WO2021002297A1 - Vehicular lighting system, vehicle system and vehicle - Google Patents
Vehicular lighting system, vehicle system and vehicle Download PDFInfo
- Publication number
- WO2021002297A1 WO2021002297A1 PCT/JP2020/025326 JP2020025326W WO2021002297A1 WO 2021002297 A1 WO2021002297 A1 WO 2021002297A1 JP 2020025326 W JP2020025326 W JP 2020025326W WO 2021002297 A1 WO2021002297 A1 WO 2021002297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- lighting
- control unit
- irradiated
- region
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Q—ARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
- B60Q1/00—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
- B60Q1/02—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
- B60Q1/04—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
- B60Q1/14—Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V14/00—Controlling the distribution of the light emitted by adjustment of elements
- F21V14/04—Controlling the distribution of the light emitted by adjustment of elements by movement of reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- This disclosure relates to vehicle lighting systems, vehicle systems and vehicles.
- the vehicle system automatically controls the traveling of the vehicle. Specifically, in the automatic driving mode, the vehicle system controls steering based on information indicating the surrounding environment of the vehicle (surrounding environment information) obtained from sensors such as a camera and radar (for example, laser radar and millimeter wave radar). At least one of (control of the traveling direction of the vehicle), brake control and accelerator control (control of vehicle braking and acceleration / deceleration) is automatically performed.
- the driver controls the running of the vehicle, as is the case with many conventional vehicles.
- the running of the vehicle is controlled according to the driver's operation (steering operation, brake operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control, and accelerator control.
- the driving mode of a vehicle is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including a conventional vehicle that does not have an automatic driving function. For example, vehicle control. It is classified according to the method.
- autonomous driving vehicles vehicles traveling in the automatic driving mode
- manual driving vehicles vehicles traveling in the manual driving mode
- Patent Document 1 discloses an automatic following driving system in which a following vehicle automatically follows the preceding vehicle.
- each of the preceding vehicle and the following vehicle is equipped with a lighting system, and text information for preventing another vehicle from interrupting between the preceding vehicle and the following vehicle is added to the lighting system of the preceding vehicle.
- text information indicating that the vehicle is automatically following is displayed on the lighting system of the following vehicle.
- the vehicle currently being developed uses a plurality of sensors mounted on the vehicle to identify the surrounding environment of the vehicle.
- the vehicle can acquire the existence and position information of an object existing in front of the vehicle based on the point cloud data from the LiDAR unit and the radar data from the millimeter wave radar.
- the vehicle can acquire attribute information and behavior prediction information of the object based on the image data from the camera.
- the vehicle employs a program (learned model) constructed by machine learning or deep learning to determine the attributes of an object existing outside the vehicle based on the image data acquired by the camera. .. This trained model is constructed by learning a large amount of image data indicating an object.
- the lighting unit in order to improve the visibility of the occupants (particularly the driver) of the own vehicle to the surrounding environment, the lighting unit includes an ADB (existing area) and a non-irradiating area.
- the light distribution pattern for Adaptive Driving Beam) is irradiated toward the front region of the vehicle.
- the lighting unit irradiates the ADB light distribution pattern toward the front region so that the vehicle in front is included in the non-irradiating region. In this way, it is possible to improve the visibility of the surrounding environment of the occupant of the own vehicle without giving glare light to the occupant of the vehicle in front.
- a predetermined period for example, 0.5 seconds
- the non-irradiated region of the ADB light distribution pattern formed by the presence of the vehicle in front is switched to the irradiated region.
- the object is not irradiated with light for at least a predetermined period of time.
- the vehicle cannot accurately identify the information related to the object (for example, the attribute information of the object, the behavior prediction information, etc.) based on the image data from the camera for at least a predetermined period of time.
- the vehicle in front disappears from the front region of the vehicle, there is room for studying a method for quickly acquiring information related to the object existing in the non-irradiated region of the light distribution pattern with high accuracy. ..
- the vehicle system may not be able to determine the attribute (type of the object) of the vehicle in front, which is the object, by using the image data indicating the vehicle in front acquired by the in-vehicle camera and the trained model. There is sex. From the above viewpoint, there is room for improving the light distribution pattern for ADB that is irradiated toward the front region of the own vehicle.
- the traveling of the vehicle is controlled based on the sensing data from a plurality of sensors including the camera, so that a part of the vehicle in front is ADB.
- the first object of the present disclosure is to enable highly accurate and rapid acquisition of information related to an object existing in a non-irradiated region of a light distribution pattern when a vehicle in front disappears from the front region of the vehicle. To provide a vehicle lighting system and a vehicle.
- a second object of the present disclosure is to provide a vehicle lighting system capable of optimizing the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object with respect to the own vehicle. is there.
- a second object of the present disclosure is to provide a vehicle system and a vehicle capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
- a third object of the present disclosure is to provide a vehicle lighting system, a vehicle system, and a vehicle capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
- the vehicle lighting system is provided in the vehicle.
- a lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
- the lighting control unit When an object exists in a non-irradiated region formed by the presence of the vehicle in front, and predetermined information related to the object has not yet been specified by the vehicle.
- the lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
- the lighting control unit When there is no object in the non-irradiated region formed by the presence of the vehicle in front, or when predetermined information related to the object has already been identified by the vehicle.
- the lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
- the first period is shorter than the second period.
- the non-irradiation area is switched to the irradiation area.
- the non-irradiated area is after the second period from the time when the vehicle in front disappears from the area in front. The area switches to the irradiation area.
- the first period is shorter than the second period.
- the predetermined information related to the object may be the attribute information of the object or the behavior prediction information of the object.
- the attribute information or the behavior prediction information of the object existing in the non-irradiated area has not been specified yet, from the time when the vehicle in front disappears from the front area until the non-irradiated area is switched to the irradiated area.
- the period of time is shortened. Therefore, since the object is irradiated with the light from the lighting unit earlier, it is possible to quickly identify the attribute information or the behavior prediction information of the object with high accuracy by the image data acquired from the camera.
- the vehicle lighting system is provided in the vehicle.
- a lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
- the lighting control unit When the level of the driving mode of the vehicle is equal to or higher than a predetermined level, The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
- the lighting control unit When the level of the driving mode of the vehicle is lower than the predetermined level, The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
- the first period is shorter than the second period.
- the non-irradiated area when the level of the driving mode of the vehicle is equal to or higher than a predetermined level, the non-irradiated area is switched to the irradiated area after the first period has elapsed from the time when the vehicle in front disappears from the front area.
- the level of the driving mode of the vehicle when the level of the driving mode of the vehicle is lower than the predetermined level, the non-irradiated region is switched to the irradiated region after the lapse of the second period from the time when the vehicle in front disappears from the front region.
- the first period is shorter than the second period.
- the period from when the vehicle in front disappears from the front region to when the non-irradiation region is switched to the irradiation region is shortened. Therefore, an object (for example, a pedestrian) existing in the non-irradiated area is irradiated by the light from the lighting unit earlier, so that the information related to the object can be obtained with high accuracy by the image data acquired from the camera. It becomes possible to identify quickly.
- the lighting control unit When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
- the lighting control unit When the driving mode of the vehicle is a partial driving support mode or a manual driving mode, The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region. The first period is shorter than the second period.
- the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode
- the period from when the vehicle in front disappears from the front area to when the non-irradiation area is switched to the irradiation area is shortened.
- the object existing in the non-irradiated area is irradiated by the light from the lighting unit earlier, it is possible to quickly identify the information related to the object with high accuracy by the image data acquired from the camera. It becomes.
- the vehicle lighting system is provided in the vehicle.
- a lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
- the lighting control unit It is configured to change the angular width of the non-irradiated region according to the change in the angular position of the object with respect to the vehicle.
- the angle width of the non-irradiated region of the light distribution pattern (particularly, the light distribution pattern for ADB) is changed according to the change in the angular position of the object with respect to the vehicle. In this way, it is possible to optimize the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object.
- the lighting control unit When the fluctuation of the angular position is larger than a predetermined threshold value, the angular width of the non-irradiated region is set to the first angular width based on the angular position. When the fluctuation of the angular position is equal to or less than the predetermined threshold value, the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width based on the angular position. It may be configured.
- the angle width of the non-irradiated region becomes large when the variation of the angular position of the object with respect to the vehicle is large, while the angular width of the non-irradiated region becomes large when the variation of the angular position of the object with respect to the vehicle is small. Becomes smaller. Therefore, it is possible to avoid the situation where a part of the object is illuminated by the light from the lighting unit while ensuring the visibility of the occupant (for example, the driver) of the own vehicle to the surrounding environment. .. In this respect, the existence of the light distribution pattern makes it possible to avoid a situation in which the vehicle system of the own vehicle cannot determine the attribute (that is, the type of the object) of the object.
- the variation in the angular position may be a difference between the current angular position of the object and the previous angular position of the object.
- the angular width of the non-irradiated region is large, while when the difference is small, it is not.
- the angular width of the irradiation area becomes smaller. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupants of the own vehicle to the surrounding environment as much as possible.
- the illumination control unit may be configured to calculate the average angular position of the angular position from the previous time of the object to N times before (N is an integer of 2 or more).
- the variation in the angular position may be the difference between the current angular position of the object and the average angular position.
- the angular width of the non-irradiated region becomes large, while when the difference is small, the non-irradiated region is not irradiated.
- the angular width of the area becomes smaller. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupants of the own vehicle to the surrounding environment as much as possible.
- the vehicle lighting system is provided in the vehicle.
- a lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
- the lighting control unit The average angular position of the angular position from the current angular position of the object to M times before (M is an integer of 1 or more) is calculated.
- the angular width of the non-irradiated region is determined based on the average angular position. It is configured as follows.
- the angle width of the non-irradiated region of the light distribution pattern (particularly, the light distribution pattern for ADB) is determined based on the average angular position of the object. In this way, it is possible to optimize the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupant (for example, the driver) of the own vehicle to the surrounding environment as much as possible. ..
- the vehicle system is A camera configured to acquire image data showing the surrounding environment of the vehicle, An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
- a first angle position determining unit configured to determine a first angle position of an object with respect to the central axis of the camera based on the image data.
- a second angle position determining unit configured to determine the second angle position of the object with respect to the optical axis of the lighting unit as the angle position of the object based on the first angle position.
- the vehicle lighting system optimizes the angular width of the non-irradiated region of the light distribution pattern, so that the vehicle system determines the attribute of the object based on the presence of the light distribution pattern emitted from the lighting unit. It is possible to avoid the situation where it becomes impossible. In this way, it is possible to provide a vehicle system capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
- the vehicle lighting system is provided in the vehicle.
- a lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
- the lighting control unit is configured to change the angular width of the non-irradiated region according to the driving mode of the vehicle.
- the angle width of the non-irradiated region of the light distribution pattern for ADB is changed according to the driving mode of the vehicle. In this way, it is possible to optimize the angle width of the non-irradiated region of the light distribution pattern for ADB in consideration of the driving mode of the vehicle.
- the lighting control unit When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the angular width of the non-irradiated region is set to the first angular width based on the information regarding the angular position.
- the angle width of the non-irradiated region is set to a second angle width smaller than the first angle width based on the information regarding the angle position. It may be configured to do so.
- the angle width of the non-irradiated region is set to the first angle width, while the driving mode of the vehicle is the driving support.
- the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width.
- the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode
- the occupants of the own vehicle do not control the running of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is taken into consideration. There is no need.
- the angle width of the non-irradiation region is set to the first angle width larger than the second angle width, the situation where an object such as a vehicle in front is irradiated by the light distribution pattern for ADB It can be avoided as much as possible. Therefore, it is possible to avoid as much as possible a situation in which the vehicle control unit (vehicle-mounted computer) of the own vehicle cannot determine the attribute of the object based on the image data from the camera.
- the angle width of the non-irradiated region is set to the second angle width smaller than the first angle width, so that the occupant of the own vehicle Sufficient visibility to the surrounding environment (particularly the driver) can be ensured.
- a lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle. It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
- the lighting control unit irradiates the ADB light distribution pattern from the lighting unit when the predetermined conditions related to the driving mode of the vehicle are satisfied, and when the predetermined conditions are not satisfied, the lighting control unit irradiates the ADB light distribution pattern. It is configured so that the ADB light distribution pattern is not irradiated from the lighting unit.
- the light distribution pattern for ADB is irradiated from the lighting unit, but when the predetermined condition is not satisfied, the distribution for ADB is performed.
- the light pattern is not emitted from the lighting unit.
- the lighting control unit When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the lighting unit does not irradiate the ADB light distribution pattern.
- the lighting unit may be configured to irradiate the ADB light distribution pattern.
- the light distribution pattern for ADB is not emitted from the lighting unit, while the driving mode of the vehicle is the driving support mode or the manual driving mode.
- the ADB light distribution pattern is irradiated from the lighting unit.
- the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode
- the occupants of the own vehicle do not control the running of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is taken into consideration. There is no need.
- the driving mode of the vehicle is the driving support mode or the manual driving mode
- the light distribution pattern for ADB is irradiated to the outside of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is sufficient. Can be secured.
- the vehicle system is A camera configured to acquire image data showing the surrounding environment of the vehicle, An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
- a vehicle equipped with the above-mentioned vehicle lighting system may be provided. Further, a vehicle equipped with the above vehicle system may be provided.
- Lighting systems and vehicles can be provided.
- a vehicle lighting system capable of optimizing the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object with respect to the own vehicle. .. Further, it is possible to provide a vehicle system and a vehicle capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
- the front view of the vehicle is shown. It is a block diagram which shows a vehicle system. It is a flowchart for demonstrating an example of the process of determining the non-irradiation area of the light distribution pattern for ADB. It is a figure which shows the own vehicle and the vehicle in front. It is a figure which shows an example of the light distribution pattern for ADB formed on the virtual vertical screen. It is a flowchart for demonstrating the process (1st Embodiment) of switching a non-irradiation area to an irradiation area when the vehicle in front disappears from the front area of the own vehicle. It is a schematic diagram which shows the light distribution pattern for ADB which was emitted to the front region just before the front vehicle disappears from the front region.
- the present embodiment will be described with reference to the drawings.
- the dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
- the "horizontal direction” of the vehicle 1 is referred to, but the "horizontal direction” is a direction perpendicular to the vertical direction (vertical direction) and includes a horizontal direction and a front-rear direction. ..
- FIG. 1 shows a front view of the vehicle 1.
- FIG. 2 is a block diagram of the vehicle system 2 provided in the vehicle 1.
- the vehicle 1 is a vehicle (automobile) capable of traveling in the automatic driving mode, and includes the vehicle system 2 shown in FIG.
- the vehicle system 2 includes a vehicle control unit 3 and a vehicle lighting system 4.
- the vehicle system 2 includes a sensor 5, a camera 6, a radar 7, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, and a storage device 11.
- the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
- the vehicle control unit 3 is configured to control the running of the vehicle 1.
- the vehicle control unit 3 is composed of, for example, at least one electronic control unit (ECU: Electronic Control Unit).
- the electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements.
- the processor includes, for example, at least one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit).
- the CPU may be composed of a plurality of CPU cores.
- the GPU may be composed of a plurality of GPU cores.
- the memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
- the vehicle control program may be stored in the ROM.
- the vehicle control program may include an artificial intelligence (AI) program for autonomous driving.
- AI is a program (trained model) constructed by supervised or unsupervised machine learning (particularly deep learning) using a multi-layer neural network.
- the RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating the surrounding environment of the vehicle.
- the processor may be configured to develop a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
- the computer system may be configured by a non-Von Neumann computer such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). Further, the computer system may be composed of a combination of a von Neumann computer and a non-Von Neumann computer.
- a non-Von Neumann computer such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array).
- the computer system may be composed of a combination of a von Neumann computer and a non-Von Neumann computer.
- the vehicle lighting system 4 includes a left side headlamp 40L, a right side headlamp 40R, and a lighting control unit 43.
- the left headlamp 40L is arranged on the left front surface of the vehicle 1.
- the left headlamp 40L is for a lamp housing (not shown), a translucent lamp cover (not shown) for covering the opening of the lamp housing, a low beam lighting unit 45L, and an ADB (Adaptive Driving Beam). It is equipped with a lighting unit 46L.
- Each of the low beam lighting unit 45L and the ADB lighting unit 46L is arranged in a lamp chamber formed by a lamp housing and a lamp cover.
- the right headlamp 40R is arranged on the front right side of the vehicle 1.
- the right headlamp 40R includes a lamp housing (not shown), a translucent lamp cover (not shown) that covers the opening of the lamp housing, a low beam lighting unit 45R, and an ADB lighting unit 46R. Be prepared.
- Each of the low beam lighting unit 45R and the ADB lighting unit 46R is arranged in a lamp chamber formed by a lamp housing and a lamp cover.
- the low beam lighting units 45L and 45R include, for example, a light source unit that emits light, a reflector that reflects light emitted from the light source unit, and the like. It has a light-shielding plate that blocks a part of the light reflected by the reflector.
- the low beam lighting unit 45 is configured to irradiate the front region of the vehicle 1 with the low beam light distribution pattern PL (see FIG. 5).
- the low beam light distribution pattern PL shown in FIG. 5 is a light distribution pattern formed on a virtual vertical screen virtually arranged 25 m ahead of the vehicle 1.
- the low beam light distribution pattern PL has an oncoming lane side cut-off line CL1, an own lane side cut-off line CL1, and an oblique cut-off line CL3 connected to these cut-off line CL1 and CL2.
- the ADB lighting units 46L and 46R (hereinafter, may be simply referred to as "ADB lighting unit 46") are configured to irradiate the front region of the vehicle 1 with the ADB light distribution pattern PH (see FIG. 5). Has been done.
- the light distribution pattern PH for ADB shown in FIG. 5 is a light distribution pattern formed on a virtual vertical screen.
- the ADB light distribution pattern PH is located above the low beam light distribution pattern PL.
- the angular position of the ADB light distribution pattern PH in the vertical direction is larger than the angular position of the low beam light distribution pattern PL in the vertical direction.
- the light distribution pattern PH for ADB has an irradiation region PH1 that is irradiated with light and a non-irradiation region PH2 that is not irradiated with light.
- the ADB lighting unit 46 sets the ADB light distribution pattern PH to the vehicle 1 so that the object is located in the non-irradiation region PH2. Form in front of. In this way, glare light is preferably prevented from being applied to the object.
- the ADB lighting unit 46 uses the ADB light distribution pattern (that is, the high beam light distribution pattern) consisting only of the irradiation region. Form in front of. As described above, the ADB lighting unit 46 irradiates the ADB light distribution pattern or the high beam light distribution pattern having the non-irradiation region toward the front depending on the presence or absence of the object.
- the ADB lighting unit 46 uses, for example, a light source composed of a plurality of LEDs (light emitting diodes) arranged in a matrix (n rows ⁇ m columns, n, m is an integer of 1 or more) and light emitted from the light source. It may be provided with a projection lens to be passed through. In this case, by individually controlling the turning on and off of the plurality of LEDs, the ADB lighting unit 46 can form an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1. it can.
- the ADB lighting unit 46 may include, for example, a light source that emits light, a reflector, a MEMS (Micro Electro Mechanical Systems) mirror, and a projection lens.
- the reflector is configured to reflect the light emitted from the light source toward the MEMS mirror.
- the MEMS mirror reflects the light reflected by the reflector toward the projection lens.
- the MEMS mirror includes a plurality of micromirror elements arranged in a matrix (n rows ⁇ m columns). Each angle of the plurality of minute mirror elements is a first angle (ON state) that reflects light toward the projection lens or a second angle (OFF state) that does not reflect light toward the projection lens, depending on the control signal. Is set to.
- the ADB lighting unit 46 forms an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1. be able to.
- the ADB lighting unit 46 is a blade scan type lighting provided with a light source that emits light and a rotation reflector having a plurality of blades around a rotation axis. It may be a unit.
- the rotary reflector can scan the reflected light by reflecting the light emitted from the light source while rotating in one direction about the rotation axis.
- the ADB lighting unit 46 can form an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1.
- the lighting control unit 43 is configured to control the operation of the low beam lighting unit 45 and the ADB lighting unit 46.
- the lighting control unit 43 is configured to control the low beam lighting unit 45 so that the low beam light distribution pattern is emitted in front of the vehicle 1.
- the lighting control unit 43 is configured to control the ADB lighting unit 46 so that the ADB light distribution pattern is emitted in front of the vehicle 1.
- the lighting control unit 43 so that the object is included in the non-irradiation region based on the information regarding the angular position (particularly, the angular position in the horizontal direction) of the object such as another vehicle existing outside the vehicle 1. It is configured to control the ADB lighting unit 46. Further, the illumination control unit 43 is configured to change the angular width of the non-irradiated region of the ADB light distribution pattern according to the fluctuation of the angular position (particularly, the angular position in the horizontal direction) of the object.
- the lighting control unit 43 is composed of at least one electronic control unit (ECU).
- the electronic control unit includes a computer system (for example, SoC) including one or more processors and one or more memories, and an electronic circuit composed of active elements such as transistors and passive elements.
- the processor includes at least one of a CPU, MPU, GPU and TPU.
- the memory includes a ROM and a RAM.
- the computer system may be composed of a non-Von Neumann computer such as an ASIC or FPGA.
- the sensor 5 includes at least one of an acceleration sensor, a speed sensor, and a gyro sensor.
- the sensor 5 is configured to detect the running state of the vehicle 1 and output the running state information to the vehicle control unit 3.
- the sensor 5 includes a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects the external weather condition, and whether or not there is a person in the vehicle.
- a motion sensor or the like for detecting may be further provided.
- the camera 6 is, for example, a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS).
- the camera 6 may be arranged inside the vehicle 1 so as to face the windshield 70 of the vehicle 1, for example, as shown in FIG. Further, the camera 6 may be arranged in the left headlamp 40L and / or the right headlamp 40R.
- the camera 6 is configured to acquire image data indicating the surrounding environment of the vehicle 1 and then transmit the image data to the vehicle control unit 3.
- the vehicle control unit 3 acquires the surrounding environment information based on the transmitted image data and the trained model.
- the vehicle control unit 3 functions as an attribute determination unit configured to determine the attributes of an object existing outside the vehicle 1 based on the image data and the trained model.
- the radar 7 includes at least one of a millimeter wave radar, a microwave radar and a laser radar (for example, a LiDAR unit).
- the LiDAR unit is configured to detect the surrounding environment of the vehicle 1.
- the LiDAR unit is configured to acquire 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 1 and then transmit the 3D mapping data to the vehicle control unit 3.
- the vehicle control unit 3 identifies the surrounding environment information (for example, the distance and direction of the object) based on the transmitted 3D mapping data.
- the HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like.
- the output unit is a display (for example, Head Up Display (HUD) or the like) that displays various driving information.
- the GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
- the wireless communication unit 10 is configured to receive information about other vehicles around the vehicle 1 from the other vehicle and transmit information about the vehicle 1 to the other vehicle (vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the infrastructure equipment (road-to-vehicle communication). Further, the wireless communication unit 10 receives information about the pedestrian from the portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 1 to the portable electronic device. It is configured to do (pedestrian-to-vehicle communication). The vehicle 1 may directly communicate with another vehicle, infrastructure equipment, or a portable electronic device in an ad hoc mode, or may communicate with a communication network such as the Internet.
- a communication network such as the Internet.
- the storage device 11 is an external storage device such as a hard disk drive (HDD) or SSD (Solid State Drive).
- the storage device 11 may store two-dimensional or three-dimensional map information and / or a vehicle control program.
- the three-dimensional map information may be composed of 3D mapping data (point cloud data).
- the storage device 11 is configured to output map information and a vehicle control program to the vehicle control unit 3 in response to a request from the vehicle control unit 3.
- the map information and the vehicle control program may be updated via the wireless communication unit 10 and the communication network.
- the vehicle control unit 3 determines at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
- the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
- the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
- the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal.
- the vehicle control unit 3 automatically controls the travel of the vehicle 1 based on the travel state information, the surrounding environment information, the current position information, the map information, and the like. That is, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
- the vehicle control unit 3 when the vehicle 1 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver on the accelerator pedal, the brake pedal, and the steering wheel.
- the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the driving of the vehicle 1 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 2 In the fully automatic driving mode, the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 1 can be driven.
- the vehicle system 2 In the advanced driving support mode, the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although he / she is in a state where he / she can drive the vehicle 1.
- the vehicle system 2 In the driving support mode, the vehicle system 2 automatically performs some driving control of steering control, brake control, and accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2.
- the vehicle system 2 In the manual driving mode, the vehicle system 2 does not automatically control the driving, and the driver drives the vehicle 1 without the driving support of the vehicle system 2.
- FIG. 3 is a flowchart for explaining an example of a process of determining the non-irradiated region PH2 of the light distribution pattern PH for ADB.
- FIG. 4 is a diagram showing the own vehicle 1 and the vehicle in front 1A.
- FIG. 5 is a diagram showing an example of the light distribution pattern PH for ADB formed on the virtual vertical screen.
- the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular.
- the control method of the ADB lighting unit 46L is not different from the control method of the ADB lighting unit 46R, the ADB lighting unit 46L is not particularly described in this embodiment.
- the "forward vehicle" is an oncoming vehicle or a preceding vehicle.
- step S1 the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3.
- step S2 the vehicle control unit 3 determines whether or not an object such as the vehicle in front 1A exists in front of the vehicle 1 based on the transmitted image data.
- the vehicle control unit 3 determines that an object such as the front vehicle 1A exists in front of the vehicle 1 (YES in step S2), the vehicle control unit 3 acquires the current angular position ⁇ of the front vehicle 1A.
- the high beam light distribution pattern that is, only from the irradiation region PH1). ADB light distribution pattern is emitted forward (step S4).
- step S3 the vehicle control unit 3 determines the current angular position ⁇ n of the vehicle in front 1A with respect to the central axis Cx of the camera 6 based on the transmitted image data (see FIG. 4). Specifically, the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1A with respect to the central axis Cx and the current right end angle position ⁇ r_n of the front vehicle 1A with respect to the central axis Cx.
- the angular position of the front vehicle 1A with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
- the vehicle control unit 3 determines the current angle position ⁇ n of the front vehicle 1A with respect to the optical axis Ax of the ADB lighting unit 46R based on the current angle position ⁇ n of the front vehicle 1A with respect to the central axis Cx of the camera 6. (See FIG. 4). Specifically, the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1A with respect to the optical axis Ax based on the current left end angle position ⁇ l_n of the front vehicle 1A with respect to the central axis Cx.
- the vehicle control unit 3 determines the current right end angle position ⁇ r_n of the front vehicle 1A with respect to the optical axis Ax based on the current right end angle position ⁇ r_n of the front vehicle 1A with respect to the central axis Cx.
- the angular position of the front vehicle 1A with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction.
- the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
- step S5 the lighting control unit 43 receives information about the current angle position ⁇ n of the vehicle ahead 1A from the vehicle control unit 3, and then ADB based on the current angle position ⁇ n of the vehicle 1A ahead.
- the non-irradiation region PH2 of the light distribution pattern PH is determined.
- the lighting control unit 43 sets the margin between the left end angle position ⁇ l_n of the front vehicle 1A and the left end boundary El of the non-irradiation region PH2 to ⁇ , and sets the right end angle position ⁇ r_n of the front vehicle 1A and non-irradiation.
- the margin between the rightmost boundary Er of the region PH2 is set to ⁇ .
- the margin ⁇ is ⁇ ⁇ 0.
- the illumination control unit 43 determines the non-irradiation region PH2 so that the angle range ⁇ of the non-irradiation region PH2 is ⁇ l_n ⁇ ⁇ ⁇ ⁇ ⁇ r_n + ⁇ .
- the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH including the irradiation region PH1 and the non-irradiation region PH2 is emitted in front of the vehicle 1 (step S6). In this way, the processes of steps S1 to S6 are repeatedly executed.
- FIG. 6 is a flowchart for explaining a process of switching the non-irradiation region PH2 of the ADB light distribution pattern PH to the irradiation region PH1 when the front vehicle 1A disappears from the front region of the own vehicle 1.
- FIG. 7 is a schematic view showing the light distribution pattern PH for ADB emitted to the front region immediately before the front vehicle 1A disappears from the front region of the vehicle 1. Note that in FIG. 7, the low beam light distribution pattern PL is not shown.
- FIG. 8 is a schematic view showing the light distribution pattern PH for ADB immediately after the non-irradiated region PH2 is switched to the irradiated region PH1.
- the front vehicle 1A already exists in the front region of the vehicle 1. Further, for convenience of explanation, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R provided on the right headlamp 40R will be described.
- step S10 the vehicle control unit 3 receives at least one of the image data transmitted from the camera 6, the 3D mapping data transmitted from the LiDAR unit, and the radar data transmitted from the millimeter-wave radar. Based on the above, it is determined whether or not the front vehicle 1A has disappeared from the front region of the vehicle 1.
- the state in which the front vehicle 1A disappears from the front region of the vehicle 1 corresponds to the state in which the front vehicle 1A has passed the vehicle 1 (see FIG. 8).
- step S10 determines whether the front vehicle 1A has disappeared from the front region. If the determination result in step S10 is NO, the determination process in step S10 is performed again. On the other hand, when the determination result in step S10 is YES, the vehicle control unit 3 transmits the disappearance information indicating that the front vehicle 1A has disappeared from the front region to the lighting control unit 43. After that, this process proceeds to step S11.
- the vehicle control unit 3 determines whether or not an object such as a pedestrian P exists in the non-irradiated region PH2 of the ADB light distribution pattern PH (step S11). Specifically, as shown in FIG. 7, the vehicle control unit 3 is formed by the presence of the vehicle 1A in front of the pedestrian P based on at least one of the image data, the 3D mapping data, and the radar data. It is determined whether or not it exists in the non-irradiated region PH2. At this point, the attribute information and behavior prediction information of the pedestrian P may not be specified.
- the lighting control unit 43 determines that the front vehicle 1A
- the ADB lighting unit 46R is controlled so that the non-irradiated region PH2 switches to the irradiated region PH1 when or after the lapse of the second period t2 from the time when the pedestrian disappears from the front region (step S14). More specifically, first, the lighting control unit 43 receives information from the vehicle control unit 3 indicating that an object such as a pedestrian P does not exist in the non-irradiation region PH2.
- the ADB lighting unit 46R is controlled so as to switch.
- the second period t2 may be the time interval conventionally used in the switching control from the non-irradiated region PH2 to the irradiated region PH1.
- step S11 when the vehicle control unit 3 determines that an object such as a pedestrian P exists in the non-irradiated region PH2 formed by the presence of the vehicle in front 1A (YES in step S11), the vehicle control unit 3 performs the determination process in step S12. Execute. In step S12, the vehicle control unit 3 determines whether or not the attribute information of the pedestrian P (object) has already been specified.
- step S12 determines whether the determination result in step S12 is YES. If the determination result in step S12 is YES, the lighting control unit 43 determines the ADB so that the non-irradiated region PH2 is switched to the irradiated region PH1 when or after the second period t2 has elapsed since the vehicle 1A disappeared from the front region.
- the lighting unit 46R is controlled (step S14).
- step S12 when the determination result in step S12 is NO, the lighting control unit 43 switches the non-irradiation region PH2 to the irradiation region PH1 when or after the first period t1 elapses from the time when the front vehicle 1A disappears from the front region. Controls the ADB lighting unit 46R (step S13).
- the lighting control unit 43 determines that an object such as a pedestrian P exists in the non-irradiated region PH2, and the attribute information of the pedestrian P (object) has not yet been specified. The indicated information is received from the vehicle control unit 3.
- the lighting control unit 43 controls the ADB lighting unit 46R so that the non-irradiation region PH2 switches to the irradiation region PH1 when or after the first period t1 elapses from the time when the disappearance information is received from the vehicle control unit 3. To do.
- the first period t1 is a period shorter than the second period t2 (0 ⁇ t1 ⁇ t2), and its value is not particularly limited.
- the first period t1 may be, for example, 0.1 seconds.
- the ADB lighting unit 46R can switch the non-irradiation region PH2 formed by the presence of the preceding vehicle 1A to the irradiation region PH1 in a shorter period of time.
- the non-irradiated region PH2 is switched to the irradiated region PH1 when or after the first period t1 ( ⁇ t2) elapses from the time when the front vehicle 1A disappears from the front region.
- the vehicle 1A in front disappears from the region in front and the second period t2 elapses or does not occur.
- the irradiation region PH2 is switched to the irradiation region PH1.
- the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is shortened. Therefore, since the object is irradiated with the light from the ADB lighting unit 46R earlier, it is possible to quickly identify the attribute information of the object with high accuracy by the image data acquired from the camera 6.
- the vehicle control unit 3 can quickly identify the attribute information of the object with high accuracy based on the image data.
- step S12 it is determined whether or not the attribute information of the object such as the pedestrian P has already been specified, but the present embodiment is not limited to this.
- it may be determined whether or not the behavior prediction information of the object has already been specified.
- the vehicle control unit 3 since the light is irradiated to the object faster, the vehicle control unit 3 can quickly identify the behavior prediction information of the object with high accuracy based on the image data.
- FIG. 9 is a flowchart for explaining a process of switching the non-irradiation region PH2 to the irradiation region PH1 when the front vehicle 1A disappears from the front region of the vehicle 1.
- the ADB light distribution pattern PH formed by the ADB lighting unit 46R will be described.
- step S20 the vehicle control unit 3 determines whether or not the front vehicle 1A has disappeared from the front region of the vehicle 1 based on at least one of the image data, the 3D mapping data, and the radar data. To judge. If the determination result in step S20 is NO, the determination process in step S20 is executed again. On the other hand, when the determination result in step S20 is YES, the vehicle control unit 3 transmits the disappearance information indicating that the front vehicle 1A has disappeared from the front region to the lighting control unit 43. After that, this process proceeds to step S21.
- step S21 the vehicle control unit 3 determines whether or not the level of the driving mode of the vehicle 1 is equal to or higher than a predetermined level.
- a predetermined level it is assumed that each of the driving modes of the vehicle is associated with the following levels. That is, as the level of automation of the driving mode of the vehicle becomes higher, the level of the driving mode becomes higher.
- the vehicle control unit 3 may determine whether or not the level of the driving mode of the vehicle 1 is level 3 or higher.
- the determination result in step S21 is YES when the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode.
- the determination result in step S21 is NO.
- the ADB lighting unit 46R is controlled so that the non-irradiated region PH2 is later switched to the irradiated region PH1 (step S23). More specifically, the lighting control unit 43 receives information from the vehicle control unit 3 indicating that the level of the driving mode of the vehicle 1 is not equal to or higher than a predetermined level, and then receives the disappearance information from the vehicle control unit 3.
- the ADB lighting unit 46R is controlled so that the non-irradiation region PH2 is switched to the irradiation region PH1 when or after the second period t2 elapses from the time.
- step S21 when the determination result in step S21 is YES, the lighting control unit 43 shifts the non-irradiated region PH2 to the irradiated region PH1 when or after the first period t1 has elapsed since the vehicle 1A disappeared from the front region.
- the ADB lighting unit 46R is controlled so as to switch (step S22). More specifically, the lighting control unit 43 receives information indicating that the driving mode level of the vehicle 1 is equal to or higher than a predetermined level from the vehicle control unit 3, and then receives the disappearance information from the vehicle control unit 3.
- the ADB lighting unit 46R is controlled so that the non-irradiation region PH2 is switched to the irradiation region PH1 when or after the first period t1 elapses from the time.
- the period from when the front vehicle 1A disappears from the front region to when the non-irradiation region PH2 is switched to the irradiation region PH1 is shortened according to the driving mode of the vehicle 1. Therefore, since the object such as the pedestrian P existing in the non-irradiation region PH2 is irradiated with the light from the ADB lighting unit 46R earlier, the information related to the object (information related to the object) by the image data acquired from the camera 6 ( It is possible to quickly identify the attribute information and / or the behavior prediction information of the object with high accuracy.
- step S21 it is assumed in step S21 that it is determined whether or not the level of the driving mode of the vehicle 1 is level 3 or higher.
- the vehicle 1A in front is from the front region.
- the non-irradiated region PH2 is switched to the irradiated region PH1 when or after the first period t1 elapses from the time of disappearance.
- the vehicle 1 is traveling in the driving support mode or the manual driving mode (that is, when the driving of the vehicle 1 is mainly controlled by the driver), when the vehicle 1A in front disappears from the front region.
- the non-irradiated region PH2 is switched to the irradiated region PH1 when or after the second period t2 elapses.
- the traveling of the vehicle 1 is controlled by the vehicle control unit 3, it is necessary to quickly identify the information related to the object from the image data from the camera 6. Therefore, in the present embodiment, the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is shortened, so that the image data clearly showing the object is quickly acquired and the information related to the object is quickly obtained. Can be specified in.
- the traveling of the vehicle 1 is mainly controlled by the driver, the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is not shortened in order to reduce the discomfort given to the driver of the vehicle 1. ..
- FIG. 10 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the third embodiment.
- FIG. 11 is a diagram showing the own vehicle 1 and the vehicle in front 1B.
- FIG. 12 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W1.
- FIG. 13 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W2 (> W1).
- the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular.
- the control method of the ADB lighting unit 46L is not particularly described in the present embodiment because it is not different from the control method of the ADB lighting unit 46R.
- step S31 the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3.
- the image data shows the vehicle in front 1B.
- the "forward vehicle” is an oncoming vehicle or a preceding vehicle.
- step S32 the vehicle control unit 3 (first angle position determination unit) determines the current angle position ⁇ n of the vehicle in front 1B with respect to the central axis Cx of the camera 6 based on the transmitted image data. (See FIG. 11).
- the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1B with respect to the central axis Cx and the current right end angle position ⁇ r_n of the front vehicle 1B with respect to the central axis Cx.
- the angular position of the front vehicle 1B with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
- the vehicle control unit 3 (second angle position determination unit) is a vehicle ahead of the optical axis Ax of the ADB lighting unit 46R based on the current angle position ⁇ n of the vehicle 1B ahead with respect to the central axis Cx of the camera 6.
- the current angular position ⁇ n of 1B is determined (see FIG. 11). Specifically, the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1B with respect to the optical axis Ax based on the current left end angle position ⁇ l_n of the front vehicle 1B with respect to the central axis Cx.
- the vehicle control unit 3 determines the current right end angle position ⁇ r_n of the front vehicle 1B with respect to the optical axis Ax based on the current right end angle position ⁇ r_n of the front vehicle 1B with respect to the central axis Cx.
- the angular position of the front vehicle 1B with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction.
- the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
- step S34 the lighting control unit 43 determines whether or not the calculated difference D is larger than the predetermined threshold value Dth.
- the information regarding the predetermined threshold value Dth is stored in the memory of the lighting control unit 43.
- the predetermined threshold value Dth may be a fixed value, or may be changed according to the running state of the vehicle 1, the surrounding environment, and the like.
- the illumination control unit 43 determines that the calculated difference D is larger than the predetermined threshold value Dth (YES in step S34), the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W1 (YES in step S34). Step S35). Specifically, as shown in FIG. 12, the lighting control unit 43 sets the margin between the left end angular position ⁇ l_n of the front vehicle 1B and the left end boundary El of the non-irradiated region PH2 to ⁇ 1, and sets the margin to ⁇ 1 and moves forward. The margin between the right end angular position ⁇ r_n of the vehicle 1B and the right end boundary Er of the non-irradiated region PH2 is set to ⁇ 1 .
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W1 represented by the following equation (2).
- the angle range of the non-irradiated region PH2 is ⁇ l_n ⁇ 1 ⁇ ⁇ ⁇ ⁇ r_n + ⁇ 1 .
- W1 2 ⁇ 1 + ( ⁇ r_n - ⁇ l_n ) ⁇ ⁇ ⁇ (2)
- the angle width W of the non-irradiation region PH is set to be larger than the first angle width W1. It is set to a small second angle width W2 (step S36). Specifically, as shown in FIG. 13, the lighting control unit 43 sets the margin between the left end angular position ⁇ l_n of the front vehicle 1B and the left end boundary El of the non-irradiated region PH2 to ⁇ 2, and sets the margin to ⁇ 2 and moves forward.
- the margin between the rightmost angular position ⁇ r_n of the vehicle 1B and the rightmost boundary Er of the non-irradiated region PH2 is set to ⁇ 2 .
- the margin ⁇ 2 is smaller than the margin ⁇ 1 (0 ⁇ ⁇ 2 ⁇ 1 ).
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W2 ( ⁇ W1) represented by the following equation (3).
- the angle range of the non-irradiated region PH2 is ⁇ l_n ⁇ 2 ⁇ ⁇ ⁇ ⁇ r_n + ⁇ 2 .
- W2 2 ⁇ 2 + ( ⁇ r_n - ⁇ l_n ) ⁇ ⁇ ⁇ (3)
- the illumination control unit 43 sets the ADB light distribution pattern PH having the irradiated region PH1 and the non-irradiated region PH2. decide. After that, the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted in front of the vehicle 1 (step S37). In this way, the processes of steps S31 to S37 are repeatedly executed.
- the angle width W of the non-irradiated region PH2 of the light distribution pattern PH for ADB is changed.
- the angle width W of the non-irradiated region PH2 is set to the first angle width W1.
- the angle width W of the non-irradiated region PH2 is set to the second angle width W2 which is smaller than the first angle width W1. In this way, it is possible to ensure visibility of the surrounding environment of the occupant (for example, the driver) of the own vehicle 1 and to irradiate a part of the front vehicle 1B with the light from the ADB lighting unit 46R. It can be avoided as long as possible.
- the vehicle control unit 3 is ahead from the image data showing the front vehicle 1B overlapping a part of the irradiation region PH1.
- the attributes of vehicle 1B that is, the type of object
- the trained model for discriminating the attributes of the object may not be able to accurately discriminate the attributes of the object that overlaps a part of the irradiation region PH1.
- a part of the front vehicle 1B is illuminated by the light from the ADB lighting unit 46R so that the vehicle control unit 3 can accurately determine the attributes of the object such as the front vehicle 1B.
- the situation to be done can be avoided as much as possible.
- the angle width W of the non-irradiation region PH2 responds to the change in the angular position of the front vehicle 1B with respect to the vehicle 1. Optimized.
- FIG. 14 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fourth embodiment.
- the light distribution pattern PH for ADB shown in FIGS. 12 and 13 will be appropriately referred to.
- step S40 the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3.
- step S41 the vehicle control unit 3 determines the current angle position ⁇ n of the vehicle in front 1B with respect to the optical axis Ax of the ADB lighting unit 46R (particularly, the current left end angle position ⁇ l_n and the current right end angle position ⁇ ). r_n ) is determined.
- step S42 the vehicle control unit 3 or the lighting control unit 43 calculates the average angle position ⁇ AVR of the vehicle in front 1B with respect to the optical axis Ax.
- the vehicle control unit 3 or the illumination control unit 43 from the previous angular position theta n-1 of the preceding vehicle 1B with respect to the optical axis Ax N times before (N is an integer of 2 or more) angular position theta n-N of Calculate the average angle position ⁇ AVR between.
- the vehicle control unit 3 or the illumination control unit 43 calculates the right edge average angular position theta R_AVR from the previous rightmost angular position theta r_n-1 of the preceding vehicle 1B to N times before the right end angular position theta r_n-N.
- step S43 the vehicle control unit 3 or the lighting control unit 43 calculates the difference D between the current angle position ⁇ n of the vehicle in front 1B and the calculated average angle position ⁇ AVR .
- step S44 the lighting control unit 43 determines whether or not the calculated difference D is larger than the predetermined threshold value Dth.
- the illumination control unit 43 determines that the calculated difference D is larger than the predetermined threshold value Dth (YES in step S44)
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first as shown in FIG.
- the angle width is set to W1 (step S45).
- the illumination control unit 43 determines that the calculated difference D is equal to or less than the predetermined threshold value Dth (NO in step S44)
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH as shown in FIG.
- the second angle width W2, which is smaller than the angle width W1 of 1, is set (step S46).
- the illumination control unit 43 determines the ADB light distribution pattern PH having the irradiation region PH1 and the non-irradiation region PH2, and then the ADB light distribution pattern PH is emitted to the front of the vehicle 1 for ADB.
- the lighting unit 46R is controlled (step S47).
- the angle width W of the non-irradiated region PH2 of the light distribution pattern PH is changed.
- the angle width W of the non-irradiated region PH2 is set to the first angle width W1.
- the angle width W of the non-irradiated region PH2 is set to the second angle width W2 which is smaller than the first angle width W1.
- FIG. 15 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fifth embodiment.
- FIG. 16 is a diagram showing a light distribution pattern PH for ADB formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W3.
- step S50 the camera 6 acquires image data indicating the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3.
- step S51 the vehicle control unit 3 determines the current angle position ⁇ n of the vehicle in front 1B with respect to the optical axis Ax of the ADB lighting unit 46R (particularly, the current left end angle position ⁇ l_n and the current right end angle position ⁇ ). r_n ) is determined.
- step S52 the vehicle control unit 3 or the lighting control unit 43 calculates the average angle position ⁇ AVR of the vehicle in front 1B with respect to the optical axis Ax.
- the vehicle control unit 3 or the illumination control unit 43 the current front wheel 1B with respect to the optical axis Ax angular position M times ago theta n (M is an integer of 1 or more) to the angular position theta n-M in Calculate the average angle position ⁇ AVR between. More specifically, the vehicle control unit 3 or the lighting control unit 43 calculates the left end average angle position ⁇ l_AVR from the current left end angle position ⁇ l_n of the vehicle 1B ahead to the left end angle position ⁇ l_n ⁇ M M times before.
- the vehicle control unit 3 or the lighting control unit 43 calculates the right end average angle position ⁇ r_AVR from the current right end angle position ⁇ r_n of the front vehicle 1B to the right end angle position ⁇ r_n ⁇ M M times before.
- step S53 the lighting control unit 43 determines the angle width W of the non-irradiation region PH2 based on the average angle position ⁇ AVR of the vehicle in front 1B. Specifically, as shown in FIG. 16, the illumination control unit 43 sets the angle width W of the non-irradiated region to the third angle width W3 represented by the following equation (4).
- the distance between the left end boundary El of the non-irradiated region PH2 and the left end average angle position ⁇ l_AVR is set as the margin ⁇ 3
- the right end boundary Er and the right end average angle position ⁇ r_AVR of the non-irradiated region PH2 The distance between them is set as the margin ⁇ 3 .
- the lighting control unit 43 determines the ADB light distribution pattern PH having the irradiation region PH1 and the non-irradiation region PH2, the lighting control unit 43 emits the ADB light distribution pattern PH to the front of the vehicle 1.
- the ADB lighting unit 46R is controlled so as to be performed (step S54).
- the angle width W3 of the non-irradiated region PH2 of the light distribution pattern for ADB is determined based on the average angle position ⁇ AVR of the preceding vehicle 1B.
- the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH can be optimized in consideration of the fluctuation of the angular position of the vehicle 1B in front. Therefore, it is possible to avoid a situation in which a part of the front vehicle 1B is irradiated by the light from the ADB lighting unit 46R without deteriorating the visibility of the occupant of the own vehicle 1 to the surrounding environment as much as possible.
- FIG. 17 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the driving mode of the vehicle 1.
- FIG. 18 is a diagram showing the own vehicle 1 and the vehicle in front 1C.
- FIG. 19 is a diagram showing a light distribution pattern PH for ADB formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is the first angle width W4.
- FIG. 20 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is the second angle width W5 ( ⁇ W4).
- the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular.
- the control method of the ADB lighting unit 46L is not particularly described in the present embodiment because it is not different from the control method of the ADB lighting unit 46R.
- step S61 the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3.
- the image data shows the vehicle in front 1C.
- the "forward vehicle” is an oncoming vehicle or a preceding vehicle.
- step S62 when the vehicle control unit 3 determines that an object such as the front vehicle 1C exists in front of the vehicle 1 (YES in step S62), the vehicle control unit 3 acquires the current angular position ⁇ of the front vehicle 1C. On the other hand, when the vehicle control unit 3 determines that there is no object such as the front vehicle 1C in front of the vehicle 1 (NO in step S62), the high beam light distribution pattern (that is, only from the irradiation region PH1). The ADB light distribution pattern PH) is emitted forward (step S63).
- step S64 the vehicle control unit 3 determines the current angular position ⁇ n of the vehicle in front 1C with respect to the central axis Cx of the camera 6 based on the transmitted image data (see FIG. 18). .. Specifically, the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1C with respect to the central axis Cx and the current right end angle position ⁇ r_n of the front vehicle 1C with respect to the central axis Cx.
- the angular position of the front vehicle 1C with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
- the vehicle control unit 3 determines the current angle position ⁇ n of the front vehicle 1C with respect to the optical axis Ax of the ADB lighting unit 46R based on the current angle position ⁇ n of the front vehicle 1C with respect to the central axis Cx of the camera 6. (See FIG. 18). Specifically, the vehicle control unit 3 determines the current left end angle position ⁇ l_n of the front vehicle 1C with respect to the optical axis Ax based on the current left end angle position ⁇ l_n of the front vehicle 1C with respect to the central axis Cx.
- the vehicle control unit 3 determines the current right end angle position ⁇ r_n of the front vehicle 1C with respect to the optical axis Ax based on the current right end angle position ⁇ r_n of the front vehicle 1C with respect to the central axis Cx.
- the angular position of the front vehicle 1C with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction.
- the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
- step S65 the lighting control unit 43 determines whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode based on the information indicating the driving mode of the vehicle 1 received from the vehicle control unit 3. Judge whether or not.
- the lighting control unit 43 determines that the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode (YES in step S65)
- the lighting control unit 43 determines the angle width W of the non-irradiated region PH2 of the light distribution pattern PH for ADB.
- the first angle width W4 is set (step S66).
- the illumination control unit 43 sets a margin between the left border El leftmost angular position theta L_n and non-irradiated regions PH2 of the forward vehicle 1C to alpha 4, front
- the margin between the right end angular position ⁇ r_n of the vehicle 1C and the right end boundary Er of the non-irradiated region PH2 is set to ⁇ 4 .
- the margin ⁇ 4 is ⁇ 4 > 0.
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W4 represented by the following equation (5).
- the angle range of the non-irradiated region PH2 is ⁇ l_n ⁇ 4 ⁇ ⁇ ⁇ ⁇ r_n + ⁇ 4 .
- W4 2 ⁇ 4 + ( ⁇ r_n - ⁇ l_n ) ⁇ ⁇ ⁇ (5)
- the lighting control unit 43 determines that the driving mode of the vehicle 1 is not the fully automatic driving mode or the advanced driving support mode (NO in step S65)
- the angle width W of the non-irradiation region PH2 is set to the second angle width.
- Set to W5 step S67.
- the lighting control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W5 when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode. Specifically, as shown in FIG.
- the lighting control unit 43 sets the margin between the left end angular position ⁇ l_n of the front vehicle 1C and the left end boundary El of the non-irradiated region PH2 to ⁇ 5, and sets the margin to ⁇ 5 and moves forward.
- the margin between the right end angular position theta r_n and right boundaries Er unirradiated regions PH2 car 1C is set to alpha 5.
- the margin ⁇ 5 is smaller than the margin ⁇ 4 (0 ⁇ ⁇ 5 ⁇ 4 ).
- the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W5 ( ⁇ W4) represented by the following equation (6).
- the angle range of the non-irradiated region PH2 is ⁇ l_n ⁇ 5 ⁇ ⁇ ⁇ ⁇ r_n + ⁇ 5 .
- W5 2 ⁇ 5 + ( ⁇ r_n - ⁇ l_n ) ⁇ ⁇ ⁇ (6)
- the illumination control unit 43 sets the ADB light distribution pattern PH having the irradiated region PH1 and the non-irradiated region PH2. decide. After that, the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted toward the front of the vehicle 1 (step S68). In this way, the processes of steps S61 to S68 are repeatedly executed.
- the angle width W of the non-irradiation region PH2 is set to the first angle width W4.
- the angle width W of the non-irradiation region PH2 is set to the second angle width W5.
- the driving mode of the vehicle 1 is the advanced driving support mode or the fully automatic driving mode
- the occupants of the own vehicle 1 do not control the running of the vehicle 1, so that the visibility of the occupants of the own vehicle 1 to the surrounding environment is taken into consideration. There is no need.
- the angle width W of the non-irradiation region PH2 is set to the first angle width W4 which is larger than the second angle width W5
- the object such as the front vehicle 1C is determined by the ADB light distribution pattern PH.
- the situation of being irradiated can be avoided as much as possible. Therefore, it is possible to avoid as much as possible a situation in which the vehicle control unit 3 (vehicle-mounted computer) of the own vehicle 1 cannot determine the attribute of the object based on the image data from the camera 6 and the learned model.
- the vehicle control unit 3 is ahead from the image data showing the front vehicle 1C overlapping a part of the irradiation region PH1.
- the attributes of vehicle 1C that is, the type of object
- the trained model for discriminating the attributes of the object may not be able to accurately discriminate the attributes of the object that overlaps a part of the irradiation region PH1.
- a part of the front vehicle 1C is irradiated with light from the ADB lighting unit 46R so that the vehicle control unit 3 can accurately determine the attributes of the object such as the front vehicle 1C.
- the situation to be done can be avoided as much as possible.
- the angle width W of the non-irradiation region PH2 is set to the second angle width W5 which is smaller than the first angle width W4. Therefore, it is possible to sufficiently secure the visibility of the occupants (particularly the driver) of the own vehicle 1 with respect to the surrounding environment.
- step S65 it is determined whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode, but the present embodiment is limited to this. is not.
- the determination process of step S65 it may be determined whether or not the driving mode of the vehicle 1 is the fully automatic driving mode. Further, it may be determined whether the driving mode of the vehicle 1 is the fully automatic driving mode, the advanced driving support mode, or the driving support mode (in other words, whether the driving mode of the vehicle 1 is the automatic driving mode). ..
- FIG. 21 is a flowchart for explaining a process of determining whether or not to emit the ADB light distribution pattern PH2 according to the driving mode of the vehicle 1.
- the ADB light distribution pattern PH and the low beam light distribution pattern PL shown in FIG. 19 will be appropriately referred to.
- step S70 based on the information indicating the driving mode of the vehicle 1 received from the vehicle control unit 3, whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode is determined. judge.
- the lighting control unit 43 determines not to irradiate the ADB light distribution pattern PH forward. (Step S71). After that, the illumination control unit 43 controls the low beam illumination unit 45R so that the low beam light distribution pattern PL is emitted toward the front.
- the lighting control unit 43 determines that the driving mode of the vehicle 1 is not the fully automatic driving mode or the advanced driving support mode (NO in step S70)
- the lighting control unit 43 irradiates the ADB light distribution pattern PH toward the front. Is determined (step S72).
- the illumination control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted forward, and the low beam light distribution pattern PL is emitted forward. Controls the low beam lighting unit 45R.
- the ADB lighting unit 46R is controlled so that the object is included in the non-irradiation region PH2.
- the ADB light distribution pattern PH that is, the high beam light distribution pattern
- the driving mode of the vehicle 1 when the driving mode of the vehicle 1 is the advanced driving mode or the fully automatic driving mode, the driving mode of the vehicle 1 is set while the ADB light distribution pattern PH is not irradiated from the ADB lighting unit 46R. In the driving support mode or the manual driving mode, the ADB light distribution pattern PH is irradiated from the ADB lighting unit 46R.
- the driving mode of the vehicle 1 is the advanced driving support mode or the fully automatic driving mode
- the occupant of the vehicle 1 does not control the running of the vehicle 1, so the visibility of the occupant with respect to the surrounding environment of the vehicle 1 is taken into consideration. There is no need.
- the driving mode of the vehicle 1 is the driving support mode or the manual driving mode
- the light distribution pattern PH for ADB is irradiated to the outside of the vehicle 1, so that the occupants (particularly,) with respect to the surrounding environment of the vehicle 1 , The driver)'s visibility can be sufficiently ensured.
- step S70 it is determined whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode, but the present embodiment is limited to this. is not.
- the determination process of step S70 it may be determined whether or not the driving mode of the vehicle 1 is the fully automatic driving mode. Further, it may be determined whether the driving mode of the vehicle 1 is the fully automatic driving mode, the advanced driving support mode, or the driving support mode (in other words, whether the driving mode of the vehicle 1 is the automatic driving mode). ..
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
When an object is present in a non-irradiated area and predetermined information related to the object has not been identified by a vehicle, a lighting control section controls an ADB lighting unit to switch the non-irradiated area formed by the presence of a vehicle ahead to an irradiated area, after an elapse of a first period since disappearance of the vehicle ahead from the front area. When an object is not present in the non-irradiated area or when the predetermined information related to the object has already been identified by the vehicle, the lighting control section controls the ADB lighting unit to switch the non-irradiated area formed by the presence of the vehicle ahead to the irradiated area, after an elapse of a second period since disappearance of the vehicle ahead from the front area.
Description
本開示は、車両用照明システム、車両システム及び車両に関する。
This disclosure relates to vehicle lighting systems, vehicle systems and vehicles.
現在、自動車の自動運転技術の研究が各国で盛んに行われており、自動運転モードで車両(以下、「車両」は自動車のことを指す。)が公道を走行することができるための法整備が各国で検討されている。ここで、自動運転モードでは、車両システムが車両の走行を自動的に制御する。具体的には、自動運転モードでは、車両システムは、カメラ、レーダ(例えば、レーザレーダやミリ波レーダ)等のセンサから得られる車両の周辺環境を示す情報(周辺環境情報)に基づいてステアリング制御(車両の進行方向の制御)、ブレーキ制御及びアクセル制御(車両の制動、加減速の制御)のうちの少なくとも1つを自動的に行う。一方、以下に述べる手動運転モードでは、従来型の車両の多くがそうであるように、運転者が車両の走行を制御する。具体的には、手動運転モードでは、運転者の操作(ステアリング操作、ブレーキ操作、アクセル操作)に従って車両の走行が制御され、車両システムはステアリング制御、ブレーキ制御及びアクセル制御を自動的に行わない。尚、車両の運転モードとは、一部の車両のみに存在する概念ではなく、自動運転機能を有さない従来型の車両も含めた全ての車両において存在する概念であって、例えば、車両制御方法等に応じて分類される。
Currently, research on autonomous driving technology for automobiles is being actively conducted in each country, and legislation has been established to enable vehicles (hereinafter, "vehicles" refers to automobiles) to drive on public roads in automatic driving mode. Is being considered in each country. Here, in the automatic driving mode, the vehicle system automatically controls the traveling of the vehicle. Specifically, in the automatic driving mode, the vehicle system controls steering based on information indicating the surrounding environment of the vehicle (surrounding environment information) obtained from sensors such as a camera and radar (for example, laser radar and millimeter wave radar). At least one of (control of the traveling direction of the vehicle), brake control and accelerator control (control of vehicle braking and acceleration / deceleration) is automatically performed. On the other hand, in the manual driving mode described below, the driver controls the running of the vehicle, as is the case with many conventional vehicles. Specifically, in the manual driving mode, the running of the vehicle is controlled according to the driver's operation (steering operation, brake operation, accelerator operation), and the vehicle system does not automatically perform steering control, brake control, and accelerator control. The driving mode of a vehicle is not a concept that exists only in some vehicles, but a concept that exists in all vehicles including a conventional vehicle that does not have an automatic driving function. For example, vehicle control. It is classified according to the method.
このように、将来において、公道上では自動運転モードで走行中の車両(以下、適宜、「自動運転車」という。)と手動運転モードで走行中の車両(以下、適宜、「手動運転車」という。)が混在することが予想される。
In this way, in the future, vehicles traveling in the automatic driving mode (hereinafter, appropriately referred to as "autonomous driving vehicles") and vehicles traveling in the manual driving mode (hereinafter, appropriately referred to as "manual driving vehicles") on public roads. It is expected that) will be mixed.
自動運転技術の一例として、特許文献1には、先行車に後続車が自動追従走行した自動追従走行システムが開示されている。当該自動追従走行システムでは、先行車と後続車の各々が照明システムを備えており、先行車と後続車との間に他車が割り込むことを防止するための文字情報が先行車の照明システムに表示されると共に、自動追従走行である旨を示す文字情報が後続車の照明システムに表示される。
As an example of the automatic driving technology, Patent Document 1 discloses an automatic following driving system in which a following vehicle automatically follows the preceding vehicle. In the automatic follow-up driving system, each of the preceding vehicle and the following vehicle is equipped with a lighting system, and text information for preventing another vehicle from interrupting between the preceding vehicle and the following vehicle is added to the lighting system of the preceding vehicle. In addition to being displayed, text information indicating that the vehicle is automatically following is displayed on the lighting system of the following vehicle.
ところで、自動運転技術の発展において、車両の周辺環境の検出精度を飛躍的に増大させる必要がある。この点において、現在開発されている車両は、車両の搭載された複数のセンサを用いて車両の周辺環境を特定している。特に、車両は、LiDARユニットからの点群データやミリ波レーダからのレーダデータに基づいて、車両の前方に存在する対象物の存在や位置情報を取得することができる。また、車両は、カメラからの画像データに基づいて、対象物の属性情報や行動予測情報を取得することができる。さらに、車両は、カメラによって取得された画像データに基づいて車両の外部に存在する対象物の属性を判別するために機械学習又は深層学習によって構築されたプログラム(学習済みモデル)を採用している。この学習済みモデルは、対象物を示す大量の画像データを学習することで構築されるものである。
By the way, with the development of autonomous driving technology, it is necessary to dramatically increase the detection accuracy of the surrounding environment of the vehicle. In this respect, the vehicle currently being developed uses a plurality of sensors mounted on the vehicle to identify the surrounding environment of the vehicle. In particular, the vehicle can acquire the existence and position information of an object existing in front of the vehicle based on the point cloud data from the LiDAR unit and the radar data from the millimeter wave radar. In addition, the vehicle can acquire attribute information and behavior prediction information of the object based on the image data from the camera. Furthermore, the vehicle employs a program (learned model) constructed by machine learning or deep learning to determine the attributes of an object existing outside the vehicle based on the image data acquired by the camera. .. This trained model is constructed by learning a large amount of image data indicating an object.
また、車両に搭載される車両用照明システムでは、自車の乗員(特に、運転者)の周辺環境に対する視認性を向上させるために、照明ユニットは、照射領域と非照射領域とを含むADB(Adaptive Driving Beam)用配光パターンを車両の前方領域に向けて照射する。車両の前方に先行車や対向車等の前方車が存在する場合には、照明ユニットは、前方車が非照射領域に含まれるようにADB用配光パターンを前方領域に向けて照射する。このように、前方車の乗員にグレア光を与えずに自車の乗員の周辺環境の視認性を向上させることが可能となる。
Further, in the vehicle lighting system mounted on the vehicle, in order to improve the visibility of the occupants (particularly the driver) of the own vehicle to the surrounding environment, the lighting unit includes an ADB (existing area) and a non-irradiating area. The light distribution pattern for Adaptive Driving Beam) is irradiated toward the front region of the vehicle. When a vehicle in front such as a preceding vehicle or an oncoming vehicle is present in front of the vehicle, the lighting unit irradiates the ADB light distribution pattern toward the front region so that the vehicle in front is included in the non-irradiating region. In this way, it is possible to improve the visibility of the surrounding environment of the occupant of the own vehicle without giving glare light to the occupant of the vehicle in front.
一方、従来の車両用照明システムでは、前方車が車両の前方領域から消失したとき(例えば、対向車が自車を通り過ぎたとき等)から所定の期間(例えば、0.5秒)が経過した後に、前方車の存在によって形成されたADB用配光パターンの非照射領域が照射領域に切り替わる。かかる状況において、非照射領域に歩行者等の対象物が存在する場合には、少なくとも所定の期間の間は当該対象物に光が照射されない。このため、車両は、少なくとも所定の期間の間、カメラからの画像データに基づいて対象物に関連する情報(例えば、対象物の属性情報や行動予測情報等)を正確に特定することができない。このように、前方車が車両の前方領域から消失する場合において、配光パターンの非照射領域に存在する対象物に関連する情報を高い精度で迅速に取得するための手法について検討する余地がある。
On the other hand, in the conventional vehicle lighting system, a predetermined period (for example, 0.5 seconds) has elapsed from the time when the vehicle in front disappears from the area in front of the vehicle (for example, when the oncoming vehicle passes the own vehicle). Later, the non-irradiated region of the ADB light distribution pattern formed by the presence of the vehicle in front is switched to the irradiated region. In such a situation, when an object such as a pedestrian is present in the non-irradiated area, the object is not irradiated with light for at least a predetermined period of time. Therefore, the vehicle cannot accurately identify the information related to the object (for example, the attribute information of the object, the behavior prediction information, etc.) based on the image data from the camera for at least a predetermined period of time. In this way, when the vehicle in front disappears from the front region of the vehicle, there is room for studying a method for quickly acquiring information related to the object existing in the non-irradiated region of the light distribution pattern with high accuracy. ..
さらに、自車に対する前方車の角度位置が大きく変動する場合には、前方車の一部がADB用配光パターンの照射領域に重なってしまう状況(つまり、前方車の一部が照明ユニットから出射された光で照射されてしまう状況)が想定される。かかる場合には、車両システムは、車載カメラによって取得された前方車を示す画像データと学習済みモデルを用いて、対象物である前方車の属性(対象物の種類)を判別することができない可能性がある。上記観点より、自車の前方領域に向けて照射されるADB用配光パターンを改善する余地がある。
Further, when the angular position of the vehicle in front with respect to the own vehicle fluctuates greatly, a part of the vehicle in front overlaps the irradiation area of the light distribution pattern for ADB (that is, a part of the vehicle in front is emitted from the lighting unit. (Situation where it is irradiated with the emitted light) is assumed. In such a case, the vehicle system may not be able to determine the attribute (type of the object) of the vehicle in front, which is the object, by using the image data indicating the vehicle in front acquired by the in-vehicle camera and the trained model. There is sex. From the above viewpoint, there is room for improving the light distribution pattern for ADB that is irradiated toward the front region of the own vehicle.
また、車両が高度運転支援モード又は完全自動運転モードで走行中の場合には、カメラを含む複数のセンサからのセンシングデータに基づいて車両の走行が制御されるため、前方車の一部がADB用配光パターンに重なる状況はなるべく避けたい。このように、車両の運転モードを考慮した最適な配光パターンを照射可能な車両用照明システムについて検討する余地がある。
Further, when the vehicle is traveling in the advanced driving support mode or the fully automatic driving mode, the traveling of the vehicle is controlled based on the sensing data from a plurality of sensors including the camera, so that a part of the vehicle in front is ADB. I want to avoid situations that overlap with the light distribution pattern. As described above, there is room for studying a vehicle lighting system capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
本開示の第1の目的は、前方車が車両の前方領域から消失する場合において、配光パターンの非照射領域に存在する対象物に関連する情報を高い精度で迅速に取得することを可能とする車両用照明システム及び車両を提供することである。
The first object of the present disclosure is to enable highly accurate and rapid acquisition of information related to an object existing in a non-irradiated region of a light distribution pattern when a vehicle in front disappears from the front region of the vehicle. To provide a vehicle lighting system and a vehicle.
本開示の第2の目的は、自車両に対する対象物の角度位置の変動を考慮して、配光パターンの非照射領域の角度幅を最適化することができる車両用照明システムを提供することである。さらに、本開示の第2の目的は、自車の乗員の周辺環境に対する視認性を確保しつつ、対象物の属性判別の精度の低下を防止可能な車両システム及び車両を提供することである。
A second object of the present disclosure is to provide a vehicle lighting system capable of optimizing the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object with respect to the own vehicle. is there. A second object of the present disclosure is to provide a vehicle system and a vehicle capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
本開示の第3の目的は、車両の運転モードを考慮した最適な配光パターンを照射可能な車両用照明システム、車両システム及び車両を提供することである。
A third object of the present disclosure is to provide a vehicle lighting system, a vehicle system, and a vehicle capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
本開示の一態様に係る車両用照明システムは、車両に設けられており、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記前方車の存在によって形成された非照射領域に対象物が存在し、且つ当該対象物に関連する所定の情報が前記車両により未だ特定されていない場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記照明制御部は、
前記前方車の存在によって形成された非照射領域に対象物が存在しない、又は当該対象物に関連する所定の情報が前記車両により既に特定されている場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記第1期間は、前記第2期間よりも短い。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When an object exists in a non-irradiated region formed by the presence of the vehicle in front, and predetermined information related to the object has not yet been specified by the vehicle.
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When there is no object in the non-irradiated region formed by the presence of the vehicle in front, or when predetermined information related to the object has already been identified by the vehicle.
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
The first period is shorter than the second period.
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記前方車の存在によって形成された非照射領域に対象物が存在し、且つ当該対象物に関連する所定の情報が前記車両により未だ特定されていない場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記照明制御部は、
前記前方車の存在によって形成された非照射領域に対象物が存在しない、又は当該対象物に関連する所定の情報が前記車両により既に特定されている場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記第1期間は、前記第2期間よりも短い。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When an object exists in a non-irradiated region formed by the presence of the vehicle in front, and predetermined information related to the object has not yet been specified by the vehicle.
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When there is no object in the non-irradiated region formed by the presence of the vehicle in front, or when predetermined information related to the object has already been identified by the vehicle.
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
The first period is shorter than the second period.
上記構成によれば、配光パターン(特に、ADB用の配光パターン)の非照射領域に存在する対象物(例えば、歩行者等)に関連する所定の情報が車両により未だ特定されていない場合では、前方車が前方領域から消失したときから第1期間経過後に、非照射領域が照射領域に切り替わる。一方、非照射領域に対象物が存在しない又は当該対象物に関連する所定の情報が車両により既に特定されている場合では、前方車が前方領域から消失したときから第2期間経過後に、非照射領域が照射領域に切り替わる。さらに、第1期間は第2期間よりも短くなる。このように、非照射領域に存在する対象物に関連する所定の情報が未だ特定されていない場合には、前方車が前方領域から消失したときから非照射領域が照射領域に切り替わるまでの期間が短縮される。このため、より早く対象物が照明ユニットからの光により照射されるので、カメラから取得された画像データによって対象物に関連する所定の情報を高い精度で迅速に特定することが可能となる。
According to the above configuration, when predetermined information related to an object (for example, a pedestrian, etc.) existing in the non-irradiated region of the light distribution pattern (particularly, the light distribution pattern for ADB) has not yet been specified by the vehicle. Then, after the first period elapses from the time when the vehicle in front disappears from the front area, the non-irradiation area is switched to the irradiation area. On the other hand, if the object does not exist in the non-irradiated area or the predetermined information related to the object has already been specified by the vehicle, the non-irradiated area is after the second period from the time when the vehicle in front disappears from the area in front. The area switches to the irradiation area. Furthermore, the first period is shorter than the second period. In this way, when predetermined information related to the object existing in the non-irradiated area has not been specified yet, the period from the time when the vehicle in front disappears from the front area to the time when the non-irradiated area is switched to the irradiated area is It will be shortened. Therefore, since the object is irradiated with the light from the lighting unit earlier, it is possible to quickly identify predetermined information related to the object with high accuracy by the image data acquired from the camera.
また、前記対象物に関連する所定の情報は、前記対象物の属性情報または前記対象物の行動予測情報であってもよい。
Further, the predetermined information related to the object may be the attribute information of the object or the behavior prediction information of the object.
上記構成によれば、非照射領域に存在する対象物の属性情報又は行動予測情報が未だ特定されていない場合には、前方車が前方領域から消失したときから非照射領域が照射領域に切り替わるまでの期間が短縮される。このため、より早く対象物が照明ユニットからの光により照射されるので、カメラから取得された画像データによって対象物の属性情報又は行動予測情報を高い精度で迅速に特定することが可能となる。
According to the above configuration, when the attribute information or the behavior prediction information of the object existing in the non-irradiated area has not been specified yet, from the time when the vehicle in front disappears from the front area until the non-irradiated area is switched to the irradiated area. The period of time is shortened. Therefore, since the object is irradiated with the light from the lighting unit earlier, it is possible to quickly identify the attribute information or the behavior prediction information of the object with high accuracy by the image data acquired from the camera.
本開示の別の一態様に係る車両用照明システムは、車両に設けられ、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記車両の運転モードのレベルが所定のレベル以上である場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記照明制御部は、
前記車両の運転モードのレベルが前記所定のレベルよりも低い場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記第1期間は、前記第2期間よりも短い。 The vehicle lighting system according to another aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When the level of the driving mode of the vehicle is equal to or higher than a predetermined level,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When the level of the driving mode of the vehicle is lower than the predetermined level,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
The first period is shorter than the second period.
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記車両の運転モードのレベルが所定のレベル以上である場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記照明制御部は、
前記車両の運転モードのレベルが前記所定のレベルよりも低い場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御する。
前記第1期間は、前記第2期間よりも短い。 The vehicle lighting system according to another aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When the level of the driving mode of the vehicle is equal to or higher than a predetermined level,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When the level of the driving mode of the vehicle is lower than the predetermined level,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region.
The first period is shorter than the second period.
上記構成によれば、車両の運転モードのレベルが所定のレベル以上である場合では、前方車が前方領域から消失したときから第1期間経過後に、非照射領域が照射領域に切り替わる。一方、車両の運転モードのレベルが所定のレベルよりも低い場合では、前方車が前方領域から消失したときから第2期間経過後に、非照射領域が照射領域に切り替わる。さらに、第1期間は第2期間よりも短くなる。このように、車両の運転モードに応じて、前方車が前方領域から消失したときから非照射領域が照射領域に切り替わるまでの期間が短縮される。このため、より早く非照射領域に存在する対象物(例えば、歩行者等)が照明ユニットからの光により照射されるので、カメラから取得された画像データによって対象物に関連する情報を高い精度で迅速に特定することが可能となる。
According to the above configuration, when the level of the driving mode of the vehicle is equal to or higher than a predetermined level, the non-irradiated area is switched to the irradiated area after the first period has elapsed from the time when the vehicle in front disappears from the front area. On the other hand, when the level of the driving mode of the vehicle is lower than the predetermined level, the non-irradiated region is switched to the irradiated region after the lapse of the second period from the time when the vehicle in front disappears from the front region. Furthermore, the first period is shorter than the second period. In this way, depending on the driving mode of the vehicle, the period from when the vehicle in front disappears from the front region to when the non-irradiation region is switched to the irradiation region is shortened. Therefore, an object (for example, a pedestrian) existing in the non-irradiated area is irradiated by the light from the lighting unit earlier, so that the information related to the object can be obtained with high accuracy by the image data acquired from the camera. It becomes possible to identify quickly.
また、前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御してもよい。
前記照明制御部は、
前記車両の運転モードが一部運転支援モード又は手動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御してもよい。前記第1期間は、前記第2期間よりも短い。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode,
The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When the driving mode of the vehicle is a partial driving support mode or a manual driving mode,
The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region. The first period is shorter than the second period.
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御してもよい。
前記照明制御部は、
前記車両の運転モードが一部運転支援モード又は手動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御してもよい。前記第1期間は、前記第2期間よりも短い。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode,
The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
The lighting control unit
When the driving mode of the vehicle is a partial driving support mode or a manual driving mode,
The lighting unit may be controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after a second period has elapsed from the time when the front vehicle disappears from the front region. The first period is shorter than the second period.
上記構成によれば、車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、前方車が前方領域から消失したときから非照射領域が照射領域に切り替わるまでの期間が短縮される。このため、より早く非照射領域に存在する対象物が照明ユニットからの光により照射されるので、カメラから取得された画像データによって対象物に関連する情報を高い精度で迅速に特定することが可能となる。
According to the above configuration, when the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the period from when the vehicle in front disappears from the front area to when the non-irradiation area is switched to the irradiation area is shortened. To. Therefore, since the object existing in the non-irradiated area is irradiated by the light from the lighting unit earlier, it is possible to quickly identify the information related to the object with high accuracy by the image data acquired from the camera. It becomes.
本開示の一態様に係る車両用照明システムは、車両に設けられ、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記車両に対する前記対象物の角度位置の変動に応じて、前記非照射領域の角度幅を変更するように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit
It is configured to change the angular width of the non-irradiated region according to the change in the angular position of the object with respect to the vehicle.
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記車両に対する前記対象物の角度位置の変動に応じて、前記非照射領域の角度幅を変更するように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit
It is configured to change the angular width of the non-irradiated region according to the change in the angular position of the object with respect to the vehicle.
上記構成によれば、車両に対する対象物の角度位置の変動に応じて配光パターン(特に、ADB用配光パターン)の非照射領域の角度幅が変更される。このように、対象物の角度位置の変動を考慮して配光パターンの非照射領域の角度幅を最適化することが可能となる。
According to the above configuration, the angle width of the non-irradiated region of the light distribution pattern (particularly, the light distribution pattern for ADB) is changed according to the change in the angular position of the object with respect to the vehicle. In this way, it is possible to optimize the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object.
また、前記照明制御部は、
前記角度位置の変動が所定の閾値よりも大きい場合に、前記角度位置に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記角度位置の変動が前記所定の閾値以下である場合に、前記角度位置に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されてもよい。 In addition, the lighting control unit
When the fluctuation of the angular position is larger than a predetermined threshold value, the angular width of the non-irradiated region is set to the first angular width based on the angular position.
When the fluctuation of the angular position is equal to or less than the predetermined threshold value, the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width based on the angular position. It may be configured.
前記角度位置の変動が所定の閾値よりも大きい場合に、前記角度位置に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記角度位置の変動が前記所定の閾値以下である場合に、前記角度位置に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されてもよい。 In addition, the lighting control unit
When the fluctuation of the angular position is larger than a predetermined threshold value, the angular width of the non-irradiated region is set to the first angular width based on the angular position.
When the fluctuation of the angular position is equal to or less than the predetermined threshold value, the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width based on the angular position. It may be configured.
上記構成によれば、車両に対する対象物の角度位置の変動が大きい場合に非照射領域の角度幅が大きくなる一方で、車両に対する対象物の角度位置の変動が小さい場合に非照射領域の角度幅が小さくなる。このため、自車の乗員(例えば、運転者)の周辺環境に対する視認性を確保しつつ、対象物の一部が照明ユニットからの光により照射されてしまう状況を可能な限り回避することができる。この点において、配光パターンの存在によって、自車の車両システムが対象物の属性(即ち、対象物の種類)を判別できなくなってしまう状況を回避することが可能となる。
According to the above configuration, the angle width of the non-irradiated region becomes large when the variation of the angular position of the object with respect to the vehicle is large, while the angular width of the non-irradiated region becomes large when the variation of the angular position of the object with respect to the vehicle is small. Becomes smaller. Therefore, it is possible to avoid the situation where a part of the object is illuminated by the light from the lighting unit while ensuring the visibility of the occupant (for example, the driver) of the own vehicle to the surrounding environment. .. In this respect, the existence of the light distribution pattern makes it possible to avoid a situation in which the vehicle system of the own vehicle cannot determine the attribute (that is, the type of the object) of the object.
また、前記角度位置の変動は、前記対象物の現在の角度位置と前記対象物の前回の角度位置との間の差分であってもよい。
Further, the variation in the angular position may be a difference between the current angular position of the object and the previous angular position of the object.
上記構成によれば、対象物の現在の角度位置と対象物の前回の角度位置との間の差分が大きい場合に、非照射領域の角度幅が大きくなる一方で、当該差分が小さい場合に非照射領域の角度幅が小さくなる。このため、自車の乗員の周辺環境に対する視認性を低下させずに、対象物の一部が照明ユニットからの光により照射されてしまう状況を可能な限り回避することができる。
According to the above configuration, when the difference between the current angular position of the object and the previous angular position of the object is large, the angular width of the non-irradiated region is large, while when the difference is small, it is not. The angular width of the irradiation area becomes smaller. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupants of the own vehicle to the surrounding environment as much as possible.
前記照明制御部は、前記対象物の前回からN回前(Nは2以上の整数)までの角度位置の平均角度位置を演算するように構成されてもよい。
前記角度位置の変動は、前記対象物の現在の角度位置と前記平均角度位置との間の差分であってもよい。 The illumination control unit may be configured to calculate the average angular position of the angular position from the previous time of the object to N times before (N is an integer of 2 or more).
The variation in the angular position may be the difference between the current angular position of the object and the average angular position.
前記角度位置の変動は、前記対象物の現在の角度位置と前記平均角度位置との間の差分であってもよい。 The illumination control unit may be configured to calculate the average angular position of the angular position from the previous time of the object to N times before (N is an integer of 2 or more).
The variation in the angular position may be the difference between the current angular position of the object and the average angular position.
上記構成によれば、対象物の現在の角度位置と対象物の平均角度位置との間の差分が大きい場合に、非照射領域の角度幅が大きくなる一方で、当該差分が小さい場合に非照射領域の角度幅が小さくなる。このため、自車の乗員の周辺環境に対する視認性を低下させずに、対象物の一部が照明ユニットからの光により照射されてしまう状況を可能な限り回避することができる。
According to the above configuration, when the difference between the current angular position of the object and the average angular position of the object is large, the angular width of the non-irradiated region becomes large, while when the difference is small, the non-irradiated region is not irradiated. The angular width of the area becomes smaller. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupants of the own vehicle to the surrounding environment as much as possible.
本開示の一態様に係る車両用照明システムは、車両に設けられ、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記対象物の現在の角度位置からM回前(Mは1以上の整数)までの角度位置の平均角度位置を演算し、
前記平均角度位置に基づいて、前記非照射領域の角度幅を決定する、
ように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit
The average angular position of the angular position from the current angular position of the object to M times before (M is an integer of 1 or more) is calculated.
The angular width of the non-irradiated region is determined based on the average angular position.
It is configured as follows.
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、
前記対象物の現在の角度位置からM回前(Mは1以上の整数)までの角度位置の平均角度位置を演算し、
前記平均角度位置に基づいて、前記非照射領域の角度幅を決定する、
ように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit
The average angular position of the angular position from the current angular position of the object to M times before (M is an integer of 1 or more) is calculated.
The angular width of the non-irradiated region is determined based on the average angular position.
It is configured as follows.
上記構成によれば、対象物の平均角度位置に基づいて配光パターン(特に、ADB用配光パターン)の非照射領域の角度幅が決定される。このように、対象物の角度位置の変動を考慮して配光パターンの非照射領域の角度幅を最適化することが可能となる。したがって、自車の乗員(例えば、運転者)の周辺環境に対する視認性を低下させずに、対象物の一部が照明ユニットからの光により照射されてしまう状況を可能な限り回避することができる。
According to the above configuration, the angle width of the non-irradiated region of the light distribution pattern (particularly, the light distribution pattern for ADB) is determined based on the average angular position of the object. In this way, it is possible to optimize the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object. Therefore, it is possible to avoid a situation in which a part of the object is illuminated by the light from the lighting unit without deteriorating the visibility of the occupant (for example, the driver) of the own vehicle to the surrounding environment as much as possible. ..
本開示の一態様に係る車両システムは、
車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
前記画像データに基づいて、前記カメラの中心軸に対する対象物の第1角度位置を決定するように構成された第1角度位置決定部と、
前記第1角度位置に基づいて、照明ユニットの光軸に対する前記対象物の第2角度位置を前記対象物の角度位置として決定するように構成された第2角度位置決定部と、
前記車両用照明システムと、
を備える。 The vehicle system according to one aspect of the present disclosure is
A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
A first angle position determining unit configured to determine a first angle position of an object with respect to the central axis of the camera based on the image data.
A second angle position determining unit configured to determine the second angle position of the object with respect to the optical axis of the lighting unit as the angle position of the object based on the first angle position.
The vehicle lighting system and
To be equipped.
車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
前記画像データに基づいて、前記カメラの中心軸に対する対象物の第1角度位置を決定するように構成された第1角度位置決定部と、
前記第1角度位置に基づいて、照明ユニットの光軸に対する前記対象物の第2角度位置を前記対象物の角度位置として決定するように構成された第2角度位置決定部と、
前記車両用照明システムと、
を備える。 The vehicle system according to one aspect of the present disclosure is
A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
A first angle position determining unit configured to determine a first angle position of an object with respect to the central axis of the camera based on the image data.
A second angle position determining unit configured to determine the second angle position of the object with respect to the optical axis of the lighting unit as the angle position of the object based on the first angle position.
The vehicle lighting system and
To be equipped.
上記構成によれば、車両用照明システムによって配光パターンの非照射領域の角度幅が最適化されるため、照明ユニットから出射された配光パターンの存在によって、車両システムが対象物の属性を判別できなくなってしまう状況を回避することが可能となる。このように、自車の乗員の周辺環境に対する視認性を確保しつつ、対象物の属性判別の精度の低下を防止可能な車両システムを提供することができる。
According to the above configuration, the vehicle lighting system optimizes the angular width of the non-irradiated region of the light distribution pattern, so that the vehicle system determines the attribute of the object based on the presence of the light distribution pattern emitted from the lighting unit. It is possible to avoid the situation where it becomes impossible. In this way, it is possible to provide a vehicle system capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
本開示の一態様に係る車両用照明システムは、車両に設けられ、
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、前記車両の運転モードに応じて、前記非照射領域の角度幅を変更するように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit is configured to change the angular width of the non-irradiated region according to the driving mode of the vehicle.
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、前記車両の運転モードに応じて、前記非照射領域の角度幅を変更するように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit is configured to change the angular width of the non-irradiated region according to the driving mode of the vehicle.
上記構成によれば、車両の運転モードに応じてADB用配光パターンの非照射領域の角度幅が変更される。このように、車両の運転モードを考慮してADB用配光パターンの非照射領域の角度幅を最適化することが可能となる。
According to the above configuration, the angle width of the non-irradiated region of the light distribution pattern for ADB is changed according to the driving mode of the vehicle. In this way, it is possible to optimize the angle width of the non-irradiated region of the light distribution pattern for ADB in consideration of the driving mode of the vehicle.
また、前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記車両の運転モードが運転支援モード又は手動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されてもよい。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the angular width of the non-irradiated region is set to the first angular width based on the information regarding the angular position.
When the driving mode of the vehicle is the driving support mode or the manual driving mode, the angle width of the non-irradiated region is set to a second angle width smaller than the first angle width based on the information regarding the angle position. It may be configured to do so.
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記車両の運転モードが運転支援モード又は手動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されてもよい。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the angular width of the non-irradiated region is set to the first angular width based on the information regarding the angular position.
When the driving mode of the vehicle is the driving support mode or the manual driving mode, the angle width of the non-irradiated region is set to a second angle width smaller than the first angle width based on the information regarding the angle position. It may be configured to do so.
上記構成によれば、車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に非照射領域の角度幅が第1の角度幅に設定される一方で、車両の運転モードが運転支援モード又は手動運転モードである場合に非照射領域の角度幅は第1の角度幅よりも小さな第2の角度幅に設定される。
According to the above configuration, when the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the angle width of the non-irradiated region is set to the first angle width, while the driving mode of the vehicle is the driving support. In the mode or the manual operation mode, the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width.
この点において、車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、自車の乗員が車両の走行を制御しないため、自車の乗員の周辺環境に対する視認性を考慮する必要がない。その一方で、非照射領域の角度幅が第2の角度幅よりも大きな第1の角度幅に設定されているため、前方車等の対象物がADB用配光パターンにより照射されてしまう状況を可能な限り回避することができる。このため、自車の車両制御部(車載コンピュータ)がカメラからの画像データに基づいて対象物の属性を判別できなくなってしまう状況を可能な限り回避することができる。
In this respect, when the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the occupants of the own vehicle do not control the running of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is taken into consideration. There is no need. On the other hand, since the angle width of the non-irradiation region is set to the first angle width larger than the second angle width, the situation where an object such as a vehicle in front is irradiated by the light distribution pattern for ADB It can be avoided as much as possible. Therefore, it is possible to avoid as much as possible a situation in which the vehicle control unit (vehicle-mounted computer) of the own vehicle cannot determine the attribute of the object based on the image data from the camera.
また、車両の運転モードが運転支援モード又は手動運転モードである場合には、非照射領域の角度幅は第1の角度幅よりも小さい第2の角度幅に設定されるため、自車の乗員(特に、運転者)の周辺環境に対する視認性を十分に確保することができる。
Further, when the driving mode of the vehicle is the driving support mode or the manual driving mode, the angle width of the non-irradiated region is set to the second angle width smaller than the first angle width, so that the occupant of the own vehicle Sufficient visibility to the surrounding environment (particularly the driver) can be ensured.
本開示の一態様に係る車両用照明システムは、車両に設けられ、
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、前記車両の運転モードに関連する所定の条件が満たされる場合には、前記照明ユニットから前記ADB用配光パターンを照射させ、前記所定の条件が満たされない場合には、前記照明ユニットから前記ADB用配光パターンを照射させない、ように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit irradiates the ADB light distribution pattern from the lighting unit when the predetermined conditions related to the driving mode of the vehicle are satisfied, and when the predetermined conditions are not satisfied, the lighting control unit irradiates the ADB light distribution pattern. It is configured so that the ADB light distribution pattern is not irradiated from the lighting unit.
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備える。
前記照明制御部は、前記車両の運転モードに関連する所定の条件が満たされる場合には、前記照明ユニットから前記ADB用配光パターンを照射させ、前記所定の条件が満たされない場合には、前記照明ユニットから前記ADB用配光パターンを照射させない、ように構成されている。 The vehicle lighting system according to one aspect of the present disclosure is provided in the vehicle.
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
It includes a lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information about the angular position of the object existing outside the vehicle.
The lighting control unit irradiates the ADB light distribution pattern from the lighting unit when the predetermined conditions related to the driving mode of the vehicle are satisfied, and when the predetermined conditions are not satisfied, the lighting control unit irradiates the ADB light distribution pattern. It is configured so that the ADB light distribution pattern is not irradiated from the lighting unit.
上記構成によれば、車両の運転モードに関連する所定の条件が満たされる場合に、ADB用配光パターンが照明ユニットから照射される一方で、当該所定の条件が満たされない場合に、ADB用配光パターンが照明ユニットから照射されない。このように、車両の運転モードを考慮した最適な配光パターンを照射可能な車両用照明システムを提供することができる。
According to the above configuration, when a predetermined condition related to the driving mode of the vehicle is satisfied, the light distribution pattern for ADB is irradiated from the lighting unit, but when the predetermined condition is not satisfied, the distribution for ADB is performed. The light pattern is not emitted from the lighting unit. In this way, it is possible to provide a vehicle lighting system capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
また、前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させず、
前記車両の運転モードが運転支援モード又は手動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させる、ように構成されてもよい。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the lighting unit does not irradiate the ADB light distribution pattern.
When the driving mode of the vehicle is the driving support mode or the manual driving mode, the lighting unit may be configured to irradiate the ADB light distribution pattern.
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させず、
前記車両の運転モードが運転支援モード又は手動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させる、ように構成されてもよい。 In addition, the lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the lighting unit does not irradiate the ADB light distribution pattern.
When the driving mode of the vehicle is the driving support mode or the manual driving mode, the lighting unit may be configured to irradiate the ADB light distribution pattern.
上記構成によれば、車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に照明ユニットからADB用配光パターンが照射されない一方で、車両の運転モードが運転支援モード又は手動運転モードである場合に照明ユニットからADB用配光パターンが照射される。
According to the above configuration, when the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the light distribution pattern for ADB is not emitted from the lighting unit, while the driving mode of the vehicle is the driving support mode or the manual driving mode. In this case, the ADB light distribution pattern is irradiated from the lighting unit.
この点において、車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、自車の乗員が車両の走行を制御しないため、自車の乗員の周辺環境に対する視認性を考慮する必要がない。その一方で、かかる場合には、前方車等の対象物がADB用配光パターンにより照射されてしまう状況を可能な限り回避することができる。このため、自車の車両制御部(車載コンピュータ)がカメラからの画像データに基づいて対象物の属性を判別できなくなってしまう状況を可能な限り回避することができる。
In this respect, when the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the occupants of the own vehicle do not control the running of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is taken into consideration. There is no need. On the other hand, in such a case, it is possible to avoid a situation in which an object such as a vehicle in front is irradiated by the light distribution pattern for ADB as much as possible. Therefore, it is possible to avoid as much as possible a situation in which the vehicle control unit (vehicle-mounted computer) of the own vehicle cannot determine the attribute of the object based on the image data from the camera.
また、車両の運転モードが運転支援モード又は手動運転モードである場合には、車両の外部に向けてADB用配光パターンが照射されるため、自車の乗員の周辺環境に対する視認性を十分に確保することができる。
Further, when the driving mode of the vehicle is the driving support mode or the manual driving mode, the light distribution pattern for ADB is irradiated to the outside of the vehicle, so that the visibility of the occupants of the own vehicle to the surrounding environment is sufficient. Can be secured.
本開示の一態様に係る車両システムは、
車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
前記車両用照明システムと、
を備える。 The vehicle system according to one aspect of the present disclosure is
A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
The vehicle lighting system and
To be equipped.
車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
前記車両用照明システムと、
を備える。 The vehicle system according to one aspect of the present disclosure is
A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
The vehicle lighting system and
To be equipped.
上記構成によれば、車両の運転モードを考慮した最適な配光パターンを照射可能な車両システムを提供することができる。
According to the above configuration, it is possible to provide a vehicle system capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
また、上記車両用照明システムを備えた車両が提供されてもよい。さらに、上記車両システムを備えた車両が提供されてもよい。
Further, a vehicle equipped with the above-mentioned vehicle lighting system may be provided. Further, a vehicle equipped with the above vehicle system may be provided.
本開示によれば、前方車が車両の前方領域から消失する場合において、配光パターンの非照射領域に存在する対象物に関連する情報を高い精度で迅速に取得することを可能とする車両用照明システム及び車両を提供することができる。
According to the present disclosure, when a vehicle in front disappears from the region in front of the vehicle, it is possible to quickly acquire information related to an object existing in the non-irradiated region of the light distribution pattern with high accuracy. Lighting systems and vehicles can be provided.
また、本開示によれば、自車両に対する対象物の角度位置の変動を考慮して、配光パターンの非照射領域の角度幅を最適化することができる車両用照明システムを提供することができる。また、自車の乗員の周辺環境に対する視認性を確保しつつ、対象物の属性判別の精度の低下を防止可能な車両システム及び車両を提供することができる。
Further, according to the present disclosure, it is possible to provide a vehicle lighting system capable of optimizing the angular width of the non-irradiated region of the light distribution pattern in consideration of the fluctuation of the angular position of the object with respect to the own vehicle. .. Further, it is possible to provide a vehicle system and a vehicle capable of preventing a decrease in the accuracy of attribute determination of an object while ensuring visibility of the occupants of the own vehicle to the surrounding environment.
さらに、本開示によれば、車両の運転モードを考慮した最適な配光パターンを照射可能な車両用照明システム、車両システム及び車両を提供することができる。
Further, according to the present disclosure, it is possible to provide a vehicle lighting system, a vehicle system, and a vehicle capable of irradiating an optimum light distribution pattern in consideration of the driving mode of the vehicle.
以下、本開示の実施形態(以下、単に「本実施形態」という。)について図面を参照しながら説明する。本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
Hereinafter, the embodiment of the present disclosure (hereinafter, simply referred to as “the present embodiment”) will be described with reference to the drawings. The dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
本実施形態の説明では、説明の便宜上、「左右方向」、「上下方向」、「前後方向」について適宜言及する場合がある。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「左右方向」は、「左方向」及び「右方向」を含む方向である。「上下方向」は、「上方向」及び「下方向」を含む方向である。「前後方向」は、「前方向」及び「後方向」を含む方向である。尚、図1では「前後方向」は示されていないが、「前後方向」は、左右方向及び上下方向に垂直な方向である。
In the description of the present embodiment, for convenience of explanation, "horizontal direction", "vertical direction", and "front-back direction" may be appropriately referred to. These directions are relative directions set for the vehicle 1 shown in FIG. Here, the "left-right direction" is a direction including the "left direction" and the "right direction". The "vertical direction" is a direction including "upward direction" and "downward direction". The "front-back direction" is a direction including the "forward direction" and the "rear direction". Although the "front-back direction" is not shown in FIG. 1, the "front-back direction" is a direction perpendicular to the left-right direction and the up-down direction.
また、本実施形態では、車両1の「水平方向」について言及されるが、「水平方向」は、上下方向(垂直方向)に垂直な方向であって、左右方向と前後方向を含む方向である。
Further, in the present embodiment, the "horizontal direction" of the vehicle 1 is referred to, but the "horizontal direction" is a direction perpendicular to the vertical direction (vertical direction) and includes a horizontal direction and a front-rear direction. ..
最初に、図1及び図2を参照して本実施形態に係る車両1及び車両システム2について説明する。図1は、車両1の正面図を示す。図2は、車両1に設けられた車両システム2のブロック図である。
First, the vehicle 1 and the vehicle system 2 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 shows a front view of the vehicle 1. FIG. 2 is a block diagram of the vehicle system 2 provided in the vehicle 1.
車両1は、自動運転モードで走行可能な車両(自動車)であって、図2に示す車両システム2を備える。図2に示すように、車両システム2は、車両制御部3と、車両用照明システム4とを備える。さらに、車両システム2は、センサ5と、カメラ6と、レーダ7と、HMI(Human Machine Interface)8と、GPS(Global Positioning System)9と、無線通信部10と、記憶装置11とを備える。さらに、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備える。
The vehicle 1 is a vehicle (automobile) capable of traveling in the automatic driving mode, and includes the vehicle system 2 shown in FIG. As shown in FIG. 2, the vehicle system 2 includes a vehicle control unit 3 and a vehicle lighting system 4. Further, the vehicle system 2 includes a sensor 5, a camera 6, a radar 7, an HMI (Human Machine Interface) 8, a GPS (Global Positioning System) 9, a wireless communication unit 10, and a storage device 11. Further, the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
車両制御部3は、車両1の走行を制御するように構成されている。車両制御部3は、例えば、少なくとも一つの電子制御ユニット(ECU:Electronic Control Unit)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC(System on a Chip)等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)及びTPU(Tensor Processing Unit)のうちの少なくとも一つを含む。CPUは、複数のCPUコアによって構成されてもよい。GPUは、複数のGPUコアによって構成されてもよい。メモリは、ROM(Read Only Memory)と、RAM(Random Access Memory)を含む。ROMには、車両制御プログラムが記憶されてもよい。例えば、車両制御プログラムは、自動運転用の人工知能(AI)プログラムを含んでもよい。AIプログラムは、多層のニューラルネットワークを用いた教師有り又は教師なし機械学習(特に、ディープラーニング)によって構築されたプログラム(学習済みモデル)である。RAMには、車両制御プログラム、車両制御データ及び/又は車両の周辺環境を示す周辺環境情報が一時的に記憶されてもよい。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されてもよい。また、コンピュータシステムは、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等の非ノイマン型コンピュータによって構成されてもよい。さらに、コンピュータシステムは、ノイマン型コンピュータと非ノイマン型コンピュータの組み合わせによって構成されてもよい。
The vehicle control unit 3 is configured to control the running of the vehicle 1. The vehicle control unit 3 is composed of, for example, at least one electronic control unit (ECU: Electronic Control Unit). The electronic control unit includes a computer system including one or more processors and one or more memories (for example, SoC (System on a Chip) or the like), and an electronic circuit composed of active elements such as transistors and passive elements. The processor includes, for example, at least one of a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), and a TPU (Tensor Processing Unit). The CPU may be composed of a plurality of CPU cores. The GPU may be composed of a plurality of GPU cores. The memory includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The vehicle control program may be stored in the ROM. For example, the vehicle control program may include an artificial intelligence (AI) program for autonomous driving. An AI program is a program (trained model) constructed by supervised or unsupervised machine learning (particularly deep learning) using a multi-layer neural network. The RAM may temporarily store a vehicle control program, vehicle control data, and / or surrounding environment information indicating the surrounding environment of the vehicle. The processor may be configured to develop a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM. Further, the computer system may be configured by a non-Von Neumann computer such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). Further, the computer system may be composed of a combination of a von Neumann computer and a non-Von Neumann computer.
車両用照明システム4は、左側ヘッドランプ40Lと、右側ヘッドランプ40Rと、照明制御部43とを備える。
The vehicle lighting system 4 includes a left side headlamp 40L, a right side headlamp 40R, and a lighting control unit 43.
左側ヘッドランプ40Lは、図1に示すように、車両1の左側前面に配置されている。左側ヘッドランプ40Lは、ランプハウジング(図示せず)と、当該ランプハウジングの開口部を覆う透光性のランプカバー(図示せず)と、ロービーム用照明ユニット45Lと、ADB(Adaptive Driving Beam)用照明ユニット46Lとを備える。ロービーム用照明ユニット45LとADB用照明ユニット46Lのそれぞれは、ランプハウジングとランプカバーとによって形成された灯室内に配置されている。
As shown in FIG. 1, the left headlamp 40L is arranged on the left front surface of the vehicle 1. The left headlamp 40L is for a lamp housing (not shown), a translucent lamp cover (not shown) for covering the opening of the lamp housing, a low beam lighting unit 45L, and an ADB (Adaptive Driving Beam). It is equipped with a lighting unit 46L. Each of the low beam lighting unit 45L and the ADB lighting unit 46L is arranged in a lamp chamber formed by a lamp housing and a lamp cover.
右側ヘッドランプ40Rは、車両1の右側前面に配置されている。右側ヘッドランプ40Rは、ランプハウジング(図示せず)と、当該ランプハウジングの開口部を覆う透光性のランプカバー(図示せず)と、ロービーム用照明ユニット45Rと、ADB用照明ユニット46Rとを備える。ロービーム用照明ユニット45RとADB用照明ユニット46Rのそれぞれは、ランプハウジングとランプカバーとによって形成された灯室内に配置されている。
The right headlamp 40R is arranged on the front right side of the vehicle 1. The right headlamp 40R includes a lamp housing (not shown), a translucent lamp cover (not shown) that covers the opening of the lamp housing, a low beam lighting unit 45R, and an ADB lighting unit 46R. Be prepared. Each of the low beam lighting unit 45R and the ADB lighting unit 46R is arranged in a lamp chamber formed by a lamp housing and a lamp cover.
ロービーム用照明ユニット45L,45R(以降では、単に「ロービーム用照明ユニット45」という場合がある。)は、例えば、光を出射する光源ユニットと、光源ユニットから出射された光を反射するリフレクタと、リフレクタで反射された光の一部を遮光する遮光板とを有する。
The low beam lighting units 45L and 45R (hereinafter, may be simply referred to as "low beam lighting unit 45") include, for example, a light source unit that emits light, a reflector that reflects light emitted from the light source unit, and the like. It has a light-shielding plate that blocks a part of the light reflected by the reflector.
ロービーム用照明ユニット45は、車両1の前方領域にロービーム用配光パターンPL(図5参照)を照射するように構成されている。図5に示すロービーム用配光パターンPLは、車両1の25m前方に仮想的に配置された仮想鉛直スクリーン上に形成された配光パターンである。
The low beam lighting unit 45 is configured to irradiate the front region of the vehicle 1 with the low beam light distribution pattern PL (see FIG. 5). The low beam light distribution pattern PL shown in FIG. 5 is a light distribution pattern formed on a virtual vertical screen virtually arranged 25 m ahead of the vehicle 1.
図5に示すように、ロービーム用配光パターンPLは、対向車線側カットオフラインCL1と、自車線側カットオフラインCL1と、これらのカットオフラインCL1,CL2に接続された斜めカットオフラインCL3を有する。
As shown in FIG. 5, the low beam light distribution pattern PL has an oncoming lane side cut-off line CL1, an own lane side cut-off line CL1, and an oblique cut-off line CL3 connected to these cut-off line CL1 and CL2.
ADB用照明ユニット46L,46R(以降では、単に「ADB用照明ユニット46」という場合がある。)は、車両1の前方領域にADB用配光パターンPH(図5参照)を照射するように構成されている。図5に示すADB用配光パターンPHは、仮想鉛直スクリーン上に形成された配光パターンである。
The ADB lighting units 46L and 46R (hereinafter, may be simply referred to as "ADB lighting unit 46") are configured to irradiate the front region of the vehicle 1 with the ADB light distribution pattern PH (see FIG. 5). Has been done. The light distribution pattern PH for ADB shown in FIG. 5 is a light distribution pattern formed on a virtual vertical screen.
図5に示すように、ADB用配光パターンPHは、ロービーム用配光パターンPLの上方に位置する。換言すれば、ADB配光パターンPHの上下方向(垂直方向)における角度位置は、ロービーム用配光パターンPLの上下方向における角度位置よりも大きい。
As shown in FIG. 5, the ADB light distribution pattern PH is located above the low beam light distribution pattern PL. In other words, the angular position of the ADB light distribution pattern PH in the vertical direction (vertical direction) is larger than the angular position of the low beam light distribution pattern PL in the vertical direction.
ADB用配光パターンPHは、光が照射される照射領域PH1と、光が照射されない非照射領域PH2とを有する。特に、車両1の前方に前方車1A等の対象物が存在する場合には、ADB用照明ユニット46は、当該対象物が非照射領域PH2に位置するようにADB用配光パターンPHを車両1の前方に形成する。このように、対象物にグレア光が与えられることが好適に防止される。一方、車両1の前方に前方車1A等の対象物が存在しない場合には、ADB用照明ユニット46は、照射領域のみからなるADB用配光パターン(つまり、ハイビーム用配光パターン)を車両1の前方に形成する。このように、ADB用照明ユニット46は、対象物の存在の有無に応じて、非照射領域を有するADB用配光パターン又はハイビーム配光パターンを前方に向けて照射する。
The light distribution pattern PH for ADB has an irradiation region PH1 that is irradiated with light and a non-irradiation region PH2 that is not irradiated with light. In particular, when an object such as the front vehicle 1A exists in front of the vehicle 1, the ADB lighting unit 46 sets the ADB light distribution pattern PH to the vehicle 1 so that the object is located in the non-irradiation region PH2. Form in front of. In this way, glare light is preferably prevented from being applied to the object. On the other hand, when there is no object such as the vehicle 1A in front of the vehicle 1, the ADB lighting unit 46 uses the ADB light distribution pattern (that is, the high beam light distribution pattern) consisting only of the irradiation region. Form in front of. As described above, the ADB lighting unit 46 irradiates the ADB light distribution pattern or the high beam light distribution pattern having the non-irradiation region toward the front depending on the presence or absence of the object.
ADB用照明ユニット46は、例えば、マトリックス状(n行×m列、n,mは1以上の整数)に配列された複数のLED(発光ダイオード)からなる光源と、光源から出射された光を通過させる投影レンズとを備えてもよい。この場合、複数のLEDの点消灯が個別に制御されることで、ADB用照明ユニット46は、照射領域と非照射領域とを有するADB用配光パターンPHを車両1の前方に形成することができる。
The ADB lighting unit 46 uses, for example, a light source composed of a plurality of LEDs (light emitting diodes) arranged in a matrix (n rows × m columns, n, m is an integer of 1 or more) and light emitted from the light source. It may be provided with a projection lens to be passed through. In this case, by individually controlling the turning on and off of the plurality of LEDs, the ADB lighting unit 46 can form an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1. it can.
ADB用照明ユニット46の別の構成として、ADB用照明ユニット46は、例えば、光を出射する光源と、リフレクタと、MEMS(Micro Electro Mechanical Systems)ミラーと、投影レンズとを備えてもよい。リフレクタは、光源から出射された光をMEMSミラーに向けて反射するように構成される。MEMSミラーは、リフレクタによって反射された光を投影レンズに向けて反射させる。MEMSミラーは、マトリックス状(n行×m列)に配列された複数の微小ミラー要素を備えている。複数の微小ミラー要素の各々の角度は、制御信号に応じて、光を投影レンズに向けて反射させる第1角度(ON状態)又は光を投影レンズに向けて反射させない第2角度(OFF状態)に設定される。このように、MEMSミラーの各微小ミラー要素の角度が制御されることで、ADB用照明ユニット46は、照射領域と非照射領域とを有するADB用配光パターンPHを車両1の前方に形成することができる。
As another configuration of the ADB lighting unit 46, the ADB lighting unit 46 may include, for example, a light source that emits light, a reflector, a MEMS (Micro Electro Mechanical Systems) mirror, and a projection lens. The reflector is configured to reflect the light emitted from the light source toward the MEMS mirror. The MEMS mirror reflects the light reflected by the reflector toward the projection lens. The MEMS mirror includes a plurality of micromirror elements arranged in a matrix (n rows × m columns). Each angle of the plurality of minute mirror elements is a first angle (ON state) that reflects light toward the projection lens or a second angle (OFF state) that does not reflect light toward the projection lens, depending on the control signal. Is set to. By controlling the angle of each minute mirror element of the MEMS mirror in this way, the ADB lighting unit 46 forms an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1. be able to.
また、ADB用照明ユニット46の別の構成として、ADB用照明ユニット46は、光を出射する光源と、回転軸の周囲に複数のブレードが設けられた回転リフレクタとを備えたブレードスキャン方式の照明ユニットであってもよい。回転リフレクタは、回転軸を中心に一方向に回転しながら、光源から出射された光を反射することで、反射光を走査することができる。このように、回転リフレクタの回転に伴い、ADB用照明ユニット46は、照射領域と非照射領域とを有するADB用配光パターンPHを車両1の前方に形成することができる。
Further, as another configuration of the ADB lighting unit 46, the ADB lighting unit 46 is a blade scan type lighting provided with a light source that emits light and a rotation reflector having a plurality of blades around a rotation axis. It may be a unit. The rotary reflector can scan the reflected light by reflecting the light emitted from the light source while rotating in one direction about the rotation axis. As described above, with the rotation of the rotary reflector, the ADB lighting unit 46 can form an ADB light distribution pattern PH having an irradiation region and a non-irradiation region in front of the vehicle 1.
照明制御部43は、ロービーム用照明ユニット45及びADB用照明ユニット46の動作を制御するように構成されている。特に、照明制御部43は、ロービーム用配光パターンが車両1の前方に出射されるようにロービーム用照明ユニット45を制御するように構成されている。照明制御部43は、ADB用配光パターンが車両1の前方に出射されるようにADB用照明ユニット46を制御するように構成されている。
The lighting control unit 43 is configured to control the operation of the low beam lighting unit 45 and the ADB lighting unit 46. In particular, the lighting control unit 43 is configured to control the low beam lighting unit 45 so that the low beam light distribution pattern is emitted in front of the vehicle 1. The lighting control unit 43 is configured to control the ADB lighting unit 46 so that the ADB light distribution pattern is emitted in front of the vehicle 1.
また、照明制御部43は、車両1の外部に存在する他車両等の対象物の角度位置(特に、水平方向における角度位置)に関する情報に基づいて、当該対象物が非照射領域に含まれるようにADB用照明ユニット46を制御するように構成されている。さらに、照明制御部43は、対象物の角度位置(特に、水平方向における角度位置)の変動に応じて、ADB用配光パターンの非照射領域の角度幅を変更するように構成されている。
Further, the lighting control unit 43 so that the object is included in the non-irradiation region based on the information regarding the angular position (particularly, the angular position in the horizontal direction) of the object such as another vehicle existing outside the vehicle 1. It is configured to control the ADB lighting unit 46. Further, the illumination control unit 43 is configured to change the angular width of the non-irradiated region of the ADB light distribution pattern according to the fluctuation of the angular position (particularly, the angular position in the horizontal direction) of the object.
照明制御部43は、少なくとも一つの電子制御ユニット(ECU)により構成されている。電子制御ユニットは、1以上のプロセッサと1以上のメモリを含むコンピュータシステム(例えば、SoC等)と、トランジスタ等のアクティブ素子及びパッシブ素子から構成される電子回路を含む。プロセッサは、CPU、MPU、GPU及びTPUのうちの少なくとも一つを含む。メモリは、ROMと、RAMを含む。また、コンピュータシステムは、ASICやFPGA等の非ノイマン型コンピュータによって構成されてもよい。
The lighting control unit 43 is composed of at least one electronic control unit (ECU). The electronic control unit includes a computer system (for example, SoC) including one or more processors and one or more memories, and an electronic circuit composed of active elements such as transistors and passive elements. The processor includes at least one of a CPU, MPU, GPU and TPU. The memory includes a ROM and a RAM. Further, the computer system may be composed of a non-Von Neumann computer such as an ASIC or FPGA.
図2に戻ると、センサ5は、加速度センサ、速度センサ及びジャイロセンサのうち少なくとも一つを含む。センサ5は、車両1の走行状態を検出して、走行状態情報を車両制御部3に出力するように構成されている。センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。
Returning to FIG. 2, the sensor 5 includes at least one of an acceleration sensor, a speed sensor, and a gyro sensor. The sensor 5 is configured to detect the running state of the vehicle 1 and output the running state information to the vehicle control unit 3. The sensor 5 includes a seating sensor that detects whether the driver is sitting in the driver's seat, a face orientation sensor that detects the direction of the driver's face, an external weather sensor that detects the external weather condition, and whether or not there is a person in the vehicle. A motion sensor or the like for detecting may be further provided.
カメラ6は、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。カメラ6は、例えば、図1に示すように車両1のフロントガラス70に対向するように車両1の内部に配置されてもよい。また、カメラ6は、左側ヘッドランプ40L及び/又は右側ヘッドランプ40R内に配置されてもよい。カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信するように構成されている。車両制御部3は、送信された画像データと学習済みモデルに基づいて、周辺環境情報を取得する。特に、車両制御部3は、画像データと学習済みモデルに基づいて車両1の外部に存在する対象物の属性を判別するように構成された属性判別部として機能する。
The camera 6 is, for example, a camera including an image sensor such as a CCD (Charge-Coupled Device) or a CMOS (Complementary MOS). The camera 6 may be arranged inside the vehicle 1 so as to face the windshield 70 of the vehicle 1, for example, as shown in FIG. Further, the camera 6 may be arranged in the left headlamp 40L and / or the right headlamp 40R. The camera 6 is configured to acquire image data indicating the surrounding environment of the vehicle 1 and then transmit the image data to the vehicle control unit 3. The vehicle control unit 3 acquires the surrounding environment information based on the transmitted image data and the trained model. In particular, the vehicle control unit 3 functions as an attribute determination unit configured to determine the attributes of an object existing outside the vehicle 1 based on the image data and the trained model.
レーダ7は、ミリ波レーダ、マイクロ波レーダ及びレーザーレーダ(例えば、LiDARユニット)のうちの少なくとも一つを含む。例えば、LiDARユニットは、車両1の周辺環境を検出するように構成されている。特に、LiDARユニットは、車両1の周辺環境を示す3Dマッピングデータ(点群データ)を取得した上で、当該3Dマッピングデータを車両制御部3に送信するように構成されている。車両制御部3は、送信された3Dマッピングデータに基づいて、周辺環境情報(例えば、対象物の距離や方向)を特定する。
The radar 7 includes at least one of a millimeter wave radar, a microwave radar and a laser radar (for example, a LiDAR unit). For example, the LiDAR unit is configured to detect the surrounding environment of the vehicle 1. In particular, the LiDAR unit is configured to acquire 3D mapping data (point cloud data) indicating the surrounding environment of the vehicle 1 and then transmit the 3D mapping data to the vehicle control unit 3. The vehicle control unit 3 identifies the surrounding environment information (for example, the distance and direction of the object) based on the transmitted 3D mapping data.
HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイ(例えば、Head Up Display(HUD)等)である。GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。
The HMI 8 is composed of an input unit that receives an input operation from the driver and an output unit that outputs driving information and the like to the driver. The input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode changeover switch for switching the operation mode of the vehicle 1, and the like. The output unit is a display (for example, Head Up Display (HUD) or the like) that displays various driving information. The GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
無線通信部10は、車両1の周囲にいる他車に関する情報を他車から受信すると共に、車両1に関する情報を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。また、無線通信部10は、歩行者が携帯する携帯型電子機器(スマートフォン、タブレット、ウェアラブルデバイス等)から歩行者に関する情報を受信すると共に、車両1の自車走行情報を携帯型電子機器に送信するように構成されている(歩車間通信)。車両1は、他車両、インフラ設備若しくは携帯型電子機器とアドホックモードにより直接通信してもよいし、インターネット等の通信ネットワークを介して通信してもよい。
The wireless communication unit 10 is configured to receive information about other vehicles around the vehicle 1 from the other vehicle and transmit information about the vehicle 1 to the other vehicle (vehicle-to-vehicle communication). Further, the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and indicator lights and to transmit traveling information of vehicle 1 to the infrastructure equipment (road-to-vehicle communication). Further, the wireless communication unit 10 receives information about the pedestrian from the portable electronic device (smartphone, tablet, wearable device, etc.) carried by the pedestrian, and transmits the own vehicle traveling information of the vehicle 1 to the portable electronic device. It is configured to do (pedestrian-to-vehicle communication). The vehicle 1 may directly communicate with another vehicle, infrastructure equipment, or a portable electronic device in an ad hoc mode, or may communicate with a communication network such as the Internet.
記憶装置11は、ハードディスクドライブ(HDD)やSSD(Solid State Drive)等の外部記憶装置である。記憶装置11には、2次元又は3次元の地図情報及び/又は車両制御プログラムが記憶されてもよい。例えば、3次元の地図情報は、3Dマッピングデータ(点群データ)によって構成されてもよい。記憶装置11は、車両制御部3からの要求に応じて、地図情報や車両制御プログラムを車両制御部3に出力するように構成されている。地図情報や車両制御プログラムは、無線通信部10と通信ネットワークを介して更新されてもよい。
The storage device 11 is an external storage device such as a hard disk drive (HDD) or SSD (Solid State Drive). The storage device 11 may store two-dimensional or three-dimensional map information and / or a vehicle control program. For example, the three-dimensional map information may be composed of 3D mapping data (point cloud data). The storage device 11 is configured to output map information and a vehicle control program to the vehicle control unit 3 in response to a request from the vehicle control unit 3. The map information and the vehicle control program may be updated via the wireless communication unit 10 and the communication network.
車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、車両1の走行を自動的に制御する。つまり、自動運転モードでは、車両1の走行は車両システム2により自動制御される。
When the vehicle 1 travels in the automatic driving mode, the vehicle control unit 3 determines at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically. The steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal. The brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal. The accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and control the accelerator device 17 based on the received accelerator control signal. In this way, the vehicle control unit 3 automatically controls the travel of the vehicle 1 based on the travel state information, the surrounding environment information, the current position information, the map information, and the like. That is, in the automatic driving mode, the traveling of the vehicle 1 is automatically controlled by the vehicle system 2.
一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
On the other hand, when the vehicle 1 travels in the manual driving mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver on the accelerator pedal, the brake pedal, and the steering wheel. As described above, in the manual driving mode, the steering control signal, the accelerator control signal, and the brake control signal are generated by the manual operation of the driver, so that the driving of the vehicle 1 is controlled by the driver.
次に、車両1の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはない。高度運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはあるものの車両1を運転しない。運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御のうち一部の走行制御を自動的に行うと共に、車両システム2の運転支援の下で運転者が車両1を運転する。一方、手動運転モードでは、車両システム2が走行制御を自動的に行わないと共に、車両システム2の運転支援なしに運転者が車両1を運転する。
Next, the driving mode of the vehicle 1 will be described. The operation mode includes an automatic operation mode and a manual operation mode. The automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode. In the fully automatic driving mode, the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 1 can be driven. In the advanced driving support mode, the vehicle system 2 automatically performs all driving control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although he / she is in a state where he / she can drive the vehicle 1. In the driving support mode, the vehicle system 2 automatically performs some driving control of steering control, brake control, and accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2. On the other hand, in the manual driving mode, the vehicle system 2 does not automatically control the driving, and the driver drives the vehicle 1 without the driving support of the vehicle system 2.
(ADB用配光パターンの非照射領域を決定する処理)
次に、図3から図5を参照することで、ADB用配光パターンの非照射領域を決定する処理について以下に説明する。図3は、ADB用配光パターンPHの非照射領域PH2を決定する処理の一例を説明するためのフローチャートである。図4は、自車両1と前方車1Aとを示す図である。図5は、仮想鉛直スクリーン上に形成されたADB用配光パターンPHの一例を示す図である。 (Process to determine the non-irradiated area of the light distribution pattern for ADB)
Next, the process of determining the non-irradiated region of the light distribution pattern for ADB will be described below with reference to FIGS. 3 to 5. FIG. 3 is a flowchart for explaining an example of a process of determining the non-irradiated region PH2 of the light distribution pattern PH for ADB. FIG. 4 is a diagram showing theown vehicle 1 and the vehicle in front 1A. FIG. 5 is a diagram showing an example of the light distribution pattern PH for ADB formed on the virtual vertical screen.
次に、図3から図5を参照することで、ADB用配光パターンの非照射領域を決定する処理について以下に説明する。図3は、ADB用配光パターンPHの非照射領域PH2を決定する処理の一例を説明するためのフローチャートである。図4は、自車両1と前方車1Aとを示す図である。図5は、仮想鉛直スクリーン上に形成されたADB用配光パターンPHの一例を示す図である。 (Process to determine the non-irradiated area of the light distribution pattern for ADB)
Next, the process of determining the non-irradiated region of the light distribution pattern for ADB will be described below with reference to FIGS. 3 to 5. FIG. 3 is a flowchart for explaining an example of a process of determining the non-irradiated region PH2 of the light distribution pattern PH for ADB. FIG. 4 is a diagram showing the
尚、本実施形態では、便宜上、右側ヘッドランプ40Rに設けられたADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。特に、ADB用照明ユニット46Lを用いたADB用配光パターンの生成手法は、ADB用照明ユニット46Rを用いたADB用配光パターンPHの生成手法と原理的に特に相違がないため、本実施形態では特に説明されない。換言すれば、ADB用照明ユニット46Lの制御方法は、ADB用照明ユニット46Rの制御方法と相違がないため、本実施形態では特にADB用照明ユニット46Lについては説明されない。また、本説明において、「前方車」とは対向車又は先行車である。
In the present embodiment, for convenience, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R provided on the right headlamp 40R will be described. In particular, the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular. In other words, since the control method of the ADB lighting unit 46L is not different from the control method of the ADB lighting unit 46R, the ADB lighting unit 46L is not particularly described in this embodiment. Further, in this description, the "forward vehicle" is an oncoming vehicle or a preceding vehicle.
図3に示すように、ステップS1において、カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信する。次に、ステップS2において、車両制御部3は、送信された画像データに基づいて、車両1の前方に前方車1A等の対象物が存在するかどうかを判定する。
As shown in FIG. 3, in step S1, the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3. Next, in step S2, the vehicle control unit 3 determines whether or not an object such as the vehicle in front 1A exists in front of the vehicle 1 based on the transmitted image data.
車両制御部3は、車両1の前方に前方車1A等の対象物が存在すると判定した場合には(ステップS2でYES)、前方車1Aの現在の角度位置θを取得する。一方で、車両制御部3は、車両1の前方に前方車1A等の対象物が存在しないと判定した場合には(ステップS2でNO)、ハイビーム用配光パターン(即ち、照射領域PH1のみからなるADB用配光パターン)を前方に向けて出射する(ステップS4)。
When the vehicle control unit 3 determines that an object such as the front vehicle 1A exists in front of the vehicle 1 (YES in step S2), the vehicle control unit 3 acquires the current angular position θ of the front vehicle 1A. On the other hand, when the vehicle control unit 3 determines that there is no object such as the front vehicle 1A in front of the vehicle 1 (NO in step S2), the high beam light distribution pattern (that is, only from the irradiation region PH1). ADB light distribution pattern) is emitted forward (step S4).
ステップS3では、車両制御部3は、送信された画像データに基づいて、カメラ6の中心軸Cxに対する前方車1Aの現在の角度位置φnを決定する(図4参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Aの現在の左端角度位置φl_nと、中心軸Cxに対する前方車1Aの現在の右端角度位置φr_nを決定する。ここで、中心軸Cxに対する前方車1Aの角度位置は、水平方向における角度位置であって、上下方向(垂直方向)における角度位置ではない。
In step S3, the vehicle control unit 3 determines the current angular position φ n of the vehicle in front 1A with respect to the central axis Cx of the camera 6 based on the transmitted image data (see FIG. 4). Specifically, the vehicle control unit 3 determines the current left end angle position φ l_n of the front vehicle 1A with respect to the central axis Cx and the current right end angle position φ r_n of the front vehicle 1A with respect to the central axis Cx. Here, the angular position of the front vehicle 1A with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
次に、車両制御部3は、カメラ6の中心軸Cxに対する前方車1Aの現在の角度位置φnに基づいて、ADB用照明ユニット46Rの光軸Axに対する前方車1Aの現在の角度位置θnを決定する(図4参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Aの現在の左端角度位置φl_nに基づいて、光軸Axに対する前方車1Aの現在の左端角度位置θl_nを決定する。さらに、車両制御部3は、中心軸Cxに対する前方車1Aの現在の右端角度位置φr_nに基づいて、光軸Axに対する前方車1Aの現在の右端角度位置θr_nを決定する。ここで、光軸Axに対する前方車1Aの角度位置は、水平方向における角度位置であって、上下方向における角度位置ではない。また、カメラ6とADB用照明ユニット46Rとの間の相対的位置関係に関する情報が車両制御部3のメモリに蓄積されているものとする。
Next, the vehicle control unit 3 determines the current angle position θ n of the front vehicle 1A with respect to the optical axis Ax of the ADB lighting unit 46R based on the current angle position φ n of the front vehicle 1A with respect to the central axis Cx of the camera 6. (See FIG. 4). Specifically, the vehicle control unit 3 determines the current left end angle position θ l_n of the front vehicle 1A with respect to the optical axis Ax based on the current left end angle position φ l_n of the front vehicle 1A with respect to the central axis Cx. Further, the vehicle control unit 3 determines the current right end angle position θ r_n of the front vehicle 1A with respect to the optical axis Ax based on the current right end angle position φ r_n of the front vehicle 1A with respect to the central axis Cx. Here, the angular position of the front vehicle 1A with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction. Further, it is assumed that the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
次に、ステップS5において、照明制御部43は、車両制御部3から前方車1Aの現在の角度位置θnに関する情報を受信した上で、前方車1Aの現在の角度位置θnに基づいてADB用配光パターンPHの非照射領域PH2を決定する。特に、照明制御部43は、前方車1Aの左端角度位置θl_nと非照射領域PH2の左端境界Elとの間のマージンをαに設定すると共に、前方車1Aの右端角度位置θr_nと非照射領域PH2の右端境界Erとの間のマージンをαに設定する。ここで、マージンαは、α≧0となる。このように、照明制御部43は、非照射領域PH2の角度範囲θがθl_n-α≦θ≦θr_n+αとなるように非照射領域PH2を決定する。ここで、非照射領域PH2の角度幅Wは以下式(1)のように表される。
W=2α+(θr_n-θl_n)・・・(1)
Next, in step S5, thelighting control unit 43 receives information about the current angle position θ n of the vehicle ahead 1A from the vehicle control unit 3, and then ADB based on the current angle position θ n of the vehicle 1A ahead. The non-irradiation region PH2 of the light distribution pattern PH is determined. In particular, the lighting control unit 43 sets the margin between the left end angle position θ l_n of the front vehicle 1A and the left end boundary El of the non-irradiation region PH2 to α, and sets the right end angle position θ r_n of the front vehicle 1A and non-irradiation. The margin between the rightmost boundary Er of the region PH2 is set to α. Here, the margin α is α ≧ 0. In this way, the illumination control unit 43 determines the non-irradiation region PH2 so that the angle range θ of the non-irradiation region PH2 is θ l_n −α ≦ θ ≦ θ r_n + α. Here, the angle width W of the non-irradiated region PH2 is expressed by the following equation (1).
W = 2α + (θ r_n -θ l_n ) ・ ・ ・ (1)
W=2α+(θr_n-θl_n)・・・(1)
Next, in step S5, the
W = 2α + (θ r_n -θ l_n ) ・ ・ ・ (1)
その後、照明制御部43は、照射領域PH1と非照射領域PH2とを含むADB用配光パターンPHが車両1の前方に出射されるようにADB用照明ユニット46Rを制御する(ステップS6)。このように、ステップS1からS6の処理が繰り返し実行される。
After that, the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH including the irradiation region PH1 and the non-irradiation region PH2 is emitted in front of the vehicle 1 (step S6). In this way, the processes of steps S1 to S6 are repeatedly executed.
(第1実施形態)
次に、図6から図8を参照することで第1実施形態に係るADB用配光パターンPHの制御方法について以下に説明する。図6は、前方車1Aが自車両1の前方領域から消失したときにADB用配光パターンPHの非照射領域PH2を照射領域PH1に切り替える処理を説明するためのフローチャートである。図7は、前方車1Aが車両1の前方領域から消失する直前における前方領域に出射されたADB用配光パターンPHを示す模式図である。図7では、ロービーム用配光パターンPLは図示されていない点に留意されたい。図8は、非照射領域PH2が照射領域PH1に切り替わった直後におけるADB用配光パターンPHを示す模式図である。 (First Embodiment)
Next, a method of controlling the ADB light distribution pattern PH according to the first embodiment will be described below with reference to FIGS. 6 to 8. FIG. 6 is a flowchart for explaining a process of switching the non-irradiation region PH2 of the ADB light distribution pattern PH to the irradiation region PH1 when thefront vehicle 1A disappears from the front region of the own vehicle 1. FIG. 7 is a schematic view showing the light distribution pattern PH for ADB emitted to the front region immediately before the front vehicle 1A disappears from the front region of the vehicle 1. Note that in FIG. 7, the low beam light distribution pattern PL is not shown. FIG. 8 is a schematic view showing the light distribution pattern PH for ADB immediately after the non-irradiated region PH2 is switched to the irradiated region PH1.
次に、図6から図8を参照することで第1実施形態に係るADB用配光パターンPHの制御方法について以下に説明する。図6は、前方車1Aが自車両1の前方領域から消失したときにADB用配光パターンPHの非照射領域PH2を照射領域PH1に切り替える処理を説明するためのフローチャートである。図7は、前方車1Aが車両1の前方領域から消失する直前における前方領域に出射されたADB用配光パターンPHを示す模式図である。図7では、ロービーム用配光パターンPLは図示されていない点に留意されたい。図8は、非照射領域PH2が照射領域PH1に切り替わった直後におけるADB用配光パターンPHを示す模式図である。 (First Embodiment)
Next, a method of controlling the ADB light distribution pattern PH according to the first embodiment will be described below with reference to FIGS. 6 to 8. FIG. 6 is a flowchart for explaining a process of switching the non-irradiation region PH2 of the ADB light distribution pattern PH to the irradiation region PH1 when the
尚、本実施形態では、前提条件として、車両1の前方領域に前方車1Aが既に存在しているものとする。また、説明の便宜上、右側ヘッドランプ40Rに設けられたADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。
In the present embodiment, as a precondition, it is assumed that the front vehicle 1A already exists in the front region of the vehicle 1. Further, for convenience of explanation, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R provided on the right headlamp 40R will be described.
図6に示すように、ステップS10において、車両制御部3は、カメラ6から送信された画像データ、LiDARユニットから送信された3Dマッピングデータ及びミリ波レーダから送信されたレーダデータのうちの少なくとも一つに基づいて、車両1の前方領域から前方車1Aが消失したかどうかを判定する。ここで、前方車1Aが車両1の前方領域から消失した状態とは、前方車1Aが車両1を過ぎ去った状態に相当する(図8参照)。
As shown in FIG. 6, in step S10, the vehicle control unit 3 receives at least one of the image data transmitted from the camera 6, the 3D mapping data transmitted from the LiDAR unit, and the radar data transmitted from the millimeter-wave radar. Based on the above, it is determined whether or not the front vehicle 1A has disappeared from the front region of the vehicle 1. Here, the state in which the front vehicle 1A disappears from the front region of the vehicle 1 corresponds to the state in which the front vehicle 1A has passed the vehicle 1 (see FIG. 8).
ステップS10の判定結果がNOである場合には、ステップS10の判定処理が再度行される。一方、ステップS10の判定結果がYESの場合、車両制御部3は、前方車1Aが前方領域から消失したことを示す消失情報を照明制御部43に送信する。その後、本処理はステップS11に進む。
If the determination result in step S10 is NO, the determination process in step S10 is performed again. On the other hand, when the determination result in step S10 is YES, the vehicle control unit 3 transmits the disappearance information indicating that the front vehicle 1A has disappeared from the front region to the lighting control unit 43. After that, this process proceeds to step S11.
次に、車両制御部3は、歩行者P等の対象物がADB用配光パターンPHの非照射領域PH2に存在するかどうかを判定する(ステップS11)。具体的には、図7に示すように、車両制御部3は、画像データ、3Dマッピングデータ及びレーダデータのうちの少なくとも一つに基づいて、歩行者Pが前方車1Aの存在によって形成された非照射領域PH2に存在するかどうかを判定する。この時点では、歩行者Pの属性情報や行動予測情報が特定されていなくてもよい。
Next, the vehicle control unit 3 determines whether or not an object such as a pedestrian P exists in the non-irradiated region PH2 of the ADB light distribution pattern PH (step S11). Specifically, as shown in FIG. 7, the vehicle control unit 3 is formed by the presence of the vehicle 1A in front of the pedestrian P based on at least one of the image data, the 3D mapping data, and the radar data. It is determined whether or not it exists in the non-irradiated region PH2. At this point, the attribute information and behavior prediction information of the pedestrian P may not be specified.
車両制御部3が前方車1Aの存在によって形成された非照射領域PH2に歩行者P等の対象物が存在しないと判定した場合では(ステップS11でNO)、照明制御部43は、前方車1Aが前方領域から消失したときから第2期間t2経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する(ステップS14)。より具体的には、最初に、照明制御部43は、非照射領域PH2に歩行者P等の対象物が存在しないことを示す情報を車両制御部3から受信する。次に、照明制御部43は、車両制御部3から消失情報を受信した時刻から第2期間t2(例えば、t2=0.5秒)が経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する。この第2期間t2は、非照射領域PH2から照射領域PH1への切替制御において従来から使用されている時間間隔であってもよい。
When the vehicle control unit 3 determines that there is no object such as a pedestrian P in the non-irradiated region PH2 formed by the presence of the front vehicle 1A (NO in step S11), the lighting control unit 43 determines that the front vehicle 1A The ADB lighting unit 46R is controlled so that the non-irradiated region PH2 switches to the irradiated region PH1 when or after the lapse of the second period t2 from the time when the pedestrian disappears from the front region (step S14). More specifically, first, the lighting control unit 43 receives information from the vehicle control unit 3 indicating that an object such as a pedestrian P does not exist in the non-irradiation region PH2. Next, in the lighting control unit 43, the non-irradiation region PH2 becomes the irradiation region PH1 when or after the second period t2 (for example, t2 = 0.5 seconds) elapses from the time when the disappearance information is received from the vehicle control unit 3. The ADB lighting unit 46R is controlled so as to switch. The second period t2 may be the time interval conventionally used in the switching control from the non-irradiated region PH2 to the irradiated region PH1.
一方、車両制御部3は、前方車1Aの存在によって形成された非照射領域PH2に歩行者P等の対象物が存在すると判定した場合には(ステップS11でYES)、ステップS12の判定処理を実行する。ステップS12では、車両制御部3は、歩行者P(対象物)の属性情報が既に特定されているかどうかを判定する。
On the other hand, when the vehicle control unit 3 determines that an object such as a pedestrian P exists in the non-irradiated region PH2 formed by the presence of the vehicle in front 1A (YES in step S11), the vehicle control unit 3 performs the determination process in step S12. Execute. In step S12, the vehicle control unit 3 determines whether or not the attribute information of the pedestrian P (object) has already been specified.
ステップS12の判定結果がYESである場合、照明制御部43は、前方車1Aが前方領域から消失したときから第2期間t2経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する(ステップS14)。
If the determination result in step S12 is YES, the lighting control unit 43 determines the ADB so that the non-irradiated region PH2 is switched to the irradiated region PH1 when or after the second period t2 has elapsed since the vehicle 1A disappeared from the front region. The lighting unit 46R is controlled (step S14).
一方、ステップS12の判定結果がNOである場合、照明制御部43は、前方車1Aが前方領域から消失したときから第1期間t1経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する(ステップS13)。
On the other hand, when the determination result in step S12 is NO, the lighting control unit 43 switches the non-irradiation region PH2 to the irradiation region PH1 when or after the first period t1 elapses from the time when the front vehicle 1A disappears from the front region. Controls the ADB lighting unit 46R (step S13).
より具体的には、最初に、照明制御部43は、非照射領域PH2に歩行者P等の対象物が存在し、且つ歩行者P(対象物)の属性情報が未だ特定されていないことを示す情報を車両制御部3から受信する。次に、照明制御部43は、車両制御部3から消失情報を受信した時刻から第1期間t1が経過した時又は後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する。
More specifically, first, the lighting control unit 43 determines that an object such as a pedestrian P exists in the non-irradiated region PH2, and the attribute information of the pedestrian P (object) has not yet been specified. The indicated information is received from the vehicle control unit 3. Next, the lighting control unit 43 controls the ADB lighting unit 46R so that the non-irradiation region PH2 switches to the irradiation region PH1 when or after the first period t1 elapses from the time when the disappearance information is received from the vehicle control unit 3. To do.
第1期間t1は、第2期間t2よりも短い期間であって(0<t1<t2)、その値は特に限定されるものではない。第1期間t1は、例えば、0.1秒であってもよい。ステップS13の処理では、ADB用照明ユニット46Rは、より短い期間で前方車1Aの存在によって形成された非照射領域PH2を照射領域PH1に切り替えることが可能となる。
The first period t1 is a period shorter than the second period t2 (0 <t1 <t2), and its value is not particularly limited. The first period t1 may be, for example, 0.1 seconds. In the process of step S13, the ADB lighting unit 46R can switch the non-irradiation region PH2 formed by the presence of the preceding vehicle 1A to the irradiation region PH1 in a shorter period of time.
本実施形態によれば、ADB用配光パターンPHの非照射領域PH2に存在する歩行者P(対象物)の属性情報(所定の情報の一例)が車両1により未だ特定されていない場合では、前方車1Aが前方領域から消失したときから第1期間t1(<t2)経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わる。一方、非照射領域PH2に対象物が存在しない場合又は対象物の属性情報が既に特定されている場合には、前方車1Aが前方領域から消失したときから第2期間t2経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わる。
According to the present embodiment, when the attribute information (an example of predetermined information) of the pedestrian P (object) existing in the non-irradiated region PH2 of the light distribution pattern PH for ADB has not yet been specified by the vehicle 1, The non-irradiated region PH2 is switched to the irradiated region PH1 when or after the first period t1 (<t2) elapses from the time when the front vehicle 1A disappears from the front region. On the other hand, when the object does not exist in the non-irradiated region PH2 or the attribute information of the object has already been specified, the vehicle 1A in front disappears from the region in front and the second period t2 elapses or does not occur. The irradiation region PH2 is switched to the irradiation region PH1.
このように、非照射領域PH2に存在する歩行者P等の対象物の属性情報が未だ特定されていない場合には、非照射領域PH2が照射領域PH1に切り替わるまでの期間が短縮される。このため、より早く対象物がADB用照明ユニット46Rからの光により照射されるので、カメラ6から取得された画像データによって対象物の属性情報を高い精度で迅速に特定することが可能となる。
As described above, when the attribute information of the object such as the pedestrian P existing in the non-irradiated region PH2 has not been specified yet, the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is shortened. Therefore, since the object is irradiated with the light from the ADB lighting unit 46R earlier, it is possible to quickly identify the attribute information of the object with high accuracy by the image data acquired from the camera 6.
この点において、対象物に光が照射されない場合には、カメラ6は対象物を明確に示す画像データを取得することができない。かかる状況では、車両制御部3は、画像データに基づいて対象物の属性情報を高い精度で特定することが困難となる。一方、本実施形態では、光が対象物により早く照射されるため、車両制御部3は、画像データに基づいて対象物の属性情報を高い精度で迅速に特定することが可能となる。
At this point, if the object is not irradiated with light, the camera 6 cannot acquire image data that clearly indicates the object. In such a situation, it becomes difficult for the vehicle control unit 3 to identify the attribute information of the object with high accuracy based on the image data. On the other hand, in the present embodiment, since the light is irradiated to the object faster, the vehicle control unit 3 can quickly identify the attribute information of the object with high accuracy based on the image data.
尚、ステップS12の処理では、歩行者P等の対象物の属性情報が既に特定されているかどうかが判定されているが、本実施形態はこれに限定されるものではない。例えば、ステップS12の処理では、対象物の行動予測情報が既に特定されているかどうかが判定されてもよい。この場合も同様に、対象物が画像データに明確に示されていない状況では、車両制御部3は、画像データに基づいて対象物の行動予測情報を高い精度で特定することが困難となる。一方、本実施形態では、光が対象物により早く照射されるため、車両制御部3は、画像データに基づいて対象物の行動予測情報を高い精度で迅速に特定することが可能となる。
In the process of step S12, it is determined whether or not the attribute information of the object such as the pedestrian P has already been specified, but the present embodiment is not limited to this. For example, in the process of step S12, it may be determined whether or not the behavior prediction information of the object has already been specified. Similarly, in this case as well, in a situation where the object is not clearly shown in the image data, it is difficult for the vehicle control unit 3 to identify the behavior prediction information of the object with high accuracy based on the image data. On the other hand, in the present embodiment, since the light is irradiated to the object faster, the vehicle control unit 3 can quickly identify the behavior prediction information of the object with high accuracy based on the image data.
(第2実施形態)
図7から図9を参照することで第2実施形態に係るADB用配光パターンPHの制御方法について以下に説明する。図9は、前方車1Aが車両1の前方領域から消失したときに非照射領域PH2を照射領域PH1に切り替える処理を説明するためのフローチャートである。尚、本実施形態でも同様に、ADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。 (Second Embodiment)
The control method of the light distribution pattern PH for ADB according to the second embodiment will be described below with reference to FIGS. 7 to 9. FIG. 9 is a flowchart for explaining a process of switching the non-irradiation region PH2 to the irradiation region PH1 when thefront vehicle 1A disappears from the front region of the vehicle 1. Similarly, in the present embodiment, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R will be described.
図7から図9を参照することで第2実施形態に係るADB用配光パターンPHの制御方法について以下に説明する。図9は、前方車1Aが車両1の前方領域から消失したときに非照射領域PH2を照射領域PH1に切り替える処理を説明するためのフローチャートである。尚、本実施形態でも同様に、ADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。 (Second Embodiment)
The control method of the light distribution pattern PH for ADB according to the second embodiment will be described below with reference to FIGS. 7 to 9. FIG. 9 is a flowchart for explaining a process of switching the non-irradiation region PH2 to the irradiation region PH1 when the
図9に示すように、ステップS20において、車両制御部3は、画像データ、3Dマッピングデータ及びレーダデータのうちの少なくとも一つに基づいて、車両1の前方領域から前方車1Aが消失したかどうかを判定する。ステップS20の判定結果がNOである場合には、ステップS20の判定処理が再度実行される。一方、ステップS20の判定結果がYESの場合、車両制御部3は、前方車1Aが前方領域から消失したことを示す消失情報を照明制御部43に送信する。その後、本処理はステップS21に進む。
As shown in FIG. 9, in step S20, the vehicle control unit 3 determines whether or not the front vehicle 1A has disappeared from the front region of the vehicle 1 based on at least one of the image data, the 3D mapping data, and the radar data. To judge. If the determination result in step S20 is NO, the determination process in step S20 is executed again. On the other hand, when the determination result in step S20 is YES, the vehicle control unit 3 transmits the disappearance information indicating that the front vehicle 1A has disappeared from the front region to the lighting control unit 43. After that, this process proceeds to step S21.
次にステップS21において、車両制御部3は、車両1の運転モードのレベルが所定のレベル以上であるかどうかを判定する。以降の説明では、車両の運転モードの各々が以下のレベルに関連付けられているものとする。つまり、車両の運転モードの自動化レベルの高度化に伴い、運転モードのレベルは高くなる。
Next, in step S21, the vehicle control unit 3 determines whether or not the level of the driving mode of the vehicle 1 is equal to or higher than a predetermined level. In the following description, it is assumed that each of the driving modes of the vehicle is associated with the following levels. That is, as the level of automation of the driving mode of the vehicle becomes higher, the level of the driving mode becomes higher.
例えば、ステップS21の処理では、車両制御部3は、車両1の運転モードのレベルがレベル3以上であるかどうかを判定してもよい。この場合、車両1の運転モードが完全自動運転モード又は高度運転支援モードである場合に、ステップS21の判定結果がYESとなる。一方、車両1の運転モードが運転支援モード又は手動運転モードである場合に、ステップS21の判定結果がNOとなる。また、ステップS21の処理において、車両1の運転モードのレベルがレベルN以上(2≦N≦4)であるかどうかが判定されてもよい。
For example, in the process of step S21, the vehicle control unit 3 may determine whether or not the level of the driving mode of the vehicle 1 is level 3 or higher. In this case, the determination result in step S21 is YES when the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode. On the other hand, when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode, the determination result in step S21 is NO. Further, in the process of step S21, it may be determined whether or not the level of the driving mode of the vehicle 1 is level N or higher (2 ≦ N ≦ 4).
次に、ステップS21の判定結果がNOである場合に、照明制御部43は、前方車1Aが前方領域から消失したときから第2期間t2(例えば、t2=0.5秒)経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する(ステップS23)。より具体的には、照明制御部43は、車両1の運転モードのレベルが所定のレベル以上ではないことを示す情報を車両制御部3から受信した上で、車両制御部3から消失情報を受信した時刻から第2期間t2が経過した時又は後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する。
Next, when the determination result in step S21 is NO, the lighting control unit 43 has passed or has passed the second period t2 (for example, t2 = 0.5 seconds) from the time when the vehicle 1A in front disappeared from the front region. The ADB lighting unit 46R is controlled so that the non-irradiated region PH2 is later switched to the irradiated region PH1 (step S23). More specifically, the lighting control unit 43 receives information from the vehicle control unit 3 indicating that the level of the driving mode of the vehicle 1 is not equal to or higher than a predetermined level, and then receives the disappearance information from the vehicle control unit 3. The ADB lighting unit 46R is controlled so that the non-irradiation region PH2 is switched to the irradiation region PH1 when or after the second period t2 elapses from the time.
一方で、ステップS21の判定結果がYESである場合に、照明制御部43は、前方車1Aが前方領域から消失したときから第1期間t1経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する(ステップS22)。より具体的には、照明制御部43は、車両1の運転モードのレベルが所定のレベル以上であることを示す情報を車両制御部3から受信した上で、車両制御部3から消失情報を受信した時刻から第1期間t1が経過した時又は後に非照射領域PH2が照射領域PH1に切り替わるようにADB用照明ユニット46Rを制御する。
On the other hand, when the determination result in step S21 is YES, the lighting control unit 43 shifts the non-irradiated region PH2 to the irradiated region PH1 when or after the first period t1 has elapsed since the vehicle 1A disappeared from the front region. The ADB lighting unit 46R is controlled so as to switch (step S22). More specifically, the lighting control unit 43 receives information indicating that the driving mode level of the vehicle 1 is equal to or higher than a predetermined level from the vehicle control unit 3, and then receives the disappearance information from the vehicle control unit 3. The ADB lighting unit 46R is controlled so that the non-irradiation region PH2 is switched to the irradiation region PH1 when or after the first period t1 elapses from the time.
本実施形態によれば、車両1の運転モードに応じて、前方車1Aが前方領域から消失したときから非照射領域PH2が照射領域PH1に切り替わるまでの期間が短縮される。このため、より早く非照射領域PH2に存在する歩行者P等の対象物がADB用照明ユニット46Rからの光により照射されるので、カメラ6から取得された画像データによって対象物に関連する情報(対象物の属性情報及び/又は行動予測情報)を高い精度で迅速に特定することが可能となる。
According to the present embodiment, the period from when the front vehicle 1A disappears from the front region to when the non-irradiation region PH2 is switched to the irradiation region PH1 is shortened according to the driving mode of the vehicle 1. Therefore, since the object such as the pedestrian P existing in the non-irradiation region PH2 is irradiated with the light from the ADB lighting unit 46R earlier, the information related to the object (information related to the object) by the image data acquired from the camera 6 ( It is possible to quickly identify the attribute information and / or the behavior prediction information of the object with high accuracy.
特に、ステップS21において、車両1の運転モードのレベルがレベル3以上であるかどうかが判定される場合を想定する。この場合、車両1が完全自動運転モード又は高度運転支援モードで走行中の場合には(つまり、車両1の走行が車両制御部3によって制御される場合には)、前方車1Aが前方領域から消失したときから第1期間t1経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わる。一方、車両1が運転支援モード又は手動運転モードで走行中の場合には(つまり、車両1の走行が主に運転者により制御される場合には)、前方車1Aが前方領域から消失したときから第2期間t2経過時又は経過後に非照射領域PH2が照射領域PH1に切り替わる。
In particular, it is assumed in step S21 that it is determined whether or not the level of the driving mode of the vehicle 1 is level 3 or higher. In this case, when the vehicle 1 is traveling in the fully automatic driving mode or the advanced driving support mode (that is, when the traveling of the vehicle 1 is controlled by the vehicle control unit 3), the vehicle 1A in front is from the front region. The non-irradiated region PH2 is switched to the irradiated region PH1 when or after the first period t1 elapses from the time of disappearance. On the other hand, when the vehicle 1 is traveling in the driving support mode or the manual driving mode (that is, when the driving of the vehicle 1 is mainly controlled by the driver), when the vehicle 1A in front disappears from the front region. The non-irradiated region PH2 is switched to the irradiated region PH1 when or after the second period t2 elapses.
このように、車両1の走行が車両制御部3により制御される場合には、カメラ6からの画像データから対象物に関連する情報を高い精度で迅速に特定する必要がある。このため、本実施形態では、非照射領域PH2が照射領域PH1に切り替わるまでの期間が短縮されることで、対象物を明確に示す画像データが迅速に取得され、対象物に関連する情報を迅速に特定されうる。一方で、車両1の走行が主に運転者により制御される場合には、車両1の運転者に与える違和感を軽減するために、非照射領域PH2が照射領域PH1に切り替わるまでの期間は短縮されない。
In this way, when the traveling of the vehicle 1 is controlled by the vehicle control unit 3, it is necessary to quickly identify the information related to the object from the image data from the camera 6. Therefore, in the present embodiment, the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is shortened, so that the image data clearly showing the object is quickly acquired and the information related to the object is quickly obtained. Can be specified in. On the other hand, when the traveling of the vehicle 1 is mainly controlled by the driver, the period until the non-irradiated region PH2 is switched to the irradiated region PH1 is not shortened in order to reduce the discomfort given to the driver of the vehicle 1. ..
(第3実施形態)
次に、図10から図13を参照することで、第3実施形態に係るADB用配光パターンの非照射領域の角度幅を決定する処理について以下に説明する。図10は、第3実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図11は、自車両1と前方車1Bを示す図である。図12は、非照射領域PH2の角度幅WがW1である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。図13は、非照射領域PH2の角度幅WがW2(>W1)である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Third Embodiment)
Next, with reference to FIGS. 10 to 13, a process for determining the angle width of the non-irradiated region of the ADB light distribution pattern according to the third embodiment will be described below. FIG. 10 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the third embodiment. FIG. 11 is a diagram showing theown vehicle 1 and the vehicle in front 1B. FIG. 12 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W1. FIG. 13 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W2 (> W1).
次に、図10から図13を参照することで、第3実施形態に係るADB用配光パターンの非照射領域の角度幅を決定する処理について以下に説明する。図10は、第3実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図11は、自車両1と前方車1Bを示す図である。図12は、非照射領域PH2の角度幅WがW1である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。図13は、非照射領域PH2の角度幅WがW2(>W1)である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Third Embodiment)
Next, with reference to FIGS. 10 to 13, a process for determining the angle width of the non-irradiated region of the ADB light distribution pattern according to the third embodiment will be described below. FIG. 10 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the third embodiment. FIG. 11 is a diagram showing the
尚、本実施形態では、説明の便宜上、右側ヘッドランプ40Rに設けられたADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。特に、ADB用照明ユニット46Lを用いたADB用配光パターンの生成手法は、ADB用照明ユニット46Rを用いたADB用配光パターンPHの生成手法と原理的に特に相違がないため、本実施形態では特に説明されない。換言すれば、ADB用照明ユニット46Lの制御方法は、ADB用照明ユニット46Rの制御方法と相違がないため、本実施形態では特に説明されない。
In this embodiment, for convenience of explanation, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R provided on the right headlamp 40R will be described. In particular, the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular. In other words, the control method of the ADB lighting unit 46L is not particularly described in the present embodiment because it is not different from the control method of the ADB lighting unit 46R.
図10に示すように、ステップS31において、カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信する。ここで、画像データは、前方車1Bを示す。また、「前方車」とは、対向車又は先行車である。次に、ステップS32において、車両制御部3(第1角度位置決定部)は、送信された画像データに基づいて、カメラ6の中心軸Cxに対する前方車1Bの現在の角度位置φnを決定する(図11参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Bの現在の左端角度位置φl_nと、中心軸Cxに対する前方車1Bの現在の右端角度位置φr_nを決定する。ここで、中心軸Cxに対する前方車1Bの角度位置は、水平方向における角度位置であって、上下方向(垂直方向)における角度位置ではない。
As shown in FIG. 10, in step S31, the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3. Here, the image data shows the vehicle in front 1B. The "forward vehicle" is an oncoming vehicle or a preceding vehicle. Next, in step S32, the vehicle control unit 3 (first angle position determination unit) determines the current angle position φ n of the vehicle in front 1B with respect to the central axis Cx of the camera 6 based on the transmitted image data. (See FIG. 11). Specifically, the vehicle control unit 3 determines the current left end angle position φ l_n of the front vehicle 1B with respect to the central axis Cx and the current right end angle position φ r_n of the front vehicle 1B with respect to the central axis Cx. Here, the angular position of the front vehicle 1B with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
次に、車両制御部3(第2角度位置決定部)は、カメラ6の中心軸Cxに対する前方車1Bの現在の角度位置φnに基づいて、ADB用照明ユニット46Rの光軸Axに対する前方車1Bの現在の角度位置θnを決定する(図11参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Bの現在の左端角度位置φl_nに基づいて、光軸Axに対する前方車1Bの現在の左端角度位置θl_nを決定する。さらに、車両制御部3は、中心軸Cxに対する前方車1Bの現在の右端角度位置φr_nに基づいて、光軸Axに対する前方車1Bの現在の右端角度位置θr_nを決定する。ここで、光軸Axに対する前方車1Bの角度位置は、水平方向における角度位置であって、上下方向における角度位置ではない。また、カメラ6とADB用照明ユニット46Rとの間の相対的位置関係に関する情報が車両制御部3のメモリに蓄積されているものとする。
Next, the vehicle control unit 3 (second angle position determination unit) is a vehicle ahead of the optical axis Ax of the ADB lighting unit 46R based on the current angle position φ n of the vehicle 1B ahead with respect to the central axis Cx of the camera 6. The current angular position θ n of 1B is determined (see FIG. 11). Specifically, the vehicle control unit 3 determines the current left end angle position θ l_n of the front vehicle 1B with respect to the optical axis Ax based on the current left end angle position φ l_n of the front vehicle 1B with respect to the central axis Cx. Further, the vehicle control unit 3 determines the current right end angle position θ r_n of the front vehicle 1B with respect to the optical axis Ax based on the current right end angle position φ r_n of the front vehicle 1B with respect to the central axis Cx. Here, the angular position of the front vehicle 1B with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction. Further, it is assumed that the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
次に、ステップS33において、車両制御部3又は照明制御部43は、前方車1Bの現在の角度位置θnと前方車1Bの前回の角度位置θn-1との間の差分Dを演算する。具体的には、車両制御部3又は照明制御部43は、前方車1Bの現在の左端角度位置θl_nと前方車1Bの前回の左端角度位置θl_n-1との間の差分D=|θl_n-θl_n-1|を演算してもよい。また、車両制御部3又は照明制御部43は、前方車1Bの現在の右端角度位置θr_nと前方車1Bの前回の右端角度位置θr_n-1との間の差分D=|θr_n-θr_n-1|を演算してもよい。
Next, in step S33, the vehicle control unit 3 or the lighting control unit 43 calculates the difference D between the current angle position θ n of the front vehicle 1B and the previous angle position θ n-1 of the front vehicle 1B. .. Specifically, the vehicle control unit 3 or the lighting control unit 43 has a difference D = | θ between the current left end angle position θ l_n of the front vehicle 1B and the previous left end angle position θ l_n-1 of the front vehicle 1B. l_n −θ l_n-1 | may be calculated. Further, the vehicle control unit 3 or the lighting control unit 43 has a difference D = | θ r_n −θ between the current right end angle position θ r_n of the front vehicle 1B and the previous right end angle position θ r_n-1 of the front vehicle 1B. You may calculate r_n-1 |.
次に、ステップS34において、照明制御部43は、演算された差分Dが所定の閾値Dthよりも大きいかどうかを判定する。ここで、所定の閾値Dthに関する情報は、照明制御部43のメモリ上に記憶されている。所定の閾値Dthは、固定値であってもよいし、車両1の走行状態又は周辺環境等に応じて変化してもよい。
Next, in step S34, the lighting control unit 43 determines whether or not the calculated difference D is larger than the predetermined threshold value Dth. Here, the information regarding the predetermined threshold value Dth is stored in the memory of the lighting control unit 43. The predetermined threshold value Dth may be a fixed value, or may be changed according to the running state of the vehicle 1, the surrounding environment, and the like.
照明制御部43は、演算された差分Dが所定の閾値Dthよりも大きいと判定した場合に(ステップS34でYES)、非照射領域PH2の角度幅Wを第1の角度幅W1に設定する(ステップS35)。具体的には、図12に示すように、照明制御部43は、前方車1Bの左端角度位置θl_nと非照射領域PH2の左端境界Elとの間のマージンをα1に設定すると共に、前方車1Bの右端角度位置θr_nと非照射領域PH2の右端境界Erとの間のマージンをα1に設定する。ここで、マージンα1は、α1>0となる。このように、照明制御部43は、非照射領域PH2の角度幅Wを以下式(2)に示す第1の角度幅W1に設定する。ここで、非照射領域PH2の角度範囲は、θl_n-α1≦θ≦θr_n+α1となる。
W1=2α1+(θr_n-θl_n)・・・(2)
When theillumination control unit 43 determines that the calculated difference D is larger than the predetermined threshold value Dth (YES in step S34), the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W1 (YES in step S34). Step S35). Specifically, as shown in FIG. 12, the lighting control unit 43 sets the margin between the left end angular position θ l_n of the front vehicle 1B and the left end boundary El of the non-irradiated region PH2 to α 1, and sets the margin to α 1 and moves forward. The margin between the right end angular position θ r_n of the vehicle 1B and the right end boundary Er of the non-irradiated region PH2 is set to α 1 . Here, the margin α 1 is α 1 > 0. In this way, the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W1 represented by the following equation (2). Here, the angle range of the non-irradiated region PH2 is θ l_n −α 1 ≦ θ ≦ θ r_n + α 1 .
W1 = 2α 1 + (θ r_n -θ l_n ) ・ ・ ・ (2)
W1=2α1+(θr_n-θl_n)・・・(2)
When the
W1 = 2α 1 + (θ r_n -θ l_n ) ・ ・ ・ (2)
一方、照明制御部43は、演算された差分Dが所定の閾値Dth以下であると判定した場合に(ステップS34でNO)、非照射領域PHの角度幅Wを第1の角度幅W1よりも小さい第2の角度幅W2に設定する(ステップS36)。具体的には、図13に示すように、照明制御部43は、前方車1Bの左端角度位置θl_nと非照射領域PH2の左端境界Elとの間のマージンをα2に設定すると共に、前方車1Bの右端角度位置θr_nと非照射領域PH2の右端境界Erとの間のマージンをα2に設定する。ここで、マージンα2は、マージンα1よりも小さい(0≦α2<α1)。このように、照明制御部43は、非照射領域PH2の角度幅Wを以下式(3)に示す第2の角度幅W2(<W1)に設定する。ここで、非照射領域PH2の角度範囲は、θl_n-α2≦θ≦θr_n+α2となる。
W2=2α2+(θr_n-θl_n)・・・(3)
On the other hand, when theillumination control unit 43 determines that the calculated difference D is equal to or less than the predetermined threshold value Dth (NO in step S34), the angle width W of the non-irradiation region PH is set to be larger than the first angle width W1. It is set to a small second angle width W2 (step S36). Specifically, as shown in FIG. 13, the lighting control unit 43 sets the margin between the left end angular position θ l_n of the front vehicle 1B and the left end boundary El of the non-irradiated region PH2 to α 2, and sets the margin to α 2 and moves forward. The margin between the rightmost angular position θ r_n of the vehicle 1B and the rightmost boundary Er of the non-irradiated region PH2 is set to α 2 . Here, the margin α 2 is smaller than the margin α 1 (0 ≦ α 2 <α 1 ). In this way, the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W2 (<W1) represented by the following equation (3). Here, the angle range of the non-irradiated region PH2 is θ l_n −α 2 ≦ θ ≦ θ r_n + α 2 .
W2 = 2α 2 + (θ r_n -θ l_n ) ・ ・ ・ (3)
W2=2α2+(θr_n-θl_n)・・・(3)
On the other hand, when the
W2 = 2α 2 + (θ r_n -θ l_n ) ・ ・ ・ (3)
このように、非照射領域PH2の角度幅WがステップS35又はステップS36の処理で設定された後に、照明制御部43は、照射領域PH1と非照射領域PH2とを有するADB用配光パターンPHを決定する。その後、照明制御部43は、ADB用配光パターンPHが車両1の前方に出射されるようにADB用照明ユニット46Rを制御する(ステップS37)。このように、ステップS31からS37の処理が繰り返し実行される。
In this way, after the angle width W of the non-irradiated region PH2 is set in the process of step S35 or step S36, the illumination control unit 43 sets the ADB light distribution pattern PH having the irradiated region PH1 and the non-irradiated region PH2. decide. After that, the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted in front of the vehicle 1 (step S37). In this way, the processes of steps S31 to S37 are repeatedly executed.
本実施形態によれば、車両1に対する前方車1Bの角度位置θの変動に相当する前方車1Bの現在の角度位置θnと前回の角度位置θn-1との間の差分Dに応じて、ADB用配光パターンPHの非照射領域PH2の角度幅Wが変更される。特に、差分Dが所定の閾値Dthよりも大きい場合に、非照射領域PH2の角度幅Wが第1の角度幅W1に設定される。一方、差分Dが所定の閾値Dth以下である場合に、非照射領域PH2の角度幅Wが第1の角度幅W1よりも小さい第2の角度幅W2に設定される。このように、自車両1の乗員(例えば、運転者)の周辺環境に対する視認性を確保しつつ、前方車1Bの一部がADB用照明ユニット46Rからの光により照射されてしまう状況を可能な限り回避することができる。
According to the present embodiment, according to the difference D between the current angle position θ n of the front vehicle 1B and the previous angle position θ n-1 , which corresponds to the fluctuation of the angle position θ of the front vehicle 1B with respect to the vehicle 1. , The angle width W of the non-irradiated region PH2 of the light distribution pattern PH for ADB is changed. In particular, when the difference D is larger than the predetermined threshold value Dth, the angle width W of the non-irradiated region PH2 is set to the first angle width W1. On the other hand, when the difference D is equal to or less than a predetermined threshold value Dth, the angle width W of the non-irradiated region PH2 is set to the second angle width W2 which is smaller than the first angle width W1. In this way, it is possible to ensure visibility of the surrounding environment of the occupant (for example, the driver) of the own vehicle 1 and to irradiate a part of the front vehicle 1B with the light from the ADB lighting unit 46R. It can be avoided as long as possible.
この点において、前方車1BがADB用配光パターンPHの照射領域PH1の一部と重なる場合には、車両制御部3は、照射領域PH1の一部に重なる前方車1Bを示す画像データから前方車1Bの属性(即ち、対象物の種類)を正確に判別することができない虞がある。この理由としては、対象物の属性を判別するための学習済みモデルでは、照射領域PH1の一部に重なった対象物の属性を正確に判別することができない虞があるためである。
In this respect, when the front vehicle 1B overlaps a part of the irradiation region PH1 of the ADB light distribution pattern PH, the vehicle control unit 3 is ahead from the image data showing the front vehicle 1B overlapping a part of the irradiation region PH1. There is a risk that the attributes of vehicle 1B (that is, the type of object) cannot be accurately determined. The reason for this is that the trained model for discriminating the attributes of the object may not be able to accurately discriminate the attributes of the object that overlaps a part of the irradiation region PH1.
このため、本実施形態では、車両制御部3が前方車1B等の対象物の属性を正確に判別することができるように、前方車1Bの一部がADB用照明ユニット46Rからの光により照射される状況が可能な限り回避されうる。さらに、前方車1Bの一部がADB用照明ユニット46Rからの光により照射される状況を回避するために、非照射領域PH2の角度幅Wが車両1に対する前方車1Bの角度位置の変動に応じて最適化されている。
Therefore, in the present embodiment, a part of the front vehicle 1B is illuminated by the light from the ADB lighting unit 46R so that the vehicle control unit 3 can accurately determine the attributes of the object such as the front vehicle 1B. The situation to be done can be avoided as much as possible. Further, in order to avoid the situation where a part of the front vehicle 1B is irradiated by the light from the ADB lighting unit 46R, the angle width W of the non-irradiation region PH2 responds to the change in the angular position of the front vehicle 1B with respect to the vehicle 1. Optimized.
(第4実施形態)
次に、図14を主に参照することで、第4実施形態に係るADB用配光パターンの非照射領域PH2の角度幅Wを決定する処理について以下に説明する。図14は、第4実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。尚、以下の説明では、図12,図13に示されたADB用配光パターンPHについて適宜言及する。 (Fourth Embodiment)
Next, the process of determining the angle width W of the non-irradiated region PH2 of the light distribution pattern for ADB according to the fourth embodiment will be described below mainly by referring to FIG. FIG. 14 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fourth embodiment. In the following description, the light distribution pattern PH for ADB shown in FIGS. 12 and 13 will be appropriately referred to.
次に、図14を主に参照することで、第4実施形態に係るADB用配光パターンの非照射領域PH2の角度幅Wを決定する処理について以下に説明する。図14は、第4実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。尚、以下の説明では、図12,図13に示されたADB用配光パターンPHについて適宜言及する。 (Fourth Embodiment)
Next, the process of determining the angle width W of the non-irradiated region PH2 of the light distribution pattern for ADB according to the fourth embodiment will be described below mainly by referring to FIG. FIG. 14 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fourth embodiment. In the following description, the light distribution pattern PH for ADB shown in FIGS. 12 and 13 will be appropriately referred to.
図14に示すように、ステップS40において、カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信する。次に、ステップS41において、車両制御部3は、ADB用照明ユニット46Rの光軸Axに対する前方車1Bの現在の角度位置θn(特に、現在の左端角度位置θl_nと現在の右端角度位置θr_n)を決定する。
As shown in FIG. 14, in step S40, the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3. Next, in step S41, the vehicle control unit 3 determines the current angle position θ n of the vehicle in front 1B with respect to the optical axis Ax of the ADB lighting unit 46R (particularly, the current left end angle position θ l_n and the current right end angle position θ). r_n ) is determined.
次に、ステップS42において、車両制御部3又は照明制御部43は、光軸Axに対する前方車1Bの平均角度位置θAVRを演算する。この点において、車両制御部3又は照明制御部43は、光軸Axに対する前方車1Bの前回の角度位置θn-1からN回前(Nは2以上の整数)の角度位置θn-Nまでの間の平均角度位置θAVRを演算する。より具体的には、車両制御部3又は照明制御部43は、前方車1Bの前回の左端角度位置θl_n-1からN回前の左端角度位置θl_n-Nまでの左端平均角度位置θl_AVRを演算する。また、車両制御部3又は照明制御部43は、前方車1Bの前回の右端角度位置θr_n-1からN回前の右端角度位置θr_n-Nまでの右端平均角度位置θr_AVRを演算する。
Next, in step S42, the vehicle control unit 3 or the lighting control unit 43 calculates the average angle position θ AVR of the vehicle in front 1B with respect to the optical axis Ax. In this regard, the vehicle control unit 3 or the illumination control unit 43, from the previous angular position theta n-1 of the preceding vehicle 1B with respect to the optical axis Ax N times before (N is an integer of 2 or more) angular position theta n-N of Calculate the average angle position θ AVR between. More specifically, the vehicle control unit 3 or the illumination control unit 43, the left end mean angular position from the previous leftmost angular position theta L_n-1 of the preceding vehicle 1B to N times before the left end angular position θ l_n-N θ l_AVR Is calculated. The vehicle control unit 3 or the illumination control unit 43 calculates the right edge average angular position theta R_AVR from the previous rightmost angular position theta r_n-1 of the preceding vehicle 1B to N times before the right end angular position theta r_n-N.
次に、ステップS43において、車両制御部3又は照明制御部43は、前方車1Bの現在の角度位置θnと演算された平均角度位置θAVRとの間の差分Dを演算する。具体的には、車両制御部3又は照明制御部43は、前方車1Bの現在の左端角度位置θl_nと前方車1Bの左端平均角度位置θl_AVRとの間の差分D=|θl_n-θl_AVR|を演算してもよい。また、車両制御部3又は照明制御部43は、前方車1Bの現在の右端角度位置θr_nと前方車1Bの右端平均角度位置θr_AVRとの間の差分D=|θr_n-θr_AVR|を演算してもよい。
Next, in step S43, the vehicle control unit 3 or the lighting control unit 43 calculates the difference D between the current angle position θ n of the vehicle in front 1B and the calculated average angle position θ AVR . Specifically, the vehicle control unit 3 or the lighting control unit 43 has a difference D = | θ l_n −θ between the current left end angle position θ l_n of the front vehicle 1B and the left end average angle position θ l_AVR of the front vehicle 1B. You may calculate l_AVR |. Further, the vehicle control unit 3 or the lighting control unit 43 sets a difference D = | θ r_n −θ r_AVR | between the current right end angle position θ r_n of the front vehicle 1B and the right end average angle position θ r_AVR of the front vehicle 1B. You may calculate.
次に、ステップS44において、照明制御部43は、演算された差分Dが所定の閾値Dthよりも大きいかどうかを判定する。照明制御部43は、演算された差分Dが所定の閾値Dthよりも大きいと判定した場合に(ステップS44でYES)、図12に示すように、非照射領域PH2の角度幅Wを第1の角度幅W1に設定する(ステップS45)。一方、照明制御部43は、演算された差分Dが所定の閾値Dth以下であると判定した場合に(ステップS44でNO)、図13に示すように、非照射領域PHの角度幅Wを第1の角度幅W1よりも小さい第2の角度幅W2に設定する(ステップS46)。次に、照明制御部43は、照射領域PH1と非照射領域PH2とを有するADB用配光パターンPHを決定した後に、ADB用配光パターンPHが車両1の前方に出射されるようにADB用照明ユニット46Rを制御する(ステップS47)。
Next, in step S44, the lighting control unit 43 determines whether or not the calculated difference D is larger than the predetermined threshold value Dth. When the illumination control unit 43 determines that the calculated difference D is larger than the predetermined threshold value Dth (YES in step S44), the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first as shown in FIG. The angle width is set to W1 (step S45). On the other hand, when the illumination control unit 43 determines that the calculated difference D is equal to or less than the predetermined threshold value Dth (NO in step S44), the illumination control unit 43 sets the angle width W of the non-irradiation region PH as shown in FIG. The second angle width W2, which is smaller than the angle width W1 of 1, is set (step S46). Next, the illumination control unit 43 determines the ADB light distribution pattern PH having the irradiation region PH1 and the non-irradiation region PH2, and then the ADB light distribution pattern PH is emitted to the front of the vehicle 1 for ADB. The lighting unit 46R is controlled (step S47).
本実施形態によれば、車両1に対する前方車1Bの角度位置θの変動に相当する前方車1Bの現在の角度位置θnと平均角度位置θAVRとの間の差分Dに応じて、ADB用配光パターンPHの非照射領域PH2の角度幅Wが変更される。特に、差分Dが所定の閾値Dthよりも大きい場合に、非照射領域PH2の角度幅Wが第1の角度幅W1に設定される。一方、差分Dが所定の閾値Dth以下である場合に、非照射領域PH2の角度幅Wが第1の角度幅W1よりも小さい第2の角度幅W2に設定される。このように、自車両1の乗員(例えば、運転者)の周辺環境に対する視認性を確保しつつ、前方車1Bの一部がADB用照明ユニット46Rからの光により照射されてしまう状況を可能な限り回避することができる。
According to the present embodiment, for ADB according to the difference D between the current angle position θ n of the front vehicle 1B and the average angle position θ AVR corresponding to the fluctuation of the angle position θ of the front vehicle 1B with respect to the vehicle 1. The angle width W of the non-irradiated region PH2 of the light distribution pattern PH is changed. In particular, when the difference D is larger than the predetermined threshold value Dth, the angle width W of the non-irradiated region PH2 is set to the first angle width W1. On the other hand, when the difference D is equal to or less than a predetermined threshold value Dth, the angle width W of the non-irradiated region PH2 is set to the second angle width W2 which is smaller than the first angle width W1. In this way, it is possible to ensure visibility of the surrounding environment of the occupant (for example, the driver) of the own vehicle 1 and to irradiate a part of the front vehicle 1B with the light from the ADB lighting unit 46R. It can be avoided as long as possible.
(第5実施形態)
次に、図15及び図16を主に参照することで、第5実施形態に係るADB用配光パターンの非照射領域PH2の角度幅Wを決定する処理について以下に説明する。図15は、第5実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図16は、非照射領域PH2の角度幅WがW3である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Fifth Embodiment)
Next, the process of determining the angle width W of the non-irradiated region PH2 of the light distribution pattern for ADB according to the fifth embodiment will be described below mainly by referring to FIGS. 15 and 16. FIG. 15 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fifth embodiment. FIG. 16 is a diagram showing a light distribution pattern PH for ADB formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W3.
次に、図15及び図16を主に参照することで、第5実施形態に係るADB用配光パターンの非照射領域PH2の角度幅Wを決定する処理について以下に説明する。図15は、第5実施形態に係るADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図16は、非照射領域PH2の角度幅WがW3である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Fifth Embodiment)
Next, the process of determining the angle width W of the non-irradiated region PH2 of the light distribution pattern for ADB according to the fifth embodiment will be described below mainly by referring to FIGS. 15 and 16. FIG. 15 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the fifth embodiment. FIG. 16 is a diagram showing a light distribution pattern PH for ADB formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is W3.
図15に示すように、ステップS50において、カメラ6は車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信する。次に、ステップS51において、車両制御部3は、ADB用照明ユニット46Rの光軸Axに対する前方車1Bの現在の角度位置θn(特に、現在の左端角度位置θl_nと現在の右端角度位置θr_n)を決定する。
As shown in FIG. 15, in step S50, the camera 6 acquires image data indicating the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3. Next, in step S51, the vehicle control unit 3 determines the current angle position θ n of the vehicle in front 1B with respect to the optical axis Ax of the ADB lighting unit 46R (particularly, the current left end angle position θ l_n and the current right end angle position θ). r_n ) is determined.
次に、ステップS52において、車両制御部3又は照明制御部43は、光軸Axに対する前方車1Bの平均角度位置θAVRを演算する。この点において、車両制御部3又は照明制御部43は、光軸Axに対する前方車1Bの現在の角度位置θnからM回前(Mは1以上の整数)の角度位置θn-Mまでの間の平均角度位置θAVRを演算する。より具体的には、車両制御部3又は照明制御部43は、前方車1Bの現在の左端角度位置θl_nからM回前の左端角度位置θl_n-Mまでの左端平均角度位置θl_AVRを演算する。また、車両制御部3又は照明制御部43は、前方車1Bの現在の右端角度位置θr_nからM回前の右端角度位置θr_n-Mまでの右端平均角度位置θr_AVRを演算する。
Next, in step S52, the vehicle control unit 3 or the lighting control unit 43 calculates the average angle position θ AVR of the vehicle in front 1B with respect to the optical axis Ax. In this regard, the vehicle control unit 3 or the illumination control unit 43, the current front wheel 1B with respect to the optical axis Ax angular position M times ago theta n (M is an integer of 1 or more) to the angular position theta n-M in Calculate the average angle position θ AVR between. More specifically, the vehicle control unit 3 or the lighting control unit 43 calculates the left end average angle position θ l_AVR from the current left end angle position θ l_n of the vehicle 1B ahead to the left end angle position θ l_n−M M times before. To do. Further, the vehicle control unit 3 or the lighting control unit 43 calculates the right end average angle position θ r_AVR from the current right end angle position θ r_n of the front vehicle 1B to the right end angle position θ r_n−M M times before.
次に、ステップS53において、照明制御部43は、前方車1Bの平均角度位置θAVRに基づいて非照射領域PH2の角度幅Wを決定する。具体的には、照明制御部43は、図16に示すように、非照射領域の角度幅Wを以下式(4)に示す第3の角度幅W3に設定する。ここで、非照射領域PH2の左端境界Elと左端平均角度位置θl_AVRとの間の距離がマージンα3として設定されると共に、非照射領域PH2の右端境界Erと右端平均角度位置θr_AVRとの間の距離がマージンα3として設定される。マージンα3は、0以上である。また、非照射領域PH2の角度範囲は、θl_AVR-α3≦θ≦θr_AVR+α3となる。
W3=2α3+(θr_AVR-θl_AVR)・・・(4)
Next, in step S53, thelighting control unit 43 determines the angle width W of the non-irradiation region PH2 based on the average angle position θ AVR of the vehicle in front 1B. Specifically, as shown in FIG. 16, the illumination control unit 43 sets the angle width W of the non-irradiated region to the third angle width W3 represented by the following equation (4). Here, the distance between the left end boundary El of the non-irradiated region PH2 and the left end average angle position θ l_AVR is set as the margin α 3 , and the right end boundary Er and the right end average angle position θ r_AVR of the non-irradiated region PH2 The distance between them is set as the margin α 3 . The margin α 3 is 0 or more. Further, the angular range of the non-irradiated region PH2 is θ l_AVR −α 3 ≦ θ ≦ θ r_AVR + α 3 .
W3 = 2α 3 + (θ r_AVR −θ l_AVR ) ・ ・ ・ (4)
W3=2α3+(θr_AVR-θl_AVR)・・・(4)
Next, in step S53, the
W3 = 2α 3 + (θ r_AVR −θ l_AVR ) ・ ・ ・ (4)
次に、照明制御部43は、照射領域PH1と非照射領域PH2とを有するADB用配光パターンPHを決定した後に、照明制御部43は、ADB用配光パターンPHが車両1の前方に出射されるようにADB用照明ユニット46Rを制御する(ステップS54)。
Next, after the lighting control unit 43 determines the ADB light distribution pattern PH having the irradiation region PH1 and the non-irradiation region PH2, the lighting control unit 43 emits the ADB light distribution pattern PH to the front of the vehicle 1. The ADB lighting unit 46R is controlled so as to be performed (step S54).
本実施形態によれば、前方車1Bの平均角度位置θAVRに基づいてADB用配光パターンの非照射領域PH2の角度幅W3が決定される。このように、前方車1Bの角度位置の変動を考慮した上で、ADB用配光パターンPHの非照射領域PH2の角度幅Wを最適化することができる。したがって、自車両1の乗員の周辺環境に対する視認性を低下させずに、前方車1Bの一部がADB用照明ユニット46Rからの光により照射されてしまう状況を可能な限り回避することができる。
According to the present embodiment, the angle width W3 of the non-irradiated region PH2 of the light distribution pattern for ADB is determined based on the average angle position θ AVR of the preceding vehicle 1B. In this way, the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH can be optimized in consideration of the fluctuation of the angular position of the vehicle 1B in front. Therefore, it is possible to avoid a situation in which a part of the front vehicle 1B is irradiated by the light from the ADB lighting unit 46R without deteriorating the visibility of the occupant of the own vehicle 1 to the surrounding environment as much as possible.
(第6実施形態)
次に、図17から図20を参照することで、車両1の運転モードに応じてADB用配光パターンの非照射領域の角度幅を決定する処理について以下に説明する。図17は、車両1の運転モードに応じてADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図18は、自車両1と前方車1Cを示す図である。図19は、非照射領域PH2の角度幅Wが第1の角度幅W4である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。図20は、非照射領域PH2の角度幅Wが第2の角度幅W5(<W4)である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Sixth Embodiment)
Next, with reference to FIGS. 17 to 20, a process of determining the angle width of the non-irradiated region of the ADB light distribution pattern according to the driving mode of thevehicle 1 will be described below. FIG. 17 is a flowchart for explaining a process of determining the angle width W of the non-irradiated region PH2 of the ADB light distribution pattern PH according to the driving mode of the vehicle 1. FIG. 18 is a diagram showing the own vehicle 1 and the vehicle in front 1C. FIG. 19 is a diagram showing a light distribution pattern PH for ADB formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is the first angle width W4. FIG. 20 is a diagram showing an ADB light distribution pattern PH formed on a virtual vertical screen when the angle width W of the non-irradiated region PH2 is the second angle width W5 (<W4).
次に、図17から図20を参照することで、車両1の運転モードに応じてADB用配光パターンの非照射領域の角度幅を決定する処理について以下に説明する。図17は、車両1の運転モードに応じてADB用配光パターンPHの非照射領域PH2の角度幅Wを決定する処理を説明するためのフローチャートである。図18は、自車両1と前方車1Cを示す図である。図19は、非照射領域PH2の角度幅Wが第1の角度幅W4である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。図20は、非照射領域PH2の角度幅Wが第2の角度幅W5(<W4)である場合の仮想鉛直スクリーン上に形成されたADB用配光パターンPHを示す図である。 (Sixth Embodiment)
Next, with reference to FIGS. 17 to 20, a process of determining the angle width of the non-irradiated region of the ADB light distribution pattern according to the driving mode of the
尚、本実施形態では、説明の便宜上、右側ヘッドランプ40Rに設けられたADB用照明ユニット46Rによって形成されたADB用配光パターンPHについてのみ説明を行う。特に、ADB用照明ユニット46Lを用いたADB用配光パターンの生成手法は、ADB用照明ユニット46Rを用いたADB用配光パターンPHの生成手法と原理的に特に相違がないため、本実施形態では特に説明されない。換言すれば、ADB用照明ユニット46Lの制御方法は、ADB用照明ユニット46Rの制御方法と相違がないため、本実施形態では特に説明されない。
In this embodiment, for convenience of explanation, only the ADB light distribution pattern PH formed by the ADB lighting unit 46R provided on the right headlamp 40R will be described. In particular, the method for generating the ADB light distribution pattern using the ADB lighting unit 46L is not particularly different from the method for generating the ADB light distribution pattern PH using the ADB lighting unit 46R, and thus the present embodiment. Is not explained in particular. In other words, the control method of the ADB lighting unit 46L is not particularly described in the present embodiment because it is not different from the control method of the ADB lighting unit 46R.
図17に示すように、ステップS61において、カメラ6は、車両1の周辺環境を示す画像データを取得した上で、当該画像データを車両制御部3に送信する。ここで、画像データは、前方車1Cを示す。また、「前方車」とは、対向車又は先行車である。
As shown in FIG. 17, in step S61, the camera 6 acquires image data showing the surrounding environment of the vehicle 1 and then transmits the image data to the vehicle control unit 3. Here, the image data shows the vehicle in front 1C. The "forward vehicle" is an oncoming vehicle or a preceding vehicle.
次に、車両制御部3は、車両1の前方に前方車1C等の対象物が存在すると判定した場合には(ステップS62でYES)、前方車1Cの現在の角度位置θを取得する。一方で、車両制御部3は、車両1の前方に前方車1C等の対象物が存在しないと判定した場合には(ステップS62でNO)、ハイビーム用配光パターン(即ち、照射領域PH1のみからなるADB用配光パターンPH)を前方に向けて出射する(ステップS63)。
Next, when the vehicle control unit 3 determines that an object such as the front vehicle 1C exists in front of the vehicle 1 (YES in step S62), the vehicle control unit 3 acquires the current angular position θ of the front vehicle 1C. On the other hand, when the vehicle control unit 3 determines that there is no object such as the front vehicle 1C in front of the vehicle 1 (NO in step S62), the high beam light distribution pattern (that is, only from the irradiation region PH1). The ADB light distribution pattern PH) is emitted forward (step S63).
次に、ステップS64において、最初に、車両制御部3は、送信された画像データに基づいて、カメラ6の中心軸Cxに対する前方車1Cの現在の角度位置φnを決定する(図18参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Cの現在の左端角度位置φl_nと、中心軸Cxに対する前方車1Cの現在の右端角度位置φr_nを決定する。ここで、中心軸Cxに対する前方車1Cの角度位置は、水平方向における角度位置であって、上下方向(垂直方向)における角度位置ではない。
Next, in step S64, first, the vehicle control unit 3 determines the current angular position φ n of the vehicle in front 1C with respect to the central axis Cx of the camera 6 based on the transmitted image data (see FIG. 18). .. Specifically, the vehicle control unit 3 determines the current left end angle position φ l_n of the front vehicle 1C with respect to the central axis Cx and the current right end angle position φ r_n of the front vehicle 1C with respect to the central axis Cx. Here, the angular position of the front vehicle 1C with respect to the central axis Cx is an angular position in the horizontal direction, not an angular position in the vertical direction (vertical direction).
次に、車両制御部3は、カメラ6の中心軸Cxに対する前方車1Cの現在の角度位置φnに基づいて、ADB用照明ユニット46Rの光軸Axに対する前方車1Cの現在の角度位置θnを決定する(図18参照)。具体的には、車両制御部3は、中心軸Cxに対する前方車1Cの現在の左端角度位置φl_nに基づいて、光軸Axに対する前方車1Cの現在の左端角度位置θl_nを決定する。さらに、車両制御部3は、中心軸Cxに対する前方車1Cの現在の右端角度位置φr_nに基づいて、光軸Axに対する前方車1Cの現在の右端角度位置θr_nを決定する。ここで、光軸Axに対する前方車1Cの角度位置は、水平方向における角度位置であって、上下方向における角度位置ではない。また、カメラ6とADB用照明ユニット46Rとの間の相対的位置関係に関する情報が車両制御部3のメモリに蓄積されているものとする。
Next, the vehicle control unit 3 determines the current angle position θ n of the front vehicle 1C with respect to the optical axis Ax of the ADB lighting unit 46R based on the current angle position φ n of the front vehicle 1C with respect to the central axis Cx of the camera 6. (See FIG. 18). Specifically, the vehicle control unit 3 determines the current left end angle position θ l_n of the front vehicle 1C with respect to the optical axis Ax based on the current left end angle position φ l_n of the front vehicle 1C with respect to the central axis Cx. Further, the vehicle control unit 3 determines the current right end angle position θ r_n of the front vehicle 1C with respect to the optical axis Ax based on the current right end angle position φ r_n of the front vehicle 1C with respect to the central axis Cx. Here, the angular position of the front vehicle 1C with respect to the optical axis Ax is an angular position in the horizontal direction, not an angular position in the vertical direction. Further, it is assumed that the information regarding the relative positional relationship between the camera 6 and the ADB lighting unit 46R is stored in the memory of the vehicle control unit 3.
次に、ステップS65において、照明制御部43は、車両制御部3から受信した車両1の運転モードを示す情報に基づいて、車両1の運転モードが完全自動運転モード又は高度運転支援モードであるかどうかを判定する。照明制御部43は、車両1の運転モードが完全自動運転モード又は高度運転支援モードであると判定した場合(ステップS65でYES)、ADB用配光パターンPHの非照射領域PH2の角度幅Wを第1の角度幅W4に設定する(ステップS66)。
Next, in step S65, the lighting control unit 43 determines whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode based on the information indicating the driving mode of the vehicle 1 received from the vehicle control unit 3. Judge whether or not. When the lighting control unit 43 determines that the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode (YES in step S65), the lighting control unit 43 determines the angle width W of the non-irradiated region PH2 of the light distribution pattern PH for ADB. The first angle width W4 is set (step S66).
具体的には、図19に示すように、照明制御部43は、前方車1Cの左端角度位置θl_nと非照射領域PH2の左端境界Elとの間のマージンをα4に設定すると共に、前方車1Cの右端角度位置θr_nと非照射領域PH2の右端境界Erとの間のマージンをα4に設定する。ここで、マージンα4は、α4>0となる。このように、照明制御部43は、非照射領域PH2の角度幅Wを以下式(5)に示す第1の角度幅W4に設定する。ここで、非照射領域PH2の角度範囲は、θl_n-α4≦θ≦θr_n+α4となる。
W4=2α4+(θr_n-θl_n)・・・(5)
Specifically, as shown in FIG. 19, theillumination control unit 43 sets a margin between the left border El leftmost angular position theta L_n and non-irradiated regions PH2 of the forward vehicle 1C to alpha 4, front The margin between the right end angular position θ r_n of the vehicle 1C and the right end boundary Er of the non-irradiated region PH2 is set to α 4 . Here, the margin α 4 is α 4 > 0. In this way, the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the first angle width W4 represented by the following equation (5). Here, the angle range of the non-irradiated region PH2 is θ l_n −α 4 ≦ θ ≦ θ r_n + α 4 .
W4 = 2α 4 + (θ r_n -θ l_n ) ・ ・ ・ (5)
W4=2α4+(θr_n-θl_n)・・・(5)
Specifically, as shown in FIG. 19, the
W4 = 2α 4 + (θ r_n -θ l_n ) ・ ・ ・ (5)
一方、照明制御部43は、車両1の運転モードが完全自動運転モード又は高度運転支援モードではないと判定した場合(ステップS65でNO)、非照射領域PH2の角度幅Wを第2の角度幅W5に設定する(ステップS67)。換言すれば、照明制御部43は、車両1の運転モードが運転支援モード又は手動運転モードである場合に、非照射領域PH2の角度幅Wを第2の角度幅W5に設定する。具体的には、図20に示すように、照明制御部43は、前方車1Cの左端角度位置θl_nと非照射領域PH2の左端境界Elとの間のマージンをα5に設定すると共に、前方車1Cの右端角度位置θr_nと非照射領域PH2の右端境界Erとの間のマージンをα5に設定する。ここで、マージンα5は、マージンα4よりも小さい(0≦α5<α4)。このように、照明制御部43は、非照射領域PH2の角度幅Wを以下式(6)に示す第2の角度幅W5(<W4)に設定する。ここで、非照射領域PH2の角度範囲は、θl_n-α5≦θ≦θr_n+α5となる。
W5=2α5+(θr_n-θl_n)・・・(6)
On the other hand, when thelighting control unit 43 determines that the driving mode of the vehicle 1 is not the fully automatic driving mode or the advanced driving support mode (NO in step S65), the angle width W of the non-irradiation region PH2 is set to the second angle width. Set to W5 (step S67). In other words, the lighting control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W5 when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode. Specifically, as shown in FIG. 20, the lighting control unit 43 sets the margin between the left end angular position θ l_n of the front vehicle 1C and the left end boundary El of the non-irradiated region PH2 to α 5, and sets the margin to α 5 and moves forward. the margin between the right end angular position theta r_n and right boundaries Er unirradiated regions PH2 car 1C is set to alpha 5. Here, the margin α 5 is smaller than the margin α 4 (0 ≦ α 5 <α 4 ). In this way, the illumination control unit 43 sets the angle width W of the non-irradiation region PH2 to the second angle width W5 (<W4) represented by the following equation (6). Here, the angle range of the non-irradiated region PH2 is θ l_n −α 5 ≦ θ ≦ θ r_n + α 5 .
W5 = 2α 5 + (θ r_n -θ l_n ) ・ ・ ・ (6)
W5=2α5+(θr_n-θl_n)・・・(6)
On the other hand, when the
W5 = 2α 5 + (θ r_n -θ l_n ) ・ ・ ・ (6)
このように、非照射領域PH2の角度幅WがステップS66又はステップS67の処理で設定された後に、照明制御部43は、照射領域PH1と非照射領域PH2とを有するADB用配光パターンPHを決定する。その後、照明制御部43は、ADB用配光パターンPHが車両1の前方に向けて出射されるようにADB用照明ユニット46Rを制御する(ステップS68)。このように、ステップS61からS68の処理が繰り返し実行される。
In this way, after the angle width W of the non-irradiated region PH2 is set in the process of step S66 or step S67, the illumination control unit 43 sets the ADB light distribution pattern PH having the irradiated region PH1 and the non-irradiated region PH2. decide. After that, the lighting control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted toward the front of the vehicle 1 (step S68). In this way, the processes of steps S61 to S68 are repeatedly executed.
本実施形態によれば、車両1の運転モードが高度運転支援モード又は完全自動運転モードである場合に、非照射領域PH2の角度幅Wが第1の角度幅W4に設定される。一方、車両1の運転モードが運転支援モード又は手動運転モードである場合に、非照射領域PH2の角度幅Wが第2の角度幅W5に設定される。
According to the present embodiment, when the driving mode of the vehicle 1 is the advanced driving support mode or the fully automatic driving mode, the angle width W of the non-irradiation region PH2 is set to the first angle width W4. On the other hand, when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode, the angle width W of the non-irradiation region PH2 is set to the second angle width W5.
車両1の運転モードが高度運転支援モード又は完全自動運転モードである場合には、自車両1の乗員が車両1の走行を制御しないため、自車両1の乗員の周辺環境に対する視認性を考慮する必要がない。その一方で、非照射領域PH2の角度幅Wが第2の角度幅W5よりも大きい第1の角度幅W4に設定されているため、前方車1C等の対象物がADB用配光パターンPHにより照射されてしまう状況を可能な限り回避することができる。このため、自車両1の車両制御部3(車載コンピュータ)がカメラ6からの画像データと学習済みモデルに基づいて対象物の属性を判別できなくなってしまう状況を可能な限り回避することができる。
When the driving mode of the vehicle 1 is the advanced driving support mode or the fully automatic driving mode, the occupants of the own vehicle 1 do not control the running of the vehicle 1, so that the visibility of the occupants of the own vehicle 1 to the surrounding environment is taken into consideration. There is no need. On the other hand, since the angle width W of the non-irradiation region PH2 is set to the first angle width W4 which is larger than the second angle width W5, the object such as the front vehicle 1C is determined by the ADB light distribution pattern PH. The situation of being irradiated can be avoided as much as possible. Therefore, it is possible to avoid as much as possible a situation in which the vehicle control unit 3 (vehicle-mounted computer) of the own vehicle 1 cannot determine the attribute of the object based on the image data from the camera 6 and the learned model.
この点において、前方車1CがADB用配光パターンPHの照射領域PH1の一部と重なる場合には、車両制御部3は、照射領域PH1の一部に重なる前方車1Cを示す画像データから前方車1Cの属性(即ち、対象物の種類)を正確に判別することができない虞がある。この理由としては、対象物の属性を判別するための学習済みモデルでは、照射領域PH1の一部に重なった対象物の属性を正確に判別することができない虞があるためである。このため、本実施形態では、車両制御部3が前方車1C等の対象物の属性を正確に判別することができるように、前方車1Cの一部がADB用照明ユニット46Rからの光により照射される状況が可能な限り回避されうる。
In this respect, when the front vehicle 1C overlaps a part of the irradiation region PH1 of the ADB light distribution pattern PH, the vehicle control unit 3 is ahead from the image data showing the front vehicle 1C overlapping a part of the irradiation region PH1. There is a risk that the attributes of vehicle 1C (that is, the type of object) cannot be accurately determined. The reason for this is that the trained model for discriminating the attributes of the object may not be able to accurately discriminate the attributes of the object that overlaps a part of the irradiation region PH1. Therefore, in the present embodiment, a part of the front vehicle 1C is irradiated with light from the ADB lighting unit 46R so that the vehicle control unit 3 can accurately determine the attributes of the object such as the front vehicle 1C. The situation to be done can be avoided as much as possible.
一方で、車両1の運転モードが運転支援モード又は手動運転モードである場合には、非照射領域PH2の角度幅Wは第1の角度幅W4よりも小さい第2の角度幅W5に設定されるため、自車両1の乗員(特に、運転者)の周辺環境に対する視認性を十分に確保することができる。
On the other hand, when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode, the angle width W of the non-irradiation region PH2 is set to the second angle width W5 which is smaller than the first angle width W4. Therefore, it is possible to sufficiently secure the visibility of the occupants (particularly the driver) of the own vehicle 1 with respect to the surrounding environment.
尚、本実施形態では、ステップS65の判定処理において、車両1の運転モードが完全自動運転モード又は高度運転支援モードであるかどうかが判定されているが、本実施形態はこれに限定されるものではない。例えば、ステップS65の判定処理において、車両1の運転モードが完全自動運転モードであるかどうかが判定されてもよい。また、車両1の運転モードが完全自動運転モード、高度運転支援モード又は運転支援モードであるかどうか(換言すれば、車両1の運転モードが自動運転モードであるかどうか)が判定されてもよい。
In the present embodiment, in the determination process of step S65, it is determined whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode, but the present embodiment is limited to this. is not. For example, in the determination process of step S65, it may be determined whether or not the driving mode of the vehicle 1 is the fully automatic driving mode. Further, it may be determined whether the driving mode of the vehicle 1 is the fully automatic driving mode, the advanced driving support mode, or the driving support mode (in other words, whether the driving mode of the vehicle 1 is the automatic driving mode). ..
(第7実施形態)
次に、図21を主に参照することで、車両1の運転モードに応じてADB用配光パターンPHを出射するべきかどうかを決定する処理について以下に説明する。図21は、車両1の運転モードに応じてADB用配光パターンPH2を出射するべきかどうかを決定する処理を説明するためのフローチャートである。尚、以下の説明では、図19に示されたADB用配光パターンPHとロービーム用配光パターンPLについて適宜言及する。 (7th Embodiment)
Next, with reference mainly to FIG. 21, a process of determining whether or not to emit the ADB light distribution pattern PH according to the driving mode of thevehicle 1 will be described below. FIG. 21 is a flowchart for explaining a process of determining whether or not to emit the ADB light distribution pattern PH2 according to the driving mode of the vehicle 1. In the following description, the ADB light distribution pattern PH and the low beam light distribution pattern PL shown in FIG. 19 will be appropriately referred to.
次に、図21を主に参照することで、車両1の運転モードに応じてADB用配光パターンPHを出射するべきかどうかを決定する処理について以下に説明する。図21は、車両1の運転モードに応じてADB用配光パターンPH2を出射するべきかどうかを決定する処理を説明するためのフローチャートである。尚、以下の説明では、図19に示されたADB用配光パターンPHとロービーム用配光パターンPLについて適宜言及する。 (7th Embodiment)
Next, with reference mainly to FIG. 21, a process of determining whether or not to emit the ADB light distribution pattern PH according to the driving mode of the
図21に示すように、ステップS70において、車両制御部3から受信した車両1の運転モードを示す情報に基づいて、車両1の運転モードが完全自動運転モード又は高度運転支援モードであるかどうかを判定する。
As shown in FIG. 21, in step S70, based on the information indicating the driving mode of the vehicle 1 received from the vehicle control unit 3, whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode is determined. judge.
照明制御部43は、車両1の運転モードが完全自動運転モード又は高度運転支援モードであると判定した場合(ステップS70でYES)、ADB用配光パターンPHを前方に向けて照射しないことを決定する(ステップS71)。その後、照明制御部43は、ロービーム用配光パターンPLが前方に向けて出射されるようにロービーム用照明ユニット45Rを制御する。
When the lighting control unit 43 determines that the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode (YES in step S70), the lighting control unit 43 determines not to irradiate the ADB light distribution pattern PH forward. (Step S71). After that, the illumination control unit 43 controls the low beam illumination unit 45R so that the low beam light distribution pattern PL is emitted toward the front.
一方、照明制御部43は、車両1の運転モードが完全自動運転モード又は高度運転支援モードではないと判定した場合(ステップS70でNO)、ADB用配光パターンPHを前方に向けて照射することを決定する(ステップS72)。その後、照明制御部43は、ADB用配光パターンPHが前方に向けて出射されるようにADB用照明ユニット46Rを制御しつつ、ロービーム用配光パターンPLが前方に向けて出射されるようにロービーム用照明ユニット45Rを制御する。この場合、車両1の前方領域に前方車1C等の対象物が存在する場合には、当該対象物が非照射領域PH2に含まれるようにADB用照明ユニット46Rが制御される。一方で、車両1の前方領域に対象物が存在しない場合には、照射領域PH1のみを含むADB用配光パターンPH(つまり、ハイビーム用配光パターン)が前方に向けて出射される。
On the other hand, when the lighting control unit 43 determines that the driving mode of the vehicle 1 is not the fully automatic driving mode or the advanced driving support mode (NO in step S70), the lighting control unit 43 irradiates the ADB light distribution pattern PH toward the front. Is determined (step S72). After that, the illumination control unit 43 controls the ADB lighting unit 46R so that the ADB light distribution pattern PH is emitted forward, and the low beam light distribution pattern PL is emitted forward. Controls the low beam lighting unit 45R. In this case, when an object such as the front vehicle 1C exists in the front region of the vehicle 1, the ADB lighting unit 46R is controlled so that the object is included in the non-irradiation region PH2. On the other hand, when the object does not exist in the front region of the vehicle 1, the ADB light distribution pattern PH (that is, the high beam light distribution pattern) including only the irradiation region PH 1 is emitted toward the front.
本実施形態によれば、車両1の運転モードが高度運転モード又は完全自動運転モードである場合に、ADB用照明ユニット46RからADB用配光パターンPHが照射されない一方で、車両1の運転モードが運転支援モード又は手動運転モードである場合に、ADB用照明ユニット46RからADB用配光パターンPHが照射される。
According to the present embodiment, when the driving mode of the vehicle 1 is the advanced driving mode or the fully automatic driving mode, the driving mode of the vehicle 1 is set while the ADB light distribution pattern PH is not irradiated from the ADB lighting unit 46R. In the driving support mode or the manual driving mode, the ADB light distribution pattern PH is irradiated from the ADB lighting unit 46R.
特に、車両1の運転モードが高度運転支援モード又は完全自動運転モードである場合には、車両1の乗員が車両1の走行を制御しないため、車両1の周辺環境に対する乗員の視認性を考慮する必要がない。その一方で、かかる場合には、前方車1C等の対象物がADB用配光パターンPHにより照射されてしまう状況を可能な限り回避することができる。このため、車両制御部3がカメラ6からの画像データと学習済みモデルに基づいて、対象物の属性を判別できなくなってしまう状況を回避することができる。
In particular, when the driving mode of the vehicle 1 is the advanced driving support mode or the fully automatic driving mode, the occupant of the vehicle 1 does not control the running of the vehicle 1, so the visibility of the occupant with respect to the surrounding environment of the vehicle 1 is taken into consideration. There is no need. On the other hand, in such a case, it is possible to avoid the situation where the object such as the vehicle 1C in front is irradiated by the light distribution pattern PH for ADB as much as possible. Therefore, it is possible to avoid a situation in which the vehicle control unit 3 cannot determine the attribute of the object based on the image data from the camera 6 and the trained model.
一方で、車両1の運転モードが運転支援モード又は手動運転モードである場合には、車両1の外部に向けてADB用配光パターンPHが照射されるため、車両1の周辺環境に対する乗員(特に、運転者)の視認性を十分に確保することが可能となる。
On the other hand, when the driving mode of the vehicle 1 is the driving support mode or the manual driving mode, the light distribution pattern PH for ADB is irradiated to the outside of the vehicle 1, so that the occupants (particularly,) with respect to the surrounding environment of the vehicle 1 , The driver)'s visibility can be sufficiently ensured.
尚、本実施形態では、ステップS70の判定処理において、車両1の運転モードが完全自動運転モード又は高度運転支援モードであるかどうかが判定されているが、本実施形態はこれに限定されるものではない。例えば、ステップS70の判定処理において、車両1の運転モードが完全自動運転モードであるかどうかが判定されてもよい。また、車両1の運転モードが完全自動運転モード、高度運転支援モード又は運転支援モードであるかどうか(換言すれば、車両1の運転モードが自動運転モードであるかどうか)が判定されてもよい。
In the present embodiment, in the determination process of step S70, it is determined whether the driving mode of the vehicle 1 is the fully automatic driving mode or the advanced driving support mode, but the present embodiment is limited to this. is not. For example, in the determination process of step S70, it may be determined whether or not the driving mode of the vehicle 1 is the fully automatic driving mode. Further, it may be determined whether the driving mode of the vehicle 1 is the fully automatic driving mode, the advanced driving support mode, or the driving support mode (in other words, whether the driving mode of the vehicle 1 is the automatic driving mode). ..
以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
Although the embodiments of the present invention have been described above, it goes without saying that the technical scope of the present invention should not be construed in a limited manner by the description of the present embodiments. It will be appreciated by those skilled in the art that this embodiment is merely an example and that various embodiments can be modified within the scope of the invention described in the claims. The technical scope of the present invention should be determined based on the scope of the invention described in the claims and the equivalent scope thereof.
本出願は、2019年7月3日に出願された日本国特許出願(特願2019-124310号)に開示された内容と、2019年7月3日に出願された日本国特許出願(特願2019-124311号)に開示された内容と、2019年7月3日に出願された日本国特許出願(特願2019-124312号)に開示された内容を適宜援用する。
This application includes the contents disclosed in the Japanese patent application filed on July 3, 2019 (Japanese Patent Application No. 2019-124310) and the Japanese patent application filed on July 3, 2019 (Japanese Patent Application No. 2019-124310). The contents disclosed in (2019-124311) and the contents disclosed in the Japanese patent application (Japanese Patent Application No. 2019-124312) filed on July 3, 2019 will be appropriately incorporated.
Claims (17)
- 車両に設けられる車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記前方車の存在によって形成された非照射領域に対象物が存在し、且つ当該対象物に関連する所定の情報が前記車両により未だ特定されていない場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記前方車の存在によって形成された非照射領域に対象物が存在しない、又は当該対象物に関連する所定の情報が前記車両により既に特定されている場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記第1期間は、前記第2期間よりも短い、
車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When an object exists in a non-irradiated region formed by the presence of the vehicle in front, and predetermined information related to the object has not yet been specified by the vehicle.
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
When there is no object in the non-irradiated region formed by the presence of the vehicle in front, or when predetermined information related to the object has already been identified by the vehicle.
After a second period has elapsed from the time when the preceding vehicle disappears from the front region, the lighting unit is controlled so that the non-irradiated region formed by the presence of the front vehicle is switched to the irradiation region.
The first period is shorter than the second period,
Vehicle lighting system. - 前記対象物に関連する所定の情報は、前記対象物の属性情報または前記対象物の行動予測情報である、請求項1に記載の車両用照明システム。 The vehicle lighting system according to claim 1, wherein the predetermined information related to the object is the attribute information of the object or the behavior prediction information of the object.
- 車両に設けられる車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の前方領域に存在する前方車が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記車両の運転モードのレベルが所定のレベル以上である場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記車両の運転モードのレベルが前記所定のレベルよりも低い場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記第1期間は、前記第2期間よりも短い、
車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the front vehicle existing in the front region of the vehicle is included in the non-irradiation region.
The lighting control unit
When the level of the driving mode of the vehicle is equal to or higher than a predetermined level,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
When the level of the driving mode of the vehicle is lower than the predetermined level,
After a second period has elapsed from the time when the preceding vehicle disappears from the front region, the lighting unit is controlled so that the non-irradiated region formed by the presence of the front vehicle is switched to the irradiation region.
The first period is shorter than the second period,
Vehicle lighting system. - 前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第1期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記車両の運転モードが一部運転支援モード又は手動運転モードである場合に、
前記前方車が前記前方領域から消失したときから第2期間経過後に、前記前方車の存在によって形成された非照射領域が照射領域に切り替わるように前記照明ユニットを制御し、
前記第1期間は、前記第2期間よりも短い、
請求項3に記載の車両用照明システム。 The lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode,
The lighting unit is controlled so that the non-irradiation region formed by the presence of the front vehicle is switched to the irradiation region after the first period has elapsed from the time when the front vehicle disappears from the front region.
When the driving mode of the vehicle is a partial driving support mode or a manual driving mode,
After a second period has elapsed from the time when the preceding vehicle disappears from the front region, the lighting unit is controlled so that the non-irradiated region formed by the presence of the front vehicle is switched to the irradiation region.
The first period is shorter than the second period,
The vehicle lighting system according to claim 3. - 車両に設けられる車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記車両に対する前記対象物の角度位置の変動に応じて、前記非照射領域の角度幅を変更するように構成されている、車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information on the angular position of the object existing outside the vehicle.
The lighting control unit
A vehicle lighting system configured to change the angular width of the non-irradiated region according to changes in the angular position of the object with respect to the vehicle. - 前記照明制御部は、
前記角度位置の変動が所定の閾値よりも大きい場合に、前記角度位置に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記角度位置の変動が前記所定の閾値以下である場合に、前記角度位置に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されている、請求項5に記載の車両用照明システム。 The lighting control unit
When the fluctuation of the angular position is larger than a predetermined threshold value, the angular width of the non-irradiated region is set to the first angular width based on the angular position.
When the fluctuation of the angular position is equal to or less than the predetermined threshold value, the angular width of the non-irradiated region is set to a second angular width smaller than the first angular width based on the angular position. The vehicle lighting system according to claim 5, which is configured. - 前記角度位置の変動は、前記対象物の現在の角度位置と前記対象物の前回の角度位置との間の差分である、請求項6に記載の車両用照明システム。 The vehicle lighting system according to claim 6, wherein the variation in the angular position is a difference between the current angular position of the object and the previous angular position of the object.
- 前記照明制御部は、
前記対象物の前回からN回前(Nは2以上の整数)までの角度位置の平均角度位置を演算するように構成されており、
前記角度位置の変動は、前記対象物の現在の角度位置と前記平均角度位置との間の差分である、請求項6に記載の車両用照明システム。 The lighting control unit
It is configured to calculate the average angular position of the angular position from the previous time of the object to N times before (N is an integer of 2 or more).
The vehicle lighting system according to claim 6, wherein the variation in the angular position is a difference between the current angular position of the object and the average angular position. - 車両に設けられる車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有する配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記対象物の現在の角度位置からM回前(Mは1以上の整数)までの角度位置の平均角度位置を演算し、
前記平均角度位置に基づいて、前記非照射領域の角度幅を決定する、
ように構成されている、車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate a light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information on the angular position of the object existing outside the vehicle.
The lighting control unit
The average angular position of the angular position from the current angular position of the object to M times before (M is an integer of 1 or more) is calculated.
The angular width of the non-irradiated region is determined based on the average angular position.
A vehicle lighting system that is configured to. - 車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
前記画像データに基づいて、前記カメラの中心軸に対する対象物の第1角度位置を決定するように構成された第1角度位置決定部と、
前記第1角度位置に基づいて、照明ユニットの光軸に対する前記対象物の第2角度位置を前記対象物の角度位置として決定するように構成された第2角度位置決定部と、
請求項5から9のうちのいずれか一項に記載の車両用照明システムと、
を備えた、車両システム。 A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
A first angle position determining unit configured to determine a first angle position of an object with respect to the central axis of the camera based on the image data.
A second angle position determining unit configured to determine the second angle position of the object with respect to the optical axis of the lighting unit as the angle position of the object based on the first angle position.
The vehicle lighting system according to any one of claims 5 to 9.
With a vehicle system. - 車両に設けられる車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記車両の運転モードに応じて、前記非照射領域の角度幅を変更するように構成されている、車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information on the angular position of the object existing outside the vehicle.
The lighting control unit
A vehicle lighting system configured to change the angular width of the non-irradiated region according to the driving mode of the vehicle. - 前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を第1の角度幅に設定し、
前記車両の運転モードが運転支援モード又は手動運転モードである場合に、前記角度位置に関する情報に基づいて前記非照射領域の角度幅を前記第1の角度幅よりも小さい第2の角度幅に設定する、ように構成されている、請求項11に記載の車両用照明システム。 The lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the angular width of the non-irradiated region is set to the first angular width based on the information regarding the angular position.
When the driving mode of the vehicle is the driving support mode or the manual driving mode, the angle width of the non-irradiated region is set to a second angle width smaller than the first angle width based on the information regarding the angle position. The vehicle lighting system according to claim 11, which is configured to do so. - 車両に設けられた車両用照明システムであって、
前記車両の外部に向けて、照射領域と非照射領域とを有するADB用配光パターンを照射するように構成された照明ユニットと、
前記車両の外部に存在する対象物の角度位置に関する情報に基づいて、前記対象物が前記非照射領域に含まれるように前記照明ユニットを制御するように構成された照明制御部と、を備え、
前記照明制御部は、
前記車両の運転モードに関連する所定の条件が満たされる場合には、前記照明ユニットから前記ADB用配光パターンを照射させ、
前記所定の条件が満たされない場合には、前記照明ユニットから前記ADB用配光パターンを照射させない、
ように構成されている、車両用照明システム。 A vehicle lighting system installed in a vehicle
A lighting unit configured to irradiate an ADB light distribution pattern having an irradiated area and a non-irradiated area toward the outside of the vehicle.
A lighting control unit configured to control the lighting unit so that the object is included in the non-irradiated region based on information on the angular position of the object existing outside the vehicle.
The lighting control unit
When a predetermined condition related to the driving mode of the vehicle is satisfied, the ADB light distribution pattern is irradiated from the lighting unit.
When the predetermined condition is not satisfied, the ADB light distribution pattern is not irradiated from the lighting unit.
A vehicle lighting system that is configured to. - 前記照明制御部は、
前記車両の運転モードが高度運転支援モード又は完全自動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させず、
前記車両の運転モードが運転支援モード又は手動運転モードである場合には、前記照明ユニットから前記ADB用配光パターンを照射させる、ように構成されている、請求項13に記載の車両用照明システム。 The lighting control unit
When the driving mode of the vehicle is the advanced driving support mode or the fully automatic driving mode, the lighting unit does not irradiate the ADB light distribution pattern.
The vehicle lighting system according to claim 13, wherein when the driving mode of the vehicle is a driving support mode or a manual driving mode, the lighting unit is configured to irradiate the ADB light distribution pattern. .. - 車両の周辺環境を示す画像データを取得するように構成されたカメラと、
前記画像データに基づいて、前記車両の外部に存在する対象物の属性を判別するように構成された属性判別部と、
請求項11から14のうちのいずれか一項に記載の車両用照明システムと、
を備えた、車両システム。 A camera configured to acquire image data showing the surrounding environment of the vehicle,
An attribute determination unit configured to determine the attributes of an object existing outside the vehicle based on the image data.
The vehicle lighting system according to any one of claims 11 to 14.
With a vehicle system. - 請求項1~9及び12~14のうちのいずれか一項に記載の車両用照明システムを備えた車両。 A vehicle equipped with the vehicle lighting system according to any one of claims 1 to 9 and 12 to 14.
- 請求項10又は15に記載の車両システムを備えた車両。 A vehicle equipped with the vehicle system according to claim 10 or 15.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021529998A JP7340607B2 (en) | 2019-07-03 | 2020-06-26 | Vehicle lighting systems, vehicle systems and vehicles |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019124311 | 2019-07-03 | ||
JP2019-124312 | 2019-07-03 | ||
JP2019124312 | 2019-07-03 | ||
JP2019-124310 | 2019-07-03 | ||
JP2019-124311 | 2019-07-03 | ||
JP2019124310 | 2019-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021002297A1 true WO2021002297A1 (en) | 2021-01-07 |
Family
ID=74101074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025326 WO2021002297A1 (en) | 2019-07-03 | 2020-06-26 | Vehicular lighting system, vehicle system and vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7340607B2 (en) |
WO (1) | WO2021002297A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012017559A1 (en) * | 2010-08-06 | 2012-02-09 | トヨタ自動車株式会社 | Vehicle light distribution control device and method |
JP2016015332A (en) * | 2015-09-09 | 2016-01-28 | 株式会社小糸製作所 | Headlight device for vehicle and headlight control system for vehicle |
-
2020
- 2020-06-26 JP JP2021529998A patent/JP7340607B2/en active Active
- 2020-06-26 WO PCT/JP2020/025326 patent/WO2021002297A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012017559A1 (en) * | 2010-08-06 | 2012-02-09 | トヨタ自動車株式会社 | Vehicle light distribution control device and method |
JP2016015332A (en) * | 2015-09-09 | 2016-01-28 | 株式会社小糸製作所 | Headlight device for vehicle and headlight control system for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP7340607B2 (en) | 2023-09-07 |
JPWO2021002297A1 (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7254832B2 (en) | HEAD-UP DISPLAY, VEHICLE DISPLAY SYSTEM, AND VEHICLE DISPLAY METHOD | |
US20200255030A1 (en) | Sensing system and vehicle | |
EP3663134B1 (en) | Vehicular lighting system and vehicle | |
US11597316B2 (en) | Vehicle display system and vehicle | |
JP6970612B2 (en) | Vehicle lighting system and vehicle | |
JP7470230B2 (en) | Vehicle display system, vehicle system and vehicle | |
JP7295863B2 (en) | Vehicle display system and vehicle | |
JP7043256B2 (en) | Vehicle lighting system and vehicle | |
JPWO2020031915A1 (en) | Vehicle display system and vehicle | |
EP4039519A1 (en) | Vehicular display system and vehicle | |
JP2020093737A (en) | Infrared camera system and vehicle | |
WO2021002297A1 (en) | Vehicular lighting system, vehicle system and vehicle | |
US10654406B2 (en) | Vehicle illumination system and vehicle | |
JP2022022556A (en) | Vehicle lighting fixture | |
WO2022102374A1 (en) | Vehicular display system | |
WO2023190338A1 (en) | Image irradiation device | |
EP4434815A1 (en) | Road surface-marking light and road surface-marking light system | |
WO2022044853A1 (en) | Sensing system and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20834652 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021529998 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20834652 Country of ref document: EP Kind code of ref document: A1 |