WO2021002089A1 - 研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法 - Google Patents

研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法 Download PDF

Info

Publication number
WO2021002089A1
WO2021002089A1 PCT/JP2020/018228 JP2020018228W WO2021002089A1 WO 2021002089 A1 WO2021002089 A1 WO 2021002089A1 JP 2020018228 W JP2020018228 W JP 2020018228W WO 2021002089 A1 WO2021002089 A1 WO 2021002089A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
silicon wafer
semiconductor silicon
pad
Prior art date
Application number
PCT/JP2020/018228
Other languages
English (en)
French (fr)
Inventor
佐藤 一弥
直 志摩
考司 岳田
Original Assignee
信越半導体株式会社
ニッタ・デュポン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社, ニッタ・デュポン株式会社 filed Critical 信越半導体株式会社
Publication of WO2021002089A1 publication Critical patent/WO2021002089A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing pad, a polishing device, a polishing method using the polishing pad, and a method for manufacturing the polishing pad.
  • a general polishing process consists of three stages: primary polishing, secondary polishing, and finish polishing.
  • Flatness is one of the main parameters of a mirror-finished wafer that has been polished through this polishing process.
  • One of the factors that deteriorate the flatness is the edge sagging caused by the allowance at the outer periphery of the wafer being larger than the allowance at the center. This is because the peripheral speed of the polishing surface plate is larger on the outer peripheral side of the polishing surface plate than on the inner peripheral side of the polishing surface plate, so that the outer peripheral portion of the wafer adhered to the outer peripheral portion of the plate inevitably occurs due to the trajectory followed during polishing. Is.
  • the phenomenon is most noticeable in secondary polishing.
  • the flatness of the surface of the object to be polished is ensured with the highest priority by using a hard polishing pad.
  • a polishing pad having a hardness lower than that of the primary polishing is used.
  • finish polishing fine scratches remaining in the secondary polishing and foreign substances adhering to the surface are removed. A soft polishing pad is used to achieve this goal.
  • a hard pad having an Asker-C hardness of 80 or more is generally used, whereas in the secondary polishing, a relatively soft polishing pad having an Asker-C hardness of about 60 to 70 is used for the above purpose.
  • a polishing allowance of submicron to micron order is required, edge sagging that affects the yield occurs in the process of obtaining the allowance.
  • a high-hard pad as described above is used for primary polishing, and an ultra-soft suede pad is used for finish polishing, but since the polishing allowance is as small as several tens of nm, edge sagging in both steps does not matter.
  • polishing progresses due to the interaction between the polishing pad and the object to be polished, the polishing conditions will be examined in detail.
  • a polishing method is designed so that the relative speed with the polishing pad is uniform at each point on the surface of the polished object. Specifically, by rotating the polishing pad and the polishing head in the same direction at the same speed, the relative speeds are made the same, and the amount of polishing at each point on the surface of the object to be polished is made uniform.
  • edge sagging due to the influence of uneven rotation, natural vibration of the device, pressure distribution of the object to be polished, etc., edge sagging is likely to occur, and in secondary polishing, edge sagging as shown in FIG. 8A occurs, and It was difficult to achieve compatibility with other qualities such as ensuring flatness.
  • Patent Document 2 in single-sided polishing, a polishing pad having a lower outer peripheral portion having a lower height than the polishing surface portion such as an inclination or a step on the peripheral end of the polishing pad for the purpose of preventing pad peeling and wafer falling off.
  • the polishing pad is no different from using a polishing pad having a small diameter in contact with the object to be polished.
  • an abnormal inflection as shown in FIG. 8B is exhibited with a portion where the object to be polished contacts the polishing pad and a portion where the polishing pad does not contact as a boundary.
  • the width of the lower outer peripheral portion is only specified to be 0.5 mm or more, there is no description that the width changes continuously, and there is no reference to improvement of wafer flatness.
  • the present invention has been made in view of such circumstances, and is a polishing pad and a polishing apparatus capable of solving outer peripheral sagging (edge sagging) of a wafer in single-sided polishing and preventing abnormal deformation of the wafer after polishing. , A polishing method using the polishing method, and a method for manufacturing a polishing pad.
  • the present invention is a substantially circular polishing pad for single-sided polishing of a semiconductor silicon wafer.
  • the polishing pad has a circular polishing region having an outer diameter smaller than the outer diameter of the polishing pad on the surface of the polishing pad.
  • a polishing pad for a semiconductor silicon wafer characterized in that the center of the polishing pad and the center of the circular polishing region are present at different positions.
  • the distance between the center of the polishing pad and the center of the circular polishing region is preferably 5 to 20 mm.
  • the circular polishing region has a step in the center portion having a thickness smaller than that of the substantially circular polishing pad.
  • the thickness of the polishing pad is in the range of 0.8 to 1.5 mm, and the amount of the step is 30 to 90% of the thickness of the polishing pad.
  • the polishing pad has an Asker-C hardness of 50 to 80.
  • the present invention includes a polishing platen to which a polishing pad is attached and a polishing head for holding a plate to which a semiconductor silicon wafer is adhered, and the semiconductor silicon wafer adhered to the plate by the polishing head is described.
  • a polishing device that polishes the surface of the semiconductor silicon wafer by pressing it against a polishing pad attached to a polishing platen and sliding it into contact with the polishing pad.
  • a polishing apparatus including the polishing pad described above as the polishing pad.
  • the present invention also provides a single-sided polishing method for a semiconductor silicon wafer, which comprises performing single-sided polishing of a semiconductor silicon wafer using the polishing apparatus described above.
  • the single-sided polishing is performed in an intermediate polishing process between the rough polishing process and the finish polishing process.
  • the polishing allowance is 0.3 to 1.5 ⁇ m.
  • the present invention is a method for manufacturing a polishing pad for single-sided polishing of a semiconductor silicon wafer, and at least, A step of providing a non-polishing region on the outer peripheral portion of the polishing pad and a polishing region inside the non-polishing region on the outer peripheral portion by performing an annular step processing on the surface of the polishing pad.
  • the unpolished region of the outer peripheral portion overlaps with the semiconductor silicon wafer when polishing the semiconductor silicon wafer, and the center of the polishing region is different from the center of the polishing pad.
  • a method for manufacturing a polishing pad for a semiconductor silicon wafer which comprises performing step processing so as to be.
  • the center of the polishing region is set at a different position with respect to the center of the polishing pad.
  • FIG. 2 (A) shows an example of the polishing apparatus of this invention, and is the enlarged view (FIG. 2 (B)).
  • FIG. 2 (B) shows the example of the step processing.
  • FIG. 2 (B) shows the example of the punching process for positioning.
  • FIG. 2 (B) shows the example of the punching process for positioning.
  • FIG. 2 (B) shows the example of the punching process for positioning.
  • FIG. 2 (B) shows the positional relationship of a polishing pad, a plate of a polishing apparatus, and a wafer in a comparative example and an Example.
  • FIG. 2 (B) shows the enlarged view
  • FIG. 7 (A) The state of rotation of the polishing pad when the center of the polishing region and the center of the polishing pad are set to different positions (FIG. 7 (A)), and the change in the position of the outer peripheral portion of the circular polishing region due to the rotation (FIG. 7).
  • (B)) is a schematic view.
  • a schematic view of the cross-sectional shape of the wafer after polishing when polishing using a conventional polishing pad, a polishing pad having a smaller diameter than the conventional one, and the polishing pad of the present invention is shown. It is the schematic which shows the specification comparison of the polishing pad of the secondary polishing used in the comparative example 2 and the example. It is the schematic which shows the width of the overlap region of this invention.
  • the present inventors have performed an annular step processing on the outer peripheral portion of the surface of the secondary polishing pad to provide a polishing region and a non-polishing region, and when polishing a semiconductor silicon wafer on one side, there is no need.
  • the portion of the polishing region that overlaps the semiconductor silicon wafer, that is, the object to be polished comes to the outermost position in the radial direction of the polishing pad 1, the surface to be polished on the outer periphery of the object to be polished becomes the circular polishing region 4 on the polishing pad.
  • the present invention is a substantially circular polishing pad for single-sided polishing of a semiconductor silicon wafer.
  • the polishing pad has a circular polishing region having an outer diameter smaller than the outer diameter of the polishing pad on the surface of the polishing pad.
  • the polishing pad for a semiconductor silicon wafer is characterized in that the center of the polishing pad and the center of the circular polishing region are present at different positions.
  • the center of the polishing region is set at a different position with respect to the center of the polishing pad, so that when polishing the semiconductor silicon wafer, the outer peripheral portion of the semiconductor silicon wafer Since it is possible to create a pseudo-oscillating state with a specific amplitude and frequency in the positional relationship between the outer peripheral portion and the outermost peripheral portion of the circular polishing region, it is possible to balance the outer peripheral portion allowance and the central portion allowance. This makes it possible to prevent edge sagging of the semiconductor silicon wafer and abnormal inflection of the outer peripheral portion.
  • FIG. 1 shows an example of a polishing pad for a semiconductor silicon wafer of the present invention.
  • the polishing pad 1 for a semiconductor silicon wafer of the present invention is provided with an annular step 9 on the surface thereof, and has an unpolished region 3 on the outer periphery and a circular polishing region.
  • Has 4 The center 6 of the ring of the circular polishing region 4 is located at a position different from the center 5 of the polishing pad 1 by the distance 8 between the centers.
  • the center 6 of the ring of the circular polishing region 4 is preferably located at a position where the distance 8 between the centers differs from the center 5 of the polishing pad by 5 to 20 mm. It is more preferably 7 to 20 mm, and even more preferably 9 to 20 mm.
  • both centers By setting both centers at different positions, it is possible to avoid local inflection of the wafer shape caused by the step. Further, if the center-to-center distance 8 is set to a position different by 5 to 20 mm, local inflection of the wafer shape caused by the step can be more reliably avoided.
  • the circular polishing region 4 may have a step in the center portion having a thickness smaller than that of the substantially circular polishing pad, and is inside the circular polishing region.
  • An unpolished region 2 on the peripheral portion can also be provided.
  • the polishing pad of the present invention may be provided with an inner hole 18 for fixing the center guide 17 in order to facilitate the attachment of the polishing pad.
  • FIG. 7 (A) and 7 (B) show the rotation of the polishing pad when the center of the polishing region and the center of the polishing pad are at different positions (FIG. 7 (A)), and circular polishing accompanying the rotation.
  • a schematic view of a change in the position of the outer peripheral portion of the region (FIG. 7 (B)) is shown.
  • FIG. 7A when rotating a polishing pad having the center 6 of the ring of the circular polishing region 4 and the center 5 of the polishing pad 1 at different positions with the center 5 of the polishing pad 1 as the center of rotation.
  • Point B which is the position of the outer peripheral portion of the circular polishing region 4 passing through the line segment connecting the center of the polishing pad shown in FIG.
  • the polishing pad 1 changes to the outer peripheral side and the inner peripheral side in the radial direction.
  • the maximum value of the amount of change between the outer peripheral side and the inner peripheral side is determined by the distance between the centers 8 and the diameter of the circular polishing region. In this way, since the position of the outer peripheral portion of the circular polishing region changes with rotation, it is possible to avoid local inflection of the wafer shape caused by the step.
  • the inside of the circular polishing region is the same as the outer peripheral portion of the circular polishing region 4 described above.
  • the position of the peripheral portion can also be changed to the outer peripheral side and the inner peripheral side of the polishing pad according to the angle in the rotation direction. By doing so, the position of the inner peripheral portion of the circular polishing region can be changed with rotation, so that local inflection of the wafer shape caused by the step can be more reliably avoided. it can.
  • the unpolished region 3 on the outer peripheral portion has an overlap region 7 that overlaps with the semiconductor silicon wafer when polishing the semiconductor silicon wafer using the polishing pad for the semiconductor silicon wafer of the present invention.
  • the width 20 of the overlap region 7 may be such that the overlap region 7 covers the edge sagging region of the outer peripheral portion of the wafer, and is preferably a width of 10 to 25% with respect to the diameter of the semiconductor silicon wafer. It is more preferably 12 to 23%, and even more preferably 13 to 20%.
  • the width 20 of the overlap region 7 is defined as the distance between the outermost peripheral position of the object to be polished and the outermost peripheral position of the circular polishing region 4 in the radial direction of the polishing pad 1 in the overlap region 7. Can do things. FIG.
  • FIG. 10 is a schematic view showing the width of the overlap region according to the present application.
  • FIG. 10 is a schematic view of the polishing apparatus 10, and in any of (A) to (C), the polishing surface plate 11, the plate 12, and the polishing head 13 shown in FIGS. 2 and 5 are omitted. ing.
  • FIG. 10 (A) is a view of the polishing machine from above, and
  • FIG. 10 (B) is a portion of the EE'cross section which is the narrowest position in the radial direction of the unpolished region 3 on the outermost periphery in (A).
  • (C) is a partially enlarged view of the FF'cross section which is the position where the width in the radial direction of the unpolished region 3 of the outermost peripheral portion is narrowest in (A). That is, the width 20 of the overlap region 7 shown in FIG. 10B is the minimum, and the width 20 of the overlap region 7 shown in FIG. 10C is the maximum.
  • the minimum value of the width of the overlap region 7 is 10% or more, edge sagging can be sufficiently suppressed, and when it is 25% or less, the wafer outer peripheral allowance and the center allowance can be more reliably balanced and the surface. The distribution of the intake allowance becomes more uniform.
  • the amount of the annular step 9 is preferably 30 to 90% of the thickness of the polishing pad 1. It is more preferably 40 to 80%, and even more preferably 60 to 80%.
  • the annular step 9 is 30% or more, it is possible to prevent the edge sagging improvement effect from being lost due to the disappearance of the annular step 9 due to the wear of the polishing pad before reaching the original product life. Further, when it is 80% or less, it is not difficult to attach the polishing pad to the polishing surface plate or the like, and the handleability is improved.
  • the thickness 16 of the polishing pad is preferably 0.8 to 1.5 mm. It is more preferably 1.0 to 1.5 mm, and even more preferably 1.2 to 1.4 mm. If the thickness of the polishing pad is 1.5 mm or less, edge sagging can be prevented more reliably, and if it is 0.8 mm or more, the required surface quality can be more reliably satisfied, and there is a handling problem. It does not occur.
  • the polishing pad of the present invention preferably has an AskerC hardness of 50 to 80. It is more preferably 55 to 75, and even more preferably 60 to 70. With such hardness, a polishing pad suitable for adjusting the surface quality can be obtained.
  • the present invention includes a polishing platen to which a polishing pad is attached and a polishing head for holding a plate to which a semiconductor silicon wafer is adhered, and the semiconductor silicon wafer adhered to the plate by the polishing head is described.
  • a polishing device that polishes the surface of the semiconductor silicon wafer by pressing it against a polishing pad attached to a polishing platen and sliding it into contact with the polishing pad.
  • a polishing apparatus including the polishing pad described above as the polishing pad.
  • the polishing apparatus 10 of the present invention is It includes a polishing surface plate 11 to which the polishing pad 1 is attached, and a polishing head 13 for holding a plate 12 to which the semiconductor silicon wafer W is adhered.
  • the polishing pad 1 of the present invention is attached to the polishing surface plate 11 of the present invention, and the semiconductor silicon wafer W bonded to the plate 12 is attached to the polishing surface plate 11 by a polishing head or the like.
  • the surface of the semiconductor silicon wafer is polished on one side by pressing it against 1 and sliding it in contact with it.
  • the present invention also provides a single-sided polishing method for a semiconductor silicon wafer, which comprises performing single-sided polishing of a semiconductor silicon wafer using the polishing apparatus described above.
  • polishing is performed when polishing a semiconductor silicon wafer by using a polishing pad in which the center of the polishing region is set at a different position with respect to the center of the polishing pad. Since the locus of the outer peripheral portion of the circular polishing region on the outer peripheral portion of the polishing pad can be continuously changed with respect to the semiconductor silicon wafer, it is possible to balance the outer peripheral portion removal allowance and the central portion removal allowance. This makes it possible to prevent edge sagging of the semiconductor silicon wafer and abnormal inflection of the wafer after polishing.
  • the single-sided polishing is performed in an intermediate polishing process between the rough polishing process and the finish polishing process.
  • the polishing allowance is 0.3 to 1.5 ⁇ m.
  • the polishing allowance is 0.3 ⁇ m or more, the surface quality can be more reliably improved while suppressing edge sagging.
  • the polishing allowance is 1.5 ⁇ m or less, the edge sagging improvement effect obtained by continuously changing the locus of the outer peripheral portion of the circular polishing region with respect to the semiconductor silicon wafer is not offset, and the edge sagging is more reliably performed. It becomes possible to prevent. Further, if the polishing allowance is within such a range, the nanotopo is not affected.
  • the present invention is a method for manufacturing a polishing pad for single-sided polishing of a semiconductor silicon wafer, and at least, A step of providing a non-polishing region on the outer peripheral portion of the polishing pad and a polishing region inside the non-polishing region on the outer peripheral portion by performing an annular step processing on the surface of the polishing pad.
  • the unpolished region of the outer peripheral portion overlaps with the semiconductor silicon wafer when polishing the semiconductor silicon wafer, and the center of the polishing region is located at a position different from the center of the polishing pad.
  • a method for manufacturing a polishing pad for a semiconductor silicon wafer which comprises performing step processing so as to be set to.
  • the semiconductor silicon wafer can be formed by using a polishing pad in which the center of the polishing region is set at a different position from the center of the polishing pad.
  • the locus of the outer peripheral portion of the circular polishing region can be continuously changed with respect to the semiconductor silicon wafer, so that it is possible to balance the outer peripheral portion removal allowance and the central portion removal allowance. This makes it possible to prevent edge sagging of the semiconductor silicon wafer and abnormal inflection of the wafer after polishing.
  • FIG. 8A shows a conventional polishing pad
  • FIG. 8B shows a polishing pad having a smaller diameter than the conventional one
  • FIG. 8C shows a cross-sectional shape of the wafer after polishing when polishing using the polishing pad of the present invention.
  • edge sagging edge sagging
  • FIG. 8C shows a cross-sectional shape of the wafer after polishing when polishing using the polishing pad of the present invention.
  • edge sagging edge sagging
  • FIG. 8C shows a cross-sectional shape of the wafer after polishing when polishing using the polishing pad of the present invention.
  • the type of polishing pad for a semiconductor silicon wafer of the present invention is not particularly limited as long as it meets the above-mentioned necessary standards. Generally, a porous urethane pad or a pad in which a non-woven fabric is impregnated with a resin is used.
  • the polishing pad 1 of the present invention is provided with a circular polishing region 4 of the polishing pad 1 by performing an annular step processing on the surface of the polishing pad. Further, if necessary, an unpolished region 2 on the inner peripheral portion may be provided inside the polishing pad 1.
  • the timing of performing the step processing is not particularly limited, but for example, it can be performed on the polishing pad after the step of determining the outer circumference of the polishing pad 1.
  • an annular step 9 is provided by processing using an end mill or the like. In the case of processing using an end mill, the amount of the annular step 9 can be determined by the height of the end mill.
  • An image of an example of step processing is shown in FIG. As shown in FIG.
  • the annular polishing region 4 can be formed by scraping the inner peripheral portion and the outer peripheral portion of the polishing pad 1 with the end mill 14.
  • the hole processing can be performed by using a method such as punching processing. As a result, it is possible to prevent the attachment position from being displaced each time the polishing pad is replaced, that is, the overlap amount (area of the overlap region 7) from being displaced.
  • An image of punching for positioning is shown in FIG. As shown in FIG. 4, a hole 15 aligned with the positioning hole of the polishing surface plate 11 can be formed in the center of the polishing pad 1 by punching or the like.
  • Comparative Examples 1 and 2 In Comparative Examples 1 and 2 and Examples, a general-purpose single-sided polishing apparatus was used.
  • the polishing of Comparative Examples 1 and 2 has three stages of primary polishing, secondary polishing, and finish polishing. In each stage, an outer guide and a center guide for fixing the plate position, and a polishing head for pressing the plate are used.
  • a single-sided polishing device composed of a slurry discharge port provided in the center of the surface plate was used.
  • the surface plate is equipped with a motor for driving rotation and a speed reducer, and the plate is a polishing mechanism that is forcibly taken by the rotation of the lower surface plate.
  • a general-purpose product manufactured by Fujimi was used for the slurry of each stage.
  • the primary polishing pad was a general-purpose product from Nitta Haas
  • the finish polishing pad was a general-purpose product from Fujibo Ehime.
  • the wafer diameter was 200 mm, and six wafers were bonded to one plate with wax for polishing.
  • the design of the polishing pad for the secondary polishing was changed, and the polishing removal allowance for the secondary polishing was adjusted to 0.8 ⁇ m and changed.
  • Comparative Example 1 has a plain type in which no step processing is performed
  • Comparative Example 2 has a polishing region and a non-polishing region, and the polishing region is annular and the polishing region and the center of the polishing pad are centered.
  • the width of the unpolished region 103 of Comparative Example 2 was 40 mm.
  • the polishing pad for secondary polishing has a polishing region and a non-polishing region, the polishing region is annular and the center of the polishing region is located 10 mm radially outside the center of the polishing pad. It was carried out in the same manner as in Comparative Examples 1 and 2 except that the one was used.
  • the width of the unpolished region of the polishing pad for secondary polishing in the examples is 47.5 mm for A and 67.5 mm for B in FIG.
  • the width 20 of the overlap region 7 is 30 to 50 mm (semiconductor silicon). 15 to 25% of the diameter of the wafer). Further, the thickness of the polishing pads of Examples and Comparative Examples 1 and 2 was 1.3 mm, and the step amount of the step between the polished region and the non-polished region in Examples and Comparative Example 2 was 0.4 mm. ..
  • the cross-sectional shape of the wafer after polishing is based on KLA-Tencor's US9800, and SFQRmax (cell size 20 x 20, offset 0 x 0 mm, 2 mmEE), GFLR (2 mmEE), and nanotopo (viewing angle 2 mm x 2 mm) are based on KLA-Tencor.
  • Nanomapper and surface quality 100 nm SOD (Sum Of Defects): number of dark field defects having a diameter of 100 nm or more) were evaluated by SP1 of KLA-Tencor.
  • FIG. 9 shows a comparison of the specifications of the polishing pads for secondary polishing used in Comparative Example 2 and Examples.
  • the polishing pad used in Comparative Example 1 is not shown, but one without a step (plain) was used.
  • FIG. 5 shows a schematic diagram of the positional relationship between the polishing pads, plates, and semiconductor silicon wafers in the polishing devices of Comparative Examples 1 and 2 and Examples.
  • FIG. 5 shows polishing pads 1, 1', plates 12, 12', semiconductor silicon wafers W, W', center guides 17, 17', and polishing heads 13, 13'.
  • Table 1 shows the flatness evaluation results in which the polishing allowance for secondary polishing is adjusted to 0.8 ⁇ m.
  • Table 2 the results of evaluating SFQRmax, nanotopo, and 100 nm SOD by setting the secondary polishing allowance between 0.2 and 2 ⁇ m are shown in Table 2 together with the pass / fail for a certain product specification.
  • the part surrounded by the square frame indicates that the target value specified in a certain product specification has not been achieved and each evaluation item has failed.
  • the parts that do not meet the target values set by a certain product specification indicating that each evaluation item is acceptable.
  • the SFQR and nanotopo were worse than the other polishing allowances at the polishing allowance of 2 ⁇ m, but the SFQRmax values were particularly good as compared with the results of Comparative Examples 1 and 2 of the same polishing allowances.
  • FIG. 6 shows a comparison of the yields of SFQRmax defined by a certain product specification after mass production application.
  • the polishing pad and polishing apparatus of the present invention it is possible to suppress the outer peripheral sagging and abnormal bending of the wafer in single-sided polishing, and the target level is SFQRmax, nanotopo, 100 nm SOD, and flatness non-defective rate. It was shown that it can be improved.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Abstract

本発明は、半導体シリコンウェーハを片面研磨するための略円形研磨パッドであって、該研磨パッドは、前記研磨パッドの表面に、前記研磨パッド外径よりも小さな外径を有する円状研磨領域を有し、前記研磨パッドの中心と前記円状研磨領域の中心が異なる位置に存在していることを特徴とする半導体シリコンウェーハ用研磨パッドである。これにより、片面研磨におけるウェーハ外周ダレを解決し、かつ、研磨後のウェーハの異常変曲も防ぐことができる研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法が提供される。

Description

研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法
 本発明は、研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法に関する。
 シリコンウェーハの片面研磨では、通常、プレートに複数のウェーハをワックスで接着し、研磨パッドを貼り付けた研磨定盤上で、研磨スラリーの介在下で摺接研磨を行う(特許文献1)。一般的な研磨プロセスは、1次研磨、2次研磨、仕上げ研磨の3段階で構成される。
 この研磨プロセスを経て研磨された鏡面ウェーハの主要パラメータの一つとしてフラットネスがある。フラットネスを悪化させる要因の一つに、ウェーハ外周部取代が中心部取代よりも多いことで生じるエッジダレがある。これは研磨定盤の周速が研磨定盤外周側の方が研磨定盤内周側よりも大きいため、プレート外周部に接着されたウェーハの外周部が研磨時に辿る軌跡によって必然的に生じる現象である。
 その現象が最も顕著に表れるのが2次研磨である。1次研磨では、硬い研磨パッドで被研磨物表面の平坦性を最優先に確保する。2次研磨では、1次研磨で確保した平坦性を維持しつつ、前段階の研削や研磨にて発生した、または取り切れない傷を除去する。このため、1次研磨よりも硬度が低い研磨パッドを使用する。仕上げ研磨では2次研磨で残った微細傷や表面に付着した異物を除去する。この目的を達成するため、軟質な研磨パッドを使用する。1次研磨では、一般にAsker-C硬度80以上の硬質パッドを用いるのに対し、2次研磨では、上記目的のために、比較的軟質なAsker-C硬度60~70程度の研磨パッドを用いる。かつ、サブミクロン~ミクロンオーダの研磨取代を必要とするため、その取代を得る過程で、歩留に影響を与えるほどのエッジダレを生じてしまう。一方、1次研磨では前述のような高硬質パッドを用い、また、仕上げ研磨では超軟質なスウェードパッドを用いるが、研磨取代は数十nmと少ないため、両ステップでのエッジダレは問題にならない。
 研磨パッドと被研磨物の相互作用によって研磨が進行することから、研磨条件は詳細に検討される。例えば片面研磨では研磨物表面の各点において、研磨パッドとの相対速度を均一とするよう研磨方法が設計されている。具体的には、研磨パッドと研磨ヘッドを同方向に同速度で回転させることにより、前記相対速度を同一とし、被研磨物表面各点での研磨量を均一としている。しかしながら、回転ムラ、装置の固有振動、被研磨物加圧偏分布、などの影響により、エッジダレなどが発生しやすく、2次研磨において、図8(a)に示すようなエッジダレが生じ、また、平坦性の確保など他の品質と両立させることは困難であった。
 特許文献2では、片面研磨において、パッド剥がれ防止や、ウェーハ脱落防止等を目的として、研磨パッド周端に傾斜や段差をつけるなどの研磨表面部よりも高さの低い低位外周部を有する研磨パッドが提案されている。係る研磨パッドは、被研磨物との接触においては、小径の研磨パッドを使用することと何ら変わりがない。係る研磨パッドを使用した場合、被研磨物が研磨パッドと接触する部分と接触しない部分を境界として、図8(b)に示すような異常変曲を示してしまう問題があった。加えて、この低位外周部の幅は0.5mm以上と規定されているだけで、幅が連続的に変化するなどの記載はなく、ウェハフラットネス改善などへの言及もない。
特開昭57-170538号公報
 本発明は、このような事情に鑑みてなされたもので、片面研磨におけるウェーハの外周ダレ(エッジダレ)を解決し、かつ、研磨後のウェーハの異常変曲も防ぐことができる研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法を提供することを目的とする。
 上記目的を解決するために、本発明は、半導体シリコンウェーハを片面研磨するための略円形研磨パッドであって、
 該研磨パッドは、前記研磨パッドの表面に、前記研磨パッド外径よりも小さな外径を有する円状研磨領域を有し、
 前記研磨パッドの中心と前記円状研磨領域の中心が異なる位置に存在していることを特徴とする半導体シリコンウェーハ用研磨パッドを提供する。
 このとき、前記研磨パッドの中心と前記円状研磨領域の中心の距離が5~20mmであることが好ましい。
 また、前記円状研磨領域は、中心部に略円形状の前記研磨パッドに比して厚みが小さい段差を有することが好ましい。
 この場合、前記研磨パッドの厚みが0.8~1.5mmの範囲であり、前記段差の段差量が前記研磨パッドの厚みに対して30~90%のものであることが好ましい。
 また、前記研磨パッドがAsker-C硬度50~80のものであることが好ましい。
 また、本発明は、研磨パッドを貼り付ける研磨定盤と、半導体シリコンウェーハを接着させるプレートを保持する研磨ヘッドとを具備し、前記研磨ヘッドにより、前記プレートに接着させた半導体シリコンウェーハを、前記研磨定盤に貼り付けられた研磨パッドに押し付けて摺接させることにより前記半導体シリコンウェーハの表面を研磨する研磨装置であって、
 前記研磨パッドとして、上記記載の研磨パッドを具備するものであることを特徴とする研磨装置を提供する。
 また、本発明は、上記記載の研磨装置を用いて半導体シリコンウェーハの片面研磨を行うことを特徴とする半導体シリコンウェーハの片面研磨方法を提供する。
 また、前記片面研磨を、粗研磨プロセスと仕上げ研磨プロセスとの間の中間研磨プロセスにおいて行うことが好ましい。
 このような研磨方法であれば、特に中間研磨プロセスにおいて問題となるエッジダレの発生をより確実に防ぐことができる。
 また、前記片面研磨において、研磨取代を0.3~1.5μmとすることが好ましい。
 また、本発明は、半導体シリコンウェーハを片面研磨するための研磨パッドの製造方法であって、少なくとも、
 研磨パッドの表面に円環状の段差加工を施すことにより、前記研磨パッドの外周部の無研磨領域と、該外周部の無研磨領域の内側の研磨領域とを設ける工程を有し、
 前記段差加工を施す工程において、前記外周部の無研磨領域が、前記半導体シリコンウェーハを研磨する際に前記半導体シリコンウェーハと重なり、前記研磨領域の中心が、前記研磨パッドの中心に対して異なる位置となるように段差加工を施すことを特徴とする半導体シリコンウェーハ用研磨パッドの製造方法を提供する。
 本発明の半導体シリコンウェーハ用研磨パッド、研磨装置、片面研磨方法、及び、半導体シリコンウェーハ用研磨パッドの製造方法であれば、研磨領域の中心を、研磨パッドの中心に対して異なる位置に設定していることにより、半導体シリコンウェーハを研磨する際に、半導体シリコンウェーハ外周部と円状研磨領域最外周部の位置関係において、特定の振幅と周波数による疑似揺動状態を作り出す事ができるため、ウェーハ外周部取代と中心部取代とのバランスをとることが可能となる。これにより、半導体シリコンウェーハのエッジダレ、及び外周部の異常変曲を防ぐことが可能となる。
本発明の半導体シリコンウェーハ用研磨パッドの一例を示す概略図である。 本発明の研磨装置の一例を示す概略図(図2(A))、及び、その拡大図(図2(B))である。 段差加工の例を示す概略図である。 位置決め用のパンチング加工の例を示す概略図である。 比較例、実施例における研磨パッド、研磨装置のプレート、ウェーハの位置関係を示す模式図である。 実施例、及び、比較例のフラットネス良品率の比較を示す図である。 研磨領域の中心と研磨パッドの中心を異なる位置とした場合の研磨パッドの回転の様子(図7(A))、及び、その回転に伴う円状研磨領域の外周部の位置の変化(図7(B))の概略図である。 従来の研磨パッド、従来よりも小径の研磨パッド、本発明の研磨パッドを用いて研磨した場合の研磨後のウェーハ断面形状の概略図を示す。 比較例2、及び、実施例で用いた2次研磨の研磨パッドの仕様比較を示す概略図である。 本発明のオーバーラップ領域の幅を示す概略図である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 上記のように、シリコンウェーハの片面研磨、特に、1次研磨(粗研磨)プロセスと仕上げ研磨プロセスの間の中間研磨(2次研磨)プロセスにおいて、ウェーハ外周ダレ、研磨後のウェーハの異常変曲を共に防ぐことは困難であった。
 本発明者らは、創意工夫を重ねた結果、2次研磨パッド表面の外周部に円環状の段差加工を施し、研磨領域と無研磨領域を設け、半導体シリコンウェーハを片面研磨する際に、無研磨領域において半導体シリコンウェーハと重なる部分、すなわち、被研磨物が研磨パッド1の半径方向最外周位置に来た際において、当該被研磨物外周における被研磨面が研磨パッド上の円形研磨領域4と接触しない部分(以下、オーバーラップ領域という)を半導体シリコンウェーハに対して常に変化させることで、ウェーハのエッジダレ、研磨後のウェーハの異常変曲を共に解決することができることを見出し、本発明を完成させるに至った。
 即ち、本発明は、半導体シリコンウェーハを片面研磨するための略円形研磨パッドであって、
 該研磨パッドは、前記研磨パッドの表面に、前記研磨パッド外径よりも小さな外径を有する円状研磨領域を有し、
 前記研磨パッドの中心と前記円状研磨領域の中心が異なる位置に存在していることを特徴とする半導体シリコンウェーハ用研磨パッドである。
 本発明の半導体シリコンウェーハ用研磨パッドであれば、研磨領域の中心を、研磨パッドの中心に対して異なる位置に設定していることにより、半導体シリコンウェーハを研磨する際に、半導体シリコンウェーハ外周部と円状研磨領域最外周部の位置関係において、特定の振幅と周波数による疑似揺動状態を作り出すことができるため、ウェーハ外周部取代と中心部取代とのバランスをとることが可能となる。これにより、半導体シリコンウェーハのエッジダレ、及び外周部の異常変曲を防ぐことが可能となる。
 図1に、本発明の半導体シリコンウェーハ用研磨パッドの一例を示す。
 図1(A)に示すように、本発明の半導体シリコンウェーハ用の研磨パッド1は、その表面に円環状の段差9が設けられており、外周部の無研磨領域3と、円状研磨領域4を有する。円状研磨領域4の円環の中心6は、研磨パッド1の中心5に対して中心間距離8だけ異なる位置としている。円状研磨領域4の円環の中心6は研磨パッドの中心5に対して、中心間距離8が5~20mm異なる位置とすることが好ましい。より好ましくは7~20mmであり、さらに好ましくは、9~20mmである。両中心を異なる位置に設定することにより、段差起因で生じる局所的なウェーハ形状の変曲を回避することができる。また、中心間距離8を5~20mm異なる位置とすれば、段差起因で生じる局所的なウェーハ形状の変曲をより確実に回避することができる。
 従来技術である図9(A)に示す小径の研磨パッドを用いた場合、または、引用文献2に記載の研磨パッドを用いた場合、すなわち、研磨領域104の円環の中心との研磨パッドの中心が同位置である場合では、図中CおよびDで示した無研磨領域103の幅が変化せず、ウェーハに対して外周部の無研磨領域103と研磨領域104の段差境界が常に同じ軌跡を辿るため、異常変曲が生じ、図8(b)に示すように変曲部分のフラットネスが悪化してしまう。
 また、図1(B)に示すように円状研磨領域4は、中心部に略円形状の上記研磨パッドに比して厚みが小さい段差を有していてもよく、円状研磨領域に内周部の無研磨領域2を設けることもできる。以降、図1に示すような内周部の無研磨領域2を有する場合を例に説明するが、内周部の無研磨領域2は必ずしも設けなければならないものではない。また、本発明の研磨パッドには、研磨パッドの貼り付けを容易にするために、センターガイド17を固定するためのインナーホール18を設けることができる。
 図7(A)、(B)に、研磨領域の中心と研磨パッドの中心を異なる位置とした場合の研磨パッドの回転の様子(図7(A))、及び、その回転に伴う円状研磨領域の外周部の位置の変化(図7(B))の概略図を示す。図7(A)に示すように、円状研磨領域4の円環の中心6と研磨パッド1の中心5を異なる位置とした研磨パッドを、研磨パッド1の中心5を回転中心として回転させる際、図7(A)に示す研磨パッドの中心とを結ぶ線分を通る円状研磨領域4の外周部の位置である点Bは、図7(B)に示すように、回転方向における角度に伴って、研磨パッド1の半径方向において外周側と内周側に変化する。係る外周側と内周側に変化する量の最大値は、中心間距離8と円状研磨領域の直径によって決まる。このように、回転に伴って、円状研磨領域の外周部の位置が変動するため、段差起因で生じる局所的なウェーハ形状の変曲を回避することができる。
 また、図1(B)に示すように研磨パッドに内周部の無研磨領域2を設けた場合には、上記記載した円状研磨領域4の外周部と同様に、円状研磨領域の内周部の位置も、回転方向における角度に伴って、研磨パッドのより外周側と内周側に変化させることができる。このようにすることで、回転に伴って、円状研磨領域の内周部の位置も変動させることができるため、段差起因で生じる局所的なウェーハ形状の変曲をより確実に回避することができる。
 外周部の無研磨領域3は、本発明の半導体シリコンウェーハ用研磨パッドを用いて半導体シリコンウェーハを研磨する際に半導体シリコンウェーハと重なる領域であるオーバーラップ領域7を有する。オーバーラップ領域7の幅20は、オーバーラップ領域7がウェーハ外周部のエッジダレ領域をカバーしていればよく、半導体シリコンウェーハの直径に対して10~25%の幅であることが好ましい。より好ましくは12~23%であり、さらに好ましくは、13~20%である。ここで、オーバーラップ領域7の幅20とは、オーバーラップ領域7において、当該研磨パッド1の半径方向における前記被研磨物最外周位置から円形研磨領域4の最外周位置の間の距離と定義する事ができる。図10は、本願に係るオーバーラップ領域の幅を示した模式図である。図10は、研磨装置10の模式図であって、(A)から(C)のいずれにおいても、図2および図5に示した研磨定盤11、プレート12、および、研磨ヘッド13を省略している。図10(A)は研磨機を上面から見た図であり、図10(B)は(A)において最も外周部の無研磨領域3の半径方向幅狭い位置であるE-E’断面の部分拡大図であり、(C)は(A)において最も外周部の無研磨領域3の半径方向幅狭い位置であるF-F’断面の部分拡大図である。すなわち、図10(B)に示すオーバーラップ領域7の幅20が最小となり、図10(C)に示すオーバーラップ領域7の幅20が最大となる。係るオーバーラップ領域7の幅の最小値が10%以上であれば、エッジダレを十分に抑制することができ、25%以下であれば、ウェーハ外周取代と中心取代のバランスがより確実にとれ、面内取代分布がより均一となる。
 円環状の段差9の段差量は研磨パッド1の厚みに対して30~90%とすることが好ましい。より好ましくは40~80%であり、さらに好ましくは、60~80%である。円環状の段差9が30%以上であれば、本来の製品寿命に達する前に研磨パッドの摩耗により円環状の段差9が消失することによってエッジダレ改善効果がなくなってしまうことを防ぐことができる。また、80%以下であれば、研磨パッドの研磨定盤等への貼り付けが困難になることがなく、ハンドリング性が良好となる。
 研磨パッドの厚み16は0.8~1.5mmであることが好ましい。より好ましくは1.0~1.5mmであり、さらに好ましくは、1.2~1.4mmである。研磨パッドの厚みが1.5mm以下であれば、エッジダレをより確実に防ぐことができ、また、0.8mm以上であれば、求められる表面品質をより確実に満たすことができ、ハンドリングの問題が生じることがない。
 また、本発明の研磨パッドは、AskerC硬度が50~80のものであることが好ましい。より好ましくは55~75であり、さらに好ましくは、60~70である。このような硬度であれば、表面品質の調整に好適な研磨パッドとすることができる。
 また、本発明は、研磨パッドを貼り付ける研磨定盤と、半導体シリコンウェーハを接着させるプレートを保持する研磨ヘッドとを具備し、前記研磨ヘッドにより、前記プレートに接着させた半導体シリコンウェーハを、前記研磨定盤に貼り付けられた研磨パッドに押し付けて摺接させることにより前記半導体シリコンウェーハの表面を研磨する研磨装置であって、
 前記研磨パッドとして、上記記載の研磨パッドを具備するものであることを特徴とする研磨装置を提供する。
 図2(A)、(B)に示す本発明の研磨装置の一例(図2(A))、及び、その拡大図(図2(B))のように、本発明の研磨装置10は、研磨パッド1を貼り付ける研磨定盤11と、半導体シリコンウェーハWを接着させるプレート12を保持する研磨ヘッド13とを具備する。
 本発明の研磨定盤11には本発明の研磨パッド1が貼り付けられており、プレート12に接着させた半導体シリコンウェーハWを、研磨ヘッド等により、研磨定盤11に貼り付けられた研磨パッド1に押し付けて摺接させることにより半導体シリコンウェーハの表面を片面研磨する。
 このような研磨装置であれば、円状研磨領域4の中心を、研磨パッドの中心に対して異なる位置に設定している研磨パッドを具備することにより、半導体シリコンウェーハを片面研磨する際に、オーバーラップ領域7を半導体シリコンウェーハに対して常に変化させることができるため、ウェーハ外周部取代と中心部取代とのバランスをとることが可能となる。これにより、半導体シリコンウェーハのエッジダレ、研磨後のウェーハの異常変曲を防ぐことが可能となる。
 また、本発明は、上記記載の研磨装置を用いて半導体シリコンウェーハの片面研磨を行うことを特徴とする半導体シリコンウェーハの片面研磨方法を提供する。このような片面研磨方法であれば、研磨領域の中心を、研磨パッドの中心に対して異なる位置に設定している研磨パッドを用いることにより、半導体シリコンウェーハを研磨する際に、研磨が行われない研磨パッド外周部の円状研磨領域外周部の軌跡を半導体シリコンウェーハに対して連続的に変化させることができるため、ウェーハ外周部取代と中心部取代とのバランスをとることが可能となる。これにより、半導体シリコンウェーハのエッジダレ、研磨後のウェーハの異常変曲を防ぐことが可能となる。
 また、前記片面研磨を、粗研磨プロセスと仕上げ研磨プロセスとの間の中間研磨プロセスにおいて行うことが好ましい。このような研磨方法であれば、特に中間研磨プロセスにおいて問題となるエッジダレの発生をより確実に防ぐことができる。
 また、片面研磨において、研磨取代を0.3~1.5μmとすることが好ましい。研磨取代が0.3μm以上であれば、エッジダレを抑制しつつ、表面品質もより確実に良好とすることができる。研磨取代が1.5μm以下であれば、円状研磨領域外周部の軌跡を半導体シリコンウェーハに対して連続的に変化させることにより得られるエッジダレ改善効果を相殺することがなく、エッジダレをより確実に防ぐことが可能となる。また、研磨取代がこのような範囲であれば、ナノトポに影響を与えることがない。
 また、本発明は、半導体シリコンウェーハを片面研磨するための研磨パッドの製造方法であって、少なくとも、
 研磨パッドの表面に円環状の段差加工を施すことにより、前記研磨パッドの外周部の無研磨領域と、該外周部の無研磨領域の内側の研磨領域とを設ける工程を有し、
 前記段差加工を施す工程において、前記外周部の無研磨領域が、前記半導体シリコンウェーハを研磨する際に前記半導体シリコンウェーハと重なり、前記研磨領域の中心を、前記研磨パッドの中心に対して異なる位置に設定するように段差加工を施すことを特徴とする半導体シリコンウェーハ用研磨パッドの製造方法を提供する。
 このような製造方法により製造された半導体シリコンウェーハ用研磨パッドであれば、研磨領域の中心を、研磨パッドの中心に対して異なる位置に設定している研磨パッドを用いることにより、半導体シリコンウェーハを片面研磨する際に、円状研磨領域外周部の軌跡を半導体シリコンウェーハに対して連続的に変化させることができるため、ウェーハ外周部取代と中心部取代とのバランスをとることが可能となる。これにより、半導体シリコンウェーハのエッジダレ、研磨後のウェーハの異常変曲を防ぐことが可能となる。
 図8(a)に従来の研磨パッド、(b)に従来よりも小径の研磨パッド、および(c)に本発明の研磨パッドを用いて研磨した場合の研磨後のウェーハ断面形状を示す。従来の研磨パッドの場合、上述のように、図8(a)に示すように、エッジダレ(フチダレ)などが発生しやすく、エッジダレと平坦性の確保など他の品質とを両立させることは困難である。また、フチダレを回避するために、従来よりも小径の研磨パッドを用いて被研磨物外周を研磨しないようすると、図8(b)に示すように、異常変曲を生じてしまう。一方、本発明の研磨パッドを用いて研磨した場合、上記理由により、図8(c)に示すように、フチダレ、及び、異常変曲を防ぐことが可能となる。
 本発明の半導体シリコンウェーハ用研磨パッドは、上述した必要規格を満たせば、パッド種類は特に限定されない。一般には、多孔質ウレタンパッドや、不織布に樹脂を含浸させたパッドが用いられる。
 本発明の研磨パッド1は、研磨パッドの表面に円環状の段差加工を施すことにより、研磨パッド1の円状研磨領域4を設ける。また、必要に応じて、研磨パッド1の内側に内周部の無研磨領域2を設けることもできる。当該段差加工を行うタイミングは特に限定されないが、例えば研磨パッド1の外周を決定する工程後の研磨パッドに対して行うことができる。当該段差加工工程では、エンドミル等を用いた加工により円環状の段差9を設ける。エンドミルを用いた加工の場合、円環状の段差9の量はエンドミルの高さにより決定することができる。段差加工の例のイメージを図3に示す。図3に示すように、研磨パッド1の内周部と外周部とを、エンドミル14により削ることで、円環状の研磨領域4を形成することができる。研磨パッド1の製造段階で段差加工を行うことにより、研磨パッドを研磨定盤に貼付けた後に段差加工を行う必要がなくなる。
 その後、研磨パッド1の貼り付け位置を固定するために、研磨定盤11の位置決め孔等のサイズに合わせた孔加工を行うことができる。当該孔加工は、パンチング加工などの方法を用いて行うことができる。これにより研磨パッド交換毎の貼り付け位置のズレ、つまりオーバーラップ量(オーバーラップ領域7の面積)のズレを防止することができる。位置決め用のパンチング加工のイメージを図4に示す。図4に示すように、研磨パッド1の中心に研磨定盤11の位置決め穴に合わせた孔15をパンチング加工などにより形成することができる。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
[実施例、比較例1、2]
 比較例1、2および実施例では、汎用の片面研磨装置を用いた。比較例1、2の研磨は、1次研磨、2次研磨、仕上げ研磨の3ステージを有し、各ステージでは、プレート位置を固定するためのアウターガイド及びセンターガイド、プレート押圧の為の研磨ヘッド、定盤中央に設けたスラリー吐出口で構成される片面研磨装置を用いた。定盤には回転駆動用のモータ及び減速機を備えており、プレートは下定盤の回転により強制的に連れまわる研磨機構である。各ステージのスラリーはフジミ社の汎用品を用いた。1次研磨パッドはニッタ・ハース社の汎用品、仕上げ研磨パッドはフジボウ愛媛社の汎用品をそれぞれ用いた。ウェーハ直径は200mmで、1枚のプレートに6枚のウェーハをワックスで接着させて研磨を行った。2次研磨の研磨パッドのデザインを変化させ、2次研磨の研磨取り代を0.8μmに揃えた場合と変化させた場合で行った。2次研磨の研磨パッドとして、比較例1では段差加工されていないプレーンタイプ、比較例2では、研磨領域と無研磨領域とを有し、研磨領域が円環状かつ研磨領域と研磨パッドの中心が同じ位置にあるものでそれぞれ実験を行った(図5、図9参照)。比較例2の無研磨領域103の幅(図9比較例のCおよびD)は40mmであった。
 実施例では、2次研磨の研磨パッドとして、研磨領域と無研磨領域とを有し、研磨領域が円環状かつ研磨領域の中心が研磨パッドの中心に対して10mm半径方向外側に位置しているものを用いた以外は、比較例1および2と同様に行った。実施例における2次研磨の研磨パッドの無研磨領域の幅は、図9のAが47.5mm、同Bが67.5mmであり、オーバーラップ領域7の幅20は、30~50mm(半導体シリコンウェーハの直径に対して15~25%)であった。また、実施例、及び、比較例1、2の研磨パッドの厚みは1.3mmであり、実施例、比較例2における研磨領域と無研磨領域との段差の段差量は0.4mmであった。
 研磨後のウェーハ断面形状はKLA-Tencor社のUS9800により、SFQRmax(セルサイズ20×20、オフセット0×0mm、2mmEE)、及びGFLR(2mmEE)、ナノトポ(視野角2mm×2mm)はKLA-Tencor社のNanomapper、表面品質(100nm SOD(Sum Of Defects):100nm以上の直径を有する暗視野欠陥の数)はKLA-Tencor社のSP1によりそれぞれ評価した。
 比較例2、及び、実施例で用いた2次研磨の研磨パッドの仕様比較を図9に示す。比較例1で用いた研磨パッドは図示しないが、段差のないもの(プレーン)を用いた。
 また、それぞれの比較例1、2、及び、実施例の研磨装置における研磨パッド、プレート、半導体シリコンウェーハの位置関係の模式図を図5に示す。図5に、研磨パッド1、1’、プレート12、12’、半導体シリコンウェーハW、W’、センターガイド17、17’、研磨ヘッド13、13’を図示した。
 2次研磨の研磨取代を0.8μmに揃えたフラットネス評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、プレーンタイプの研磨パッドを用いた場合(比較例1)ではウェーハ外周部にエッジダレを生じてしまう。このエッジダレによりSFQRmaxとGFLRの両方が悪化する。また、研磨領域の中心と研磨パッドの中心を同芯にした場合(比較例2)、エッジダレは改善するが、段差部分で異常変曲を生じてしまい、この異常変曲によりGFLRが悪化する。一方、研磨領域の中心と研磨パッドの中心を異なる位置に設定した場合、エッジダレは改善し、かつ異常変曲も生じない、図8(C)に示すような結果となった。結果、SFQRmaxとGFLRの両方が改善した。
 次に、2次研磨取代を0.2~2μmの間で水準を振り、SFQRmax、ナノトポ、100nm SODを評価した結果を、ある製品スペックに対する合否とともに表2に示す。表2中、四角枠で囲まれた箇所は、ある製品スペックで定められた目標値を達成しておらず、各評価項目において不合格であることを示している。一方、そうでない箇所はある製品スペックで定められた目標値を達成しており、各評価項目において合格であることを示している。
Figure JPOXMLDOC01-appb-T000002
 比較例1、2ともに、0.2μmの2次研磨取代では、100nmSOD、SFQRmax(フラットネス)がともに悪化してしまい、表面品質調整工程としての役割を果たせていないことがわかる。また、比較例1は2次研磨取代の増加に応じてSFQRは悪化し、0.2μmの研磨取代でもSFQRmaxは高く、研磨取代を下げることによるフラットネス改善効果は限定的である。比較例2では、研磨取代を減らすことでSFQRは改善し、目標値に近づくが、ほとんどの全ての研磨取代水準でナノトポが良好ではない。これは段差境界部起因の異常変曲部分を反映した結果である。また、研磨取代を0.22μmに下げた場合、100nmSODも悪化してしまう。
 実施例では、2μmの研磨取代で他の研磨取代よりもSFQR、ナノトポが悪化したが、同様の研磨取代の比較例1、2の結果と比較して、特にSFQRmaxの値は良好であった。
 以上から、実施例で2次研磨取代を0.3~1.5μmの範囲で規定することが好ましく、中心の0.8μm前後が最も好ましい結果となることが分かった。量産適用後のある製品スペックで定められたSFQRmaxの収率の比較を図6に示す。
 図6から明らかなように、実施例により、ある製品スペックで定められたSFQRmaxの収率(フラットネス良品率)は、従来の90%(比較例1)から98%まで改善した。
 このように、本発明の研磨パッド、研磨装置であれば、片面研磨におけるウェーハの外周ダレ、異常変曲を抑制することができ、SFQRmax、ナノトポ、100nm SOD、フラットネス良品率を目標とするレベルまで改善することができることが示された。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  半導体シリコンウェーハを片面研磨するための略円形研磨パッドであって、
     該研磨パッドは、前記研磨パッドの表面に、前記研磨パッド外径よりも小さな外径を有する円状研磨領域を有し、
     前記研磨パッドの中心と前記円状研磨領域の中心が異なる位置に存在していることを特徴とする半導体シリコンウェーハ用研磨パッド。
  2.  前記研磨パッドの中心と前記円状研磨領域の中心の距離が5~20mmであることを特徴とする請求項1に記載の半導体シリコンウェーハ用研磨パッド。
  3.  前記円状研磨領域は、中心部に略円形状の前記研磨パッドに比して厚みが小さい段差を有することを特徴とする請求項1又は請求項2に記載の半導体シリコンウェーハ用研磨パッド。
  4.  前記研磨パッドの厚みが0.8~1.5mmの範囲であり、前記段差の段差量が前記研磨パッドの厚みに対して30~90%のものであることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体シリコンウェーハ用研磨パッド。
  5.  前記研磨パッドがAsker-C硬度50~80のものであることを特徴とする請求項1から請求項4のいずれか1項に記載の半導体シリコンウェーハ用研磨パッド。
  6.  研磨パッドを貼り付ける研磨定盤と、半導体シリコンウェーハを接着させるプレートを保持する研磨ヘッドとを具備し、前記研磨ヘッドにより、前記プレートに接着させた半導体シリコンウェーハを、前記研磨定盤に貼り付けられた研磨パッドに押し付けて摺接させることにより前記半導体シリコンウェーハの表面を研磨する研磨装置であって、
     前記研磨パッドとして、請求項1から請求項5のいずれか1項に記載の研磨パッドを具備するものであることを特徴とする研磨装置。
  7.  請求項6に記載の研磨装置を用いて半導体シリコンウェーハの片面研磨を行うことを特徴とする半導体シリコンウェーハの片面研磨方法。
  8.  前記片面研磨を、粗研磨プロセスと仕上げ研磨プロセスとの間の中間研磨プロセスにおいて行うことを特徴とする請求項7に記載の半導体シリコンウェーハの片面研磨方法。
  9.  前記片面研磨において、研磨取代を0.3~1.5μmとすることを特徴とする請求項7又は請求項8に記載の半導体シリコンウェーハの片面研磨方法。
  10.  半導体シリコンウェーハを片面研磨するための研磨パッドの製造方法であって、
     研磨パッドの表面に円環状の段差加工を施すことにより、前記研磨パッドの外周部の無研磨領域と、該外周部の無研磨領域の内側の研磨領域とを設ける工程を有し、
     前記段差加工を施す工程において、前記外周部の無研磨領域が、前記半導体シリコンウェーハを研磨する際に前記半導体シリコンウェーハと重なり、前記研磨領域の中心を、前記研磨パッドの中心に対して異なる位置に設定するように段差加工を施すことを特徴とする半導体シリコンウェーハ用研磨パッドの製造方法。
PCT/JP2020/018228 2019-07-04 2020-04-30 研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法 WO2021002089A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-125463 2019-07-04
JP2019125463A JP2021012922A (ja) 2019-07-04 2019-07-04 研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法

Publications (1)

Publication Number Publication Date
WO2021002089A1 true WO2021002089A1 (ja) 2021-01-07

Family

ID=74100998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018228 WO2021002089A1 (ja) 2019-07-04 2020-04-30 研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法

Country Status (3)

Country Link
JP (1) JP2021012922A (ja)
TW (1) TW202109653A (ja)
WO (1) WO2021002089A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246627A (ja) * 1998-12-28 2000-09-12 Mitsubishi Materials Silicon Corp ウェーハ研磨装置
JP2006068888A (ja) * 2004-09-06 2006-03-16 Speedfam Co Ltd 定盤の製造方法及び平面研磨装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246627A (ja) * 1998-12-28 2000-09-12 Mitsubishi Materials Silicon Corp ウェーハ研磨装置
JP2006068888A (ja) * 2004-09-06 2006-03-16 Speedfam Co Ltd 定盤の製造方法及び平面研磨装置

Also Published As

Publication number Publication date
JP2021012922A (ja) 2021-02-04
TW202109653A (zh) 2021-03-01

Similar Documents

Publication Publication Date Title
EP2042267B1 (en) Carrier for double-side polishing apparatus, double-side polishing apparatus using the same,and double-side polishing method
KR101565026B1 (ko) 양면 연마 장치용 캐리어 및 이를 이용한 양면 연마 장치, 및 양면 연마 방법
JP5301802B2 (ja) 半導体ウェハの製造方法
KR102507777B1 (ko) 웨이퍼의 제조 방법 및 웨이퍼
US7722439B2 (en) Semiconductor device manufacturing apparatus and method
US20170069502A1 (en) Manufacturing method of carrier for double-side polishing apparatus, carrier for double-side polishing apparatus, and double-side polishing method
WO2013080453A1 (ja) 両面研磨装置用キャリア及びこれを用いた両面研磨装置並びに両面研磨方法
JP6447332B2 (ja) 両面研磨装置用のキャリアの製造方法およびウェーハの両面研磨方法
CN112218737A (zh) 晶片的镜面倒角方法、晶片的制造方法及晶片
JP2007173815A (ja) シリコンウエハ研磨装置、これに使用されるリテーニングアセンブリ及びシリコンウエハ平坦度補正方法
KR102112535B1 (ko) 연마용 발포 우레탄 패드의 드레싱 장치
WO2021002089A1 (ja) 研磨パッド、研磨装置、それを用いた研磨方法、及び、研磨パッドの製造方法
TWI804554B (zh) 載體的製造方法及晶圓的雙面研磨方法
JP6947135B2 (ja) 研磨装置、ウェーハの研磨方法、及び、ウェーハの製造方法
US11440157B2 (en) Dual-surface polishing device and dual-surface polishing method
JP2004241723A (ja) 半導体ウエーハの製造方法、サポートリング及びサポートリング付ウエーハ
JPS6368360A (ja) 半導体ウエ−ハの研磨方法
WO2019208042A1 (ja) 研磨装置、ウェーハの研磨方法、及び、ウェーハの製造方法
JP7276246B2 (ja) 両面研磨装置用キャリアの製造方法及びウェーハの両面研磨方法
WO2022215370A1 (ja) ウェーハの加工方法及びウェーハ
JP2022178347A (ja) テンプレートアセンブリ、研磨ヘッド及びウェーハの研磨方法
KR101105702B1 (ko) 웨이퍼 연마 방법
JP2006147625A (ja) 薄板の薄化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835569

Country of ref document: EP

Kind code of ref document: A1