WO2021128175A1 - 阵列天线和基站 - Google Patents

阵列天线和基站 Download PDF

Info

Publication number
WO2021128175A1
WO2021128175A1 PCT/CN2019/128742 CN2019128742W WO2021128175A1 WO 2021128175 A1 WO2021128175 A1 WO 2021128175A1 CN 2019128742 W CN2019128742 W CN 2019128742W WO 2021128175 A1 WO2021128175 A1 WO 2021128175A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
plastic dielectric
array antenna
plastic
antenna according
Prior art date
Application number
PCT/CN2019/128742
Other languages
English (en)
French (fr)
Inventor
吕洪辉
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2019/128742 priority Critical patent/WO2021128175A1/zh
Publication of WO2021128175A1 publication Critical patent/WO2021128175A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the present invention relates to the field of wireless technology, in particular to an array antenna and a base station.
  • Massive MIMO technology will be widely used in the design of 5G base station antennas to improve data transmission rate and spectrum utilization.
  • the traditional Massive MIMO base station antenna uses PCB or metal parts as the carrier of the antenna radiating element and the feed network, which are connected and fixed by welding process, which will inevitably lead to time-consuming and laborious assembly of the antenna, poor consistency, and increase the weight of the antenna. And antenna design cost.
  • the present invention provides a 5G base station array antenna based on a plastic electroplating process. Aiming at the problems of time-consuming and laborious assembly of the welding process in the prior art and poor consistency, the 5G base station is realized by using differential coupling feed technology and plastic electroplating processing technology.
  • the antenna requires wide frequency band, low cost, miniaturization and light weight.
  • An array antenna comprising a bottom plastic dielectric substrate, a top plastic dielectric substrate fixed to the bottom plastic dielectric substrate of the ground layer, a feed network provided on the bottom plastic dielectric substrate, and a top plastic substrate
  • the radiation unit on the dielectric substrate, the top plastic dielectric substrate and the bottom plastic dielectric substrate are riveted, and the bottom plastic dielectric substrate is provided with a plastic protrusion, the plastic protrusion is opened with a groove, and the top plastic
  • the dielectric substrate is provided with a boss matching the groove; the radiation unit is electroplated on the side of the top plastic dielectric substrate away from the bottom plastic dielectric substrate, and the feed network is electroplated on the bottom plastic dielectric The substrate faces one side of the top plastic dielectric substrate.
  • the boss includes at least two vertically connected sub-segments.
  • the feeder network includes two feeder ports, a power divider line extending from each of the feeder ports, and a differentially coupled feeder line connected to the end of the power divider line, and the differentially coupled feeder Electrical circuits are used to generate signals with a phase difference of 180°.
  • the differentially coupled feeder line includes two sets of L-shaped open-circuit transmission lines, and each set of the L-shaped open-circuit transmission lines is distributed along a diagonal line of the plastic protrusion to generate ⁇ 45° dual-polarized waves.
  • At least one of the feed ports is provided with a stub, and the stub is used to adjust antenna impedance matching.
  • the bottom surface of the bottom plastic dielectric substrate away from the top plastic dielectric substrate is electroplated with a metal ground.
  • the top plastic dielectric substrate is in the shape of a cube with cut corners, the upper surface of the top plastic dielectric substrate is electroplated into a radiation unit, and the cut corners are used to adjust the resonance point of the antenna.
  • the top plastic dielectric substrate and the bottom plastic dielectric substrate are riveted by a plastic connector.
  • the present invention also provides a base station, which includes the above-mentioned array antenna.
  • the present invention provides a 5G base station array antenna based on a plastic plating process.
  • the feeder network at the bottom of the antenna and the radiating unit at the top are directly plated. Coupled on the plastic surface, and finally the bottom plastic dielectric substrate and the top plastic dielectric substrate are fixed together through the plastic connector to complete the assembly.
  • the whole is no soldering, which realizes the 5G base station antenna broadband, low cost, miniaturization and light weight. Requirements, it can be well applied to the large-scale array antennas of 5G macro base stations.
  • FIG. 1 is a schematic structural diagram of an array antenna provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of an exploded structure of the array antenna shown in FIG. 1;
  • Fig. 3 is a schematic structural diagram of the A-A section shown in Fig. 1;
  • FIG. 4 is a schematic diagram of the structure of the first top-layer plastic dielectric substrate shown in FIG. 2;
  • FIG. 5 is a schematic diagram of the structure of the second top layer plastic dielectric substrate shown in FIG. 2;
  • FIG. 6 is a schematic front view of the bottom plastic dielectric substrate and the feed network on it shown in FIG. 2;
  • FIG. 7 is a graph showing the variation of standing wave ratio with frequency of two feed ports of the array antenna according to the first embodiment of the present invention.
  • FIG. 8 is a graph showing the variation of the isolation of the array antenna with frequency according to the first embodiment of the present invention.
  • the present invention provides an array antenna 100 applied to a 5G base station.
  • the array antenna 100 includes a bottom plastic dielectric substrate 10, and a first plastic dielectric substrate 10 fixed to the bottom plastic dielectric substrate 10.
  • the second radiation unit 52 is arranged on the second top plastic dielectric substrate 32.
  • the first top plastic dielectric substrate 31 and the bottom plastic dielectric substrate 10 are riveted, the second top plastic dielectric substrate 32 and the bottom plastic dielectric substrate 10 are riveted, and the bottom plastic dielectric substrate 10 is provided with a first A plastic protrusion 11 and a second plastic protrusion 12.
  • the first plastic protrusion 11 is provided with a first groove 110 and the second plastic protrusion 12 is provided with a second groove 120.
  • the first top plastic dielectric substrate 31 is provided with a first boss 311 matching the first groove 110; the second top plastic dielectric substrate 32 is provided with a The second boss 321 is matched with the second groove 120.
  • the first boss 311 includes at least two vertically connected first sub-segments 3111 and a second sub-segment 3112, and the second boss 321 includes at least two vertically connected first sub-segments 3211 and a second sub-segment 3212.
  • the first boss 311 is embedded in the first groove 110, and the second boss 321 is embedded in the first groove 120.
  • the first radiation unit 51 is electroplated on the side of the first top plastic dielectric substrate 31 away from the bottom plastic dielectric substrate 10
  • the second radiation unit 52 is electroplated on
  • the second top plastic dielectric substrate 32 is away from the bottom plastic dielectric substrate 10
  • the feed network 13 is electroplated on the bottom plastic dielectric substrate 10 facing the first top plastic dielectric substrate 31 and the second top layer One side of the plastic dielectric substrate 32.
  • the first top-layer plastic dielectric substrate 31 is fixedly connected to the first plastic protrusion 11 using two first plastic rivets 71
  • the second top-layer plastic dielectric substrate 32 is fixedly connected to the first plastic protrusion 11 using two second plastic rivets 72.
  • the bottom surface of the bottom plastic dielectric substrate 10 away from the first top plastic dielectric substrate 31 and the second top plastic dielectric substrate 32 is electroplated with a metal ground 91.
  • a feeder network 13 is electroplated and printed on the bottom plastic dielectric substrate 10 and the first plastic bumps 11 and the second plastic bumps 12.
  • the feeder network 13 includes two A feeder port 101, a power divider line 103 extending from each of the feeder ports 101, and a first differential coupling feeder line 111 and a second differentially coupled feeder line 121 connected to the end of the power divider line 103,
  • the first differential coupling feeder line 111 and the second differential coupling feeder line 121 are used to generate signals with a phase difference of 180°.
  • the first differential coupling feeder line 111 includes two sets of L-shaped open-circuit transmission lines 112.
  • the L-shaped open-circuit transmission lines 112 are distributed along one side of the diagonal of the plastic protrusion 11, and the two groups of the L-shaped open-circuit transmission lines 112 are used to generate ⁇ 45° dual-polarized waves.
  • the second differential coupling feeder line 121 includes two sets of L-shaped open-circuit transmission lines 122, the L-shaped open-circuit transmission lines 122 are distributed along one side of the diagonal of the plastic protrusion 12, and the two sets of L-shaped open-circuit transmission lines 122 Used to generate ⁇ 45° dual-polarized waves.
  • the power divider 103 is a one-to-two power divider, and at least one feed port 101 is provided with a branch 1031, and the branch 1031 is used to adjust antenna impedance matching.
  • the first top-layer plastic dielectric substrate 31 is in the shape of a cut-off cube, and the upper surface of the first top-layer plastic dielectric substrate 31 is electroplated into a first radiation unit 51, and the cut-off portion 312 is used to adjust the resonance point of the antenna.
  • the second top plastic dielectric substrate 32 is in the shape of a cut corner cube, the upper surface of the second top plastic dielectric substrate 32 is electroplated into a second radiating unit 52, and the corner cut portion 322 is used to adjust the resonance point of the antenna .
  • the overall height a of the array antenna 100 is 11.5 mm, and the side length b of the radiating element is 30 mm.
  • the present invention also provides a base station, which uses the above-mentioned array antenna.
  • the array antenna provided by the present invention works in 2500-2700MHz, but is not limited to this frequency band.
  • the antenna can work in other frequency bands, such as 3400-3800MHz and 4800-5000MHz, which are all within the protection scope of this patent.
  • Figure 7 is the variation curve of the standing wave ratio of the array antenna provided by the present invention with frequency.
  • the curves V1 and V2 are the standing wave ratio curves of the two feed ports.
  • Figure 8 is the array provided by the present invention. Antenna isolation varies with frequency. It can be seen from Fig. 7 and Fig. 8 that when working at 2500-2700MHz, the standing wave ratio is less than 1.5, and the isolation is less than -25dB.
  • the present invention provides a 5G base station array antenna based on a plastic plating process.
  • the feeder network at the bottom of the antenna and the radiating unit at the top are directly plated. Coupled on the plastic surface, and finally the bottom plastic dielectric substrate and the top plastic dielectric substrate are fixed together through the plastic connector to complete the assembly.
  • the whole is no soldering, which realizes the 5G base station antenna broadband, low cost, miniaturization and light weight. Requirements, it can be well applied to the large-scale array antennas of 5G macro base stations.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本发明涉及无线技术领域,提供了一种阵列天线、天线子阵和基站,所述阵列天线包括底层塑料介质基板、设在所述底层塑料介质基板上的塑料凸起、叠设于所述塑料凸起上的顶层塑料介质基板和辐射单元,所述辐射单元电镀设于所述顶层塑料介质基板远离所述底层塑料介质基板的一面,所述阵列天线还包括电镀印刷在所述底层塑料介质基板和所述塑料凸起上的馈电网络,所述馈电网络包括一分二功分器和与所述一分二功分器电连接的差分耦合馈电线路。此外,本发明还提供一种应用上述阵列天线的基站。与现有技术相比,本发明通过采用差分耦合馈电技术和塑料电镀的加工工艺,实现了5G基站天线宽频带、低成本、小型化和轻量化要求。

Description

阵列天线和基站 技术领域
本发明涉及无线技术领域,尤其涉及一种阵列天线和基站。
背景技术
随着第五代移动通信技术的到来,大规模阵列天线(Massive MIMO)技术将广泛运用于5G基站天线的设计中,以提高数据传输速率和频谱利用率。传统的Massive MIMO基站天线利用PCB或者金属件作为天线辐射单元和馈电网络的载体,通过焊接工艺连接和固定,这也必将导致天线组装费时费力,一致性较差,同时也增加了天线重量和天线设计成本。
技术问题
本发明提供一种基于塑料电镀工艺的5G基站阵列天线,针对现有技术的焊接工艺的组装费时费力和一致性差的问题,通过采用差分耦合馈电技术和塑料电镀的加工工艺,实现了5G基站天线宽频带、低成本、小型化和轻量化要求。
技术解决方案
一种阵列天线,所述阵列天线包括底层塑料介质基板、与所述地层底层塑料介质基板固定的顶层塑料介质基板以及设于所述底层塑料介质基板上的馈电网络和设于所述顶层塑料介质基板上的辐射单元,所述顶层塑料介质基板和所述底层塑料介质基板铆接,且所述底层塑料介质基板上设有塑料凸起,所述塑料凸起内开设有一槽,所述顶层塑料介质基板上设有与所述槽配合的凸台;所述辐射单元电镀设于所述顶层塑料介质基板远离所述底层塑料介质基板的一面,所述馈电网络电镀设于所述底层塑料介质基板朝向所述顶层塑料介质基板的一面。
优选地,所述凸台至少包括两垂直相接的子段。
优选地,所述馈电网络包括两个馈电端口、自各个所述馈电端口延伸的功分器线路以及连接于所述功分器线路末端的差分耦合馈电线路,所述差分耦合馈电线路用于产生相位差180°的信号。
优选地,所述差分耦合馈电线路包括两组L形开路传输线,每组所述L形开路传输线沿所述塑料凸起的一条对角线分布,以产生±45°的双极化波。
优选地,至少一所述馈电端口设有一枝节,所述枝节用于调节天线阻抗匹配。
优选地,所述底层塑料介质基板远离所述顶层塑料介质基板的下表面电镀有金属地。
优选地,所述顶层塑料介质基板呈带切角的正方体形状,所述的顶层塑料介质基板上表面电镀成辐射单元,所述切角部分用来调节天线的谐振点。
优选地,所述顶层塑料介质基板和所述底层塑料介质基板通过塑料连接件铆接。
本发明还提供一种基站,所述基站包括上述的阵列天线。
有益效果
与现有技术相比,本发明提供一种基于塑料电镀工艺的5G基站阵列天线,通过采用差分耦合馈电技术和塑料电镀的加工工艺,天线底层的馈电网络和顶层的辐射单元均直接电镀在塑料表面上并耦合,最后通过塑料连接件将底层塑料介质基板和顶层塑料介质基板固定在一起即可完成组装,整体无焊接,实现了5G基站天线宽频带、低成本、小型化和轻量化要求,可以很好地应用到5G宏基站的大规模阵列天线中。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明实施例一提供的阵列天线结构示意图;
图2为图1所示的阵列天线的分解结构示意图;
图3为图1所示的A-A剖面的结构示意图;
图4为图2中所示的第一顶层塑料介质基板的结构示意图;
图5为图2中所示的第二顶层塑料介质基板的结构示意图;
图6为图2中所示的底层塑料介质基板及其上的馈电网络的正面示意图;
图7为本发明实施例一提供的阵列天线的两个馈电端口的驻波比随频率变化曲线图;
图8为本发明实施例一提供的阵列天线隔离度随频率变化曲线图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请结合参阅图1、图2和图3,本发明提供一种应用于5G基站的阵列天线100,所述阵列天线100包括底层塑料介质基板10、与所述底层塑料介质基板10固定的第一顶层塑料介质基板31和第二顶层塑料介质基板32、设于所述底层塑料介质基板10上的馈电网络13,以及设于所述第一顶层塑料介质基板31上的第一辐射单元51和设于所述第二顶层塑料介质基板32上的第二辐射单元52。所述第一顶层塑料介质基板31和所述底层塑料介质基板10铆接,所述第二顶层塑料介质基板32和所述底层塑料介质基板10铆接,且所述底层塑料介质基板10上设有第一塑料凸起11和第二塑料凸起12,所述第一塑料凸起11内开设有第一槽110,所述第二塑料凸起12内开设有第二槽120。
请结合参阅图4和图5,所述第一顶层塑料介质基板31上设有与所述第一槽110配合的第一凸台311;所述第二顶层塑料介质基板32上设有与所述第二槽120配合的第二凸台321。所述第一凸台311至少包括两垂直相接的第一子段3111和第二子段3112,所述第二凸台321至少包括两垂直相接的第一子段3211和第二子段3212。所述第一凸台311嵌入第一槽110中,所述第二凸台321嵌入第一槽120中。
请一并参阅图1至图5,所述第一辐射单元51电镀设于所述第一顶层塑料介质基板31远离所述底层塑料介质基板10的一面,所述第二辐射单元52电镀设于所述第二顶层塑料介质基板32远离所述底层塑料介质基板10的一面,所述馈电网络13电镀设于所述底层塑料介质基板10朝向所述第一顶层塑料介质基板31和第二顶层塑料介质基板32的一面。所述第一顶层塑料介质基板31使用两颗第一塑料铆钉71固定连接在所述第一塑料凸起11上,所述第二顶层塑料介质基板32使用两颗第二塑料铆钉72固定连接在所述第二塑料凸起11上。所述底层塑料介质基板10远离所述第一顶层塑料介质基板31和第二顶层塑料介质基板32的下表面电镀有金属地91。
请结合参阅图2和图6,在所述底层塑料介质基板10和所述第一塑料凸起11和第二塑料凸起12上电镀印刷馈电网络13,所述馈电网络13包括两个馈电端口101、自各个所述馈电端口101延伸的功分器线路103以及连接于所述功分器线路103末端的第一差分耦合馈电线路111和第二差分耦合馈电线路121,所述第一差分耦合馈电线路111和第二差分耦合馈电线路121用于产生相位差180°的信号,所述第一差分耦合馈电线路111包括两组L形开路传输线112,所述L形开路传输线112沿所述塑料凸起11的对角线一侧分布,两组所述L形开路传输线112用于产生±45°的双极化波。所述第二差分耦合馈电线路121包括两组L形开路传输线122,所述L形开路传输线122沿所述塑料凸起12的对角线一侧分布,两组所述L形开路传输线122用于产生±45°的双极化波。具体在一实施例中,所述功分器103为一分二功分器,至少一馈电端口101设置有一枝节1031,所述枝节1031用于调节天线阻抗匹配。
再次参阅图4和图5,所述第一顶层塑料介质基板31呈切角的正方体形状,所述的第一顶层塑料介质基板31的上表面电镀成第一辐射单元51,所述切角部分312用来调节天线的谐振点。所述第二顶层塑料介质基板32呈切角的正方体形状,所述的第二顶层塑料介质基板32的上表面电镀成第二辐射单元52,所述切角部分322用来调节天线的谐振点。
再次参阅图3,具体在一实施例中,所述的阵列天线100整体高度a为11.5mm,辐射单元的边长b为30mm。
本发明还提供一种基站,所述基站应用上述的阵列天线。
本发明提供的阵列天线,工作在2500-2700MHz,但不仅限于该频段,通过调节天线尺寸使天线工作于其他频段如:3400-3800MHz,4800-5000MHz均在本专利的保护范围内。
请参见图7和图8,图7为本发明提供的阵列天线驻波比随频率变化曲线,曲线V1和曲线V2为两个馈电端口的驻波比曲线,图8为本发明提供的阵列天线隔离度随频率变化曲线,从图7和图8中可以看出,工作在2500-2700MHz的情况下,驻波比小于1.5,隔离度小于-25dB。
与现有技术相比,本发明提供一种基于塑料电镀工艺的5G基站阵列天线,通过采用差分耦合馈电技术和塑料电镀的加工工艺,天线底层的馈电网络和顶层的辐射单元均直接电镀在塑料表面上并耦合,最后通过塑料连接件将底层塑料介质基板和顶层塑料介质基板固定在一起即可完成组装,整体无焊接,实现了5G基站天线宽频带、低成本、小型化和轻量化要求,可以很好地应用到5G宏基站的大规模阵列天线中。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (9)

  1. 一种阵列天线,其特征在于,所述阵列天线包括底层塑料介质基板、与所述底层塑料介质基板固定的顶层塑料介质基板以及设于所述底层塑料介质基板上的馈电网络和设于所述顶层塑料介质基板上的辐射单元,所述顶层塑料介质基板和所述底层塑料介质基板铆接,且所述底层塑料介质基板上设有塑料凸起,所述塑料凸起内开设有一槽,所述顶层塑料介质基板上设有与所述槽配合的凸台;所述辐射单元电镀设于所述顶层塑料介质基板远离所述底层塑料介质基板的一面,所述馈电网络电镀设于所述底层塑料介质基板朝向所述顶层塑料介质基板的一面。
  2. 根据权利要求1所述的阵列天线,其特征在于,所述凸台至少包括两垂直相接的子段。
  3. 根据权利要求1所述的阵列天线,其特征在于,所述馈电网络包括两个馈电端口、自各个所述馈电端口延伸的功分器线路以及连接于所述功分器线路末端的差分耦合馈电线路,所述差分耦合馈电线路用于产生相位差180°的信号。
  4. 根据权利要求3所述的阵列天线,其特征在于,所述差分耦合馈电线路包括两组L形开路传输线,每组所述L形开路传输线沿所述塑料凸起的一条对角线分布,以产生±45°的双极化波。
  5. 根据权利要求3所述的阵列天线,其特征在于,至少一所述馈电端口设有一枝节,所述枝节用于调节天线阻抗匹配。
  6. 根据权利要求1所述的阵列天线,其特征在于,所述底层塑料介质基板远离所述顶层塑料介质基板的下表面电镀有金属地。
  7. 根据权利要求1所述的阵列天线,其特征在于,所述顶层塑料介质基板呈带切角的正方体形状,所述的顶层塑料介质基板上表面电镀成辐射单元,所述切角部分用来调节天线的谐振点。
  8. 根据权利要求1所述的阵列天线,其特征在于,所述顶层塑料介质基板和所述底层塑料介质基板通过塑料连接件铆接。
  9. 一种基站,其特征在于,所述基站包括权利要求1至8任一项所述的阵列天线。
PCT/CN2019/128742 2019-12-26 2019-12-26 阵列天线和基站 WO2021128175A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128742 WO2021128175A1 (zh) 2019-12-26 2019-12-26 阵列天线和基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128742 WO2021128175A1 (zh) 2019-12-26 2019-12-26 阵列天线和基站

Publications (1)

Publication Number Publication Date
WO2021128175A1 true WO2021128175A1 (zh) 2021-07-01

Family

ID=76573423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128742 WO2021128175A1 (zh) 2019-12-26 2019-12-26 阵列天线和基站

Country Status (1)

Country Link
WO (1) WO2021128175A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929959A (en) * 1988-03-08 1990-05-29 Communications Satellite Corporation Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines
EP0481417A1 (fr) * 1990-10-18 1992-04-22 Alcatel Espace Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation
CN104518282A (zh) * 2014-12-24 2015-04-15 西安电子科技大学 一种双极化宽频带高隔离度的微带天线
CN105449356A (zh) * 2016-01-06 2016-03-30 深圳三星通信技术研究有限公司 一种用于lte频段的双极化微带缝隙天线
CN105958185A (zh) * 2016-06-24 2016-09-21 摩比天线技术(深圳)有限公司 一种应用于微基站天线的辐射单元
CN106486752A (zh) * 2016-09-23 2017-03-08 西安电子科技大学 一种小型化高隔离度双极化微带天线
CN109361053A (zh) * 2018-08-17 2019-02-19 西安电子科技大学 基于双极化Van Atta阵列的低RCS微带天线
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN110518333A (zh) * 2019-06-29 2019-11-29 瑞声光电科技(苏州)有限公司 天线振子、天线阵列和基站

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929959A (en) * 1988-03-08 1990-05-29 Communications Satellite Corporation Dual-polarized printed circuit antenna having its elements capacitively coupled to feedlines
EP0481417A1 (fr) * 1990-10-18 1992-04-22 Alcatel Espace Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation
CN104518282A (zh) * 2014-12-24 2015-04-15 西安电子科技大学 一种双极化宽频带高隔离度的微带天线
CN105449356A (zh) * 2016-01-06 2016-03-30 深圳三星通信技术研究有限公司 一种用于lte频段的双极化微带缝隙天线
CN105958185A (zh) * 2016-06-24 2016-09-21 摩比天线技术(深圳)有限公司 一种应用于微基站天线的辐射单元
CN106486752A (zh) * 2016-09-23 2017-03-08 西安电子科技大学 一种小型化高隔离度双极化微带天线
CN109361053A (zh) * 2018-08-17 2019-02-19 西安电子科技大学 基于双极化Van Atta阵列的低RCS微带天线
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN110518333A (zh) * 2019-06-29 2019-11-29 瑞声光电科技(苏州)有限公司 天线振子、天线阵列和基站

Similar Documents

Publication Publication Date Title
CN201655979U (zh) 复合式多输入多输出天线模块及其系统
CN104685718B (zh) 双频交织相控阵天线
CN105896071A (zh) 双极化振子单元、天线及多频天线阵列
CN202004160U (zh) 双极化组合t型匹配振子基站天线
CN108987903A (zh) 微带串馈线阵圆极化微带天线
US11367943B2 (en) Patch antenna unit and antenna in package structure
WO2016065859A1 (zh) 一种智能天线装置
CN106816695A (zh) 三频段高增益全向偶极子天线
CN108232458A (zh) 一种差分双频双极化双环基站天线
KR102022610B1 (ko) 단일 대역 이중 편파 안테나 모듈 구조
CN104157968A (zh) 一种新概念宽带圆极化天线
CN101246997A (zh) 宽带阵列天线的馈电网络
CN207834573U (zh) 一种差分双频双极化双环基站天线
CN107331965B (zh) 低增益低旁瓣微基站天线
CN104966899A (zh) 一种全向天线和全向天线阵列
CN106941210A (zh) 超宽带高增益全向天线及其超宽带振子单元
CN104332700A (zh) 一种微带均匀直线阵列天线
CN106356618B (zh) 一种微波高频段双极化小基站平板天线
CN111463561A (zh) 阵列天线和基站
CN106684574A (zh) 6‑18GHz超宽带阵列天线
CN206432384U (zh) 多输入多输出天线系统及移动终端
CN104993245A (zh) S波段动中通双频圆极化微带天线及其阵列
CN209313001U (zh) 数字电视平面天线
US20090278745A1 (en) Dual-band inverted-f antenna
CN209045756U (zh) 一种低剖面双极化共形基站天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957070

Country of ref document: EP

Kind code of ref document: A1