WO2018111071A1 - Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors - Google Patents

Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors Download PDF

Info

Publication number
WO2018111071A1
WO2018111071A1 PCT/MX2016/000150 MX2016000150W WO2018111071A1 WO 2018111071 A1 WO2018111071 A1 WO 2018111071A1 MX 2016000150 W MX2016000150 W MX 2016000150W WO 2018111071 A1 WO2018111071 A1 WO 2018111071A1
Authority
WO
WIPO (PCT)
Prior art keywords
minimum temperature
data
minimum
meteorological
bias
Prior art date
Application number
PCT/MX2016/000150
Other languages
Spanish (es)
French (fr)
Inventor
Omar AGUILAR FRAGA
Jesús Antonio JUVERA AGUIRRE
Original Assignee
Aguilar Fraga Omar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aguilar Fraga Omar filed Critical Aguilar Fraga Omar
Priority to PCT/MX2016/000150 priority Critical patent/WO2018111071A1/en
Publication of WO2018111071A1 publication Critical patent/WO2018111071A1/en

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention has its preponderant field of application in the field of meteorology, more specifically in the estimation of the minimum temperature in agricultural areas for decision-making in case of accidents caused by temperature anomalies that may cause a decrease in the performance of the main crops.
  • the correction of bias is a very common practice when making operational weather forecasts, because it offers a practical and cheap solution in terms of processing, many of the studies that have been implemented are mainly oriented to assembled models, because these they cover the whole threshold of possibilities of the behavior of each one of the meteorological variables to analyze. However, it is possible to apply this same technique to a deterministic model, although this carries a certain risk, not considering all the possibilities when facing a chaotic system.
  • the invention CN 105955161 describes a process of intelligent agricultural control, which includes a small system of agricultural climate monitoring and computer controlled analysis through a 4G wireless technology.
  • the microdima monitoring system device for agriculture includes a temperature sensor, a humidity sensor, a light sensor, a concentration sensor, a wind instrument, a real-time multi-camera recording system and a device for Information gathering.
  • the computer control system includes an information reception module, an information analysis module and an information processing module.
  • An intelligent control system provides analysis to make accurate predictions about the weather in a small agricultural area and monitoring for timely detection of the crop or pest. Wind damage is monitored to facilitate information and alarm measures when the data does not meet the requirements to achieve intelligent control of agriculture.
  • the embodiments generally refer to methods for accurately predicting seasonal fluctuations in precipitation or other approximate functional fluctuations in a climatic space, such as the number of days of degree of warming or cooling in a station, maximum river flows , water levels and the like.
  • the invention US20130024118 provides a method and system for the probabilistic prediction of midrange of extreme temperature events. Extreme temperatures are measured according to how local temperature thresholds are exceeded on daily time scales to generate a local "Magnitude Index" (MI). Next, a regional MI is calculated that reflects the historical intensity of temperature, duration and spatial extent of extreme temperature events at all locations within the region. The regional MI is used to create a synoptic catalog for at least one predefined meteorological variable, proving the importance of the main modes in historical atmospheric variability over specified periods of time. Current or recent weather conditions are they compare with the synoptic catalog to generate probabilistic predictions of extreme temperature phenomena based on the presence of synoptic precursors identified in historical patterns.
  • MI Magnetic Magnetic Index
  • the invention US20020016676 provides a method for predicting dima-related phenomena and a method of doing business using prediction analysis.
  • the accuracy of the current prediction method is improved by completing the average historical meteorological data with the current measurements and forecast data for the year to date in the same analysis.
  • the incorporation of current short-term data, together with the average historical data, provides sensitivity to the climatic phenomenon.
  • a method of doing business is also provided by providing prediction analysis for a fee through an interface provided by a computer.
  • the invention US20040215394 provides a method for generating an accelerated global coverage time model, storing in the memory of a computer model output data for the global coverage time.
  • the global time observation data is received for at least one mandatory observation period and compiled in the computer memory.
  • Accelerated output of the global coverage climate model is generated based on existing global coverage time model data, full resolution and time observation data.
  • the invention US7231299 presents a method of meteorological prediction by creating a climatic scenario from historical data, including correlation between meteorological sites.
  • US7184892 a method and a system for evaluating crop yield by means of meteorological and soil data for a defined geographical area is shown.
  • management data associated with a particular agricultural crop in a defined geographical area are obtained.
  • the meteorological data obtained, the soil and management data obtained for a comparison with the reference meteorological data are evaluated.
  • the estimated yield level of a yield characteristic and is determined for a crop particular associated with at least a portion of the geographical area defined for the evaluation.
  • the invention US20100306012 provides a method for administering fertilizers and irrigation inputs for a crop, including a planting date, meteorological data representative of the geographical area of the crop and description data of soils representative of the geographical area of the crop; a calendar of the recommended nitrogen application values, irrigation values and application dates, the program partially calculated for the nitrogen deficit and water deficit values is presented on a screen.
  • the invention CN104143043 describes a multifunctional climate data model and an application thereof.
  • the multifunctional climate data model uses methods such as the equation of the regulation of air temperature elevation, interpolation of the bilinear distance, harmonization and the like, as the basis for the generation of climatic variables at any scale.
  • climate data generated by the multifunctional climate data model can also provide support for long-term climate data for a forest ecosystem growth model to improve the prediction accuracy of the growth model.
  • a wireless system is provided to monitor environmental, soil or weather conditions and to control irrigation or air conditioning systems in an agricultural or landscape site.
  • the wireless system includes a wireless sensor network that includes a plurality of sensor nodes to monitor environmental, soil or weather conditions and control one or more on-site irrigation or climate control systems.
  • the wireless system also includes a server computer system located remotely from the site.
  • the server computer system is coupled to the wireless sensor network through a network of communications to receive data and control the operation of the sensor nodes.
  • the server computer system is also coupled to a device operated by an end user through a communications network to transmit the data and receive remote commands or queries from the end user.
  • the invention CN 102508319 belongs to the technical field of wireless control and detection and particularly provides an agricultural environmental monitoring system based on an unmanned mobile aerial vehicle.
  • the agricultural environmental monitoring system is divided into two parts in a control terminal and a flight terminal.
  • the control terminal is composed of GRPS (General Packet Radio Service), a control center and a visualization center.
  • the flight terminal comprises a sensor for meteorological parameters of crop growth, such as temperature, humidity, CO2, lighting and the like, and also comprises peripheral circuits, such as a barrier sensor, a GPS module (Global Position System), the GPRS, a Microprocessor and the like. Long-distance communication is carried out in the control terminal and the flight terminal through the GPRS, so that the flight and the collection of the flight terminal are controlled.
  • the environmental information of the agricultural crops collected by the flight terminal is displayed in a GIS (Geographic Information System), and the environment of the agricultural crops is intelligently monitored in real time.
  • GIS Geographic Information System
  • meteorological and environmental information with high resolution can be automatically and intelligently provided for agricultural production, so that the basis for decision making is provided.
  • Figure 1 shows a flow chart of the process
  • FIG. 1 shows the process scheme
  • Figure 1 shows the flowchart of the processes involved: to access the ECMWF server it is necessary to have a data license, which is customized for the user making the query.
  • the access to the data is through the FTP protocol, in this virtual folder the information requested from this organization will be located.
  • the files in the virtual folder are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables.
  • the computer communicates with the Globalmet server to request the geographic coordinates of each of the agricultural fields to be processed, then extracts the specific values of the mesh contained in the grib2 files, to generate the raw information of the model for a given point.
  • the algorithm is applied uniformly to calculate the minimum and maximum daily temperature of each of the requested agricultural fields.
  • FIG. 2 shows a scheme of the measurements associated with the methodological variables and the following steps for the estimation of the minimum temperature.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Mining & Mineral Resources (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to an algorithm implemented in numerical modelling where the identification of the atmospheric variables permits the minimum and maximum temperatures to be estimated in agricultural areas, for the purpose of anticipating extreme values that could affect the crops. Reference is made to the information of the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical model.

Description

ALGORITMO REGIONAL PARA LA AUTOMATIZACIÓN DEL CÁLCULO DE LAS TEMPERATURAS MÍNIMAS EN ZONAS AGRÍCOLAS UTILIZANDO REGIONAL ALGORITHM FOR THE AUTOMATION OF CALCULATION OF MINIMUM TEMPERATURES IN AGRICULTURAL AREAS USING
FACTORES DIFUSOS. CAMPO TÉCNICO DE LA INVENCIÓN DIFFUSIVE FACTORS. TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en el ámbito de la meteorología, más específicamente en la estimación de la temperatura mínima en zonas agrícolas para la toma de decisiones ante siniestros causados por anomalías de temperaturas que puedan causar disminución en el rendimiento de los principales cultivos.  The present invention has its preponderant field of application in the field of meteorology, more specifically in the estimation of the minimum temperature in agricultural areas for decision-making in case of accidents caused by temperature anomalies that may cause a decrease in the performance of the main crops.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Los avances en la modelación numérica en los últimos 5 años han permitido aplicar este tipo de técnicas en los datos superficiales del modelo ECMWF (European Centre for Medium-Range Weather Forecasts), al nivel de lograr una precisión impecable en proyecciones a 48 horas. El ECMWF en las últimas evaluaciones indican que el nivel de precisión por arriba de 0.80 ha pasado de 3.7 días en la década de los 80s a 6.5 días en los últimos años, casi duplicando su precisión en un periodo de 30 años. Parte de este incremento en la precisión se debe a los últimos avances en el procesamiento de información, y al incremento en la cantidad de observaciones atmosféricas que utilizan los modelos para su proceso de asimilación de datos. Advances in numerical modeling in the last 5 years have allowed this type of technique to be applied to the surface data of the ECMWF (European Center for Medium-Range Weather Forecasts) model, at the level of achieving impeccable precision in 48-hour projections. The ECMWF in the latest evaluations indicate that the level of accuracy above 0.80 has increased from 3.7 days in the 80s to 6.5 days in recent years, almost doubling its accuracy over a period of 30 years. Part of this increase in accuracy is due to the latest advances in information processing, and to the increase in the amount of atmospheric observations that the models use for their data assimilation process.
Durante todo este período de desarrollo de investigación sobre la modelación numérica, se han logrado grandes avances en el pronóstico intraestacional. Durante la década de los 90s y 00s solo teníamos la capacidad de proyectar a 15 días, sin posibilidad de analizar los posibles eventos a mesoescala que pudieran afectar a la región. Los esfuerzos por llevar las proyecciones a largo plazo comenzaron a brindar frutos a partir del año 2011 con la implementación del modelo CFSv2, mejorando la planeación en el sector económico ante posibles siniestros meteorológicos. De forma paralela, el ECMWF ha logrado un mayor avance respecto a los pronósticos intra-estacionales, al tener un nivel más elevado de precisión y resolución en sus proyecciones, las cuales, hasta el día de hoy, alcanzan los 45 días. Throughout this period of research development on numerical modeling, great advances have been made in intra-seasonal prognosis. During the decade of the 90s and 00s we only had the ability to project at 15 days, without the possibility of analyzing the possible mesoscale events that could affect the region. Efforts to carry out long-term projections began to bear fruit from 2011 with the implementation of the CFSv2 model, improving planning in the economic sector in the event of possible meteorological accidents. In parallel, the ECMWF has achieved greater progress with respect to intra-seasonal forecasts, having a higher level high precision and resolution in their projections, which, until today, reach 45 days.
Por otra parte, la disponibilidad en los datos de los modelos se ha incrementado enormemente, al grado de que el sector ha logrado definir un estándar llamado GRIB, logrando ser un formato bastante descriptivo y flexible que se adapta bastante a los avances de la modelación numérica. En la década pasada, era necesario la elaboración de rutinas de programación muy complejas para procesar los datos finales de los modelos numéricos, los cuales no era posible utilizarlos en los diferentes modelos debido a los diferentes formatos de datos que se contaban. La llegada de este estándar ha ayudado a impulsar el procesamiento de los datos de los modelos numéricos en tiempo real, facilitando la disponibilidad al usuario final de esta gran fuente de datos meteorológica, mediante la elaboración de diferentes productos como mapas interactivos, meteorogramas, y diagramas técnicos que facilitan la digestión de datos a los meteorólogos y agilizan la toma de decisiones tanto a corto como a largo plazo. A pesar de todos estos avances, la predicción de las condiciones meteorológicas a nivel superficial es bastante deficiente, y requiere de un procesamiento final por parte de un meteorólogo experto en una región determinada. El pronóstico por debajo de la capa límite ha sido uno de los principales retos en el ámbito de la meteorología, y la razón por la que siguen existiendo meteorólogos operacionales,  On the other hand, the availability in the data of the models has increased enormously, to the degree that the sector has managed to define a standard called GRIB, being able to be a fairly descriptive and flexible format that adapts quite a lot to the advances of the numerical modeling . In the last decade, it was necessary to develop very complex programming routines to process the final data of the numerical models, which could not be used in the different models due to the different data formats that were counted. The arrival of this standard has helped to boost the processing of numerical models data in real time, facilitating the availability to the end user of this great source of meteorological data, by developing different products such as interactive maps, meteorograms, and diagrams technicians that facilitate the digestion of data to meteorologists and expedite decision making both short and long term. Despite all these advances, the prediction of weather conditions at the surface level is quite poor, and requires final processing by an expert meteorologist in a given region. The forecast below the boundary layer has been one of the main challenges in the field of meteorology, and the reason why operational meteorologists still exist,
La corrección del sesgo es una práctica muy común a la hora de realizar pronósticos meteorológicos operacionales, porque ofrece una solución práctica y barata en cuanto a procesamiento, muchos de los estudios que se han implementado se orientan principalmente a los modelos ensamblados, debido a que estos cubren todo el umbral de posibilidades del comportamiento de cada una de las variables meteorológicas a analizar. Sin embargo, es posible aplicar esta misma técnica a un modelo determinístico, aunque esto conlleva a cierto riesgo, al no considerar todas las posibilidades al enfrentamos a un sistema caótico. A continuación, se describen algunas patentes enfocadas en éste problema: La invención CN 105955161 describe un proceso de control inteligente agrícola, el cual incluye un pequeño sistema de monitoreo climático agrícola y de análisis controlados por ordenador a través de una tecnología inalámbrica 4G. El dispositivo de sistema de monitoreo del microdima para agricultura incluye un sensor de temperatura, un sensor de humedad, un sensor de luz, un sensor de concentración, un instrumento de viento, un sistema de grabación en tiempo real de múltiples cámaras y un dispositivo de recopilación de información. El sistema de control por ordenador incluye un módulo de recepción de información, un módulo de análisis de información y un módulo de procesamiento de información. Un sistema de control inteligente proporciona análisis para hacer predicciones precisas sobre el tiempo en una pequeña área agrícola y vigilancia para una detección oportuna del cultivo o plaga. Se monitorean los daños causados por el viento para facilitar la información y las medidas de alarma cuando los datos no cumplen con los requisitos para lograr un control inteligente de la agricultura. The correction of bias is a very common practice when making operational weather forecasts, because it offers a practical and cheap solution in terms of processing, many of the studies that have been implemented are mainly oriented to assembled models, because these they cover the whole threshold of possibilities of the behavior of each one of the meteorological variables to analyze. However, it is possible to apply this same technique to a deterministic model, although this carries a certain risk, not considering all the possibilities when facing a chaotic system. The following describes some patents focused on this problem: The invention CN 105955161 describes a process of intelligent agricultural control, which includes a small system of agricultural climate monitoring and computer controlled analysis through a 4G wireless technology. The microdima monitoring system device for agriculture includes a temperature sensor, a humidity sensor, a light sensor, a concentration sensor, a wind instrument, a real-time multi-camera recording system and a device for Information gathering. The computer control system includes an information reception module, an information analysis module and an information processing module. An intelligent control system provides analysis to make accurate predictions about the weather in a small agricultural area and monitoring for timely detection of the crop or pest. Wind damage is monitored to facilitate information and alarm measures when the data does not meet the requirements to achieve intelligent control of agriculture.
En la invención US9262723 las realizaciones se refieren generalmente a métodos para predecir con exactitud las fluctuaciones estacionales en la precipitación u otros funcionales aproximados en un espacio climático, tales como el número de días de grado de calentamiento o enfriamiento en una estación, caudales máximos del río, niveles de agua y similares.  In the invention US9262723 the embodiments generally refer to methods for accurately predicting seasonal fluctuations in precipitation or other approximate functional fluctuations in a climatic space, such as the number of days of degree of warming or cooling in a station, maximum river flows , water levels and the like.
La invención US20130024118 proporciona un método y un sistema para la predicción probabilística de rango medio de eventos de temperatura extrema. Las temperaturas extremas se miden de acuerdo a cómo se superan los umbrales de temperatura locales en las escalas de tiempo diarias para generar un "Indice de Magnitud" (MI) local. A continuación, se calcula un MI regional que refleja la intensidad histórica de temperatura, duración y extensión espacial de eventos de temperatura extrema en todas las ubicaciones dentro de la región. El MI regional se utiliza para crear un catálogo sinóptico para al menos una variable meteorológica predefinida, probando la importancia de los modos principales en la variabilidad atmosférica histórica a lo largo de períodos de tiempo especificados. Las condiciones meteorológicas actuales o recientes se comparan con el catálogo sinóptico para generar predicciones probabilísticas de fenómenos de temperatura extrema basados en la presencia de precursores sinópticos identificados en patrones históricos. The invention US20130024118 provides a method and system for the probabilistic prediction of midrange of extreme temperature events. Extreme temperatures are measured according to how local temperature thresholds are exceeded on daily time scales to generate a local "Magnitude Index" (MI). Next, a regional MI is calculated that reflects the historical intensity of temperature, duration and spatial extent of extreme temperature events at all locations within the region. The regional MI is used to create a synoptic catalog for at least one predefined meteorological variable, proving the importance of the main modes in historical atmospheric variability over specified periods of time. Current or recent weather conditions are they compare with the synoptic catalog to generate probabilistic predictions of extreme temperature phenomena based on the presence of synoptic precursors identified in historical patterns.
La invención US20020016676 proporciona un método para predecir fenómenos relacionados con el dima y un método de hacer negocios usando el análisis de predicción. La exactitud del método de predicción actual se mejora completando los datos meteorológicos históricos promedio con las mediciones y datos de pronóstico actuales del año hasta la fecha en el mismo análisis. La incorporación de los datos actuales a corto plazo, junto con los datos históricos promedios, proporciona sensibilidad al fenómeno climático. También se proporciona un método para hacer negocios al proporcionar análisis de predicción por una tarifa a través de una interfaz facilitada por un ordenador.  The invention US20020016676 provides a method for predicting dima-related phenomena and a method of doing business using prediction analysis. The accuracy of the current prediction method is improved by completing the average historical meteorological data with the current measurements and forecast data for the year to date in the same analysis. The incorporation of current short-term data, together with the average historical data, provides sensitivity to the climatic phenomenon. A method of doing business is also provided by providing prediction analysis for a fee through an interface provided by a computer.
La invención US20040215394 proporciona un método para generar un modelo de tiempo de cobertura global acelerado, almacenando en la memoria de un ordenador datos de salida del modelo para el tiempo de cobertura global. Los datos globales de observación del tiempo se reciben durante al menos un periodo de observación obligatorio y se compilan en la memoria del ordenador. Se genera una salida acelerada del modelo de clima de cobertura global basada en los datos del modelo de tiempo de cobertura global existentes, de resolución completa y los datos de observación de tiempo.  The invention US20040215394 provides a method for generating an accelerated global coverage time model, storing in the memory of a computer model output data for the global coverage time. The global time observation data is received for at least one mandatory observation period and compiled in the computer memory. Accelerated output of the global coverage climate model is generated based on existing global coverage time model data, full resolution and time observation data.
La invención US7231299 presenta un método de predicción meteorológica mediante la creación de un escenario climático a partir de datos históricos, incluyendo correlación entre sitios meteorológicos.  The invention US7231299 presents a method of meteorological prediction by creating a climatic scenario from historical data, including correlation between meteorological sites.
En la invención US7184892 se muestra un método y un sistema para evaluar el rendimiento del cultivo mediante datos meteorológicos y del suelo para un área geográfica definida. Además, se obtienen datos de manejo asociados a un cultivo agrícola particular en un área geográfica definida. Se evalúan los datos meteorológicos obtenidos, los del suelo y de manejo obtenidos para una comparación con los datos meteorológicos de referencia. El nivel de rendimiento estimado de una característica de rendimiento y se determina para un cultivo particular asociado con al menos una porción del área geográfica definida para la evaluación. In the invention US7184892 a method and a system for evaluating crop yield by means of meteorological and soil data for a defined geographical area is shown. In addition, management data associated with a particular agricultural crop in a defined geographical area are obtained. The meteorological data obtained, the soil and management data obtained for a comparison with the reference meteorological data are evaluated. The estimated yield level of a yield characteristic and is determined for a crop particular associated with at least a portion of the geographical area defined for the evaluation.
La invención US20100306012 proporciona un método para administrar fertilizantes e insumos de riego para un cultivo, incluyendo una fecha de siembra, datos meteorológicos representativos de la zona geográfica del cultivo y datos de descripción de suelos representativos de la zona geográfica del cultivo; se presenta en una pantalla un calendario de los valores recomendados de aplicación de nitrógeno, valores de riego y fechas de aplicación, el programa calculado parcialmente para los valores de déficit de nitrógeno y déficit hídrico. La invención CN104143043 describe un modelo de datos climáticos multifunciortales y una aplicación de los mismos. El modelo de datos climáticos multifuncionales utiliza métodos como la ecuación de la regulación de la elevación de la temperatura del aire, la interpolación de la distancia bilineal, la armonización y similares, como base para realizar la generación de variables climáticas a cualquier escala. De acuerdo con los datos, al combinar un modelo de distribución de especies, se puede predecir la distribución de adecuación de especies arbóreas bajo una condición climática futura y se provee la base para la selección de especies arbóreas durante la forestación o repoblación para mejorar la productividad forestal. Los datos climáticos generados por el modelo de datos climáticos multifuncionales también pueden proporcionar apoyo a datos a largo plazo sobre el clima para un modelo de crecimiento de ecosistemas forestales a fin de mejorar la precisión de predicción del modelo de crecimiento. En la invención US20110035059 se proporciona un sistema inalámbrico para monitorear las condiciones ambientales, del suelo o del clima y para controlar sistemas de riego o de climatización en un sitio agrícola o paisajístico. El sistema inalámbrico incluye una red de sensores Inalámbricos que incluye una pluralidad de nodos sensores para monitorizar las condiciones ambientales, del suelo o del clima y controlar uno o más sistemas de irrigación o control del clima en el sitio. El sistema inalámbrico también incluye un sistema informático de servidor ubicado remotamente desde el sitio. El sistema de ordenador servidor está acoplado a la red de sensores inalámbricos a través de una red de comunicaciones para recibir datos y controlar el funcionamiento de los nodos de sensor. El sistema informático servidor también está acoplado a un dispositivo accionado por un usuario final a través de una red de comunicaciones para transmitir los datos y recibir comandos o consultas remotos desde el usuario final. The invention US20100306012 provides a method for administering fertilizers and irrigation inputs for a crop, including a planting date, meteorological data representative of the geographical area of the crop and description data of soils representative of the geographical area of the crop; a calendar of the recommended nitrogen application values, irrigation values and application dates, the program partially calculated for the nitrogen deficit and water deficit values is presented on a screen. The invention CN104143043 describes a multifunctional climate data model and an application thereof. The multifunctional climate data model uses methods such as the equation of the regulation of air temperature elevation, interpolation of the bilinear distance, harmonization and the like, as the basis for the generation of climatic variables at any scale. According to the data, by combining a species distribution model, the distribution of adaptation of tree species under a future climatic condition can be predicted and the basis for the selection of tree species during afforestation or repopulation is provided to improve productivity forest. Climate data generated by the multifunctional climate data model can also provide support for long-term climate data for a forest ecosystem growth model to improve the prediction accuracy of the growth model. In the invention US20110035059 a wireless system is provided to monitor environmental, soil or weather conditions and to control irrigation or air conditioning systems in an agricultural or landscape site. The wireless system includes a wireless sensor network that includes a plurality of sensor nodes to monitor environmental, soil or weather conditions and control one or more on-site irrigation or climate control systems. The wireless system also includes a server computer system located remotely from the site. The server computer system is coupled to the wireless sensor network through a network of communications to receive data and control the operation of the sensor nodes. The server computer system is also coupled to a device operated by an end user through a communications network to transmit the data and receive remote commands or queries from the end user.
La invención CN 102508319 pertenece al campo técnico del control y detección inalámbricos y proporciona particularmente un sistema de monitorización medioambiental agrícola basado en un vehículo aéreo móvil no tripulado. El sistema de monitoreo ambiental agrícola está dividido en dos partes en una terminal de control y una terminal de vuelo. La terminal de control está compuesta por GRPS (General Packet Radio Service), un centro de control y un centro de visualización. La terminal de vuelo comprende un sensor de parámetros meteorológicos de crecimiento de cultivos, tales como temperatura, humedad, C02, iluminación y similares, y comprende además circuitos periféricos, tales como un sensor de barrera, un módulo GPS (Global Position System), el GPRS, un Microprocesador y similares. La comunicación a larga distancia se lleva a cabo en la terminal de control y la terminal de vuelo a través del GPRS, de modo que se controlan el vuelo y la recogida de la terminal de vuelo. La información medioambiental de los cultivos agrícolas recogida por la terminal de vuelo se muestra en un SIG (Sistema de Información Geográfica), y el entorno de los cultivos agrícolas es supervisado inteligentemente en tiempo real. Con la adopción del sistema de monitoreo ambiental agrícola revelado por la invención, la información meteorológica y ambiental con alta resolución puede ser automática e inteligentemente proporcionada para la producción agrícola, de modo que se suministra la base para la toma de decisiones.  The invention CN 102508319 belongs to the technical field of wireless control and detection and particularly provides an agricultural environmental monitoring system based on an unmanned mobile aerial vehicle. The agricultural environmental monitoring system is divided into two parts in a control terminal and a flight terminal. The control terminal is composed of GRPS (General Packet Radio Service), a control center and a visualization center. The flight terminal comprises a sensor for meteorological parameters of crop growth, such as temperature, humidity, CO2, lighting and the like, and also comprises peripheral circuits, such as a barrier sensor, a GPS module (Global Position System), the GPRS, a Microprocessor and the like. Long-distance communication is carried out in the control terminal and the flight terminal through the GPRS, so that the flight and the collection of the flight terminal are controlled. The environmental information of the agricultural crops collected by the flight terminal is displayed in a GIS (Geographic Information System), and the environment of the agricultural crops is intelligently monitored in real time. With the adoption of the agricultural environmental monitoring system revealed by the invention, meteorological and environmental information with high resolution can be automatically and intelligently provided for agricultural production, so that the basis for decision making is provided.
DESCRIPCION DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. Breve descripción de las figuras: The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, and therefore should not be considered as a limitation for said invention. Brief description of the figures:
La figura 1 muestra un diagrama de flujo del proceso;  Figure 1 shows a flow chart of the process;
La Figura 2 muestra el esquema del proceso;  Figure 2 shows the process scheme;
Con respecto a las figuras antes enlistadas, la figura 1 muestra el diagrama de flujo de los procesos involucrados: para acceder al servidor del ECMWF es necesario poseer una licencia de datos, la cual es personalizada para el usuario que realiza la consulta. El acceso a los datos es por medio del protocolo FTP, en esta carpeta virtual se localizará la información solicitada a esta organización. Los archivos de la carpeta virtual son descargados en la computadora del meteorólogo, estos archivos gríb2 contiene datos binarios estructurados de una malla con diferentes variables meteorológicas. La computadora se comunica con el servidor de Globalmet para solicitar las coordenadas geográficas de cada uno de los campos agrícolas a procesar, posteriormente extrae los valores puntuales de la malla contenida en los archivos gríb2, para generar la información cruda del modelo para un punto determinado. El algoritmo se aplica uniformemente para calcular la temperatura mínima y máxima diaria de cada uno de los campos agrícolas solicitados. El meteorólogo debe de validar los resultados del algoritmo, para que se haya aplicado en las condiciones en la que éste arroja valores más precisos. Se envía la información validada por el meteorólogo al servidor de Globalmet, donde se desplegará en todos los medios de comunicación con el agricultor. En la figura 2 se muestra un esquema de las mediciones asociadas a las variables metodológicas y los pasos siguientes para la estimación de la temperatura mínima. With respect to the figures listed above, Figure 1 shows the flowchart of the processes involved: to access the ECMWF server it is necessary to have a data license, which is customized for the user making the query. The access to the data is through the FTP protocol, in this virtual folder the information requested from this organization will be located. The files in the virtual folder are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables. The computer communicates with the Globalmet server to request the geographic coordinates of each of the agricultural fields to be processed, then extracts the specific values of the mesh contained in the grib2 files, to generate the raw information of the model for a given point. The algorithm is applied uniformly to calculate the minimum and maximum daily temperature of each of the requested agricultural fields. The meteorologist must validate the results of the algorithm, so that it has been applied in the conditions in which it produces more precise values. The information validated by the meteorologist is sent to the Globalmet server, where it will be displayed in all media with the farmer. Figure 2 shows a scheme of the measurements associated with the methodological variables and the following steps for the estimation of the minimum temperature.

Claims

REIVINDICACIONES
1. Un algoritmo implementado por modelación numérica para la identificación de variables atmosféricas que permita la estimación de temperaturas mínimas y máximas en zonas agrícolas, caracterizado pon 1. An algorithm implemented by numerical modeling for the identification of atmospheric variables that allows the estimation of minimum and maximum temperatures in agricultural areas, characterized by
• Redes de estaciones meteorológicas públicas y privadas para el registro de variables meteorológicas; • Networks of public and private meteorological stations for the recording of meteorological variables;
• Uso del modelo numérico European Centre for Medium-Range Weather Forecasts (ECMWF);  • Use of the European Center for Medium-Range Weather Forecasts (ECMWF) numerical model;
• Registro de temperatura en bulbo húmedo;  • Temperature record in wet bulb;
• Detección de patrones para la determinación de temperaturas mínimas y máximas;  • Pattern detection for the determination of minimum and maximum temperatures;
• Predicción de la temperatura mediante la corrección de sesgo;  • Temperature prediction through bias correction;
• Algoritmo difuso para la estimación del sesgo;  • Diffuse algorithm for estimating bias;
2. El sistema de conformidad con la reivindicación No. 1, donde las estaciones meteorológicas se encuentran localizadas en una región geográfica especifica;  2. The system according to claim No. 1, wherein the meteorological stations are located in a specific geographical region;
3. El sistema de conformidad con la reivindicación No. 2, donde se realiza una recolección histórica de datos para las variables meteorológicas a nivel superficial y de atmosfera media-baja para evitar la contaminación por efectos orográficos y variación térmica de día y noche;  3. The system according to claim No. 2, wherein a historical data collection is carried out for the meteorological variables at the surface level and of the medium-low atmosphere to avoid contamination by orographic effects and thermal variation of day and night;
4. El sistema de conformidad con la reivindicación No. 1, donde el modelo numérico ECMWF estima la temperatura mínima en un campo agrícola; 4. The system according to claim No. 1, wherein the ECMWF numerical model estimates the minimum temperature in an agricultural field;
5. El sistema de conformidad con la reivindicación No. 4, donde para acceder al servidor del ECMWF es necesario poseer una licencia de datos, la cual es personalizada para el usuario que realiza la consulta;5. The system according to claim No. 4, where to access the ECMWF server it is necessary to have a data license, which is customized for the user making the query;
6. El sistema de conformidad con la reivindicación No. 5, donde el acceso a los datos es por medio del protocolo FTP, en esta carpeta virtual se localiza la información solicitada a esta organización; 6. The system according to claim No. 5, wherein the access to the data is by means of the FTP protocol, in this virtual folder the information requested from this organization is located;
7. El sistema de conformidad con la reivindicación No. 6, donde los archivos de la carpeta virtual son descargados en la computadora del meteorólogo, estos archivos grib2 contiene datos binarios estructurados de una malla con diferentes variables meteorológicas; 7. The system according to claim No. 6, wherein the virtual folder files are downloaded to the meteorologist's computer, these grib2 files contain structured binary data of a mesh with different meteorological variables;
8. El sistema de conformidad con la reivindicación No. 7, donde se proporcionan las coordenadas geográficas de cada uno de los campos agrícolas a procesar, posteriormente se extraen los valores puntuales de la malla contenida en los archivos grib2 para generar la información cruda del modelo para un punto determinado;  8. The system according to claim No. 7, wherein the geographical coordinates of each of the agricultural fields to be processed are provided, subsequently the point values of the mesh contained in the grib2 files are extracted to generate the raw information of the model for a given point;
9. El sistema de conformidad con la reivindicación No. 1 , donde se cuantifica la humedad relativa para determinar la temperatura mínima mediante bulbo húmedo, coincidiendo con hora del modelo;  9. The system according to claim No. 1, wherein the relative humidity is quantified to determine the minimum temperature by wet bulb, coinciding with model time;
10. El sistema de conformidad con la reivindicación No. 9, donde la medición en bulbo húmedo se realiza con el fin de manejar el enfriamiento del vapor de agua presente;  10. The system according to claim No. 9, wherein the wet bulb measurement is performed in order to handle the cooling of the water vapor present;
11. El sistema de conformidad con la reivindicación No. 10, donde la medición en bulbo húmedo permite mejorar la exactitud en la cuantificación de la temperatura mínima;  11. The system according to claim No. 10, wherein the wet bulb measurement allows to improve the accuracy in the quantification of the minimum temperature;
12. El sistema de conformidad con la reivindicación No. 1, donde la comparación histórica de la temperatura mínima proporcionada por el modelo numérico ECMWF y la medición mediante el bulbo húmedo se realiza con el fin de detectar patrones en el sesgo de las diferencias; 12. The system according to claim No. 1, wherein the historical comparison of the minimum temperature provided by the ECMWF numerical model and the measurement by the wet bulb is performed in order to detect patterns in the bias of the differences;
13. El sistema de conformidad con la reivindicación No. 12, donde las diferentes características en las estaciones meteorológicas como ubicación, tipo de suelo y cultivos implican la necesidad de estimar el sesgo en cada estación meteorológica; 13. The system according to claim No. 12, wherein the different characteristics at the weather stations such as location, type of soil and crops imply the need to estimate bias at each weather station;
14. El sistema de conformidad con la reivindicación No. 1 , donde la predicción de la temperatura mínima se realiza mediante la ecuación Tmin = Twb + Y, Tmin es la temperatura mínima, Twb es la temperatura de bulbo húmedo durante la mínima pronosticada por el modelo y Y es el sesgo determinado por factores externos propios de cada estación meteorológica; 14. The system according to claim No. 1, wherein the prediction of the minimum temperature is made by the equation Tmin = Twb + Y, Tmin is the minimum temperature, Twb is the wet bulb temperature during the minimum forecast by the model and Y is the bias determined by external factors specific to each weather station;
15. El sistema de conformidad con la reivindicación No. 1 , donde se calcula la correlación de Pearson entre Tmin y Twb en los datos históricos para la detección e identificación de factores externos; 15. The system according to claim No. 1, wherein Pearson's correlation between Tmin and Twb is calculated in the historical data for the detection and identification of external factors;
16. El sistema de conformidad con la reivindicación No. 1, donde el análisis por medio de lógica difusa de los diferentes escenarios definidos por las combinaciones de los diferentes niveles de las variables meteorológicas permite detectar patrones de comportamiento en el sesgo para la temperatura mínima;  16. The system according to claim No. 1, wherein the analysis by means of diffuse logic of the different scenarios defined by the combinations of the different levels of the meteorological variables allows to detect patterns of behavior in the bias for the minimum temperature;
PCT/MX2016/000150 2016-12-16 2016-12-16 Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors WO2018111071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000150 WO2018111071A1 (en) 2016-12-16 2016-12-16 Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000150 WO2018111071A1 (en) 2016-12-16 2016-12-16 Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors

Publications (1)

Publication Number Publication Date
WO2018111071A1 true WO2018111071A1 (en) 2018-06-21

Family

ID=62559476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000150 WO2018111071A1 (en) 2016-12-16 2016-12-16 Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors

Country Status (1)

Country Link
WO (1) WO2018111071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263069A1 (en) * 2019-06-27 2020-12-30 Astiazaran Aguirre Jose Carlos System for the real-time synchronisation of the measurements of a network of weather sensors with a central server

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140095077A1 (en) * 2012-09-28 2014-04-03 Electronics And Telecommunications Research Institute System and method for weather satellite information processing algorithm simulation
US20140365128A1 (en) * 2011-12-29 2014-12-11 Gagyotech Co., Ltd. Method for predicting hourly climatic data to estimate cooling/heating load
WO2016108420A1 (en) * 2014-12-31 2016-07-07 (주)가교테크 Solar radiation prediction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140365128A1 (en) * 2011-12-29 2014-12-11 Gagyotech Co., Ltd. Method for predicting hourly climatic data to estimate cooling/heating load
US20140095077A1 (en) * 2012-09-28 2014-04-03 Electronics And Telecommunications Research Institute System and method for weather satellite information processing algorithm simulation
WO2016108420A1 (en) * 2014-12-31 2016-07-07 (주)가교테크 Solar radiation prediction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263069A1 (en) * 2019-06-27 2020-12-30 Astiazaran Aguirre Jose Carlos System for the real-time synchronisation of the measurements of a network of weather sensors with a central server

Similar Documents

Publication Publication Date Title
US11662502B2 (en) Real-time precipitation forecasting system
Aliaga et al. Regionalization of climate over the Argentine Pampas
CN109934515B (en) Crop precision irrigation decision-making method and system
Panchard et al. Commonsense net: A wireless sensor network for resource-poor agriculture in the semiarid areas of developing countries
Bartesaghi-Koc et al. Can urban heat be mitigated in a single urban street? Monitoring, strategies, and performance results from a real scale redevelopment project
BRPI0606697A2 (en) methods for transmitting individualized real-time task assignments, for generating real-time individualized weather and environmental data, and for collecting real-time road condition information
JP2005085059A (en) Prediction system for farmwork determination support
Guillén-Navarro et al. IoT-based system to forecast crop frost
CN111401720A (en) Intelligent greening maintenance method and system based on Internet of things
GB2603383A (en) A decision support system and method for agriculture
WO2018111071A1 (en) Regional algorithm for the automation of minimum temperature calculations in agricultural areas using fuzzy factors
KR101336551B1 (en) Climate property modification prediction system and method in accordance with reservoirs construction
KR20180134108A (en) System and method for data based immediate climate prediction
Guan et al. Characterisation, interpretation and implications of the Adelaide Urban Heat Island
Wulf et al. High-resolution snow depth monitoring for entire mountain ranges
CA3192475A1 (en) Systems and methods of urban rooftop agriculture with smart city data integration
WO2020263069A1 (en) System for the real-time synchronisation of the measurements of a network of weather sensors with a central server
Zhao et al. A LoRaWAN-Based Environmental Sensor System for Urban Tree Health Monitoring
Covert Design and implementation of the New York State Mesonet flux tower network
Schauwecker et al. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes
Suciu et al. Integrating telemetry sensors with cloud computing
WO2023214338A1 (en) System and method for evaluating and diagnosing in real time the specific conditions and physical, chemical and microbiological properties of agricultural soil
Kabi et al. Leveraging IoT and Machine Learning for Improved Monitoring of Water Resources–A Case Study at Upper Ewaso Nyiro River (KENYA).
Boe Assessing local snow variability using a network of ultrasonic snow depth sensors
Hameed Mapping Thermal Hotspots in Malé, Maldives: Assessing the Relationship Between Urban Heat Islands, Climate, and Heat Risk for Sustainable Urban Planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924098

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16924098

Country of ref document: EP

Kind code of ref document: A1