフィン(6)が内装され、各プレート間が液密に接合されて、両媒体間に熱交換が行われる熱交換器において、
     前記オフセットフィン(6)は、金属板が前記短辺(M)方向に進行する多数の波形(6a)に曲折形成され、前記長辺(L)方向に離間して隣接する各波形(6a)が、互いに短辺(M)方向に位置ずれし、その各波形の稜線(6b)が前記長辺(L)方向に平行に配置され、
     前記各プレート(3a)(3b)及びオフセットフィン(6)の第1媒体の出入口間の縦横比b/a(アスペクト比)が、0.12≦b/a≦0.33であり、
     前記オフセットフィン(6)の各波形(6a)のフィンピッチPfが、2mm≦Pf≦5mmであり、
     前記オフセットフィン(6)の各波形(6a)の前記スリット長さSLが、1mm≦SL≦3mmであることを特徴とする熱交換器。
    It has a pair of long sides (L) facing each other and a pair of short sides (M) facing each other on the outer circumference, and a plane is formed in a rectangular dish shape, and a pair is formed at a first diagonal position of the plane. It has a large number of plates (3a) and (3b) in which the first medium flow hole (1) is arranged and the second medium flow hole (2) is arranged at a second pair of diagonal positions, and each plate ( 3a) and (3b) are laminated, and the first flow path (4) of the first medium and the second flow path (5) of the second medium are alternately formed in the stacking direction, and the first flow path (4) In a heat exchanger in which offset fins (6) are installed, the plates are liquid-tightly bonded, and heat is exchanged between the two media.
    The offset fins (6) are formed by bending a large number of waveforms (6a) in which a metal plate advances in the short side (M) direction, and are adjacent to each other in the long side (L) direction (6a). Are displaced from each other in the short side (M) direction, and the ridges (6b) of the respective waveforms are arranged parallel to the long side (L) direction.
    The aspect ratio b / a (aspect ratio) between the entrance and exit of the first medium of each of the plates (3a) and (3b) and the offset fin (6) is 0.12 ≦ b / a ≦ 0.33.
    The fin pitch Pf of each waveform (6a) of the offset fin (6) is 2 mm ≦ Pf ≦ 5 mm.
    A heat exchanger characterized in that the slit length SL of each waveform (6a) of the offset fin (6) is 1 mm ≦ SL ≦ 3 mm.
  2.  熱交換器が蒸発器であって、
     フィンピッチPfが、3mm≦Pf≦5mmである請求項1に記載の熱交換器。
    The heat exchanger is an evaporator
    The heat exchanger according to claim 1, wherein the fin pitch Pf is 3 mm ≦ Pf ≦ 5 mm.
  3.  熱交換器が凝縮器であって、
     フィンピッチPfが、2mm≦Pf≦3mmである請求項1に記載の熱交換器。
    The heat exchanger is a condenser
    The heat exchanger according to claim 1, wherein the fin pitch Pf is 2 mm ≦ Pf ≦ 3 mm.
PCT/JP2020/026313 2019-07-02 2020-06-29 Heat exchanger WO2021002474A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529208A JPWO2021002474A1 (en) 2019-07-02 2020-06-29
CN202080042618.8A CN113950605A (en) 2019-07-02 2020-06-29 Heat exchanger
DE112020003195.0T DE112020003195T5 (en) 2019-07-02 2020-06-29 HEAT EXCHANGER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-123984 2019-07-02
JP2019123984 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021002474A1 true WO2021002474A1 (en) 2021-01-07

Family

ID=74100396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026313 WO2021002474A1 (en) 2019-07-02 2020-06-29 Heat exchanger

Country Status (4)

Country Link
JP (1) JPWO2021002474A1 (en)
CN (1) CN113950605A (en)
DE (1) DE112020003195T5 (en)
WO (1) WO2021002474A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147572A (en) * 2003-11-18 2005-06-09 Calsonic Kansei Corp Fin for heat exchanger
JP2007183071A (en) * 2006-01-10 2007-07-19 Tokyo Bureizu Kk High-pressure-resistant compact heat exchanger and manufacturing method of the same
WO2014132602A1 (en) * 2013-02-27 2014-09-04 株式会社デンソー Stacked heat exchanger
JP2016125686A (en) * 2014-12-26 2016-07-11 株式会社マーレ フィルターシステムズ Oil cooler
US20170284417A1 (en) * 2016-04-01 2017-10-05 Safran Aircraft Engines Output director vane for an aircraft turbine engine, with an improved lubricant cooling function using a heat conduction matrix housed in an inner duct of the vane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240136B2 (en) * 2006-07-11 2009-03-18 株式会社デンソー Exhaust heat exchanger
KR20120002075A (en) * 2010-06-30 2012-01-05 한라공조주식회사 Plate-type heat exchanger
US9651315B2 (en) * 2012-09-26 2017-05-16 Hangzhou Sanhua Research Institute Co., Ltd. Fin of heat exchanger and heat exchanger
JP5884055B2 (en) * 2014-05-09 2016-03-15 パナソニックIpマネジメント株式会社 Heat exchanger and offset fin for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147572A (en) * 2003-11-18 2005-06-09 Calsonic Kansei Corp Fin for heat exchanger
JP2007183071A (en) * 2006-01-10 2007-07-19 Tokyo Bureizu Kk High-pressure-resistant compact heat exchanger and manufacturing method of the same
WO2014132602A1 (en) * 2013-02-27 2014-09-04 株式会社デンソー Stacked heat exchanger
JP2016125686A (en) * 2014-12-26 2016-07-11 株式会社マーレ フィルターシステムズ Oil cooler
US20170284417A1 (en) * 2016-04-01 2017-10-05 Safran Aircraft Engines Output director vane for an aircraft turbine engine, with an improved lubricant cooling function using a heat conduction matrix housed in an inner duct of the vane

Also Published As

Publication number Publication date
JPWO2021002474A1 (en) 2021-01-07
CN113950605A (en) 2022-01-18
DE112020003195T5 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
EP3415854B1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US8061416B2 (en) Heat exchanger and method for the production thereof
EP1070928B1 (en) Plate type heat exchanger
RU2502932C2 (en) Heat exchanger
US11118848B2 (en) Heat-exchanging plate, and plate heat exchanger using same
US9400142B2 (en) Heat exchanger
EP3306253B1 (en) Heat exchanging plate and heat exchanger
US10352598B2 (en) Heat exchanger, in particular a condenser
US20120031598A1 (en) Plate heat exchanger
JP5872859B2 (en) Heat exchanger
US20140096555A1 (en) Plate evaporative condenser and cooler
WO2016110472A1 (en) Heat exchanger, in particular a condenser or a gas cooler
WO2013190617A1 (en) Heat exchanger
JP2010114174A (en) Core structure for heat sink
EP0415584A2 (en) Stack type evaporator
WO2021002474A1 (en) Heat exchanger
CN106802099B (en) Heat exchanger
JP2602788Y2 (en) Stacked evaporator elements
CN112414178A (en) Plate heat exchanger and heat exchange plate thereof
CN112146484A (en) Plate heat exchanger
WO2024024465A1 (en) Stacked plate heat exchanger
KR100528997B1 (en) Multilayer Heat Exchanger
WO2024024466A1 (en) Plate stacking-type heat exchanger
CN212205760U (en) Plate heat exchanger and heat exchange plate thereof
JP3316492B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529208

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20834870

Country of ref document: EP

Kind code of ref document: A1