WO2021002358A1 - Culture apparatus and culture method - Google Patents

Culture apparatus and culture method Download PDF

Info

Publication number
WO2021002358A1
WO2021002358A1 PCT/JP2020/025668 JP2020025668W WO2021002358A1 WO 2021002358 A1 WO2021002358 A1 WO 2021002358A1 JP 2020025668 W JP2020025668 W JP 2020025668W WO 2021002358 A1 WO2021002358 A1 WO 2021002358A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
culture solution
vessel
solution
unit
Prior art date
Application number
PCT/JP2020/025668
Other languages
French (fr)
Japanese (ja)
Inventor
樋口 朗
Original Assignee
株式会社京都製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京都製作所 filed Critical 株式会社京都製作所
Publication of WO2021002358A1 publication Critical patent/WO2021002358A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • the present invention relates to a culture apparatus and a culture method for culturing cells using a culture solution.
  • the culture broth from 10 per milliliter 4 10 7 cell density culture initiation from a small amount of cells of a few milliliters, and 10 9 to 10 10 quantity of cells It is being propagated until it becomes.
  • cells are cultured in a petri dish using a culture solution of several milliliters.
  • the cells in the petri dish are divided into multiple dishes and cultured, and this is repeated to make a total culture solution volume of several tens of milliliters, as compared with the petri dish. It can be transferred to a large capacity culture vessel, for example a flask.
  • the cells are finally cultured in a large volume of culture medium, as described in, for example, Patent Document 1. Transferred to a bag.
  • a culture bag for example, 50 liters of culture medium is used to culture until the required number of cells is reached.
  • Such a culture is called an expanded culture.
  • the timing of transfer to a large-volume culture vessel and the rate of increase in volume are the growth curves of the cells (time and cell density). In relation to), it is generally determined by the logarithmic growth phase (the period showing a high cell proliferation rate). Especially when the permissible rate of capacity increase is small, the frequency of transfer is high, the burden on the operator is increased, and the risk of contamination is also high. In addition, since the growth curve may change significantly depending on the cell line, it is essential to monitor the cell density so as not to miss the timing of transfer. This is also a burden on the worker. Further, for each of several culture containers having different capacities, a device for stirring the culture solution in the container is required.
  • the present invention works while realizing continuous expansion culture from a small amount to a large amount in one container with high culture efficiency in a short period of time and reducing the risk of contamination in the expansion culture of cells.
  • the challenge is to enable automation to reduce the burden on the person.
  • a culture device that expands and cultures cells in a culture medium.
  • a culture container that houses the culture solution and A culture vessel swinging portion that swings the culture vessel so that the culture solution in the culture vessel is agitated, It has a culture solution supply unit for adding the culture solution to the culture medium as the number of cells in the culture solution increases.
  • the culture vessel swinging portion swings the culture vessel so that the smaller the amount of the culture solution in the culture vessel, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring.
  • Incubators are provided.
  • a method for culturing cells in which cells are expanded and cultured in a culture medium contained in a culture vessel.
  • the culture vessel is shaken so that the culture solution in the culture vessel is agitated.
  • the culture solution was added to the culture vessel, and the culture solution was added.
  • a method for culturing cells is provided in which the culture vessel is shaken so that the smaller the amount of the culture solution, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring.
  • FIG. 3 Schematic block diagram which shows the structure of the culture apparatus which concerns on one Embodiment of this invention.
  • Schematic perspective view of an example of a culture vessel Schematic partial cross-sectional view of the swinging portion of the culture vessel in the culture apparatus
  • the figure which shows an example of the structure of the culture solution supply part The figure which shows an example of the structure of the cell density measurement part Cross-sectional view showing the tilted state of the culture vessel when the amount of the culture solution is relatively small.
  • Block diagram showing the control system of the culture device The figure for demonstrating an example of the culture solution supply schedule
  • the culture apparatus is a culture apparatus for expanding and culturing cells in a culture solution, and the culture is such that the culture container containing the culture solution and the culture solution in the culture container are stirred.
  • the culture vessel swinging portion has a culture vessel swinging portion that swings the container, and a culture solution supply portion that adds a culture solution to the culture vessel as the number of cells in the culture solution increases. The smaller the amount of the culture solution in the culture container, the smaller the surface portion of the culture container that comes into contact with the culture solution that moves by stirring is shaken.
  • the culture vessel includes a circular bottom surface and a cylindrical inner peripheral surface erected from the outer peripheral edge of the bottom surface.
  • the swinging portion of the culture container tilts the culture container so that the culture solution collects in the corner sandwiched between the bottom surface and the inner peripheral surface, and the culture solution reciprocates along the corner.
  • the tilt direction of the culture vessel is changed, and the smaller the amount of the culture solution, the smaller the reciprocating range of the culture solution.
  • the culture solution can be stirred while suppressing its evaporation.
  • the swinging portion of the culture vessel tilts the culture vessel more as the amount of the culture solution is smaller.
  • the surface area of the culture solution is reduced, so that evaporation of the culture solution from the liquid surface can be suppressed.
  • the culture device has a humidity sensor that measures the humidity inside the culture container.
  • the humidity detected by the humidity sensor decreases, the tilt angle of the culture container is increased so that the area of the liquid surface of the culture solution becomes smaller. Thereby, the evaporation of the culture solution from the liquid surface can be suppressed.
  • the culture apparatus has a dissolved oxygen sensor that measures the amount of oxygen dissolved in the culture solution in the culture vessel.
  • the culture vessel shaking portion shakes the culture vessel so that when the amount of dissolved oxygen detected by the dissolved oxygen sensor decreases, at least one of the reciprocating cycle and the reciprocating range of the culture solution increases. Move. As a result, the culture solution is more agitated, sufficient oxygen is supplied and homogenized to the culture solution, and cell damage can be suppressed.
  • the swinging portion of the culture container changes the tilt direction of the culture container so that the culture solution orbits along the corner. ..
  • a large amount of the culture solution can be sufficiently stirred.
  • the culture apparatus sets the culture time based on the culture condition acquisition unit that acquires information on the culture conditions including at least the initial number of cells, the target number of cells, the target cell density, and the doubling time, and the culture condition information. It has a culture time calculation unit to be calculated, a supply schedule creation unit that creates a culture solution supply schedule based on the culture condition information and the culture time, and the culture solution supply unit is set to the supply schedule. Based on this, the amount of culture medium supplied per unit time is changed. This makes it possible to automate the expansion culture.
  • the difference between the cell density measuring unit that measures the cell density of the culture solution in the culture vessel and the cell density measured by the cell density measuring unit and the target cell density is equal to or less than a predetermined value. It has a supply schedule correction unit that corrects the supply schedule so as to be, and the culture solution supply unit changes the culture solution supply amount per unit time based on the corrected supply schedule. As a result, the cell density can be maintained at the target cell density while the expansion culture is automatically performed.
  • the cell density measuring unit is configured to measure the cell density by inputting a user's measurement instruction at an arbitrary timing. This allows the user to check the cell density at any time.
  • the supply schedule correction unit is configured to correct the supply schedule by inputting a correction instruction from the user. This makes it possible to create a supply schedule desired by the user.
  • the cell density measuring unit includes a tube, a roller pump provided in the tube, and a cell density sensor for measuring the cell density of the culture solution in the tube, and the tube has one end thereof in the culture vessel. The other end is arranged so as to be located above the liquid level of the culture solution while being located in the culture solution of the above, and the roller pump is rotated in the normal direction to fill the tube with the culture solution via the one end. , The culture solution in the tube is returned to the culture vessel by reversing. As a result, the entire culture broth is used for culturing without a part of the culture broth staying in the tube.
  • the cell density sensor measures the culture solution in the portion of the tube arranged so as to have an inclination angle of 30 ° or less with respect to the vertical direction. As a result, the precipitation of cells in the tube is suppressed, and the cell density sensor can accurately measure the cell density.
  • the culture apparatus has a swing schedule creation unit that creates a swing schedule showing a change in the swing pattern of the culture container swing section with respect to the culture container based on the supply schedule.
  • the rocking portion swings the culture vessel based on the rocking schedule.
  • the culture vessel can be shaken according to the amount of the culture solution in the culture vessel.
  • the culture apparatus displays a Gantt chart creation unit that creates a Gantt chart showing at least one change in a swing pattern, cell density, culture temperature, gas concentration, and gas flow rate of the culture vessel, and the Gantt chart. It has a display unit and a display unit. This allows the user to check the culture status.
  • the culture apparatus has a graph creation unit that creates a graph showing changes in at least one of the amount of culture solution and the cell density in the culture vessel, and the display unit together with the Gantt chart have the graph creation unit. Display the graph created by. This allows the user to check the status of at least one of the amount of culture medium and the cell density in the culture vessel.
  • the culture apparatus has a culture end condition acquisition unit for acquiring information on the culture end condition including at least one of the number of cells reached, the amount of the reached culture solution, and the reached culture time, and the culture end condition is satisfied.
  • the culture solution supply unit stops the supply of the culture solution
  • the culture vessel swinging unit stops the shaking of the culture vessel.
  • the culture apparatus has a notification unit for notifying the user when the culture end condition is satisfied, and a culture end input unit for the user to end the culture, and the user input to the culture end input unit can be performed.
  • the culture solution supply unit stops the supply of the culture solution
  • the culture vessel swinging unit stops the shaking of the culture vessel. As a result, it is suppressed that the cells die after being left unattended after the completion of the culture.
  • the culture solution supply unit is provided in the culture solution storage container for storing the culture solution, a tube having one end connected to the culture solution storage container and the other end connected to the culture solution container, and the tube.
  • a portion of the tube is disposed on the outer surface of the culture vessel, including a roller pump.
  • the culture apparatus When the temperature is controlled before the culture solution is supplied to the culture container as described above, for example, the culture apparatus includes a refrigerator for refrigerating and accommodating the culture solution storage container and a heater for heating the culture container. You may.
  • Another aspect of the culture method of the present invention is a method for culturing cells in which cells are expanded and cultured in a culture solution contained in the culture container, and the culture container is such that the culture solution in the culture container is stirred.
  • the culture solution is added to the culture container as the number of cells in the culture solution increases, and the smaller the amount of the culture solution, the more the surface portion of the culture container that comes into contact with the culture solution that moves by stirring.
  • the culture vessel is shaken so that
  • FIG. 1 is a schematic configuration diagram showing a configuration of a culture apparatus according to an embodiment of the present invention.
  • the culture apparatus 10 shakes the culture container 12 that houses the culture solution CS containing cells and the culture container 12 that shakes the culture solution CS in the culture container 12 to stir. It has a moving unit 14 and a culture solution supply unit 16 that supplies the culture solution CS to the culture container 12.
  • the culture apparatus 10 includes a humidity sensor 18 for measuring the humidity in the culture vessel 12, a dissolved oxygen sensor 20 for measuring the amount of oxygen dissolved in the culture solution CS in the culture vessel 12. It has a cell density measuring unit 22 for measuring the cell density in the culture solution CS in the culture vessel 12.
  • the culture device 10 has a gas supply unit 24 that supplies a mixed gas of humidified oxygen, carbon dioxide, and nitrogen to the culture container 12.
  • the culture apparatus 10 controls the culture vessel shaking unit 14, the culture solution supply unit 16, and the gas supply unit 24 based on the detection results of the humidity sensor 18, the dissolved oxygen sensor 20, and the cell density measurement unit 22, respectively. It has a control unit 26.
  • the culture container 12 is a container for accommodating the culture solution CS, and cells are cultured inside the culture container 12 using the culture solution CS.
  • cells are cultured using the culture solution CS, that is, expanded culture, while gradually adding the culture solution CS from a small amount (less than 1 liter, for example, 50 ml) as the number of cells increases. Will be done. Therefore, the culture vessel 12 has a capacity capable of accommodating and stirring the maximum amount (for example, 50 liters) of the culture solution used for culturing.
  • FIG. 2 is a perspective view showing the shape of an example of the culture vessel 12.
  • the XYZ Cartesian coordinate system is shown in the drawings, this is for facilitating the understanding of the embodiment of the invention and does not limit the invention.
  • the X-axis direction and the Y-axis direction are horizontal directions
  • the Z-axis direction is a vertical direction.
  • the culture vessel 12 is supported by a disk-shaped bottom plate portion 12a, a cylindrical side wall portion 12b erected from the outer peripheral edge of the bottom plate portion 12a, and a side wall portion 12b. It is provided with a top plate portion 12c to be formed. That is, the culture vessel 12 has a so-called basin shape. The height of the side wall portion 12b is made smaller than the radius of the bottom plate portion 12a. Further, the top plate portion 12c is removable and functions as a lid.
  • FIG. 3 is a schematic partial cross-sectional view of the culture vessel swinging portion 14 in the culture apparatus 10.
  • FIG. 4 is a schematic partial cross-sectional view of a part of the culture vessel swinging portion 14 shown in FIG. 3 viewed from different directions.
  • the culture vessel swinging portion (culture vessel swinging device) 14 in the culture apparatus 10 extends in the vertical direction (Z-axis direction) with the stage 30 holding the culture vessel 12.
  • a rotary actuator 34 including a rotary table 32 that rotates around a rotation center axis C0 is provided.
  • the stage 30 and the rotary actuator 34 are drive-connected via the swing head 36 and the tilting mechanism 38.
  • the swing head 36 supports the stage 30 and swings extending in the horizontal direction (X-axis direction) and extending in the horizontal direction (Y-axis direction) and orthogonal to the swing axis C1.
  • the culture vessel swinging portion 14 is provided so as to swing around the shaft C2.
  • the swing head 36 is provided with a connecting shaft 40 for driving and connecting with the rotary actuator 34 via a tilting mechanism 38 below the swing head 36.
  • the connecting shaft 40 of the swing head 36 extends in the vertical direction (Z-axis direction).
  • the tilting mechanism 38 is a link mechanism for tilting the stage 30 via the swinging head 36, that is, tilting the culture vessel 12 on the stage 30 in the horizontal direction. Therefore, the tilting mechanism 38 includes a base portion 42, a swing head connecting portion 44 connected to the swing head 36, and a link arm 46 connecting the base portion 42 and the swing head connecting portion 44. ..
  • the base portion 42 of the tilting mechanism 38 is attached to the rotary table 32 of the rotary actuator 34. Therefore, when the rotary actuator 34 is driven, the base portion 42 rotates around the rotation center axis C0 together with the rotary table 32.
  • the swing head connecting portion 44 of the tilting mechanism 38 is extrapolated to the connecting shaft 40 of the swing head 36 so as to be slidable, for example, via a bearing.
  • the link arm 46 of the tilting mechanism 38 is configured to connect the base portion 42 and the swing head connecting portion 44.
  • the link arm 46 includes one end rotatably fixed to the swing head connecting portion 44 and the other end rotatably fixed to the base portion 42.
  • the rotation shaft C3 at one end and the rotation shaft C4 at the other end of the link arm 46 extend in the horizontal direction and are parallel to each other.
  • the rotary actuator 34 to which the base portion 42 of the tilting mechanism 38 is attached is moved up and down in the vertical direction (Z-axis direction) by the ball screw mechanism 48.
  • the ball screw mechanism 48 includes a screw shaft 50 extending in the vertical direction (Z-axis direction), a nut 52 engaging with the screw shaft 50, and a motor (not shown) for rotating the screw shaft 50. ..
  • the nut 52 is attached to the elevating bracket 54.
  • a rotary actuator 34 is attached to the elevating bracket 54.
  • the rotary actuator 34 moves up and down together with the elevating bracket 54 via the nut 52.
  • the stage 30 is tilted via the tilting mechanism 38.
  • the base portion 42 of the tilting mechanism 38 attached to the rotary actuator 34 rises, whereby the link arm 46 pushes the swing head connecting portion 44.
  • the swing head 36 and the swing head connecting portion 44 rotate about at least one of the swing shafts C1 and C2 (the swing shaft C2 in FIG. 13).
  • the stage 30 is tilted, and the culture vessel 12 on the stage 30 is also tilted.
  • the tilting mechanism 38 rotates around the rotation center axis C0, whereby the tilting direction of the stage 30 Changes.
  • the culture solution CS in the culture container 12 is stirred, and the cells in the culture solution CS are cultured.
  • the culture solution supply unit 16 that supplies the culture solution CS to the culture container 12 is controlled by the control unit 26.
  • FIG. 6 is a diagram showing an example of the configuration of the culture solution supply unit 16.
  • the culture solution supply unit 16 is attached to the culture solution storage container 60 for storing the culture solution CS, one end 62a connected to the culture solution storage container 60, and the culture solution container 12. It includes a tube 62 having a connected other end 62b and a roller pump 64 provided on the tube 62.
  • the control unit 26 controls the supply amount of the culture solution CS to the culture container 12 by controlling the roller pump 64 in the culture solution supply unit 16. The details of controlling the supply amount of the culture solution CS by the control unit 26 will be described later.
  • a part of the tube 62 is arranged on the outer surface of the culture vessel 12.
  • a part of the tube 62 is arranged in a helical or mianda shape on the outer surface of the top plate portion 12c of the culture vessel 12.
  • the reason why the tube 62 is arranged on the outer surface of the culture vessel 12 in this way is that the temperature of the culture solution CS in the tube 62 is brought close to the temperature of the culture solution CS in the culture vessel 12. For example, as shown in FIG.
  • the culture vessel 12 is shaken by the culture vessel swinging portion 14 as described above. Therefore, as the tube 62, a silicon tube made of a material having high flexibility, for example, silicone rubber, is preferable. Further, the roller pump 64 may be provided in the culture vessel 12, and the portion of the tube 62 from the roller pump 64 to the culture vessel 12 may be arranged on the outer surface of the culture vessel 12.
  • the other end 62b of the tube 62 is provided along the inner peripheral surface 12d of the culture vessel 12, specifically, the culture flowing out from the opening of the other end 62b of the tube 62.
  • the other end 62b of the tube 62 is provided along the inner peripheral surface 12d so that the liquid CS flows along the inner peripheral surface 12d.
  • the culture solution CS flowing out from the other end 62b of the tube 62 is warmed by the inner peripheral surface 12d.
  • it is preferable that the other end 62b is cut diagonally so that the opening of the other end 62b faces the inner peripheral surface 12d.
  • the tube 62 By arranging the tube 62 on the outer surface of the culture vessel 12 in this way, it is not necessary to separately provide a heating device such as a heater for heating the culture solution in the tube 62.
  • the mixed gas is supplied to the culture container 12 by the gas supply unit 24.
  • the gas supply unit 24 is configured to mix oxygen, carbon dioxide, and nitrogen, and humidify the mixed gas by a humidifying unit (not shown).
  • the humidified mixed gas is introduced into the culture vessel 12 through a filter (not shown) for preventing contamination of various germs and a gas introduction port (not shown) provided in the culture vessel 12.
  • the culture vessel 12 is provided with a gas exhaust port for exhausting the gas inside, and the gas that has passed through the gas exhaust port is discharged to the atmosphere through a filter.
  • the supply timing and the supply amount of the gas are controlled by the control unit 26.
  • the humidity sensor 18 is attached to the inner peripheral surface 12d of the culture vessel 12 so as not to be immersed in the culture solution CS, and measures the humidity in the culture vessel 12. Further, the humidity sensor 18 outputs a signal corresponding to the measured humidity to the control unit 26.
  • the dissolved oxygen sensor 20 measures the amount of oxygen dissolved in the culture solution CS in the culture vessel 12.
  • a fluorescent dissolved oxygen sensor is used as the dissolved oxygen sensor 20.
  • the fluorescent dissolved oxygen sensor is arranged on the bottom surface 12e of the culture vessel 12 and coated with a fluorescent substance, a light source that irradiates the chip with ultraviolet rays or the like from the outside of the culture vessel 12, and radiates from the chip. It is provided with a light receiving element that receives the received fluorescence.
  • the fluorescent substance When the fluorescent substance absorbs light energy such as ultraviolet rays from the light source, it transitions from the ground state to the excited state. Excited molecules of fluorescent material usually radiate fluorescence and return to the ground state. However, at this time, if oxygen molecules are present around the molecules in the excited state, the excitation energy is deprived by the oxygen molecules, and so-called oxygen quenching occurs in which the radiant intensity of fluorescence decreases. Utilizing this oxygen quenching, that is, the fact that the radiant intensity of fluorescence is inversely proportional to the oxygen molecule concentration, the fluorescent dissolved oxygen sensor measures the dissolved oxygen amount of the culture solution in the culture vessel.
  • the dissolved oxygen sensor 20 outputs a signal corresponding to the measured dissolved oxygen amount to the control unit 26.
  • the cell density measuring unit 22 measures the cell density of the culture solution CS in the culture vessel 12. The measured cell density is output to the control unit 26. The cell density during culturing is monitored by the periodic measurement of the cell density measuring unit 22. Further, although the details will be described later, the control contents of the culture vessel swinging unit 14 and the culture solution supply unit 16 are changed (corrected) based on the measurement results of the cell density measuring unit 22.
  • FIG. 7 is a diagram showing an example of the configuration of the cell density measuring unit.
  • the cell density measuring unit 22 measures the cell density of the tube 70, the roller pump 72 provided in the tube 70, and the culture solution CS in the tube 70. Includes a density sensor 74.
  • the tube 70 is arranged so that one end 70a thereof is located in the culture solution CS in the culture vessel 12 and the other end 70b is located above the liquid level LS of the culture solution CS.
  • the roller pump 72 rotates in the normal direction (rotates in the direction of the arrow R)
  • a flow of the culture solution CS from one end 70a of the tube 70 to the other end 70b is generated in the tube 70. That is, the culture solution CS that has flowed into the tube 70 via one end 70a returns to the culture vessel 12 again via the other end 70b.
  • the cell density sensor 74 measures the cell density of the culture solution CS in the tube 70.
  • the cell density sensor 74 include a sensor for measuring the turbidity of the culture solution CS, a sensor for measuring the degree of laser scattering by cells, and a sensor for measuring the dielectric constant of the culture solution CS.
  • the cell density sensor 74 is provided in the portion of the tube 70 between the one end 70a into which the culture solution CS flows into the culture vessel 12 and the roller pump 72.
  • the cell density sensor 74 may be provided in the portion of the tube 70 between the roller pump 72 and the other end 70b where the culture solution CS flows out toward the culture vessel 12.
  • the roller pump 72 reverses (rotates in the opposite direction of the arrow R).
  • the culture solution CS in the tube 70 is returned to the culture vessel 12 via one end 70a.
  • the culture solution CS in the culture container 12 does not flow into the tube 70 via the other end 70b.
  • a part of the culture solution CS is suppressed from staying in the tube 70, and as a result, the entire culture solution CS is used for culturing.
  • the cell density sensor 74 may not be able to accurately measure the cell density due to the precipitation of cells in the tube 70.
  • the tube 70 includes an inclined portion 70c arranged so as to have an inclination angle of a predetermined angle ⁇ (for example, 30 °) or less with respect to the vertical direction (Z-axis direction). ..
  • the cell density sensor 74 measures the cell density in the inclined portion 70c. Since such an inclined portion 70c is less likely to cause cell precipitation than the portion of the tube 70 having a predetermined angle ⁇ or more, the cell density sensor 74 can accurately measure the cell density.
  • control unit 26 is composed of, for example, a control board on which a storage device and a CPU are mounted. By operating according to the program stored in the storage device, the CPU executes an operation related to cell culture described later.
  • control unit 26 controls the culture solution supply unit 16 (in the case of the present embodiment, the roller pump 64).
  • the culture solution supply unit 16 (roller pump 64) adds the culture solution CS to the culture solution CS as the number of cells in the culture solution CS of the culture container 12 increases.
  • the roller pump 64 gradually adds the culture solution CS to the culture container 12 until the culture solution CS of less than 1 liter (for example, 200 ml) becomes 50 liters in one culture container 12.
  • control unit 26 controls the culture vessel swinging portion 14 (its rotary actuator 34 and ball screw mechanism 48) based on the amount of the culture solution CS in the culture vessel 12.
  • the culture vessel swinging unit 14 swings the culture vessel 12 so that the culture solution CS is agitated while suppressing the evaporation of the culture solution CS in the culture vessel 12. To do. Specifically, in the culture vessel swinging portion 14, the smaller the amount of the culture solution CS in the culture vessel 12, the smaller the surface portion of the culture vessel 12 that comes into contact with the culture solution that moves by stirring. Shake the culture vessel 12. The shaking of the culture vessel 12, that is, the stirring of the culture solution CS will be described.
  • FIG. 8A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small.
  • FIG. 8B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small.
  • the culture solution is agitated with the culture vessel 12 tilted.
  • the inclination angle ⁇ (angle with respect to the culture container 12 in the horizontal state) of the culture container 12 is increased as the amount of the culture solution CS in the culture container 12 is small.
  • the size of the area of the liquid level LS of the culture solution CS becomes smaller by tilting the culture container 12 greatly.
  • By reducing the size of the area of the liquid level LS it is possible to suppress the evaporation of the culture solution CS from the liquid level LS.
  • the culture solution CS evaporates, the cell density in the culture solution CS increases.
  • the amount of the culture solution CS is large (for example, 1 liter or more)
  • the amount of increase in cell density due to evaporation of the culture solution CS is relatively small, and the effect of the increase in density on cells is small.
  • the amount of the culture solution CS is small (for example, less than 1 liter)
  • the amount of increase in cell density due to evaporation of the culture solution CS is relatively large, and the effect on cells due to the increase in density is large.
  • the smaller the amount of the culture solution CS the greater the effect of evaporation on the cells, and in some cases, a part of the cells is killed or damaged.
  • the inclination angle ⁇ of the culture container 12 may be constant. ..
  • the culture solution CS is sandwiched between the circular bottom surface 12e of the culture vessel 12 and the cylindrical inner peripheral surface 12d erected from the outer peripheral edge of the bottom surface 12e. It collects in the corner 12f. In this state, the tilting direction of the culture vessel 12 is changed.
  • FIG. 9 is a diagram showing stirring of the culture solution when the amount of the culture solution is relatively small.
  • FIG. 9 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
  • a relatively small amount (for example, less than 1 liter) of the culture solution CS is reciprocated along the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture container 12.
  • the rotary actuator 34 repeats the forward rotation and the reverse rotation of the tilting mechanism 38 in an angle range of 90 degrees
  • the tilting direction of the culture vessel 12 changes in an angle range of 90 degrees.
  • the culture solution CS is reciprocated in an angle range of 90 degrees.
  • the culture solution CS is stirred.
  • the culture solution CS moves on the surface of the culture vessel 12 by stirring, a very small amount of the culture solution CS remains on the surface after most (lumpy) culture solution CS has passed. For example, as shown in FIG. 9, after most (lumps) of the culture solution CS move to the position of 45 degrees, a very small amount of the culture solution CS remains at the position of 0 degrees. This remaining minute amount of culture solution CS is easy to evaporate. Therefore, before the minute amount of the culture solution CS evaporates, the massive culture solution CS returns and absorbs the minute amount of the culture solution CS. Further, the smaller the amount of the culture solution CS, the greater the influence of evaporation on the cells, so that the reciprocating range of the culture solution CS is reduced. As a result, when the amount of the culture solution CS is relatively small, the evaporation of the culture solution CS can be suppressed.
  • the culture solution CS is added to the culture container 12, and the amount of the culture solution CS in the culture container 12 increases.
  • the reciprocating range of the culture solution CS is expanded as the amount increases. This is because the influence of the evaporation on the cells is reduced by increasing the culture solution CS, but it is necessary to stir the culture solution CS more.
  • the culture solution CS When the culture solution CS is relatively small (for example, less than 1 liter), the culture solution CS is reciprocated in the culture vessel 12 in order to suppress evaporation, as described above. On the other hand, when the culture solution CS is added as the number of cells increases and the culture solution CS is relatively large (for example, 1 liter or more), the culture solution CS is circulated in the culture vessel 12.
  • FIG. 10A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large.
  • FIG. 10B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large.
  • the culture container 12 is compared with the case where the culture solution CS is relatively small.
  • the tilt angle ⁇ of is small. This is because the depth of the culture solution CS is reduced and a gas such as oxygen is distributed throughout the culture solution CS.
  • the culture solution CS is accumulated in the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture vessel 12, as shown in FIG. 10B. In this state, the tilting direction of the culture vessel 12 is changed.
  • FIG. 11 is a diagram showing stirring of the culture solution CS when the amount of the culture solution CS is relatively large.
  • FIG. 11 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
  • a relatively large amount (for example, 1 liter or more) of the culture solution CS is circulated along the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture container 12.
  • the rotary actuator 34 keeps rotating the tilting mechanism 38 in one direction, so that the tilting direction of the culture vessel 12 keeps rotating in one direction.
  • the culture solution CS is circulated.
  • the culture solution CS is stirred.
  • the control unit 26 changes the stirring mode (oscillation pattern) based on the amount of the culture solution CS in the culture vessel 12. For example, when the amount of the culture solution CS in the culture container 12 is smaller than the predetermined threshold amount (for example, 1 liter), the culture solution CS is reciprocated by reciprocating the culture solution CS as shown in FIG. The culture solution CS is stirred. Further, the smaller the amount of the culture solution CS, the smaller the reciprocating range of the culture solution CS. On the other hand, when the amount of the culture solution CS in the culture vessel 12 exceeds a predetermined threshold amount, the culture solution CS is stirred by circulating the culture solution CS as shown in FIG. The amount of the culture solution CS in the culture container 12 may be calculated from, for example, the weight of the culture solution CS in the culture container 12 measured by a weight sensor (not shown).
  • control unit 26 is configured to control the culture vessel rocking device 14 based on the measurement results of the humidity sensor 18 and the dissolved oxygen sensor 20 while stirring the culture solution CS. ing.
  • the culture vessel swinging unit controlled by the control unit 26 In No. 14 the inclination angle of the culture vessel 12 (that is, the stage 30) is increased so that the area of the liquid level LS of the culture solution CS is small.
  • the culture solution CS tends to evaporate from the liquid level LS. Therefore, by reducing the area of the liquid level LS of the culture solution CS, its evaporation can be suppressed.
  • the culture vessel swinging unit 14 controlled by the control unit 26 moves the culture solution CS.
  • the culture vessel 12 is swung so that at least one of the reciprocating cycle and the reciprocating range is increased.
  • the dissolved oxygen sensor 20 (the chip thereof) is provided at a position on the culture vessel 12 that can come into contact with the culture solution CS and detect the dissolved oxygen amount regardless of the amount of the culture solution CS in the culture vessel 12.
  • the dissolved oxygen sensor 20 is provided on the outer peripheral edge of the bottom surface 12e of the culture vessel 12.
  • the culture vessel 12 is shaken by the culture vessel swinging portion 14 so that the culture solution CS comes into contact with the dissolved oxygen sensor 20.
  • the shaking speed and shaking pattern of the culture vessel 12 may be temporarily changed, or the culture may be performed.
  • the swing of the container 12 may be temporarily stopped.
  • the amount of dissolved oxygen in the culture solution CS in the culture container 12 decreases, the cells in the culture solution CS are damaged. Therefore, by increasing at least one of the reciprocating cycle and the reciprocating range of the culture solution CS, the culture solution CS is more agitated, whereby a large amount of oxygen is taken into the culture solution CS. As a result, cell damage can be suppressed.
  • the culture solution CS in the culture vessel 12 is relatively large and orbits, the culture solution CS is more agitated by increasing the orbiting speed, whereby a large amount of the culture solution CS is contained in the culture solution CS. Can take in oxygen.
  • control unit 26 controls the culture vessel swinging unit 14 and the culture solution supply unit 16 according to the culture schedule. This will be described.
  • FIG. 12 is a block diagram showing a control system of the culture apparatus 10.
  • the control unit 26 of the culture apparatus 10 acquires information on the culture from the user, creates a culture schedule based on the acquired information, and based on the created culture schedule, the culture container swing unit 14 and the culture as described above.
  • the liquid supply unit 16 is controlled.
  • the control unit 26 includes a culture condition acquisition unit 100 that acquires culture condition information from the user, and a culture end condition acquisition unit 102 that acquires culture end condition information from the user.
  • the culture time calculation unit 104 that calculates the culture time based on the acquired culture conditions, the supply schedule creation / correction unit 106 that creates and corrects the supply schedule of the culture solution CS to be supplied to the culture vessel 12, and the culture vessel 12 shake.
  • a swing schedule creation unit 108 for creating a dynamic schedule a Gantt chart creation unit 110 for creating a Gantt chart based on a swing schedule, a graph creation unit 112 for creating a graph of culture medium volume and cell density, and a culture It includes a culture end determination unit 114 for determining the end, and an output unit 116 for outputting information about the culture.
  • the control unit 26 is composed of a storage device and a control board on which the CPU is mounted, the CPU operates according to the program stored in the storage device, so that the CPU acquires these culture conditions. It functions as a unit 100 or the like.
  • an input device 80 such as a keyboard, a mouse, and a touch panel is connected to the control unit 26 in order to acquire various instruction inputs from the user.
  • a display device 82 such as a monitor is connected to the control unit 26 so that the output unit 116 outputs information about the culture to the user.
  • the input device 80 and the display device 82 may be integrated as a touch screen.
  • the culture condition acquisition unit 100 in the control unit 26 acquires culture condition information including at least the initial number of cells, the target cell number, the target cell density, and the doubling time from the user via the input device 80 as the culture condition information. To do. That is, the culture condition acquisition unit 100 acquires the minimum information necessary for creating the culture schedule (supply schedule and swing schedule).
  • the initial number of cells is the number of cells at the start of culturing
  • the target number of cells is the final number of cells obtained by culturing
  • the target cell density is the cell density to be maintained during culturing.
  • the culture end condition acquisition unit 102 in the control unit 26 inputs information on the culture end condition including at least one of the number of cells reached, the amount of the reached culture solution, and the reached culture time as the culture end condition information from the user to the device 80. Get through.
  • the culture time calculation unit 104 in the control unit 26 calculates the culture time required for culture based on the culture condition information acquired by the culture condition acquisition unit 100 from the user. Specifically, the culture time calculation unit 104 calculates the time required for the number of cells to increase from the initial number of cells to the target number of cells while maintaining the target cell density as the culture time, based on the doubling time. ..
  • the supply schedule creation / correction unit 106 in the control unit 26 creates a culture solution supply schedule as a culture schedule based on the culture condition information and the culture time. Specifically, the change in the number of cells during the increase from the initial number of cells to the target number of cells in the culture time calculated by the culture time calculation unit 104 is calculated based on the doubling time, and based on the change in the number of cells. The change in the amount of culture solution CS in the culture vessel 12 required to maintain the target cell density is calculated. Based on the calculation result, the supply schedule creation / correction unit 106 uses the temporal change of the flow rate (supply amount per unit time) of the culture solution CS supplied by the culture solution supply unit 16 to the culture container 12 as the supply schedule. create. The control unit 26 changes the flow rate of the culture solution supply unit 16 (in the case of the present embodiment, the roller pump 64) based on this supply schedule.
  • the supply schedule is created so that the cell density does not become higher than the target cell density.
  • FIG. 13 is a diagram for explaining an example of the culture solution supply schedule.
  • FIG. 13 shows the change in the target flow rate required to maintain the target cell density.
  • a supply schedule is created so that the flow rate (controlled flow rate) of the culture solution supply unit 16 does not fall below this target flow rate.
  • a supply schedule a schedule is created in which the flow rate of the culture solution supply unit 16 is gradually increased by the minimum necessary increase amount.
  • the cell density in the culture medium CS in the culture vessel 12 is lower than the target cell density, but the cell density greatly exceeds the target cell density (cells become overcrowded). That is suppressed. That is, in the present embodiment, the cell density is controlled and the supply of the culture solution is scheduled so as to maintain the so-called logarithmic growth phase, thereby shortening the culture period and increasing the culture efficiency.
  • the supply schedule may be created as a change in the ON / OFF ratio of the culture solution supply unit 16. That is, the culture solution supply unit 16 may intermittently supply the culture solution CS to the culture container 12. For example, when the roller pump 64 of the culture solution supply unit 16 needs to supply the culture solution CS at a flow rate of 10 ml / min, the solution is supplied at a flow rate of 60 ml / min for 2 seconds and the solution is stopped for 10 seconds. And may be repeated alternately. By such intermittent liquid feeding, when the flow rate of the culture solution supply unit 16 is increased stepwise as shown in FIG. 13, the amount of increase to the next flow rate can be reduced. As a result, the excessive supply of the culture solution CS to the culture vessel 12, that is, the excessive decrease in cell density is suppressed.
  • the supply schedule creation / correction unit 106 corrects the supply schedule so that the difference between the cell density measured by the cell density measurement unit 22 and the target cell density is equal to or less than a predetermined value during culturing.
  • the supply schedule creation / correction unit 106 Corrects the supply schedule in use. For example, when the measured cell density is higher than the target cell density by more than a predetermined threshold value, the supply schedule creation / correction unit 106 increases the supply amount of the culture solution CS to the culture vessel 12. Correct the supply schedule. Based on the corrected supply schedule, the control unit 26 changes the flow rate of the culture solution supply unit 16 (roller pump 64 in the case of the present embodiment), so that the cells of the culture solution CS in the culture container 12 are changed. The difference between the density and the target cell density is made smaller than the predetermined value.
  • the cell density measuring unit 22 may be configured to measure the cell density according to a user's instruction at an arbitrary timing during culturing. Good.
  • the cell density measuring unit 22 measures the cell density during culturing by receiving a user's measurement instruction input to the input device 80.
  • the measured cell density is output to the user by the output unit 116 via the display device 82. This allows the user to check the cell density at any time.
  • the supply schedule creation / correction unit 106 may be configured to correct the supply schedule by inputting the user's correction instruction. For example, after confirming the cell density, the user inputs an increase / decrease value of the supply amount of the culture solution CS to the input device 80 as a correction instruction input. The supply schedule creation / correction unit 106 corrects the supply schedule so that the supply amount of the culture solution CS increases or decreases based on the input increase / decrease value. As a result, the supply schedule of the culture solution CS desired by the user can be created.
  • the swing schedule creation unit 108 in the control unit 26 creates a swing schedule for the culture vessel 12 as a culture schedule based on the supply schedule of the culture solution CS created / corrected by the supply schedule creation / correction unit 106. Specifically, the swing schedule creation unit 108 creates a swing schedule indicating a change in the swing pattern of the culture vessel 12 based on a supply schedule, that is, a change in the amount of the culture solution CS in the culture vessel 12. .. As described above, the swing pattern (tilt angle ⁇ , the cycle of reciprocating motion of the culture solution CS and the reciprocating range) of the culture container 12 differs depending on the amount of the culture solution CS in the culture container 12.
  • the control unit 26 stores in the storage device a swing pattern determination table showing the correspondence between the swing pattern and the amount of the culture solution CS.
  • the swing schedule creation unit 108 creates a swing schedule based on the swing pattern determination table and the supply schedule.
  • the control unit 26 controls the swing of the culture vessel 12 by the culture vessel swing section 14 based on this swing schedule.
  • the Gantt chart creation unit 110 in the control unit 26 creates a Gantt chart showing changes in the swing pattern based on the swing schedule created by the swing schedule creation unit 108.
  • the created Gantt chart is output to the user by the output unit 116 via the display device 82.
  • FIG. 14 shows an example of a Gantt chart of a swing pattern of the culture vessel 12.
  • FIG. 14 shows a Gantt chart 120 of five types of swing patterns A to E performed in a culture time of about 15 days.
  • DX on the horizontal axis represents the Xth day after the start of culturing.
  • the execution period of each of the swing patterns A to E is indicated by the time bars 122A to 122E.
  • the length of the time bar indicates the duration of the swing pattern
  • the left end indicates the start timing of the swing pattern
  • the right end indicates the end timing of the swing pattern.
  • the seek slider 124 also indicates the current timing of the culture time. That is, when the culture is started, the seek slider 124 starts to move to the right side of the Gantt chart 120.
  • the user can confirm the culture status.
  • the culture temperature (temperature in the culture vessel), gas concentration (concentration of oxygen and carbon dioxide in the culture vessel), and the gas supply unit 22 are on the time bars 122A to 122E of the swing patterns A to E of the Gantt chart. At least one measurement of gas flow rate may be displayed. This allows the user to visually confirm the relationship between the change in the swing pattern and the related change in parameters such as the culture temperature.
  • the graph creation unit 112 in the control unit 26 creates a graph showing changes in at least one of the culture fluid volume and the cell density in the culture vessel 12.
  • the output unit 116 outputs the created graph to the user via the display device 82 together with the Gantt chart created by the Gantt chart creation unit 110.
  • FIG. 15 is an example of a graph showing a change in the amount of culture solution in the culture vessel 12. Further, FIG. 16 is an example of a graph showing changes in cell density.
  • Graph 130 shown in FIG. 15 shows changes in the amount of culture solution in the two types of culture containers 12.
  • the dotted line shows the change in the amount of the culture solution (predicted value) based on the supply schedule of the culture solution CS (before correction) first created by the supply schedule creation / correction unit 106.
  • the solid line shows the change in the amount of the culture solution (actual value) based on the supply schedule corrected based on the result of the periodic measurement of the cell density of the cell density measuring unit 22.
  • the tip of the solid line shows the current value of the culture medium volume.
  • Graph 140 shown in FIG. 16 shows two types of changes in cell density.
  • the dotted line shows the change in cell density (predicted value) based on the supply schedule of the culture medium CS (before correction) first created by the supply schedule creation / correction unit 106.
  • the solid line shows the change in cell density (actual value) measured by the cell density measuring unit 22.
  • the tip of the solid line shows the current value of the culture medium volume.
  • the graph 140 shows a line showing the target cell density TC, a line showing the upper limit value UC of the cell density, and a line showing the lower limit value LC of the cell density.
  • the upper limit value UC and the lower limit value LC of the cell density are acquired from the user by the culture condition acquisition unit 100. By referring to such a graph 140, the user can confirm the change in cell density. Further, such a graph 140 can be used as a reference when the user corrects the supply schedule as described above.
  • the culture end determination unit 114 in the control unit 26 determines whether or not the culture end condition acquired by the culture end condition acquisition unit 102 from the user is satisfied.
  • the control unit 26 stops the shaking of the culture container 12 of the culture container shaking unit 14 and stops the supply of the culture solution CS of the culture solution supply unit 16.
  • the control unit 26 also stops the gas supply of the gas supply unit 24.
  • the output unit 116 of the control unit 26 notifies the user of the end of the culture via the display device 82.
  • the end of the culture may be notified by voice via a speaker or the like.
  • the culture end condition acquisition unit 102 acquires a plurality of culture end conditions from the user, the culture may be terminated when at least one culture end condition is satisfied.
  • the control unit 26 satisfies the culture end condition while keeping the culture container swinging unit 14, the culture solution supply unit 16, and the gas supply unit 24 operating without stopping. Notify the user via the display device 82, the speaker, or the like. After that, when the user executes an instruction input for the end of culture to the input device 80, the control unit 26 stops the culture container swing unit 14, the culture solution supply unit 16, and the gas supply unit 24.
  • the output unit 116 of the control unit 26 outputs information about the culture to the user via the display device 82.
  • the output unit 116 is the Gantt chart created by the Gantt chart creation unit 110, the graph created by the graph creation unit 112, the culture conditions acquired by the culture condition acquisition unit 100, and the culture end condition acquisition unit 102.
  • the display device 82 is displayed with the culture end conditions and the like acquired by. Further, as other information, the output unit 116 may display information such as the elapsed time from the start of culture, the current number of cells, the current amount of culture solution, and the current cell density on the display device 82 in real time.
  • the control unit 26 may be configured so that the information output by the output unit 116, that is, the information displayed by the display device 82 can be selected by the user via the input device 80.
  • control unit 26 having the configuration shown in FIG. 12 controls the culture vessel shaking unit 14 and the culture solution supply unit 16 based on the culture schedule (culture solution supply schedule and culture vessel shaking schedule). , Expansion culture can be automated.
  • the culture vessel has a basin shape as shown in FIG.
  • the culture vessel may be, for example, a large Erlenmeyer flask.
  • the culture apparatus is a culture apparatus for expanding and culturing cells in a culture solution, and is a culture container containing the culture solution and a culture solution in the culture solution.
  • the culture vessel swinging portion that swings the culture vessel so that the culture medium is agitated, and the culture medium supply portion that adds the culture solution to the culture medium as the number of cells in the culture medium increases.
  • the culture vessel swinging portion swings the culture vessel so that the smaller the amount of the culture solution in the culture vessel, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring. It is a thing.
  • the culture method according to the embodiment of the present invention is, in a broad sense, a method for culturing cells in which cells are expanded and cultured in a culture solution contained in a culture container, and the culture solution in the culture container is used.
  • the culture vessel is shaken so as to be agitated, the culture solution is added to the culture solution as the number of cells in the culture solution increases, and the smaller the amount of the culture solution, the more contact with the culture solution that moves by stirring.
  • This is a method of rocking the culture vessel so that the surface portion of the culture vessel becomes smaller.
  • the present invention is applicable to cell culture performed while stirring the culture solution.

Abstract

A culture apparatus is provided with: a culture vessel 12 in which a liquid culture medium is accommodated; a culture vessel shaking section which shakes the culture vessel 12 so as to agitate the liquid culture medium CS in the culture vessel 12; and a liquid culture medium feeding section for adding an additional amount of the liquid culture medium CS to the culture vessel 12 in accordance with the increase in the number of cells in the liquid culture medium CS. The culture vessel shaking section shakes the culture vessel 12 in such a manner that the area of a surface part, which comes in contact with the liquid culture medium CS that moves by means of the agitation, of the culture vessel 12 can become smaller with the decrease in the volume of the liquid culture medium CS in the culture vessel 12.

Description

培養装置および培養方法Culture device and culture method
 本発明は、培養液を用いて細胞の培養を行う培養装置および培養方法に関する。 The present invention relates to a culture apparatus and a culture method for culturing cells using a culture solution.
 従来より、細胞の大量培養では、例えば、1ミリリットルあたり10から10個の細胞密度の培養液を数ミリリットルの少量の細胞から培養を開始し、10から1010個の多量の細胞となるまで増殖することが行われている。まず、例えばシャーレ内で数ミリリットルの培養液を用いて細胞の培養を行う。シャーレ内の細胞密度が所定密度に達すると、シャーレ内の細胞を、複数のシャーレに分割播種して培養し、これを繰り返し、トータル数十ミリリットルの培養液量とすることで、シャーレに比べて大容量の培養容器、例えばフラスコに移し替えることが可能になる。このように容量が大きい培養容器への移し替えが何回か行われた後、細胞は、最終的には、例えば、特許文献1に記載するような、大容量の培養液を収容可能な培養バッグに移し替えられる。その培養バッグ内で、例えば50リットルの培養液を用いて、細胞が必要数に達するまで培養が行われる。このような培養は、拡大培養と呼ばれている。 Conventionally, in the mass culture of cells, for example, the culture broth from 10 per milliliter 4 10 7 cell density culture initiation from a small amount of cells of a few milliliters, and 10 9 to 10 10 quantity of cells It is being propagated until it becomes. First, for example, cells are cultured in a petri dish using a culture solution of several milliliters. When the cell density in the petri dish reaches a predetermined density, the cells in the petri dish are divided into multiple dishes and cultured, and this is repeated to make a total culture solution volume of several tens of milliliters, as compared with the petri dish. It can be transferred to a large capacity culture vessel, for example a flask. After several transfers to such a large volume culture vessel, the cells are finally cultured in a large volume of culture medium, as described in, for example, Patent Document 1. Transferred to a bag. In the culture bag, for example, 50 liters of culture medium is used to culture until the required number of cells is reached. Such a culture is called an expanded culture.
特表2014-507959号公報Special Table 2014-507959
 しかしながら、このような拡大培養において、容量が大きい培養容器への移し替えのタイミングや容量増加の比率(移し替え前後の培養液の容量の比率)は、その細胞の増殖曲線(時間と細胞密度の関係)において対数増殖期(高い細胞増殖率を示す期間)で決められることが一般的である。特に許容される容量増加の比率が小さい場合では、移し替えの頻度も高くなり、作業者の負担は増加し、コンタミネーションのリスクも高くなる。また、細胞株によってもその増殖曲線は大きく変化することもあるため、移し替えのタイミングを逸しないためにも細胞密度のモニタリングが欠かせない。これも作業者の負担となる。さらに、容量の異なる数種の培養容器それぞれについて、その容器内の培養液を撹拌するための装置が必要となる。 However, in such expanded culture, the timing of transfer to a large-volume culture vessel and the rate of increase in volume (ratio of the volume of the culture solution before and after transfer) are the growth curves of the cells (time and cell density). In relation to), it is generally determined by the logarithmic growth phase (the period showing a high cell proliferation rate). Especially when the permissible rate of capacity increase is small, the frequency of transfer is high, the burden on the operator is increased, and the risk of contamination is also high. In addition, since the growth curve may change significantly depending on the cell line, it is essential to monitor the cell density so as not to miss the timing of transfer. This is also a burden on the worker. Further, for each of several culture containers having different capacities, a device for stirring the culture solution in the container is required.
そこで、本発明は、細胞の拡大培養において、一つの容器で少量から大量までの連続的な拡大培養を短期間に高い培養効率で実現し、かつ、コンタミネーション発生のリスクを低減しながら、作業者の負担を軽減するための自動化を可能とすることを課題とする。 Therefore, the present invention works while realizing continuous expansion culture from a small amount to a large amount in one container with high culture efficiency in a short period of time and reducing the risk of contamination in the expansion culture of cells. The challenge is to enable automation to reduce the burden on the person.
 上記技術的課題を解決するために、本発明の一態様によれば、
 培養液内で細胞の拡大培養を行う培養装置であって、
 培養液を収容する培養容器と、
 前記培養容器内の培養液が撹拌されるように前記培養容器を揺動する培養容器揺動部と、
 培養液内の細胞の増加にともなって前記培養容器に培養液を追加する培養液供給部と、を有し、
 前記培養容器揺動部が、前記培養容器内の培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する、培養装置が提供される。
In order to solve the above technical problems, according to one aspect of the present invention,
A culture device that expands and cultures cells in a culture medium.
A culture container that houses the culture solution and
A culture vessel swinging portion that swings the culture vessel so that the culture solution in the culture vessel is agitated,
It has a culture solution supply unit for adding the culture solution to the culture medium as the number of cells in the culture solution increases.
The culture vessel swinging portion swings the culture vessel so that the smaller the amount of the culture solution in the culture vessel, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring. Incubators are provided.
 また、本発明の別態様によれば、
 培養容器に収容された培養液内で細胞の拡大培養を行う細胞の培養方法であって、
 前記培養容器内の培養液が撹拌されるように前記培養容器を揺動し、
 培養液内の細胞の増加にともなって前記培養容器に培養液を追加し、
 培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する、細胞の培養方法が提供される。
Further, according to another aspect of the present invention.
A method for culturing cells in which cells are expanded and cultured in a culture medium contained in a culture vessel.
The culture vessel is shaken so that the culture solution in the culture vessel is agitated.
As the number of cells in the culture solution increased, the culture solution was added to the culture vessel, and the culture solution was added.
A method for culturing cells is provided in which the culture vessel is shaken so that the smaller the amount of the culture solution, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring.
 本発明によれば、細胞の拡大培養において、一つの容器で少量から大量までの連続的な拡大培養を短期間に高い培養効率で実現し、かつ、コンタミネーション発生のリスクを低減しながら、作業者の負担を軽減するための自動化を可能とすることができる。 According to the present invention, in the expansion culture of cells, continuous expansion culture from a small amount to a large amount can be realized with high culture efficiency in a short period of time in one container, and the work is performed while reducing the risk of contamination. It is possible to enable automation to reduce the burden on the person.
本発明の一実施の形態に係る培養装置の構成を示す概略的構成図Schematic block diagram which shows the structure of the culture apparatus which concerns on one Embodiment of this invention. 培養容器の一例の概略的斜視図Schematic perspective view of an example of a culture vessel 培養装置における培養容器揺動部の概略的部分断面図Schematic partial cross-sectional view of the swinging portion of the culture vessel in the culture apparatus 図3に示す培養容器揺動部一部を異なる方向から見た概略的部分断面図Schematic partial cross-sectional view of a part of the swinging portion of the culture vessel shown in FIG. 3 viewed from different directions. 培養容器が傾いた状態の図3に示す培養容器揺動部の概略的部分断面図Schematic partial cross-sectional view of the swinging portion of the culture vessel shown in FIG. 3 in a state where the culture vessel is tilted. 培養液供給部の構成の一例を示す図The figure which shows an example of the structure of the culture solution supply part 細胞密度計測部の構成の一例を示す図The figure which shows an example of the structure of the cell density measurement part 培養液が相対的に少量であるときの培養容器の傾き状態を示す断面図Cross-sectional view showing the tilted state of the culture vessel when the amount of the culture solution is relatively small. 培養液が相対的に少量であるときの培養容器の傾き状態を示す上面図Top view showing the tilted state of the culture vessel when the amount of the culture solution is relatively small. 培養液が相対的に少量であるときの培養液の撹拌を示す図The figure which shows the stirring of the culture solution when the culture solution is a relatively small amount. 培養液が相対的に多量であるときの培養容器の傾きの状態を示す断面図Cross-sectional view showing the state of inclination of the culture vessel when the amount of the culture solution is relatively large. 培養液が相対的に多量であるときの培養容器の傾きの状態を示す上面図Top view showing the state of inclination of the culture vessel when the amount of the culture solution is relatively large. 培養液が相対的に多量であるときの培養液の撹拌を示す図The figure which shows the stirring of the culture solution when the culture solution is a relatively large amount. 培養装置の制御系を示すブロック図Block diagram showing the control system of the culture device 培養液の供給スケジュールの一例を説明するための図The figure for demonstrating an example of the culture solution supply schedule 培養容器の揺動パターンのガントチャートの一例を示す図The figure which shows an example of the Gantt chart of the swing pattern of a culture vessel. 培養容器内の培養液量の変化を示すグラフの一例を示す図The figure which shows an example of the graph which shows the change of the culture solution amount in a culture vessel. 細胞密度の変化を示すグラフの一例を示す図The figure which shows an example of the graph which shows the change of a cell density
 本発明の一態様の培養装置は、培養液内で細胞の拡大培養を行う培養装置であって、培養液を収容する培養容器と、前記培養容器内の培養液が撹拌されるように前記培養容器を揺動する培養容器揺動部と、培養液内の細胞の増加にともなって前記培養容器に培養液を追加する培養液供給部と、を有し、前記培養容器揺動部が、前記培養容器内の培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する。 The culture apparatus according to one aspect of the present invention is a culture apparatus for expanding and culturing cells in a culture solution, and the culture is such that the culture container containing the culture solution and the culture solution in the culture container are stirred. The culture vessel swinging portion has a culture vessel swinging portion that swings the container, and a culture solution supply portion that adds a culture solution to the culture vessel as the number of cells in the culture solution increases. The smaller the amount of the culture solution in the culture container, the smaller the surface portion of the culture container that comes into contact with the culture solution that moves by stirring is shaken.
 この態様によれば、細胞の拡大培養において、一つの容器で少量から大量までの連続的な拡大培養を短期間に高い培養効率で実現し、かつ、コンタミネーション発生のリスクを低減しながら、作業者の負担を軽減するための自動化を可能とすることができる。 According to this aspect, in the expansion culture of cells, continuous expansion culture from a small amount to a large amount can be realized with high culture efficiency in a short period of time in one container, and the work is performed while reducing the risk of contamination. It is possible to enable automation to reduce the burden on the person.
 例えば、前記培養容器が、円形状の底面と前記底面の外周縁から立設する円筒状の内周面とを含んでいる。この場合、前記培養容器揺動部が、前記底面と前記内周面とに挟まれたコーナーに培養液が溜まるように前記培養容器を傾けつつ、前記コーナーに沿って培養液が往復動するように前記培養容器の傾き方向を変化させ、培養液の量が少ないほど、培養液の往復範囲が小さくされる。これにより、培養液を、その蒸発を抑制しつつ撹拌することができる。 For example, the culture vessel includes a circular bottom surface and a cylindrical inner peripheral surface erected from the outer peripheral edge of the bottom surface. In this case, the swinging portion of the culture container tilts the culture container so that the culture solution collects in the corner sandwiched between the bottom surface and the inner peripheral surface, and the culture solution reciprocates along the corner. The tilt direction of the culture vessel is changed, and the smaller the amount of the culture solution, the smaller the reciprocating range of the culture solution. As a result, the culture solution can be stirred while suppressing its evaporation.
 例えば、前記培養容器揺動部は、培養液の量が少ないほど、前記培養容器を大きく傾ける。これにより、培養液の表面積が小さくなるため、培養液のその液面からの蒸発を抑制することができる。 For example, the swinging portion of the culture vessel tilts the culture vessel more as the amount of the culture solution is smaller. As a result, the surface area of the culture solution is reduced, so that evaporation of the culture solution from the liquid surface can be suppressed.
 例えば、前記培養装置は、前記培養容器内の湿度を測定する湿度センサを有する。この場合、前記培養容器揺動部が、前記湿度センサによって検出された湿度が低下すると、培養液の液面の面積が小さくなるように前記培養容器の傾き角度を大きくする。これにより、培養液のその液面からの蒸発を抑制することができる。 For example, the culture device has a humidity sensor that measures the humidity inside the culture container. In this case, when the humidity detected by the humidity sensor decreases, the tilt angle of the culture container is increased so that the area of the liquid surface of the culture solution becomes smaller. Thereby, the evaporation of the culture solution from the liquid surface can be suppressed.
 例えば、前記培養装置は、前記培養容器内の培養液に溶存する酸素の量を測定する溶存酸素センサを有する。この場合、前記培養容器揺動部が、前記溶存酸素センサによって検出された溶存酸素の量が低下すると、培養液の往復動の周期および往復範囲の少なくとも一方が増加するように前記培養容器を揺動する。これにより、培養液がより撹拌され、培養液に十分な酸素供給と均質化が行われ、細胞のダメージを抑制することができる。 For example, the culture apparatus has a dissolved oxygen sensor that measures the amount of oxygen dissolved in the culture solution in the culture vessel. In this case, the culture vessel shaking portion shakes the culture vessel so that when the amount of dissolved oxygen detected by the dissolved oxygen sensor decreases, at least one of the reciprocating cycle and the reciprocating range of the culture solution increases. Move. As a result, the culture solution is more agitated, sufficient oxygen is supplied and homogenized to the culture solution, and cell damage can be suppressed.
 例えば、前記培養容器揺動部が、前記培養容器内の培養液の量が所定のしきい量を超えると、前記コーナーに沿って培養液が周回するように前記培養容器の傾き方向を変化させる。これにより、多量の培養液を十分に撹拌することができる。 For example, when the amount of the culture solution in the culture container exceeds a predetermined threshold, the swinging portion of the culture container changes the tilt direction of the culture container so that the culture solution orbits along the corner. .. As a result, a large amount of the culture solution can be sufficiently stirred.
 例えば、前記培養装置は、初期細胞数、目標細胞数、目標細胞密度、および倍化時間を少なくとも含む培養条件の情報を取得する培養条件取得部と、前記培養条件情報に基づいて、培養時間を算出する培養時間算出部と、前記培養条件情報と前記培養時間とに基づいて、培養液の供給スケジュールを作成する供給スケジュール作成部と、を有し、前記培養液供給部が、前記供給スケジュールに基づいて、単位時間あたりの培養液供給量を変更する。これにより、拡大培養を自動化することができる。 For example, the culture apparatus sets the culture time based on the culture condition acquisition unit that acquires information on the culture conditions including at least the initial number of cells, the target number of cells, the target cell density, and the doubling time, and the culture condition information. It has a culture time calculation unit to be calculated, a supply schedule creation unit that creates a culture solution supply schedule based on the culture condition information and the culture time, and the culture solution supply unit is set to the supply schedule. Based on this, the amount of culture medium supplied per unit time is changed. This makes it possible to automate the expansion culture.
 例えば、前記培養装置は、前記培養容器内の前記培養液の細胞密度を計測する細胞密度計測部と、前記細胞密度計測部によって計測される細胞密度と前記目標細胞密度との差が所定値以下になるように前記供給スケジュールを補正する供給スケジュール補正部と、を有し、前記培養液供給部が、補正された供給スケジュールに基づいて、前記単位時間あたりの培養液供給量を変更する。これにより、拡大培養を自動で実行している間、細胞密度を目標細胞密度で維持することができる。 For example, in the culture apparatus, the difference between the cell density measuring unit that measures the cell density of the culture solution in the culture vessel and the cell density measured by the cell density measuring unit and the target cell density is equal to or less than a predetermined value. It has a supply schedule correction unit that corrects the supply schedule so as to be, and the culture solution supply unit changes the culture solution supply amount per unit time based on the corrected supply schedule. As a result, the cell density can be maintained at the target cell density while the expansion culture is automatically performed.
 例えば、前記細胞密度計測部が、任意のタイミングでのユーザの計測指示入力によって細胞密度の計測を実行するように構成されている。これにより、ユーザは任意のタイミングで細胞密度を確認することができる。 For example, the cell density measuring unit is configured to measure the cell density by inputting a user's measurement instruction at an arbitrary timing. This allows the user to check the cell density at any time.
 例えば、前記供給スケジュール補正部が、ユーザの補正指示入力によって前記供給スケジュールを補正するように構成されている。これにより、ユーザが所望する供給スケジュールを作成することができる。 For example, the supply schedule correction unit is configured to correct the supply schedule by inputting a correction instruction from the user. This makes it possible to create a supply schedule desired by the user.
 例えば、前記細胞密度計測部が、チューブ、前記チューブに設けられたローラポンプ、および前記チューブ内の培養液の細胞密度を計測する細胞密度センサを含み、前記チューブが、その一端が前記培養容器内の培養液内に位置しつつ他端が培養液の液面の上方に位置するように配置され、前記ローラポンプが、正転することによって前記一端を介して前記チューブ内に培養液を充填し、逆転することによって前記チューブ内の培養液を前記培養容器に戻す。これにより、培養液の一部がチューブ内に留まることなく、培養液全てが培養に使用される。 For example, the cell density measuring unit includes a tube, a roller pump provided in the tube, and a cell density sensor for measuring the cell density of the culture solution in the tube, and the tube has one end thereof in the culture vessel. The other end is arranged so as to be located above the liquid level of the culture solution while being located in the culture solution of the above, and the roller pump is rotated in the normal direction to fill the tube with the culture solution via the one end. , The culture solution in the tube is returned to the culture vessel by reversing. As a result, the entire culture broth is used for culturing without a part of the culture broth staying in the tube.
 例えば、前記細胞密度センサが、鉛直方向に対して30°以下の傾斜角度となるように配置された前記チューブの部分内の培養液を計測する。これにより、チューブ内での細胞の沈殿などが抑制され、細胞密度センサは細胞密度を正確に計測することができる。 For example, the cell density sensor measures the culture solution in the portion of the tube arranged so as to have an inclination angle of 30 ° or less with respect to the vertical direction. As a result, the precipitation of cells in the tube is suppressed, and the cell density sensor can accurately measure the cell density.
 例えば、前記培養装置は、前記供給スケジュールに基づいて、前記培養容器揺動部の前記培養容器に対する揺動パターンの変化を示す揺動スケジュールを作成する揺動スケジュール作成部を有し、前記培養容器揺動部が、前記揺動スケジュールに基づいて、前記培養容器を揺動する。これにより、培養容器内の培養液量に応じて培養容器を揺動させることができる。 For example, the culture apparatus has a swing schedule creation unit that creates a swing schedule showing a change in the swing pattern of the culture container swing section with respect to the culture container based on the supply schedule. The rocking portion swings the culture vessel based on the rocking schedule. As a result, the culture vessel can be shaken according to the amount of the culture solution in the culture vessel.
 例えば、前記培養装置は、前記培養容器の揺動パターン、細胞密度、培養温度、ガス濃度、およびガス流量の少なくとも1つの変化を示すガントチャートを作成するガントチャート作成部と、前記ガントチャートを表示する表示部と、を有する。これにより、ユーザは培養の状況を確認することができる。 For example, the culture apparatus displays a Gantt chart creation unit that creates a Gantt chart showing at least one change in a swing pattern, cell density, culture temperature, gas concentration, and gas flow rate of the culture vessel, and the Gantt chart. It has a display unit and a display unit. This allows the user to check the culture status.
 例えば、前記培養装置は、前記培養容器内の培養液量および細胞密度の少なくとも一方の変化を示すグラフを作成するグラフ作成部を有し、前記表示部が、前記ガントチャートとともに、前記グラフ作成部によって作成されたグラフを表示する。これにより、ユーザは培養容器内の培養液量および細胞密度の少なくとも一方の状況を確認することができる。 For example, the culture apparatus has a graph creation unit that creates a graph showing changes in at least one of the amount of culture solution and the cell density in the culture vessel, and the display unit together with the Gantt chart have the graph creation unit. Display the graph created by. This allows the user to check the status of at least one of the amount of culture medium and the cell density in the culture vessel.
 例えば、前記培養装置は、細胞到達数、到達培養液量、および到達培養時間の少なくとも1つを含む培養終了条件の情報を取得する培養終了条件取得部を有し、前記培養終了条件が成立した後、前記培養液供給部が培養液の供給を停止するとともに、前記培養容器揺動部が前記培養容器の揺動を停止する。これにより、自動で実行中の拡大培養を終了させることができる。 For example, the culture apparatus has a culture end condition acquisition unit for acquiring information on the culture end condition including at least one of the number of cells reached, the amount of the reached culture solution, and the reached culture time, and the culture end condition is satisfied. After that, the culture solution supply unit stops the supply of the culture solution, and the culture vessel swinging unit stops the shaking of the culture vessel. As a result, the expanding culture that is being executed can be automatically terminated.
 例えば、前記培養装置は、前記培養終了条件が成立するとユーザに通知する通知部と、 前記ユーザが培養を終了させるための培養終了入力部と、を有し、前記培養終了入力部に対するユーザ入力が実行された後、前記培養液供給部が培養液の供給を停止するとともに、前記培養容器揺動部が前記培養容器の揺動を停止する。これにより、培養終了後に放置されて細胞が死滅することが抑制される。 For example, the culture apparatus has a notification unit for notifying the user when the culture end condition is satisfied, and a culture end input unit for the user to end the culture, and the user input to the culture end input unit can be performed. After the execution, the culture solution supply unit stops the supply of the culture solution, and the culture vessel swinging unit stops the shaking of the culture vessel. As a result, it is suppressed that the cells die after being left unattended after the completion of the culture.
 例えば、前記培養液供給部が、前記培養液を貯蔵する培養液貯蔵容器、前記培養液貯蔵容器に連結された一端と前記培養容器に連結された他端とを備えるチューブ、前記チューブに設けられたローラポンプを含み、前記チューブの一部分が、前記培養容器の外側表面上に配設されている。これにより、これから培養容器に供給される培養液の温度が培養容器内の培養液の温度と同程度になり、その結果、培養容器内の培養液の温度変化が抑制される。 For example, the culture solution supply unit is provided in the culture solution storage container for storing the culture solution, a tube having one end connected to the culture solution storage container and the other end connected to the culture solution container, and the tube. A portion of the tube is disposed on the outer surface of the culture vessel, including a roller pump. As a result, the temperature of the culture solution to be supplied to the culture container from now on becomes about the same as the temperature of the culture solution in the culture container, and as a result, the temperature change of the culture solution in the culture container is suppressed.
 上述したように培養液が培養容器に供給される前に温度調節される場合、例えば、前記培養装置は、前記培養液貯蔵容器を冷蔵収容する冷蔵庫と、前記培養容器を温めるヒータと、を有してもよい。 When the temperature is controlled before the culture solution is supplied to the culture container as described above, for example, the culture apparatus includes a refrigerator for refrigerating and accommodating the culture solution storage container and a heater for heating the culture container. You may.
 本発明の別態様の培養方法は、培養容器に収容された培養液内で細胞の拡大培養を行う細胞の培養方法であって、前記培養容器内の培養液が撹拌されるように前記培養容器を揺動し、培養液内の細胞の増加にともなって前記培養容器に培養液を追加し、培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する。 Another aspect of the culture method of the present invention is a method for culturing cells in which cells are expanded and cultured in a culture solution contained in the culture container, and the culture container is such that the culture solution in the culture container is stirred. The culture solution is added to the culture container as the number of cells in the culture solution increases, and the smaller the amount of the culture solution, the more the surface portion of the culture container that comes into contact with the culture solution that moves by stirring. The culture vessel is shaken so that
 この態様によれば、細胞の拡大培養において、一つの容器で少量から大量までの連続的な拡大培養を短期間に高い培養効率で実現し、かつ、コンタミネーション発生のリスクを低減しながら、作業者の負担を軽減するための自動化を可能とすることができる。 According to this aspect, in the expansion culture of cells, continuous expansion culture from a small amount to a large amount can be realized with high culture efficiency in a short period of time in one container, and the work is performed while reducing the risk of contamination. It is possible to enable automation to reduce the burden on the person.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施の形態に係る培養装置の構成を示す概略的構成図である。 FIG. 1 is a schematic configuration diagram showing a configuration of a culture apparatus according to an embodiment of the present invention.
 図1に示すように、培養装置10は、細胞を含んだ培養液CSを収容する培養容器12と、培養容器12内の培養液CSを撹拌するために培養容器12を揺動する培養容器揺動部14と、培養容器12に培養液CSを供給する培養液供給部16とを有する。 As shown in FIG. 1, the culture apparatus 10 shakes the culture container 12 that houses the culture solution CS containing cells and the culture container 12 that shakes the culture solution CS in the culture container 12 to stir. It has a moving unit 14 and a culture solution supply unit 16 that supplies the culture solution CS to the culture container 12.
 また、本実施の形態の場合、培養装置10は、培養容器12内の湿度を測定する湿度センサ18と、培養容器12内の培養液CSに溶存する酸素量を測定する溶存酸素センサ20と、培養容器12内の培養液CS内の細胞密度を計測する細胞密度計測部22とを有する。 Further, in the case of the present embodiment, the culture apparatus 10 includes a humidity sensor 18 for measuring the humidity in the culture vessel 12, a dissolved oxygen sensor 20 for measuring the amount of oxygen dissolved in the culture solution CS in the culture vessel 12. It has a cell density measuring unit 22 for measuring the cell density in the culture solution CS in the culture vessel 12.
 なお、培養装置10は、加湿された酸素、二酸化炭素、窒素の混合ガスを培養容器12に供給するガス供給部24を有する。 The culture device 10 has a gas supply unit 24 that supplies a mixed gas of humidified oxygen, carbon dioxide, and nitrogen to the culture container 12.
 さらに、培養装置10は、湿度センサ18、溶存酸素センサ20、および細胞密度計測部22それぞれの検出結果に基づいて培養容器揺動部14、培養液供給部16、およびガス供給部24を制御する制御部26を有する。 Further, the culture apparatus 10 controls the culture vessel shaking unit 14, the culture solution supply unit 16, and the gas supply unit 24 based on the detection results of the humidity sensor 18, the dissolved oxygen sensor 20, and the cell density measurement unit 22, respectively. It has a control unit 26.
 培養容器12は、培養液CSを収容する容器であって、この内部で培養液CSを用いた細胞の培養が行われる。この培養容器12では、細胞の増加にともなって、少量(1リットル未満、例えば50ミリリットル)から段階的に培養液CSを追加しながら、その培養液CSを用いた細胞の培養、すなわち拡大培養が行われる。そのため、培養容器12は、培養に使用される最大量(例えば50リットル)の培養液を収容して撹拌可能な容量を備える。 The culture container 12 is a container for accommodating the culture solution CS, and cells are cultured inside the culture container 12 using the culture solution CS. In this culture vessel 12, cells are cultured using the culture solution CS, that is, expanded culture, while gradually adding the culture solution CS from a small amount (less than 1 liter, for example, 50 ml) as the number of cells increases. Will be done. Therefore, the culture vessel 12 has a capacity capable of accommodating and stirring the maximum amount (for example, 50 liters) of the culture solution used for culturing.
 図2は、培養容器12の一例の形状を示す斜視図である。なお、図面においてX-Y-Z直交座標系が示されているが、これは発明の実施の形態の理解を容易にするためのものであって発明を限定するものではない。また、X軸方向およびY軸方向は水平方向であって、Z軸方向は鉛直方向である。 FIG. 2 is a perspective view showing the shape of an example of the culture vessel 12. Although the XYZ Cartesian coordinate system is shown in the drawings, this is for facilitating the understanding of the embodiment of the invention and does not limit the invention. Further, the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction.
 図2に示すように、本実施の形態の場合、培養容器12は、円盤状の底板部12aと、底板部12aの外周縁から立設する円筒状の側壁部12bと、側壁部12bに支持される天板部12cとを備える。すなわち、培養容器12は、いわゆるたらい状である。側壁部12bの高さは、底板部12aの半径に比べて小さくされている。また、天板部12cは、着脱可能であって蓋として機能する。 As shown in FIG. 2, in the case of the present embodiment, the culture vessel 12 is supported by a disk-shaped bottom plate portion 12a, a cylindrical side wall portion 12b erected from the outer peripheral edge of the bottom plate portion 12a, and a side wall portion 12b. It is provided with a top plate portion 12c to be formed. That is, the culture vessel 12 has a so-called basin shape. The height of the side wall portion 12b is made smaller than the radius of the bottom plate portion 12a. Further, the top plate portion 12c is removable and functions as a lid.
 図3は、培養装置10における培養容器揺動部14の概略的部分断面図である。また、図4は、図3に示す培養容器揺動部14の一部を異なる方向から見た概略的部分断面図である。 FIG. 3 is a schematic partial cross-sectional view of the culture vessel swinging portion 14 in the culture apparatus 10. Further, FIG. 4 is a schematic partial cross-sectional view of a part of the culture vessel swinging portion 14 shown in FIG. 3 viewed from different directions.
 図3および図4に示すように、培養装置10における培養容器揺動部(培養容器揺動装置)14は、培養容器12を保持するステージ30と、鉛直方向(Z軸方向)に延在する回転中心軸C0を中心にして回転する回転テーブル32を備えるロータリーアクチュエータ34とを備える。 As shown in FIGS. 3 and 4, the culture vessel swinging portion (culture vessel swinging device) 14 in the culture apparatus 10 extends in the vertical direction (Z-axis direction) with the stage 30 holding the culture vessel 12. A rotary actuator 34 including a rotary table 32 that rotates around a rotation center axis C0 is provided.
 ステージ30とロータリーアクチュエータ34は、揺動ヘッド36と傾動機構38とを介して駆動連結されている。 The stage 30 and the rotary actuator 34 are drive-connected via the swing head 36 and the tilting mechanism 38.
 揺動ヘッド36は、ステージ30を支持し、水平方向(X軸方向)に延在する揺動軸C1と水平方向(Y軸方向)に延在して該揺動軸C1に直交する揺動軸C2を中心にして揺動可能に、培養容器揺動部14に設けられている。また、揺動ヘッド36は、その下部に、傾動機構38を介してロータリーアクチュエータ34と駆動連結するための連結シャフト40を備えている。ステージ30が水平姿勢をとるとき、揺動ヘッド36の連結シャフト40は鉛直方向(Z軸方向)に延在している。 The swing head 36 supports the stage 30 and swings extending in the horizontal direction (X-axis direction) and extending in the horizontal direction (Y-axis direction) and orthogonal to the swing axis C1. The culture vessel swinging portion 14 is provided so as to swing around the shaft C2. Further, the swing head 36 is provided with a connecting shaft 40 for driving and connecting with the rotary actuator 34 via a tilting mechanism 38 below the swing head 36. When the stage 30 takes a horizontal posture, the connecting shaft 40 of the swing head 36 extends in the vertical direction (Z-axis direction).
 傾動機構38は、揺動ヘッド36を介してステージ30を傾ける、すなわちステージ30上の培養容器12を水平方向に対して傾けるためのリンク機構である。そのために、傾動機構38は、ベース部42と、揺動ヘッド36に連結する揺動ヘッド連結部44と、ベース部42と揺動ヘッド連結部44とを連結するリンクアーム46とを含んでいる。 The tilting mechanism 38 is a link mechanism for tilting the stage 30 via the swinging head 36, that is, tilting the culture vessel 12 on the stage 30 in the horizontal direction. Therefore, the tilting mechanism 38 includes a base portion 42, a swing head connecting portion 44 connected to the swing head 36, and a link arm 46 connecting the base portion 42 and the swing head connecting portion 44. ..
 傾動機構38のベース部42は、ロータリーアクチュエータ34の回転テーブル32に取り付けられている。そのため、ロータリーアクチュエータ34が駆動すると、ベース部42は、回転テーブル32とともに、回転中心軸C0を中心にして回転する。 The base portion 42 of the tilting mechanism 38 is attached to the rotary table 32 of the rotary actuator 34. Therefore, when the rotary actuator 34 is driven, the base portion 42 rotates around the rotation center axis C0 together with the rotary table 32.
 傾動機構38の揺動ヘッド連結部44は、揺動ヘッド36の連結シャフト40に、例えば軸受を介することなどにより、摺動可能に外挿されている。 The swing head connecting portion 44 of the tilting mechanism 38 is extrapolated to the connecting shaft 40 of the swing head 36 so as to be slidable, for example, via a bearing.
 傾動機構38のリンクアーム46は、ベース部42と揺動ヘッド連結部44とを連結するように構成されている。具体的には、リンクアーム46は、揺動ヘッド連結部44に回動可能に固定された一端と、ベース部42に回動可能に固定された他端とを備える。リンクアーム46の一端の回動軸C3と他端の回転軸C4それぞれは、水平方向に延在し、互いに平行である。 The link arm 46 of the tilting mechanism 38 is configured to connect the base portion 42 and the swing head connecting portion 44. Specifically, the link arm 46 includes one end rotatably fixed to the swing head connecting portion 44 and the other end rotatably fixed to the base portion 42. The rotation shaft C3 at one end and the rotation shaft C4 at the other end of the link arm 46 extend in the horizontal direction and are parallel to each other.
 傾動機構38のベース部42が取り付けられているロータリーアクチュエータ34は、ボールねじ機構48によって鉛直方向(Z軸方向)に昇降される。 The rotary actuator 34 to which the base portion 42 of the tilting mechanism 38 is attached is moved up and down in the vertical direction (Z-axis direction) by the ball screw mechanism 48.
 ボールねじ機構48は、鉛直方向(Z軸方向)に延在するねじシャフト50と、ねじシャフト50に係合するナット52と、ねじシャフト50を回転させるモータ(図示せず)とを含んでいる。ナット52は、昇降ブラケット54に取り付けられている。その昇降ブラケット54にロータリーアクチュエータ34が取り付けられている。 The ball screw mechanism 48 includes a screw shaft 50 extending in the vertical direction (Z-axis direction), a nut 52 engaging with the screw shaft 50, and a motor (not shown) for rotating the screw shaft 50. .. The nut 52 is attached to the elevating bracket 54. A rotary actuator 34 is attached to the elevating bracket 54.
 ボールねじ機構48が駆動すると、ナット52を介して、昇降ブラケット54とともにロータリーアクチュエータ34が昇降する。例えば、図5に示すように、ボールねじ機構48によってロータリーアクチュエータ34が上昇すると、傾動機構38を介してステージ30が傾く。具体的には、ロータリーアクチュエータ34に取り付けられた傾動機構38のベース部42が上昇し、それによりリンクアーム46が揺動ヘッド連結部44を押す。それにより、揺動ヘッド連結部44とともに揺動ヘッド36が、揺動軸C1、C2の少なくとも一方(図13では揺動軸C2)を中心として回転する。それにより、ステージ30が傾き、そのステージ30上の培養容器12も傾く。 When the ball screw mechanism 48 is driven, the rotary actuator 34 moves up and down together with the elevating bracket 54 via the nut 52. For example, as shown in FIG. 5, when the rotary actuator 34 is raised by the ball screw mechanism 48, the stage 30 is tilted via the tilting mechanism 38. Specifically, the base portion 42 of the tilting mechanism 38 attached to the rotary actuator 34 rises, whereby the link arm 46 pushes the swing head connecting portion 44. As a result, the swing head 36 and the swing head connecting portion 44 rotate about at least one of the swing shafts C1 and C2 (the swing shaft C2 in FIG. 13). As a result, the stage 30 is tilted, and the culture vessel 12 on the stage 30 is also tilted.
 図5に示すように、ステージ30が傾いた状態でロータリーアクチュエータ34が駆動して回転テーブル32が回転すると、傾動機構38が回転中心軸C0を中心にして回転し、それによりステージ30の傾き方向が変化する。その結果、培養容器12内の培養液CSが撹拌され、培養液CS内の細胞が培養される。 As shown in FIG. 5, when the rotary actuator 34 is driven to rotate the rotary table 32 in a state where the stage 30 is tilted, the tilting mechanism 38 rotates around the rotation center axis C0, whereby the tilting direction of the stage 30 Changes. As a result, the culture solution CS in the culture container 12 is stirred, and the cells in the culture solution CS are cultured.
 なお、このような培養容器揺動部14においては、ロータリーアクチュエータ34が傾動機構38を例えば一回転させても、ステージ30自体は回転せず、その代わりにステージ30の傾き方向が一回転するだけである。すなわち、ステージ30上の培養容器12における最も低い部分が、順次、別の部分に変更されていくだけである。 In such a culture vessel swinging portion 14, even if the rotary actuator 34 rotates the tilting mechanism 38 once, for example, the stage 30 itself does not rotate, and instead, the tilting direction of the stage 30 only rotates once. Is. That is, the lowest portion of the culture vessel 12 on the stage 30 is only sequentially changed to another portion.
 図1に戻り、本実施の形態の場合、培養容器12に培養液CSを供給する培養液供給部16は、制御部26によって制御される。 Returning to FIG. 1, in the case of the present embodiment, the culture solution supply unit 16 that supplies the culture solution CS to the culture container 12 is controlled by the control unit 26.
 図6は、培養液供給部16の構成の一例を示す図である。 FIG. 6 is a diagram showing an example of the configuration of the culture solution supply unit 16.
 図6に示すように、本実施の形態の場合、培養液供給部16は、培養液CSを貯蔵する培養液貯蔵容器60と、培養液貯蔵容器60に連結された一端62aと培養容器12に連結された他端62bとを備えるチューブ62と、チューブ62に設けられたローラポンプ64とを含んでいる。制御部26は、培養液供給部16におけるローラポンプ64を制御することにより、培養容器12への培養液CSの供給量を制御する。制御部26による培養液CSの供給量制御の詳細については後述する。 As shown in FIG. 6, in the case of the present embodiment, the culture solution supply unit 16 is attached to the culture solution storage container 60 for storing the culture solution CS, one end 62a connected to the culture solution storage container 60, and the culture solution container 12. It includes a tube 62 having a connected other end 62b and a roller pump 64 provided on the tube 62. The control unit 26 controls the supply amount of the culture solution CS to the culture container 12 by controlling the roller pump 64 in the culture solution supply unit 16. The details of controlling the supply amount of the culture solution CS by the control unit 26 will be described later.
 なお、本実施の形態の場合、図6に示すように、チューブ62の一部分が、培養容器12の外側表面上に配設されている。例えば、チューブ62の一部分は、培養容器12の天板部12cの外側表面に、ヘリカル状またはミアンダ状に配設されている。このようにチューブ62を培養容器12の外側表面に配設する理由は、チューブ62内の培養液CSの温度を、培養容器12内の培養液CSの温度に近づけるためである。例えば、図6に示すように、培養容器12がヒータ66によって保温されている場合および/または培養液貯蔵容器60が冷蔵庫68内に冷蔵収容されている場合、培養容器12内の培養液CSの温度とチューブ62内の培養液CS内の温度との差が大きい。培養容器12の外側表面にチューブ62が配設されることにより、チューブ62内を流れる培養液CSは、培養容器12内の培養液CSの温度まで温められる。これにより、チューブ62からの培養液CSの流入によって起こる培養容器12内の培養液CSの温度変化が抑制され、その内部の細胞へのダメージが抑制される。 In the case of the present embodiment, as shown in FIG. 6, a part of the tube 62 is arranged on the outer surface of the culture vessel 12. For example, a part of the tube 62 is arranged in a helical or mianda shape on the outer surface of the top plate portion 12c of the culture vessel 12. The reason why the tube 62 is arranged on the outer surface of the culture vessel 12 in this way is that the temperature of the culture solution CS in the tube 62 is brought close to the temperature of the culture solution CS in the culture vessel 12. For example, as shown in FIG. 6, when the culture container 12 is kept warm by the heater 66 and / or when the culture solution storage container 60 is refrigerated in the refrigerator 68, the culture solution CS in the culture container 12 The difference between the temperature and the temperature in the culture solution CS in the tube 62 is large. By disposing the tube 62 on the outer surface of the culture container 12, the culture solution CS flowing in the tube 62 is warmed to the temperature of the culture solution CS in the culture container 12. As a result, the temperature change of the culture solution CS in the culture vessel 12 caused by the inflow of the culture solution CS from the tube 62 is suppressed, and the damage to the cells inside the culture solution CS is suppressed.
 また、本実施の形態の場合、培養容器12は、上述したように培養容器揺動部14によって揺動される。したがって、チューブ62としては、高い可撓性を備える材料、例えばシリコンゴムから作製されているシリコンチューブが好ましい。また、ローラポンプ64を培養容器12に設け、ローラポンプ64から培養容器12までのチューブ62の部分を、培養容器12の外側表面に配設してもよい。 Further, in the case of the present embodiment, the culture vessel 12 is shaken by the culture vessel swinging portion 14 as described above. Therefore, as the tube 62, a silicon tube made of a material having high flexibility, for example, silicone rubber, is preferable. Further, the roller pump 64 may be provided in the culture vessel 12, and the portion of the tube 62 from the roller pump 64 to the culture vessel 12 may be arranged on the outer surface of the culture vessel 12.
 さらに、本実施の形態の場合、チューブ62の他端62bは、培養容器12の内周面12dに沿って設けられている、具体的には、チューブ62の他端62bの開口から流出した培養液CSが内周面12dに沿って流れるように、チューブ62の他端62bが内周面12dに沿って設けられている。これにより、チューブ62の他端62bから流出した培養液CSが内周面12dによって温められる。なお、この場合、他端62bの開口が内周面12dに向くように、他端62bは斜めにカットされているのが好ましい。 Further, in the case of the present embodiment, the other end 62b of the tube 62 is provided along the inner peripheral surface 12d of the culture vessel 12, specifically, the culture flowing out from the opening of the other end 62b of the tube 62. The other end 62b of the tube 62 is provided along the inner peripheral surface 12d so that the liquid CS flows along the inner peripheral surface 12d. As a result, the culture solution CS flowing out from the other end 62b of the tube 62 is warmed by the inner peripheral surface 12d. In this case, it is preferable that the other end 62b is cut diagonally so that the opening of the other end 62b faces the inner peripheral surface 12d.
 このようにチューブ62を培養容器12の外側表面に配設することにより、チューブ62内の培養液を温めるヒータなどの加熱デバイスを別途設ける必要がなくなる。 By arranging the tube 62 on the outer surface of the culture vessel 12 in this way, it is not necessary to separately provide a heating device such as a heater for heating the culture solution in the tube 62.
 また、培養液CSに加えて、ガス供給部24によって混合ガスが培養容器12に供給される。例えば、ガス供給部24は、酸素、二酸化炭素、窒素を混合し、その混合ガスを加湿ユニット(図示せず)によって加湿するように構成されている。その加湿された混合ガスは、雑菌の混入を防ぐフィルター(図示せず)と、培養容器12に設けられたガス導入ポート(図示せず)とを通過して培養容器12内に導入される。なお、培養容器12には、その内部のガスを排気するためのガス排気ポートが設けられ、そのガス排気ポートを通過したガスがフィルターを介して大気に排出される。また、ガス供給部24は、そのガスの供給タイミングや供給量が制御部26によって制御される。 Further, in addition to the culture solution CS, the mixed gas is supplied to the culture container 12 by the gas supply unit 24. For example, the gas supply unit 24 is configured to mix oxygen, carbon dioxide, and nitrogen, and humidify the mixed gas by a humidifying unit (not shown). The humidified mixed gas is introduced into the culture vessel 12 through a filter (not shown) for preventing contamination of various germs and a gas introduction port (not shown) provided in the culture vessel 12. The culture vessel 12 is provided with a gas exhaust port for exhausting the gas inside, and the gas that has passed through the gas exhaust port is discharged to the atmosphere through a filter. Further, in the gas supply unit 24, the supply timing and the supply amount of the gas are controlled by the control unit 26.
 湿度センサ18は、培養容器12内、具体的には培養液CSに浸からないように例えば内周面12dに取り付けられ、培養容器12内の湿度を測定する。また、湿度センサ18は、測定した湿度に対応する信号を制御部26に出力する。 The humidity sensor 18 is attached to the inner peripheral surface 12d of the culture vessel 12 so as not to be immersed in the culture solution CS, and measures the humidity in the culture vessel 12. Further, the humidity sensor 18 outputs a signal corresponding to the measured humidity to the control unit 26.
 溶存酸素センサ20は、培養容器12内の培養液CSに溶存する酸素の量を測定する。例えば、溶存酸素センサ20として、蛍光式の溶存酸素センサが使用される。例えば、蛍光式の溶存酸素センサは、培養容器12の底面12eに配置されて蛍光物質が塗布されたチップと、チップに対して培養容器12の外部から紫外線等を照射する光源と、チップから放射された蛍光を受光する受光素子とを備える。 The dissolved oxygen sensor 20 measures the amount of oxygen dissolved in the culture solution CS in the culture vessel 12. For example, as the dissolved oxygen sensor 20, a fluorescent dissolved oxygen sensor is used. For example, the fluorescent dissolved oxygen sensor is arranged on the bottom surface 12e of the culture vessel 12 and coated with a fluorescent substance, a light source that irradiates the chip with ultraviolet rays or the like from the outside of the culture vessel 12, and radiates from the chip. It is provided with a light receiving element that receives the received fluorescence.
 蛍光物質が光源からの紫外線等の光エネルギーを吸収すると、基底状態から励起状態に遷移する。励起した蛍光物質の分子は、通常、蛍光を放射して基底状態に戻る。しかし、このとき、励起状態の分子の周りに酸素分子が存在すると、励起エネルギーが酸素分子に奪われ、蛍光の放射強度が低下する、いわゆる酸素消光が生じる。この酸素消光を利用して、すなわち蛍光の放射強度が酸素分子濃度に反比例することを利用して、蛍光式の溶存酸素センサは、培養容器内の培養液の溶存酸素量を測定する。 When the fluorescent substance absorbs light energy such as ultraviolet rays from the light source, it transitions from the ground state to the excited state. Excited molecules of fluorescent material usually radiate fluorescence and return to the ground state. However, at this time, if oxygen molecules are present around the molecules in the excited state, the excitation energy is deprived by the oxygen molecules, and so-called oxygen quenching occurs in which the radiant intensity of fluorescence decreases. Utilizing this oxygen quenching, that is, the fact that the radiant intensity of fluorescence is inversely proportional to the oxygen molecule concentration, the fluorescent dissolved oxygen sensor measures the dissolved oxygen amount of the culture solution in the culture vessel.
 また、溶存酸素センサ20は、測定した溶存酸素量に対応する信号を制御部26に出力する。 Further, the dissolved oxygen sensor 20 outputs a signal corresponding to the measured dissolved oxygen amount to the control unit 26.
 細胞密度計測部22は、培養容器12内の培養液CSの細胞密度を計測する。その計測した細胞密度は、制御部26に出力される。この細胞密度計測部22の定期的な計測によって培養中の細胞密度がモニタリングされる。また、詳細は後述するが、その細胞密度計測部22の計測結果に基づいて、培養容器揺動部14および培養液供給部16の制御内容が変更(補正される) The cell density measuring unit 22 measures the cell density of the culture solution CS in the culture vessel 12. The measured cell density is output to the control unit 26. The cell density during culturing is monitored by the periodic measurement of the cell density measuring unit 22. Further, although the details will be described later, the control contents of the culture vessel swinging unit 14 and the culture solution supply unit 16 are changed (corrected) based on the measurement results of the cell density measuring unit 22.
 図7は、細胞密度計測部の構成の一例を示す図である。 FIG. 7 is a diagram showing an example of the configuration of the cell density measuring unit.
 図7に示すように、本実施の形態の場合、細胞密度計測部22は、チューブ70と、チューブ70に設けられたローラポンプ72と、チューブ70内の培養液CSの細胞密度を計測する細胞密度センサ74とを含んでいる。 As shown in FIG. 7, in the case of the present embodiment, the cell density measuring unit 22 measures the cell density of the tube 70, the roller pump 72 provided in the tube 70, and the culture solution CS in the tube 70. Includes a density sensor 74.
 チューブ70は、その一端70aが培養容器12内の培養液CS内に位置しつつ、他端70bが培養液CSの液面LSの上方に位置するように配置されている。ローラポンプ72が正転すると(矢印Rの方向に回転すると)、チューブ70の一端70aから他端70bに向かう培養液CSの流れがチューブ70内に生じる。すなわち、一端70aを介してチューブ70に流入した培養液CSは、他端70bを介して再び培養容器12に戻る。 The tube 70 is arranged so that one end 70a thereof is located in the culture solution CS in the culture vessel 12 and the other end 70b is located above the liquid level LS of the culture solution CS. When the roller pump 72 rotates in the normal direction (rotates in the direction of the arrow R), a flow of the culture solution CS from one end 70a of the tube 70 to the other end 70b is generated in the tube 70. That is, the culture solution CS that has flowed into the tube 70 via one end 70a returns to the culture vessel 12 again via the other end 70b.
 チューブ70内に培養液CSが充填されると、細胞密度センサ74が、チューブ70内の培養液CSの細胞密度を計測する。細胞密度センサ74として、例えば、培養液CSの濁度を計測するセンサ、細胞によるレーザ散乱の度合いを計測するセンサ、培養液CSの誘電率を計測するセンサなどがある。 When the tube 70 is filled with the culture solution CS, the cell density sensor 74 measures the cell density of the culture solution CS in the tube 70. Examples of the cell density sensor 74 include a sensor for measuring the turbidity of the culture solution CS, a sensor for measuring the degree of laser scattering by cells, and a sensor for measuring the dielectric constant of the culture solution CS.
 本実施の形態の場合、細胞密度センサ74は、培養容器12内の培養液CSが流入する一端70aとローラポンプ72との間のチューブ70の部分に設けられている。これに代わって、細胞密度センサ74は、ローラポンプ72と培養液CSが培養容器12に向かって流出する他端70bとの間のチューブ70の部分に設けられてもよい。 In the case of the present embodiment, the cell density sensor 74 is provided in the portion of the tube 70 between the one end 70a into which the culture solution CS flows into the culture vessel 12 and the roller pump 72. Alternatively, the cell density sensor 74 may be provided in the portion of the tube 70 between the roller pump 72 and the other end 70b where the culture solution CS flows out toward the culture vessel 12.
 また、本実施の形態の場合、細胞密度センサ74による細胞密度の計測が終了すると、ローラポンプ72が逆転する(矢印Rの逆方向に回転する)。この逆転により、チューブ70内の培養液CSが一端70aを介して培養容器12に戻される。このとき、チューブ70の他端70bが培養液CSの液面LSの上方に位置するために、その他端70bを介して培養容器12内の培養液CSがチューブ70に流入しない。それにより、チューブ70内に培養液CSの一部が留まることが抑制され、その結果として培養液CS全てが培養に使用される。 Further, in the case of the present embodiment, when the measurement of the cell density by the cell density sensor 74 is completed, the roller pump 72 reverses (rotates in the opposite direction of the arrow R). By this reversal, the culture solution CS in the tube 70 is returned to the culture vessel 12 via one end 70a. At this time, since the other end 70b of the tube 70 is located above the liquid level LS of the culture solution CS, the culture solution CS in the culture container 12 does not flow into the tube 70 via the other end 70b. As a result, a part of the culture solution CS is suppressed from staying in the tube 70, and as a result, the entire culture solution CS is used for culturing.
 なお、細胞や細胞液の種類によっては、チューブ70内で細胞が沈殿するなどによって細胞密度センサ74が正確に細胞密度を計測できない場合がある。その対処として、本実施の形態の場合、チューブ70は、鉛直方向(Z軸方向)に対して所定の角度θ(例えば30°)以下の傾斜角度となるように配置された傾斜部分70cを備える。その傾斜部分70c内の細胞密度を細胞密度センサ74は計測する。このような傾斜部分70cは、所定の角度θ以上のチューブ70の部分に比べて細胞の沈殿などが起こりにくいので、細胞密度センサ74は正確に細胞密度を計測することができる。 Depending on the type of cells and cell fluid, the cell density sensor 74 may not be able to accurately measure the cell density due to the precipitation of cells in the tube 70. As a countermeasure, in the case of the present embodiment, the tube 70 includes an inclined portion 70c arranged so as to have an inclination angle of a predetermined angle θ (for example, 30 °) or less with respect to the vertical direction (Z-axis direction). .. The cell density sensor 74 measures the cell density in the inclined portion 70c. Since such an inclined portion 70c is less likely to cause cell precipitation than the portion of the tube 70 having a predetermined angle θ or more, the cell density sensor 74 can accurately measure the cell density.
 図1に戻り、制御部26は、例えば、記憶装置やCPUが搭載された制御基板から構成される。記憶装置に記憶されたプログラムにしたがって動作することにより、CPUは、後述する細胞の培養に関連する動作を実行する。 Returning to FIG. 1, the control unit 26 is composed of, for example, a control board on which a storage device and a CPU are mounted. By operating according to the program stored in the storage device, the CPU executes an operation related to cell culture described later.
 まず、制御部26は、培養液供給部16(本実施の形態の場合、ローラポンプ64)を制御する。 First, the control unit 26 controls the culture solution supply unit 16 (in the case of the present embodiment, the roller pump 64).
 制御部26によって制御されることにより、培養液供給部16(ローラポンプ64)は、培養容器12の培養液CS内の細胞の増加にともなって培養容器12に培養液CSを追加する。例えば、培養容器12一つで、1リットル未満(例えば200ミリリットル)の培養液CSが50リットルになるまで、ローラポンプ64は培養液CSを培養容器12に段階的に追加する。 By being controlled by the control unit 26, the culture solution supply unit 16 (roller pump 64) adds the culture solution CS to the culture solution CS as the number of cells in the culture solution CS of the culture container 12 increases. For example, the roller pump 64 gradually adds the culture solution CS to the culture container 12 until the culture solution CS of less than 1 liter (for example, 200 ml) becomes 50 liters in one culture container 12.
 また、制御部26は、培養容器12内の培養液CSの量に基づいて、培養容器揺動部14(そのロータリーアクチュエータ34およびボールねじ機構48)を制御する。 Further, the control unit 26 controls the culture vessel swinging portion 14 (its rotary actuator 34 and ball screw mechanism 48) based on the amount of the culture solution CS in the culture vessel 12.
 制御部26によって制御されることにより、培養容器揺動部14は、培養容器12内での培養液CSの蒸発が抑制されつつ、その培養液CSが撹拌されるように培養容器12を揺動する。具体的には、培養容器揺動部14は、培養容器12内の培養液CSの量が少ないほど、撹拌によって移動する培養液に接触される培養容器12の表面の部分が小さくなるように、培養容器12を揺動する。その培養容器12の揺動、すなわち培養液CSの撹拌について説明する。 By being controlled by the control unit 26, the culture vessel swinging unit 14 swings the culture vessel 12 so that the culture solution CS is agitated while suppressing the evaporation of the culture solution CS in the culture vessel 12. To do. Specifically, in the culture vessel swinging portion 14, the smaller the amount of the culture solution CS in the culture vessel 12, the smaller the surface portion of the culture vessel 12 that comes into contact with the culture solution that moves by stirring. Shake the culture vessel 12. The shaking of the culture vessel 12, that is, the stirring of the culture solution CS will be described.
 図8Aは、培養液が相対的に少量であるときの培養容器12の傾き状態を示す断面図である。また、図8Bは、培養液が相対的に少量であるときの培養容器12の傾き状態を示す上面図である。 FIG. 8A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small. Further, FIG. 8B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively small.
 図8Aおよび図8Bに示すように、培養液の撹拌は、培養容器12が傾いた状態で行われる。その培養容器12の傾き角度θ(水平状態の培養容器12に対する角度)は、培養容器12内の培養液CSの量が少ないほど大きくされている。 As shown in FIGS. 8A and 8B, the culture solution is agitated with the culture vessel 12 tilted. The inclination angle θ (angle with respect to the culture container 12 in the horizontal state) of the culture container 12 is increased as the amount of the culture solution CS in the culture container 12 is small.
 このように培養液CSの量が少ないほど、培養容器12を大きく傾けることにより、培養液CSの液面LSの面積の大きさが小さくなる。液面LSの面積の大きさが小さくなることにより、その液面LSからの培養液CSの蒸発を抑制することができる。 As the amount of the culture solution CS is small in this way, the size of the area of the liquid level LS of the culture solution CS becomes smaller by tilting the culture container 12 greatly. By reducing the size of the area of the liquid level LS, it is possible to suppress the evaporation of the culture solution CS from the liquid level LS.
 ここで、「培養液の蒸発」について説明する。培養液CSが蒸発すると、培養液CS内の細胞密度が上昇する。培養液CSが多量(例えば1リットル以上)である場合には、培養液CSの蒸発による細胞密度の上昇量は比較的小さく、密度上昇による細胞への影響は小さい。一方、培養液CSが少量(例えば1リットル未満)である場合には、培養液CSの蒸発による細胞密度の上昇量は比較的大きく、密度上昇による細胞への影響は大きい。培養液CSが少量であるほど、その蒸発による細胞への影響は大きくなり、場合によっては細胞の一部が死滅するまたはダメージを受ける。 Here, "evaporation of the culture solution" will be described. When the culture solution CS evaporates, the cell density in the culture solution CS increases. When the amount of the culture solution CS is large (for example, 1 liter or more), the amount of increase in cell density due to evaporation of the culture solution CS is relatively small, and the effect of the increase in density on cells is small. On the other hand, when the amount of the culture solution CS is small (for example, less than 1 liter), the amount of increase in cell density due to evaporation of the culture solution CS is relatively large, and the effect on cells due to the increase in density is large. The smaller the amount of the culture solution CS, the greater the effect of evaporation on the cells, and in some cases, a part of the cells is killed or damaged.
 したがって、培養液CSの量が少ないほど、培養容器12を大きく傾けることにより(傾き角度θを大きくすることにより)、培養液CSの蒸発による細胞への影響を低減している。 Therefore, as the amount of the culture solution CS is smaller, the influence of the evaporation of the culture solution CS on the cells is reduced by tilting the culture vessel 12 more (by increasing the inclination angle θ).
 なお、培養容器12内の培養液CSの量がその培養液CSの蒸発による細胞への影響が十分に小さい量以上である場合には、培養容器12の傾き角度θは一定であってもよい。 When the amount of the culture solution CS in the culture container 12 is equal to or greater than the amount in which the effect of evaporation of the culture solution CS on the cells is sufficiently small, the inclination angle θ of the culture container 12 may be constant. ..
 培養容器12が傾くことにより、図8Bに示すように、培養液CSが、培養容器12の円形状の底面12eとその底面12eの外周縁から立設する円筒状の内周面12dとに挟まれたコーナー12fに溜まる。この状態で培養容器12の傾き方向が変化される。 As the culture vessel 12 is tilted, as shown in FIG. 8B, the culture solution CS is sandwiched between the circular bottom surface 12e of the culture vessel 12 and the cylindrical inner peripheral surface 12d erected from the outer peripheral edge of the bottom surface 12e. It collects in the corner 12f. In this state, the tilting direction of the culture vessel 12 is changed.
 図9は、培養液が相対的に少量であるときの培養液の撹拌を示す図である。図9は、撹拌中の培養容器12を上方から見た(Z軸方向視)状態を示している。 FIG. 9 is a diagram showing stirring of the culture solution when the amount of the culture solution is relatively small. FIG. 9 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
 図9に示すように、相対的に少量な(例えば1リットル未満の)培養液CSは、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに沿って往復動される。例えば、ロータリーアクチュエータ34が90度の角度範囲で傾動機構38の正転および逆転を繰り返すことにより、培養容器12の傾き方向が90度の角度範囲で変化する。それにより、培養液CSが90度の角度範囲で往復動される。その結果、培養液CSは撹拌される。なお、図9に示すように、Z軸を基準としてY軸プラス方向を0度方向と設定した場合、例えば、0度の位置を中心として-45度(315度)の位置から+45度の位置の間で、培養液CSが往復動される。 As shown in FIG. 9, a relatively small amount (for example, less than 1 liter) of the culture solution CS is reciprocated along the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture container 12. For example, when the rotary actuator 34 repeats the forward rotation and the reverse rotation of the tilting mechanism 38 in an angle range of 90 degrees, the tilting direction of the culture vessel 12 changes in an angle range of 90 degrees. As a result, the culture solution CS is reciprocated in an angle range of 90 degrees. As a result, the culture solution CS is stirred. As shown in FIG. 9, when the Y-axis plus direction is set to the 0-degree direction with respect to the Z-axis, for example, the position of +45 degrees from the position of -45 degrees (315 degrees) with the position of 0 degrees as the center. The culture solution CS is reciprocated between the two.
 培養液CSの量が少ないほど、培養液CSの往復範囲(角度範囲)が小さくされる。その理由は、培養液CSの蒸発を抑制するためである。 The smaller the amount of the culture solution CS, the smaller the reciprocating range (angle range) of the culture solution CS. The reason is to suppress the evaporation of the culture solution CS.
 具体的に説明すると、撹拌によって培養液CSが培養容器12の表面上を移動すると、微少量の培養液CSが大部分(塊状)の培養液CSが通過した後の表面に残る。例えば、図9に示すように、45度の位置に培養液CSの大部分(塊)が移動した後、0度の位置に微少量の培養液CSが残る。この残された微少量の培養液CSは蒸発しやすい。したがって、この微少量の培養液CSが蒸発する前に、塊状の培養液CSが戻ってその微少量の培養液CSを吸収する。また、培養液CSの量が少ないほど、蒸発による細胞への影響が大きいため、培養液CSの往復範囲を小さくする。これにより、培養液CSが相対的に少量である場合、培養液CSの蒸発を抑制することができる。 Specifically, when the culture solution CS moves on the surface of the culture vessel 12 by stirring, a very small amount of the culture solution CS remains on the surface after most (lumpy) culture solution CS has passed. For example, as shown in FIG. 9, after most (lumps) of the culture solution CS move to the position of 45 degrees, a very small amount of the culture solution CS remains at the position of 0 degrees. This remaining minute amount of culture solution CS is easy to evaporate. Therefore, before the minute amount of the culture solution CS evaporates, the massive culture solution CS returns and absorbs the minute amount of the culture solution CS. Further, the smaller the amount of the culture solution CS, the greater the influence of evaporation on the cells, so that the reciprocating range of the culture solution CS is reduced. As a result, when the amount of the culture solution CS is relatively small, the evaporation of the culture solution CS can be suppressed.
 なお、細胞の増加にともなって培養液CSが培養容器12に追加され、培養容器12内の培養液CSの量が増加する。その増加にしたがって培養液CSの往復範囲が拡大される。これは、培養液CSの増加によってその蒸発による細胞への影響が低減される一方で、培養液CSをより撹拌する必要があるからである。 As the number of cells increases, the culture solution CS is added to the culture container 12, and the amount of the culture solution CS in the culture container 12 increases. The reciprocating range of the culture solution CS is expanded as the amount increases. This is because the influence of the evaporation on the cells is reduced by increasing the culture solution CS, but it is necessary to stir the culture solution CS more.
 培養液CSが相対的に少量(例えば1リットル未満)である場合、上述したように、培養液CSは、蒸発を抑制するために、培養容器12内を往復動される。これに対して、細胞の増加にともなって培養液CSが追加され、培養液CSが相対的に多量(例えば1リットル以上)である場合、培養液CSは培養容器12内を周回される。 When the culture solution CS is relatively small (for example, less than 1 liter), the culture solution CS is reciprocated in the culture vessel 12 in order to suppress evaporation, as described above. On the other hand, when the culture solution CS is added as the number of cells increases and the culture solution CS is relatively large (for example, 1 liter or more), the culture solution CS is circulated in the culture vessel 12.
 図10Aは、培養液が相対的に多量であるときの培養容器12の傾き状態を示す断面図である。また、図10Bは、培養液が相対的に多量であるときの培養容器12の傾き状態を示す上面図である。 FIG. 10A is a cross-sectional view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large. Further, FIG. 10B is a top view showing a tilted state of the culture vessel 12 when the amount of the culture solution is relatively large.
 図10Aおよび図10Bに示すように、また図8Aおよび図8Bを参照すると、培養液CSが相対的に多量である場合、培養液CSが相対的に少量である場合に比べて、培養容器12の傾き角度θは小さい。これは、培養液CSの深さを小さくし、培養液CS全体に酸素などのガスを行き渡らせるためである。 As shown in FIGS. 10A and 10B, and with reference to FIGS. 8A and 8B, when the culture solution CS is relatively large, the culture container 12 is compared with the case where the culture solution CS is relatively small. The tilt angle θ of is small. This is because the depth of the culture solution CS is reduced and a gas such as oxygen is distributed throughout the culture solution CS.
 培養液CSの深さが大きくなるほど、撹拌によって培養液CSの液面を介して取り込まれた酸素などのガスは培養液CS全体に行き渡りにくい。具体的には、培養液CSの深部にガスは到達しにくい。その結果、培養液CSの深部の溶存酸素量が不足し、細胞がダメージを受けることになる可能性がある。 The greater the depth of the culture solution CS, the more difficult it is for gas such as oxygen taken in through the liquid surface of the culture solution CS by stirring to spread throughout the culture solution CS. Specifically, it is difficult for the gas to reach the deep part of the culture solution CS. As a result, the amount of dissolved oxygen in the deep part of the culture solution CS may be insufficient, and the cells may be damaged.
 培養容器12が傾くことにより、図10Bに示すように、培養液CSが、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに溜まる。この状態で培養容器12の傾き方向が変化される。 When the culture vessel 12 is tilted, the culture solution CS is accumulated in the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture vessel 12, as shown in FIG. 10B. In this state, the tilting direction of the culture vessel 12 is changed.
 図11は、培養液CSが相対的に多量であるときの培養液CSの撹拌を示す図である。図11は、撹拌中の培養容器12を上方から見た(Z軸方向視)状態を示している。 FIG. 11 is a diagram showing stirring of the culture solution CS when the amount of the culture solution CS is relatively large. FIG. 11 shows a state in which the culture vessel 12 being stirred is viewed from above (viewed in the Z-axis direction).
 相対的に多量な(例えば1リットル以上の)培養液CSは、培養容器12の底面12eと内周面12dとに挟まれたコーナー12fに沿って周回される。例えば、ロータリーアクチュエータ34が傾動機構38を一方向に回転し続けることにより、培養容器12の傾き方向が一方向に回転し続ける。それにより、培養液CSが周回される。その結果、培養液CSは撹拌される。 A relatively large amount (for example, 1 liter or more) of the culture solution CS is circulated along the corner 12f sandwiched between the bottom surface 12e and the inner peripheral surface 12d of the culture container 12. For example, the rotary actuator 34 keeps rotating the tilting mechanism 38 in one direction, so that the tilting direction of the culture vessel 12 keeps rotating in one direction. As a result, the culture solution CS is circulated. As a result, the culture solution CS is stirred.
 このように、制御部26は、培養容器12内の培養液CSの量に基づいて、撹拌モード(揺動パターン)を変化させる。例えば、培養容器12内の培養液CSの量が所定のしきい量(例えば1リットル)に比べて少量である場合には、図9に示すように、培養液CSを往復動させることによってその培養液CSを撹拌する。また、培養液CSの量が少ないほど、その培養液CSの往復範囲を小さくする。一方、培養容器12内の培養液CSの量が所定のしきい量を超えると、図11に示すように培養液CSを周回させることによってその培養液CSを撹拌する。なお、培養容器12内の培養液CSの量は、例えば、重量センサ(図示せず)によって測定された培養容器12内の培養液CSの重量から算出されてもよい。 In this way, the control unit 26 changes the stirring mode (oscillation pattern) based on the amount of the culture solution CS in the culture vessel 12. For example, when the amount of the culture solution CS in the culture container 12 is smaller than the predetermined threshold amount (for example, 1 liter), the culture solution CS is reciprocated by reciprocating the culture solution CS as shown in FIG. The culture solution CS is stirred. Further, the smaller the amount of the culture solution CS, the smaller the reciprocating range of the culture solution CS. On the other hand, when the amount of the culture solution CS in the culture vessel 12 exceeds a predetermined threshold amount, the culture solution CS is stirred by circulating the culture solution CS as shown in FIG. The amount of the culture solution CS in the culture container 12 may be calculated from, for example, the weight of the culture solution CS in the culture container 12 measured by a weight sensor (not shown).
 加えて、本実施の形態の場合、制御部26は、培養液CSの撹拌中、湿度センサ18および溶存酸素センサ20の測定結果に基づいて、培養容器揺動装置14を制御するように構成されている。 In addition, in the case of the present embodiment, the control unit 26 is configured to control the culture vessel rocking device 14 based on the measurement results of the humidity sensor 18 and the dissolved oxygen sensor 20 while stirring the culture solution CS. ing.
 具体的には、湿度センサ18によって検出された培養液CS内の湿度が低下すると、例えば所定の適正範囲の下限値を越えて湿度が低下すると、制御部26によって制御された培養容器揺動部14は、培養液CSの液面LSの面積が小さくなるように、培養容器12(すなわちステージ30)の傾き角度を大きくする。 Specifically, when the humidity in the culture solution CS detected by the humidity sensor 18 decreases, for example, when the humidity decreases beyond the lower limit of a predetermined appropriate range, the culture vessel swinging unit controlled by the control unit 26 In No. 14, the inclination angle of the culture vessel 12 (that is, the stage 30) is increased so that the area of the liquid level LS of the culture solution CS is small.
 培養容器12内の湿度が低下すると、培養液CSがその液面LSから蒸発しやすくなる。したがって、培養液CSの液面LSの面積を小さくすることにより、その蒸発を抑制することができる。 When the humidity in the culture vessel 12 decreases, the culture solution CS tends to evaporate from the liquid level LS. Therefore, by reducing the area of the liquid level LS of the culture solution CS, its evaporation can be suppressed.
 また、溶存酸素センサによって検出された溶存酸素の量が低下すると、例えば所定の適正範囲の下限値を越えて低下すると、制御部26によって制御された培養容器揺動部14は、培養液CSの往復動の周期および往復範囲の少なくとも一方が増加するように、培養容器12を揺動する。なお、溶存酸素センサ20(そのチップ)は、培養容器12内の培養液CSの量にかかわらず、培養液CSに接触してその溶存酸素量を検出できる培養容器12上の位置に設けられる。本実施の形態の場合、溶存酸素センサ20は、培養容器12の底面12eの外周縁部に設けられている。また、溶存酸素センサ20が溶存酸素量を測定するとき、その溶存酸素センサ20に培養液CSが接触するように、培養容器12が培養容器揺動部14によって揺動される。この場合、溶存酸素センサ20に培養液CSを接触させてその溶存酸素量を精度よく検出するために、培養容器12の揺動速度や揺動パターンが一時的に変更されてもよい、または培養容器12の揺動が一時的に停止してもよい。 Further, when the amount of dissolved oxygen detected by the dissolved oxygen sensor decreases, for example, when the amount of dissolved oxygen decreases beyond the lower limit of a predetermined appropriate range, the culture vessel swinging unit 14 controlled by the control unit 26 moves the culture solution CS. The culture vessel 12 is swung so that at least one of the reciprocating cycle and the reciprocating range is increased. The dissolved oxygen sensor 20 (the chip thereof) is provided at a position on the culture vessel 12 that can come into contact with the culture solution CS and detect the dissolved oxygen amount regardless of the amount of the culture solution CS in the culture vessel 12. In the case of the present embodiment, the dissolved oxygen sensor 20 is provided on the outer peripheral edge of the bottom surface 12e of the culture vessel 12. Further, when the dissolved oxygen sensor 20 measures the dissolved oxygen amount, the culture vessel 12 is shaken by the culture vessel swinging portion 14 so that the culture solution CS comes into contact with the dissolved oxygen sensor 20. In this case, in order to bring the culture solution CS into contact with the dissolved oxygen sensor 20 and accurately detect the dissolved oxygen amount, the shaking speed and shaking pattern of the culture vessel 12 may be temporarily changed, or the culture may be performed. The swing of the container 12 may be temporarily stopped.
 培養容器12内の培養液CSの溶存酸素の量が低下すると、培養液CS内の細胞がダメージを受ける。したがって、培養液CSの往復動の周期および往復範囲の少なくとも一方を増加させることにより、培養液CSがより撹拌され、それにより培養液CS内に多くの酸素が取り込まれる。その結果、細胞のダメージを抑制することができる。 When the amount of dissolved oxygen in the culture solution CS in the culture container 12 decreases, the cells in the culture solution CS are damaged. Therefore, by increasing at least one of the reciprocating cycle and the reciprocating range of the culture solution CS, the culture solution CS is more agitated, whereby a large amount of oxygen is taken into the culture solution CS. As a result, cell damage can be suppressed.
 なお、培養容器12内の培養液CSが相対的に多量であって周回されている場合、その周回速度を増加させることにより、培養液CSがより撹拌され、それにより培養液CS内に多くの酸素を取り込むことができる。 When the culture solution CS in the culture vessel 12 is relatively large and orbits, the culture solution CS is more agitated by increasing the orbiting speed, whereby a large amount of the culture solution CS is contained in the culture solution CS. Can take in oxygen.
 さらに、本実施の形態の場合、制御部26は、培養スケジュールにしたがって培養容器揺動部14および培養液供給部16を制御する。このことについて説明する。 Further, in the case of the present embodiment, the control unit 26 controls the culture vessel swinging unit 14 and the culture solution supply unit 16 according to the culture schedule. This will be described.
 図12は、培養装置10の制御系を示すブロック図である。 FIG. 12 is a block diagram showing a control system of the culture apparatus 10.
 培養装置10の制御部26は、ユーザから培養に関する情報を取得し、その取得した情報に基づいて培養スケジュールを作成し、作成した培養スケジュールに基づいて上述したように培養容器揺動部14および培養液供給部16を制御する。 The control unit 26 of the culture apparatus 10 acquires information on the culture from the user, creates a culture schedule based on the acquired information, and based on the created culture schedule, the culture container swing unit 14 and the culture as described above. The liquid supply unit 16 is controlled.
 そのために、図12に示すように、制御部26は、ユーザから培養条件の情報を取得する培養条件取得部100と、ユーザから培養の終了条件の情報を取得する培養終了条件取得部102と、取得した培養条件に基づいて培養時間を算出する培養時間算出部104と、培養容器12に供給する培養液CSの供給スケジュールを作成および補正する供給スケジュール作成/補正部106と、培養容器12の揺動スケジュールを作成する揺動スケジュール作成部108と、揺動スケジュールに基づいてガントチャートを作成するガントチャート作成部110と、培養液量および細胞密度のグラフを作成するグラフ作成部112と、培養の終了を判定する培養終了判定部114と、培養に関する情報を出力する出力部116と、を備える。なお、上述したように、制御部26が記憶装置やCPUが搭載された制御基板から構成される場合、記憶装置に記憶されたプログラムにしたがってCPUが動作することにより、CPUがこれらの培養条件取得部100などとして機能する。 Therefore, as shown in FIG. 12, the control unit 26 includes a culture condition acquisition unit 100 that acquires culture condition information from the user, and a culture end condition acquisition unit 102 that acquires culture end condition information from the user. The culture time calculation unit 104 that calculates the culture time based on the acquired culture conditions, the supply schedule creation / correction unit 106 that creates and corrects the supply schedule of the culture solution CS to be supplied to the culture vessel 12, and the culture vessel 12 shake. A swing schedule creation unit 108 for creating a dynamic schedule, a Gantt chart creation unit 110 for creating a Gantt chart based on a swing schedule, a graph creation unit 112 for creating a graph of culture medium volume and cell density, and a culture It includes a culture end determination unit 114 for determining the end, and an output unit 116 for outputting information about the culture. As described above, when the control unit 26 is composed of a storage device and a control board on which the CPU is mounted, the CPU operates according to the program stored in the storage device, so that the CPU acquires these culture conditions. It functions as a unit 100 or the like.
 また、制御部26には、ユーザからの様々な指示入力を取得するために、キーボード、マウス、タッチパネルなどの入力デバイス80が接続されている。また、出力部116が培養に関する情報をユーザに出力するために、モニターなどの表示デバイス82が制御部26に接続されている。なお、入力デバイス80と表示デバイス82が、タッチスクリーンとして一体化されてもよい。 Further, an input device 80 such as a keyboard, a mouse, and a touch panel is connected to the control unit 26 in order to acquire various instruction inputs from the user. Further, a display device 82 such as a monitor is connected to the control unit 26 so that the output unit 116 outputs information about the culture to the user. The input device 80 and the display device 82 may be integrated as a touch screen.
 制御部26における培養条件取得部100は、培養条件情報として、初期細胞数、目標細胞数、目標細胞密度、および倍化時間を少なくとも含む培養条件の情報を、ユーザから入力デバイス80を介して取得する。すなわち、培養条件取得部100は、培養スケジュール(供給スケジュールおよび揺動スケジュール)の作成に最低限必要な情報を取得する。なお、初期細胞数は培養開始時の細胞数であって、目標細胞数は培養によって得る最終的な細胞数であって、目標細胞密度は培養中に維持すべき細胞密度である。 The culture condition acquisition unit 100 in the control unit 26 acquires culture condition information including at least the initial number of cells, the target cell number, the target cell density, and the doubling time from the user via the input device 80 as the culture condition information. To do. That is, the culture condition acquisition unit 100 acquires the minimum information necessary for creating the culture schedule (supply schedule and swing schedule). The initial number of cells is the number of cells at the start of culturing, the target number of cells is the final number of cells obtained by culturing, and the target cell density is the cell density to be maintained during culturing.
 制御部26における培養終了条件取得部102は、培養終了条件情報として、細胞到達数、到達培養液量、および到達培養時間の少なくとも1つを含む培養終了条件の情報を、ユーザから入力デバイス80を介して取得する。 The culture end condition acquisition unit 102 in the control unit 26 inputs information on the culture end condition including at least one of the number of cells reached, the amount of the reached culture solution, and the reached culture time as the culture end condition information from the user to the device 80. Get through.
 制御部26における培養時間算出部104は、培養条件取得部100がユーザから取得した培養条件情報に基づいて、培養に必要な培養時間を算出する。具体的には、培養時間算出部104は、目標細胞密度を維持しつつ細胞数が初期細胞数から目標細胞数まで増加するために必要な時間を培養時間として、倍化時間に基づいて算出する。 The culture time calculation unit 104 in the control unit 26 calculates the culture time required for culture based on the culture condition information acquired by the culture condition acquisition unit 100 from the user. Specifically, the culture time calculation unit 104 calculates the time required for the number of cells to increase from the initial number of cells to the target number of cells while maintaining the target cell density as the culture time, based on the doubling time. ..
 制御部26における供給スケジュール作成/補正部106は、培養条件情報と培養時間とに基づいて、培養スケジュールとして培養液の供給スケジュールを作成する。具体的には、培養時間算出部104によって算出された培養時間における初期細胞数から目標細胞数まで増加する間の細胞数の変化を倍化時間に基づいて算出し、その細胞数の変化に基づいて目標細胞密度を維持するために必要な培養容器12内の培養液CSの量の変化を算出する。その算出結果に基づいて、供給スケジュール作成/補正部106は、培養液供給部16が培養容器12に供給する培養液CSの流量(単位時間あたりの供給量)の時間的な変化を供給スケジュールとして作成する。制御部26は、この供給スケジュールに基づいて、培養液供給部16(本実施の形態の場合、ローラポンプ64)の流量を変更する。 The supply schedule creation / correction unit 106 in the control unit 26 creates a culture solution supply schedule as a culture schedule based on the culture condition information and the culture time. Specifically, the change in the number of cells during the increase from the initial number of cells to the target number of cells in the culture time calculated by the culture time calculation unit 104 is calculated based on the doubling time, and based on the change in the number of cells. The change in the amount of culture solution CS in the culture vessel 12 required to maintain the target cell density is calculated. Based on the calculation result, the supply schedule creation / correction unit 106 uses the temporal change of the flow rate (supply amount per unit time) of the culture solution CS supplied by the culture solution supply unit 16 to the culture container 12 as the supply schedule. create. The control unit 26 changes the flow rate of the culture solution supply unit 16 (in the case of the present embodiment, the roller pump 64) based on this supply schedule.
 なお、供給スケジュールは、細胞密度が目標細胞密度に比べて高くならないように作成されるのが好ましい。 It is preferable that the supply schedule is created so that the cell density does not become higher than the target cell density.
 図13は、培養液の供給スケジュールの一例を説明するための図である。 FIG. 13 is a diagram for explaining an example of the culture solution supply schedule.
 図13には、目標細胞密度で維持するために必要な目標流量の変化が示されている。この目標流量以下に培養液供給部16の流量(制御流量)がならないように、供給スケジュールが作成される。例えば、供給スケジュールとして、培養液供給部16の流量が必要最低限の増加量で段階的に増加するようなスケジュールが作成される。このような供給スケジュールに従えば、培養容器12内の培養液CSにおける細胞密度は、目標細胞密度に比べて低くなるものの、その細胞密度が目標細胞密度を大きく超えること(細胞が過密になる)ことは抑制される。すなわち、本実施の形態では、細胞密度をコントロールし、いわゆる対数増殖期を維持するように培養液の供給をスケジュールすることで、培養期間を短縮し培養効率を高めるようにしている。 FIG. 13 shows the change in the target flow rate required to maintain the target cell density. A supply schedule is created so that the flow rate (controlled flow rate) of the culture solution supply unit 16 does not fall below this target flow rate. For example, as a supply schedule, a schedule is created in which the flow rate of the culture solution supply unit 16 is gradually increased by the minimum necessary increase amount. According to such a supply schedule, the cell density in the culture medium CS in the culture vessel 12 is lower than the target cell density, but the cell density greatly exceeds the target cell density (cells become overcrowded). That is suppressed. That is, in the present embodiment, the cell density is controlled and the supply of the culture solution is scheduled so as to maintain the so-called logarithmic growth phase, thereby shortening the culture period and increasing the culture efficiency.
 また、供給スケジュールは、培養液供給部16のON/OFF比の変化として作成されてもよい。すなわち、培養液供給部16は、培養容器12に対して間欠的に培養液CSを供給してもよい。例えば、培養液供給部16のローラポンプ64が10ml/分の流量で培養液CSを送液する必要がある場合、60ml/分の流量での2秒間の送液と、10秒間の送液停止とが交互に繰り返されてもよい。このような間欠的な送液により、図13に示すように段階的に培養液供給部16の流量を増加させる場合において、次の流量への増加量を小さくすることができる。これにより、過剰に培養液CSを培養容器12に供給すること、すなわち細胞密度が過剰に低下することが抑制される。 Further, the supply schedule may be created as a change in the ON / OFF ratio of the culture solution supply unit 16. That is, the culture solution supply unit 16 may intermittently supply the culture solution CS to the culture container 12. For example, when the roller pump 64 of the culture solution supply unit 16 needs to supply the culture solution CS at a flow rate of 10 ml / min, the solution is supplied at a flow rate of 60 ml / min for 2 seconds and the solution is stopped for 10 seconds. And may be repeated alternately. By such intermittent liquid feeding, when the flow rate of the culture solution supply unit 16 is increased stepwise as shown in FIG. 13, the amount of increase to the next flow rate can be reduced. As a result, the excessive supply of the culture solution CS to the culture vessel 12, that is, the excessive decrease in cell density is suppressed.
 また、供給スケジュール作成/補正部106は、培養中、細胞密度計測部22によって計測された細胞密度と目標細胞密度との差が所定値以下になるように、供給スケジュールを補正する。 Further, the supply schedule creation / correction unit 106 corrects the supply schedule so that the difference between the cell density measured by the cell density measurement unit 22 and the target cell density is equal to or less than a predetermined value during culturing.
 具体的には、培養中に細胞密度計測部22によって定期的に計測された細胞密度が目標細胞密度との差(絶対値)が所定のしきい値を超えると、供給スケジュール作成/補正部106は、使用中の供給スケジュールを補正する。例えば、計測された細胞密度が目標細胞密度に比べて所定のしきい値を超えて高い場合、供給スケジュール作成/補正部106は、培養容器12への培養液CSの供給量が増加するように供給スケジュールを補正する。その補正された供給スケジュールに基づいて、制御部26が、培養液供給部16(本実施の形態の場合、ローラポンプ64)の流量を変更することにより、培養容器12内の培養液CSの細胞密度と目標細胞密度との差が所定値に比べて小さくされる。 Specifically, when the difference (absolute value) between the cell density periodically measured by the cell density measuring unit 22 during culturing and the target cell density exceeds a predetermined threshold value, the supply schedule creation / correction unit 106 Corrects the supply schedule in use. For example, when the measured cell density is higher than the target cell density by more than a predetermined threshold value, the supply schedule creation / correction unit 106 increases the supply amount of the culture solution CS to the culture vessel 12. Correct the supply schedule. Based on the corrected supply schedule, the control unit 26 changes the flow rate of the culture solution supply unit 16 (roller pump 64 in the case of the present embodiment), so that the cells of the culture solution CS in the culture container 12 are changed. The difference between the density and the target cell density is made smaller than the predetermined value.
 なお、細胞密度計測部22は、培養中に定期的に細胞密度を計測することに加えて、培養中の任意のタイミングでのユーザの指示によって細胞密度の計測を実行するように構成されてもよい。例えば、細胞密度計測部22は、培養中、入力デバイス80に対するユーザの計測指示入力を受けて細胞密度を計測する。計測された細胞密度は、出力部116が表示デバイス82を介してユーザに出力する。これにより、ユーザは、任意のタイミングでの細胞密度を確認することができる。 In addition to periodically measuring the cell density during culturing, the cell density measuring unit 22 may be configured to measure the cell density according to a user's instruction at an arbitrary timing during culturing. Good. For example, the cell density measuring unit 22 measures the cell density during culturing by receiving a user's measurement instruction input to the input device 80. The measured cell density is output to the user by the output unit 116 via the display device 82. This allows the user to check the cell density at any time.
 細胞密度計測部22がユーザの指示に基づいて細胞計測を実行することに関連し、供給スケジュール作成/補正部106が、ユーザの補正指示入力によって供給スケジュールを補正するように構成されてもよい。例えば、ユーザが、細胞密度を確認した後、補正指示入力として、入力デバイス80に、培養液CSの供給量の増減値を入力する。この入力された増減値に基づいて、培養液CSの供給量が増減するように、供給スケジュール作成/補正部106は供給スケジュールを補正する。これにより、ユーザが所望する培養液CSの供給スケジュールを作成することができる。 In connection with the cell density measurement unit 22 performing cell measurement based on the user's instruction, the supply schedule creation / correction unit 106 may be configured to correct the supply schedule by inputting the user's correction instruction. For example, after confirming the cell density, the user inputs an increase / decrease value of the supply amount of the culture solution CS to the input device 80 as a correction instruction input. The supply schedule creation / correction unit 106 corrects the supply schedule so that the supply amount of the culture solution CS increases or decreases based on the input increase / decrease value. As a result, the supply schedule of the culture solution CS desired by the user can be created.
 制御部26における揺動スケジュール作成部108は、供給スケジュール作成/補正部106によって作成/補正された培養液CSの供給スケジュールに基づいて、培養スケジュールとして培養容器12に対する揺動スケジュールを作成する。具体的には、揺動スケジュール作成部108は、供給スケジュール、すなわち培養容器12内の培養液CSの量の変化に基づいて、培養容器12の揺動パターンの変化を示す揺動スケジュールを作成する。上述したように、培養容器12の揺動パターン(傾き角度θ、培養液CSの往復動の周期および往復範囲)は、培養容器12内の培養液CSの量によって異なる。制御部26は、その記憶装置に、揺動パターンと培養液CSの量との対応関係を示す揺動パターン決定テーブルを記憶している。その揺動パターン決定テーブルと供給スケジュールとに基づいて、揺動スケジュール作成部108は、揺動スケジュールを作成する。制御部26は、この揺動スケジュールに基づいて、培養容器揺動部14による培養容器12の揺動を制御する。 The swing schedule creation unit 108 in the control unit 26 creates a swing schedule for the culture vessel 12 as a culture schedule based on the supply schedule of the culture solution CS created / corrected by the supply schedule creation / correction unit 106. Specifically, the swing schedule creation unit 108 creates a swing schedule indicating a change in the swing pattern of the culture vessel 12 based on a supply schedule, that is, a change in the amount of the culture solution CS in the culture vessel 12. .. As described above, the swing pattern (tilt angle θ, the cycle of reciprocating motion of the culture solution CS and the reciprocating range) of the culture container 12 differs depending on the amount of the culture solution CS in the culture container 12. The control unit 26 stores in the storage device a swing pattern determination table showing the correspondence between the swing pattern and the amount of the culture solution CS. The swing schedule creation unit 108 creates a swing schedule based on the swing pattern determination table and the supply schedule. The control unit 26 controls the swing of the culture vessel 12 by the culture vessel swing section 14 based on this swing schedule.
 制御部26におけるガントチャート作成部110は、揺動スケジュール作成部108によって作成された揺動スケジュールに基づいて、揺動パターンの変化を示すガントチャートを作成する。作成されたガントチャートは、出力部116が表示デバイス82を介してユーザに出力する。 The Gantt chart creation unit 110 in the control unit 26 creates a Gantt chart showing changes in the swing pattern based on the swing schedule created by the swing schedule creation unit 108. The created Gantt chart is output to the user by the output unit 116 via the display device 82.
 図14は、培養容器12の揺動パターンのガントチャートの一例を示している。 FIG. 14 shows an example of a Gantt chart of a swing pattern of the culture vessel 12.
 図14には、おおよそ15日間の培養時間で行われる5種類の揺動パターンA~Eのガントチャート120が示されている。横軸のDXは、培養を開始してからX日目を表す。 FIG. 14 shows a Gantt chart 120 of five types of swing patterns A to E performed in a culture time of about 15 days. DX on the horizontal axis represents the Xth day after the start of culturing.
 ガントチャート120において、揺動パターンA~Eそれぞれの実行期間は、タイムバー122A~122Eによって示されている。具体的には、タイムバーの長さが揺動パターンの継続時間を示し、左端が揺動パターンの開始タイミングを示し、右端が揺動パターンの終了タイミングを示している。また、シークスライダ124が、培養時間における現在のタイミングを示している。すなわち、培養が開始されると、シークスライダ124はガントチャート120の右側に移動し始める。 In the Gantt chart 120, the execution period of each of the swing patterns A to E is indicated by the time bars 122A to 122E. Specifically, the length of the time bar indicates the duration of the swing pattern, the left end indicates the start timing of the swing pattern, and the right end indicates the end timing of the swing pattern. The seek slider 124 also indicates the current timing of the culture time. That is, when the culture is started, the seek slider 124 starts to move to the right side of the Gantt chart 120.
 このようなガントチャート120が表示デバイス82に表示されることにより、ユーザは、培養の状況を確認することができる。 By displaying such a Gantt chart 120 on the display device 82, the user can confirm the culture status.
 なお、ガントチャートの揺動パターンA~Eのタイムバー122A~122E上に、培養温度(培養容器内温度)、ガス濃度(培養容器内の酸素や炭酸ガスの濃度)、およびガス供給部22のガス流量の少なくとも1つの測定値を表示してもよい。これにより、揺動パターンの変化と関連する培養温度などのパラメータの変化との関係を、ユーザは視覚的に確認することができる。 The culture temperature (temperature in the culture vessel), gas concentration (concentration of oxygen and carbon dioxide in the culture vessel), and the gas supply unit 22 are on the time bars 122A to 122E of the swing patterns A to E of the Gantt chart. At least one measurement of gas flow rate may be displayed. This allows the user to visually confirm the relationship between the change in the swing pattern and the related change in parameters such as the culture temperature.
 図12に戻り、制御部26におけるグラフ作成部112は、培養容器12内の培養液量および細胞密度の少なくとも一方の変化を示すグラフを作成する。作成されたグラフは、出力部116が、ガントチャート作成部110によって作成されたガントチャートとともに、表示デバイス82を介してユーザに出力する。 Returning to FIG. 12, the graph creation unit 112 in the control unit 26 creates a graph showing changes in at least one of the culture fluid volume and the cell density in the culture vessel 12. The output unit 116 outputs the created graph to the user via the display device 82 together with the Gantt chart created by the Gantt chart creation unit 110.
 図15は、培養容器12内の培養液量の変化を示すグラフの一例である。また、図16は、細胞密度の変化を示すグラフの一例である。 FIG. 15 is an example of a graph showing a change in the amount of culture solution in the culture vessel 12. Further, FIG. 16 is an example of a graph showing changes in cell density.
 図15に示すグラフ130には、2種類の培養容器12内の培養液量の変化が示されている。点線は、供給スケジュール作成/補正部106によって最初に作成された(補正前の)培養液CSの供給スケジュールに基づく培養液量(予測値)の変化を示している。また、実線は、細胞密度計測部22の定期的な細胞密度の測定の結果に基づいて補正された供給スケジュールに基づく培養液量(実際値)の変化を示している。実線の先端が、培養液量の現在値を示している。このようなグラフ130を参照することにより、ユーザは培養容器12内の培養液量の変化を確認することができる。また、このようなグラフ130は、上述したようにユーザが供給スケジュールを補正するときの参考として利用することができる。 Graph 130 shown in FIG. 15 shows changes in the amount of culture solution in the two types of culture containers 12. The dotted line shows the change in the amount of the culture solution (predicted value) based on the supply schedule of the culture solution CS (before correction) first created by the supply schedule creation / correction unit 106. Further, the solid line shows the change in the amount of the culture solution (actual value) based on the supply schedule corrected based on the result of the periodic measurement of the cell density of the cell density measuring unit 22. The tip of the solid line shows the current value of the culture medium volume. By referring to such a graph 130, the user can confirm the change in the amount of the culture solution in the culture vessel 12. Further, such a graph 130 can be used as a reference when the user corrects the supply schedule as described above.
 図16に示すグラフ140には、2種類の細胞密度の変化が示されている。点線は、供給スケジュール作成/補正部106によって最初に作成された(補正前の)培養液CSの供給スケジュールに基づく細胞密度(予測値)の変化を示している。また、実線は、細胞密度計測部22によって計測された細胞密度(実際値)の変化を示している。実線の先端が、培養液量の現在値を示している。さらに、グラフ140には、目標細胞密度TCを示すライン、細胞密度の上限値UCを示すライン、および細胞密度の下限値LCを示すラインが示されている。なお、細胞密度の上限値UCおよび下限値LCは、培養条件取得部100がユーザから取得する。このようなグラフ140を参照することにより、ユーザは細胞密度の変化を確認することができる。また、このようなグラフ140は、上述したようにユーザが供給スケジュールを補正するときの参考として利用することができる。 Graph 140 shown in FIG. 16 shows two types of changes in cell density. The dotted line shows the change in cell density (predicted value) based on the supply schedule of the culture medium CS (before correction) first created by the supply schedule creation / correction unit 106. The solid line shows the change in cell density (actual value) measured by the cell density measuring unit 22. The tip of the solid line shows the current value of the culture medium volume. Further, the graph 140 shows a line showing the target cell density TC, a line showing the upper limit value UC of the cell density, and a line showing the lower limit value LC of the cell density. The upper limit value UC and the lower limit value LC of the cell density are acquired from the user by the culture condition acquisition unit 100. By referring to such a graph 140, the user can confirm the change in cell density. Further, such a graph 140 can be used as a reference when the user corrects the supply schedule as described above.
 図12に戻り、制御部26における培養終了判定部114は、培養終了条件取得部102がユーザから取得した培養終了条件が成立したか否かを判定する。培養終了条件が成立した場合、制御部26は、培養容器揺動部14の培養容器12の揺動を停止させるとともに、培養液供給部16の培養液CSの供給を停止させる。また、制御部26は、ガス供給部24のガス供給も停止させる。そして、制御部26の出力部116が表示デバイス82を介してユーザに培養の終了を通知する。なお、培養の終了は、スピーカなどを介して音声で通知してもよい。また、培養終了条件取得部102がユーザから複数の培養終了条件を取得した場合、少なくとも1つの培養終了条件の成立をもって培養を終了してもよい。 Returning to FIG. 12, the culture end determination unit 114 in the control unit 26 determines whether or not the culture end condition acquired by the culture end condition acquisition unit 102 from the user is satisfied. When the culture end condition is satisfied, the control unit 26 stops the shaking of the culture container 12 of the culture container shaking unit 14 and stops the supply of the culture solution CS of the culture solution supply unit 16. The control unit 26 also stops the gas supply of the gas supply unit 24. Then, the output unit 116 of the control unit 26 notifies the user of the end of the culture via the display device 82. The end of the culture may be notified by voice via a speaker or the like. Further, when the culture end condition acquisition unit 102 acquires a plurality of culture end conditions from the user, the culture may be terminated when at least one culture end condition is satisfied.
 なお、培養が終了した培養液CSをユーザがそのまま放置する可能性がある。この場合、培養容器12の揺動などが停止しているので、細胞の種類や放置時間によっては、培養液CS内の細胞が酸欠などによって死滅する可能性がある。その対処として、制御部26は、培養終了条件が成立すると、培養容器揺動部14、培養液供給部16、およびガス供給部24を停止させることなく動作させたままで、培養終了条件の成立を表示デバイス82やスピーカなどを介してユーザに通知する。その後、ユーザが培養終了の指示入力を入力デバイス80に対して実行すると、制御部26が、培養容器揺動部14、培養液供給部16、およびガス供給部24を停止させる。 In addition, there is a possibility that the user leaves the culture solution CS after culturing as it is. In this case, since the culture vessel 12 has stopped swinging, the cells in the culture solution CS may die due to lack of oxygen or the like depending on the type of cells and the leaving time. As a countermeasure, when the culture end condition is satisfied, the control unit 26 satisfies the culture end condition while keeping the culture container swinging unit 14, the culture solution supply unit 16, and the gas supply unit 24 operating without stopping. Notify the user via the display device 82, the speaker, or the like. After that, when the user executes an instruction input for the end of culture to the input device 80, the control unit 26 stops the culture container swing unit 14, the culture solution supply unit 16, and the gas supply unit 24.
 制御部26における出力部116は、表示デバイス82を介してユーザに培養に関する情報を出力する。上述したように、出力部116は、ガントチャート作成部110によって作成されたガントチャート、グラフ作成部112によって作成されたグラフ、培養条件取得部100によって取得された培養条件、培養終了条件取得部102によって取得された培養終了条件などを表示デバイス82に表示させる。また、その他の情報として、出力部116は、培養開始からの経過時間、現在の細胞数、現在の培養液量、現在の細胞密度などの情報をリアルタイムに表示デバイス82に表示させてもよい。なお、出力部116が出力する情報、すなわち表示デバイス82が表示する情報は入力デバイス80を介してユーザが選択できるように、制御部26が構成されてもよい。 The output unit 116 of the control unit 26 outputs information about the culture to the user via the display device 82. As described above, the output unit 116 is the Gantt chart created by the Gantt chart creation unit 110, the graph created by the graph creation unit 112, the culture conditions acquired by the culture condition acquisition unit 100, and the culture end condition acquisition unit 102. The display device 82 is displayed with the culture end conditions and the like acquired by. Further, as other information, the output unit 116 may display information such as the elapsed time from the start of culture, the current number of cells, the current amount of culture solution, and the current cell density on the display device 82 in real time. The control unit 26 may be configured so that the information output by the output unit 116, that is, the information displayed by the display device 82 can be selected by the user via the input device 80.
 このように、図12に示す構成の制御部26が培養スケジュール(培養液の供給スケジュールおよび培養容器の揺動スケジュール)に基づいて培養容器揺動部14および培養液供給部16を制御することにより、拡大培養を自動化することができる。 In this way, the control unit 26 having the configuration shown in FIG. 12 controls the culture vessel shaking unit 14 and the culture solution supply unit 16 based on the culture schedule (culture solution supply schedule and culture vessel shaking schedule). , Expansion culture can be automated.
 以上、このような実施の形態によれば、細胞の拡大培養において、一つの容器で少量から大量までの連続的な拡大培養を短期間に高い培養効率で実現し、かつ、コンタミネーション発生のリスクを低減しながら、作業者の負担を軽減するための自動化を可能とすることができる。 As described above, according to such an embodiment, in the expansion culture of cells, continuous expansion culture from a small amount to a large amount can be realized with high culture efficiency in a short period of time in one container, and there is a risk of contamination. It is possible to enable automation to reduce the burden on the operator while reducing the problem.
 すなわち、1つの培養容器を用い、その培養容器内の培養液の量に基づいて撹拌モードを変更することにより、コンタミネーションの発生のリスクが低減された拡大培養を行うことができる。また、このような拡大培養を、1つの装置(培養容器揺動装置)によって実現することができる。 That is, by using one culture vessel and changing the stirring mode based on the amount of the culture solution in the culture vessel, it is possible to perform expanded culture in which the risk of contamination is reduced. Moreover, such an expanded culture can be realized by one device (culture container swinging device).
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明の実施の形態はこれらに限らない。 Although the present invention has been described above with reference to the above-described embodiments, the embodiments of the present invention are not limited to these.
 例えば、上述の実施の形態の場合、培養容器は、図2に示すように、たらい状である。しかしながら、本発明の実施の形態はこれに限らない。培養容器は、例えば、大型の三角フラスコであってもよい。 For example, in the case of the above-described embodiment, the culture vessel has a basin shape as shown in FIG. However, the embodiments of the present invention are not limited to this. The culture vessel may be, for example, a large Erlenmeyer flask.
 すなわち、本発明の実施の形態に係る培養装置は、広義には、培養液内で細胞の拡大培養を行う培養装置であって、培養液を収容する培養容器と、前記培養容器内の培養液が撹拌されるように前記培養容器を揺動する培養容器揺動部と、培養液内の細胞の増加にともなって前記培養容器に培養液を追加する培養液供給部と、を有し、前記培養容器揺動部が、前記培養容器内の培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動するものである。 That is, in a broad sense, the culture apparatus according to the embodiment of the present invention is a culture apparatus for expanding and culturing cells in a culture solution, and is a culture container containing the culture solution and a culture solution in the culture solution. The culture vessel swinging portion that swings the culture vessel so that the culture medium is agitated, and the culture medium supply portion that adds the culture solution to the culture medium as the number of cells in the culture medium increases. The culture vessel swinging portion swings the culture vessel so that the smaller the amount of the culture solution in the culture vessel, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring. It is a thing.
 また、本発明の実施の形態に係る培養方法は、広義には、培養容器に収容された培養液内で細胞の拡大培養を行う細胞の培養方法であって、前記培養容器内の培養液が撹拌されるように前記培養容器を揺動し、培養液内の細胞の増加にともなって前記培養容器に培養液を追加し、培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する方法である。 Further, the culture method according to the embodiment of the present invention is, in a broad sense, a method for culturing cells in which cells are expanded and cultured in a culture solution contained in a culture container, and the culture solution in the culture container is used. The culture vessel is shaken so as to be agitated, the culture solution is added to the culture solution as the number of cells in the culture solution increases, and the smaller the amount of the culture solution, the more contact with the culture solution that moves by stirring. This is a method of rocking the culture vessel so that the surface portion of the culture vessel becomes smaller.
 本発明は、培養液を撹拌しつつ行う細胞培養に適用可能である。 The present invention is applicable to cell culture performed while stirring the culture solution.
   12   培養容器
   CS   培養液
12 Culture container CS culture solution

Claims (21)

  1.  培養液内で細胞の拡大培養を行う培養装置であって、
     培養液を収容する培養容器と、
     前記培養容器内の培養液が撹拌されるように前記培養容器を揺動する培養容器揺動部と、
     培養液内の細胞の増加にともなって前記培養容器に培養液を追加する培養液供給部と、を有し、
     前記培養容器揺動部が、前記培養容器内の培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する、培養装置。
    A culture device that expands and cultures cells in a culture medium.
    A culture container that houses the culture solution and
    A culture vessel swinging portion that swings the culture vessel so that the culture solution in the culture vessel is agitated,
    It has a culture solution supply unit for adding the culture solution to the culture medium as the number of cells in the culture solution increases.
    The culture vessel swinging portion swings the culture vessel so that the smaller the amount of the culture solution in the culture vessel, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring. Incubator.
  2.  前記培養容器が、円形状の底面と前記底面の外周縁から立設する円筒状の内周面とを含み、
     前記培養容器揺動部が、前記底面と前記内周面とに挟まれたコーナーに培養液が溜まるように前記培養容器を傾けつつ、前記コーナーに沿って培養液が往復動するように前記培養容器の傾き方向を変化させ、
     培養液の量が少ないほど、培養液の往復範囲が小さくされる、請求項1に記載の培養装置。
    The culture vessel comprises a circular bottom surface and a cylindrical inner peripheral surface erected from the outer peripheral edge of the bottom surface.
    The culture is tilted so that the culture solution is collected in a corner sandwiched between the bottom surface and the inner peripheral surface of the culture container swinging portion, and the culture solution is reciprocated along the corner. Change the tilt direction of the container,
    The culture apparatus according to claim 1, wherein the smaller the amount of the culture solution, the smaller the reciprocating range of the culture solution.
  3.  前記培養容器揺動部は、培養液の量が少ないほど、前記培養容器を大きく傾ける、請求項2に記載の培養装置。
    The culture apparatus according to claim 2, wherein the culture container swinging portion tilts the culture container more as the amount of the culture solution is smaller.
  4.  前記培養容器内の湿度を測定する湿度センサを有し、
     前記培養容器揺動部が、前記湿度センサによって検出された湿度が低下すると、培養液の液面の面積が小さくなるように前記培養容器の傾き角度を大きくする、請求項2または3に記載の培養装置。
    It has a humidity sensor that measures the humidity inside the culture vessel.
    The second or third claim, wherein when the humidity detected by the humidity sensor of the culture vessel swinging portion decreases, the inclination angle of the culture vessel is increased so that the area of the liquid surface of the culture solution becomes smaller. Incubator.
  5.  前記培養容器内の培養液に溶存する酸素の量を測定する溶存酸素センサを有し、
     前記培養容器揺動部が、前記溶存酸素センサによって検出された溶存酸素の量が低下すると、培養液の往復動の周期および往復範囲の少なくとも一方が増加するように前記培養容器を揺動する、請求項2から4のいずれか一項に記載の培養装置。
    It has a dissolved oxygen sensor that measures the amount of oxygen dissolved in the culture solution in the culture vessel.
    When the amount of dissolved oxygen detected by the dissolved oxygen sensor decreases, the culture vessel swinging portion swings the culture vessel so that at least one of the reciprocating cycle and the reciprocating range of the culture solution increases. The culture apparatus according to any one of claims 2 to 4.
  6.  前記培養容器揺動部が、前記培養容器内の培養液の量が所定のしきい量を超えると、前記コーナーに沿って培養液が周回するように前記培養容器の傾き方向を変化させる、請求項2から5のいずれか一項に記載の培養装置。
    When the amount of the culture solution in the culture container exceeds a predetermined threshold, the swinging portion of the culture container changes the tilt direction of the culture container so that the culture solution orbits along the corner. Item 2. The culture apparatus according to any one of Items 2 to 5.
  7.  初期細胞数、目標細胞数、目標細胞密度、および倍化時間を少なくとも含む培養条件の情報を取得する培養条件取得部と、
     前記培養条件情報に基づいて、培養時間を算出する培養時間算出部と、
     前記培養条件情報と前記培養時間とに基づいて、培養液の供給スケジュールを作成する供給スケジュール作成部と、を有し、
     前記培養液供給部が、前記供給スケジュールに基づいて、単位時間あたりの培養液供給量を変更する、請求項1から6のいずれか一項に記載の培養装置。
    A culture condition acquisition unit that acquires information on culture conditions including at least the initial number of cells, the target number of cells, the target cell density, and the doubling time.
    A culture time calculation unit that calculates the culture time based on the culture condition information,
    It has a supply schedule creation unit that creates a supply schedule of the culture solution based on the culture condition information and the culture time.
    The culture apparatus according to any one of claims 1 to 6, wherein the culture solution supply unit changes the culture solution supply amount per unit time based on the supply schedule.
  8.  前記培養容器内の前記培養液の細胞密度を計測する細胞密度計測部と、
     前記細胞密度計測部によって計測される細胞密度と前記目標細胞密度との差が所定値以下になるように前記供給スケジュールを補正する供給スケジュール補正部と、を有し、
     前記培養液供給部が、補正された供給スケジュールに基づいて、前記単位時間あたりの培養液供給量を変更する、請求項7に記載の培養装置。
    A cell density measuring unit that measures the cell density of the culture solution in the culture vessel,
    It has a supply schedule correction unit that corrects the supply schedule so that the difference between the cell density measured by the cell density measurement unit and the target cell density is equal to or less than a predetermined value.
    The culture apparatus according to claim 7, wherein the culture solution supply unit changes the culture solution supply amount per unit time based on the corrected supply schedule.
  9.  前記細胞密度計測部が、任意のタイミングでのユーザの計測指示入力によって細胞密度の計測を実行するように構成されている、請求項8に記載の培養装置。
    The culture apparatus according to claim 8, wherein the cell density measuring unit is configured to measure the cell density by inputting a measurement instruction of a user at an arbitrary timing.
  10.  前記供給スケジュール補正部が、ユーザの補正指示入力によって前記供給スケジュールを補正するように構成されている、請求項8または9に記載の培養装置。
    The culture apparatus according to claim 8 or 9, wherein the supply schedule correction unit is configured to correct the supply schedule by inputting a correction instruction from a user.
  11.  前記細胞密度計測部が、チューブ、前記チューブに設けられたローラポンプ、および前記チューブ内の培養液の細胞密度を計測する細胞密度センサを含み、
     前記チューブが、その一端が前記培養容器内の培養液内に位置しつつ他端が培養液の液面の上方に位置するように配置され、
     前記ローラポンプが、正転することによって前記一端を介して前記チューブ内に培養液を充填し、逆転することによって前記チューブ内の培養液を前記培養容器に戻す、請求項8から10のいずれか一項に記載の培養装置。
    The cell density measuring unit includes a tube, a roller pump provided in the tube, and a cell density sensor for measuring the cell density of the culture medium in the tube.
    The tube is arranged so that one end thereof is located in the culture solution in the culture vessel and the other end is located above the liquid level of the culture solution.
    Any of claims 8 to 10, wherein the roller pump rotates forward to fill the tube with the culture solution through one end, and reverses the rotation to return the culture solution in the tube to the culture vessel. The culture apparatus according to one item.
  12. 前記細胞密度センサが、鉛直方向に対して30°以下の傾斜角度となるように配置された前記チューブの部分内の培養液を計測する請求項11に記載の培養装置。
    The culture apparatus according to claim 11, wherein the cell density sensor measures a culture solution in a portion of the tube arranged so as to have an inclination angle of 30 ° or less with respect to the vertical direction.
  13.  前記供給スケジュールに基づいて、前記培養容器揺動部の前記培養容器に対する揺動パターンの変化を示す揺動スケジュールを作成する揺動スケジュール作成部を有し、
     前記培養容器揺動部が、前記揺動スケジュールに基づいて、前記培養容器を揺動する、請求項7から12のいずれか一項に記載の培養装置。
    It has a swing schedule creation unit that creates a swing schedule that shows changes in the swing pattern of the culture container swing section with respect to the culture container based on the supply schedule.
    The culture apparatus according to any one of claims 7 to 12, wherein the culture vessel swinging portion swings the culture vessel based on the shaking schedule.
  14.  前記培養容器の揺動パターンの変化を示すガントチャートを作成するガントチャート作成部と、
     前記ガントチャートを表示する表示部と、を有する、請求項13に記載の培養装置。
    A Gantt chart creation unit that creates a Gantt chart showing changes in the shaking pattern of the culture vessel, and
    The culture apparatus according to claim 13, further comprising a display unit for displaying the Gantt chart.
  15.  前記ガントチャート作成部が、揺動パターンの継続時間の長さを示すタイムバー上に培養温度、ガス濃度、およびガス流量の少なくとも1つの測定値が表示されるように、前記ガントチャートを作成する、請求項14に記載の培養装置。
    The Gantt chart creation unit creates the Gantt chart so that at least one measured value of culture temperature, gas concentration, and gas flow rate is displayed on a time bar indicating the length of duration of the swing pattern. The culture apparatus according to claim 14.
  16.  前記培養容器内の培養液量および細胞密度の少なくとも一方の変化を示すグラフを作成するグラフ作成部を有し、
     前記表示部が、前記ガントチャートとともに、前記グラフ作成部によって作成されたグラフを表示する、請求項14または15に記載の培養装置。
    It has a graph creating unit that creates a graph showing changes in at least one of the amount of culture medium and the cell density in the culture vessel.
    The culture apparatus according to claim 14 or 15, wherein the display unit displays a graph created by the graph creation unit together with the Gantt chart.
  17.  細胞到達数、到達培養液量、および到達培養時間の少なくとも1つを含む培養終了条件の情報を取得する培養終了条件取得部を有し、
     前記培養終了条件が成立した後、前記培養液供給部が培養液の供給を停止するとともに、前記培養容器揺動部が前記培養容器の揺動を停止する、請求項7から16のいずれか一項に記載の培養装置。
    It has a culture end condition acquisition unit for acquiring information on culture end conditions including at least one of the number of cells reached, the amount of reached culture solution, and the reached culture time.
    Any one of claims 7 to 16, wherein after the culture termination condition is satisfied, the culture solution supply unit stops the supply of the culture solution, and the culture container swinging unit stops the shaking of the culture vessel. The incubator according to the section.
  18.  前記培養終了条件が成立するとユーザに通知する通知部と、
     前記ユーザが培養を終了させるための培養終了入力部と、を有し、
     前記培養終了入力部に対するユーザ入力が実行された後、前記培養液供給部が培養液の供給を停止するとともに、前記培養容器揺動部が前記培養容器の揺動を停止する、請求項17に記載の培養装置。
    A notification unit that notifies the user when the culture end condition is satisfied, and
    The user has a culture end input unit for terminating the culture.
    17 of claim 17, after the user input to the culture end input unit is executed, the culture solution supply unit stops the supply of the culture solution, and the culture container swinging unit stops the shaking of the culture container. The incubator described.
  19.  前記培養液供給部が、前記培養液を貯蔵する培養液貯蔵容器、前記培養液貯蔵容器に連結された一端と前記培養容器に連結された他端とを備えるチューブ、前記チューブに設けられたローラポンプを含み、
     前記チューブの一部分が、前記培養容器の外側表面上に配設されている、請求項1から18のいずれか一項に記載の培養装置。
    A culture solution storage container for storing the culture solution, a tube having one end connected to the culture solution storage container and the other end connected to the culture solution container, and a roller provided in the tube. Including pump
    The culture apparatus according to any one of claims 1 to 18, wherein a part of the tube is arranged on the outer surface of the culture container.
  20.  前記培養液貯蔵容器を冷蔵収容する冷蔵庫と
     前記培養容器を温めるヒータと、を有する、請求項19に記載の培養装置。
    The culture apparatus according to claim 19, further comprising a refrigerator for refrigerating and accommodating the culture solution storage container and a heater for heating the culture container.
  21.  培養容器に収容された培養液内で細胞の拡大培養を行う細胞の培養方法であって、
     前記培養容器内の培養液が撹拌されるように前記培養容器を揺動し、
     培養液内の細胞の増加にともなって前記培養容器に培養液を追加し、
     培養液の量が少ないほど、撹拌によって移動する培養液に接触される前記培養容器の表面の部分が小さくなるように、前記培養容器を揺動する、細胞の培養方法。
    A method for culturing cells in which cells are expanded and cultured in a culture medium contained in a culture vessel.
    The culture vessel is shaken so that the culture solution in the culture vessel is agitated.
    As the number of cells in the culture solution increased, the culture solution was added to the culture vessel, and the culture solution was added.
    A method for culturing cells, in which the culture vessel is shaken so that the smaller the amount of the culture solution, the smaller the surface portion of the culture vessel that comes into contact with the culture solution that moves by stirring.
PCT/JP2020/025668 2019-07-04 2020-06-30 Culture apparatus and culture method WO2021002358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019125174A JP2022123160A (en) 2019-07-04 2019-07-04 Culture device and culture method
JP2019-125174 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021002358A1 true WO2021002358A1 (en) 2021-01-07

Family

ID=74100365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025668 WO2021002358A1 (en) 2019-07-04 2020-06-30 Culture apparatus and culture method

Country Status (2)

Country Link
JP (1) JP2022123160A (en)
WO (1) WO2021002358A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030365A1 (en) * 2020-08-04 2022-02-10 株式会社京都製作所 Culture device
WO2023210107A1 (en) * 2022-04-26 2023-11-02 キヤノン株式会社 Culture apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008111A (en) * 2002-06-07 2004-01-15 Olympus Corp Apparatus for producing medium
JP2004121168A (en) * 2002-10-07 2004-04-22 Olympus Corp Culturing apparatus and the culturing method
JP2007020422A (en) * 2005-07-12 2007-02-01 Olympus Corp Apparatus for culturing and observing biological sample, method for culturing and observing biological sample and program for culturing and observing biological sample
JP2010268813A (en) * 2003-12-18 2010-12-02 Kaneka Corp Cell culture apparatus
JP2011504748A (en) * 2007-11-30 2011-02-17 コアステム シーオー エルティディ Cell culture device and large-capacity automated cell culture device equipped with the same
JP2011092117A (en) * 2009-10-30 2011-05-12 Hitachi Plant Technologies Ltd Method and device for culturing biological cell
JP2015000025A (en) * 2013-06-14 2015-01-05 大日本印刷株式会社 Culture apparatus and culture method
WO2016016950A1 (en) * 2014-07-29 2016-02-04 株式会社日立製作所 Cell culturing device and closed-system culture vessel
WO2016042956A1 (en) * 2014-09-18 2016-03-24 富士フイルム株式会社 Cell culture apparatus and method
JP2017529106A (en) * 2014-09-29 2017-10-05 ゼネラル・エレクトリック・カンパニイ Devices, systems and methods for automated cell culture
JP2019000043A (en) * 2017-06-15 2019-01-10 株式会社京都製作所 Culture apparatus and culture method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008111A (en) * 2002-06-07 2004-01-15 Olympus Corp Apparatus for producing medium
JP2004121168A (en) * 2002-10-07 2004-04-22 Olympus Corp Culturing apparatus and the culturing method
JP2010268813A (en) * 2003-12-18 2010-12-02 Kaneka Corp Cell culture apparatus
JP2007020422A (en) * 2005-07-12 2007-02-01 Olympus Corp Apparatus for culturing and observing biological sample, method for culturing and observing biological sample and program for culturing and observing biological sample
JP2011504748A (en) * 2007-11-30 2011-02-17 コアステム シーオー エルティディ Cell culture device and large-capacity automated cell culture device equipped with the same
JP2011092117A (en) * 2009-10-30 2011-05-12 Hitachi Plant Technologies Ltd Method and device for culturing biological cell
JP2015000025A (en) * 2013-06-14 2015-01-05 大日本印刷株式会社 Culture apparatus and culture method
WO2016016950A1 (en) * 2014-07-29 2016-02-04 株式会社日立製作所 Cell culturing device and closed-system culture vessel
WO2016042956A1 (en) * 2014-09-18 2016-03-24 富士フイルム株式会社 Cell culture apparatus and method
JP2017529106A (en) * 2014-09-29 2017-10-05 ゼネラル・エレクトリック・カンパニイ Devices, systems and methods for automated cell culture
JP2019000043A (en) * 2017-06-15 2019-01-10 株式会社京都製作所 Culture apparatus and culture method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030365A1 (en) * 2020-08-04 2022-02-10 株式会社京都製作所 Culture device
WO2023210107A1 (en) * 2022-04-26 2023-11-02 キヤノン株式会社 Culture apparatus

Also Published As

Publication number Publication date
JP2022123160A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
WO2021002358A1 (en) Culture apparatus and culture method
JP6878163B2 (en) Culture device and culture method
JP5309245B2 (en) Rotating drive for cell culture
CN106076449B (en) Nucleic acid amplitude device and the Nucleic acid test device for having used the nucleic acid amplitude device
JP6358999B2 (en) Eukaryotic cell culture method
WO2014033889A1 (en) Automated culturing device and automated culturing method
JP2004534544A (en) Disposable container
KR101358500B1 (en) Multifunctional Incubator
CN107109325A (en) Oscillating mode culture apparatus and use its cultural method
US10344257B2 (en) Horizontally rocked bioreactor system
JP2012245453A (en) Stirrer
JP6797417B2 (en) Bio process mixer
JPH037575A (en) Apparatus for cell culture
JP2015000025A (en) Culture apparatus and culture method
WO2022030365A1 (en) Culture device
JP2018170977A (en) Culture apparatus, culture vessel, and optimization method of gas supply conditions to culture vessel
US10428299B2 (en) Mixing device for mixing the contents of a container
JP2014502512A (en) Cell culture tank
JP2009050316A (en) Frozen formulation thawing device
JP6207708B2 (en) Automatic culture apparatus and cell culture method
JP7218188B2 (en) Medium exchange device
CN209259980U (en) Protein renaturation reaction unit
JP2013238478A (en) Automatic analyzer
JP6566549B2 (en) Cultivation method using culture apparatus
CN209797953U (en) Double-row double-control constant-temperature culture oscillation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP