WO2021000147A1 - 辐射件及天线 - Google Patents

辐射件及天线 Download PDF

Info

Publication number
WO2021000147A1
WO2021000147A1 PCT/CN2019/094047 CN2019094047W WO2021000147A1 WO 2021000147 A1 WO2021000147 A1 WO 2021000147A1 CN 2019094047 W CN2019094047 W CN 2019094047W WO 2021000147 A1 WO2021000147 A1 WO 2021000147A1
Authority
WO
WIPO (PCT)
Prior art keywords
order
ground layer
radiating element
square
fractal
Prior art date
Application number
PCT/CN2019/094047
Other languages
English (en)
French (fr)
Inventor
王啊琦
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/094047 priority Critical patent/WO2021000147A1/zh
Priority to CN201910605965.6A priority patent/CN110247182B/zh
Priority to US16/996,937 priority patent/US20200411977A1/en
Publication of WO2021000147A1 publication Critical patent/WO2021000147A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the invention relates to the field of antennas, in particular to a radiating element and an antenna using the radiating element.
  • the radiating element of the traditional antenna is designed with conventional geometric shapes.
  • the area of the radiating element needs to reach about half of the wavelength of the operating frequency. Due to the large area of the radiating element, the distance between the radiating elements is limited when the radiating element is assembled. Inter-isolation is poor, and the overall performance of the system decreases.
  • One of the objectives of the present invention is to provide a radiating element which can meet the same operating frequency while reducing the area.
  • the second object of the present invention is to provide an antenna that uses the above-mentioned radiating element.
  • a radiating element applied to an antenna is formed by a square plate through an N-order fractal, where N is an integer and N ⁇ 3, and the N-order fractal is specifically:
  • First-order fractal in the middle of the four edges of the square plate, a first hollow groove is respectively opened toward the center of the square plate, and the length of the first hollow groove is a quarter of the side length of the square plate
  • the sum of one and one-half of the width of the first hollowed-out groove, the square plate is divided into four first-order squares by the four first hollowed-out grooves;
  • Second-order fractal in the middle of the four edges of each first-order square, a second hollow groove is respectively opened toward the center of the first-order square, and the length of the second hollow groove is the side of the first-order square
  • the sum of one-quarter of the length and one-half of the width of the first hollowed-out groove, the first-order square is divided into three second-order squares by the four second hollowed-out grooves;
  • the structure after the second-order fractal continues to fractal form the N-order fractal according to the second-order fractal method.
  • An antenna including:
  • the feeder unit includes a ground layer and two differential feeder lines, each of the differential feeder lines includes an input end and two output ends;
  • the first radiating unit includes the radiating element
  • the second radiating unit includes four power feeders and four grounding members spaced apart from the power feeders, and one end of each power feeder is connected to one output end of the differential feeder line, The other end extends in a U shape and is spaced apart from the radiating element to couple and feed the radiating element.
  • One end of each grounding element is connected to the radiating element and the other end is connected to the ground layer.
  • the feeding unit further includes a feeding dielectric board, the differential feeding line and the ground layer are provided on the feeding dielectric board, and the two output terminals of the differential feeding line are located
  • the straight line is perpendicular to the straight line where the two output terminals of the other differential feeder line are located.
  • the feed dielectric plate includes a first surface facing the second radiating unit and a second surface disposed opposite to the first surface, and the ground layer includes a first surface disposed on the first surface.
  • the second grounding layer is provided with a clearance area
  • the differential feeder line is provided in the clearance area
  • the first grounding layer is provided with four differential feeder lines.
  • the first radiating unit further includes a first dielectric plate, the radiating element is provided on the first dielectric plate, and the definition is defined by taking the midpoint of the radiating member as the origin, and taking the midpoint to
  • the circular area formed by the radius of the first hollow groove is a central area, and one ends of the four grounding members are all connected to the central area.
  • the second radiation unit further includes two second dielectric plates connected between the first dielectric plate and the feeding dielectric plate, and the two second dielectric plates are arranged in a cross Two of the second dielectric plates are connected to form a connecting portion and an extension portion extending from the connecting portion in four directions, and each extension portion is provided with one power feeder.
  • the four feeders are not opposed to each other in pairs.
  • the side where the second dielectric plate is connected to the feeder dielectric plate is the bottom, and the side where the second dielectric plate is connected to the first dielectric plate is the top.
  • the power feeder includes a first extension part extending from the bottom to the top direction, and a second extension part bending and extending from the end of the first extension part close to the top to the bottom direction.
  • the embodiment of the present invention performs fractal design on the radiating element.
  • the radiating side length of the radiating element of the same area can be extended, so that the radiating element of the same area has a lower working frequency and also That is, if the same operating frequency is fractal, the area of the radiating element will be smaller than that of the ordinary radiating element, which can achieve the purpose of reducing the size of the antenna.
  • the same array structure between the antennas The distance between the antennas is increased, so that the isolation between the antennas is improved, and the goal of optimizing system performance is achieved.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • Figure 2 is an exploded schematic diagram of an antenna provided by an embodiment of the present invention.
  • Fig. 3 is a partial enlarged schematic diagram of A in Fig. 2;
  • FIG. 4 is a schematic diagram of the back of an antenna provided by an embodiment of the present invention.
  • Figure 5 is a partial enlarged schematic diagram of B in Figure 4.
  • FIG. 6 is a schematic structural diagram of a second radiation unit provided by an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the first-order fractal of the radiating element
  • Figure 8 is a schematic diagram of the second-order fractal of the radiating element
  • Figure 9 is a schematic diagram of the third-order fractal of the radiating element.
  • an element when an element is referred to as being “fixed on” or “disposed on” another element, the element may be directly on the other element or there may be a centering element at the same time.
  • an element When an element is referred to as being “connected” to another element, it can be directly connected to the other element or an intermediate element may also exist.
  • an antenna 100 provided by an embodiment of the present invention includes:
  • the feeder unit 10 includes a feeder dielectric plate 11, a ground layer 12, and two differential feeder lines 13, each of which includes an input end 131 and two output ends 132;
  • a first radiation unit 20 which includes a first dielectric plate 21 and a radiating element 22 arranged on the first dielectric plate 21;
  • the second radiating unit 30 includes a second dielectric plate 31, four power feeders 32 provided on the second dielectric plate 31, and four power feeders 32 provided on the second dielectric plate 31 and connected to the power feeder respectively.
  • One end of each feeder 32 is connected to an output end 132 of a differential feeder line 13, and the other end extends in a U shape and is spaced apart from the radiating element 22 to couple to the radiating element 22
  • one end of each ground member 33 is connected to the radiating member 22 and the other end is connected to the ground layer 12.
  • each feed element 32 and its corresponding differential feed line 13 form linear polarization in one direction, and the entire antenna 100 achieves orthogonal dual polarization.
  • the power feeding element 32 and the radiating element 22 are provided in a coupling feeding manner for power feeding, which can reduce the number of welding points, which is beneficial to improve the passive intermodulation (PIM) characteristics of the system;
  • U extension on the one hand, it can effectively extend the electrical length of the feeder 32, and on the other hand, it can reduce the profile height of the antenna 100 to meet customer requirements for base station miniaturization and improve market competitiveness;
  • the feeder 32 uses differential feed The electric power feeding method improves the polarization purity of the polarization of the antenna 100.
  • the antenna 100 does not need to be provided with the first dielectric plate 21 and the second dielectric plate 31, as long as the grounding member 33 can support the radiating member 22.
  • the line where the two output ends 132 of one differential feeder line 13 are located is perpendicular to the line where the two output ends 132 of the other differential feeder line 13 are located.
  • the feed dielectric plate 11 includes a first surface 111 facing the second radiation unit 30 and a second surface 112 disposed opposite to the first surface 111, and the ground layer 12 includes a first surface 111 disposed on the first surface.
  • the first ground layer 121 is connected to the second ground layer 122.
  • the second ground layer 122 is provided with a clearance area 123 and a differential feed line 13 Set in the clearance area 123.
  • the differential feeder line 13 is not limited to being provided on the second ground layer 122.
  • the clearance area 123 is provided on the first ground layer 121, and the differential feeder line 13 is also provided on the first ground layer 121. Yes.
  • the ground layer 12 is not limited to the above-mentioned arrangement.
  • the ground layer 12 may only include the first ground layer 121 or only the second ground layer 122.
  • the first ground layer 121 and the second ground layer 122 may be connected through a metalized via.
  • the first ground layer 122 is provided with four clearance slots 124 corresponding to the four output terminals 132 of the two differential feed lines 13, and the clearance slots 124 are provided with pads 125.
  • the power feeder 32 is connected to the pad 125.
  • the pad 125 is connected to the output terminal 132 of the differential feed line 13 through a metalized via.
  • each differential feed line 13 is connected to a coaxial connector 40.
  • the coaxial connector 40 includes a first conductive member 41 and a coaxial distance from the first conductive member 41.
  • the second conductive member 42 is provided, the first conductive member 41 is electrically connected to the input end 131 of the differential feed line 13, and the second conductive member 42 is connected to the first ground layer 121.
  • the second dielectric plate 31 is connected between the feeding dielectric plate 11 and the first dielectric plate 21.
  • the two second dielectric plates 31 are connected to form a connecting portion 311 and an extension portion 312 extending from the connecting portion 311 in four directions.
  • Each extension portion 312 is provided with a power feeding member 32.
  • the four feeders 32 are not opposed to each other in pairs.
  • each The power feeder 32 includes a first extension 321 extending from the bottom 313 toward the top 314, and a second extension 322 bending and extending from the end of the first extension 321 close to the top 314 toward the bottom 313.
  • the second extension portion 322 is located on the side of the first extension portion 321 close to the connecting portion 311.
  • the second extension portion 322 may be disposed on the side of the first extension portion 321 away from the connection portion 311, which may be specifically determined according to actual design requirements.
  • the radiating element 22 is formed by a square plate 200 through N-order fractals, where N is an integer and N ⁇ 3, and the N-order fractal is specifically:
  • a first hollow groove 201 is opened in the middle of the four edges of the square plate 200 toward the center of the square plate 200.
  • the length of the first hollow groove 201 is one-quarter of the side length of the square plate 200 and The sum of one half of the width of the first hollowed-out groove, the square plate 200 is divided into four first-order squares 202 by four first hollowed-out grooves 201;
  • a second hollow groove 203 is opened in the middle of the four edges of each first-order square 202 toward the center of the first-order square 202.
  • the length of the second hollow groove 203 is four times the side length of the first-order square 202.
  • the sum of one-half and one-half of the width of the first hollow groove, the first-order square 202 is divided into three second-order squares 204 by four second hollow grooves 203;
  • a third hollow groove 205 is opened in the middle of the four edges of each second-order square 204 toward the center of the second-order square 204.
  • the length of the second hollow groove 205 is four times the side length of the second-order square 204.
  • the two square 204 is divided into three third-order squares 206 by four third hollow grooves 205;
  • the structure after the second-order fractal continues to fractal form the N+2-order fractal according to the second-order fractal method.
  • the radiation side length of the radiating element 22 of the same area can be extended, so that the radiating element 22 of the same area has a lower operating frequency, that is, if the same work After the frequency and fractal, the area of the radiating element 22 will be smaller than that of the ordinary radiating element, which can reduce the volume of the antenna 100.
  • the distance between the antennas 100 can be obtained Enlarged, the isolation between the antennas 100 is improved, and the purpose of optimizing system performance is achieved.
  • Tests show that after the second-order fractal is performed on the radiating element 22 by setting the above-mentioned fractal method, its area can be reduced by about 20% at the same operating frequency. When the order of the fractal is higher, its area can be reduced at the same operating frequency. The smaller you can shrink.
  • the center point of the radiating element 22 is the origin and the distance from the center point to the first hollow groove 201 is the radius as the central area 221. One end is connected to the central area 221.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供了辐射件及天线,其中,辐射件由方形板经过N阶分形形成,N为整数,且N≥3,N阶分形具体为:一阶分形,在方形板四个边缘的中部分别向方形板的中心开设第一镂空槽,第一镂空槽的长度为方形板的边长的四分之一与第一镂空槽的宽度的二分之一的和,方形板由四个第一镂空槽区隔为四个一阶方形;二阶分形,在每个一阶方形四个边缘的中部分别向所述一阶方形的中心开设第二镂空槽,第二镂空槽的长度为一阶方形的边长的四分之一与第一镂空槽的宽度的二分之一的和,一阶方形由四个第二镂空槽区隔为三个二阶方形;二阶分形后的结构按照二阶分形的方法继续分形形成N阶分形。本发明提供的辐射件具有在同样的工作频率下面积小的优点。

Description

辐射件及天线 技术领域
本发明涉及天线领域,尤其涉及一种辐射件以及一种采用该辐射件的天线。
背景技术
传统的天线的辐射件采用常规几何形状设计,辐射件的面积需要达到工作频率波长的一半左右,由于辐射件的面积较大,在组阵时,辐射件之间间隔距离有限,导致辐射件之间隔离度较差,系统的整体性能下降。
技术问题
本发明的目的之一在于提供一种辐射件,其可以缩小面积的情况下满足同样的工作频率。本发明的目的之二在于提供一种天线,该天线采用如上所述的辐射件。
技术解决方案
本发明的目的之一采用如下技术方案实现:
一种辐射件,应用于天线,所述辐射件由方形板经过N阶分形形成,N为整数,且N≥3,所述N阶分形具体为:
a、一阶分形,在所述方形板四个边缘的中部分别向所述方形板的中心开设第一镂空槽,所述第一镂空槽的长度为所述方形板的边长的四分之一与所述第一镂空槽的宽度的二分之一的和,所述方形板由四个所述第一镂空槽区隔为四个一阶方形;
b、二阶分形,在每个所述一阶方形四个边缘的中部分别向所述一阶方形的中心开设第二镂空槽,所述第二镂空槽的长度为所述一阶方形的边长的四分之一与所述第一镂空槽的宽度的二分之一的和,所述一阶方形由四个所述第二镂空槽区隔为三个二阶方形;
二阶分形后的结构按照二阶分形的方法继续分形形成N阶分形。
本发明的目的之二采用如下技术方案实现:
一种天线,包括:
馈电单元,包括接地层和两个差分馈电线路,每个所述差分馈电线路包括一个输入端和两个输出端;
第一辐射单元,包括所述辐射件;
第二辐射单元,包括四个馈电件和四个分别与所述馈电件间隔设置的接地件,每个所述馈电件的一端与一个所述差分馈电线路的一个输出端连接、另一端呈U形延伸并与辐射件间隔设置以对所述辐射件耦合馈电,每个所述接地件的一端与所述辐射件连接、另一端与所述接地层连接。
作为一种改进方式,所述馈电单元还包括馈电介质板,所述差分馈电线路和所述接地层设于所述馈电介质板,一个所述差分馈电线路的两个输出端所在的直线与另一个差分馈电线路的两个输出端所在的直线垂直。
作为一种改进方式,所述馈电介质板包括朝向所述第二辐射单元的第一表面和与所述第一表面相背设置的第二表面,所述接地层包括设于所述第一表面的第一接地层和设于所述第二表面的第二接地层,所述第一接地层与所述第二接地层连通,所述第一接地层或者所述第二接地层设有净空区,所述差分馈电线路设于所述净空区。
作为一种改进方式,所述第二接地层设有净空区,所述差分馈电线路设于所述净空区内,所述第一接地层设有与两个所述差分馈电线路的四个输出端一一对应的四个净空槽,所述净空槽内设有焊盘,所述馈电件与所述焊盘相接。
作为一种改进方式,所述第一辐射单元还包括第一介质板,所述辐射件设于所述第一介质板,定义以所述辐射件的中点为原点,以所述中点到所述第一镂空槽的距离为半径形成的圆形区域为中心区,四个所述接地件的一端均与所述中心区连接。
作为一种改进方式,所述第二辐射单元还包括两个连接于所述第一介质板与所述馈电介质板之间的第二介质板,两个所述第二介质板呈十字交叉设置,两个所述第二介质板连接形成连接部和从所述连接部往四个方向延伸的延伸部,每个所述延伸部上设置一个所述馈电件。
作为一种改进方式,四个所述馈电件两两互不相对。
作为一种改进方式,定义所述第二介质板与所述馈电介质板连接的一侧为底部,所述第二介质板与所述第一介质板连接的一侧为顶部,每个所述馈电件包括从所述底部往所述顶部方向延伸的第一延伸部、从所述第一延伸部靠近所述顶部的一端往所述底部方向弯折延伸的第二延伸部。
有益效果
本发明实施方式相对于现有技术而言,通过对辐射片进行分形设计,分形设计后,可以使得同等面积的辐射件的辐射边长得到延伸,使得同等面积的辐射件工作频率更低,也即,如果同样的工作频率,分形之后使得辐射件的面积会比普通的辐射件的面积要小,从而可以起到缩小天线体积的目的,这样,在同样组阵结构的方式下,天线之间的距离得到加大,使得天线之间的隔离度得到提高,达到优化系统性能的目的。
附图说明
图1为本发明实施例提供的天线的结构示意图;
图2为本发明实施例提供的天线的爆炸示意图;
图3为图2中A处局部放大示意图;
图4为本发明实施例提供的天线的背面示意图;
图5为图4中B处局部放大示意图;
图6为本发明实施例提供的第二辐射单元的结构示意图;
图7为辐射件一阶分形示意图;
图8为辐射件二阶分形示意图;
图9为辐射件三阶分形示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
需要说明的是,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后、内、外、顶部、底部……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
还需要说明的是,当元件被称为“固定于”或“设置于”另一个元件上时,该元件可以直接在另一个元件上或者可能同时存在居中元件。当一个元件被称为“连接”另一个元件,它可以是直接连接另一个元件或者可能同时存在居中元件。
请参阅图1-6,本发明实施例提供的一种天线100,包括:
馈电单元10,所述馈电单元10包括馈电介质板11、接地层12和两个差分馈电线路13,每个差分馈电线路13包括一个输入端131和两个输出端132;
第一辐射单元20,所述第一辐射单元20包括第一介质板21和设置于第一介质板21的辐射件22;
第二辐射单元30,所述第二辐射单元30包括第二介质板31、四个设于第二介质板31的馈电件32、以及四个设于第二介质板31并分别与馈电件32间隔设置的接地件33,每个馈电件32的一端与一个差分馈电线路13的一个输出端132连接、另一端呈U形延伸并与辐射件22间隔设置以对辐射件22耦合馈电,每个接地件33的一端与辐射件22连接、另一端与接地层12连接。
该天线100使用时,每个馈电件32与其对应的差分馈电线路13形成一个方向的线极化,整个天线100实现正交双极化。
本实施例通过设置馈电件32和辐射件22采用耦合馈电的方式进行馈电,可以减少焊接点的数量,有利于提升系统的无源互调(PIM)特性;通过设置馈电件32呈U延伸,一方面可以有效延伸馈电件32的电长度,另一方面可以降低天线100的剖面高度,满足客户对基站小型化的要求,提高市场竞争力;通过馈电件32采用差分馈电的方式进行馈电,提高了天线100极化的极化纯度。
需要说明的是,该天线100可以不需要设置第一介质板21和第二介质板31,只要接地件33可以对辐射件22起到支撑作用也是可以的。
作为本实施例的一种改进方式,一个差分馈电线路13的两个输出端132所在的直线与另一个差分馈电线路13的两个输出端132所在的直线垂直。
作为本实施例的一种改进方式,馈电介质板11包括朝向第二辐射单元30的第一表面111和与第一表面111相背设置的第二表面112,接地层12包括设于第一表面111的第一接地层121和设于第二表面112的第二接地层122,第一接地层121与第二接地层122连通,第二接地层122设有净空区123,差分馈电线路13设于净空区123内。可以理解地,差分馈电线路13不局限于设在第二接地层122,例如,在第一接地层121设有所述净空区123,将差分馈电线路13设于第一接地层121也是可以的。进一步地,接地层12不局限于采用上述的设置方式,例如,接地层12只包括第一接地层121或者只包括第二接地层122也是可以的。第一接地层121与第二接地层122具体可以通过金属化过孔连通。
作为本实施例的一种改进方式,第一接地层122设有与两个差分馈电线路13的四个输出端132一一对应的四个净空槽124,净空槽124内设有焊盘125,馈电件32与焊盘125相接。焊盘125通过金属化过孔与差分馈电线路13的输出端132连接。
作为本实施例的一种改进方式,每个差分馈电线路13的输入端131连接一个同轴连接器40,同轴连接器40包括第一导电件41和与第一导电件41同轴间隔设置的第二导电件42,第一导电件41与差分馈电线路13的输入端131电性连接,第二导电件42与第一接地层121连接。
作为本实施例的一种改进方式,第二介质板31连接于馈电介质板11与第一介质板21之间,第二介质板31设有两个,两个第二介质板31呈十字交叉设置,两个第二介质板31连接形成连接部311和从连接部311往四个方向延伸的延伸部312,每个延伸部312上设置一个馈电件32。
作为本实施例的一种改进方式,四个馈电件32两两互不相对。
作为本实施例的一种改进方式,定义第二介质板31与馈电介质板11连接的一侧为底部313,第二介质板31与第一介质板21连接的一侧为顶部314,每个馈电件32包括从底部313往顶部314方向延伸的第一延伸部321、从第一延伸部321靠近顶部314的一端往底部313方向弯折延伸的第二延伸部322。本实施例中,第二延伸部322位于第一延伸部321靠近连接部311的一侧。在其他实施例中,第二延伸部322可以设置为位于第一延伸部321远离连接部311的一侧,具体可以根据实际设计需要而定。
请参阅图7-9,作为本实施例的一种改进方式,辐射件22由方形板200经过N阶分形形成,N为整数,且N≥3,所述N阶分形具体为:
a、一阶分形,在方形板200四个边缘的中部分别向方形板200的中心开设第一镂空槽201,第一镂空槽201的长度为方形板200的边长的四分之一与所述第一镂空槽的宽度的二分之一的和,方形板200由四个第一镂空槽201区隔为四个一阶方形202;
b、二阶分形,在每个一阶方形202四个边缘的中部分别向一阶方形202的中心开设第二镂空槽203,第二镂空槽203的长度为一阶方形202的边长的四分之一与所述第一镂空槽的宽度的二分之一的和,一阶方形202由四个第二镂空槽203区隔为三个二阶方形204;
C、三阶分形,在每个二阶方形204四个边缘的中部分别向二阶方形204的中心开设第三镂空槽205,第二镂空槽205的长度为二阶方形204的边长的四分之一,二方形204由四个第三镂空槽205区隔为三个三阶方形206;
以此类推,二阶分形后的结构按照二阶分形的方法继续分形形成N+2阶分形。
本实施例的辐射件22通过上述的分形方法进行分形后,可以使得同等面积的辐射件22的辐射边长得到延伸,使得同等面积的辐射件22工作频率更低,也即,如果同样的工作频率,分形之后使得辐射件22的面积会比普通的辐射件的面积要小,从而可以起到缩小天线100体积的目的,这样,在同样组阵结构的方式下,天线100之间的距离得到加大,使得天线100之间的隔离度得到提高,达到优化系统性能的目的。测试表明,辐射件22通过设置上述的分形方法进行二阶分形后,在同样的工作频率下,其面积可以缩小约20%,当分形的阶数越高,在同样的工作频率下,其面积可以缩小的越小。
作为本实施例的一种改进方式,定义以辐射件22的中点为原点,以中点到第一镂空槽201的距离为半径形成的圆形区域为中心区221,四个接地件33的一端均与中心区221连接。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种辐射件,应用于天线,其特征在于,所述辐射件由方形板经过N阶分形形成,N为整数,且N≥3,所述N阶分形具体为:
    a、一阶分形,在所述方形板四个边缘的中部分别向所述方形板的中心开设第一镂空槽,所述第一镂空槽的长度为所述方形板的边长的四分之一与所述第一镂空槽的宽度的二分之一的和,所述方形板由四个所述第一镂空槽区隔为四个一阶方形;
    b、二阶分形,在每个所述一阶方形四个边缘的中部分别向所述一阶方形的中心开设第二镂空槽,所述第二镂空槽的长度为所述一阶方形的边长的四分之一与所述第二镂空槽的宽度的二分之一的和,所述一阶方形由四个所述第二镂空槽区隔为三个二阶方形;
    二阶分形后的结构按照二阶分形的方法继续分形形成N阶分形。
  2. 一种天线,其特征在于,包括:
    馈电单元,包括接地层和两个差分馈电线路,每个所述差分馈电线路包括一个输入端和两个输出端;
    第一辐射单元,包括所述辐射件;
    第二辐射单元,包括四个馈电件和四个分别与所述馈电件间隔设置的接地件,每个所述馈电件的一端与一个所述差分馈电线路的一个输出端连接、另一端呈U形延伸并与所述辐射件间隔设置以对所述辐射件耦合馈电,每个所述接地件的一端与所述辐射件连接、另一端与所述接地层连接。
  3. 根据权利要求2所述的天线,其特征在于,所述馈电单元还包括馈电介质板,所述差分馈电线路和所述接地层设于所述馈电介质板,一个所述差分馈电线路的两个输出端所在的直线与另一个差分馈电线路的两个输出端所在的直线垂直。
  4. 根据权利要求3所述的天线,其特征在于,所述馈电介质板包括朝向所述第二辐射单元的第一表面和与所述第一表面相背设置的第二表面,所述接地层包括设于所述第一表面的第一接地层和设于所述第二表面的第二接地层,所述第一接地层与所述第二接地层连通,所述第一接地层或者所述第二接地层设有净空区,所述差分馈电线路设于所述净空区。
  5. 根据权利要求4所述的天线,其特征在于,所述第二接地层设有净空区,所述差分馈电线路设于所述净空区内,所述第一接地层设有与两个所述差分馈电线路的四个输出端一一对应的四个净空槽,所述净空槽内设有焊盘,所述馈电件与所述焊盘相接。
  6. 根据权利要求3所述的天线,其特征在于,所述第一辐射单元还包括第一介质板,所述辐射件设于所述第一介质板,定义以所述辐射件的中点为原点,以所述中点到所述第一镂空槽的距离为半径形成的圆形区域为中心区,四个所述接地件的一端均与所述中心区连接。
  7. 根据权利要求6所述的天线,其特征在于,所述第二辐射单元还包括两个连接于所述第一介质板与所述馈电介质板之间的第二介质板,两个所述第二介质板呈十字交叉设置,两个所述第二介质板连接形成连接部和从所述连接部往四个方向延伸的延伸部,每个所述延伸部上设置一个所述馈电件。
  8. 根据权利要求7所述的天线,其特征在于,四个所述馈电件两两互不相对。
  9. 根据权利要求7所述的天线,其特征在于,定义所述第二介质板与所述馈电介质板连接的一侧为底部,所述第二介质板与所述第一介质板连接的一侧为顶部,每个所述馈电件包括从所述底部往所述顶部方向延伸的第一延伸部、从所述第一延伸部靠近所述顶部的一端往所述底部方向弯折延伸的第二延伸部。
PCT/CN2019/094047 2019-06-30 2019-06-30 辐射件及天线 WO2021000147A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/094047 WO2021000147A1 (zh) 2019-06-30 2019-06-30 辐射件及天线
CN201910605965.6A CN110247182B (zh) 2019-06-30 2019-07-05 辐射件及天线
US16/996,937 US20200411977A1 (en) 2019-06-30 2020-08-19 Radiation Element and Antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094047 WO2021000147A1 (zh) 2019-06-30 2019-06-30 辐射件及天线

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/996,937 Continuation US20200411977A1 (en) 2019-06-30 2020-08-19 Radiation Element and Antenna

Publications (1)

Publication Number Publication Date
WO2021000147A1 true WO2021000147A1 (zh) 2021-01-07

Family

ID=67891178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094047 WO2021000147A1 (zh) 2019-06-30 2019-06-30 辐射件及天线

Country Status (3)

Country Link
US (1) US20200411977A1 (zh)
CN (1) CN110247182B (zh)
WO (1) WO2021000147A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430905A (zh) * 2019-12-24 2020-07-17 瑞声科技(新加坡)有限公司 一种天线单元及基站
CN114361780A (zh) * 2021-12-30 2022-04-15 广东盛路通信科技股份有限公司 一种宽频辐射元件及基站天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500874A (zh) * 2013-09-26 2014-01-08 中国电子科技集团公司第三十八研究所 一种树形天线
WO2014130065A1 (en) * 2013-02-25 2014-08-28 Access Business Group International Llc Variable pitch spiral coil
CN105896070A (zh) * 2016-04-26 2016-08-24 郑州轻工业学院 基于矩形阶梯结构分形的超宽带微带天线
CN105958192A (zh) * 2016-05-12 2016-09-21 北京航空航天大学 一种采用Peano分形电磁带隙结构的双频抗多径导航天线
CN106887686A (zh) * 2017-03-24 2017-06-23 电子科技大学 基于分形结构的双频圆极化天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102224637A (zh) * 2008-10-15 2011-10-19 澳科思科技(澳大利亚)有限公司 宽带辐射元件
CN101383447B (zh) * 2008-10-21 2012-02-22 厦门大学 用于射频识别系统的矩形宽缝陶瓷明可夫斯基分形天线
KR20120086838A (ko) * 2011-01-27 2012-08-06 엘에스전선 주식회사 Pcb 기판형 광대역 이중 편파 다이폴 안테나
CN102800965A (zh) * 2012-07-23 2012-11-28 电子科技大学 一种宽带宽波束双极化偶极子天线
CN202797284U (zh) * 2012-10-10 2013-03-13 华为技术有限公司 一种馈电网络、天线及双极化天线阵列馈电电路
CN104868228B (zh) * 2014-02-25 2018-05-11 华为技术有限公司 双极化天线及天线阵列
CN106887688A (zh) * 2017-03-30 2017-06-23 苏州伟尼特美智能科技有限公司 基于Minkowski的微带贴片天线及其制造方法
CN107171062B (zh) * 2017-05-23 2023-10-13 广东通宇通讯股份有限公司 一种馈电结构、天线单元以及多阵列天线
CN107248617A (zh) * 2017-07-20 2017-10-13 广东曼克维通信科技有限公司 微带贴片天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130065A1 (en) * 2013-02-25 2014-08-28 Access Business Group International Llc Variable pitch spiral coil
CN103500874A (zh) * 2013-09-26 2014-01-08 中国电子科技集团公司第三十八研究所 一种树形天线
CN105896070A (zh) * 2016-04-26 2016-08-24 郑州轻工业学院 基于矩形阶梯结构分形的超宽带微带天线
CN105958192A (zh) * 2016-05-12 2016-09-21 北京航空航天大学 一种采用Peano分形电磁带隙结构的双频抗多径导航天线
CN106887686A (zh) * 2017-03-24 2017-06-23 电子科技大学 基于分形结构的双频圆极化天线

Also Published As

Publication number Publication date
CN110247182A (zh) 2019-09-17
US20200411977A1 (en) 2020-12-31
CN110247182B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN107528115B (zh) 一种差分馈电双极化振子组件、振子单元及振子天线
CN105896071A (zh) 双极化振子单元、天线及多频天线阵列
CN110311218B (zh) 天线振子
US9373886B2 (en) Aperture coupled radiator and antenna including the same
CN106207495B (zh) 双极化天线及其辐射单元
CN102800956A (zh) 集成式巴伦馈电的宽带双极化天线
US11264730B2 (en) Quad-port radiating element
CN111129750B (zh) 5g天线及其辐射单元
WO2021000147A1 (zh) 辐射件及天线
CN113708048A (zh) 基站天线及其高频辐射单元
EP3065217B1 (en) Probe arrangement for a probe-fed patch antenna
CN112688070A (zh) 一种分布式多点馈电宽带垂直极化全向天线
CN210430092U (zh) 一种移动通信天线的单元结构及阵列结构
CN107785658B (zh) 双极化基站天线
JP5478226B2 (ja) アンテナ装置
CN109755738A (zh) 一种双极化网格天线
CN107785654B (zh) 一种小型化强耦合天线
CN110556624A (zh) 一种移动通信天线的单元结构及阵列结构
CN215119235U (zh) 一种pcb双极化辐射单元
CN217158641U (zh) 一体化巴伦结构的双极化天线单元
CN111082221B (zh) 回路天线
TWM552679U (zh) 雙頻雙極化高增益陣列天線
CN212934845U (zh) 一种s波段双极化电磁偶极子天线阵子
CN110970708B (zh) 天线系统及其天线结构
WO2021128175A1 (zh) 阵列天线和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936040

Country of ref document: EP

Kind code of ref document: A1