WO2021002428A1 - Head-up display device - Google Patents

Head-up display device Download PDF

Info

Publication number
WO2021002428A1
WO2021002428A1 PCT/JP2020/026005 JP2020026005W WO2021002428A1 WO 2021002428 A1 WO2021002428 A1 WO 2021002428A1 JP 2020026005 W JP2020026005 W JP 2020026005W WO 2021002428 A1 WO2021002428 A1 WO 2021002428A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
virtual image
display
display surface
distant
Prior art date
Application number
PCT/JP2020/026005
Other languages
French (fr)
Japanese (ja)
Inventor
誠 秦
俊輔 佐治
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Priority to JP2021529183A priority Critical patent/JPWO2021002428A1/ja
Publication of WO2021002428A1 publication Critical patent/WO2021002428A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present disclosure relates to a head-up display device that is used in a vehicle and superimposes an image on the foreground of the vehicle for visual recognition.
  • Patent Document 1 includes a display that displays a main image facing a occupant of a vehicle, and a projector that displays a sub-image in which one end side is adjacent to the main image and the other end side is located in front of one end side.
  • a head-up display device comprising a screen is disclosed.
  • the outline of the present disclosure relates to providing a head-up display device having a display area along the road surface and a display area having an inclination as if rising from an angle along the road surface, while suppressing costs.
  • the head-up display device of the embodiment described in the present specification is a head-up display device that allows a viewer to visually recognize a virtual image in a virtual image display area along the front-rear direction of the vehicle, and the virtual image display area is a distant virtual image. It is composed of a region and a near virtual image region closer to the distant virtual image region when viewed from the viewer, and the display surface in the display is a display surface distant region corresponding to the distant virtual image region and a display surface near the display surface corresponding to the near virtual image region.
  • the region near the display surface including the region, is arranged at an angle with respect to the optical axis of the image light toward the viewer so that the near virtual image region is arranged along the front-rear direction of the vehicle, and is a region far from the display surface. Is bent with respect to the display surface near region so that the distant virtual image region rises toward the viewer with respect to the near virtual image region (153).
  • FIG. 4A It is a figure which shows the application example to the vehicle of the head-up display device which concerns on some embodiments. It is a figure which shows the structure of the head-up display apparatus which concerns on some embodiments. It is a figure which shows the arrangement of the relay optical system of a comparative example, and a display surface. It is a figure which shows the arrangement of the virtual image display area generated in the comparative example of FIG. 3A. It is a figure which shows the arrangement of a relay optical system and a display surface which concerns on some embodiments. It is a figure which shows the arrangement of the virtual image display area generated in the embodiment of FIG. 4A.
  • FIGS. 1 and 2 provide a description of the configuration of an exemplary vehicle display system and head-up display device. Further, FIGS. 3A and 3B provide a description of a comparative example, and FIGS. 4A to 8 provide a description of the configuration of the present embodiment.
  • the present invention is not limited to the following embodiments (including the contents of the drawings). Of course, changes (including deletion of components) can be made to the following embodiments. Further, in the following description, in order to facilitate understanding of the present invention, description of known technical matters will be omitted as appropriate.
  • the vehicle display system 10 includes a HUD device 20 and a display control device 30 that controls the HUD device 20.
  • the left-right direction when the viewer (driver 4) seated in the driver's seat of the vehicle 1 faces the front of the vehicle 1 is the X-axis (the left direction is the X-axis positive direction), and the top and bottom.
  • the direction is the Y-axis (the upward direction is the Y-axis positive direction), and the front-rear direction is the Z-axis (the front direction is the Z-axis positive direction).
  • the HUD device 20 in the vehicle display system 10 is a head-up display (HUD: Head-Up Display) device provided in the dashboard 5 of the vehicle 1.
  • the HUD device 20 emits the image light 40 toward the front windshield 2 (an example of the projected portion), and the image light 40 reflected by the front windshield 2 creates an eyebox (not shown) in a predetermined area. Generate.
  • the driver 4 can visually recognize the entire image displayed by the HUD device 20.
  • the eye box is defined as an area where the entire image can be seen, but the present invention is not limited to this, and the area where the distortion of the image displayed by the HUD device 20 visually recognized by the viewer falls within a predetermined threshold value.
  • the image (virtual image) is visually recognized in the virtual image display area 100 on the front side (Z-axis positive direction) of the front windshield 2 (an example of the projected portion).
  • the driver 4 can visually recognize the image (virtual image) superimposed on the foreground 300, which is the real space that is visually recognized through the front windshield 2.
  • the vehicle display system 10 (HUD device 20) of the present embodiment forms the virtual image display area 100 along the road surface 310 (an example of the foreground 300).
  • the distance 100Z in the depth direction (Z-axis direction) between the far end 110 and the near end 120 of the imaginary image display area 100 is the imaginary image display area 100. It is shown that the distance between the highest position (far end 110 in FIG. 1) and the lowest position (near end 120 in FIG. 1) in the height direction (Y-axis direction) is 20 times or longer than 100Y, and further. Preferably, it indicates that the distance 100Z in the depth direction (Z-axis direction) is 40 times or longer than the distance 100Y in the height direction (Y-axis direction).
  • the virtual image display area 100 of one embodiment if it is represented by (Z coordinate [meter], Y coordinate [meter]) and the center in the height direction of the eye box is (0, 1.2), the near end 120 is (14.5, 0.0), the far end 110 (highest position) is (53.4, 1.48), and the far end 110 and the near end 120 when the driver 4 sees from the center of the eyebox.
  • the center of is (27.3, 0.15).
  • the distance 100Z in the depth direction (Z-axis direction) is 38.9 [meter]
  • the distance 100Y in the height direction (Y-axis direction) is 1. It becomes 48 [meter]
  • the distance 100Z in the depth direction (Z-axis direction) is 26 times the distance 100Y in the height direction (Y-axis direction).
  • the virtual image display area 100 is a curved surface or a partially curved surface area where the image generated inside the HUD device 20 is imaged as a virtual image, and is also called an image forming surface.
  • the virtual image display area 100 is a position where a virtual image of the display surface (screen 24) described later of the HUD device 20 is formed, that is, the virtual image display area 100 corresponds to the display surface described later of the HUD device 20 and is a virtual image. It can be said that the virtual image visually recognized in the display area 100 corresponds to the image displayed on the display surface described later of the HUD device 20. It is preferable that the virtual image display area 100 itself has low visibility to the extent that it is not actually visible to the driver 4 or is difficult to see.
  • FIG. 2 is a diagram showing the configuration of the HUD device 20 of the present embodiment.
  • the HUD device 20 includes a display 21 having a display surface for displaying an image, and a relay optical system 25.
  • the display 21 of FIG. 2 is composed of a projector 22 (an example of an image generation unit) and a screen 24 (an example of a display surface) that receives projected light from the projector 22 and displays an image (real image). It is a projection type display.
  • the display 21 may be a transmissive display (an example of an image generation unit) that transmits light from a backlight such as an LCD, or a self-luminous display (an example of an image generation unit). ..
  • the display surface is a display surface (an example of a display surface) in a transmissive display and a screen 24 (an example of a display surface) of a projection type display.
  • the display surface is from an angle perpendicular to the optical axis 40p of the image light 40 from the display surface toward the eye box (center of the eye box) via the relay optical system 25 and the projected portion described later. It is tilted so that the virtual image display area 100 can be arranged along the road surface 310.
  • An actuator such as a motor controlled by the display control device 30 may be attached to the display 21 so that the display surface can be moved and / or rotated.
  • the display surface 24 of the present embodiment is non-planar and has a boundary (the display surface bent portion IM5 described later) in which the continuity of the flat surface or the curved surface is lost (bent), whereby the far side of the virtual image display area 100 is obtained.
  • the far virtual image region 151 of the above is raised from the near virtual image region 153 on the side closer to the far virtual image region 151 of the virtual image display region 100. This will be described in detail later.
  • the relay optical system 25 is on the optical path of the light of the image from the display 21 (light from the display 21 toward the eye box) between the display 21 and the front windshield 2 (an example of the projected portion). It is composed of one or more optical members that project the light of the image from the display 21 onto the front windshield 2 outside the HUD device 20.
  • the relay optical system 25 of FIG. 2 includes a first mirror 26 and a second mirror 28.
  • the first mirror 26 has a concave free curved surface shape in which the radius of curvature is substantially constant from one end to the other end.
  • the first mirror 26 has a curved surface shape in which the optical power is substantially the same for each region, that is, the optical power applied to the image light 40 is the same according to the region (optical path) through which the image light 40 passes. is there.
  • the relay optical system 25 adds the first image light 41, the second image light 42, and the third image light 43 (see FIG. 2) from each region of the display surface toward the eyebox.
  • the optical power is about the same.
  • the second mirror 28 is a flat mirror, but is not limited to this, and may be a curved surface having optical power instead of a flat surface.
  • the relay optical system 25 synthesizes a plurality of mirrors having a curved surface shape in which the optical power differs for each region, so that the optical power applied according to the region (optical path) through which the image light 40 passes is substantially the same. As such, the optical power for each region of the plurality of mirrors may be set.
  • the relay optical system 25 includes two mirrors, but the present invention is not limited to this, and one or more refractive optics such as a lens may be added or substituted to these.
  • a member, a diffractive optical member such as a hologram, a reflective optical member, or a combination thereof may be included.
  • the relay optical system 25 of the present embodiment has a function of setting a distance to a position where a virtual image is formed (virtual image display area 100) by the curved surface shape (an example of optical power), and a screen 24 (an example of an optical power). It has a function to generate an enlarged virtual image of the image displayed on the display surface), but in addition to this, it has a function to suppress (correct) the distortion of the virtual image that may occur due to the curved shape of the front windshield 2. You may be doing it.
  • relay optical system 25 may be movable and / or rotatable to which an actuator (not shown) such as a motor controlled by the display control device 30 is attached.
  • the virtual image display area 100 of the present embodiment is formed so as to have an inclination on the distant side along the road surface 310.
  • FIG. 3A is a diagram showing an arrangement of the relay optical system 500 and the display surface 524 of the comparative example.
  • the focal points of the regions 501, 502, and 503 of the relay optical system 500 are indicated by reference numerals 501f, 502f, and 503f in order to make the difference from the present embodiment easy to understand.
  • These focal points 501f, 502f It does not accurately show the distance relationship between the 503f and the relay optical system 500, and the distance relationship between the focal points 501f, 502f, 503f and the display surface 524.
  • the display surface 524 is a flat surface.
  • the display surface 524 of the comparative example does not have the display surface bending portion IM5 described later.
  • the display surface 524 is arranged at an angle ⁇ from the vertical surface 524a with the optical axis 540p of the image light directed from the display surface 524 toward the eyebox. Specifically, it is arranged at an angle ⁇ from the vertical surface 524a of the optical axis 540p of the image light 540 from the display surface 524 toward the eye box.
  • the display surface 524 is farther than the virtual image display neighborhood portion 603 from the region M3 on the display surface 524 corresponding to the virtual image display neighborhood portion 603 (FIG.
  • the cross section of the generated virtual image display area 600 is on the driver 4 side (upper side (Y-axis positive direction)). It becomes convex.
  • FIG. 4A is a diagram showing an arrangement of the relay optical system 25 and the display surface 24 of the present embodiment.
  • the display surface 24 of the present embodiment includes a display surface distant region 241 corresponding to the distant virtual image region 151 and a display surface near region 243 corresponding to the near virtual image region 153, and the display surface near region 243 is the display surface 24.
  • the image light 40 is arranged at an angle ⁇ from the vertical surface 24a with respect to the optical axis 40p of the image light 40 toward the eye box.
  • the display surface 24 displays a virtual image from the display surface proximity portion IM3 of the display surface 24 corresponding to the virtual image display proximity portion 103 included in the near virtual image region 153 of the virtual image display region 100 as compared with the vertical surface 24a. It is arranged so as to gradually move away from the relay optical system 25 toward the display surface bending portion IM5 of the display surface 24 corresponding to the virtual image display bending portion 105 of the region 100. In other words, from the display surface near portion IM3 of the display surface 24 corresponding to the near virtual image region 153 of the virtual image display region 100 toward the display surface bent portion IM5 of the display surface 24 corresponding to the virtual image display bent portion 105 of the virtual image display region 100.
  • the relay optical system 25 is gradually arranged so as to approach the focal point (the distance between the display surface bending portion IM5 and the focal point 255f is made shorter than the distance between the display surface near portion IM3 and the focal point 253f).
  • the display surface 24 of the present embodiment has a display surface bending portion IM5, and is based on an approximate inclination (dotted line in FIG. 4A) of the display surface 24 from the display surface vicinity portion IM3 to the display surface bending portion IM5.
  • the display surface 24 is bent so that the approximate inclination of the display surface 24 from the display surface bending portion IM5 to the display surface distant portion IM1 approaches the relay optical system 25.
  • it is arranged so as to gradually approach the focal point of the relay optical system 25 from the display surface bending portion IM3 toward the display surface bending portion IM5 (the distance between the display surface bending portion IM5 and the focal point 255f is set near the display surface.
  • the distance between the focal point 251f and the focal point 251f is made longer than the distance between the display surface bending portion IM5 and the focal point 255f).
  • the display surface 24 is arranged so as to be tilted from the optical axis 40p of the image light from the display surface 24 toward the eye box so that the virtual image display area 100 is along the road surface 310 (from the vicinity). It is arranged so that the imaging distance gradually increases toward a distance).
  • the first image light 41 projected from the display surface 24 (display surface distant region 241 (display surface distant portion IM1)) onto the first region 251 of the first mirror 26 is provided by the display surface distant region 241 (display surface distant portion IM1). Since it is close to the first region 251 when reflected by the front windshield 2, the imaging distance from the front windshield 2 is short (compared to the case where the display surface is not bent and cannot be brought close to the relay optical system). Become.
  • the display surface 24 of the present embodiment has an approximate inclination of the display surface 24 from the display surface near portion IM3 to the display surface bent portion IM5 in the display surface distant region 241 with the display surface bent portion IM5 as a boundary (FIG. 4A).
  • the far virtual image region 151 (including the far end 110) of the virtual image display region 100 is along the road surface 310. It can be curved so that it rises from the inclination.
  • the fact that the distant virtual image region 151 (including the distant end 110) is curved so as to rise from an inclination along the road surface 310 is a tangent line of the phantom image display region 100 in the distant virtual image region 151 (virtual image display distant portion 101) as shown in FIG. 4B.
  • 5A to 5C are diagrams showing the relationship between the position of the virtual image display area 100 in the depth direction (Z-axis direction) and the tilt angle ⁇ according to the embodiment.
  • the far virtual image region 151 far end 110 only needs to rise from the inclination along the road surface 310 from the central portion 102 near the far virtual image region 151, and as shown in FIG. 5A, the far end 110 from the near end 120
  • the tilt angle ⁇ is not limited to monotonically increasing toward.
  • the rate of increase (change rate) of the tilt angle ⁇ from the virtual image display near portion 103 to the virtual image display bent portion 105 is far from the virtual image display bent portion 105. It may be made smaller than the rate of increase (rate of change) of the tilt angle ⁇ up to the unit 101.
  • the display surface 24 allows the display surface bending portion IM5 and the fifth image light 45 to pass from the distance between the display surface vicinity portion IM3 and the third region 253 of the relay optical system 25 through which the third image light 43 passes.
  • the rate of increase up to the distance between the fifth region 255 of the relay optical system 25 is displayed from the distance between the display surface bending portion IM5 and the fifth region 255 of the relay optical system 25 through which the fifth image light 45 passes. It is made smaller than the rate of increase up to the distance between the far-field IM1 and the first region 251 of the relay optical system 25 through which the first image light 41 passes. As a result, it is possible to suppress the change in the distance between the near virtual image region and the road surface as the distance increases in the depth direction.
  • the rate of change of the tilt angle ⁇ from the near virtual image region 153 to the central portion 102 is gradually increased from a negative value to zero, and the far end from the central portion 102.
  • the rate of increase (rate of change) of the tilt angle ⁇ up to 110 may be larger than zero.
  • the arrangement of the virtual image display area 100 in this case is shown in FIG. That is, the position of the virtual image display region 100 gradually decreases in the vertical direction (Y-axis direction) from the near virtual image region 153 to the central portion 102, the central portion 102 is the lowest position, and the position gradually decreases from the central portion 102 to the far end 110.
  • the inclination ⁇ of the display surface 24 is made larger than that of the above embodiment, and the display is performed from the distance between the display surface vicinity portion IM3 and the third region 253 of the relay optical system 25 through which the third image light 43 passes.
  • the rate of increase up to the distance between the surface bending portion IM5 and the fifth region 255 of the relay optical system 25 through which the fifth image light 45 passes is shown by the relay optical system 25 through which the surface bending portion IM5 and the fifth image light 45 pass.
  • the rate of increase is made smaller than the rate of increase from the distance between the fifth region 255 and the distance between the remote portion IM1 of the display surface and the first region 251 of the relay optical system 25 through which the first image light 41 passes.
  • a part including the lowest position of the virtual image display area 100 is arranged below the road surface 310, and a part including the far end 110 of the virtual image display area 100 is arranged above the road surface.
  • the near end 120 is at the lowest position, and the part from the near end 120 to the far end 110 is arranged under the road surface 310 to the far end 110.
  • the other part may be arranged on the road surface 310.
  • the virtual image display area 100 may have the central portion 102 between the far end 110 and the near end 120 as the lowest position.
  • the discomfort when the virtual image is shifted to the front side with respect to the road surface when viewed from the viewer is greater than the discomfort when the image is shifted to the back side with respect to the road surface. Therefore, even if the angle of the vehicle 1 changes, it is possible to prevent the virtual image display area 100 from being arranged above the road surface 310, and the virtual image display area on the near side becomes the road surface 310 due to the change in the angle of the vehicle 1. Even when it is arranged on the upper side of the above, the distance between the image on the near side and the road surface 310 in the height direction can be suppressed to be small.
  • the display surface 24 is arranged so that the virtual image display bending portion 105 of the virtual image display area 100 is arranged at a distance of 20 meters or more in the front direction of the driver 4 (vehicle 1).
  • the position of the display surface bending portion IM5 may be set. According to this, in the virtual image display area 100, the tilt angle ⁇ of the tangent line of the virtual image display area 100 with respect to the front-rear direction of the vehicle 1 becomes monotonous as the vehicle 1 moves toward the far side from a distance of 20 meters or more in the front direction. It increases and rises from an angle along the road surface 310.
  • the inventor of the present invention has recognized that the sense of distance (sense of distance) for an object 20 meters or more away from the viewer becomes dull.
  • the virtual image display surface on the distant side seen from the viewer can be overlapped with a wide foreground (for example, a road surface) area.
  • the area of the overlapping foreground (for example, the road surface) per unit area of the virtual image display area can be expanded, and the images can be efficiently superimposed and displayed on the wide foreground.
  • the first mirror 26 has a free curved surface shape in which the radius of curvature is substantially constant from one end to the other end, but the present invention is not limited to this, and the curvature may not be substantially constant. ..
  • the display surface bent portion IM5 is provided on the display surface 24 so that the inclination of the virtual image display area 100 on the distant side rises from an angle along the road surface.
  • the first mirror 26 may have a free curved surface shape in which the radius of curvature gradually changes from one end to the other end.
  • the first mirror 26 has a curved surface shape in which the optical power differs for each region, that is, even if the optical power applied to the image light 40 differs depending on the region (optical path) through which the image light 40 passes.
  • the relay optical system 25 adds the first image light 41, the second image light 42, and the third image light 43 (see FIG. 2) from each region of the display surface toward the eyebox. The optical power is different.
  • the second mirror 28 may be a curved surface having optical power instead of a flat surface. That is, the relay optical system 25 is added according to the region (optical path) through which the image light 40 passes by synthesizing a plurality of mirrors (for example, the first mirror 26 and the second mirror 28 of the present embodiment).
  • the optical power may be different.
  • FIG. 8 is a diagram showing the arrangement of the relay optical system 25 and the display surface 24 of the present embodiment.
  • the focal points of each region 251,252,253 of the relay optical system 25 are indicated by reference numerals 251f, 252f, 253f in order to make the difference from the comparative example easy to understand, but the relay optical system 25 or the display It does not accurately show the distance relationship with the surface 24.
  • the relay optical system 25 of FIG. 8 has a different radius of curvature for each region. Specifically, the first optical of the first region (first optical path) 251 of the relay optical system 25 through which the first image light 41 that displays a virtual image in the distant virtual image region 151 of the virtual image display region 100 when viewed from the driver 4 passes.
  • the second region (second region) of the relay optical system 25 through which the second image light 42 that displays a virtual image passes through the virtual image display bending portion 105 that is closer to the distant virtual image region 151 of the virtual image display region 100 when viewed from the driver 4.
  • Optical path Make it smaller than the second optical power of 252. That is, when the main optical power of the relay optical system 25 is caused by the first mirror 26 which is a concave mirror, the first radius of curvature of the first region 251 reflecting the first image light 41 (an example of the first optical power. ) Is made larger than the second radius of curvature (an example of the second optical power) of the second region 252 that reflects the second image light 42.
  • the focal length (1/2 of the radius of curvature) of the focal length 251f of the first region 251 becomes long.
  • the virtual image display area 100 is gradually arranged along the road surface 310 (from the vicinity to the distance). (So that the imaging distance becomes longer), it is arranged.
  • the first image light 41 projected from the display surface 24 onto the first region 251 having a large radius of curvature of the first mirror 26 has a long focal length (distance from the first region 251 to the focal length 251f), and therefore is used on the front windshield 2.
  • the imaging distance from the front windshield 2 becomes shorter (compared to the case where the radius of curvature is not increased).
  • the distant virtual image region 151 (far end 110) of the can be curved so as to rise from an inclination along the road surface 310. Therefore, the display surface 24 is bent so that the distant virtual image region of the virtual image display surface rises from the road surface, and the optical power of the relay optical system 25 is similarly applied to each region so that the distant virtual image region of the virtual image display surface rises from the road surface.
  • the display surface distant portion IM1 corresponding to the distant virtual image region 151 and the display surface near portion IM3 corresponding to the near virtual image region 153 are discontinuously coupled. That is, the display surface 24 is formed so that the display surface far portion IM1 is connected to the display surface near portion IM3 not by the smooth curved surface but by the discontinuous display surface bending portion IM5.
  • Vehicle display system 20 HUD device 21: Display 22: Projector 24: Screen (display surface) 25: Relay optical system 26: First mirror 28: Second mirror 30: Display control device 40: Image light 40p: Optical axis 41: First image light 42: Second image light 43: Third image light 45: Fifth Image light 100: Virtual image display area 101: Virtual image display Far part 102: Central part 103: Virtual image display Near part 105: Virtual image display bent part 110: Far end 120: Near end 151: Far virtual image area 153: Near virtual image area 241: Display Surface distant area 243: Display surface vicinity area 251: First area 252: Second area 253: Third area 255: Fifth area 310: Road surface IM1: Display surface distant part IM3: Display surface near part IM5: Display surface bending part ⁇ : Angle ⁇ : Tilt angle ⁇ 1: First tilt angle ⁇ 2: Second tilt angle

Abstract

The present invention provides a head-up display device having a display region formed along a road surface, and a display region inclined so as to rise from an angle along the road surface while keeping costs low. A display surface 24 includes a display surface distant region 241 corresponding to a distant virtual image region 151, and a display surface nearby region 243 corresponding to a nearby virtual image region 153. The display surface nearby region 243 is disposed to be inclined with respect to an optical axis 40p of image light 40 traveling to a viewer such that the nearby virtual image region 153 is disposed along the longitudinal direction of a vehicle, and the display surface distant region 241 is disposed to be bent with respect to the display surface nearby region 243 such that the distant virtual image region 151 rises to the viewer side with respect to the nearby virtual image region 153.

Description

ヘッドアップディスプレイ装置Head-up display device
 本開示は、車両で使用され、車両の前景に画像を重畳して視認させるヘッドアップディスプレイ装置に関する。 The present disclosure relates to a head-up display device that is used in a vehicle and superimposes an image on the foreground of the vehicle for visual recognition.
 特許文献1には、車両の搭乗者に対向して主画像を表示する表示器と、一端側が主画像に隣接するとともに他端側が一端側よりも手前に位置する副画像を表示する投影器及びスクリーンと、を備えるヘッドアップディスプレイ装置が開示されている。 Patent Document 1 includes a display that displays a main image facing a occupant of a vehicle, and a projector that displays a sub-image in which one end side is adjacent to the main image and the other end side is located in front of one end side. A head-up display device comprising a screen is disclosed.
特開2016-71051号公報Japanese Unexamined Patent Publication No. 2016-71051
 特許文献1のヘッドアップディスプレイ装置では、運転者に対向するような画像を表示するための表示器と、路面に沿うように配置される表示器(投影器とスクリーン)と、の2つの表示器が必要となり、部品費などが上昇してしまうことが想定される。 In the head-up display device of Patent Document 1, there are two displays, a display for displaying an image facing the driver and a display (projector and screen) arranged along the road surface. Is required, and it is expected that parts costs will rise.
 本明細書に開示される特定の実施形態の要約を以下に示す。これらの態様が、これらの特定の実施形態の概要を読者に提供するためだけに提示され、この開示の範囲を限定するものではないことを理解されたい。実際に、本開示は、以下に記載されない種々の態様を包含し得る。 The following is a summary of the specific embodiments disclosed herein. It should be understood that these aspects are presented solely to provide the reader with an overview of these particular embodiments and do not limit the scope of this disclosure. In fact, the present disclosure may include various aspects not described below.
 本開示の概要は、コストを抑えつつ、路面に沿うような表示領域と、路面に沿う角度から起き上がったような傾きの表示領域と、を有するヘッドアップディスプレイ装置を提供することに関する。 The outline of the present disclosure relates to providing a head-up display device having a display area along the road surface and a display area having an inclination as if rising from an angle along the road surface, while suppressing costs.
 したがって、本明細書に記載される実施形態のヘッドアップディスプレイ装置は、車両の前後方向に沿う虚像表示領域で虚像を視認者に視認させるヘッドアップディスプレイ装置であって、虚像表示領域は、遠方虚像領域と、視認者から見て遠方虚像領域より近い近傍虚像領域と、から構成され、表示器における表示面は、遠方虚像領域に対応した表示面遠方領域と、近傍虚像領域に対応した表示面近傍領域と、を含み、表示面近傍領域は、近傍虚像領域が車両の前後方向に沿って配置されるように、視認者に向かう画像光の光軸に対して傾いて配置され、表示面遠方領域は、近傍虚像領域(153)に対し、遠方虚像領域が視認者側に起き上がるように、表示面近傍領域に対して屈曲して配置される。 Therefore, the head-up display device of the embodiment described in the present specification is a head-up display device that allows a viewer to visually recognize a virtual image in a virtual image display area along the front-rear direction of the vehicle, and the virtual image display area is a distant virtual image. It is composed of a region and a near virtual image region closer to the distant virtual image region when viewed from the viewer, and the display surface in the display is a display surface distant region corresponding to the distant virtual image region and a display surface near the display surface corresponding to the near virtual image region. The region near the display surface, including the region, is arranged at an angle with respect to the optical axis of the image light toward the viewer so that the near virtual image region is arranged along the front-rear direction of the vehicle, and is a region far from the display surface. Is bent with respect to the display surface near region so that the distant virtual image region rises toward the viewer with respect to the near virtual image region (153).
いくつかの実施形態に係る、ヘッドアップディスプレイ装置の車両への適用例を示す図である。It is a figure which shows the application example to the vehicle of the head-up display device which concerns on some embodiments. いくつかの実施形態に係る、ヘッドアップディスプレイ装置の構成を示す図である。It is a figure which shows the structure of the head-up display apparatus which concerns on some embodiments. 比較例のリレー光学系と表示面との配置を示す図である。It is a figure which shows the arrangement of the relay optical system of a comparative example, and a display surface. 図3Aの比較例で生成される虚像表示領域の配置を示す図である。It is a figure which shows the arrangement of the virtual image display area generated in the comparative example of FIG. 3A. いくつかの実施形態に係る、リレー光学系と表示面との配置を示す図である。It is a figure which shows the arrangement of a relay optical system and a display surface which concerns on some embodiments. 図4Aの実施形態で生成される虚像表示領域の配置を示す図である。It is a figure which shows the arrangement of the virtual image display area generated in the embodiment of FIG. 4A. いくつかの実施形態に係る、虚像表示領域の奥行き方向(Z軸方向)の位置とチルト角との関係を示す図である。It is a figure which shows the relationship between the position in the depth direction (Z-axis direction) of the virtual image display area, and the tilt angle which concerns on some Embodiments. いくつかの実施形態に係る、虚像表示領域の奥行き方向(Z軸方向)の位置とチルト角との関係を示す図である。It is a figure which shows the relationship between the position in the depth direction (Z-axis direction) of the virtual image display area, and the tilt angle which concerns on some Embodiments. いくつかの実施形態に係る、虚像表示領域の奥行き方向(Z軸方向)の位置とチルト角との関係を示す図である。It is a figure which shows the relationship between the position in the depth direction (Z-axis direction) of the virtual image display area, and the tilt angle which concerns on some Embodiments. いくつかの実施形態に係る、虚像表示領域の配置を示す図である。It is a figure which shows the arrangement of the virtual image display area which concerns on some embodiments. いくつかの実施形態に係る、虚像表示領域の配置を示す図である。It is a figure which shows the arrangement of the virtual image display area which concerns on some embodiments. いくつかの実施形態に係る、虚像表示領域の配置を示す図である。It is a figure which shows the arrangement of the virtual image display area which concerns on some embodiments. いくつかの実施形態に係る、リレー光学系と表示面との配置を示す図である。It is a figure which shows the arrangement of a relay optical system and a display surface which concerns on some embodiments.
 以下、図1及び図2では、例示的な車両用表示システム、及びヘッドアップディスプレイ装置の構成の説明を提供する。また、図3A、図3Bでは、比較例の説明を提供し、図4Aないし図8では、本実施形態の構成の説明を提供する。なお、本発明は以下の実施形態(図面の内容も含む)によって限定されるものではない。下記の実施形態に変更(構成要素の削除も含む)を加えることができるのはもちろんである。また、以下の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略する。 Hereinafter, FIGS. 1 and 2 provide a description of the configuration of an exemplary vehicle display system and head-up display device. Further, FIGS. 3A and 3B provide a description of a comparative example, and FIGS. 4A to 8 provide a description of the configuration of the present embodiment. The present invention is not limited to the following embodiments (including the contents of the drawings). Of course, changes (including deletion of components) can be made to the following embodiments. Further, in the following description, in order to facilitate understanding of the present invention, description of known technical matters will be omitted as appropriate.
 図1を参照する。車両用表示システム10は、HUD装置20と、HUD装置20を制御する表示制御装置30と、で構成される。なお、本実施形態の説明では、車両1の運転席に着座する視認者(運転者4)が車両1の前方を向いた際の左右方向をX軸(左方向がX軸正方向)、上下方向をY軸(上方向がY軸正方向)、前後方向をZ軸(前方向がZ軸正方向)とする。 Refer to FIG. The vehicle display system 10 includes a HUD device 20 and a display control device 30 that controls the HUD device 20. In the description of the present embodiment, the left-right direction when the viewer (driver 4) seated in the driver's seat of the vehicle 1 faces the front of the vehicle 1 is the X-axis (the left direction is the X-axis positive direction), and the top and bottom. The direction is the Y-axis (the upward direction is the Y-axis positive direction), and the front-rear direction is the Z-axis (the front direction is the Z-axis positive direction).
 車両用表示システム10におけるHUD装置20は、車両1のダッシュボード5内に設けられたヘッドアップディスプレイ(HUD:Head-Up Display)装置である。HUD装置20は、画像光40をフロントウインドシールド2(被投影部の一例である)に向けて出射し、フロントウインドシールド2で反射された画像光40により所定領域のアイボックス(不図示)を生成する。運転者4は、アイポイントを前記アイボックスに配置することで、HUD装置20が表示する画像の全体を視認することができる。なお、ここでは、前記アイボックスを画像の全体が見える領域と定義したが、これに限定されるものではなく、視認者が視認するHUD装置20の表示する画像の歪みが所定閾値内に収まる領域など、HUD装置20が表示する画像が所望の状態で視認される領域である。フロントウインドシールド2(被投影部の一例である。)よりも前方側(Z軸正方向)の虚像表示領域100で画像(虚像)を視認させる。これにより、運転者4は、フロントウインドシールド2を介して視認される現実空間である前景300に重なった画像(虚像)を視認できる。 The HUD device 20 in the vehicle display system 10 is a head-up display (HUD: Head-Up Display) device provided in the dashboard 5 of the vehicle 1. The HUD device 20 emits the image light 40 toward the front windshield 2 (an example of the projected portion), and the image light 40 reflected by the front windshield 2 creates an eyebox (not shown) in a predetermined area. Generate. By arranging the eye point in the eye box, the driver 4 can visually recognize the entire image displayed by the HUD device 20. Here, the eye box is defined as an area where the entire image can be seen, but the present invention is not limited to this, and the area where the distortion of the image displayed by the HUD device 20 visually recognized by the viewer falls within a predetermined threshold value. This is an area where the image displayed by the HUD device 20 is visually recognized in a desired state. The image (virtual image) is visually recognized in the virtual image display area 100 on the front side (Z-axis positive direction) of the front windshield 2 (an example of the projected portion). As a result, the driver 4 can visually recognize the image (virtual image) superimposed on the foreground 300, which is the real space that is visually recognized through the front windshield 2.
 本実施形態の車両用表示システム10(HUD装置20)は、虚像表示領域100を路面310(前景300の一例。)に沿うように形成する。具体的には、路面310に沿うような虚像表示領域100は、虚像表示領域100の遠方端110と近傍端120との間の奥行方向(Z軸方向)の距離100Zが、虚像表示領域100の最高位置(図1では遠方端110)と最低位置(図1では近傍端120)との間の高さ方向(Y軸方向)の距離100Yよりも20倍、又はこれより長いことを示し、さらに好ましくは、奥行方向(Z軸方向)の距離100Zが、高さ方向(Y軸方向)の距離100Yよりも40倍、又はこれより長いことを示す。一実施例の虚像表示領域100において、(Z座標[meter]、Y座標[meter])で表し、前記アイボックスの高さ方向の中心を(0、1.2)とすると、近傍端120は(14.5、0.0)、遠方端110(最高位置)は(53.4、1.48)、前記アイボックスの中心から運転者4が見た場合の遠方端110と近傍端120との中心は(27.3、0.15)であり、この場合、奥行方向(Z軸方向)の距離100Zが38.9[meter]、高さ方向(Y軸方向)の距離100Yが1.48[meter]となり、奥行方向(Z軸方向)の距離100Zが高さ方向(Y軸方向)の距離100Yの26倍となる。なお、虚像表示領域100は、HUD装置20の内部で生成された画像が、虚像として結像する曲面、又は一部曲面の領域であり、結像面とも呼ばれる。虚像表示領域100は、HUD装置20の後述する表示面(スクリーン24)の虚像が結像される位置であり、すなわち、虚像表示領域100は、HUD装置20の後述する表示面に対応し、虚像表示領域100で視認される虚像は、HUD装置20の後述する表示面に表示される画像に対応している、と言える。虚像表示領域100自体は、実際に運転者4に視認されない、又は視認されにくい程度に視認性が低いことが好ましい。 The vehicle display system 10 (HUD device 20) of the present embodiment forms the virtual image display area 100 along the road surface 310 (an example of the foreground 300). Specifically, in the imaginary image display area 100 along the road surface 310, the distance 100Z in the depth direction (Z-axis direction) between the far end 110 and the near end 120 of the imaginary image display area 100 is the imaginary image display area 100. It is shown that the distance between the highest position (far end 110 in FIG. 1) and the lowest position (near end 120 in FIG. 1) in the height direction (Y-axis direction) is 20 times or longer than 100Y, and further. Preferably, it indicates that the distance 100Z in the depth direction (Z-axis direction) is 40 times or longer than the distance 100Y in the height direction (Y-axis direction). In the virtual image display area 100 of one embodiment, if it is represented by (Z coordinate [meter], Y coordinate [meter]) and the center in the height direction of the eye box is (0, 1.2), the near end 120 is (14.5, 0.0), the far end 110 (highest position) is (53.4, 1.48), and the far end 110 and the near end 120 when the driver 4 sees from the center of the eyebox. The center of is (27.3, 0.15). In this case, the distance 100Z in the depth direction (Z-axis direction) is 38.9 [meter], and the distance 100Y in the height direction (Y-axis direction) is 1. It becomes 48 [meter], and the distance 100Z in the depth direction (Z-axis direction) is 26 times the distance 100Y in the height direction (Y-axis direction). The virtual image display area 100 is a curved surface or a partially curved surface area where the image generated inside the HUD device 20 is imaged as a virtual image, and is also called an image forming surface. The virtual image display area 100 is a position where a virtual image of the display surface (screen 24) described later of the HUD device 20 is formed, that is, the virtual image display area 100 corresponds to the display surface described later of the HUD device 20 and is a virtual image. It can be said that the virtual image visually recognized in the display area 100 corresponds to the image displayed on the display surface described later of the HUD device 20. It is preferable that the virtual image display area 100 itself has low visibility to the extent that it is not actually visible to the driver 4 or is difficult to see.
 図2は、本実施形態のHUD装置20の構成を示す図である。HUD装置20は、画像を表示する表示面を有する表示器21と、リレー光学系25と、を含む。 FIG. 2 is a diagram showing the configuration of the HUD device 20 of the present embodiment. The HUD device 20 includes a display 21 having a display surface for displaying an image, and a relay optical system 25.
 図2の表示器21は、プロジェクタ22(画像生成部の一例)と、プロジェクタ22からの投影光を受光して画像(実像)を表示するスクリーン24(表示面の一例)と、で構成されるプロジェクション型ディスプレイである。なお、表示器21は、LCDなどのバックライトからの光を透過する透過型ディスプレイ(画像生成部の一例)であってもよく、自発光型ディスプレイ(画像生成部の一例)であってもよい。これらの場合、表示面は、透過型ディスプレイにおけるディスプレイ表面(表示面の一例)であり、プロジェクション型ディスプレイのスクリーン24(表示面の一例)である。前記表示面は、前記表示面から、後述のリレー光学系25及び前記被投影部を介して前記アイボックス(前記アイボックスの中央)へ向かう画像光40の光軸40pに対し垂直になる角度から傾いて配置され、これにより、虚像表示領域100を路面310に沿うように配置することができる。なお、表示器21は、表示制御装置30により制御されるモータなどのアクチュエータ(不図示)が取り付けられ、表示面を移動、及び/又は回転可能であってもよい。 The display 21 of FIG. 2 is composed of a projector 22 (an example of an image generation unit) and a screen 24 (an example of a display surface) that receives projected light from the projector 22 and displays an image (real image). It is a projection type display. The display 21 may be a transmissive display (an example of an image generation unit) that transmits light from a backlight such as an LCD, or a self-luminous display (an example of an image generation unit). .. In these cases, the display surface is a display surface (an example of a display surface) in a transmissive display and a screen 24 (an example of a display surface) of a projection type display. The display surface is from an angle perpendicular to the optical axis 40p of the image light 40 from the display surface toward the eye box (center of the eye box) via the relay optical system 25 and the projected portion described later. It is tilted so that the virtual image display area 100 can be arranged along the road surface 310. An actuator (not shown) such as a motor controlled by the display control device 30 may be attached to the display 21 so that the display surface can be moved and / or rotated.
 本実施形態の表示面24は、非平面であり、平面もしくは曲面の連続性が失われる(折れ曲がる)境界(後述する表示面屈曲部IM5)を有し、これにより、虚像表示領域100の遠方側の遠方虚像領域151を、虚像表示領域100の遠方虚像領域151より近傍側の近傍虚像領域153よりも起き上がらせる。これについては、後で詳述する。 The display surface 24 of the present embodiment is non-planar and has a boundary (the display surface bent portion IM5 described later) in which the continuity of the flat surface or the curved surface is lost (bent), whereby the far side of the virtual image display area 100 is obtained. The far virtual image region 151 of the above is raised from the near virtual image region 153 on the side closer to the far virtual image region 151 of the virtual image display region 100. This will be described in detail later.
 リレー光学系25は、表示器21とフロントウインドシールド2(被投影部の一例。)との間の表示器21からの画像の光(表示器21から前記アイボックスへ向かう光。)の光路上に配置され、表示器21からの画像の光をHUD装置20の外側のフロントウインドシールド2に投影する1つ又はそれ以上の光学部材で構成される。図2のリレー光学系25は、第1ミラー26と、第2ミラー28と、を含む。 The relay optical system 25 is on the optical path of the light of the image from the display 21 (light from the display 21 toward the eye box) between the display 21 and the front windshield 2 (an example of the projected portion). It is composed of one or more optical members that project the light of the image from the display 21 onto the front windshield 2 outside the HUD device 20. The relay optical system 25 of FIG. 2 includes a first mirror 26 and a second mirror 28.
 第1ミラー26は、一端から他端に向けて曲率半径が概ね一定の凹状の自由曲面形状である。換言すると、第1ミラー26は、領域毎に光学的パワーが概ね同じ曲面形状であり、すなわち、画像光40が通る領域(光路)に応じて画像光40に付加される光学的パワーが同じである。具体的には、前記表示面の各領域から前記アイボックスへ向かう第1画像光41、第2画像光42、第3画像光43(図2参照)とで、リレー光学系25によって付加される光学的パワーが概ね同じである。 The first mirror 26 has a concave free curved surface shape in which the radius of curvature is substantially constant from one end to the other end. In other words, the first mirror 26 has a curved surface shape in which the optical power is substantially the same for each region, that is, the optical power applied to the image light 40 is the same according to the region (optical path) through which the image light 40 passes. is there. Specifically, the relay optical system 25 adds the first image light 41, the second image light 42, and the third image light 43 (see FIG. 2) from each region of the display surface toward the eyebox. The optical power is about the same.
 なお、第2ミラー28は、平面ミラーであるが、これに限定されず、平面ではなく、光学的パワーを有する曲面であってもよい。 The second mirror 28 is a flat mirror, but is not limited to this, and may be a curved surface having optical power instead of a flat surface.
 また、リレー光学系25は、領域毎に光学的パワーが異なる曲面形状の複数のミラーを合成することで、画像光40が通る領域(光路)に応じて付加される光学的パワーが概ね同じになるように、複数のミラーの領域毎の光学的パワーを設定してもよい。 Further, the relay optical system 25 synthesizes a plurality of mirrors having a curved surface shape in which the optical power differs for each region, so that the optical power applied according to the region (optical path) through which the image light 40 passes is substantially the same. As such, the optical power for each region of the plurality of mirrors may be set.
 なお、本実施形態では、リレー光学系25は、2つのミラーを含んでいたが、これに限定されるものではなく、これらに追加又は代替で、1つ又はそれ以上の、レンズなどの屈折光学部材、ホログラムなどの回折光学部材、反射光学部材、又はこれらの組み合わせを含んでいてもよい。 In the present embodiment, the relay optical system 25 includes two mirrors, but the present invention is not limited to this, and one or more refractive optics such as a lens may be added or substituted to these. A member, a diffractive optical member such as a hologram, a reflective optical member, or a combination thereof may be included.
 また、本実施形態のリレー光学系25は、この曲面形状(光学的パワーの一例。)により、虚像が結像される位置(虚像表示領域100)までの距離を設定する機能、及びスクリーン24(表示面)に表示された画像を拡大した虚像を生成する機能、を有するが、これに加えて、フロントウインドシールド2の湾曲形状により生じ得る虚像の歪みを抑制する(補正する)機能、を有していてもよい。 Further, the relay optical system 25 of the present embodiment has a function of setting a distance to a position where a virtual image is formed (virtual image display area 100) by the curved surface shape (an example of optical power), and a screen 24 (an example of an optical power). It has a function to generate an enlarged virtual image of the image displayed on the display surface), but in addition to this, it has a function to suppress (correct) the distortion of the virtual image that may occur due to the curved shape of the front windshield 2. You may be doing it.
 また、リレー光学系25は、表示制御装置30により制御されるモータなどのアクチュエータ(不図示)が取り付けられ、移動、及び/又は回転可能であってもよい。 Further, the relay optical system 25 may be movable and / or rotatable to which an actuator (not shown) such as a motor controlled by the display control device 30 is attached.
 次に、本実施形態に係る、リレー光学系25と非平面の表示面24との配置と、生成される虚像表示領域100の配置について説明する。本実施形態の虚像表示領域100は、路面310に沿い、遠方側の傾斜が起き上がるように形成される。 Next, the arrangement of the relay optical system 25 and the non-planar display surface 24 and the arrangement of the generated virtual image display area 100 according to the present embodiment will be described. The virtual image display area 100 of the present embodiment is formed so as to have an inclination on the distant side along the road surface 310.
 まず、比較例を図3A、図3Bを用いて説明する。図3Aは、比較例のリレー光学系500と表示面524との配置を示す図である。なお、図3Aでは、本実施形態との違いをわかりやすくするため、リレー光学系500の各領域501、502、503の焦点を符号501f,502f,503fで表記するが、これら焦点501f,502f,503fとリレー光学系500との距離関係、及び焦点501f,502f,503fと表示面524との距離関係を正確に示したものではない。比較例では、表示面524が、平面である。すなわち、比較例の表示面524は、後述する表示面屈曲部IM5がない。また、次に説明する本発明の実施形態でも同様だが、表示面524は、表示面524から前記アイボックスへ向かう画像光の光軸540pとの垂直面524aから角度αだけ傾いて配置される。具体的には、表示面524から前記アイボックスへ向かう画像光540の光軸540pの垂直面524aから角度αだけ傾いて配置される。具体的には、表示面524は、垂直面524aと比べて、虚像表示領域600の虚像表示近傍部603(図3B)に対応する表示面524における領域M3から、虚像表示近傍部603より遠方の虚像表示領域600の領域602(図3B)に対応する表示面524における領域M2に向けて徐々にリレー光学系500から離れるように配置される。換言すると、虚像表示領域600の虚像表示近傍部603に対応する表示面524における領域M3から、虚像表示近傍部603より遠方の虚像表示領域600の領域602(図3B)に対応する表示面524における領域M2に向けて徐々にリレー光学系500の焦点に近づくように配置される(領域M2と焦点502fとの間の距離を、領域M3と焦点503fとの間の距離より短くする)。このような場合、図3Bに示すように、車両1の左右方向(X方向)から見ると、生成される虚像表示領域600の断面は、運転者4側(上側(Y軸正方向))が凸状となる。 First, a comparative example will be described with reference to FIGS. 3A and 3B. FIG. 3A is a diagram showing an arrangement of the relay optical system 500 and the display surface 524 of the comparative example. In FIG. 3A, the focal points of the regions 501, 502, and 503 of the relay optical system 500 are indicated by reference numerals 501f, 502f, and 503f in order to make the difference from the present embodiment easy to understand. These focal points 501f, 502f, It does not accurately show the distance relationship between the 503f and the relay optical system 500, and the distance relationship between the focal points 501f, 502f, 503f and the display surface 524. In the comparative example, the display surface 524 is a flat surface. That is, the display surface 524 of the comparative example does not have the display surface bending portion IM5 described later. Further, as in the embodiment of the present invention described below, the display surface 524 is arranged at an angle α from the vertical surface 524a with the optical axis 540p of the image light directed from the display surface 524 toward the eyebox. Specifically, it is arranged at an angle α from the vertical surface 524a of the optical axis 540p of the image light 540 from the display surface 524 toward the eye box. Specifically, the display surface 524 is farther than the virtual image display neighborhood portion 603 from the region M3 on the display surface 524 corresponding to the virtual image display neighborhood portion 603 (FIG. 3B) of the virtual image display region 600 as compared with the vertical plane 524a. It is arranged so as to gradually move away from the relay optical system 500 toward the region M2 on the display surface 524 corresponding to the region 602 (FIG. 3B) of the virtual image display region 600. In other words, from the area M3 on the display surface 524 corresponding to the virtual image display neighborhood portion 603 of the virtual image display region 600 to the display surface 524 corresponding to the region 602 (FIG. 3B) of the virtual image display region 600 farther from the virtual image display neighborhood portion 603. It is arranged so as to gradually approach the focal point of the relay optical system 500 toward the region M2 (the distance between the region M2 and the focal point 502f is shorter than the distance between the region M3 and the focal point 503f). In such a case, as shown in FIG. 3B, when viewed from the left-right direction (X direction) of the vehicle 1, the cross section of the generated virtual image display area 600 is on the driver 4 side (upper side (Y-axis positive direction)). It becomes convex.
 次に、本実施形態について図4A、図4Bを用いて説明する。図4Aは、本実施形態のリレー光学系25と表示面24との配置を示す図である。本実施形態の表示面24は、遠方虚像領域151に対応した表示面遠方領域241と、近傍虚像領域153に対応した表示面近傍領域243と、を含み、表示面近傍領域243が、表示面24から前記アイボックスへ向かう画像光40の光軸40pとの垂直面24aから角度αだけ傾いて配置される。具体的には、表示面24は、垂直面24aと比べて、虚像表示領域100の近傍虚像領域153内に含まれる虚像表示近傍部103対応する表示面24の表示面近傍部IM3から、虚像表示領域100の虚像表示屈曲部105に対応する表示面24の表示面屈曲部IM5に向けて徐々にリレー光学系25から離れるように配置される。換言すると、虚像表示領域100の近傍虚像領域153に対応する表示面24の表示面近傍部IM3から、虚像表示領域100の虚像表示屈曲部105に対応する表示面24の表示面屈曲部IM5に向けて徐々にリレー光学系25の焦点に近づくように配置される(表示面屈曲部IM5と焦点255fとの間の距離を、表示面近傍部IM3と焦点253fとの間の距離より短くする)。 Next, this embodiment will be described with reference to FIGS. 4A and 4B. FIG. 4A is a diagram showing an arrangement of the relay optical system 25 and the display surface 24 of the present embodiment. The display surface 24 of the present embodiment includes a display surface distant region 241 corresponding to the distant virtual image region 151 and a display surface near region 243 corresponding to the near virtual image region 153, and the display surface near region 243 is the display surface 24. The image light 40 is arranged at an angle α from the vertical surface 24a with respect to the optical axis 40p of the image light 40 toward the eye box. Specifically, the display surface 24 displays a virtual image from the display surface proximity portion IM3 of the display surface 24 corresponding to the virtual image display proximity portion 103 included in the near virtual image region 153 of the virtual image display region 100 as compared with the vertical surface 24a. It is arranged so as to gradually move away from the relay optical system 25 toward the display surface bending portion IM5 of the display surface 24 corresponding to the virtual image display bending portion 105 of the region 100. In other words, from the display surface near portion IM3 of the display surface 24 corresponding to the near virtual image region 153 of the virtual image display region 100 toward the display surface bent portion IM5 of the display surface 24 corresponding to the virtual image display bent portion 105 of the virtual image display region 100. The relay optical system 25 is gradually arranged so as to approach the focal point (the distance between the display surface bending portion IM5 and the focal point 255f is made shorter than the distance between the display surface near portion IM3 and the focal point 253f).
 さらに、本実施形態の表示面24は、表示面屈曲部IM5を有し、表示面近傍部IM3から表示面屈曲部IM5までの表示面24の近似的な傾き(図4Aでの点線)を基準に、表示面屈曲部IM5から表示面遠方部IM1までの表示面24の近似的な傾きがリレー光学系25に近づくように屈曲する。換言すると、表示面近傍部IM3から表示面屈曲部IM5に向けて徐々にリレー光学系25の焦点に近づくように配置し(表示面屈曲部IM5と焦点255fとの間の距離を、表示面近傍部IM3と焦点253fとの間の距離より短くし)、かつ表示面屈曲部IM5から表示面遠方部IM1に向けて徐々にリレー光学系25の焦点に近づくように配置する(表示面遠方部IM1と焦点251fとの間の距離を、表示面屈曲部IM5と焦点255fとの間の距離より長くする)。 Further, the display surface 24 of the present embodiment has a display surface bending portion IM5, and is based on an approximate inclination (dotted line in FIG. 4A) of the display surface 24 from the display surface vicinity portion IM3 to the display surface bending portion IM5. In addition, the display surface 24 is bent so that the approximate inclination of the display surface 24 from the display surface bending portion IM5 to the display surface distant portion IM1 approaches the relay optical system 25. In other words, it is arranged so as to gradually approach the focal point of the relay optical system 25 from the display surface bending portion IM3 toward the display surface bending portion IM5 (the distance between the display surface bending portion IM5 and the focal point 255f is set near the display surface. It is arranged so as to be shorter than the distance between the unit IM3 and the focal point 253f) and gradually approach the focal point of the relay optical system 25 from the display surface bending portion IM5 toward the display surface distant portion IM1 (display surface distant portion IM1). The distance between the focal point 251f and the focal point 251f is made longer than the distance between the display surface bending portion IM5 and the focal point 255f).
 ここで、物体と凹面ミラーとの間の距離a(>0)、虚像と凹面ミラーとの間の距離b(>0),そして、凹面ミラーの焦点距離f(>a)の間には、以下の関係式が成り立つ。この関係式によれば、物体と凹面ミラーとの間の距離が短くなるほど、虚像の距離bが短くなる。
1/a-1/b=1/f
Here, between the distance a (> 0) between the object and the concave mirror, the distance b (> 0) between the virtual image and the concave mirror, and the focal length f (> a) of the concave mirror, The following relational expression holds. According to this relational expression, the shorter the distance between the object and the concave mirror, the shorter the distance b of the virtual image.
1 / a-1 / b = 1 / f
 上述したように、表示面24が、表示面24から前記アイボックスへ向かう画像光の光軸40pとから傾いて配置されることで、虚像表示領域100が、路面310に沿うように(近傍から遠方に向けて徐々に結像距離が長くなるように)、配置される。表示面24(表示面遠方領域241(表示面遠方部IM1))から第1ミラー26の第1領域251に投射した第1画像光41は、表示面遠方領域241(表示面遠方部IM1)が第1領域251に近いため、フロントウインドシールド2に反射された際に、(表示面を屈曲させずにリレー光学系に近づけない場合と比較して)フロントウインドシールド2からの結像距離が短くなる。 As described above, the display surface 24 is arranged so as to be tilted from the optical axis 40p of the image light from the display surface 24 toward the eye box so that the virtual image display area 100 is along the road surface 310 (from the vicinity). It is arranged so that the imaging distance gradually increases toward a distance). The first image light 41 projected from the display surface 24 (display surface distant region 241 (display surface distant portion IM1)) onto the first region 251 of the first mirror 26 is provided by the display surface distant region 241 (display surface distant portion IM1). Since it is close to the first region 251 when reflected by the front windshield 2, the imaging distance from the front windshield 2 is short (compared to the case where the display surface is not bent and cannot be brought close to the relay optical system). Become.
 本実施形態の表示面24は、表示面屈曲部IM5を境界にした表示面遠方領域241を、表示面近傍部IM3から表示面屈曲部IM5までの表示面24の近似的な傾き(図4Aでの点線)よりも、リレー光学系25に近づける(物体と凹面ミラーとの間の距離を小さくする)ことで、虚像表示領域100の遠方虚像領域151(遠方端110も含む)が路面310に沿う傾きから起き上がるように湾曲させることができる。遠方虚像領域151(遠方端110も含む)が路面310に沿う傾きから起き上がるように湾曲させるとは、図4B示すように、遠方虚像領域151(虚像表示遠方部101)における虚像表示領域100の接線と路面310との間のチルト角θ(第1チルト角θ1)が、遠方虚像領域151より運転者4に近い近傍虚像領域153(中央部102)における虚像表示領域100の接線と路面310との間のチルト角θ(第2チルト角θ2)より大きく、かつチルト角θが、中央部102(近傍側)から遠方虚像領域151(遠方側)に向かうに連れて連続的に増加する(単調増加する)。 The display surface 24 of the present embodiment has an approximate inclination of the display surface 24 from the display surface near portion IM3 to the display surface bent portion IM5 in the display surface distant region 241 with the display surface bent portion IM5 as a boundary (FIG. 4A). By moving closer to the relay optical system 25 (reducing the distance between the object and the concave mirror) than (dotted line), the far virtual image region 151 (including the far end 110) of the virtual image display region 100 is along the road surface 310. It can be curved so that it rises from the inclination. The fact that the distant virtual image region 151 (including the distant end 110) is curved so as to rise from an inclination along the road surface 310 is a tangent line of the phantom image display region 100 in the distant virtual image region 151 (virtual image display distant portion 101) as shown in FIG. 4B. The tangent line of the virtual image display area 100 in the near virtual image region 153 (central portion 102) where the tilt angle θ (first tilt angle θ1) between the vehicle and the road surface 310 is closer to the driver 4 than the far virtual image region 151 and the road surface 310. It is larger than the tilt angle θ (second tilt angle θ2) between them, and the tilt angle θ continuously increases (monotonically increases) from the central portion 102 (near side) toward the distant virtual image region 151 (far side). To do).
 図5Aないし図5Cは、実施形態に係る、虚像表示領域100の奥行き方向(Z軸方向)の位置とチルト角θとの関係を示す図である。本実施形態では、遠方虚像領域151(遠方端110)が遠方虚像領域151より近傍の中央部102より路面310に沿う傾きから起き上がればよく、図5Aに示すように、近傍端120から遠方端110に向かうにつれてチルト角θが単調増加することに限定されるものではない。 5A to 5C are diagrams showing the relationship between the position of the virtual image display area 100 in the depth direction (Z-axis direction) and the tilt angle θ according to the embodiment. In the present embodiment, the far virtual image region 151 (far end 110) only needs to rise from the inclination along the road surface 310 from the central portion 102 near the far virtual image region 151, and as shown in FIG. 5A, the far end 110 from the near end 120 The tilt angle θ is not limited to monotonically increasing toward.
 すなわち、いくつかの実施形態では、図5Bに示すように、虚像表示近傍部103から虚像表示屈曲部105までのチルト角θの増加率(変化率)が、虚像表示屈曲部105から虚像表示遠方部101までのチルト角θの増加率(変化率)より小さくなるようにしてもよい。この場合、表示面24は、表示面近傍部IM3と第3画像光43が通るリレー光学系25の第3領域253との間の距離から、表示面屈曲部IM5と第5画像光45が通るリレー光学系25の第5領域255との間の距離までの増加率を、表示面屈曲部IM5と第5画像光45が通るリレー光学系25の第5領域255との間の距離から、表示面遠方部IM1と第1画像光41が通るリレー光学系25の第1領域251との間の距離までの増加率より小さくする。これにより、奥行き方向の距離の増加に従う、近傍虚像領域と路面との間の距離の変化を小さく抑えることができる。 That is, in some embodiments, as shown in FIG. 5B, the rate of increase (change rate) of the tilt angle θ from the virtual image display near portion 103 to the virtual image display bent portion 105 is far from the virtual image display bent portion 105. It may be made smaller than the rate of increase (rate of change) of the tilt angle θ up to the unit 101. In this case, the display surface 24 allows the display surface bending portion IM5 and the fifth image light 45 to pass from the distance between the display surface vicinity portion IM3 and the third region 253 of the relay optical system 25 through which the third image light 43 passes. The rate of increase up to the distance between the fifth region 255 of the relay optical system 25 is displayed from the distance between the display surface bending portion IM5 and the fifth region 255 of the relay optical system 25 through which the fifth image light 45 passes. It is made smaller than the rate of increase up to the distance between the far-field IM1 and the first region 251 of the relay optical system 25 through which the first image light 41 passes. As a result, it is possible to suppress the change in the distance between the near virtual image region and the road surface as the distance increases in the depth direction.
 また、いくつかの実施形態では、図5Cに示すように、近傍虚像領域153から中央部102までのチルト角θの変化率を負の値から徐々にゼロまで増加させ、中央部102から遠方端110までのチルト角θの増加率(変化率)をゼロより大きくしてもよい。この場合の虚像表示領域100の配置を図6に示す。すなわち、この虚像表示領域100は、近傍虚像領域153から中央部102まで徐々に上下方向(Y軸方向)の位置が低くなり、中央部102を最低位置とし、中央部102から遠方端110まで徐々に上下方向(Y軸方向)の位置が高くなり、近傍端120を最高位置とする。この場合、上記実施形態よりも表示面24の傾きαを大きくし、かつ、表示面近傍部IM3と第3画像光43が通るリレー光学系25の第3領域253との間の距離から、表示面屈曲部IM5と第5画像光45が通るリレー光学系25の第5領域255との間の距離までの増加率を、表示面屈曲部IM5と第5画像光45が通るリレー光学系25の第5領域255との間の距離から、表示面遠方部IM1と第1画像光41が通るリレー光学系25の第1領域251との間の距離までの増加率より小さくする。これにより、奥行き方向の距離の増加に従う、近傍側の虚像表示領域と路面との間の距離の変化を小さく抑えることができる。 Further, in some embodiments, as shown in FIG. 5C, the rate of change of the tilt angle θ from the near virtual image region 153 to the central portion 102 is gradually increased from a negative value to zero, and the far end from the central portion 102. The rate of increase (rate of change) of the tilt angle θ up to 110 may be larger than zero. The arrangement of the virtual image display area 100 in this case is shown in FIG. That is, the position of the virtual image display region 100 gradually decreases in the vertical direction (Y-axis direction) from the near virtual image region 153 to the central portion 102, the central portion 102 is the lowest position, and the position gradually decreases from the central portion 102 to the far end 110. The position in the vertical direction (Y-axis direction) becomes higher, and the near end 120 is set as the highest position. In this case, the inclination α of the display surface 24 is made larger than that of the above embodiment, and the display is performed from the distance between the display surface vicinity portion IM3 and the third region 253 of the relay optical system 25 through which the third image light 43 passes. The rate of increase up to the distance between the surface bending portion IM5 and the fifth region 255 of the relay optical system 25 through which the fifth image light 45 passes is shown by the relay optical system 25 through which the surface bending portion IM5 and the fifth image light 45 pass. The rate of increase is made smaller than the rate of increase from the distance between the fifth region 255 and the distance between the remote portion IM1 of the display surface and the first region 251 of the relay optical system 25 through which the first image light 41 passes. As a result, the change in the distance between the virtual image display area on the near side and the road surface can be suppressed to be small as the distance in the depth direction increases.
 また、いくつかの実施形態では、虚像表示領域100の最低位置を含む一部を路面310よりも下に配置し、虚像表示領域100の遠方端110を含む一部を路面よりも上に配置してもよい。例えば、虚像表示領域100は、図7Aに示すように、近傍端120が最低位置となり、近傍端120から遠方端110に向けた途中までを路面310の下に配置し、これより遠方端110までの他部を路面310の上に配置してもよい。また、虚像表示領域100は、図7Bに示すように、遠方端110と近傍端120との間の中央部102を最低位置としてもよい。視認者から見て路面に対して虚像が手前側にズレて表示される場合の違和感は、路面に対して画像が奥側にズレて表示される場合の違和感より大きい。したがって、車両1の角度が変化した場合でも路面310より上側に虚像表示領域100が配置されることを抑制することができ、また、車両1の角度が変化により近傍側の虚像表示領域が路面310の上側に配置される場合でも、近傍側の画像と路面310との高さ方向の距離を小さく抑えることができる。 Further, in some embodiments, a part including the lowest position of the virtual image display area 100 is arranged below the road surface 310, and a part including the far end 110 of the virtual image display area 100 is arranged above the road surface. You may. For example, in the virtual image display area 100, as shown in FIG. 7A, the near end 120 is at the lowest position, and the part from the near end 120 to the far end 110 is arranged under the road surface 310 to the far end 110. The other part may be arranged on the road surface 310. Further, as shown in FIG. 7B, the virtual image display area 100 may have the central portion 102 between the far end 110 and the near end 120 as the lowest position. The discomfort when the virtual image is shifted to the front side with respect to the road surface when viewed from the viewer is greater than the discomfort when the image is shifted to the back side with respect to the road surface. Therefore, even if the angle of the vehicle 1 changes, it is possible to prevent the virtual image display area 100 from being arranged above the road surface 310, and the virtual image display area on the near side becomes the road surface 310 due to the change in the angle of the vehicle 1. Even when it is arranged on the upper side of the above, the distance between the image on the near side and the road surface 310 in the height direction can be suppressed to be small.
 また、いくつかの実施形態では、虚像表示領域100の虚像表示屈曲部105が、運転者4(車両1)の前方向に20メートル、又はそれ以上の距離に配置されるように、表示面24の表示面屈曲部IM5の位置を設定してもよい。これによれば、虚像表示領域100は、車両1の前方向に20メートル、又はそれ以上の距離から遠方側に向かうにつれて、車両1の前後方向に対する虚像表示領域100の接線のチルト角θが単調増加し、路面310に沿った角度から起き上がる。本発明の発明者は、視認者から20メートル以上離れた物体に対する距離感(距離感)が鈍くなることを認識した。すなわち、視認者から20メートル以上離れた位置から虚像表示領域と路面との間の距離を単調増加させても、視認者が虚像表示面と路面との間の距離差を知覚しにくく(20メートル未満の虚像表示領域に表示された画像と同様に路面に沿って表示されているように知覚させやすく)、かつ遠方側の虚像表示領域を路面に沿う角度から視認者側に起き上がらせるように湾曲させることで、視認者から見た遠方側の虚像表示面を広い前景(例えば、路面)の領域に重ねることができる。換言すると、虚像表示領域の単位面積あたりの重なる前景(例えば、路面)の面積を拡げることができ、広い前景に対して効率的に画像を重ねて表示することができる。 Further, in some embodiments, the display surface 24 is arranged so that the virtual image display bending portion 105 of the virtual image display area 100 is arranged at a distance of 20 meters or more in the front direction of the driver 4 (vehicle 1). The position of the display surface bending portion IM5 may be set. According to this, in the virtual image display area 100, the tilt angle θ of the tangent line of the virtual image display area 100 with respect to the front-rear direction of the vehicle 1 becomes monotonous as the vehicle 1 moves toward the far side from a distance of 20 meters or more in the front direction. It increases and rises from an angle along the road surface 310. The inventor of the present invention has recognized that the sense of distance (sense of distance) for an object 20 meters or more away from the viewer becomes dull. That is, even if the distance between the virtual image display area and the road surface is monotonically increased from a position 20 meters or more away from the viewer, it is difficult for the viewer to perceive the difference in distance between the virtual image display surface and the road surface (20 meters). (Easy to perceive as if it is displayed along the road surface like the image displayed in the virtual image display area less than), and the virtual image display area on the distant side is curved so as to rise from an angle along the road surface to the viewer side. By doing so, the virtual image display surface on the distant side seen from the viewer can be overlapped with a wide foreground (for example, a road surface) area. In other words, the area of the overlapping foreground (for example, the road surface) per unit area of the virtual image display area can be expanded, and the images can be efficiently superimposed and displayed on the wide foreground.
 上記実施形態では、第1ミラー26は、一端から他端に向けて曲率半径が概ね一定の自由曲面形状であったが、これに限定されるものではなく、曲率が概ね一定でなくてもよい。特に、本実施形態では、表示面24に表示面屈曲部IM5を設けることで、虚像表示領域100の遠方側の傾斜を、路面に沿う角度から起き上がるようにしているが、これに加えて、第1ミラー26(リレー光学系25)の領域毎に曲率半径(光学的パワー)を異ならせることで、虚像表示領域100の遠方側の傾斜を、より路面に沿う角度から起き上がりやすくしてもよい。 In the above embodiment, the first mirror 26 has a free curved surface shape in which the radius of curvature is substantially constant from one end to the other end, but the present invention is not limited to this, and the curvature may not be substantially constant. .. In particular, in the present embodiment, the display surface bent portion IM5 is provided on the display surface 24 so that the inclination of the virtual image display area 100 on the distant side rises from an angle along the road surface. By making the radius of curvature (optical power) different for each region of the mirror 26 (relay optical system 25), the inclination of the virtual image display region 100 on the distant side may be easily raised from an angle along the road surface.
 具体的には、第1ミラー26は、一端から他端に向けて曲率半径が徐々に変化する自由曲面形状であってもよい。換言すると、第1ミラー26は、領域毎に光学的パワーが異なる曲面形状であり、すなわち、画像光40が通る領域(光路)に応じて画像光40に付加される光学的パワーが異なってもよい。具体的には、前記表示面の各領域から前記アイボックスへ向かう第1画像光41、第2画像光42、第3画像光43(図2参照)とで、リレー光学系25によって付加される光学的パワーが異なる。 Specifically, the first mirror 26 may have a free curved surface shape in which the radius of curvature gradually changes from one end to the other end. In other words, the first mirror 26 has a curved surface shape in which the optical power differs for each region, that is, even if the optical power applied to the image light 40 differs depending on the region (optical path) through which the image light 40 passes. Good. Specifically, the relay optical system 25 adds the first image light 41, the second image light 42, and the third image light 43 (see FIG. 2) from each region of the display surface toward the eyebox. The optical power is different.
 なお、第2ミラー28は、平面ではなく、光学的パワーを有する曲面であってもよい。すなわち、リレー光学系25は、複数のミラー(例えば、本実施形態の第1ミラー26、第2ミラー28。)を合成することで、画像光40が通る領域(光路)に応じて付加される光学的パワーを異ならせてもよい。 The second mirror 28 may be a curved surface having optical power instead of a flat surface. That is, the relay optical system 25 is added according to the region (optical path) through which the image light 40 passes by synthesizing a plurality of mirrors (for example, the first mirror 26 and the second mirror 28 of the present embodiment). The optical power may be different.
 図8は、本実施形態のリレー光学系25と表示面24との配置を示す図である。なお、図8は、比較例との違いをわかりやすくするため、リレー光学系25の各領域251,252,253の焦点を符号251f,252f,253fで表記するが、リレー光学系25、又は表示面24との距離関係を正確に示したものではない。図8のリレー光学系25は、領域毎に曲率半径が異なる。具体的には、運転者4から見て虚像表示領域100の遠方虚像領域151に虚像を表示する第1画像光41が通るリレー光学系25の第1領域(第1光路)251の第1光学的パワーを、運転者4から見て虚像表示領域100の遠方虚像領域151よりも近い虚像表示屈曲部105に虚像を表示する第2画像光42が通るリレー光学系25の第2領域(第2光路)252の第2光学的パワーより小さくする。すなわち、リレー光学系25の主たる光学的パワーが凹面鏡である第1ミラー26に起因する場合、第1画像光41を反射する第1領域251の第1曲率半径(第1光学的パワーの一例。)を、第2画像光42を反射する第2領域252の第2曲率半径(第2光学的パワーの一例。)より大きくする。第1画像光41を反射する第1領域251の第1曲率半径が大きくなると、第1領域251の焦点251fの焦点距離(曲率半径の1/2)が長くなる。 FIG. 8 is a diagram showing the arrangement of the relay optical system 25 and the display surface 24 of the present embodiment. In FIG. 8, the focal points of each region 251,252,253 of the relay optical system 25 are indicated by reference numerals 251f, 252f, 253f in order to make the difference from the comparative example easy to understand, but the relay optical system 25 or the display It does not accurately show the distance relationship with the surface 24. The relay optical system 25 of FIG. 8 has a different radius of curvature for each region. Specifically, the first optical of the first region (first optical path) 251 of the relay optical system 25 through which the first image light 41 that displays a virtual image in the distant virtual image region 151 of the virtual image display region 100 when viewed from the driver 4 passes. The second region (second region) of the relay optical system 25 through which the second image light 42 that displays a virtual image passes through the virtual image display bending portion 105 that is closer to the distant virtual image region 151 of the virtual image display region 100 when viewed from the driver 4. Optical path) Make it smaller than the second optical power of 252. That is, when the main optical power of the relay optical system 25 is caused by the first mirror 26 which is a concave mirror, the first radius of curvature of the first region 251 reflecting the first image light 41 (an example of the first optical power. ) Is made larger than the second radius of curvature (an example of the second optical power) of the second region 252 that reflects the second image light 42. When the first radius of curvature of the first region 251 that reflects the first image light 41 becomes large, the focal length (1/2 of the radius of curvature) of the focal length 251f of the first region 251 becomes long.
 上述した「1/a-1/b=1/f」の関係式によれば、凹面ミラーの曲率半径が大きく(ミラーの曲率が小さく)なれば、凹面ミラーの焦点距離が長くなり、焦点距離が長いほど、虚像の距離bが短くなる。 According to the above-mentioned relational expression of "1 / a-1 / b = 1 / f", the larger the radius of curvature of the concave mirror (the smaller the curvature of the mirror), the longer the focal length of the concave mirror, and the longer the focal length. The longer the distance b, the shorter the distance b of the virtual image.
 表示面24が、表示面24から前記アイボックスへ向かう画像光の光軸40pとから傾いて配置されることで、虚像表示領域100が、路面310に沿うように(近傍から遠方に向けて徐々に結像距離が長くなるように)、配置される。表示面24から第1ミラー26の曲率半径が大きい第1領域251に投射した第1画像光41は、焦点距離(第1領域251から焦点251fまでの距離)が長いため、フロントウインドシールド2に反射された際に、(曲率半径を大きくしない場合と比較して)フロントウインドシールド2からの結像距離が短くなる。 By arranging the display surface 24 at an angle from the optical axis 40p of the image light from the display surface 24 toward the eye box, the virtual image display area 100 is gradually arranged along the road surface 310 (from the vicinity to the distance). (So that the imaging distance becomes longer), it is arranged. The first image light 41 projected from the display surface 24 onto the first region 251 having a large radius of curvature of the first mirror 26 has a long focal length (distance from the first region 251 to the focal length 251f), and therefore is used on the front windshield 2. When reflected, the imaging distance from the front windshield 2 becomes shorter (compared to the case where the radius of curvature is not increased).
 本実施形態のリレー光学系25は、通過する画像光で表示される虚像が遠方側である程、光学的パワーを徐々に小さくする(曲率半径を徐々に大きくする)ことで、虚像表示領域100の遠方虚像領域151(遠方端110)が路面310に沿う傾きから起き上がるように湾曲させることができる。したがって、虚像表示面の遠方虚像領域が路面から起き上がるように表示面24を屈曲させることと、同様に虚像表示面の遠方虚像領域が路面から起き上がるようにリレー光学系25の光学的パワーを領域毎に異ならせること、とを組み合わせることで、より虚像表示面を大きく湾曲させることも可能となり、また、表示面24、リレー光学系25の設計自由度を向上させることも可能である。 In the relay optical system 25 of the present embodiment, the farther the virtual image displayed by the passing image light is, the smaller the optical power is gradually reduced (the radius of curvature is gradually increased), so that the virtual image display region 100 The distant virtual image region 151 (far end 110) of the can be curved so as to rise from an inclination along the road surface 310. Therefore, the display surface 24 is bent so that the distant virtual image region of the virtual image display surface rises from the road surface, and the optical power of the relay optical system 25 is similarly applied to each region so that the distant virtual image region of the virtual image display surface rises from the road surface. By combining the above, it is possible to bend the virtual image display surface more greatly, and it is also possible to improve the design freedom of the display surface 24 and the relay optical system 25.
 遠方虚像領域151に対応する表示面遠方部IM1と、近傍虚像領域153に対応する表示面近傍部IM3とは、非連続的に結合される。すなわち、表示面24は、表示面遠方部IM1は、なめらかな曲面によってではなく、非連続的な表示面屈曲部IM5により、表示面近傍部IM3とつながる、ように形成される。 The display surface distant portion IM1 corresponding to the distant virtual image region 151 and the display surface near portion IM3 corresponding to the near virtual image region 153 are discontinuously coupled. That is, the display surface 24 is formed so that the display surface far portion IM1 is connected to the display surface near portion IM3 not by the smooth curved surface but by the discontinuous display surface bending portion IM5.
1    :車両
2    :フロントウインドシールド
4    :運転者
5    :ダッシュボード
10   :車両用表示システム
20   :HUD装置
21   :表示器
22   :プロジェクタ
24   :スクリーン(表示面)
25   :リレー光学系
26   :第1ミラー
28   :第2ミラー
30   :表示制御装置
40   :画像光
40p  :光軸
41   :第1画像光
42   :第2画像光
43   :第3画像光
45   :第5画像光
100  :虚像表示領域
101  :虚像表示遠方部
102  :中央部
103  :虚像表示近傍部
105  :虚像表示屈曲部
110  :遠方端
120  :近傍端
151  :遠方虚像領域
153  :近傍虚像領域
241  :表示面遠方領域
243  :表示面近傍領域
251  :第1領域
252  :第2領域
253  :第3領域
255  :第5領域
310  :路面
IM1  :表示面遠方部
IM3  :表示面近傍部
IM5  :表示面屈曲部
α    :角度
θ    :チルト角
θ1   :第1チルト角
θ2   :第2チルト角
1: Vehicle 2: Front windshield 4: Driver 5: Dashboard 10: Vehicle display system 20: HUD device 21: Display 22: Projector 24: Screen (display surface)
25: Relay optical system 26: First mirror 28: Second mirror 30: Display control device 40: Image light 40p: Optical axis 41: First image light 42: Second image light 43: Third image light 45: Fifth Image light 100: Virtual image display area 101: Virtual image display Far part 102: Central part 103: Virtual image display Near part 105: Virtual image display bent part 110: Far end 120: Near end 151: Far virtual image area 153: Near virtual image area 241: Display Surface distant area 243: Display surface vicinity area 251: First area 252: Second area 253: Third area 255: Fifth area 310: Road surface IM1: Display surface distant part IM3: Display surface near part IM5: Display surface bending part α: Angle θ: Tilt angle θ1: First tilt angle θ2: Second tilt angle

Claims (9)

  1.  車両の前後方向に沿う虚像表示領域で虚像を視認者に視認させるヘッドアップディスプレイ装置であって、
     前記虚像の元となる画像光を射出する表示面を有する表示器と、
     前記表示面が射出する前記画像光を被投影部に向けてリレーする、ように構成されたリレー光学系と、を備え、
     前記虚像表示領域は、遠方虚像領域と、視認者から見て前記遠方虚像領域より近い近傍虚像領域と、から構成され、
     前記表示面は、
      前記遠方虚像領域に対応した表示面遠方領域と、前記近傍虚像領域に対応した表示面近傍領域と、を含み、
      前記表示面近傍領域は、前記近傍虚像領域が前記車両の前後方向に沿って配置されるように、前記視認者に向かう前記画像光の光軸に対して傾いて配置され、
      前記表示面遠方領域は、前記近傍虚像領域に対し、前記遠方虚像領域が前記視認者側に起き上がるように、前記表示面近傍領域に対して屈曲して配置される、
    ヘッドアップディスプレイ装置。
    A head-up display device that allows a viewer to visually recognize a virtual image in a virtual image display area along the front-rear direction of the vehicle.
    An indicator having a display surface that emits image light that is the source of the virtual image,
    A relay optical system configured to relay the image light emitted by the display surface toward the projected portion is provided.
    The virtual image display region is composed of a distant virtual image region and a near virtual image region closer to the distant virtual image region when viewed from the viewer.
    The display surface is
    A display surface distant region corresponding to the distant virtual image region and a display surface near region corresponding to the near virtual image region are included.
    The display surface proximity region is arranged at an angle with respect to the optical axis of the image light toward the viewer so that the neighborhood virtual image region is arranged along the front-rear direction of the vehicle.
    The display surface distant region is bent and arranged with respect to the display surface near region so that the distant virtual image region rises toward the viewer with respect to the near virtual image region.
    Head-up display device.
  2.  前記表示面遠方領域が、非連続的な表示面屈曲部により、前記表示面近傍領域とつながるように形成され、
      前記表示面屈曲部に対応する前記虚像表示面の虚像表示屈曲部が、前記視認者の前方向に20メートル、又はそれ以上の距離に配置されるように、前記表示面屈曲部が配置される、ように構成される前記表示器、
    から構成される、請求項1に記載のヘッドアップディスプレイ装置。
    The display surface distant region is formed so as to be connected to the display surface near region by the discontinuous display surface bending portion.
    The display surface bending portion is arranged so that the virtual image display bending portion of the virtual image display surface corresponding to the display surface bending portion is arranged at a distance of 20 meters or more in the front direction of the viewer. The indicator, which is configured as
    The head-up display device according to claim 1, further comprising.
  3.  前記表示面近傍領域が、前記視認者に向かう前記画像光の光軸に対して傾いて配置されることで生じる前記近傍虚像領域の上側が凸に曲がることを抑制するように、前記リレー光学系側が凹状の曲面に形成される、ように構成される前記表示器、
    から構成される、請求項1に記載のヘッドアップディスプレイ装置。
    The relay optical system so as to prevent the upper side of the near virtual image region from bending convexly caused by the region near the display surface being arranged at an angle with respect to the optical axis of the image light toward the viewer. The indicator, configured such that the side is formed on a concave curved surface.
    The head-up display device according to claim 1, further comprising.
  4.  前記遠方虚像表示領域の虚像表示遠方部で前記虚像を表示するための第1画像光が通過する第1光学的パワーを有する第1領域と、
     前記虚像表示屈曲部で前記虚像を表示するための第5画像光が通過する第5光学的パワーを有する第5領域と、を有し、
      前記第1光学的パワーが前記第5光学的パワーより小さい、ように構成されたリレー光学系と、
    から構成される、請求項1に記載のヘッドアップディスプレイ装置。
    Virtual image display in the distant virtual image display region A first region having a first optical power through which a first image light for displaying the virtual image passes in a distant portion, and a first region.
    The virtual image display bent portion has a fifth region having a fifth optical power through which a fifth image light for displaying the virtual image passes.
    A relay optical system configured such that the first optical power is smaller than the fifth optical power.
    The head-up display device according to claim 1, further comprising.
  5.  前記視認者から見て前記虚像表示屈曲部より近い虚像表示近傍部で前記虚像を表示するための第3画像光が通過する第3光学的パワーを有する第3領域、をさらに含み、
      前記第5領域から前記第1領域までの光学的パワーの変化率が、前記第3領域から前記第5領域までの光学的パワーの変化率より大きい、ように構成される前記リレー光学系、
    から構成される、請求項4に記載のヘッドアップディスプレイ装置。
    A third region having a third optical power through which the third image light for displaying the virtual image passes in a portion near the virtual image display closer to the bent portion of the virtual image display when viewed from the viewer is further included.
    The relay optical system configured such that the rate of change of optical power from the fifth region to the first region is larger than the rate of change of optical power from the third region to the fifth region.
    The head-up display device according to claim 4, further comprising.
  6.  前記車両の前後方向に対する前記虚像表示領域の接線の角度が、前記視認者の近傍から遠方に向かうにつれて広義単調増加するように、前記第1領域、前記第5領域、及びこれらの間の領域の前記光学的パワーの分布を調整する前記リレー光学系、
    から構成される、請求項4に記載のヘッドアップディスプレイ装置。
    The first region, the fifth region, and the region between them so that the angle of the tangent line of the virtual image display region with respect to the front-rear direction of the vehicle increases monotonously in a broad sense from the vicinity of the viewer toward the distance. The relay optical system that adjusts the distribution of the optical power,
    The head-up display device according to claim 4, further comprising.
  7.  前記虚像表示屈曲部は、前記車両の前後方向で前記視認者から見た前記虚像表示領域の遠方端と近傍端との間であり、前記虚像表示領域の最低位置に配置される、
    請求項4に記載のヘッドアップディスプレイ装置。
    The virtual image display bent portion is located between the far end and the near end of the virtual image display area as seen by the viewer in the front-rear direction of the vehicle, and is arranged at the lowest position of the virtual image display area.
    The head-up display device according to claim 4.
  8.  前記虚像表示領域は、一部を路面より下側に配置し、前記虚像表示遠方部を含む他部を前記路面より上側に配置する、
    請求項4に記載のヘッドアップディスプレイ装置。
    A part of the virtual image display area is arranged below the road surface, and another part including the virtual image display distant part is arranged above the road surface.
    The head-up display device according to claim 4.
  9.  前記虚像表示領域は、前記虚像表示屈曲部を含む一部を路面より下側に配置し、前記虚像表示遠方部を含む他部を前記路面より上側に配置する、
    請求項8に記載のヘッドアップディスプレイ装置。
     
    In the virtual image display region, a part including the virtual image display bent portion is arranged below the road surface, and another portion including the virtual image display distant portion is arranged above the road surface.
    The head-up display device according to claim 8.
PCT/JP2020/026005 2019-07-03 2020-07-02 Head-up display device WO2021002428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529183A JPWO2021002428A1 (en) 2019-07-03 2020-07-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124628 2019-07-03
JP2019124628 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002428A1 true WO2021002428A1 (en) 2021-01-07

Family

ID=74101345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026005 WO2021002428A1 (en) 2019-07-03 2020-07-02 Head-up display device

Country Status (2)

Country Link
JP (1) JPWO2021002428A1 (en)
WO (1) WO2021002428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012231A (en) * 2019-07-03 2021-02-04 日本精機株式会社 Head-up display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214008A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Display device and head-up display system including the same
JP2016118423A (en) * 2014-12-19 2016-06-30 アイシン・エィ・ダブリュ株式会社 Virtual image display device
WO2016175033A1 (en) * 2015-04-28 2016-11-03 日本精機株式会社 Head-up display device
US20170192234A1 (en) * 2015-12-30 2017-07-06 Lite-On Technology Corp. Head-up display
JP2017194556A (en) * 2016-04-20 2017-10-26 株式会社Jvcケンウッド Device for displaying virtual image and method for displaying virtual image
WO2019008684A1 (en) * 2017-07-04 2019-01-10 マクセル株式会社 Projection optical system and head-up display device
WO2019044730A1 (en) * 2017-08-29 2019-03-07 日本精機株式会社 Headup display device
JP2019056885A (en) * 2017-09-22 2019-04-11 アイシン・エィ・ダブリュ株式会社 Virtual image display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214008A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Display device and head-up display system including the same
JP2016118423A (en) * 2014-12-19 2016-06-30 アイシン・エィ・ダブリュ株式会社 Virtual image display device
WO2016175033A1 (en) * 2015-04-28 2016-11-03 日本精機株式会社 Head-up display device
US20170192234A1 (en) * 2015-12-30 2017-07-06 Lite-On Technology Corp. Head-up display
JP2017194556A (en) * 2016-04-20 2017-10-26 株式会社Jvcケンウッド Device for displaying virtual image and method for displaying virtual image
WO2019008684A1 (en) * 2017-07-04 2019-01-10 マクセル株式会社 Projection optical system and head-up display device
WO2019044730A1 (en) * 2017-08-29 2019-03-07 日本精機株式会社 Headup display device
JP2019056885A (en) * 2017-09-22 2019-04-11 アイシン・エィ・ダブリュ株式会社 Virtual image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012231A (en) * 2019-07-03 2021-02-04 日本精機株式会社 Head-up display device
JP7279548B2 (en) 2019-07-03 2023-05-23 日本精機株式会社 head-up display device

Also Published As

Publication number Publication date
JPWO2021002428A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP6409015B2 (en) Projection display device for vehicle
JP2016206612A (en) Image display device and object device
JP2014026244A (en) Display device
WO2019163171A1 (en) Head-up display and moving body equipped with head-up display
CN110073275B (en) Virtual image display device
US11703683B2 (en) Head-up display and mobile body equipped with head-up display
JP6908898B2 (en) Image display device
US11604360B2 (en) Head-up display
WO2021002428A1 (en) Head-up display device
JP6580328B2 (en) Head-up display device for vehicle
WO2018186149A1 (en) Head-up display system, and mobile object provided with head-up display system
JP7279548B2 (en) head-up display device
WO2021261438A1 (en) Head-up display device
JP7354846B2 (en) heads up display device
JP7190653B2 (en) Head-up displays and moving objects with head-up displays
EP3511759B1 (en) Virtual image display device
JP6698120B2 (en) Optical projection system
WO2020009218A1 (en) Head-up display device
WO2018030203A1 (en) Display device
JP6628873B2 (en) Projection optical system, head-up display device, and automobile
WO2018199244A1 (en) Display system
JP6800285B2 (en) Vehicle head-up display device
JP2021051231A (en) Head-up display device
JP2021152558A (en) Virtual image display device
JP2019179065A (en) Headup display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834662

Country of ref document: EP

Kind code of ref document: A1