WO2021002441A1 - Low pressure casting device, and heater unit for low pressure casting device - Google Patents

Low pressure casting device, and heater unit for low pressure casting device Download PDF

Info

Publication number
WO2021002441A1
WO2021002441A1 PCT/JP2020/026083 JP2020026083W WO2021002441A1 WO 2021002441 A1 WO2021002441 A1 WO 2021002441A1 JP 2020026083 W JP2020026083 W JP 2020026083W WO 2021002441 A1 WO2021002441 A1 WO 2021002441A1
Authority
WO
WIPO (PCT)
Prior art keywords
stalk
sub
space
heating
pressure casting
Prior art date
Application number
PCT/JP2020/026083
Other languages
French (fr)
Japanese (ja)
Inventor
寛美 吉原
征治 倉田
公英 杉山
章浩 竹内
克明 永松
広剛 榑林
進也 下村
泰慶 池谷
光也 村松
丈 青木
隆彦 谷口
Original Assignee
メトロ電気工業株式会社
中部電力株式会社
スズキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メトロ電気工業株式会社, 中部電力株式会社, スズキ株式会社 filed Critical メトロ電気工業株式会社
Publication of WO2021002441A1 publication Critical patent/WO2021002441A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould

Definitions

  • the present invention relates to a low-pressure casting apparatus in which a sub-stalk is arranged between a stalk inserted into a molten metal holding furnace and a mold provided above the stalk, and a heater unit used in the low-pressure casting apparatus.
  • a mold consisting of an upper mold and a lower mold is installed above the molten metal holding furnace for storing molten metal such as aluminum alloy, and the lower end of the tubular stalk is inserted into the molten metal holding furnace.
  • the upper end of the stalk is connected to the lower mold via the sub stalk.
  • the sub-stalk is heated at the time of casting so that the molten metal does not solidify (clogging the sprue) at the sprue portion of the lower die.
  • a heating means of this sub-stalk a technique of using a gas burner or using an electric heater as disclosed in Patent Documents 1 and 2 is known.
  • an electric heater enables uniform heating, stabilizes quality, and prevents deterioration of work efficiency, so it is desirable as a heating means, but it is necessary to protect the sealing terminal and wiring from heat. Occurs.
  • an infrared lamp heater as an electric heater that emits sufficient radiant heat in a high temperature atmosphere, but the life of this infrared lamp heater is significantly shortened when the temperature of the sealing terminal portion exceeds 350 ° C. Since the sub-stalk is heated in a high temperature atmosphere of 500 ° C. or higher, durability cannot be ensured unless measures are taken to keep the sealing terminal portion at 350 ° C. or lower.
  • proper protection cannot be performed unless the handling is taken into consideration.
  • the present invention is for a low-voltage casting apparatus and a low-voltage casting apparatus capable of suppressing a temperature rise of a sealing terminal portion and wiring and ensuring durability even when an infrared lamp heater is used as a substalk heating means.
  • the purpose is to provide a heater unit.
  • the invention according to claim 1 is made of a molten metal holding furnace, a stalk inserted in the molten metal holding furnace, and a stalk disposed above the stalk, from an upper mold and a lower mold.
  • a low-pressure casting apparatus including a mold, a sub-stalk disposed between the stalk and the lower mold, and a heating means for heating the sub-stalk.
  • the heating means is arranged in a heating space formed around the sub-stalk, and is provided at a heating portion having a heating element and at the end of the heating portion, and is sealed to lead a lead wire electrically connected to the heating element. It is an infrared lamp heater consisting of terminals.
  • the heating space is divided into an upper space and a lower space by a metal partition member having a heat insulating layer.
  • the infrared lamp heater is characterized in that the heat generating portion and the sealing terminal portion are bent so that the heat generating portion is arranged in the upper space and the sealing terminal portion is arranged in the lower space.
  • the infrared lamp heater in the configuration of the first aspect, is a rod-shaped body bent in an L shape, the heat generating portion is arranged sideways in the upper space, and the sealing terminal portion is below. It is characterized in that it is arranged downward in the side space.
  • the heat generating portion of the infrared lamp heater is formed by enclosing a thin plate-shaped carbon fiber filament serving as a heating element in a glass tube and sandwiching the carbon fiber filament.
  • the outer surface of the glass tube is coated with an infrared reflective paint or a metal reflecting plate is arranged.
  • the invention according to claim 4 is characterized in that, in the configuration of claim 3, the carbon fiber filament is arranged in the glass tube in a posture in which the irradiation surface on the sub-stalk side faces diagonally upward.
  • the invention according to claim 5 is characterized in that, in any of the configurations of claims 1 to 4, an infrared absorbing material is applied to the outer surface of the sub-stalk.
  • the invention according to claim 6 comprises a lower mold die base that supports the lower mold and allows the sub-stalk to penetrate in any of the configurations of the first to fifth aspects, and a through hole for the sub-stalk in the lower mold die base. Is characterized in that it is formed larger than the outer shape of the sub-stalk and the lower mold is exposed in the upper space.
  • the partition member has a circular shape that surrounds the outside of the sub-stalk, and a plurality of infrared lamp heaters form the partition member along the circular shape. It is characterized by being supported by.
  • the invention according to claim 8 is made of a molten metal holding furnace, a stalk inserted in the molten metal holding furnace, and a stalk arranged above the stalk, from an upper mold and a lower mold.
  • a metal partition member that is arranged in the heating space formed around the sub-stalk and has a heat insulating layer to partition the heating space into an upper space and a lower space. It has an infrared lamp heater including a heat generating portion having a heating element and a sealing terminal portion provided at an end of the heating element and leading out a lead wire electrically connected to the heating element.
  • the infrared lamp heater is characterized in that it is bent between the heat generating portion and the sealing terminal portion, and the heating portion is supported on the upper side of the partition member and the sealing terminal portion is supported on the lower side of the partition member.
  • an infrared lamp heater is used as the heating means of the sub-stalk, and the heat generating portion of the infrared lamp heater is partitioned above the partition member having the heat insulating layer, and the sealing terminal portion is partitioned. Since they are arranged on the lower side of each member, even if an infrared lamp heater is used, the temperature rise of the sealing terminal portion and the wiring can be suppressed and the durability can be ensured. Further, since the wiring is led out to the lower space, the maneuverability is also improved.
  • the infrared lamp heater is formed into an L-shaped bent rod-shaped body, the heating portion is arranged sideways in the upper space, and the sealing terminal portion is on the lower side. Since it is arranged downward in the space, the sealing terminal portion can be reliably retracted into the lower space while the sub-stalk is effectively heated by the heating portion.
  • the heating portion of the infrared lamp heater is assumed to have the carbon fiber filament enclosed in a glass tube, and on the opposite side of the sub-radiation sandwiching the carbon fiber filament, Since the reflective paint is applied to the outer surface of the glass tube or the reflector is arranged, infrared rays that are easily absorbed by the sub-stalk can be effectively emitted. In addition, since the reflective paint and the reflector do not oxidize even at high temperatures, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected.
  • the carbon fiber filament is arranged in a posture in which the irradiation surface on the sub-stalk side faces diagonally upward, the sub has a distance from the infrared lamp heater.
  • the upper and lower molds of the stalk are also irradiated with infrared rays and can be heated uniformly. Therefore, the quality of the cast product is stable.
  • the infrared absorbing material is applied to the outer surface of the sub-stalk, the infrared absorbing rate of the sub-stalk is increased, which leads to an improvement in heating efficiency.
  • the through hole of the sub-stalk in the lower mold die base is formed larger than the outer shape of the sub-stalk to expose the lower mold in the upper space. Therefore, the upper part of the sub-stalk and the lower mold are easily irradiated with infrared rays, and the lower mold can be effectively heated. In addition, since a large upper space can be secured, the layout of the infrared lamp heater is not restricted and the installation can be performed easily.
  • the partition member has a frame shape surrounding the outside of the sub-stalk, and a plurality of infrared lamp heaters are supported by the partition member along the frame shape. , Substoke can be heated uniformly from the entire circumference.
  • FIG. 5 is a cross-sectional view taken along the line CC of FIG. It is explanatory drawing of the modification example using a reflector.
  • FIG. 1 is a cross-sectional view showing an example of a low-pressure casting apparatus.
  • the low-pressure casting apparatus 1 includes a molten metal holding furnace 2, a mold 3 arranged on the upper side of the molten metal holding furnace 2, and a stalk 4 and a sub stalk 5 connecting the molten metal holding furnace 2 and the mold 3.
  • the molten metal holding furnace 2 holds the molten metal in which a metal for casting such as an aluminum alloy is melted at a predetermined temperature (for example, 700 ° C.) by a heating means (not shown).
  • the upper opening is closed by the lid body 6, and a gas such as air can be supplied from the pressurizing port 7 at a predetermined pressure.
  • the mold 3 has a lower mold 8 and an upper mold 9, and the lower mold 8 is horizontally supported above the lid 6 by a lower mold die base 10 installed above the molten metal holding furnace 2. Will be done.
  • the upper mold 9 forms a cavity 11 with the lower mold 8, and can be brought into contact with and separated from the lower mold 8 by a drive mechanism (not shown).
  • the stalk 4 is a cylinder that is vertically supported by the lid 6 in the center of the molten metal holding furnace 2, and the lower end is inserted into the molten metal, while the upper end penetrates the lid 6 and opens upward.
  • the sub-stalk 5 has a cylindrical portion 12 whose lower end is coupled to the upper end of the stalk 4, and an expanding portion 13 which expands in a rectangular shape in a plan view from the upper portion of the cylindrical portion 12.
  • the expansion portion 13 has a connection port 15 on the upper surface, which is connected to a plurality of sprues 14 formed in the lower mold 8, and penetrates through a through hole 16 formed in the lower mold die base 10. It is bound to type 8.
  • the through hole 16 is formed larger in the front-rear and left-right directions than the expansion portion 13, and exposes the lower surface of the lower mold 8 around the expansion portion 13.
  • a heating space 17 for accommodating the sub-stalk 5 is formed between the lid 6 and the lower mold die base 10, and a heater unit 20 for heating the sub-stalk 5 is arranged in the heating space 17. Has been done.
  • the heater unit 20 is made of metal (for example, made of stainless steel) through which the expansion portion 13 of the sub-stalk 5 penetrates, and has a plan-view square frame-shaped partition plate 21 and an upper surface of the partition plate 21. It is equipped with a plurality of rod-shaped infrared lamp heaters 22, 22 ... To be installed.
  • the partition plate 21 here, the width of one side 21A, 21A parallel to each other is larger than the width of the other side 21B, 21B, and the partition plate 21 has a rectangular shape in a plan view.
  • the partition plate 21 is arranged below the upper plate 23 and the lower plate 24 having a square frame shape in a plan view, the heat insulating board 25 arranged between the upper plate 23 and the lower plate 24, and the lower plate 24. It has a support base 26. As shown in FIG. 4, folded pieces 27, 27 ... Are formed on each side of the outer edge and the inner edge of the upper plate 23, and upward on each side of the outer edge of the lower plate 24. The folded pieces 28, 28 ... Are formed.
  • the support base 26 has a square tubular shape having an opening area slightly larger than the inner opening surrounded by the inner edge of the lower plate 24, and the upper end thereof is joined to the lower surface of the lower plate 24.
  • the outer shape of the partition plate 21 is one size smaller than the through hole 16 of the lower mold die base 10. Therefore, as shown in FIG. 1, the partition plate 21 is below the through hole 16 of the lower mold die base 10 when the lower end of the support base 26 is installed on the upper surface of the lid 6 in a state where the sub-stalk 5 penetrates.
  • the heating space 17 is divided into an upper space 17A above the upper plate 23 and a lower space 17B below the lower plate 24.
  • the infrared lamp heater 22 includes a pair of carbon heaters 31 and 31 in an elongated cylindrical transparent glass outer tube 30 in which both ends in the longitudinal direction are closed. ..
  • the outer pipe 30 has a horizontal straight line portion 32 that is supported laterally along the sides 21A and 21B of the partition plate 21, a bent portion 33 that curves downward from the horizontal straight line portion 32, and a bent portion 33 that curves downward from the bent portion 33. It is L-shaped with an extending lower straight line portion 34, and a sealing terminal portion 35 is provided at the lower end of the lower straight line portion 34.
  • the carbon heater 31 is formed by forming thin plate-shaped carbon fiber filaments 37 in which slits are alternately cut at both side edges in the longitudinal direction in an elongated cylindrical transparent glass inner tube 36 having a diameter smaller than that of the outer tube 30. It is sealed with an inert gas. Inner sealing terminal portions 39 and 39 from which lead wires 38 and 38 electrically connected to the carbon fiber filament 37 are drawn out are provided at both ends of the inner pipe 36, and the horizontal straight portion 32 of the outer pipe 30 is provided. On the closed end side, the lead wires 38, 38 are electrically connected to each other, and the carbon fiber filaments 37, 37 are connected in series. On the opposite end side, the lead wires 38 and 38 are drawn out to the sealing terminal portion 35 through the bent portion 33 and the downward straight portion 34.
  • the carbon heaters 31 and 31 are housed in parallel in the horizontal straight portion 32 of the outer pipe 30, but here, as shown in FIGS. 6 and 7, the upper plates 23 are formed on the respective sides 21A and 21B of the partition plate 21.
  • the carbon fiber filaments 37, 37 are fixed in the horizontal straight line portion 32 so as to be in an obliquely upward posture toward the center side (sub-stalk 5 side) of the partition plate 21 at an angle of 45 °.
  • the outer carbon heater 31 is located on the upper side of the inner carbon heater 31, and the upper and lower positions are positioned in the horizontal straight portion 32 so that the inner and outer carbon fiber filaments 37 and 37 are linear in the cross section. It is shifted and fixed.
  • a reflective surface 40 coated with an infrared reflective paint is formed on the outer surface of the horizontal straight portion 32 in the region of the outer half of the carbon fiber filaments 37 and 37. There is.
  • the infrared lamp heater 22 formed in this way has two fixed covers 41 fixed to the corners of the upper plate 23 on the partition plate 21, two on the wide side 21A inside and outside, and one on the narrow side 21B. , 41 ... Supported by. That is, by inserting the outer pipe 30 across the insertion holes 42, 42 formed on the facing surfaces of the fixed cover 41, each horizontal straight portion 32 becomes the upper plate 23 on the upper plate 23. Supported in parallel. However, in the two infrared lamp heaters 22 and 22 on the side 21A, the outer infrared lamp heater 22 is located on the upper side of the inner infrared lamp heater 22 as in the carbon fiber filaments 37 and 37. The positions of the insertion holes 42 and 42 are shifted up and down.
  • each infrared lamp heater 22 penetrates the through holes 43, 43, ... Provided in the partition plate 21 and projects below the lower plate 24 on the outside of the support base 26 to form a sealing terminal portion. 35 is located below the lower plate 24.
  • the infrared lamp heaters 22 provided on the sides 21A and 21B of the partition plate 21 surround the sub-stalk 5 from the outside in the upper space 17A, and the carbon heaters 31
  • the irradiation surfaces 37a of the carbon fiber filaments 37 and 37 are oriented toward the inner expansion portion 13 side, respectively.
  • a paint containing an infrared absorbing material is applied to the outer surface of the Substoke 5 here.
  • each infrared lamp heater 22 is located below the lower mold 8 exposed by the through hole 16 provided in the lower mold die base 10.
  • the sealing terminal portions 35 of each infrared lamp heater 22 are arranged outside the support base 26, respectively.
  • the lead wires 38 and 38 of the carbon heaters 31 and 31 are each covered with a heat-resistant tube, led out from the sealing terminal portion 35, pass outside the support base 26, and pass through the support base 26 as shown in FIG. It is pulled out to the outside via a guide cylinder 44 fixed to the outer surface of the above and connected to a power supply unit (not shown).
  • the low-pressure casting apparatus 1 configured as described above, at the time of casting, the lower mold 8 and the upper mold 9 are preheated and molded by a mold heater or the like, and then the molten metal holding furnace 2 is inserted from the pressurizing port 7. The molten metal is filled into the cavity 11 from the sprue 14 of the lower mold 8 via the stalk 4 and the sub stalk 5.
  • the infrared lamp heaters 22 are energized to heat the carbon fiber filaments 37 of the carbon heaters 31 at 1200 to 1400 ° C.
  • the sub-stalk 5 is heated from substantially the entire circumference by the radiant heat from the irradiation surface 37a of the carbon fiber filaments 37 arranged on the sides 21A and 21B of the partition plate 21, and the molten metal in the sub-stalk 5 and the sprue 14 is heated. Is prevented from solidifying.
  • the expansion portion 13 and the lower surface of the lower mold 8 are exposed in the upper space 17A by the through hole 16 of the lower mold die base 10, the expansion portion 13 is heated evenly to the upper end.
  • the molten metal in the sprue 14 is also effectively heated.
  • the unsolidified molten metal returns to the inside of the molten metal holding furnace 2 via the stalk 4.
  • the molten metal in the sub-stalk 5 and the sprue 14 is not solidified by the heating of the infrared lamp heater 22, the molten metal returns to the molten metal holding furnace 2 via the stalk 4.
  • the sub-stalk 5 is heated to a high temperature (about 500 ° C.) in the upper space 17A, the lower space 17B is partitioned by the partition plate 21 having the heat insulating board 25, so that the lower space 17B The temperature rise is suppressed.
  • the heat-resistant temperature of molybdenum used for the sealing terminal portion 35 is 350 ° C., and if it exceeds this, the life is significantly shortened. However, since the temperature in the lower space 17B is 350 ° C. or less, the sealing terminal portion 35 Deterioration due to heat is prevented.
  • the heating means of the sub-stalk 5 is arranged in the heating space 17 formed around the sub-stalk 5 and has the carbon fiber filament 37 (heating body). Infrared light consisting of a horizontal straight line portion 32 (heating portion) and a sealing terminal portion 35 provided at the end of the horizontal straight line portion 32 and leading out a lead wire 38 (wiring) electrically connected to the carbon fiber filament 37.
  • the lamp heater 22 is used, and the heating space 17 is divided into an upper space 17A and a lower space 17B by a metal partition plate 21 (partition member) having a heat insulating board 25 (heat insulating layer), and the infrared lamp heater 22 is a horizontal straight line.
  • the horizontal straight line portion 32 is arranged in the upper space 17A and the sealing terminal portion 35 is arranged in the lower space 17B by bending between the portion 32 and the sealing terminal portion 35.
  • the infrared lamp heater 22 is used as the heating means of the sub-stalk 5, the temperature rise of the sealing terminal portion 35 and the lead wire 38 can be suppressed and the durability can be ensured. Further, since the lead wire 38 is led out to the lower space 17B, the maneuverability is also good. Further, due to the radiation effect of infrared rays, the sub-stalk 5 can be heated without heating the entire atmosphere of the heating space 17. Further, by adopting the infrared lamp heater 22, temperature control can be automated, and the man-hours for ignition and thermal power adjustment can be reduced as in the case of a gas burner, leading to improvement in workability and avoiding a temperature drop due to misfire. In addition, since it is not necessary to constantly energize the infrared lamp heater 22, energy consumption can be saved.
  • the infrared lamp heater 22 is arranged as an L-shaped bent rod-shaped body, the horizontal straight line portion 32 is arranged sideways in the upper space 17A, and the sealing terminal portion 35 is arranged downward in the lower space 17B. Therefore, the sealing terminal portion 35 can be reliably retracted into the lower space 17B while the sub-stalk 5 is effectively heated by the horizontal straight portion 32. Further, the horizontal straight portion 32 of the infrared lamp heater 22 is the opposite of the sub-stalk 5 sandwiching the carbon fiber filament 37, assuming that the thin plate-shaped carbon fiber filament 37 serving as a heating element is enclosed in the outer tube 30 (glass tube).
  • the reflective surface 40 in which the infrared reflective paint is applied is formed on the outer surface of the outer tube 30, infrared rays that are easily absorbed by the sub-stalk 5 can be effectively emitted. Furthermore, since the reflective paint does not oxidize even at high temperatures, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected. Since the carbon fiber filament 37 is arranged in the outer tube 30 in a posture in which the irradiation surface 37a on the sub-stalk 5 side faces diagonally upward, the upper or lower part of the sub-stalk 5 having a distance from the infrared lamp heater 22 is provided. The mold 8 is also irradiated with infrared rays and can be heated uniformly. Therefore, the quality of the cast product is stable.
  • the outer surface of the sub-stalk 5 is coated with an infrared absorbing material, the infrared absorbing rate of the sub-stalk 5 is increased, which leads to an improvement in heating efficiency.
  • the through hole of the sub-stalk 5 in the lower mold die base 10 is formed larger than the outer shape of the sub-stalk 5 to expose the lower mold 8 in the upper space 17A, the upper portion of the sub-stalk 5 and the sub-stalk 5 are exposed.
  • the lower mold 8 is easily irradiated with infrared rays, and the lower mold 8 can be effectively heated.
  • the upper space 17A can be secured widely, the layout of the infrared lamp heater 22 is not restricted and the installation can be easily performed.
  • the partition plate 21 has a frame shape surrounding the outside of the sub-stalk 5 and a plurality of infrared lamp heaters 22 are supported by the partition plate 21 along the frame shape, the sub-stalk 5 is uniformly distributed from substantially the entire circumference. It can be heated.
  • an infrared lamp heater having a sealing terminal portion at one end of the heat generating portion is used, but an infrared lamp heater having sealing terminal portions at both ends of the heat generating portion can also be used.
  • the sealing terminals at both ends project into the lower space in a U-shape with both ends bent instead of an L-shape.
  • the support structure of the infrared lamp heater is not limited to the above form, and a support plate or the like fixed on the partition plate may be used.
  • the infrared lamp heater has a form in which a pair of carbon heaters are housed, but it may be formed by only one carbon heater. In this case, the inner tube is omitted and one carbon fiber filament is enclosed.
  • One infrared lamp heater may be arranged on each side.
  • the shape of the carbon fiber filament is not limited to the above-mentioned form, and a carbon fiber filament having no slit may be used.
  • As the heating element not only a carbon heating element but also a tungsten heating element can be adopted.
  • the tilting posture of the heating element with respect to the sub-stalk is not limited to 45 °, but can be appropriately changed in the range of about 30 to 60 °. However, if the required amount of heat is obtained, the posture may be horizontal or vertical instead of the tilted posture, or may be combined with the tilted posture.
  • a reflection surface is formed on the outer tube, but instead, as shown in FIG. 8, a metal reflection having a semicircular or arcuate cross section inside the outer tube 30.
  • a plate 45 may be provided.
  • infrared rays can be effectively emitted.
  • the reflector 45 does not oxidize even at a high temperature, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected.
  • the reflective surface and the reflector may be omitted, and the infrared absorbing paint of Substoke may also be omitted.
  • the partition member also has a quadrangular partition plate in a plan view, but may have another shape such as a triangle, a polygon, or a circle in a plan view as long as it has a shape surrounding the outer circumference of the sub-stalk.
  • the partition member is not limited to the frame shape, and may be a partition member having a U-shape or a C-shape in a plan view, or a plurality of these partition members may be arranged around the sub-stalk. In this case, the number and arrangement of the infrared lamp heaters may be changed according to the form of the partition member.
  • the heat insulating layer of the partition member is not limited to the heat insulating board of the above-mentioned form, and can be formed by laminating a plurality of heat insulating sheets or filling with heat-resistant glass long fibers.
  • the heating space is divided into upper and lower parts by a horizontal partition plate located below the through hole to make the lower space semi-closed, but depending on the shape of the sub-stalk or the partition member, the partition member is penetrated.
  • the lower space may be closed by fitting it into the hole or by providing a wall body surrounding the lower space on the outer periphery of the partition member.
  • carbon heater 32 ... horizontal straight part, 33 ... bent part, 35 ... sealing terminal part, 36 ... inner tube, 37 ... carbon fiber filament, 37a ... Irradiated surface, 38 ... lead wire, 40 ... reflective surface, 45 ... reflective plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

[Problem] To ensure durability by suppressing a rise in the temperature of a sealing terminal portion or wiring, even if an infrared lamp heater is used as a sub-stalk heating means. [Solution] In this low pressure casting device, a sub-stalk heating means consists of an infrared lamp heater 22 comprising a rod-shaped transverse straight portion 32 which is disposed in a heating space 17 formed around the sub-stalk and which includes carbon fiber filaments 37, and a sealing terminal portion 35 which is provided at the end of the transverse straight portion 32, and through which lead wires 38 that are electrically connected to the carbon fiber filaments 37 are led out, wherein: the heating space 17 is divided into an upper space 17A and a lower space 17B by means of a metal dividing plate 21 that includes a thermally insulating board 25; the infrared lamp heater 22 bends between the transverse straight portion 32 and the sealing terminal portion 35; and the transverse straight portion 32 and the sealing terminal portion 35 are respectively disposed in the upper space 17A and the lower space 17B.

Description

低圧鋳造装置及び低圧鋳造装置用ヒータユニットHeater unit for low-pressure casting equipment and low-pressure casting equipment
 本発明は、溶湯保持炉に挿入されるストークと、その上方に設けた金型との間にサブストークを配置した低圧鋳造装置及び、低圧鋳造装置に用いられるヒータユニットに関する。 The present invention relates to a low-pressure casting apparatus in which a sub-stalk is arranged between a stalk inserted into a molten metal holding furnace and a mold provided above the stalk, and a heater unit used in the low-pressure casting apparatus.
 低圧鋳造装置は、アルミニウム合金等の溶湯を貯留する溶湯保持炉の上方に、上金型と下金型とからなる金型を設置して、溶湯保持炉に筒状のストークの下端を挿入する一方、ストークの上端を、サブストークを介して下金型に接続している。ここでは所定温度に加熱された溶湯保持炉内に加圧されると、溶湯がストーク及びサブストークを介して金型のキャビティ内に充填されて凝固することで、所定の鋳造製品が得られる。
 このような低圧鋳造装置では、下金型の湯口部分での溶湯の固化(湯口詰まり)が発生しないように、鋳造時にサブストークを加熱することが行われている。このサブストークの加熱手段として、ガスバーナを利用したり、特許文献1,2に開示されるように電気ヒータを利用したりする技術が知られている。
In the low-pressure casting equipment, a mold consisting of an upper mold and a lower mold is installed above the molten metal holding furnace for storing molten metal such as aluminum alloy, and the lower end of the tubular stalk is inserted into the molten metal holding furnace. On the other hand, the upper end of the stalk is connected to the lower mold via the sub stalk. Here, when the molten metal holding furnace heated to a predetermined temperature is pressurized, the molten metal is filled in the cavity of the mold via stalk and sub-stalk and solidifies to obtain a predetermined cast product.
In such a low-pressure casting apparatus, the sub-stalk is heated at the time of casting so that the molten metal does not solidify (clogging the sprue) at the sprue portion of the lower die. As a heating means of this sub-stalk, a technique of using a gas burner or using an electric heater as disclosed in Patent Documents 1 and 2 is known.
実公平8-4204号公報Jikken 8-4204 Gazette 特許第3212208号公報Japanese Patent No. 3212208
 ガスバーナの場合、サブストークに直接火炎が当たるため、加熱が不均一となりやすく、鋳造製品の品質安定が難しくなる上、サブストークの歪みによる溶湯漏れが発生するおそれもある。
 また、着火や火力調整における工数が多くなり、火力調整は作業者の技量に左右されるため、失火による温度低下のおそれがあり、作業効率の低下を招く。
 さらに、狭い場所で使用するため、空気比を高くしないと燃焼が維持できず、常時燃焼させることでエネルギー使用量も多くなる。加えて対流熱によりサブストークだけでなく雰囲気全体も加熱されるため、加熱効率が悪くなる。
In the case of a gas burner, since the flame directly hits the sub-stalk, heating tends to be uneven, it becomes difficult to stabilize the quality of the cast product, and there is a possibility that molten metal leakage may occur due to the distortion of the sub-stalk.
In addition, the number of man-hours required for ignition and thermal power adjustment increases, and the thermal power adjustment depends on the skill of the operator, so that there is a risk of temperature decrease due to misfire, which leads to a decrease in work efficiency.
Furthermore, since it is used in a narrow space, combustion cannot be maintained unless the air ratio is increased, and the amount of energy used increases due to constant combustion. In addition, the convective heat heats not only the sub-stalk but also the entire atmosphere, resulting in poor heating efficiency.
 一方、電気ヒータを用いると、均一な加熱が可能となると共に、品質の安定や作業効率の低下防止が可能となるため、加熱手段として望ましいが、封止端子部や配線を熱から保護する必要が生じる。特に、高温雰囲気で十分な輻射熱を放出する電気ヒータとして赤外線ランプヒータを採用することが考えられるが、この赤外線ランプヒータは、封止端子部の温度が350℃を越えると寿命が著しく低下する。サブストークの加熱は500℃以上の高温雰囲気で実施するため、封止端子部を350℃以下に保持する対策を行わないと耐久性が確保できない。また、配線も熱から保護するためには取り回しも考慮しないと適切な保護が行えなくなる。 On the other hand, using an electric heater enables uniform heating, stabilizes quality, and prevents deterioration of work efficiency, so it is desirable as a heating means, but it is necessary to protect the sealing terminal and wiring from heat. Occurs. In particular, it is conceivable to adopt an infrared lamp heater as an electric heater that emits sufficient radiant heat in a high temperature atmosphere, but the life of this infrared lamp heater is significantly shortened when the temperature of the sealing terminal portion exceeds 350 ° C. Since the sub-stalk is heated in a high temperature atmosphere of 500 ° C. or higher, durability cannot be ensured unless measures are taken to keep the sealing terminal portion at 350 ° C. or lower. In addition, in order to protect the wiring from heat, proper protection cannot be performed unless the handling is taken into consideration.
 そこで、本発明は、サブストークの加熱手段として赤外線ランプヒータを使用しても、封止端子部や配線の温度上昇を抑制して耐久性を確保することができる低圧鋳造装置及び低圧鋳造装置用ヒータユニットを提供することを目的としたものである。 Therefore, the present invention is for a low-voltage casting apparatus and a low-voltage casting apparatus capable of suppressing a temperature rise of a sealing terminal portion and wiring and ensuring durability even when an infrared lamp heater is used as a substalk heating means. The purpose is to provide a heater unit.
 上記目的を達成するために、請求項1に記載の発明は、溶湯保持炉と、溶湯保持炉内に挿入されるストークと、ストークの上方に配設され、上金型と下金型とからなる金型と、ストークと下金型との間に配設されるサブストークと、サブストークを加熱する加熱手段と、を含む低圧鋳造装置であって、
 加熱手段は、サブストークの周囲に形成した加熱空間に配置され、発熱体を有する発熱部と、発熱部の端部に設けられ、発熱体へ電気的に接続されるリード線を導出する封止端子部とからなる赤外線ランプヒータであり、
 加熱空間は、断熱層を有する金属製の仕切部材によって上側空間と下側空間とに仕切られ、
 赤外線ランプヒータは、発熱部と封止端子部との間で折曲されて、発熱部が上側空間に、封止端子部が下側空間にそれぞれ配置されていることを特徴とする。
 請求項2に記載の発明は、請求項1の構成において、赤外線ランプヒータは、L字状に折曲された棒状体で、発熱部が上側空間で横向きに配置され、封止端子部が下側空間で下向きに配置されていることを特徴とする。
 請求項3に記載の発明は、請求項1又は2の構成において、赤外線ランプヒータの発熱部は、発熱体となる薄板状の炭素繊維フィラメントをガラス管に封入してなり、炭素繊維フィラメントを挟んだサブストークの反対側では、ガラス管の外面に赤外線の反射塗料が塗布されている、若しくは金属製の反射板が配置されていることを特徴とする。
 請求項4に記載の発明は、請求項3の構成において、炭素繊維フィラメントは、サブストーク側の照射面が斜め上向きとなる姿勢でガラス管内に配置されていることを特徴とする。
 請求項5に記載の発明は、請求項1乃至4の何れかの構成において、サブストークの外面には、赤外線吸収材料が塗布されていることを特徴とする。
 請求項6に記載の発明は、請求項1乃至5の何れかの構成において、下金型を支持してサブストークが貫通する下金型ダイベースを備え、下金型ダイベースにおけるサブストークの貫通孔は、サブストークの外形よりも大きく形成されて、下金型を上側空間内に露出させていることを特徴とする。
 請求項7に記載の発明は、請求項1乃至6の何れかの構成において、仕切部材は、サブストークの外側を囲む周回形状を有し、複数の赤外線ランプヒータが周回形状に沿って仕切部材に支持されていることを特徴とする。
 上記目的を達成するために、請求項8に記載の発明は、溶湯保持炉と、溶湯保持炉内に挿入されるストークと、ストークの上方に配設され、上金型と下金型とからなる金型と、ストークと下金型との間に配設されるサブストークと、を含む低圧鋳造装置に設けられ、サブストークを加熱するためのヒータユニットであって、
 サブストークの周囲に形成した加熱空間に配置され、断熱層を有して加熱空間を上側空間と下側空間とに仕切る金属製の仕切部材と、
 発熱体を有する発熱部と、発熱部の端部に設けられ、発熱体へ電気的に接続されるリード線を導出する封止端子部とからなる赤外線ランプヒータと、を有し、
 赤外線ランプヒータは、発熱部と封止端子部との間で折曲されて、発熱部が仕切部材の上側で、封止端子部が仕切部材の下側でそれぞれ支持されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is made of a molten metal holding furnace, a stalk inserted in the molten metal holding furnace, and a stalk disposed above the stalk, from an upper mold and a lower mold. A low-pressure casting apparatus including a mold, a sub-stalk disposed between the stalk and the lower mold, and a heating means for heating the sub-stalk.
The heating means is arranged in a heating space formed around the sub-stalk, and is provided at a heating portion having a heating element and at the end of the heating portion, and is sealed to lead a lead wire electrically connected to the heating element. It is an infrared lamp heater consisting of terminals.
The heating space is divided into an upper space and a lower space by a metal partition member having a heat insulating layer.
The infrared lamp heater is characterized in that the heat generating portion and the sealing terminal portion are bent so that the heat generating portion is arranged in the upper space and the sealing terminal portion is arranged in the lower space.
According to the second aspect of the present invention, in the configuration of the first aspect, the infrared lamp heater is a rod-shaped body bent in an L shape, the heat generating portion is arranged sideways in the upper space, and the sealing terminal portion is below. It is characterized in that it is arranged downward in the side space.
According to the third aspect of the present invention, in the configuration of the first or second aspect, the heat generating portion of the infrared lamp heater is formed by enclosing a thin plate-shaped carbon fiber filament serving as a heating element in a glass tube and sandwiching the carbon fiber filament. However, on the opposite side of the sub-stalk, the outer surface of the glass tube is coated with an infrared reflective paint or a metal reflecting plate is arranged.
The invention according to claim 4 is characterized in that, in the configuration of claim 3, the carbon fiber filament is arranged in the glass tube in a posture in which the irradiation surface on the sub-stalk side faces diagonally upward.
The invention according to claim 5 is characterized in that, in any of the configurations of claims 1 to 4, an infrared absorbing material is applied to the outer surface of the sub-stalk.
The invention according to claim 6 comprises a lower mold die base that supports the lower mold and allows the sub-stalk to penetrate in any of the configurations of the first to fifth aspects, and a through hole for the sub-stalk in the lower mold die base. Is characterized in that it is formed larger than the outer shape of the sub-stalk and the lower mold is exposed in the upper space.
According to the invention of claim 7, in any of the configurations of claims 1 to 6, the partition member has a circular shape that surrounds the outside of the sub-stalk, and a plurality of infrared lamp heaters form the partition member along the circular shape. It is characterized by being supported by.
In order to achieve the above object, the invention according to claim 8 is made of a molten metal holding furnace, a stalk inserted in the molten metal holding furnace, and a stalk arranged above the stalk, from an upper mold and a lower mold. A heater unit for heating a sub-stalk, which is provided in a low-pressure casting apparatus including a mold and a sub-stalk arranged between the stalk and a lower mold.
A metal partition member that is arranged in the heating space formed around the sub-stalk and has a heat insulating layer to partition the heating space into an upper space and a lower space.
It has an infrared lamp heater including a heat generating portion having a heating element and a sealing terminal portion provided at an end of the heating element and leading out a lead wire electrically connected to the heating element.
The infrared lamp heater is characterized in that it is bent between the heat generating portion and the sealing terminal portion, and the heating portion is supported on the upper side of the partition member and the sealing terminal portion is supported on the lower side of the partition member. To do.
 請求項1及び8に記載の発明によれば、サブストークの加熱手段として赤外線ランプヒータを用いると共に、赤外線ランプヒータの発熱部を、断熱層を有する仕切部材の上側に、封止端子部を仕切部材の下側にそれぞれ配置しているので、赤外線ランプヒータを使用しても、封止端子部や配線の温度上昇を抑制して耐久性を確保することができる。また、配線は下側空間に導出されるので、取り回し性も良好となる。
 請求項2に記載の発明によれば、上記効果に加えて、赤外線ランプヒータをL字状に折曲した棒状体として、加熱部を上側空間で横向きに配置し、封止端子部を下側空間で下向きに配置しているので、加熱部でサブストークを効果的に加熱しつつ、封止端子部を下側空間内へ確実に退避させることができる。
 請求項3に記載の発明によれば、上記効果に加えて、赤外線ランプヒータの加熱部を、炭素繊維フィラメントをガラス管に封入したものとして、炭素繊維フィラメントを挟んだサブストークの反対側では、ガラス管の外面に反射塗料を塗布、若しくは反射板を配置しているので、サブストークが吸収しやすい赤外線を効果的に放射できる。また、反射塗料や反射板は高温下でも酸化しないため赤外線の漏れを防止でき、加熱効率の向上が期待できる。
 請求項4に記載の発明によれば、上記効果に加えて、炭素繊維フィラメントを、サブストーク側の照射面が斜め上向きとなる姿勢で配置しているので、赤外線ランプヒータとの距離があるサブストークの上部や下金型にも赤外線が照射されて均一に加熱できる。よって、鋳造製品の品質が安定する。
 請求項5に記載の発明によれば、上記効果に加えて、サブストークの外面には、赤外線吸収材料が塗布されているので、サブストークの赤外線吸収率が高まって加熱効率の向上に繋がる。
 請求項6に記載の発明によれば、上記効果に加えて、下金型ダイベースにおけるサブストークの貫通孔を、サブストークの外形よりも大きく形成して、下金型を上側空間内に露出させているので、サブストークの上部及び下金型に赤外線が照射されやすくなり、下金型の加熱が効果的に行える。また、上側空間を広く確保できるため、赤外線ランプヒータのレイアウトに制約を受けにくくなり、設置も容易に行える。
 請求項7に記載の発明によれば、上記効果に加えて、仕切部材を、サブストークの外側を囲む枠形状とし、複数の赤外線ランプヒータを枠形状に沿って仕切部材に支持させているので、サブストークを全周から均一に加熱可能となる。
According to the inventions of claims 1 and 8, an infrared lamp heater is used as the heating means of the sub-stalk, and the heat generating portion of the infrared lamp heater is partitioned above the partition member having the heat insulating layer, and the sealing terminal portion is partitioned. Since they are arranged on the lower side of each member, even if an infrared lamp heater is used, the temperature rise of the sealing terminal portion and the wiring can be suppressed and the durability can be ensured. Further, since the wiring is led out to the lower space, the maneuverability is also improved.
According to the second aspect of the present invention, in addition to the above effects, the infrared lamp heater is formed into an L-shaped bent rod-shaped body, the heating portion is arranged sideways in the upper space, and the sealing terminal portion is on the lower side. Since it is arranged downward in the space, the sealing terminal portion can be reliably retracted into the lower space while the sub-stalk is effectively heated by the heating portion.
According to the invention of claim 3, in addition to the above effect, the heating portion of the infrared lamp heater is assumed to have the carbon fiber filament enclosed in a glass tube, and on the opposite side of the sub-radiation sandwiching the carbon fiber filament, Since the reflective paint is applied to the outer surface of the glass tube or the reflector is arranged, infrared rays that are easily absorbed by the sub-stalk can be effectively emitted. In addition, since the reflective paint and the reflector do not oxidize even at high temperatures, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected.
According to the invention of claim 4, in addition to the above effect, since the carbon fiber filament is arranged in a posture in which the irradiation surface on the sub-stalk side faces diagonally upward, the sub has a distance from the infrared lamp heater. The upper and lower molds of the stalk are also irradiated with infrared rays and can be heated uniformly. Therefore, the quality of the cast product is stable.
According to the fifth aspect of the present invention, in addition to the above effects, since the infrared absorbing material is applied to the outer surface of the sub-stalk, the infrared absorbing rate of the sub-stalk is increased, which leads to an improvement in heating efficiency.
According to the invention of claim 6, in addition to the above effect, the through hole of the sub-stalk in the lower mold die base is formed larger than the outer shape of the sub-stalk to expose the lower mold in the upper space. Therefore, the upper part of the sub-stalk and the lower mold are easily irradiated with infrared rays, and the lower mold can be effectively heated. In addition, since a large upper space can be secured, the layout of the infrared lamp heater is not restricted and the installation can be performed easily.
According to the invention of claim 7, in addition to the above effect, the partition member has a frame shape surrounding the outside of the sub-stalk, and a plurality of infrared lamp heaters are supported by the partition member along the frame shape. , Substoke can be heated uniformly from the entire circumference.
低圧鋳造装置の説明図である。It is explanatory drawing of the low pressure casting apparatus. ヒータユニットの斜視図(赤外線ランプヒータの内部は省略)である。It is a perspective view of a heater unit (the inside of an infrared lamp heater is omitted). ヒータユニットの平面図(赤外線ランプヒータの内部は省略)である。It is a top view of a heater unit (the inside of an infrared lamp heater is omitted). (A)は図3のA-A線断面図、(B)はB-B線断面図である。(A) is a sectional view taken along line AA of FIG. 3, and (B) is a sectional view taken along line BB. ヒータユニットの平面図である。It is a top view of the heater unit. ヒータユニットの側面図である。It is a side view of a heater unit. 図5のC-C線断面図である。FIG. 5 is a cross-sectional view taken along the line CC of FIG. 反射板を用いた変更例の説明図である。It is explanatory drawing of the modification example using a reflector.
 以下、本発明の実施の形態を図面に基づいて説明する。
[低圧鋳造装置の全体説明]
 図1は、低圧鋳造装置の一例を示す断面図である。この低圧鋳造装置1は、溶湯保持炉2と、溶湯保持炉2の上側に配設される金型3と、溶湯保持炉2と金型3とを繋ぐストーク4及びサブストーク5とを含んでなる。
 溶湯保持炉2は、アルミニウム合金等の鋳造用の金属を溶解した溶湯を、図示しない加熱手段により所定温度(例えば700℃)で保持する。上部の開口は蓋体6によって閉塞されて、加圧口7から空気等の気体が所定圧力で供給可能となっている。
 金型3は、下金型8と上金型9とを有し、下金型8は、溶湯保持炉2の上部に設置された下金型ダイベース10によって蓋体6の上方で水平に支持される。上金型9は、下金型8との間でキャビティ11を形成し、図示しない駆動機構によって下金型8に対して接離可能となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Overview of low-pressure casting equipment]
FIG. 1 is a cross-sectional view showing an example of a low-pressure casting apparatus. The low-pressure casting apparatus 1 includes a molten metal holding furnace 2, a mold 3 arranged on the upper side of the molten metal holding furnace 2, and a stalk 4 and a sub stalk 5 connecting the molten metal holding furnace 2 and the mold 3. Become.
The molten metal holding furnace 2 holds the molten metal in which a metal for casting such as an aluminum alloy is melted at a predetermined temperature (for example, 700 ° C.) by a heating means (not shown). The upper opening is closed by the lid body 6, and a gas such as air can be supplied from the pressurizing port 7 at a predetermined pressure.
The mold 3 has a lower mold 8 and an upper mold 9, and the lower mold 8 is horizontally supported above the lid 6 by a lower mold die base 10 installed above the molten metal holding furnace 2. Will be done. The upper mold 9 forms a cavity 11 with the lower mold 8, and can be brought into contact with and separated from the lower mold 8 by a drive mechanism (not shown).
 ストーク4は、溶湯保持炉2内の中央で蓋体6によって上下方向に支持される筒体で、下端は溶湯内に挿入される一方、上端は蓋体6を貫通して上方に開口している。
 サブストーク5は、下端がストーク4の上端に結合される円筒部12と、その円筒部12の上部から平面視四角形状に拡開する拡開部13とを有する。拡開部13は、下金型8に形成された複数の湯口14にそれぞれ接続される接続口15を上面に有し、下金型ダイベース10に形成された貫通孔16を貫通して下金型8に結合されている。この貫通孔16は、拡開部13よりも前後左右に大きく形成されて、拡開部13の周囲に下金型8の下面を露出させている。
 そして、蓋体6と下金型ダイベース10との間には、サブストーク5を収容する加熱空間17が形成されて、この加熱空間17内に、サブストーク5を加熱するヒータユニット20が配設されている。
The stalk 4 is a cylinder that is vertically supported by the lid 6 in the center of the molten metal holding furnace 2, and the lower end is inserted into the molten metal, while the upper end penetrates the lid 6 and opens upward. There is.
The sub-stalk 5 has a cylindrical portion 12 whose lower end is coupled to the upper end of the stalk 4, and an expanding portion 13 which expands in a rectangular shape in a plan view from the upper portion of the cylindrical portion 12. The expansion portion 13 has a connection port 15 on the upper surface, which is connected to a plurality of sprues 14 formed in the lower mold 8, and penetrates through a through hole 16 formed in the lower mold die base 10. It is bound to type 8. The through hole 16 is formed larger in the front-rear and left-right directions than the expansion portion 13, and exposes the lower surface of the lower mold 8 around the expansion portion 13.
A heating space 17 for accommodating the sub-stalk 5 is formed between the lid 6 and the lower mold die base 10, and a heater unit 20 for heating the sub-stalk 5 is arranged in the heating space 17. Has been done.
[ヒータユニットの説明]
 ヒータユニット20は、図2,3に示すように、サブストーク5の拡開部13が貫通する金属製(例えばステンレス製)で平面視四角枠形状の仕切板21と、仕切板21の上面に設置される複数の棒状の赤外線ランプヒータ22,22・・とを備えている。ここでの仕切板21は、互いに平行な一方の辺21A,21Aの幅の方が、他方の辺21B,21Bの幅よりも大きくなって、平面視では長方形状を呈している。
 まず、仕切板21は、平面視四角枠形状の上板23及び下板24と、上板23と下板24との間に配置される断熱ボード25と、下板24の下側に配置される支持台26とを有している。上板23の外縁及び内縁の各辺には、図4にも示すように、下方へ向けて折り返し片27,27・・が形成され、下板24の外縁の各辺には、上方へ向けて折り返し片28,28・・が形成されている。ネジあるいは溶接による両板23,24の組み付け状態では、外縁の折り返し片27,28同士が重なり、内縁の折り返し片27,27・・が下板24の内縁にそれぞれ当接することで、上板23と下板24との間に、断熱ボード25が収容される平面視四角枠状の空間が形成される。断熱ボード25は当該空間内の全体に亘って収容されている。
[Description of heater unit]
As shown in FIGS. 2 and 3, the heater unit 20 is made of metal (for example, made of stainless steel) through which the expansion portion 13 of the sub-stalk 5 penetrates, and has a plan-view square frame-shaped partition plate 21 and an upper surface of the partition plate 21. It is equipped with a plurality of rod-shaped infrared lamp heaters 22, 22 ... To be installed. In the partition plate 21 here, the width of one side 21A, 21A parallel to each other is larger than the width of the other side 21B, 21B, and the partition plate 21 has a rectangular shape in a plan view.
First, the partition plate 21 is arranged below the upper plate 23 and the lower plate 24 having a square frame shape in a plan view, the heat insulating board 25 arranged between the upper plate 23 and the lower plate 24, and the lower plate 24. It has a support base 26. As shown in FIG. 4, folded pieces 27, 27 ... Are formed on each side of the outer edge and the inner edge of the upper plate 23, and upward on each side of the outer edge of the lower plate 24. The folded pieces 28, 28 ... Are formed. In the assembled state of both plates 23 and 24 by screws or welding, the folded pieces 27 and 28 on the outer edge overlap each other, and the folded pieces 27 and 27 on the inner edge come into contact with the inner edge of the lower plate 24, respectively, so that the upper plate 23 A square frame-shaped space in a plan view in which the heat insulating board 25 is housed is formed between the lower plate 24 and the lower plate 24. The heat insulating board 25 is housed throughout the space.
 支持台26は、下板24の内縁に囲まれる内側開口よりもやや大きい開口面積を有する角筒状で、上端が下板24の下面に接合される。
 この仕切板21の外形は、下金型ダイベース10の貫通孔16よりも一回り小さい形状となっている。よって、仕切板21は、図1に示すように、サブストーク5が貫通する状態で支持台26の下端を蓋体6の上面に設置した状態では、下金型ダイベース10の貫通孔16の下側に位置して、加熱空間17を、上板23より上側の上側空間17Aと、下板24より下側の下側空間17Bとに仕切るようになっている。
The support base 26 has a square tubular shape having an opening area slightly larger than the inner opening surrounded by the inner edge of the lower plate 24, and the upper end thereof is joined to the lower surface of the lower plate 24.
The outer shape of the partition plate 21 is one size smaller than the through hole 16 of the lower mold die base 10. Therefore, as shown in FIG. 1, the partition plate 21 is below the through hole 16 of the lower mold die base 10 when the lower end of the support base 26 is installed on the upper surface of the lid 6 in a state where the sub-stalk 5 penetrates. Located on the side, the heating space 17 is divided into an upper space 17A above the upper plate 23 and a lower space 17B below the lower plate 24.
 そして、赤外線ランプヒータ22は、図5,6に示すように、長手方向の両端を閉塞した細長円筒状の透明ガラス製の外管30内に、一対のカーボンヒータ31,31を収容してなる。
 外管30は、仕切板21の各辺21A,21Bに沿って横向きに支持される横直線部32と、横直線部32から下向きにカーブする折曲部33と、折曲部33から下向きに延びる下直線部34とを有するL字状で、下直線部34の下端に、封止端子部35が設けられている。
Then, as shown in FIGS. 5 and 6, the infrared lamp heater 22 includes a pair of carbon heaters 31 and 31 in an elongated cylindrical transparent glass outer tube 30 in which both ends in the longitudinal direction are closed. ..
The outer pipe 30 has a horizontal straight line portion 32 that is supported laterally along the sides 21A and 21B of the partition plate 21, a bent portion 33 that curves downward from the horizontal straight line portion 32, and a bent portion 33 that curves downward from the bent portion 33. It is L-shaped with an extending lower straight line portion 34, and a sealing terminal portion 35 is provided at the lower end of the lower straight line portion 34.
 カーボンヒータ31は、外管30よりも小径となる細長円筒状の透明ガラス製の内管36内に、長手方向の両側縁にスリットが交互に切込み形成された薄板状の炭素繊維フィラメント37を、不活性ガスと共に封入してなる。内管36の両端には、炭素繊維フィラメント37へ電気的に接続されたリード線38,38がそれぞれ引き出される内封止端子部39,39が設けられて、外管30の横直線部32の閉塞端側では、リード線38,38同士が電気的に接続されて炭素繊維フィラメント37,37が直列接続されている。反対端側では、リード線38,38が折曲部33と下直線部34を通って封止端子部35へ引き出されている。 The carbon heater 31 is formed by forming thin plate-shaped carbon fiber filaments 37 in which slits are alternately cut at both side edges in the longitudinal direction in an elongated cylindrical transparent glass inner tube 36 having a diameter smaller than that of the outer tube 30. It is sealed with an inert gas. Inner sealing terminal portions 39 and 39 from which lead wires 38 and 38 electrically connected to the carbon fiber filament 37 are drawn out are provided at both ends of the inner pipe 36, and the horizontal straight portion 32 of the outer pipe 30 is provided. On the closed end side, the lead wires 38, 38 are electrically connected to each other, and the carbon fiber filaments 37, 37 are connected in series. On the opposite end side, the lead wires 38 and 38 are drawn out to the sealing terminal portion 35 through the bent portion 33 and the downward straight portion 34.
 このカーボンヒータ31,31は、外管30の横直線部32内へ平行に収容されるが、ここでは図6,7に示すように、仕切板21の各辺21A,21Bにおいて、上板23に対して炭素繊維フィラメント37,37が45°の角度で仕切板21の中心側(サブストーク5側)へ向く斜め上向き姿勢となるように横直線部32内で固定されている。また、内側のカーボンヒータ31よりも外側のカーボンヒータ31の方が上側に位置して内外の炭素繊維フィラメント37,37が横断面で一直線状となるように横直線部32内で上下の位置をずらせて固定されている。さらに、横直線部32の外面における炭素繊維フィラメント37,37の外側となる半周分の領域には、図2,3にも示すように、赤外線反射塗料が塗布された反射面40が形成されている。 The carbon heaters 31 and 31 are housed in parallel in the horizontal straight portion 32 of the outer pipe 30, but here, as shown in FIGS. 6 and 7, the upper plates 23 are formed on the respective sides 21A and 21B of the partition plate 21. The carbon fiber filaments 37, 37 are fixed in the horizontal straight line portion 32 so as to be in an obliquely upward posture toward the center side (sub-stalk 5 side) of the partition plate 21 at an angle of 45 °. Further, the outer carbon heater 31 is located on the upper side of the inner carbon heater 31, and the upper and lower positions are positioned in the horizontal straight portion 32 so that the inner and outer carbon fiber filaments 37 and 37 are linear in the cross section. It is shifted and fixed. Further, as shown in FIGS. 2 and 3, a reflective surface 40 coated with an infrared reflective paint is formed on the outer surface of the horizontal straight portion 32 in the region of the outer half of the carbon fiber filaments 37 and 37. There is.
 こうして形成される赤外線ランプヒータ22は、仕切板21上で、幅広の辺21Aでは内外に2本、幅狭の辺21Bでは1本が,上板23のコーナー部にそれぞれ固定された固定カバー41,41・・により支持される。すなわち、固定カバー41の互いの対向面に形成された差込孔42,42間に跨がって外管30を差し込むことで、各横直線部32は、上板23上で上板23と平行に支持される。但し、辺21Aでの2本の赤外線ランプヒータ22,22は、炭素繊維フィラメント37,37と同様に、内側の赤外線ランプヒータ22よりも外側の赤外線ランプヒータ22の方が上側に位置するように差込孔42,42の位置を上下にずらせている。
 そして、各赤外線ランプヒータ22の下直線部34は、仕切板21に設けた透孔43,43・・を貫通し、支持台26の外側で下板24の下方へ突出して、封止端子部35を下板24の下方に位置させている。
The infrared lamp heater 22 formed in this way has two fixed covers 41 fixed to the corners of the upper plate 23 on the partition plate 21, two on the wide side 21A inside and outside, and one on the narrow side 21B. , 41 ... Supported by. That is, by inserting the outer pipe 30 across the insertion holes 42, 42 formed on the facing surfaces of the fixed cover 41, each horizontal straight portion 32 becomes the upper plate 23 on the upper plate 23. Supported in parallel. However, in the two infrared lamp heaters 22 and 22 on the side 21A, the outer infrared lamp heater 22 is located on the upper side of the inner infrared lamp heater 22 as in the carbon fiber filaments 37 and 37. The positions of the insertion holes 42 and 42 are shifted up and down.
Then, the lower straight portion 34 of each infrared lamp heater 22 penetrates the through holes 43, 43, ... Provided in the partition plate 21 and projects below the lower plate 24 on the outside of the support base 26 to form a sealing terminal portion. 35 is located below the lower plate 24.
 このヒータユニット20を設置した加熱空間17内では、仕切板21の各辺21A,21Bにそれぞれ設けた赤外線ランプヒータ22は、上側空間17A内でサブストーク5を外側から囲んで各カーボンヒータ31の炭素繊維フィラメント37,37の照射面37aをそれぞれ内側の拡開部13側へ向けた姿勢となる。ここでのサブストーク5の外面には、赤外線吸収材料を含有させた塗料が塗布されている。また、上側空間17A内では、下金型ダイベース10に設けた貫通孔16により露出する下金型8の下方に各赤外線ランプヒータ22が位置している。
 一方、下側空間17B内には、各赤外線ランプヒータ22の封止端子部35がそれぞれ支持台26の外側に配置されている。カーボンヒータ31,31のリード線38,38は、耐熱性チューブにそれぞれ被覆されて封止端子部35から導出された後、支持台26の外側を通り、図6に示すように、支持台26の外面に固定されたガイド筒44を介して外部へ引き出されて電源部(図示せず)に接続される。
In the heating space 17 in which the heater unit 20 is installed, the infrared lamp heaters 22 provided on the sides 21A and 21B of the partition plate 21 surround the sub-stalk 5 from the outside in the upper space 17A, and the carbon heaters 31 The irradiation surfaces 37a of the carbon fiber filaments 37 and 37 are oriented toward the inner expansion portion 13 side, respectively. A paint containing an infrared absorbing material is applied to the outer surface of the Substoke 5 here. Further, in the upper space 17A, each infrared lamp heater 22 is located below the lower mold 8 exposed by the through hole 16 provided in the lower mold die base 10.
On the other hand, in the lower space 17B, the sealing terminal portions 35 of each infrared lamp heater 22 are arranged outside the support base 26, respectively. The lead wires 38 and 38 of the carbon heaters 31 and 31 are each covered with a heat-resistant tube, led out from the sealing terminal portion 35, pass outside the support base 26, and pass through the support base 26 as shown in FIG. It is pulled out to the outside via a guide cylinder 44 fixed to the outer surface of the above and connected to a power supply unit (not shown).
[低圧鋳造装置の動作説明]
 以上の如く構成された低圧鋳造装置1においては、鋳造時には、金型加熱器等で下金型8と上金型9とを予熱して型締めした後、加圧口7から溶湯保持炉2への加圧を行い、溶湯をストーク4及びサブストーク5を介して下金型8の湯口14からキャビティ11内へ充填する。
 これと同時あるいは所定時間経過後に、各赤外線ランプヒータ22へ通電して各カーボンヒータ31の炭素繊維フィラメント37を1200~1400℃で赤熱させる。よって、仕切板21の各辺21A,21Bに配置された各炭素繊維フィラメント37の照射面37aからの輻射熱により、サブストーク5は略全周から加熱され、サブストーク5内及び湯口14内の溶湯が凝固することが防止される。このとき、下金型ダイベース10の貫通孔16によって拡開部13の全周及び下金型8の下面は上側空間17A内に露出しているので、拡開部13は上端まで万遍なく加熱され、湯口14内の溶湯も効果的に加熱される。
[Operation description of low-pressure casting equipment]
In the low-pressure casting apparatus 1 configured as described above, at the time of casting, the lower mold 8 and the upper mold 9 are preheated and molded by a mold heater or the like, and then the molten metal holding furnace 2 is inserted from the pressurizing port 7. The molten metal is filled into the cavity 11 from the sprue 14 of the lower mold 8 via the stalk 4 and the sub stalk 5.
At the same time or after a lapse of a predetermined time, the infrared lamp heaters 22 are energized to heat the carbon fiber filaments 37 of the carbon heaters 31 at 1200 to 1400 ° C. Therefore, the sub-stalk 5 is heated from substantially the entire circumference by the radiant heat from the irradiation surface 37a of the carbon fiber filaments 37 arranged on the sides 21A and 21B of the partition plate 21, and the molten metal in the sub-stalk 5 and the sprue 14 is heated. Is prevented from solidifying. At this time, since the entire circumference of the expansion portion 13 and the lower surface of the lower mold 8 are exposed in the upper space 17A by the through hole 16 of the lower mold die base 10, the expansion portion 13 is heated evenly to the upper end. The molten metal in the sprue 14 is also effectively heated.
 キャビティ11内で溶湯が凝固した後、溶湯保持炉2への加圧を解除すれば、凝固しなかった溶湯がストーク4を介して溶湯保持炉2内へ戻る。このときサブストーク5及び湯口14内の溶湯も赤外線ランプヒータ22の加熱によって凝固していないため、ストーク4を介して溶湯保持炉2内へ戻ることになる。
 こうしてサブストーク5を加熱して上側空間17A内が高温(約500℃)となっても、下側空間17Bは、断熱ボード25を有する仕切板21によって仕切られているので、下側空間17Bの温度上昇は抑えられる。封止端子部35に用いられるモリブデンの耐熱温度は350℃で、これを越えると寿命が著しく低下するが、ここでは下側空間17B内の温度は350℃以下となるため、封止端子部35の熱による劣化が防止される。
If the pressure applied to the molten metal holding furnace 2 is released after the molten metal has solidified in the cavity 11, the unsolidified molten metal returns to the inside of the molten metal holding furnace 2 via the stalk 4. At this time, since the molten metal in the sub-stalk 5 and the sprue 14 is not solidified by the heating of the infrared lamp heater 22, the molten metal returns to the molten metal holding furnace 2 via the stalk 4.
Even if the sub-stalk 5 is heated to a high temperature (about 500 ° C.) in the upper space 17A, the lower space 17B is partitioned by the partition plate 21 having the heat insulating board 25, so that the lower space 17B The temperature rise is suppressed. The heat-resistant temperature of molybdenum used for the sealing terminal portion 35 is 350 ° C., and if it exceeds this, the life is significantly shortened. However, since the temperature in the lower space 17B is 350 ° C. or less, the sealing terminal portion 35 Deterioration due to heat is prevented.
[低圧鋳造装置及びヒータユニットの発明に係る効果]
 このように、上記形態の低圧鋳造装置1及びヒータユニット20では、サブストーク5の加熱手段を、サブストーク5の周囲に形成した加熱空間17に配置され、炭素繊維フィラメント37(発熱体)を有する横直線部32(発熱部)と、横直線部32の端部に設けられ、炭素繊維フィラメント37へ電気的に接続されるリード線38(配線)を導出する封止端子部35とからなる赤外線ランプヒータ22とし、加熱空間17を、断熱ボード25(断熱層)を有する金属製の仕切板21(仕切部材)によって上側空間17Aと下側空間17Bとに仕切り、赤外線ランプヒータ22を、横直線部32と封止端子部35との間で折曲して、横直線部32を上側空間17Aに、封止端子部35を下側空間17Bにそれぞれ配置している。
[Effects of Invention of Low Pressure Casting Equipment and Heater Unit]
As described above, in the low-pressure casting apparatus 1 and the heater unit 20 of the above-described embodiment, the heating means of the sub-stalk 5 is arranged in the heating space 17 formed around the sub-stalk 5 and has the carbon fiber filament 37 (heating body). Infrared light consisting of a horizontal straight line portion 32 (heating portion) and a sealing terminal portion 35 provided at the end of the horizontal straight line portion 32 and leading out a lead wire 38 (wiring) electrically connected to the carbon fiber filament 37. The lamp heater 22 is used, and the heating space 17 is divided into an upper space 17A and a lower space 17B by a metal partition plate 21 (partition member) having a heat insulating board 25 (heat insulating layer), and the infrared lamp heater 22 is a horizontal straight line. The horizontal straight line portion 32 is arranged in the upper space 17A and the sealing terminal portion 35 is arranged in the lower space 17B by bending between the portion 32 and the sealing terminal portion 35.
 これにより、サブストーク5の加熱手段として赤外線ランプヒータ22を使用しても、封止端子部35やリード線38の温度上昇を抑制して耐久性を確保することができる。また、リード線38は下側空間17Bに導出されるので、取り回し性も良好となる。
 さらに、赤外線の輻射効果により、加熱空間17の雰囲気全体を加熱することなくサブストーク5を加熱できる。また、赤外線ランプヒータ22の採用により温度管理の自動化が図られ、ガスバーナのように着火や火力調整における作業工数が削減されて作業性の向上に繋がると共に、失火による温度低下を回避できる。加えて、赤外線ランプヒータ22を常時通電させる必要がないためエネルギー使用量も節約できる。
As a result, even if the infrared lamp heater 22 is used as the heating means of the sub-stalk 5, the temperature rise of the sealing terminal portion 35 and the lead wire 38 can be suppressed and the durability can be ensured. Further, since the lead wire 38 is led out to the lower space 17B, the maneuverability is also good.
Further, due to the radiation effect of infrared rays, the sub-stalk 5 can be heated without heating the entire atmosphere of the heating space 17. Further, by adopting the infrared lamp heater 22, temperature control can be automated, and the man-hours for ignition and thermal power adjustment can be reduced as in the case of a gas burner, leading to improvement in workability and avoiding a temperature drop due to misfire. In addition, since it is not necessary to constantly energize the infrared lamp heater 22, energy consumption can be saved.
 特にここでは、赤外線ランプヒータ22を、L字状に折曲された棒状体として、横直線部32を上側空間17Aで横向きに配置し、封止端子部35を下側空間17Bで下向きに配置しているので、横直線部32でサブストーク5を効果的に加熱しつつ、封止端子部35を下側空間17B内へ確実に退避させることができる。
 また、赤外線ランプヒータ22の横直線部32を、発熱体となる薄板状の炭素繊維フィラメント37を外管30(ガラス管)に封入したものとして、炭素繊維フィラメント37を挟んだサブストーク5の反対側では、外管30の外面に赤外線の反射塗料が塗布された反射面40を形成しているので、サブストーク5が吸収しやすい赤外線を効果的に放射できる。さらに、反射塗料は高温下でも酸化しないため赤外線の漏れを防止でき、加熱効率の向上が期待できる。
 そして、炭素繊維フィラメント37を、サブストーク5側の照射面37aが斜め上向きとなる姿勢で外管30内に配置しているので、赤外線ランプヒータ22との距離があるサブストーク5の上部や下金型8にも赤外線が照射されて均一に加熱できる。よって、鋳造製品の品質が安定する。
In particular, here, the infrared lamp heater 22 is arranged as an L-shaped bent rod-shaped body, the horizontal straight line portion 32 is arranged sideways in the upper space 17A, and the sealing terminal portion 35 is arranged downward in the lower space 17B. Therefore, the sealing terminal portion 35 can be reliably retracted into the lower space 17B while the sub-stalk 5 is effectively heated by the horizontal straight portion 32.
Further, the horizontal straight portion 32 of the infrared lamp heater 22 is the opposite of the sub-stalk 5 sandwiching the carbon fiber filament 37, assuming that the thin plate-shaped carbon fiber filament 37 serving as a heating element is enclosed in the outer tube 30 (glass tube). On the side, since the reflective surface 40 in which the infrared reflective paint is applied is formed on the outer surface of the outer tube 30, infrared rays that are easily absorbed by the sub-stalk 5 can be effectively emitted. Furthermore, since the reflective paint does not oxidize even at high temperatures, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected.
Since the carbon fiber filament 37 is arranged in the outer tube 30 in a posture in which the irradiation surface 37a on the sub-stalk 5 side faces diagonally upward, the upper or lower part of the sub-stalk 5 having a distance from the infrared lamp heater 22 is provided. The mold 8 is also irradiated with infrared rays and can be heated uniformly. Therefore, the quality of the cast product is stable.
 一方、サブストーク5の外面には、赤外線吸収材料が塗布されているので、サブストーク5の赤外線吸収率が高まって加熱効率の向上に繋がる。
 また、下金型ダイベース10におけるサブストーク5の貫通孔を、サブストーク5の外形よりも大きく形成して、下金型8を上側空間17A内に露出させているので、サブストーク5の上部及び下金型8に赤外線が照射されやすくなり、下金型8の加熱が効果的に行える。加えて、上側空間17Aを広く確保できるため、赤外線ランプヒータ22のレイアウトに制約を受けにくくなり、設置も容易に行える。
 さらに、仕切板21を、サブストーク5の外側を囲む枠形状とし、複数の赤外線ランプヒータ22を枠形状に沿って仕切板21に支持させているので、サブストーク5を略全周から均一に加熱可能となる。
On the other hand, since the outer surface of the sub-stalk 5 is coated with an infrared absorbing material, the infrared absorbing rate of the sub-stalk 5 is increased, which leads to an improvement in heating efficiency.
Further, since the through hole of the sub-stalk 5 in the lower mold die base 10 is formed larger than the outer shape of the sub-stalk 5 to expose the lower mold 8 in the upper space 17A, the upper portion of the sub-stalk 5 and the sub-stalk 5 are exposed. The lower mold 8 is easily irradiated with infrared rays, and the lower mold 8 can be effectively heated. In addition, since the upper space 17A can be secured widely, the layout of the infrared lamp heater 22 is not restricted and the installation can be easily performed.
Further, since the partition plate 21 has a frame shape surrounding the outside of the sub-stalk 5 and a plurality of infrared lamp heaters 22 are supported by the partition plate 21 along the frame shape, the sub-stalk 5 is uniformly distributed from substantially the entire circumference. It can be heated.
[変更例の説明]
 上記形態では、発熱部の一端に封止端子部を有する赤外線ランプヒータを用いているが、発熱部の両端に封止端子部を有する赤外線ランプヒータも使用できる。この場合はL字状でなく両端を折曲したコ字状となって両端の封止端子部が下側空間に突出する。赤外線ランプヒータの支持構造も上記形態に限らず、仕切板上に固定した支持板等を用いてもよい。
 赤外線ランプヒータは、一対のカーボンヒータを収容した形態となっているが、1つのカーボンヒータのみで形成してもよい。この場合、内管が省略されて1つの炭素繊維フィラメントが封入される。赤外線ランプヒータを各辺に1本ずつ配置してもよい。
 炭素繊維フィラメントの形状も上記形態に限らず、スリットがないもの等でも差し支えない。発熱体としては炭素製発熱体でなく、タングステン製発熱体も採用可能である。
 サブストークに対する発熱体の傾斜姿勢も、45°に限らず、30~60°程度の範囲で適宜変更できる。但し、必要な発熱量が得られれば傾斜姿勢とせずに水平姿勢や垂直姿勢としてもよいし、傾斜姿勢のものと組み合わせてもよい。
[Explanation of change example]
In the above embodiment, an infrared lamp heater having a sealing terminal portion at one end of the heat generating portion is used, but an infrared lamp heater having sealing terminal portions at both ends of the heat generating portion can also be used. In this case, the sealing terminals at both ends project into the lower space in a U-shape with both ends bent instead of an L-shape. The support structure of the infrared lamp heater is not limited to the above form, and a support plate or the like fixed on the partition plate may be used.
The infrared lamp heater has a form in which a pair of carbon heaters are housed, but it may be formed by only one carbon heater. In this case, the inner tube is omitted and one carbon fiber filament is enclosed. One infrared lamp heater may be arranged on each side.
The shape of the carbon fiber filament is not limited to the above-mentioned form, and a carbon fiber filament having no slit may be used. As the heating element, not only a carbon heating element but also a tungsten heating element can be adopted.
The tilting posture of the heating element with respect to the sub-stalk is not limited to 45 °, but can be appropriately changed in the range of about 30 to 60 °. However, if the required amount of heat is obtained, the posture may be horizontal or vertical instead of the tilted posture, or may be combined with the tilted posture.
 一方、上記形態では外管に反射面を形成しているが、これに代えて、図8に示すように、外管30内に、横断面を半円状や円弧状とした金属製の反射板45を設けてもよい。この場合も赤外線を効果的に放射できる。また、反射板45は高温下でも酸化しないため赤外線の漏れを防止でき、加熱効率の向上が期待できる。但し、反射面や反射板は省略してもよいし、サブストークの赤外線吸収塗料も省略できる。
 仕切部材も、上記形態では仕切板を平面視四角形としているが、サブストークの外周を囲む形状であれば、平面視が三角形や多角形、円形等の他の形状としてもよい。逆に枠形状に限らず、平面視がコ字状やC字状の仕切部材としたり、これらの複数の仕切部材をサブストークの周囲に配置したりしてもよい。この場合、仕切部材の形態に合わせて赤外線ランプヒータの数や配置を変更すればよい。
On the other hand, in the above embodiment, a reflection surface is formed on the outer tube, but instead, as shown in FIG. 8, a metal reflection having a semicircular or arcuate cross section inside the outer tube 30. A plate 45 may be provided. In this case as well, infrared rays can be effectively emitted. Further, since the reflector 45 does not oxidize even at a high temperature, it is possible to prevent infrared rays from leaking, and improvement in heating efficiency can be expected. However, the reflective surface and the reflector may be omitted, and the infrared absorbing paint of Substoke may also be omitted.
In the above embodiment, the partition member also has a quadrangular partition plate in a plan view, but may have another shape such as a triangle, a polygon, or a circle in a plan view as long as it has a shape surrounding the outer circumference of the sub-stalk. On the contrary, the partition member is not limited to the frame shape, and may be a partition member having a U-shape or a C-shape in a plan view, or a plurality of these partition members may be arranged around the sub-stalk. In this case, the number and arrangement of the infrared lamp heaters may be changed according to the form of the partition member.
 仕切部材の断熱層も、上記形態の断熱ボードに限らず、複数の断熱シートを積層させたり、耐熱ガラス長繊維を充填したりして形成することは可能である。
 そして、上記形態では、貫通孔の下方に位置する水平な仕切板によって加熱空間を上下に仕切って下側空間を半閉塞状態としているが、サブストークや仕切部材の形状によっては、仕切部材を貫通孔に嵌合させたり、仕切部材の外周に下側空間を囲む壁体を設けたりすることで下側空間を閉塞してもよい。同様に、例えば横断面が倒コ字状や逆U字状となる仕切部材を加熱空間に配置して、仕切部材の内側で閉塞される下側空間に封止端子部を配置しても温度上昇の抑制は可能である。
The heat insulating layer of the partition member is not limited to the heat insulating board of the above-mentioned form, and can be formed by laminating a plurality of heat insulating sheets or filling with heat-resistant glass long fibers.
In the above embodiment, the heating space is divided into upper and lower parts by a horizontal partition plate located below the through hole to make the lower space semi-closed, but depending on the shape of the sub-stalk or the partition member, the partition member is penetrated. The lower space may be closed by fitting it into the hole or by providing a wall body surrounding the lower space on the outer periphery of the partition member. Similarly, for example, even if a partition member having an inverted U-shaped or inverted U-shaped cross section is arranged in the heating space and the sealing terminal portion is arranged in the lower space closed inside the partition member, the temperature is increased. It is possible to suppress the rise.
 1・・低圧鋳造装置、2・・溶湯保持炉、3・・金型、4・・ストーク、5・・サブストーク、6・・蓋体、8・・下金型、9・・上金型、10・・下金型ダイベース、11・・キャビティ、12・・円筒部、13・・拡開部、14・・湯口、16・・貫通孔、17・・加熱空間、17A・・上側空間、17B・・下側空間、20・・ヒータユニット、21・・仕切板、22・・赤外線ランプヒータ、23・・上板、24・・下板、25・・断熱ボード、26・・支持台、30・・外管、31・・カーボンヒータ、32・・横直線部、33・・折曲部、35・・封止端子部、36・・内管、37・・炭素繊維フィラメント、37a・・照射面、38・・リード線、40・・反射面、45・・反射板。 1 ... Low pressure casting equipment, 2 ... Molten holding furnace, 3 ... Mold, 4 ... Stoke, 5 ... Substoke, 6 ... Lid, 8 ... Lower mold, 9 ... Upper mold 10, ・ ・ Lower mold die base, 11 ・ ・ Cavity, 12 ・ ・ Cylindrical part, 13 ・ ・ Expansion part, 14 ・ ・ Gate, 16 ・ ・ Through hole, 17 ・ ・ Heating space, 17A ・ ・ Upper space, 17B ... Lower space, 20 ... Heater unit, 21 ... Partition plate, 22 ... Infrared lamp heater, 23 ... Upper plate, 24 ... Lower plate, 25 ... Insulation board, 26 ... Support stand, 30 ... outer tube, 31 ... carbon heater, 32 ... horizontal straight part, 33 ... bent part, 35 ... sealing terminal part, 36 ... inner tube, 37 ... carbon fiber filament, 37a ... Irradiated surface, 38 ... lead wire, 40 ... reflective surface, 45 ... reflective plate.

Claims (8)

  1.  溶湯保持炉と、
     前記溶湯保持炉内に挿入されるストークと、
     前記ストークの上方に配設され、上金型と下金型とからなる金型と、
     前記ストークと前記下金型との間に配設されるサブストークと、
     前記サブストークを加熱する加熱手段と、を含む低圧鋳造装置であって、
     前記加熱手段は、前記サブストークの周囲に形成した加熱空間に配置され、発熱体を有する発熱部と、前記発熱部の端部に設けられ、前記発熱体へ電気的に接続されるリード線を導出する封止端子部とからなる赤外線ランプヒータであり、
     前記加熱空間は、断熱層を有する金属製の仕切部材によって上側空間と下側空間とに仕切られ、
     前記赤外線ランプヒータは、前記発熱部と前記封止端子部との間で折曲されて、前記発熱部が前記上側空間に、前記封止端子部が前記下側空間にそれぞれ配置されていることを特徴とする低圧鋳造装置。
    With a molten metal holding furnace,
    The stalk inserted in the molten metal holding furnace and
    A mold arranged above the stalk and composed of an upper mold and a lower mold,
    A sub-stalk disposed between the stalk and the lower mold,
    A low-pressure casting apparatus including a heating means for heating the sub-stalk.
    The heating means is arranged in a heating space formed around the sub-stalk, and has a heating element having a heating element and a lead wire provided at an end of the heating element and electrically connected to the heating element. It is an infrared lamp heater consisting of a sealing terminal to be derived.
    The heating space is divided into an upper space and a lower space by a metal partition member having a heat insulating layer.
    The infrared lamp heater is bent between the heat generating portion and the sealing terminal portion, and the heat generating portion is arranged in the upper space and the sealing terminal portion is arranged in the lower space. A low-pressure casting machine characterized by.
  2.  前記赤外線ランプヒータは、L字状に折曲された棒状体で、前記発熱部が前記上側空間で横向きに配置され、前記封止端子部が前記下側空間で下向きに配置されていることを特徴とする請求項1に記載の低圧鋳造装置。 The infrared lamp heater is a rod-shaped body bent in an L shape, and the heat generating portion is arranged sideways in the upper space, and the sealing terminal portion is arranged downward in the lower space. The low-pressure casting apparatus according to claim 1.
  3.  前記赤外線ランプヒータの前記発熱部は、前記発熱体となる薄板状の炭素繊維フィラメントをガラス管に封入してなり、前記炭素繊維フィラメントを挟んだ前記サブストークの反対側では、前記ガラス管の外面に赤外線の反射塗料が塗布されている、若しくは金属製の反射板が配置されていることを特徴とする請求項1又は2に記載の低圧鋳造装置。 The heat generating portion of the infrared lamp heater is formed by enclosing a thin plate-shaped carbon fiber filament serving as a heating element in a glass tube, and on the opposite side of the sub-stalk sandwiching the carbon fiber filament, the outer surface of the glass tube is formed. The low-pressure casting apparatus according to claim 1 or 2, wherein an infrared reflective paint is applied to the surface of the casting medium, or a metal reflecting plate is arranged.
  4.  前記炭素繊維フィラメントは、前記サブストーク側の照射面が斜め上向きとなる姿勢で前記ガラス管内に配置されていることを特徴とする請求項3に記載の低圧鋳造装置。 The low-pressure casting apparatus according to claim 3, wherein the carbon fiber filament is arranged in the glass tube in a posture in which the irradiation surface on the sub-stalk side faces diagonally upward.
  5.  前記サブストークの外面には、赤外線吸収材料が塗布されていることを特徴とする請求項1乃至4の何れかに記載の低圧鋳造装置。 The low-pressure casting apparatus according to any one of claims 1 to 4, wherein an infrared absorbing material is applied to the outer surface of the sub-stalk.
  6.  前記下金型を支持して前記サブストークが貫通する下金型ダイベースを備え、前記下金型ダイベースにおける前記サブストークの貫通孔は、前記サブストークの外形よりも大きく形成されて、前記下金型を前記上側空間内に露出させていることを特徴とする請求項1乃至5の何れかに記載の低圧鋳造装置。 A lower mold die base that supports the lower mold and through which the sub-stalk penetrates is provided, and the through hole of the sub-stalk in the lower mold die base is formed to be larger than the outer shape of the sub-stalk, and the lower mold is formed. The low-pressure casting apparatus according to any one of claims 1 to 5, wherein the mold is exposed in the upper space.
  7.  前記仕切部材は、前記サブストークの外側を囲む周回形状を有し、複数の前記赤外線ランプヒータが前記周回形状に沿って前記仕切部材に支持されていることを特徴とする請求項1乃至6の何れかに記載の低圧鋳造装置。 The partition member has a circular shape surrounding the outside of the sub-stalk, and a plurality of the infrared lamp heaters are supported by the partition member along the circular shape. The low pressure casting apparatus according to any one.
  8.  溶湯保持炉と、前記溶湯保持炉内に挿入されるストークと、前記ストークの上方に配設され、上金型と下金型とからなる金型と、前記ストークと前記下金型との間に配設されるサブストークと、を含む低圧鋳造装置に設けられ、前記サブストークを加熱するためのヒータユニットであって、
     前記サブストークの周囲に形成した加熱空間に配置され、断熱層を有して前記加熱空間を上側空間と下側空間とに仕切る金属製の仕切部材と、
     発熱体を有する発熱部と、前記発熱部の端部に設けられ、前記発熱体へ電気的に接続されるリード線を導出する封止端子部とからなる赤外線ランプヒータと、を有し、
     前記赤外線ランプヒータは、前記発熱部と前記封止端子部との間で折曲されて、前記発熱部が前記仕切部材の上側で、前記封止端子部が前記仕切部材の下側でそれぞれ支持されていることを特徴とする低圧鋳造装置用ヒータユニット。
    Between the molten metal holding furnace, the stalk inserted in the molten metal holding furnace, the mold disposed above the stalk and composed of the upper mold and the lower mold, and the stalk and the lower mold. A heater unit for heating the substalk, which is provided in a low-pressure casting apparatus including the substalk arranged in the above.
    A metal partition member arranged in a heating space formed around the sub-stalk, having a heat insulating layer, and partitioning the heating space into an upper space and a lower space.
    It has an infrared lamp heater including a heat generating portion having a heating element and a sealing terminal portion provided at an end of the heating element and leading out a lead wire electrically connected to the heating element.
    The infrared lamp heater is bent between the heat generating portion and the sealing terminal portion, and the heat generating portion is supported on the upper side of the partition member and the sealing terminal portion is supported on the lower side of the partition member. A heater unit for low-pressure casting equipment, which is characterized by being used.
PCT/JP2020/026083 2019-07-04 2020-07-02 Low pressure casting device, and heater unit for low pressure casting device WO2021002441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-125433 2019-07-04
JP2019125433A JP7313007B2 (en) 2019-07-04 2019-07-04 Low-pressure casting machine and heater unit for low-pressure casting machine

Publications (1)

Publication Number Publication Date
WO2021002441A1 true WO2021002441A1 (en) 2021-01-07

Family

ID=74100338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026083 WO2021002441A1 (en) 2019-07-04 2020-07-02 Low pressure casting device, and heater unit for low pressure casting device

Country Status (2)

Country Link
JP (1) JP7313007B2 (en)
WO (1) WO2021002441A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101350U (en) * 1990-01-31 1991-10-22
JPH0994653A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Low pressure casting apparatus and low pressure casting method
WO2009063626A1 (en) * 2007-11-16 2009-05-22 Panasonic Corporation Heating-element unit, and heating device
JP2011079000A (en) * 2009-10-05 2011-04-21 Sukegawa Electric Co Ltd Casting apparatus
JP2016078112A (en) * 2014-10-22 2016-05-16 メトロ電気工業株式会社 Metal mold heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03101350U (en) * 1990-01-31 1991-10-22
JPH0994653A (en) * 1995-09-29 1997-04-08 Kobe Steel Ltd Low pressure casting apparatus and low pressure casting method
WO2009063626A1 (en) * 2007-11-16 2009-05-22 Panasonic Corporation Heating-element unit, and heating device
JP2011079000A (en) * 2009-10-05 2011-04-21 Sukegawa Electric Co Ltd Casting apparatus
JP2016078112A (en) * 2014-10-22 2016-05-16 メトロ電気工業株式会社 Metal mold heater

Also Published As

Publication number Publication date
JP2021010920A (en) 2021-02-04
JP7313007B2 (en) 2023-07-24

Similar Documents

Publication Publication Date Title
US6784601B2 (en) Discharge lamp including heat releasing device and lamp device
US20190246457A1 (en) Infrared heater
JPS5816591A (en) Method of baking thick film electronic circuit or the like and infrared furnace used therefor
US20220266539A1 (en) Heating apparatus capable of heating a heat-shrinkable tube differentially
WO2014050508A1 (en) Heat-processing device
WO2021002441A1 (en) Low pressure casting device, and heater unit for low pressure casting device
JPS6219651B2 (en)
ES2269565T3 (en) PROCEDURE AND DIPOSITIVE TO WELD ELECTRICAL COMPONENTS TO A PLASTIC SHEET.
US3731051A (en) Articulated radiant heating modules
JP6308655B2 (en) Mold heating apparatus and mold preheating method using mold heating apparatus
JP7491608B2 (en) Heating device
JP2016103408A (en) Infrared ray processing device and infrared heater
JP7377501B1 (en) Metal melting and holding furnace
JP2008235678A (en) Ultraviolet irradiator, ultraviolet irradiation device and film reforming method
JP6415922B2 (en) Reflecting unit and heating device to which the reflecting unit is attached
JP5467523B2 (en) UV irradiator case
JP4439376B2 (en) Lighting device
JP3839149B2 (en) Line-type irradiation device that uniformly irradiates the workpiece
JP7235237B2 (en) Mold heating device
JP7446188B2 (en) heating device
JP7564519B2 (en) Heating device and heating element installation method
JP5597951B2 (en) UV irradiation equipment
JP6442355B2 (en) Infrared heater and infrared processing device
GB2059942A (en) Float glass tank with movable heating elements
JP2024156022A (en) Melting heater and manufacturing method of molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (21.04.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20834678

Country of ref document: EP

Kind code of ref document: A1