WO2020263069A1 - System for the real-time synchronisation of the measurements of a network of weather sensors with a central server - Google Patents

System for the real-time synchronisation of the measurements of a network of weather sensors with a central server Download PDF

Info

Publication number
WO2020263069A1
WO2020263069A1 PCT/MX2019/000077 MX2019000077W WO2020263069A1 WO 2020263069 A1 WO2020263069 A1 WO 2020263069A1 MX 2019000077 W MX2019000077 W MX 2019000077W WO 2020263069 A1 WO2020263069 A1 WO 2020263069A1
Authority
WO
WIPO (PCT)
Prior art keywords
meteorological
bias
weather
model
variables
Prior art date
Application number
PCT/MX2019/000077
Other languages
Spanish (es)
French (fr)
Inventor
José Carlos ASTIAZARÁN AGUIRRE
Original Assignee
Astiazaran Aguirre Jose Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astiazaran Aguirre Jose Carlos filed Critical Astiazaran Aguirre Jose Carlos
Priority to PCT/MX2019/000077 priority Critical patent/WO2020263069A1/en
Publication of WO2020263069A1 publication Critical patent/WO2020263069A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the present invention has its preponderant field of application in the field of meteorology, more specifically in the installation of stations with IoT meteorological sensors, and its purpose to verify the climate in regions with agricultural crops.
  • IoT Internet of Things
  • loT opens up new opportunities beyond ground floor automation when collected data is used to feed machine learning algorithms to provide predictions (Saville et al., 2015), facilitating decision planning and decision making. decisions for owners, managers and policy makers.
  • loT can be used at different levels in the agro-industrial production chain (Medela et al., 2013). It can help to evaluate field variables such as soil condition, atmospheric conditions, and plant or animal biomass. It can also be used to evaluate and control variables such as temperature, humidity, vibration, and shocks during product transportation (Pang et al., 2015).
  • IoT can be used to monitor and predict product status and demand on shelves or inside refrigerators. In addition, it can provide information to the end user / consumer about the origin and the product properties.
  • IoT applied to agribusiness can contribute to creating an informed, connected, developed and adaptable rural community. Under the IoT paradigm, low-cost electronic devices can enhance human interaction with the physical world, and the computing power and software available on the Internet can provide valuable analysis. In summary, IoT can be an important tool in the years to come for the people who interact within an agro-industrial system: suppliers, farmers, technicians, distributors, businessmen, consumers, and government representatives.
  • LoT can be incorporated into environmental applications to produce dense, real-time maps of air and water pollution, noise level (Torres-Ruiz et al., 2016; Hachem et al., 2015), temperature, and harmful radiation among others. It can be used to collect and store environmental records, check compliance of environmental variables with local policies, activate alerts or send recommendation messages to citizens and authorities (Liu et al., 2013). Once the data reaches the cloud, governments can feed predictive models to forecast environmental variables and identify and track sources of pollution over time and space, ultimately leading to better decisions for guarantee a safe and healthy environment for all citizens.
  • the invention CN105955161 describes an agricultural intelligent control process, which includes a small agricultural climate monitoring system and computer controlled analysis through 4G wireless technology.
  • the monitoring system device of the mlcrodima for agriculture includes a temperature sensor, a humidity sensor, a light sensor, a concentration sensor, a wind instrument, a multi-camera real-time recording system and a recording device. Information gathering.
  • the computer control system includes an information receiving module, an information analysis module, and an information processing module.
  • a system of Smart control provides analytics to make accurate predictions about the weather in a small agricultural area and surveillance for timely crop or pest detection. Wind damage is monitored to facilitate information and alarm measures when data does not meet the requirements for smart control of agriculture.
  • a wireless system is provided to monitor the environmental, soil or climate conditions and to control irrigation or air conditioning systems in an agricultural or landscape site.
  • the wireless system includes a wireless sensor network that includes a plurality of sensor nodes to monitor environmental, soil or weather conditions and control one or more irrigation or climate control systems on site.
  • the wireless system also includes a server computer system located remotely from the site.
  • the server computer system is coupled to the Wireless sensor network through a communications network to receive data and control the operation of the sensor nodes.
  • the server computer system is also coupled to a device operated by an end user through a communications network to transmit the data and receive remote commands or queries from the end user.
  • the invention CN102508319 belongs to the technical field of wireless control and detection and particularly provides an agricultural environmental monitoring system based on an unmanned mobile aerial vehicle.
  • the agricultural environmental monitoring system is divided into two parts into a control terminal and a flight terminal.
  • the control terminal is made up of GRPS (General Packet Radio Service), a control center and a display center.
  • the flight terminal comprises a sensor for crop growth meteorological parameters, such as temperature, humidity, 002, lighting and the like, and also comprises peripheral circuits, such as a barrier sensor, a GPS module (Global Position System), the GPRS, a Microprocessor and the like. Long-distance communication takes place at the control terminal and the flight terminal via GPRS, so that the flight and pick-up from the flight terminal are controlled.
  • the environmental information of agricultural crops collected by the flight terminal is displayed in a GIS (System of Geographic Information), and the environment of agricultural crops is intelligently monitored in real time.
  • GIS System of Geographic Information
  • Figure 1 shows a flow diagram of the process
  • FIG. 1 shows the process diagram
  • figure 1 shows the Child diagram of the processes involved: to access the ECMWF server it is necessary to have a data license, which is personalized for the user making the query. Access to the data is through the FTP protocol, in this virtual folder the information requested from this organization will be located.
  • the files in the virtual folder are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables.
  • the computer communicates with the Globalmet server to request the geographical coordinates of each of the agricultural fields to be processed, later it extracts the point values of the mesh contained in the grib2 files, to generate the raw information of the model for a given point.
  • the algorithm is uniformly applied to calculate the daily minimum and maximum temperature for each of the requested agricultural fields.
  • the meteorologist must validate the results of the algorithm, so that it has been applied in the conditions in which it sets more precise values. I know sends the information validated by the meteorologist to the Globalmet server, where it will be displayed in all communication media with the farmer.
  • Figure 2 shows a diagram of the physical and communications layer of the climatic indicators registration process. This includes: a WSN network of sensors and weather stations connected to a raspe rry pi server which without a Gateway to connect and synchronize the data generated by the weather station to a server hosted in the cloud, where the above-described processing occurs by figure 1, to later be exposed to consultation and analysis by a multi-device tooth application.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A system of weather sensors connected by means of a WSN network to a Raspberry Pi system which concentrates and pre-processes weather data and sends said data to servers in the cloud, where a numerical modelling algorithm is executed, whereby the identification of atmospheric variables allows minimum and maximum temperatures in agricultural areas to be estimated, in order to foresee extreme values that could affect crops. This weather forecasting model may be consulted directly for a particular region via an application that can be run on multiple devices. For the calculation of the model, the information from the numerical model of the European Centre for Medium-Range Weather Forecasts (ECMWF) is used as a reference.

Description

SISTEMA PARA SINCRONIZAR LAS MEDICIONES DE UNA RED DE SENSORES CLIMATICOS CON UN SERVIDOR CENTRAL EN TIEMPO REAL. SYSTEM TO SYNCHRONIZE THE MEASUREMENTS OF A NETWORK OF CLIMATE SENSORS WITH A CENTRAL SERVER IN REAL TIME.
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente Invención tiene su campo de aplicación preponderante en el ámbito de la meteorología, más específicamente en la instalación de estaciones con sensores meteorológicos loT, y su propósito para verificar el clima en regiones con cultivos agrícolas. The present invention has its preponderant field of application in the field of meteorology, more specifically in the installation of stations with IoT meteorological sensors, and its purpose to verify the climate in regions with agricultural crops.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El crecimiento de Internet en las últimas dos décadas trajo Innumerables beneficios a los ciudadanos y organizaciones de todo el mundo. Podría decirse que el beneficio más importante fue la capacidad de consumir y producir datos y servicios en tiempo real. Recientemente, el Internet de las cosas (loT) promete aportar los mismos beneficios a los objetos cotidianos, lo que nos da una manera de extender nuestra percepción y nuestra capacidad de modificar el entoro que nos rodea. The growth of the Internet in the last two decades has brought countless benefits to citizens and organizations around the world. Arguably the most important benefit was the ability to consume and produce data and services in real time. Recently, the Internet of Things (IoT) promises to bring the same benefits to everyday objects, giving us a way to extend our perception and our ability to modify the environment around us.
En este contexto, los campos agroindustrial y ambiental son candidatos ideales para la Implementación de soluciones de loT porque se producen en amplias áreas que necesitan ser monitoreadas y controladas continuamente. Al mismo tiempo, loT abre nuevas oportunidades más allá de la automatización de la planta baja cuando los datos recopilados se utilizan para alimentar algoritmos de aprendizaje automático para proporcionar predicciones (Saville et al., 2015), facilitando la planificación de decisiones y la toma de decisiones para propietarios, gerentes y responsables políticos. loT se puede utilizar a diferentes niveles en la cadena de producción agroindustrial (Medela et al., 2013). Puede ayudar a evaluar variables de campo como el estado del suelo, las condiciones atmosféricas y la biomasa de plantas o animales. También se puede utilizar para evaluar y controlar variables como la temperatura, la humedad, la vibración y los golpes durante el transporte del producto (Pang et al., 2015). Se puede utilizar para monitorear y predecir el estado del producto y su demanda en estantes o dentro de refrigeradores. Además, puede proporcionar información al usuario/consumidor final sobre el origen y las propiedades del producto. La loT aplicada a la agrolndustria puede contribuir a crear una comunidad rural Informada, conectada, desarrollada y adaptable. Bajo el paradigma de loT, los dispositivos electrónicos de bajo costo pueden mejorar la interacción humana con el mundo físico, y la potencia informática y el software disponibles en Internet pueden proporcionar análisis valiosos. En resumen, la loT puede ser una herramienta importante en los años venideros para las personas que interactúan dentro de un sistema agroindustrial: proveedores, agricultores, técnicos, distribuidores, hombres de negocios, consumidores, y representantes gubernamentales. In this context, the agro-industrial and environmental fields are ideal candidates for the Implementation of IoT solutions because they occur in large areas that need to be continuously monitored and controlled. At the same time, loT opens up new opportunities beyond ground floor automation when collected data is used to feed machine learning algorithms to provide predictions (Saville et al., 2015), facilitating decision planning and decision making. decisions for owners, managers and policy makers. loT can be used at different levels in the agro-industrial production chain (Medela et al., 2013). It can help to evaluate field variables such as soil condition, atmospheric conditions, and plant or animal biomass. It can also be used to evaluate and control variables such as temperature, humidity, vibration, and shocks during product transportation (Pang et al., 2015). It can be used to monitor and predict product status and demand on shelves or inside refrigerators. In addition, it can provide information to the end user / consumer about the origin and the product properties. IoT applied to agribusiness can contribute to creating an informed, connected, developed and adaptable rural community. Under the IoT paradigm, low-cost electronic devices can enhance human interaction with the physical world, and the computing power and software available on the Internet can provide valuable analysis. In summary, IoT can be an important tool in the years to come for the people who interact within an agro-industrial system: suppliers, farmers, technicians, distributors, businessmen, consumers, and government representatives.
La loT se puede incorporar a aplicaciones ambientales para producir mapas densos y en tiempo real de la contaminación del aire y el agua, nivel de ruido (Torres-Ruiz et al., 2016; Hachem et al., 2015), temperatura y radiación dañina entre otros. Se puede utilizar para recopilar y almacenar registros ambientales, comprobar el cumplimiento de las variables ambientales con las políticas locales, activar alertas o enviar mensajes de recomendación a los ciudadanos y las autoridades (Liu et al., 2013). Una vez que los datos llegan a la nube, los gobiernos pueden alimentar modelos predictivos para pronosticar variables ambientales e identificar y realizar un seguimiento de las fuentes de contaminación a lo largo del tiempo y el espacio, lo que en última instancia conduce a mejores decisiones para garantizar un entorno seguro y saludable para todos los ciudadanos. LoT can be incorporated into environmental applications to produce dense, real-time maps of air and water pollution, noise level (Torres-Ruiz et al., 2016; Hachem et al., 2015), temperature, and harmful radiation among others. It can be used to collect and store environmental records, check compliance of environmental variables with local policies, activate alerts or send recommendation messages to citizens and authorities (Liu et al., 2013). Once the data reaches the cloud, governments can feed predictive models to forecast environmental variables and identify and track sources of pollution over time and space, ultimately leading to better decisions for guarantee a safe and healthy environment for all citizens.
A continuación, se describen algunas patentes enfocadas en éste problema: Some patents focused on this problem are described below:
La invención CN105955161 describe un proceso de control inteligente agrícola, el cual incluye un pequeño sistema de monitoreo climático agrícola y de análisis controlados por ordenador a través de una tecnología inalámbrica 4G. El dispositivo de sistema de monitoreo del mlcrodima para agricultura incluye un sensor de temperatura, un sensor de humedad, un sensor de luz, un sensor de concentración, un instrumento de viento, un sistema de grabación en tiempo real de múltiples cámaras y un dispositivo de recopilación de información. El sistema de control por ordenador incluye un módulo de recepción de información, un módulo de análisis de información y un módulo de procesamiento de Información. Un sistema de control inteligente proporciona análisis para hacer predicciones precisas sobre el tiempo en una pequeña área agrícola y vigilancia para una detección oportuna del cultivo o plaga. Se monitores n los danos causados por el viento para facilitar la información y las medidas de alarma cuando los datos no cumplen con los requisitos para lograr un control inteligente de la agricultura. The invention CN105955161 describes an agricultural intelligent control process, which includes a small agricultural climate monitoring system and computer controlled analysis through 4G wireless technology. The monitoring system device of the mlcrodima for agriculture includes a temperature sensor, a humidity sensor, a light sensor, a concentration sensor, a wind instrument, a multi-camera real-time recording system and a recording device. Information gathering. The computer control system includes an information receiving module, an information analysis module, and an information processing module. A system of Smart control provides analytics to make accurate predictions about the weather in a small agricultural area and surveillance for timely crop or pest detection. Wind damage is monitored to facilitate information and alarm measures when data does not meet the requirements for smart control of agriculture.
En la invención US20110035059 se proporciona un sistema inalámbrico para monltorear las condiciones ambientales, del suelo ó del clima y para controlar sistemas de riego o de climatización en un sitio agrícola o paisajístico. El sistema inalámbrico incluye una red de sensores inalámbricos que incluye una pluralidad de nodos sensores para monitorizar las condiciones ambientales, del suelo o del clima y controlar uno o más sistemas de irrigación o control del clima en el sitio. El sistema inalámbrico también incluye un sistema informático de servidor ubicado remotamente desde el sitio. El sistema de ordenador servidor está acoplado a la red de sensores Inalámbricos a través de una red de comunicaciones para recibir datos y controlar el funcionamiento de los nodos de sensor. El sistema informático servidor también está acoplado a un dispositivo accionado por un usuario final a través de una red de comunicaciones para transmitir los datos y recibir comandos o consultas remotos desde el usuario final. In the invention US20110035059 a wireless system is provided to monitor the environmental, soil or climate conditions and to control irrigation or air conditioning systems in an agricultural or landscape site. The wireless system includes a wireless sensor network that includes a plurality of sensor nodes to monitor environmental, soil or weather conditions and control one or more irrigation or climate control systems on site. The wireless system also includes a server computer system located remotely from the site. The server computer system is coupled to the Wireless sensor network through a communications network to receive data and control the operation of the sensor nodes. The server computer system is also coupled to a device operated by an end user through a communications network to transmit the data and receive remote commands or queries from the end user.
La Invención CN102508319 pertenece al campo técnico del control y detección inalámbricos y proporciona particularmente un sistema de monitorízación medioambiental agrícola basado en un vehículo aéreo móvil no tripulado. El sistema de mon ¡toreo ambiental agrícola está dividido en dos partes en una terminal de control y una terminal de vuelo. La terminal de control está compuesta por GRPS (General Packet Radio Service), un centro de control y un centro de visualización. La terminal de vuelo comprende un sensor de parámetros meteorológicos de crecimiento de cultivos, tales como temperatura, humedad, 002, iluminación y similares, y comprende además circuitos periféricos, tales como un sensor de barrera, un módulo GPS (Global Position System), el GPRS, un Microprocesador y similares. La comunicación a larga distancia se lleva a cabo en la terminal de control y la terminal de vuelo a través del GPRS, de modo que se controlan el vuelo y la recogida de la terminal de vuelo. La información medioambiental de los cultivos agrícolas recogida por la terminal de vuelo se muestra en un SIG (Sistema de Información Geográfica), y el entorno de los cultivos agrícolas es supervisado Inteligentemente en tiempo real. Con la adopción del sistema de monitoreo ambiental agrícola revelado por la Invención, la información meteorológica y ambiental con alta resolución puede ser automática e inteligentemente proporcionada para la producción agrícola, de modo que se suministra la base para la toma de decisiones. The invention CN102508319 belongs to the technical field of wireless control and detection and particularly provides an agricultural environmental monitoring system based on an unmanned mobile aerial vehicle. The agricultural environmental monitoring system is divided into two parts into a control terminal and a flight terminal. The control terminal is made up of GRPS (General Packet Radio Service), a control center and a display center. The flight terminal comprises a sensor for crop growth meteorological parameters, such as temperature, humidity, 002, lighting and the like, and also comprises peripheral circuits, such as a barrier sensor, a GPS module (Global Position System), the GPRS, a Microprocessor and the like. Long-distance communication takes place at the control terminal and the flight terminal via GPRS, so that the flight and pick-up from the flight terminal are controlled. The environmental information of agricultural crops collected by the flight terminal is displayed in a GIS (System of Geographic Information), and the environment of agricultural crops is intelligently monitored in real time. With the adoption of the agricultural environmental monitoring system revealed by the Invention, high resolution weather and environmental information can be automatically and intelligently provided for agricultural production, thus providing the basis for decision making.
DESCRIPCION DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente Invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, so they should not be considered as a limitation for said invention.
Sreve descripción de las figuras: Short description of the figures:
La figura 1 muestra un diagrama de flujo del proceso; Figure 1 shows a flow diagram of the process;
La Figura 2 muestra el esquema del proceso; Figure 2 shows the process diagram;
Con respecto a las figuras antes enlistadas, la figura 1 muestra el diagrama de Hijo de los procesos involucrados: para acceder al servidor del ECMWF es necesario poseer una licencia de datos, la cual es personalizada para el usuario que realiza la consulta. El acceso a los datos es por medio del protocolo FTP, en esta carpeta virtual se localizará la información solicitada a esta organización. Los archivos de la carpeta virtual son descargados en la computadora del meteorólogo, estos archivos grib2 contiene datos binarios estructurados de una malla con diferentes variables meteorológicas. La computadora se comunica con el servidor de Globalmet para solicitar las coordenadas geográficas de cada uno de los campos agrícolas a procesar, posteriormente extrae los valores puntuales de la malla contenida en los archivos grib2, para generar la información cruda del modelo para un punto determinado. El algoritmo se aplica uniformemente para calcular la temperatura mínima y máxima diaria de cada uno de los campos agrícolas solicitados. El meteorólogo debe de validar los resultados del algoritmo, para que se haya aplicado en las condiciones en la que éste amoja valores más precisos. Se envía la información validada por el meteorólogo al servidor de Globalmet, donde se desplegará en todos los medios de comunicación con el agricultor. With respect to the figures listed above, figure 1 shows the Child diagram of the processes involved: to access the ECMWF server it is necessary to have a data license, which is personalized for the user making the query. Access to the data is through the FTP protocol, in this virtual folder the information requested from this organization will be located. The files in the virtual folder are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables. The computer communicates with the Globalmet server to request the geographical coordinates of each of the agricultural fields to be processed, later it extracts the point values of the mesh contained in the grib2 files, to generate the raw information of the model for a given point. The algorithm is uniformly applied to calculate the daily minimum and maximum temperature for each of the requested agricultural fields. The meteorologist must validate the results of the algorithm, so that it has been applied in the conditions in which it sets more precise values. I know sends the information validated by the meteorologist to the Globalmet server, where it will be displayed in all communication media with the farmer.
En la figura 2 se muestra un esquema de la capa física y de comunicaciones del proceso de registro de Indicadores climáticos. Esto incluye: una red WSN de sensores y estaciones meteorológicas conectadas a un servidor raspe rry pi el cual sin/e de Gateway para conectar y sincronizar los datos generados por la estación meteorológica hacia un servidor alojado en la nube, donde ocurre el procesamiento antes descrito por la figura 1 , para posteriormente ser expuesto a consulta y análisis por una Aplicatión diente multi dispositivo. Figure 2 shows a diagram of the physical and communications layer of the climatic indicators registration process. This includes: a WSN network of sensors and weather stations connected to a raspe rry pi server which without a Gateway to connect and synchronize the data generated by the weather station to a server hosted in the cloud, where the above-described processing occurs by figure 1, to later be exposed to consultation and analysis by a multi-device tooth application.

Claims

REIVINDICACIONES
1. Una red WSN de estaciones meteorológicas conectadas a un servidor raspberri pl que captura, pre procesa y envía las variables climáticas registradas a un servidor central alojado en la nube, el cual ejecuta un algoritmo dituso de predicción climático en forma de servicio web y almacena los resultados en una base de datos de nube distribuida, estas predicciones pueden ser consultados Interactivamente por el usuario final desde una aplicación cliente, todo este proceso está caracterizado por 1. A WSN network of weather stations connected to a raspberri pl server that captures, pre-processes and sends the climatic variables registered to a central server hosted in the cloud, which executes a widely used weather prediction algorithm in the form of a web service and stores the results in a distributed cloud database, these predictions can be interactively consulted by the end user from a client application, this entire process is characterized by
• Redes de estaciones meteorológicas públicas y privadas para el registro de variables meteorológicas; • Networks of public and private meteorological stations for recording meteorological variables;
• Un algoritmo implementado por modelación numérica para la identificación de variables atmosféricas que permita la estimación de temperaturas mínimas y máximas en zonas agrícolas. • An algorithm implemented by numerical modeling for the identification of atmospheric variables that allows the estimation of minimum and maximum temperatures in agricultural areas.
• Uso del modelo numérico European Centre for Medium-Range Weather Forecasts (ECMWF); • Use of the numerical model European Center for Medium-Range Weather Forecasts (ECMWF);
• Registro de temperatura en bulbo húmedo; • Humid bulb temperature record;
• Detección de patrones para la determinación de temperaturas mínimas y máximas; • Detection of patterns for the determination of minimum and maximum temperatures;
• Predicción de la temperatura mediante la corrección de sesgo; • Temperature prediction by correcting for bias;
• Algoritmo difuso para la estimación del sesgo; • Fuzzy algorithm for estimating bias;
2. El sistema de conformidad con la reivindicación No. 1 , donde las estaciones meteorológicas se encuentran localizadas en una región geográfica especifica; 2. The system according to claim No. 1, where the meteorological stations are located in a specific geographic region;
3. El sistema de conformidad con la reivindicación No. 2, donde se realiza una recolección histórica de datos para las variables meteorológicas a nivel superficial y de atmosfera media-baja para evitar la contaminación por efectos orográficos y variación térmica de día y noche; 3. The system according to claim No. 2, where a historical data collection is carried out for the meteorological variables at the surface level and the medium-low atmosphere to avoid contamination by orographic effects and thermal variation of day and night;
4. El sistema de conformidad con la reivindicación No. 1 , donde el modelo numérico ECMWF estima la temperatura mínima en un campo agrícola; 4. The system according to claim No. 1, wherein the ECMWF numerical model estimates the minimum temperature in an agricultural field;
5. El sistema de conformidad con la reivindicación No. 4, donde para acceder al servidor del ECMWF es necesario poseer una licencia de datos, la cual es personalizada para el usuario que realiza la consulta; 5. The system according to claim No. 4, where to access the ECMWF server it is necessary to have a data license, which is personalized for the user making the query;
6. El sistema de conformidad con la reivindicación No. 5, donde el acceso a los datos es por medio del protocolo FTP, en esta carpeta virtual se localiza la información solicitada a esta organización; 6. The system according to claim No. 5, where access to the data is through the FTP protocol, in this virtual folder the information requested from this organization is located;
7. El sistema de conformidad con la reivindicación No. 6, donde los archivos de la carpeta virtual son descargados en la computadora del meteorólogo, estos archivos grib2 contiene datos binarios estructurados de una malla con diferentes variables meteorológicas; 7. The system according to claim No. 6, where the files of the virtual folder are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables;
8. El sistema de conformidad con la reivindicación No. 7, donde se proporcionan las coordenadas geográficas de cada uno de los campos agrícolas a procesar, posteriormente se extraen los valores puntuales de la malla contenida en los archivos grib2 para generar la información cruda del modelo para un punto determinado; 8. The system in accordance with claim No. 7, where the geographic coordinates of each of the agricultural fields to be processed are provided, subsequently the point values of the mesh contained in the grib2 files are extracted to generate the raw information of the model for a given point;
9. El sistema de conformidad con la reivindicación No. 1 , donde se cuantifica la humedad relativa para determinar la temperatura mínima mediante bulbo húmedo, coincidiendo con hora del modelo; 9. The system according to claim No. 1, where the relative humidity is quantified to determine the minimum temperature by means of a wet bulb, coinciding with the time of the model;
10. El sistema de conformidad con la reivindicación No. 9, donde la medición en bulbo húmedo se realiza con el fin de manejar el enfriamiento del vapor de agua presente; The system according to claim No. 9, wherein the wet bulb measurement is performed in order to manage the cooling of the water vapor present;
11. El sistema de conformidad con la reivindicación No. 10, donde la medición en bulbo húmedo permite mejorar la exactitud en la cuantificación de la temperatura mínima; 11. The system according to claim No. 10, wherein the wet bulb measurement allows to improve the accuracy in the quantification of the minimum temperature;
12. El sistema de conformidad con la reivindicación No. 1, donde la comparación histórica de la temperatura mínima proporcionada por el modelo numérico ECMWF y la medición mediante el bulbo húmedo se realiza con el fin de detectar patrones en el sesgo de las diferencias; 12. The system according to claim No. 1, where the historical comparison of the minimum temperature provided by the ECMWF numerical model and the measurement by means of the wet bulb is carried out in order to detect patterns in the bias of the differences;
13. El sistema de conformidad con la reivindicación No. 12, donde las diferentes características en las estaciones meteorológicas como ubicación, tipo de suelo y cultivos implican la necesidad de estimar el sesgo en cada estación meteorológica; 13. The system according to claim No. 12, where the different characteristics in meteorological stations such as location, soil type and crops imply the need to estimate the bias in each meteorological station;
14. El sistema de conformidad con la reivindicación No. 1 , donde la predicción de la temperatura mínima se realiza mediante la ecuación Tmin = Twb + Y, Tmln es la temperatura mínima, Twb es la temperatura de bulbo húmedo durante la mínima pronosticada por el modelo y Y es el sesgo determinado por factores externos propios de cada estación meteorológica; 14. The system according to claim No. 1, where the prediction of the minimum temperature is made by the equation Tmin = Twb + Y, Tmln is the minimum temperature, Twb is the wet bulb temperature during the minimum predicted by the model and Y is the bias determined by external factors specific to each meteorological station;
15. El sistema de conformidad con la reivindicación No. 1, donde se calcula la correlación de Pearson entre Tmin y Twb en los datos históricos para la detección e identificación de factores externos; 15. The system according to claim No. 1, where the Pearson correlation between Tmin and Twb is calculated in the historical data for the detection and identification of external factors;
16. El sistema de conformidad con la reivindicación No. 1, donde el análisis por medio de lógica difusa de los diferentes escenarios definidos por las combinaciones de los diferentes niveles de las variables meteorológicas permite detectar patrones de comportamiento en el sesgo para la temperatura mínima; 16. The system according to claim No. 1, where the analysis by means of fuzzy logic of the different scenarios defined by the combinations of the different levels of the meteorological variables allows to detect behavior patterns in the bias for the minimum temperature;
PCT/MX2019/000077 2019-06-27 2019-06-27 System for the real-time synchronisation of the measurements of a network of weather sensors with a central server WO2020263069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2019/000077 WO2020263069A1 (en) 2019-06-27 2019-06-27 System for the real-time synchronisation of the measurements of a network of weather sensors with a central server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2019/000077 WO2020263069A1 (en) 2019-06-27 2019-06-27 System for the real-time synchronisation of the measurements of a network of weather sensors with a central server

Publications (1)

Publication Number Publication Date
WO2020263069A1 true WO2020263069A1 (en) 2020-12-30

Family

ID=74060326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2019/000077 WO2020263069A1 (en) 2019-06-27 2019-06-27 System for the real-time synchronisation of the measurements of a network of weather sensors with a central server

Country Status (1)

Country Link
WO (1) WO2020263069A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111071A1 (en) * 2016-12-16 2018-06-21 Aguilar Fraga Omar Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111071A1 (en) * 2016-12-16 2018-06-21 Aguilar Fraga Omar Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOAP AMARENDRA, SHARMA DEEPAK, SHUKLA A.K., RAMA KRISHNA C.: "An IoT based smart irrigation management system using Machine learning and open source technologies.", COMPUTERS AND ELECTRONICS IN AGRICULTURE, vol. 155, 1 December 2018 (2018-12-01), pages 41 - 49, XP055776174, ISSN: 0168-1699, DOI: 10.1016/j.compag. 2018.09.040 *
RODRIGUEZ SCHUBERT ET AL.: "A System for the Monitoring and Predicting of Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks.", PROCEDIA COMPUTER SCIENCE, vol. 121, 14 December 2017 (2017-12-14), AMSTERDAM, NL, pages 306 - 313, XP085307967, ISSN: 1877-0509, DOI: 10.1016/j.procs. 2017.11.04 2 *

Similar Documents

Publication Publication Date Title
Davcev et al. IoT agriculture system based on LoRaWAN
Mekala et al. A novel technology for smart agriculture based on IoT with cloud computing
Triantafyllou et al. An architecture model for smart farming
Elmustafa et al. Internet of things in smart environment: Concept, applications, challenges, and future directions
CN110081930B (en) Land, sea and air integrated ecological environment monitoring system
BRPI0606697A2 (en) methods for transmitting individualized real-time task assignments, for generating real-time individualized weather and environmental data, and for collecting real-time road condition information
Deekshath et al. IoT based environmental monitoring system using arduino UNO and thingspeak
Bačić et al. Integrated sensor systems for smart cities
CN209545749U (en) A kind of land, sea and air integration ecological environmental monitoring system
Guillén-Navarro et al. IoT-based system to forecast crop frost
Bhanumathi et al. The role of geospatial technology with IoT for precision agriculture
Parra et al. An energy-efficient IoT group-based architecture for smart cities
Chaurasia et al. An overview of smart city: observation, technologies, challenges and blockchain applications
Kumar et al. Integrating wireless sensing and decision support technologies for real-time farmland monitoring and support for effective decision making: Designing and deployment of WSN and DSS for sustainable growth of Indian agriculture
Gao et al. An IOT-based Multi-sensor Ecological Shared Farmland Management System.
WO2020263069A1 (en) System for the real-time synchronisation of the measurements of a network of weather sensors with a central server
Kanupuru et al. Survey on IoT and its Applications in Agriculture
Muhic et al. Internet of things: Current technological review
Sirisha et al. Smart irrigation system for the reinforcement of Precision agriculture using prediction algorithm: SVR based smart irrigation
Yan et al. A farmland-microclimate monitoring system based on the internet of things
WO2018111071A1 (en) Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors
Muhic et al. Internet of things: Current technological review and new low power wireless sensor network protocol proposal
WO2022060940A1 (en) Systems and methods of urban rooftop agriculture with smart city data integration
Ayat et al. New Topology of WSN for Smart Irrigation with Low Consumption and Long Range
Carrera-Villacrés et al. Fog Collectors Systems with IoT Sensors in the Andes and Coastal Regions of Ecuador Southamerica and Data Processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935252

Country of ref document: EP

Kind code of ref document: A1