WO2021000359A1 - 一种基于色散选通的大气成分探测激光雷达 - Google Patents

一种基于色散选通的大气成分探测激光雷达 Download PDF

Info

Publication number
WO2021000359A1
WO2021000359A1 PCT/CN2019/096980 CN2019096980W WO2021000359A1 WO 2021000359 A1 WO2021000359 A1 WO 2021000359A1 CN 2019096980 W CN2019096980 W CN 2019096980W WO 2021000359 A1 WO2021000359 A1 WO 2021000359A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
atmospheric
dispersion
pulse
gating
Prior art date
Application number
PCT/CN2019/096980
Other languages
English (en)
French (fr)
Inventor
章振
上官明佳
夏海云
窦贤康
薛向辉
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to US17/297,125 priority Critical patent/US20220026577A1/en
Publication of WO2021000359A1 publication Critical patent/WO2021000359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to the technical field of laser radar, and more specifically, to a laser radar for detecting atmospheric components based on dispersion gating.
  • the detection of atmospheric components plays an important role in climatology, meteorological research, the release of biological and chemical weapons, the prevention of forest fires, and the prevention of air pollution.
  • single-point detection techniques include: Differential Optical Absorption Spectroscopy (DOAS), Non-Dispersive Infrared (NDIR), and Optical Cavity Ring-Down Spectroscopy ( Cavity Ring-down Spectroscopy (CRDS), Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy (IBBCEAS), Laser-induced Fluorescence (LIF), UV-Visible spectrophotometry (Ultraviolet-visible spectroscopy, referred to as UV-Vis), Tunable Diode Laser Absorption Spectroscopy (abbreviated as TDLAS) and other technologies, although high-precision detection of multiple types of gas components can be achieved, but the gas concentration cannot be obtained Lidar is an effective technical means to obtain the spatial and temporal distribution of high gas concentration.
  • DOAS Differential Optical Absorption Spectroscopy
  • NDIR Non-Dispersive Infrared
  • CRDS Optical Cavity Ring-Down Spectroscopy
  • gas detection lidar can be divided into differential absorption lidar, Raman lidar and high spectral resolution lidar.
  • the most commonly used differential absorption lidar usually uses two-wavelength lasers.
  • One wavelength of the laser has a strong absorption cross-section on the gas to be measured, and the other wavelength laser has a weak absorption cross-section on the gas to be measured. Detecting the ratio of the two laser echo signals can determine the composition of the gas to be measured at different distances.
  • differential absorption lidar has realized the detection of gas components such as H 2 O, CO 2 , CO, HCI, NH 3 , NO 2 , SO 2 and O 3 , but the disadvantage of differential absorption lidar is that only a single type can be realized. Gas composition detection.
  • the composition information of different gases can be obtained by scanning the spectrum, but its disadvantage is that the wavelength tuning performed by the PZT or the motor causes the wavelength of the emitted laser to be calibrated and locked in real time, and its system structure is complicated .
  • the present invention provides an atmospheric composition detection lidar based on dispersion gating.
  • the technical solution is as follows:
  • the atmospheric component detection lidar includes: femtosecond laser, dispersion gating device, laser pulse amplification device, laser transceiver, atmospheric background noise filter module, detection device, signal Collection device and data processing device;
  • the femtosecond laser is used to output femtosecond laser pulses
  • the dispersion gating device is used to perform time-domain dispersion on the femtosecond laser pulse, and gating its spectrum in the time domain to output a first target laser pulse of a preset wavelength;
  • the laser pulse amplification device is used to amplify the power of the first target laser pulse to form a second target laser pulse;
  • the laser transceiver device is used to compress the divergence angle of the second target laser pulse and emit it into the atmosphere, and receive the atmospheric echo signal;
  • the atmospheric background noise filtering device is used to perform noise processing on the atmospheric echo signal
  • the detection device is used to detect the atmospheric echo signal and output a corresponding electrical signal
  • the signal collection device is used to collect the electrical signal
  • the data processing device is used to process the electrical signal to obtain concentration information of atmospheric gas components.
  • the dispersion gating device includes: a first optical filter, a first intensity modulator, a dispersion device, a pre-laser amplifier, a second optical filter, and a second intensity modulation Device
  • the first optical filter is used for filtering the femtosecond laser pulse to select the femtosecond laser within the gas absorption spectrum
  • the first intensity modulator is used to reduce the repetition frequency of the femtosecond laser pulse output by the femtosecond laser, so as to increase the effective detection range of the atmospheric component detection lidar;
  • the dispersive device is used to disperse the femtosecond laser in the time domain, so as to realize spectrum-to-pulse mapping;
  • the pre-laser amplifier is used to amplify the dispersed wide pulse laser to compensate for the loss caused by the filter and the dispersive device;
  • the second optical filter is used to shape the spectrum of the wide pulse laser
  • the second intensity modulator is used to select a laser pulse of a preset wavelength in the time domain for the shaped wide pulse laser, that is, the first target laser pulse.
  • the second optical filter is a programmable optical filter.
  • the atmospheric component detection lidar further includes: a parameter optimization device;
  • the parameter optimization device is used for optimizing the parameters of the first intensity modulator, the dispersion device and the second intensity modulator, so as to adjust the center wavelength and the spectral width of the gated laser pulse.
  • the atmospheric component detection lidar further includes: an adjustment device;
  • the adjusting device is used to adjust the delay of the second intensity modulator to realize the scanning of the laser to obtain the absorption spectrum of the gas to be measured and realize the concentration measurement of the gas component.
  • the first optical filter is also used to gate the spectrum of the femtosecond laser to realize the detection of different gas components.
  • the wavelength of the femtosecond laser is from ultraviolet to infrared.
  • the detection device is a single photon detector.
  • the laser transceiver includes: a beam expander and an optical telescope;
  • the beam expander is used to compress the divergence angle of the second target laser pulse and emit it into the atmosphere;
  • the optical telescope is used for receiving atmospheric echo signals.
  • the atmospheric component detection lidar stretches the femtosecond laser into a broad pulse laser in the time domain through dispersion.
  • the femtosecond spectrum is mapped into the broadened laser pulse due to group velocity dispersion, and is completed by the time domain gating of the intensity modulator.
  • the laser wavelength scanning is realized by adjusting the delay of the electric drive signal of the intensity modulator.
  • the absorption spectrum of a specific atmospheric component is obtained through laser wavelength scanning, thereby measuring the concentration of atmospheric gas components.
  • the atmospheric component detection lidar can accurately select the wavelength of the emitted laser light at will, its wavelength selection has high precision and fast speed, and can realize scanning and detection of multiple gases through the center wavelength of the filter.
  • FIG. 1 is a schematic structural diagram of an atmospheric composition detection lidar based on dispersion gating according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another atmospheric component detection lidar based on dispersion gating according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of time-domain and frequency-domain signals at a certain location according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of time domain and frequency domain signals at another location according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of time domain and frequency domain signals at another location provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of time domain and frequency domain signals at another location provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of time domain and frequency domain signals at another location according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an atmospheric component detection lidar based on dispersion gating according to an embodiment of the present invention.
  • the atmospheric component detection lidar includes: a femtosecond laser 1, a dispersion gating device 2, a laser Pulse amplification device 3, laser transceiver device 4, atmospheric background noise filter module 5, detection device 6, signal acquisition device 7 and data processing device 8;
  • the femtosecond laser 1 is used to output femtosecond laser pulses
  • the dispersion gating device 2 is used to perform time-domain dispersion on the femtosecond laser pulse and gating the spectrum in the time domain to output a first target laser pulse of a preset wavelength;
  • the laser pulse amplifying device 3 is used to amplify the power of the first target laser pulse to form a second target laser pulse;
  • the laser transceiver 4 is configured to compress the divergence angle of the second target laser pulse and emit it into the atmosphere, and receive the atmospheric echo signal;
  • the atmospheric background noise filtering device 5 is used to perform noise processing on the atmospheric echo signal; (specifically, it is used to filter the background noise of the sun and the background noise of the sky to improve the signal-to-noise ratio of detection).
  • the detection device 6 is used to detect the atmospheric echo signal and output corresponding electrical signals
  • the signal collection device 7 is used to collect the electrical signal
  • the data processing device 8 is used to process the electrical signal to obtain concentration information of atmospheric gas components.
  • the atmospheric component detection lidar stretches the femtosecond laser into a broad pulse laser in the time domain through dispersion, and the femtosecond spectrum is mapped into the broadened laser pulse due to group velocity dispersion.
  • the selection of the preset wavelength laser is completed, and the laser wavelength scanning is realized by adjusting the delay of the electric drive signal of the intensity modulator.
  • the absorption spectrum of a specific atmospheric component is obtained through laser wavelength scanning, thereby measuring the concentration of atmospheric gas components.
  • the atmospheric component detection lidar can accurately select the wavelength of the emitted laser light at will, its wavelength selection has high precision and fast speed, and by adjusting the center wavelength of the filter, scanning and detection of multiple gases can be realized.
  • the dispersion gating device 2 includes: a first optical filter 21, a first intensity modulator 22, a dispersion device 23, a pre-laser amplifier 24, and a second Two optical filters 25 and a second intensity modulator 26;
  • the first optical filter 21 is used for filtering the femtosecond laser pulse to select the femtosecond laser within the gas absorption spectrum;
  • the first intensity modulator 22 is used to reduce the repetition frequency of the femtosecond laser pulse output by the femtosecond laser, so as to increase the effective detection range of the atmospheric component detection lidar;
  • the dispersive device 23 is used to disperse the femtosecond laser in the time domain, so as to implement spectrum-to-pulse mapping;
  • the pre-laser amplifier 24 is used to amplify the dispersed wide pulse laser to compensate for the loss caused by the filter and the dispersive device;
  • the second optical filter 25 is used to shape the spectrum of the wide pulse laser
  • the second intensity modulator 26 is used to select a laser pulse of a preset wavelength in the time domain for the shaped wide pulse laser, that is, the first target laser pulse.
  • the femtosecond laser is stretched into a wide-pulse laser in the time domain by dispersion.
  • the wide-pulse laser is gated in the time domain by the intensity modulator, the selection of a specific wavelength laser is completed.
  • the center wavelength of the laser The sum bandwidth is determined by the amount of dispersion and the drive signal of the intensity modulator.
  • the absorption spectrum of atmospheric gas is measured by scanning the wavelength of the emitted laser, thereby obtaining the concentration of atmospheric gas components. This embodiment can realize precise control of the center wavelength and line width of the emitted laser, thereby measuring the gas absorption spectrum.
  • the second optical filter 25 is a programmable optical filter.
  • the laser transceiver device 4 includes: a beam expander 41 and an optical telescope 42;
  • the beam expander 41 is used to compress the divergence angle of the second target laser pulse and emit it into the atmosphere;
  • the optical telescope 42 is used to receive atmospheric echo signals.
  • the optical telescope 42 is used to receive the atmospheric echo signal after the laser interacts with the atmosphere.
  • FIG. 2 is a schematic structural diagram of another atmospheric component detection lidar based on dispersion gating provided by an embodiment of the present invention, and the atmospheric component detection lidar further includes: Parameter optimization device 9;
  • the parameter optimization device 9 is used to optimize the parameters of the first intensity modulator 22, the dispersive device 23, and the second intensity modulator 26 to determine the center wavelength and spectral width of the gated laser pulse. Conduct regulation.
  • the atmospheric composition detection lidar further includes: an adjustment device 10;
  • the adjusting device 10 is used to adjust the delay of the second intensity modulator 23 to realize the scanning of the laser to obtain the absorption spectrum of the gas to be measured, and to realize the concentration measurement of the gas component.
  • the first optical filter 21 is also used for gating the femtosecond laser pulses to achieve detection of different gas components.
  • the wavelength of the femtosecond laser 1 ranges from ultraviolet to infrared.
  • the detection device 6 is a single photon detector.
  • FIG. 3 is a schematic diagram of time domain and frequency domain signals at a certain location according to an embodiment of the present invention.
  • FIG 3 it corresponds to the point a in Figure 1 and is located between the first optical filter 21 and the first intensity modulator 22.
  • the intensity of the laser pulse in the time domain is reduced, and in the frequency domain, The spectral range of the laser is modulated by the filter to select the wavelength corresponding to the gas absorption spectrum.
  • FIG. 4 is a schematic diagram of time domain and frequency domain signals at another location according to an embodiment of the present invention.
  • Fig. 4 it corresponds to point b in Fig. 1, and is located between the first intensity modulator 22 and the dispersive device 23. Its spectrum has not changed, but the repetition frequency of the femtosecond laser pulse is reduced, which is beneficial to Long-distance detection of lidar.
  • FIG. 5 is a schematic diagram of time domain and frequency domain signals at another location provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of time domain and frequency domain signals at another location provided by an embodiment of the present invention.
  • the second optical filter 25 can be used to shape the spectrum of the laser pulse to facilitate the detection of the gas absorption spectrum.
  • FIG. 7 is a schematic diagram of time domain and frequency domain signals at another location provided by an embodiment of the present invention.
  • Fig. 7 it corresponds to the point e in Fig. 1, and is located after the second intensity modulator 26. Because the center wavelength of the pulsed laser is different at different times ( ⁇ 0 , ⁇ 1 . together ⁇ n ), therefore, after being gated in the time domain by the second intensity modulator 26, laser pulses with preset wavelengths can be sequentially selected.
  • the modulation speed of intensity modulators is constantly improving, especially the speed of intensity modulators based on lithium niobate can reach tens of GHz. Therefore, as long as the driving input to the intensity modulator is fast enough and the dispersion of the femtosecond pulse is large enough, The laser of the preset wavelength can be selected, and even each single longitudinal mode of the femtosecond laser pulse can be selected.
  • the atmospheric component detection lidar stretches the femtosecond laser into a wide pulse laser in the time domain through dispersion. After the wide pulse laser is gated in the time domain by the intensity modulator, it completes the specific wavelength
  • the center wavelength and bandwidth of the laser are determined by the amount of dispersion and the drive signal of the intensity modulator, and the scanning of the laser wavelength is realized by adjusting the delay of the electric drive signal of the intensity modulator.
  • the absorption spectrum of atmospheric gas is measured by scanning the wavelength of the emitted laser, thereby obtaining the concentration of atmospheric gas components.
  • the atmospheric component detection lidar can accurately control the center wavelength and line width of the emitted laser, thereby measuring the gas absorption spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于色散选通的大气成分探测激光雷达,该大气成分探测激光雷达通过色散将飞秒激光在时域上拉伸成宽脉冲的激光,飞秒光谱由于群速度色散映射到展宽的激光脉冲中,经强度调制器(22,26)时域选通后,完成对预设波长激光的选取,而通过调节强度调制器(22,26)电驱动信号的延时实现激光波长的扫描。通过激光波长扫描获得特定大气成分的吸收光谱,从而测量获得大气气体成分的浓度。该大气成分探测激光雷达可精确对出射激光的波长任意选通,其选择波长的精度高,并且通过调节滤波器中心波长,可实现多种气体的扫描探测。

Description

一种基于色散选通的大气成分探测激光雷达
本申请要求于2019年07月02日提交中国专利局、申请号为201910591972.5、发明名称为“一种基于色散选通的大气成分探测激光雷达”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光雷达技术领域,更具体地说,涉及一种基于色散选通的大气成分探测激光雷达。
背景技术
大气成分的探测在气候学、气象学研究、生化武器的释放、森林火灾的预防以及大气污染的防治等方面具有重要的作用。
目前的探测手段中,单点的探测技术手段包括:差分光学吸收光谱仪(Differential Optical Absorption Spectroscopy,简称DOAS)、非分光气体分析仪(Non-Dispersive Infrared,简称NDIR)、光腔衰荡光谱技术(Cavity Ring-down Spectroscopy,简称CRDS)、非相干宽带腔增强吸收光谱仪(Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy,简称IBBCEAS)、激光诱导荧光技术(Laser-induced Fluorescence,简称LIF)、紫外-可见分光光度法(Ultraviolet–visible spectroscopy,简称UV-Vis)、可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,简称TDLAS)等等技术,虽然可实现多类气体成分的高精度探测,但是,无法获得气体浓度的空间分布,激光雷达是获得气体浓度高时空分布的有效技术手段。
根据探测机制的不同,气体探测激光雷达可分为差分吸收激光雷达、拉曼激光雷达和高光谱分辨率激光雷达等。
目前,最常用的差分吸收激光雷达,其通常采用两个波长的激光,其中一个波长的激光在待测气体上的吸收截面强,另外一个波长的激光在待 测气体上的吸收截面弱,通过探测这两路激光回波信号的比值,可确定不同距离处待测气体的成分。
目前,差分吸收激光雷达已实现H 2O、CO 2、CO、HCI、NH 3、NO 2、SO 2和O 3等气体成分的探测,但是,差分吸收激光雷达的缺点在于仅可实现单种气体的成分探测。
基于高光谱分辨的波长扫描激光雷达,通过扫描光谱,可获得不同气体的成分信息,但是,其缺点在于,通过PZT或者马达进行的波长调谐导致出射激光波长需要实时校准和锁定,其系统结构复杂。
发明内容
有鉴于此,为解决上述问题,本发明提供一种基于色散选通的大气成分探测激光雷达,技术方案如下:
一种基于色散选通的大气成分探测激光雷达,所述大气成分探测激光雷达包括:飞秒激光器、色散选通装置、激光脉冲放大装置、激光收发装置、大气背景噪声滤波模块、探测装置、信号采集装置和数据处理装置;
其中,所述飞秒激光器用于输出飞秒激光脉冲;
所述色散选通装置用于对所述飞秒激光脉冲进行时域色散,并在时域上对其光谱进行选通,以输出预设波长的第一目标激光脉冲;
所述激光脉冲放大装置用于对所述第一目标激光脉冲的功率进行放大处理,形成第二目标激光脉冲;
所述激光收发装置用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中,并接收大气回波信号;
所述大气背景噪声滤波装置用于对所述大气回波信号进行噪声处理;
所述探测装置用于探测所述大气回波信号,并输出相应的电信号;
所述信号采集装置用于采集所述电信号;
所述数据处理装置用于对所述电信号进行处理,以获得大气气体成分的浓度信息。
优选的,在上述大气成分探测激光雷达中,所述色散选通装置包括: 第一光学滤波器、第一强度调制器、色散器件、前置激光放大器、第二光学滤波器和第二强度调制器;
其中,所述第一光学滤波器用于对所述飞秒激光脉冲进行滤波处理,以选择位于气体吸收谱内的飞秒激光;
所述第一强度调制器用于降低所述飞秒激光器输出的飞秒激光脉冲的重复频率,以提高所述大气成分探测激光雷达的有效探测距离;
所述色散器件用于对所述飞秒激光在时域上进行色散,以实现光谱至脉冲的映射;
所述前置激光放大器用于对色散后的宽脉冲激光进行放大处理,以补偿所述滤波器和所述色散器件所导致的损耗;
所述第二光学滤波器用于对所述宽脉冲激光的光谱进行整形;
所述第二强度调制器用于对整形后的宽脉冲激光在时域上选择预设波长的激光脉冲,即所述第一目标激光脉冲。
优选的,在上述大气成分探测激光雷达中,所述第二光学滤波器为可编程的光学滤波器。
优选的,在上述大气成分探测激光雷达中,所述大气成分探测激光雷达还包括:参数优化装置;
其中,所述参数优化装置用于优化所述第一强度调制器、所述色散器件和所述第二强度调制器的参数,以对选通的激光脉冲的中心波长和光谱宽度进行调控。
优选的,在上述大气成分探测激光雷达中,所述大气成分探测激光雷达还包括:调节装置;
其中,所述调节装置用于调节所述第二强度调制器的延时,实现激光器的扫描,以获得待测气体的吸收谱线,实现气体成分的浓度测量。
优选的,在上述大气成分探测激光雷达中,所述第一光学滤波器还用于对所述飞秒激光的光谱进行选通,以实现不同气体成分的探测。
优选的,在上述大气成分探测激光雷达中,所述飞秒激光器的波长为紫外波段至红外波段。
优选的,在上述大气成分探测激光雷达中,所述探测装置为单光子探 测器。
优选的,在上述大气成分探测激光雷达中,所述激光收发装置包括:扩束器和光学望远镜;
其中,所述扩束器用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中;
所述光学望远镜用于接收大气回波信号。
相较于现有技术,本发明实现的有益效果为:
该大气成分探测激光雷达通过色散将飞秒激光在时域上拉伸成宽脉冲的激光,飞秒光谱由于群速度色散映射到展宽的激光脉冲中,经强度调制器时域选通后,完成对预设波长激光的选取,而通过调节强度调制器电驱动信号的延时实现激光波长的扫描。通过激光波长扫描获得特定大气成分的吸收光谱,从而测量获得大气气体成分的浓度。
该大气成分探测激光雷达可精确对出射激光的波长任意选通,其波长选择的精度高、速度快,并且通过滤波器的中心波长,可实现多种气体的扫描探测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种基于色散选通的大气成分探测激光雷达的结构示意图;
图2为本发明实施例提供的另一种基于色散选通的大气成分探测激光雷达的结构示意图;
图3为本发明实施例提供的某一位置的时域和频域信号示意图;
图4为本发明实施例提供的另一位置的时域和频域信号示意图;
图5为本发明实施例提供的又一位置的时域和频域信号示意图;
图6为本发明实施例提供的又一位置的时域和频域信号示意图;
图7为本发明实施例提供的又一位置的时域和频域信号示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1,图1为本发明实施例提供的一种基于色散选通的大气成分探测激光雷达的结构示意图,所述大气成分探测激光雷达包括:飞秒激光器1、色散选通装置2、激光脉冲放大装置3、激光收发装置4、大气背景噪声滤波模块5、探测装置6、信号采集装置7和数据处理装置8;
其中,所述飞秒激光器1用于输出飞秒激光脉冲;
所述色散选通装置2用于对所述飞秒激光脉冲进行时域色散,并在时域上对其光谱进行选通,以输出预设波长的第一目标激光脉冲;
所述激光脉冲放大装置3用于对所述第一目标激光脉冲的功率进行放大处理,形成第二目标激光脉冲;
所述激光收发装置4用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中,并接收大气回波信号;
所述大气背景噪声滤波装置5用于对所述大气回波信号进行噪声处理;(具体用于将太阳背景噪声和天空背景噪声滤除,以提高探测的信噪比)。
所述探测装置6用于探测所述大气回波信号,并输出相应的电信号;
所述信号采集装置7用于采集所述电信号;
所述数据处理装置8用于对所述电信号进行处理,以获得大气气体成分的浓度信息。
在该实施例中,该大气成分探测激光雷达通过色散将飞秒激光在时域上拉伸成宽脉冲的激光,飞秒光谱由于群速度色散映射到展宽的激光脉冲中,经强度调制器时域选通后,完成对预设波长激光的选取,而通过调节强度调制器电驱动信号的延时实现激光波长的扫描。通过激光波长扫描获得特定大气成分的吸收光谱,从而测量获得大气气体成分的浓度。
该大气成分探测激光雷达可精确对出射激光的波长任意选通,其波长选择的精度高、速度快,并且通过调节滤波器中心波长,可实现多种气体的扫描探测。
进一步的,基于本发明上述实施例,如图1所示,所述色散选通装置2包括:第一光学滤波器21、第一强度调制器22、色散器件23、前置激光放大器24、第二光学滤波器25和第二强度调制器26;
其中,所述第一光学滤波器21用于对所述飞秒激光脉冲进行滤波处理,以选择位于气体吸收谱内的飞秒激光;
所述第一强度调制器22用于降低所述飞秒激光器输出的飞秒激光脉冲的重复频率,以提高所述大气成分探测激光雷达的有效探测距离;
所述色散器件23用于对所述飞秒激光在时域上进行色散,以实现光谱至脉冲的映射;
所述前置激光放大器24用于对色散后的宽脉冲激光进行放大处理,以补偿所述滤波器和所述色散器件所导致的损耗;
所述第二光学滤波器25用于对所述宽脉冲激光的光谱进行整形;
所述第二强度调制器26用于对整形后的宽脉冲激光在时域上选择预设波长的激光脉冲,即所述第一目标激光脉冲。
在该实施例中,通过色散将飞秒激光在时域上拉伸成宽脉冲的激光,宽脉冲的激光经强度调制器时域选通后,完成对特定波长激光的选取,激光的中心波长和带宽由色散量和强度调制器的驱动信号确定。通过扫描出射激光的波长实现对大气气体的吸收谱的测量,从而获得大气气体成分的浓度。该实施例可实现对出射激光中心波长和线宽进行精确控制,从而测量获得气体吸收谱。
可选的,所述第二光学滤波器25为可编程的光学滤波器。
进一步的,基于本发明上述实施例,如图1所示,所述激光收发装置4包括:扩束器41和光学望远镜42;
其中,所述扩束器41用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中;
所述光学望远镜42用于接收大气回波信号。
在该实施例中,所述光学望远镜42用于接收激光与大气相互作用后的大气回波信号。
进一步的,基于本发明上述实施例,参考图2,图2为本发明实施例提供的另一种基于色散选通的大气成分探测激光雷达的结构示意图,所述大气成分探测激光雷达还包括:参数优化装置9;
其中,所述参数优化装置9用于优化所述第一强度调制器22、所述色散器件23和所述第二强度调制器26的参数,以对选通的激光脉冲的中心波长和光谱宽度进行调控。
进一步的,基于本发明上述实施例,如图2所示,所述大气成分探测激光雷达还包括:调节装置10;
其中,所述调节装置10用于调节所述第二强度调制器23的延时,实现激光器的扫描,以获得待测气体的吸收谱线,实现气体成分的浓度测量。
进一步的,所述第一光学滤波器21还用于对所述飞秒激光脉冲进行选通,以实现不同气体成分的探测。
进一步的,所述飞秒激光器1的波长为紫外波段至红外波段。
进一步的,所述探测装置6为单光子探测器。
基于本发明上述全部实施例,下面对其具体的工作原理进行阐述说明。
参考图3,图3为本发明实施例提供的某一位置的时域和频域信号示意图。
如图3所示,其相对应图1中的a点,位于第一光学滤波器21和第一强度调制器22之间,其时域上激光脉冲的强度减低了,并且在频域上,激光的光谱范围受到滤波器的调制,用于选出气体吸收谱所对应的波长。
参考图4,图4为本发明实施例提供的另一位置的时域和频域信号示意图。
如图4所示,其相对应图1中的b点,位于第一强度调制器22和色散器件23之间,其频谱没有发生变化,但是飞秒激光脉冲的重复频率降低了,从而有利于激光雷达的长距离探测。
参考图5,图5为本发明实施例提供的又一位置的时域和频域信号示意图。
如图5所示,其相对应图1中的c点,位于所述色散器件23之后,其频谱没有发生变化,但是在时域上,由于群速度色散,其脉冲宽度变宽,飞秒光谱在时域上分开,光谱和脉冲形成映射。
参考图6,图6为本发明实施例提供的又一位置的时域和频域信号示意图。
如图6所示,其相对应图1中的d点,位于第二光学滤波器25之后,由于激光放大器24对不同波长的响应差异和不同时域信号的响应差异,导致脉冲激光经过激光放大器之后,光谱和脉冲形状发生变化,因此,利用第二光学滤波器25可实现对激光脉冲的光谱进行整形,以便于气体吸收谱线的探测。
参考图7,图7为本发明实施例提供的又一位置的时域和频域信号示意图。
如图7所示,其相对应图1中的e点,位于第二强度调制器26之后,由于脉冲激光在不同时间对应的中心波长不同(λ 0、λ 1.......λ n),因此,通过第二强度调制器26在时域上选通后,可依次选出预设波长的激光脉冲。
目前,强度调制器调制速度在不断提升,特别是基于铌酸锂的强度调制器速度可达到几十GHz,因此,只要输入给强度调制器的驱动足够快,飞秒脉冲的色散足够大,就可以将预设波长的激光选择出来,甚至将飞秒激光脉冲的每个单纵模选择出来。
基于本发明上述全部实施例,该大气成分探测激光雷达通过色散将飞秒激光在时域上拉伸成宽脉冲的激光,宽脉冲的激光经强度调制器时域选通后,完成对特定波长激光的选取,激光的中心波长和带宽由色散量和强度调制器的驱动信号确定,激光波长的扫描则通过调节强度调制器电驱动信号的延时实现。通过扫描出射激光的波长实现对大气气体的吸收谱的测量,从而获得大气气体成分的浓度。该大气成分探测激光雷达可实现对出射激光中心波长和线宽进行精确控制,从而测量获得气体吸收谱。
以上对本发明所提供的一种基于色散选通的大气成分探测激光雷达进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还 包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种基于色散选通的大气成分探测激光雷达,其特征在于,所述大气成分探测激光雷达包括:飞秒激光器、色散选通装置、激光脉冲放大装置、激光收发装置、大气背景噪声滤波模块、探测装置、信号采集装置和数据处理装置;
    其中,所述飞秒激光器用于输出飞秒激光脉冲;
    所述色散选通装置用于对所述飞秒激光脉冲进行时域色散,并在时域上对其光谱进行选通,以输出预设波长的第一目标激光脉冲;
    所述激光脉冲放大装置用于对所述第一目标激光脉冲的功率进行放大处理,形成第二目标激光脉冲;
    所述激光收发装置用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中,并接收大气回波信号;
    所述大气背景噪声滤波装置用于对所述大气回波信号进行噪声处理;
    所述探测装置用于探测所述大气回波信号,并输出相应的电信号;
    所述信号采集装置用于采集所述电信号;
    所述数据处理装置用于对所述电信号进行处理,以获得大气气体成分的浓度信息。
  2. 根据权利要求1所述的大气成分探测激光雷达,其特征在于,所述色散选通装置包括:第一光学滤波器、第一强度调制器、色散器件、前置激光放大器、第二光学滤波器和第二强度调制器;
    其中,所述第一光学滤波器用于对所述飞秒激光脉冲进行滤波处理,以选择位于气体吸收谱内的飞秒激光;
    所述第一强度调制器用于降低所述飞秒激光器输出的飞秒激光脉冲的重复频率,以提高所述大气成分探测激光雷达的有效探测距离;
    所述色散器件用于对所述飞秒激光在时域上进行色散,以实现光谱至脉冲的映射;
    所述前置激光放大器用于对色散后的宽脉冲激光进行放大处理,以补偿所述滤波器和所述色散器件所导致的损耗;
    所述第二光学滤波器用于对所述宽脉冲激光的光谱进行整形;
    所述第二强度调制器用于对整形后的宽脉冲激光在时域上选择预设波长的激光脉冲,即所述第一目标激光脉冲。
  3. 根据权利要求2所述的大气成分探测激光雷达,其特征在于,所述第二光学滤波器为可编程的光学滤波器。
  4. 根据权利要求2所述的大气成分探测激光雷达,其特征在于,所述大气成分探测激光雷达还包括:参数优化装置;
    其中,所述参数优化装置用于优化所述第一强度调制器、所述色散器件和所述第二强度调制器的参数,以对选通的激光脉冲的中心波长和光谱宽度进行调控。
  5. 根据权利要求2所述的大气成分探测激光雷达,其特征在于,所述大气成分探测激光雷达还包括:调节装置;
    其中,所述调节装置用于调节所述第二强度调制器的延时,实现激光器的扫描,以获得待测气体的吸收谱线,实现气体成分的浓度测量。
  6. 根据权利要求2所述的大气成分探测激光雷达,其特征在于,所述第一光学滤波器还用于对所述飞秒激光的光谱进行选通,以实现不同气体成分的探测。
  7. 根据权利要求1所述的大气成分探测激光雷达,其特征在于,所述飞秒激光器的波长为紫外波段至红外波段。
  8. 根据权利要求1所述的大气成分探测激光雷达,其特征在于,所述探测装置为单光子探测器。
  9. 根据权利要求1所述的大气成分探测激光雷达,其特征在于,所述激光收发装置包括:扩束器和光学望远镜;
    其中,所述扩束器用于将所述第二目标激光脉冲的发散角进行压缩处理后出射至大气中;
    所述光学望远镜用于接收大气回波信号。
PCT/CN2019/096980 2019-07-02 2019-07-22 一种基于色散选通的大气成分探测激光雷达 WO2021000359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/297,125 US20220026577A1 (en) 2019-07-02 2019-07-22 Dispersion gating-based atmospheric composition measurement laser radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910591972.5A CN112180392B (zh) 2019-07-02 2019-07-02 一种基于色散选通的大气成分探测激光雷达
CN201910591972.5 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021000359A1 true WO2021000359A1 (zh) 2021-01-07

Family

ID=73914958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096980 WO2021000359A1 (zh) 2019-07-02 2019-07-22 一种基于色散选通的大气成分探测激光雷达

Country Status (3)

Country Link
US (1) US20220026577A1 (zh)
CN (1) CN112180392B (zh)
WO (1) WO2021000359A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390825A (zh) * 2021-05-17 2021-09-14 西安理工大学 基于tdlas的时频域联合的气体浓度反演方法及装置
CN113514853A (zh) * 2021-04-07 2021-10-19 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN115201855A (zh) * 2022-08-10 2022-10-18 安徽科创中光科技股份有限公司 紫外双波长激光雷达反演臭氧浓度及气溶胶光学参数算法
CN115290599A (zh) * 2022-10-08 2022-11-04 青岛镭测创芯科技有限公司 一种测量温室气体浓度的激光雷达系统
CN116609796A (zh) * 2023-07-20 2023-08-18 青岛镭测创芯科技有限公司 一种水汽相干差分吸收激光雷达系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114707595B (zh) * 2022-03-29 2024-01-16 中国科学院精密测量科学与技术创新研究院 基于Spark的高光谱激光雷达多通道加权系统及方法
CN115015966B (zh) * 2022-08-04 2022-10-28 南京信息工程大学 一种基于宽谱光源的气体探测激光雷达
US11968130B2 (en) * 2022-08-30 2024-04-23 Bank Of America Corporation Real-time adjustment of resource allocation based on usage mapping via an artificial intelligence engine
CN115598659A (zh) * 2022-10-12 2023-01-13 山东国耀量子雷达科技有限公司(Cn) 一种单光子甲烷浓度分布探测雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231771A1 (en) * 2004-11-19 2006-10-19 Science & Engineering Services, Inc. Enhanced portable digital lidar system
CN104019898A (zh) * 2014-05-28 2014-09-03 中国科学院空间科学与应用研究中心 一种超灵敏光谱成像天文望远镜及天文光谱成像方法
CN105423943A (zh) * 2015-10-30 2016-03-23 南京巨鲨显示科技有限公司 高速三维显微成像系统及方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像系统
CN107688187A (zh) * 2017-08-16 2018-02-13 南京红露麟激光雷达科技有限公司 基于空间波长编码的目标探测激光雷达
CN108415031A (zh) * 2018-01-15 2018-08-17 北京航空航天大学 一种基于光谱分光的高光谱全波形激光雷达系统
CN108415030A (zh) * 2018-01-15 2018-08-17 北京航空航天大学 一种基于光强分光的高光谱激光雷达系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675576B (zh) * 2016-04-13 2017-03-29 武汉大学 一种测量大气水Raman谱和气溶胶荧光谱的激光雷达系统
CN107462900B (zh) * 2017-08-02 2020-05-15 中国科学技术大学 基于波长可调谐激光源的气体成分探测激光雷达
CN107462336B (zh) * 2017-09-30 2019-01-22 飞秒激光研究中心(广州)有限公司 一种飞秒激光多模态分子影像系统
CN107796781A (zh) * 2017-10-17 2018-03-13 国网江苏省电力公司盐城供电公司 一种太赫兹波在电力高分子复合材料中的传播特性检测系统及其检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231771A1 (en) * 2004-11-19 2006-10-19 Science & Engineering Services, Inc. Enhanced portable digital lidar system
CN104019898A (zh) * 2014-05-28 2014-09-03 中国科学院空间科学与应用研究中心 一种超灵敏光谱成像天文望远镜及天文光谱成像方法
CN105423943A (zh) * 2015-10-30 2016-03-23 南京巨鲨显示科技有限公司 高速三维显微成像系统及方法
CN107024850A (zh) * 2017-05-26 2017-08-08 清华大学 高速结构光三维成像系统
CN107688187A (zh) * 2017-08-16 2018-02-13 南京红露麟激光雷达科技有限公司 基于空间波长编码的目标探测激光雷达
CN108415031A (zh) * 2018-01-15 2018-08-17 北京航空航天大学 一种基于光谱分光的高光谱全波形激光雷达系统
CN108415030A (zh) * 2018-01-15 2018-08-17 北京航空航天大学 一种基于光强分光的高光谱激光雷达系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514853A (zh) * 2021-04-07 2021-10-19 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN113514853B (zh) * 2021-04-07 2023-12-08 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN113390825A (zh) * 2021-05-17 2021-09-14 西安理工大学 基于tdlas的时频域联合的气体浓度反演方法及装置
CN115201855A (zh) * 2022-08-10 2022-10-18 安徽科创中光科技股份有限公司 紫外双波长激光雷达反演臭氧浓度及气溶胶光学参数算法
CN115201855B (zh) * 2022-08-10 2023-03-24 安徽科创中光科技股份有限公司 紫外双波长激光雷达反演臭氧浓度及气溶胶光学参数算法
CN115290599A (zh) * 2022-10-08 2022-11-04 青岛镭测创芯科技有限公司 一种测量温室气体浓度的激光雷达系统
CN116609796A (zh) * 2023-07-20 2023-08-18 青岛镭测创芯科技有限公司 一种水汽相干差分吸收激光雷达系统
CN116609796B (zh) * 2023-07-20 2023-11-10 青岛镭测创芯科技有限公司 一种水汽相干差分吸收激光雷达系统

Also Published As

Publication number Publication date
US20220026577A1 (en) 2022-01-27
CN112180392B (zh) 2024-05-17
CN112180392A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2021000359A1 (zh) 一种基于色散选通的大气成分探测激光雷达
Rairoux et al. Remote sensing of the atmosphere using ultrashort laser pulses
US7884937B2 (en) Airborne tunable mid-IR laser gas-correlation sensor
CN2874476Y (zh) 基于光学整流的太赫兹时域光谱仪
JP7070567B2 (ja) 分光測定方法、分光測定装置及び広帯域パルス光源ユニット
CN110749872A (zh) 一种相干差分吸收激光雷达与一种检测气体浓度的方法
KR20040086152A (ko) 기상관측 라이더 시스템
CN107462900B (zh) 基于波长可调谐激光源的气体成分探测激光雷达
US9329123B2 (en) Multiplexed spectroscopic absorbance from CRDS wave forms
CN111398991A (zh) 量子级联激光器差分吸收激光雷达VOCs浓度探测方法
CN106768401A (zh) 一种微能量脉冲激光光子数测量装置及方法
Fjodorow et al. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy
CN106153575A (zh) 一种声光调制双光路双探测器型近红外光谱仪及测试方法
US8514378B2 (en) Method of optical teledetection of compounds in a medium
CN103983353B (zh) 一种利用等离子体发射光谱实现光学系统传输效率的标定方法
CN108181261A (zh) 基于太赫兹时域光谱检测混合气体各组分含量的装置
Molero et al. The laser as a tool in environmental problems
CN112729591B (zh) 一种基于低带宽光电探测器的激光吸收光谱温度测量方法
CN211785136U (zh) 拉曼、荧光和激光诱导击穿光谱信号同步探测装置
CN109813670B (zh) 中红外光的全谱测量方法和相应的装置
Fjodorow et al. Intracavity absorption spectroscopy of formaldehyde from 6230 to 6420 cm− 1
JPS63308543A (ja) 散乱光測光装置
Dell’Aglio et al. Development of a Ti: Sapphire DIAL system for pollutant monitoring and meteorological applications
Machol et al. Scanning tropospheric ozone and aerosol lidar with double-gated photomultipliers
Fiorani et al. Lidar sounding of volcanic plumes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936369

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19936369

Country of ref document: EP

Kind code of ref document: A1