WO2020262619A1 - Molded body and use thereof - Google Patents

Molded body and use thereof Download PDF

Info

Publication number
WO2020262619A1
WO2020262619A1 PCT/JP2020/025255 JP2020025255W WO2020262619A1 WO 2020262619 A1 WO2020262619 A1 WO 2020262619A1 JP 2020025255 W JP2020025255 W JP 2020025255W WO 2020262619 A1 WO2020262619 A1 WO 2020262619A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
poly
hydroxybutyrate
resin layer
molded product
Prior art date
Application number
PCT/JP2020/025255
Other languages
French (fr)
Japanese (ja)
Inventor
智亮 齋藤
中村 信雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021527777A priority Critical patent/JP7467454B2/en
Publication of WO2020262619A1 publication Critical patent/WO2020262619A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a molded product containing poly (3-hydroxyalkanoate) and its use.
  • plastic containers will eventually become solid waste. While efforts for recycling are increasing, repeated processing will result in deterioration of mechanical properties. Therefore, a plastic container that decomposes in the soil environment is desired.
  • a plastic container that decomposes in the soil environment is desired.
  • a product using a biodegradable resin such as polylactic acid as a main component is known.
  • microplastics which are disintegrated and atomized by ultraviolet rays, adsorb harmful compounds in seawater, and when marine organisms ingest them, harmful substances are taken into the food chain.
  • films such as labels and food packaging and bottle containers such as PET bottles are very common and are regarded as a problem.
  • Biodegradable plastics are expected to be used for marine pollution caused by such plastics, but in the report (Non-Patent Document 1) compiled by the United Nations Environmental Plan in 2015, biodegradable with compost such as polylactic acid is possible. It has been pointed out that such plastics cannot be used as a countermeasure against marine pollution because they cannot be expected to decompose in a short period of time in the real ocean where the temperature is low. However, on the other hand, the bottle container itself is particularly useful for carrying beverages and foods, and continuous use is desired.
  • poly (3-hydroxybutyrate) -based resin is attracting attention as a material that solves the problem of marine pollution because it is a material that can undergo biodegradation even in seawater.
  • Patent Document 1 discloses a thermoplastic biodegradable polymer mixture containing starch as an essential component as a biodegradable substance.
  • Patent Document 1 since it is necessary to form an anchor coat layer made of a non-biodegradable polyurethane resin composition, there is room for improvement from the viewpoint of biodegradability. Further, the technique of Patent Document 2 has a problem that the transparency of the film is low and it is difficult to visually recognize the print layer and the contents.
  • one aspect of the present invention is to improve the adhesion between the biodegradable resin layer using a poly (3-hydroxybutyrate) resin and the vapor-deposited layer, to have excellent gas barrier properties and to have high transparency of the resin layer. It is an object of the present invention to provide a molded product and a technique for utilizing the molded product.
  • the present inventors have (1) a biodegradable resin layer and a vapor deposition layer using a poly (3-hydroxybutyrate) resin which is a material that biodegrades in seawater.
  • a biodegradable resin layer and a vapor deposition layer using a poly (3-hydroxybutyrate) resin which is a material that biodegrades in seawater.
  • one aspect of the present invention is a molded product including a laminated body in which a vapor-deposited layer containing an inorganic material is provided on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the resin layer. It is a molded product in which a vapor-deposited layer is formed on a surface having a surface tension of 36 mN / m or more.
  • a molded product according to an embodiment of the present invention (hereinafter, referred to as "the present molded product") is provided with a vapor-deposited layer containing an inorganic material on at least one surface of a resin layer containing poly (3-hydroxyalkanoate). It is a molded product containing the laminated body, characterized in that a vapor-deposited layer is formed on the surface of the resin layer having a surface tension of 36 mN / m or more.
  • it is a molded product containing a laminated body in which a layer containing an inorganic material is vapor-deposited on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the surface tension of the resin layer is 36 mN / m. It can be said that it is a molded product in which an inorganic material is vapor-deposited on the above surface.
  • the present inventors have succeeded in obtaining the following findings as a result of diligent studies on a molded product containing a poly (3-hydroxybutyrate) resin.
  • the surface tension of the resin layer containing the poly (3-hydroxybutyrate) resin is 36 mN.
  • the adhesion between the resin layer containing the poly (3-hydroxybutyrate) resin and the vapor deposition layer (hereinafter, also referred to as "deposited adhesion"). Yes), and found that the gas barrier property of the molded product is enhanced. It was also found that the obtained resin layer is highly transparent. Details of the means for setting the surface tension of the resin layer to 36 mN / m or more will be described later, but examples thereof include a method in which the resin layer does not substantially contain an outer lubricant.
  • the molded product containing a poly (3-hydroxybutyrate) resin has a significantly narrower processable temperature range when inflating a film than a general-purpose resin, and has formability and productivity. Had the problem of worsening.
  • the molded product has a structure in which a vapor-deposited layer containing an inorganic material is provided on at least one side of the resin layer containing poly (3-hydroxyalkanoate), the vapor-deposited layer is hard to peel off, has excellent gas barrier properties, and is a resin layer. It has the effect of being highly transparent.
  • the gas barrier property means, for example, water vapor permeability and / or oxygen permeability.
  • the resin layer in this molded product contains poly (3-hydroxy alkanoate).
  • poly (3-hydroxy alkanoate) may be abbreviated as P3HA.
  • P3HA Poly (3-hydroxy alkanoate)
  • P3HA means a biodegradable aliphatic polyester (preferably a polyester containing no aromatic ring).
  • P3HA is a 3-hydroxyalkanoic acid repeating unit represented by the general formula: [-CHR-CH 2- CO-O-] (in the formula, R is an alkyl group represented by C n H 2n + 1 and n is an alkyl group. It is a polyhydroxyalkanoate containing 1 or more and 15 or less as an essential repeating unit. Among them, the repeating unit is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, based on the total monomer repeating unit (100 mol%).
  • P3HA poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), poly (3-hydroxybutyrate- Co-3-hydroxyhexanoate) (P3HB3HH), poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), poly (3-hydroxybutyrate- Co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxydecanoate), etc. Be done.
  • P3HA produced by microorganisms is usually P3HA composed only of D-form (R-form) polyhydroxyalkanoic acid monomer units.
  • P3HB, P3HB3HH, P3HB3HV, P3HB3HV3HH, and P3HB4HB are preferable, and P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are more preferable, because industrial production is easy.
  • P3HA is poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate).
  • Hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate-co-3) -Hydroxyoctanoate) and poly (3-hydroxybutyrate-co-3-hydroxydecanoate) are at least one selected from the group.
  • the monomer composition ratio is set to the total repeating unit (100) from the viewpoint of the balance between flexibility and strength.
  • the 3-hydroxybutanoic acid (3HB) repeating unit is preferably 80 mol% to 99 mol%, more preferably 85 mol% to 97 mol%.
  • composition ratio of the 3HB repeating unit is 99 mol% or less, the flexibility tends to be further improved.
  • the monomer composition ratio of P3HA can be measured by gas chromatography or the like (see, for example, International Publication No. 2014/02038).
  • the microorganism that produces microorganism-produced P3HA is not particularly limited as long as it is a microorganism capable of producing P3HAs.
  • a P3HB-producing bacterium Bacillus megaterium discovered in 1925 is the first, and in addition, Cupriavidus necator (former classification: Alcaligenes eutrophos, Ralstonia eutropha) (Ralstonia eutropha) Natural microorganisms such as Alcaligenes ratus can be mentioned. It is known that P3HB is accumulated in the cells of these microorganisms.
  • Examples of the bacterium producing a copolymer of hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. It has been known.
  • P3HB3HH in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhos AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Baeri) into which the gene of the P3HA synthase group was introduced.
  • microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used.
  • a recombinant microorganism into which various P3HA synthesis-related genes have been introduced may be used according to the P3HA to be produced, or the culture conditions including the type of substrate may be optimized.
  • the molecular weight of P3HA is not particularly limited as long as it exhibits substantially sufficient physical properties for the intended use.
  • the weight average molecular weight range of P3HA is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,000,000, and even more preferably 300,000 to 700,000. By setting the weight average molecular weight to 50,000 or more, the strength of the film tends to be further improved. On the other hand, when the weight average molecular weight is 3,000,000 or less, the processability tends to be further improved and the molding tends to be easier.
  • the P3HA is preferably a uniformly and appropriately crosslinked P3HA, but the value of the weight average molecular weight is a value measured before the P3HA is crosslinked.
  • one type of P3HA may be used alone, or two or more types may be used in combination.
  • the content of P3HA in the resin layer is not particularly limited, but is preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 60% by weight. % Or more, more preferably 70% by weight or more.
  • the upper limit of the content of P3HA is not particularly limited, but is preferably 95% by weight or less, more preferably 92% by weight or less, and further preferably 90% by weight or less.
  • the surface tension of at least one side of the molded product before vapor deposition in the present molded product is preferably 36 mN / m or more, more preferably 37 mN / m or more, and particularly preferably 38 mN / m or more.
  • the method for setting the surface tension to 36 mN / m or more is not particularly limited as long as the surface tension can be set to 36 mN / m or more, but a method that substantially does not use an outer lubricant, a discharge treatment such as corona treatment or plasma treatment, A method of cleaning the surface with liquids or the like, a method of roughening the surface, or the like can be preferably used.
  • the surface friction coefficient of at least one side is preferably 0.17 or more, more preferably 0.18 or more, and particularly preferably 0.19 or more.
  • the method of setting the surface friction coefficient to 0.17 or more is not particularly limited as long as the surface friction coefficient can be set to 0.17 or more, but a method that does not substantially use an outer lubricant, a discharge such as corona treatment or plasma treatment, etc. Treatment, a method of cleaning the surface with liquids or the like, a method of smoothing the surface, or the like can be preferably used.
  • the resin layer in the present molded product is substantially free of the outer lubricant. Since the resin layer does not substantially contain the outer lubricant, there is an advantage that the adhesion between the resin layer and the vapor-deposited layer is increased when the vapor-deposited layer containing the inorganic material is vapor-deposited on the resin layer. It also has a high gas barrier property.
  • the "outer lubricant" bleeds on the surface of a molded product to promote peeling from a roll or mold of a molding machine and opening of a double-layered film such as an inflation film.
  • the outer lubricant is not particularly limited as long as it satisfies the above definition, and examples thereof include a fatty acid monoamide and a fatty acid bisamide.
  • examples of the fatty acid constituting the fatty acid amide include fatty acids having 12 to 30 carbon atoms and fatty acids having 18 to 22 carbon atoms, and examples thereof include higher fatty acids such as erucic acid, palmitic acid, and oleic acid.
  • fatty acid amide examples include erucic acid amide, palmitate amide, oleic acid amide, stearic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, and ethylene biseramic acid amide. Can be mentioned.
  • substantially free of external lubricant means that the resin layer does not contain external lubricant to the extent that it affects the effects of the present invention. In other words, “substantially free of external lubricant” means that the resin layer may contain less than enough external lubricant to affect the effectiveness of the present invention.
  • the content of the outer lubricant in the resin layer is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, still more preferably 0.1% by weight. It is as follows. Most preferably, the resin layer does not contain any external lubricant. When the content of the outer lubricant in the resin layer is 0.5% by weight or less, high adhesion to the vapor-deposited layer is ensured and high gas barrier property is exhibited.
  • the resin layer in the present molded product may contain a crystal nucleating agent.
  • a crystal nucleating agent for example, a polyhydric alcohol or the like is preferably used. Examples of polyhydric alcohols include pentaerythritol, galactitol, mannitol and the like.
  • the crystal nucleating agent one type may be used alone, or two or more types may be used in combination. The content of the crystal nucleating agent can be appropriately set and is not particularly limited.
  • the resin layer in the present molded product may contain a resin other than P3HA (hereinafter, may be referred to as "another resin").
  • the other resin is not particularly limited as long as the compatibility, molding processability, and mechanical properties are not significantly reduced when molding the molded product according to the embodiment of the present invention, but the present molded product is a feature of P3HA.
  • it is preferably a biodegradable resin.
  • other resins include aliphatic polyesters having a structure in which an aliphatic diol and an aliphatic dicarboxylic acid are polycondensed, and an aliphatic aromatic polyester using both an aliphatic compound and an aromatic compound as monomers. Be done.
  • Examples of the former are polyethylene succinate, polybutylene succinate (PBS), polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polybutylene succinate adipate (PBSA), polyethylene sevacate, poly.
  • Butylene succinate and the like can be mentioned.
  • Examples of the latter include poly (butylene adipate-co-butylene terephthalate) (PBAT), poly (butylene sebacate-co-butylene terephthalate), poly (butylene azelate-co-butylene terephthalate), poly (butylene succinate-).
  • PBST poly (butylene adipate-co-butylene terephthalate)
  • PBST poly (butylene adipate-co-butylene terephthalate)
  • PBST poly (butylene adipate-co-butylene terephthalate)
  • one type
  • the content of the other resin in the resin layer is not particularly limited, but is preferably 250 parts by weight or less, more preferably 100 parts by weight or less, still more preferably 100 parts by weight or less, based on 100 parts by weight of P3HA. Is 50 parts by weight or less, particularly preferably 20 parts by weight or less.
  • the lower limit of the content of the other resin is not particularly limited and may be 0 parts by weight.
  • the resin layer in the present molded product may contain other components other than the above.
  • an organic or inorganic filler may be contained as long as the effect of the present invention is not impaired.
  • wood-based materials such as wood chips, wood flour, and ogas, rice husks, rice flour, starch, cornstarch, rice straw, straw, natural rubber and the like are natural. Derived material is preferred.
  • the content of the organic or inorganic filler can be appropriately set and is not particularly limited. As the organic or inorganic filler, one type may be used alone, or two or more types may be used in combination.
  • Pigments used as ordinary additives colorants such as dyes, odor absorbers such as activated charcoal and zeolite, fragrances such as vanillin and dextrin, antioxidants, antioxidants, weather resistance improvers, as long as they do not inhibit It may contain one or more of UV absorbers, water repellents, antibacterial agents, sliding improvers and other secondary additives.
  • the content of the additive can also be set as appropriate.
  • the vapor-deposited layer in the present molded body may be one containing an inorganic material, but may be composed of only an inorganic material.
  • the inorganic material in one embodiment of the present invention can be exemplified by a metal or an inorganic oxide, and is not particularly limited. Preferred examples may be, for example, aluminum, aluminum oxide, silicon oxide (eg, silicon monoxide, silicon dioxide, silicon nitride, etc.), cerium oxide, calcium oxide, diamond-like carbon film, or a mixture thereof. .. In one embodiment of the present invention, the inorganic material is preferably aluminum or silicon dioxide from the viewpoint of vapor deposition adhesion.
  • the thickness of the thin-film vapor deposition layer is not particularly limited, but is preferably 5 nm to 100 nm, more preferably 5 nm to 60 nm, from the viewpoint of productivity, handleability, appearance, and the like.
  • the thickness of the thin-film deposition layer is 5 nm or more, the vapor-film deposition layer is less likely to be chipped (peeling of the vapor-deposited layer from the resin layer), and the gas barrier property is good.
  • the thickness of the layer is less than 100 nm, the cost at the time of vapor deposition is low, the coloring of the vapor deposition layer is not conspicuous, and the appearance is good.
  • the thin-film deposition layer may be vapor-deposited on only one side of the resin layer, or may be vapor-deposited on both sides. From the viewpoint of ensuring the biodegradability of P3HA, the vapor deposition layer is preferably vapor-deposited on only one side of the resin layer. Further, it is preferable that the vapor-deposited layer is directly vapor-deposited on the resin layer without interposing another layer.
  • the vapor-deposited layer in the molded product may be further laminated with a resin layer or the like.
  • a resin layer may be further laminated on the vapor-deposited layer.
  • the molded product is not particularly limited as long as it has a structure in which a vapor-deposited layer containing an inorganic material is vapor-deposited on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and is not particularly limited. Examples include sheets, tubes, plates, rods, containers (eg, bottle containers), bags, parts and the like.
  • the molded product is preferably a film or a bottle container from the viewpoint of measures against marine pollution.
  • the haze value of the resin layer in the molded product is, for example, 40% or less, preferably 35% or less, more preferably 30% or less, still more preferably 25% or less. It is particularly preferably 20% or less, and further preferably 10% or less.
  • the lower limit of the haze value of the resin layer is preferably as low as possible from the viewpoint of transparency, and is not particularly limited, but is, for example, 1% or more.
  • the haze value in the present specification is a value measured by the method described in JIS K7136-1: 1999 and K7316: 2000 on a sheet (film) having a thickness of 30 ⁇ m.
  • a film (resin layer) having a haze value of 40% or less raises the resin temperature in the extruder to the extent that the resin extruded from the extruder outlet does not cause surface roughness when forming the resin layer, or has a high haze value. It can be obtained by not blending a certain amount of resin (for example, a resin having a thickness of 30 ⁇ m and a haze value of 40% or more) or by not blending a constant amount of a filler that increases the haze value.
  • the water vapor permeability of the molded product is, for example, less than 1.00 g / m 2 / 24h, preferably less than 0.95 g / m 2 / 24h, and more preferably less than 0.90 g / m 2 / 24h. Yes, more preferably less than 0.85 g / m 2 / 24h.
  • the water vapor permeability is within the above range, a good water vapor gas barrier property can be obtained.
  • the lower the water vapor permeability, the better, and the lower limit thereof is not particularly limited, but it is presumed that about 0.01 g / m 2 / 24h is a feasible lower limit.
  • the water vapor permeability depends on the average surface roughness of the layer on which the vapor deposition layer is formed, the fn of the film, the type of inorganic material of the vapor deposition layer, the thickness of the vapor deposition layer, the amount of defects (pinholes, scratches, etc.) in the vapor deposition layer. Can be controlled. The water vapor permeability is measured and evaluated by the method described in Examples.
  • the oxygen permeability of the molded product is, for example, 3.00 g / m 2 / 24h / atm or less, preferably 2.85 g / m 2 / 24h / atm or less, and more preferably 2.80 g / m. It is m 2 / 24h / atm or less, more preferably 2.75 g / m 2 / 24h / atm or less.
  • the oxygen permeability may lower the, its lower limit is not particularly limited, about 0.01g / m 2 / 24h / atm are presumed feasible lower limit.
  • Oxygen permeability depends on the average surface roughness of the layer on which the vapor deposition layer is formed, the fn of the film, the type of inorganic material of the vapor deposition layer, the thickness of the vapor deposition layer, the amount of defects (pinholes, scratches, etc.) in the vapor deposition layer, etc. Can be controlled. The oxygen permeability is measured and evaluated by the method described in Examples.
  • the molded body for example, fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric
  • the molded body composed of a material different from the present molded body , Paper, film, sheet, tube, board, rod, container, bag, part, foam, etc.
  • These materials are also preferably biodegradable.
  • the vapor-deposited film can be used in various packaging materials as a packaging material.
  • the package is not particularly limited, and examples thereof include a side-seal package, a three-way seal package, a pillow package, and a standing pouch.
  • the molded product is a thin-film film or a thin-film bottle container, they are manufactured by, for example, the methods described below.
  • the film can be produced by a molding method consisting of extrusion film molding.
  • extrusion film molding a process in which a poly (3-hydroxybutyrate) resin is melted in an extruder and then extruded into a film shape from a T-die connected to the extruder outlet, and the molten resin is applied to a roll to cool and solidify. It can be manufactured by the process of taking it as a film. Specific conditions for extrusion film molding can be appropriately set by those skilled in the art according to a conventional method.
  • the bottle container can be manufactured by a molding method consisting of extrusion blow molding.
  • extrusion blow molding a process in which a poly (3-hydroxybutyrate) resin is melted in an extruder and then extruded into a tube shape from an annular die connected to the extruder outlet. It can be manufactured by a step of sandwiching from a surface and by blowing air into the tube whose one end is closed to form a bottle shape according to a mold and at the same time cooling and solidifying.
  • Specific conditions for extrusion blow molding can be appropriately set by those skilled in the art according to a conventional method.
  • the bottle container can also be manufactured by a molding method consisting of injection blow molding.
  • the thin-film deposition film and the vapor-deposited bottle container are manufactured by depositing the thin-film deposition layer on the film and the bottle container obtained above.
  • the vapor deposition method is not particularly limited, and a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method, an ion plating method and the like are used.
  • the processing strength at the time of performing the corona treatment is preferably 5 to 80 W ⁇ min / m 2 , and more preferably 10 to 60 W ⁇ min / m 2 .
  • the plasma discharge is preferably carried out in an oxygen and / or nitrogen gas atmosphere, and copper is preferably used as the nucleating metal.
  • aluminum metal or alumina is evaporated by resistance heating boat method, high frequency induction heating of crucible, electron beam heating method, etc., and aluminum oxide is deposited on the film in an oxidizing atmosphere.
  • the method of depositing is preferably used.
  • Oxygen is used as the reactive gas for forming the oxidizing atmosphere, but a gas containing mainly oxygen and water vapor or a rare gas may also be used. Further, a method of adding ozone or promoting a reaction such as ion assist may be used in combination.
  • a method of evaporating Si metal, SiO or SiO 2 by an electron beam heating method and depositing silicon oxide on the film in an oxidizing atmosphere is adopted.
  • a method for forming an oxidizing atmosphere the same method as described above is used.
  • one embodiment of the present invention is as follows.
  • the inorganic material is at least one selected from the group consisting of aluminum, aluminum oxide, silicon oxide, cerium oxide, calcium oxide, diamond-like carbon film, and a mixture thereof, ⁇ 1> to ⁇ .
  • the poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly.
  • P3HA The 3-hydroxyhexanoate (3HH) composition obtained according to the method described in International Publication No. 2013/147139, 11.2 mol%, weight average in terms of standard polystyrene measured by GPC.
  • A-3 Ecomann EM5400F [Poly (3-hydroxybutyrate-4-hydroxybutyrate) (P3HB4HB)] PBAT / Start: A mixture obtained according to the method described in US2014 / 0087106, having a PBAT (poly (butylene adipate-co-butylene terephthalate)) composition of 75% by weight and a potato-derived natural starch composition of 25% by weight. ..
  • B-1 Erucic acid amide (manufactured by Nippon Fine Chemical Co., Ltd.) (Crystal nucleating agent)
  • C-1 Pentaerythritol (manufactured by Nippon Synthetic Chemistry Co., Ltd.) (Inorganic material)
  • D-1 Aluminum (manufactured by High Purity Chemical Laboratory)
  • D-2 Silicon dioxide (manufactured by Optoscience) [Measurement and evaluation method] Evaluation in Examples and Comparative Examples was carried out by the following method.
  • the water vapor permeability was measured using PERMATRAN-W3 / 33MG + manufactured by MOCON. The temperature of the permeation cell was 38 ° C., the relative humidity was 90%, the test gas nitrogen, the permeation area was 50 cm 2 , and the number of tests was one.
  • Oxygen permeability was measured using OX-TRAN ML2 / 21 manufactured by MOCON. The test was carried out under temperature conditions of 23 ° C., humidity of 50% RH, test gas oxygen of 100%, permeation area of 5 cm 2 , and one test sheet.
  • haze value The haze value of a film (resin layer) having a thickness of 30 ⁇ m was measured by the method described in JIS K7136-1: 1999 and K7316: 2000 using a haze meter HZ-V3 manufactured by Suga Test Instruments.
  • Example 1 P3HA (A-1), an outer lubricant (B-1) and a crystal nucleating agent (C-1) were dry-blended at the blending ratios shown in Table 1.
  • the obtained mixture is put into a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd .: TEM26ss) in the same direction, melt-kneaded at a set temperature of 120 to 160 ° C. and a screw rotation speed of 100 rpm, and pellets are cut by strand cutting. Obtained.
  • a film (sheet) is manufactured by T-die molding under the initial conditions of an extruder set temperature of 130 to 160 ° C, an adapter and die set temperature (resin temperature) of 160 ° C, and a take-up speed of 1 m / min. Carried out.
  • the conditions for extrusion were a screw rotation speed of 30 rpm and a die gap of 250 um, and after extrusion, a roll adjusted to a temperature of 60 ° C. was applied to the sheet and taken up at 1 m / min to produce a film (resin layer). Then, the haze value of the obtained film was measured.
  • Table 1 The results are shown in Table 1.
  • Example 2 A film and a laminate were produced in the same manner as in Example 1 except that the types of the inorganic materials were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 3 A film and a laminate were produced in the same manner as in Example 1 except that the crystal nucleating agent was removed. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 4 A film and a laminate were produced in the same manner as in Example 1 except that the type of the inorganic material was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 5 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 6 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 7 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 8 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 9 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 10 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 11 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 12 A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
  • Example 1 A film was produced in the same manner as in Example 1 except that vacuum deposition was not performed except for the crystal nucleating agent.
  • the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
  • Example 2 A film was produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 2 except for the crystal nucleating agent and vacuum deposition was not performed. In addition, the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
  • Example 3 A film was produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 2 except for the crystal nucleating agent and vacuum deposition was not performed. In addition, the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
  • Example 4 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 5 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 6 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added and the type of P3HA was changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 7 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of P3HA and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 8 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added and the type of P3HA was changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 9 A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of P3HA and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 10 A film and a laminate were produced in the same manner as in Example 1 except that P3HA was changed to PBAT / Starch except for the crystal nucleating agent. Further, the haze value of the obtained film and the vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • Example 11 A film and a laminate were produced in the same manner as in Example 1 except that the crystal nucleating agent was removed, P3HA was changed to PBAT / Starch, and the type of the inorganic material was changed as shown in Table 2. Further, the haze value of the obtained film and the vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
  • the molded product (laminated product) of the present invention is a molded product in which the vapor-deposited layer is hard to peel off, the gas barrier property is excellent, and the resin layer is highly transparent.
  • This molded product can be suitably used in agriculture, fisheries, forestry, horticulture, medicine, sanitary goods, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a molded body and a technique for using the molded body, wherein the molded body improves adhesion between a biodegradable resin layer using a poly(3-hydroxybutyrate) resin and a vapor-deposited layer, has excellent gas barrier properties, and has a resin layer with high transparency. The purpose is achieved by providing a molded body including a laminate in which a vapor-deposited layer containing an inorganic material is provided on at least one surface of a resin layer containing a poly(3-hydroxyalkanoate), wherein the vapor-deposited layer is formed on a surface of the resin layer having a surface tension of at least 36 mN/m.

Description

成形体およびその利用Mold and its use
 本発明は、ポリ(3-ヒドロキシアルカノエート)を含む成形体およびその利用に関する。 The present invention relates to a molded product containing poly (3-hydroxyalkanoate) and its use.
 プラスチック容器の大半は最終的に固形物のゴミとなる。リサイクルの尽力が進む一方で、繰り返しの加工は機械特性の低下を生じることなる。従い、土壌環境中で分解するプラスチック容器が望まれている。そのようなプラスチック製品の一例として、ポリ乳酸等の生分解性樹脂を主成分として利用したものが知られている。 Most of the plastic containers will eventually become solid waste. While efforts for recycling are increasing, repeated processing will result in deterioration of mechanical properties. Therefore, a plastic container that decomposes in the soil environment is desired. As an example of such a plastic product, a product using a biodegradable resin such as polylactic acid as a main component is known.
 一方で、廃棄プラスチックが引き起こす環境問題がクローズアップされ、特に海洋投棄や河川等を経由して海に流入したプラスチックが、地球規模で多量に海洋を漂流していることが判ってきた。このようなプラスチックは長期間にわたって形状を保つため、海洋生物を拘束、捕獲する、いわゆるゴーストフィッシングや、海洋生物が摂取した場合は消化器内に留まり摂食障害を引き起こす等、生態系への影響が指摘されている。 On the other hand, the environmental problems caused by waste plastics have been highlighted, and it has become clear that a large amount of plastics that have flowed into the sea via ocean dumping or rivers are drifting in the ocean on a global scale. Since such plastics maintain their shape for a long period of time, they have an impact on the ecosystem, such as so-called ghost fishing, which restrains and captures marine organisms, and when ingested by marine organisms, they remain in the digestive tract and cause eating disorders. Has been pointed out.
 さらには、プラスチックが紫外線等で崩壊・微粒化したマイクロプラスチックが、海水中の有害な化合物を吸着し、これを海生生物が摂取することで有害物が食物連鎖に取り込まれる問題も指摘されている。海洋中に漂流するプラスチックゴミの中でも、ラベルや食品包装等のフィルムやPETボトル等のボトル容器は非常に多く、問題視されている。 Furthermore, it has been pointed out that microplastics, which are disintegrated and atomized by ultraviolet rays, adsorb harmful compounds in seawater, and when marine organisms ingest them, harmful substances are taken into the food chain. There is. Among the plastic waste drifting in the ocean, films such as labels and food packaging and bottle containers such as PET bottles are very common and are regarded as a problem.
 このようなプラスチックによる海洋汚染に対し、生分解性プラスチックの使用が期待されるが、国連環境計画が2015年に取り纏めた報告書(非特許文献1)では、ポリ乳酸等のコンポストで生分解可能なプラスチックは、温度が低い実海洋中では短期間での分解が期待できないために、海洋汚染の対策にはなりえないと指摘されている。しかし一方、ボトル容器そのものは特に飲料や食品の携帯に有用であり、継続使用が望まれる。 Biodegradable plastics are expected to be used for marine pollution caused by such plastics, but in the report (Non-Patent Document 1) compiled by the United Nations Environmental Plan in 2015, biodegradable with compost such as polylactic acid is possible. It has been pointed out that such plastics cannot be used as a countermeasure against marine pollution because they cannot be expected to decompose in a short period of time in the real ocean where the temperature is low. However, on the other hand, the bottle container itself is particularly useful for carrying beverages and foods, and continuous use is desired.
 このような中、ポリ(3-ヒドロキシブチレート)系樹脂は海水中でも生分解が進行し得る材料であるため、海洋汚染の問題を解決する素材として注目されている。 Under these circumstances, poly (3-hydroxybutyrate) -based resin is attracting attention as a material that solves the problem of marine pollution because it is a material that can undergo biodegradation even in seawater.
 ところで、食品包装フィルムやボトル容器は、飲料や食品の保存に使用されることから、ガスバリア性や透明性が求められる。このような生分解性樹脂のガスバリア性を向上させるために、生分解性樹脂に金属等を蒸着させることにより、ガスバリアフィルムを製造することが広く知られている。しかし、一般的に、生分解性樹脂と金属等の蒸着層とは密着性が良くない。かかる課題を解決するために、例えば、特許文献1では、特定のポリウレタン樹脂組成物からなるアンカーコート層を生分解性樹脂のフィルム上に形成して、金属等の蒸着層との密着性を向上させる技術が報告されている。また、特許文献2には、生分解性物質としてデンプンを必須の成分とする熱可塑性生分解性ポリマー混合物が開示されている。 By the way, since food packaging films and bottle containers are used for storing beverages and foods, gas barrier properties and transparency are required. In order to improve the gas barrier property of such a biodegradable resin, it is widely known to produce a gas barrier film by depositing a metal or the like on the biodegradable resin. However, in general, the adhesion between the biodegradable resin and the vapor-deposited layer of metal or the like is not good. In order to solve such a problem, for example, in Patent Document 1, an anchor coat layer made of a specific polyurethane resin composition is formed on a biodegradable resin film to improve adhesion to a vapor-deposited layer such as a metal. The technology to make it is reported. Further, Patent Document 2 discloses a thermoplastic biodegradable polymer mixture containing starch as an essential component as a biodegradable substance.
国際公開第2012/039259号公報International Publication No. 2012/0392959 US2014/0087106US2014 / 0087106
 しかし、特許文献1の技術では、生分解性のないポリウレタン樹脂組成物からなるアンカーコート層を形成する必要があるため、生分解性の観点において改善の余地がある。また、特許文献2の技術では、フィルムの透明性が低く、印刷層や内容物を視認することが困難であるとの問題がある。 However, in the technique of Patent Document 1, since it is necessary to form an anchor coat layer made of a non-biodegradable polyurethane resin composition, there is room for improvement from the viewpoint of biodegradability. Further, the technique of Patent Document 2 has a problem that the transparency of the film is low and it is difficult to visually recognize the print layer and the contents.
 そこで、本発明の一態様は、ポリ(3-ヒドロキシブチレート)系樹脂を用いた生分解性樹脂層と蒸着層との密着性を向上させ、ガスバリア性に優れると共に樹脂層の透明性が高い成形体およびその利用技術を提供することを目的とするものである。 Therefore, one aspect of the present invention is to improve the adhesion between the biodegradable resin layer using a poly (3-hydroxybutyrate) resin and the vapor-deposited layer, to have excellent gas barrier properties and to have high transparency of the resin layer. It is an object of the present invention to provide a molded product and a technique for utilizing the molded product.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、(1)海水中で生分解する材料であるポリ(3-ヒドロキシブチレート)系樹脂を用いた生分解性樹脂層と蒸着層との密着性を高め得ること、(2)得られた積層体のガスバリア性が優れること、(3)透明性の高い樹脂層が得られること、について新規知見を見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have (1) a biodegradable resin layer and a vapor deposition layer using a poly (3-hydroxybutyrate) resin which is a material that biodegrades in seawater. To complete the present invention by finding new findings regarding the possibility of enhancing the adhesion with the resin, (2) excellent gas barrier property of the obtained laminate, and (3) obtaining a highly transparent resin layer. I arrived.
 したがって、本発明の一態様は、ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層を設けてなる積層体を含む成形体であって、前記樹脂層の表面張力が36mN/m以上の表面に蒸着層が形成されている成形体である。 Therefore, one aspect of the present invention is a molded product including a laminated body in which a vapor-deposited layer containing an inorganic material is provided on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the resin layer. It is a molded product in which a vapor-deposited layer is formed on a surface having a surface tension of 36 mN / m or more.
 本発明の一態様によれば、蒸着層との密着性に優れ、ガスバリア性が良好であると共に樹脂層の透明性が高い成形体を提供することができる。 According to one aspect of the present invention, it is possible to provide a molded product having excellent adhesion to the vapor-deposited layer, good gas barrier property, and high transparency of the resin layer.
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 An embodiment of the present invention will be described in detail below. Unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less". In addition, all the documents described in the present specification are incorporated as references in the present specification.
 〔1.概要〕
 本発明の一実施形態に係る成形体(以下、「本成形体」と称する。)は、ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層を設けてなる積層体を含む成形体であって、前記樹脂層の表面張力が36mN/m以上の表面に蒸着層が形成されていることを特徴とする。換言すれば、ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む層が蒸着された積層体を含む成形体であって、前記樹脂層の表面張力が36mN/m以上の表面に無機材料が蒸着されている成形体ともいえる。
[1. Overview〕
A molded product according to an embodiment of the present invention (hereinafter, referred to as "the present molded product") is provided with a vapor-deposited layer containing an inorganic material on at least one surface of a resin layer containing poly (3-hydroxyalkanoate). It is a molded product containing the laminated body, characterized in that a vapor-deposited layer is formed on the surface of the resin layer having a surface tension of 36 mN / m or more. In other words, it is a molded product containing a laminated body in which a layer containing an inorganic material is vapor-deposited on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the surface tension of the resin layer is 36 mN / m. It can be said that it is a molded product in which an inorganic material is vapor-deposited on the above surface.
 本発明者らは、ポリ(3-ヒドロキシブチレート)系樹脂を含む成形体について、鋭意検討を行った結果、以下の知見を得ることに成功した。 The present inventors have succeeded in obtaining the following findings as a result of diligent studies on a molded product containing a poly (3-hydroxybutyrate) resin.
 ポリ(3-ヒドロキシブチレート)系樹脂を含む樹脂層に、金属等が蒸着された成形体を形成するにあたり、当該ポリ(3-ヒドロキシブチレート)系樹脂を含む樹脂層につき、表面張力が36mN/m以上として、その表面に無機材料を蒸着することにより、当該ポリ(3-ヒドロキシブチレート)系樹脂を含む樹脂層と蒸着層との密着性(以下、「蒸着密着性」と称する場合もある。)が高まり、かつ、成形体のガスバリア性が高まることを見出した。また、得られた樹脂層の透明性が高いことも見出した。前記樹脂層の表面張力を36mN/m以上とする手段についての詳細は後述するが、例えば、樹脂層に外滑剤を実質的に含ませない方法を挙げることができる。 In forming a molded product in which a metal or the like is vapor-deposited on a resin layer containing a poly (3-hydroxybutyrate) resin, the surface tension of the resin layer containing the poly (3-hydroxybutyrate) resin is 36 mN. By depositing an inorganic material on the surface at / m or more, the adhesion between the resin layer containing the poly (3-hydroxybutyrate) resin and the vapor deposition layer (hereinafter, also referred to as "deposited adhesion"). Yes), and found that the gas barrier property of the molded product is enhanced. It was also found that the obtained resin layer is highly transparent. Details of the means for setting the surface tension of the resin layer to 36 mN / m or more will be described later, but examples thereof include a method in which the resin layer does not substantially contain an outer lubricant.
 これまでの研究開発において、ポリ(3-ヒドロキシブチレート)系樹脂を含む成形体は、汎用樹脂に比べて、フィルムをインフレーション成形する際の加工可能温度幅が著しく狭くなり、成形性および生産性が悪化するという問題点を有していた。かかる問題を解決するために、ポリ(3-ヒドロキシブチレート)系樹脂を成形する際には、通常は外滑剤を添加して、成形性および生産性を担保する必要があった(例えば、国際公開第2018/181500号公報)。 In the research and development so far, the molded product containing a poly (3-hydroxybutyrate) resin has a significantly narrower processable temperature range when inflating a film than a general-purpose resin, and has formability and productivity. Had the problem of worsening. In order to solve such a problem, when molding a poly (3-hydroxybutyrate) resin, it is usually necessary to add an outer lubricant to ensure moldability and productivity (for example, internationally). Publication No. 2018/181500).
 このような技術常識のもとでは、ポリ(3-ヒドロキシブチレート)系樹脂を含む樹脂を取り扱うにあたり、当業者であれば、当然に成形工程における混合物に外滑剤を含ませるものであり、敢えて、ポリ(3-ヒドロキシブチレート)系樹脂を含む成形用の混合物から外滑剤を除くとの考えには至らない。それ故、本発明者らが得た上記知見は、驚くべきことであるといえる。 Under such common general knowledge, when handling a resin containing a poly (3-hydroxybutyrate) resin, a person skilled in the art naturally imposes an outer lubricant in the mixture in the molding process. , It does not come to the idea that the outer lubricant is removed from the molding mixture containing the poly (3-hydroxybutyrate) resin. Therefore, it can be said that the above findings obtained by the present inventors are surprising.
 本成形体は、ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層を備える構成を有することにより、蒸着層が剥がれにくく、ガスバリア性に優れると共に樹脂層の透明性が高いとの効果を奏する。なお、本明細書において、ガスバリア性とは、例えば、水蒸気透過度および/または酸素透過度を意図する。以下、本成形体の構成について詳説する。 Since the molded product has a structure in which a vapor-deposited layer containing an inorganic material is provided on at least one side of the resin layer containing poly (3-hydroxyalkanoate), the vapor-deposited layer is hard to peel off, has excellent gas barrier properties, and is a resin layer. It has the effect of being highly transparent. In the present specification, the gas barrier property means, for example, water vapor permeability and / or oxygen permeability. Hereinafter, the configuration of the molded product will be described in detail.
 〔2.樹脂層〕
 本成形体における樹脂層は、ポリ(3-ヒドロキシアルカノエート)を含む。以下において、ポリ(3-ヒドロキシアルカノエート)をP3HAと略して言及する場合がある。
[2. Resin layer]
The resin layer in this molded product contains poly (3-hydroxy alkanoate). In the following, poly (3-hydroxy alkanoate) may be abbreviated as P3HA.
 (ポリ(3-ヒドロキシアルカノエート)(P3HA))
 本明細書において、「P3HA」とは、生分解性を有する脂肪族ポリエステル(好ましくは、芳香環を含まないポリエステル)を意味する。P3HAは、一般式:〔-CHR-CH-CO-O-〕で示される3-ヒドロキシアルカン酸繰り返し単位(式中、Rは、C2n+1で表されるアルキル基で、nは、1以上15以下の整数である。)を必須の繰り返し単位として含む、ポリヒドロキシアルカノエートである。中でも、当該繰り返し単位を、全モノマー繰り返し単位(100モル%)に対して50モル%以上含むものが好ましく、より好ましくは70モル%以上含む。
(Poly (3-hydroxy alkanoate) (P3HA))
As used herein, the term "P3HA" means a biodegradable aliphatic polyester (preferably a polyester containing no aromatic ring). P3HA is a 3-hydroxyalkanoic acid repeating unit represented by the general formula: [-CHR-CH 2- CO-O-] (in the formula, R is an alkyl group represented by C n H 2n + 1 and n is an alkyl group. It is a polyhydroxyalkanoate containing 1 or more and 15 or less as an essential repeating unit. Among them, the repeating unit is preferably contained in an amount of 50 mol% or more, more preferably 70 mol% or more, based on the total monomer repeating unit (100 mol%).
 より詳しくは、P3HAとしては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)等が挙げられる。 More specifically, as P3HA, for example, poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HB3HV), poly (3-hydroxybutyrate- Co-3-hydroxyhexanoate) (P3HB3HH), poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), poly (3-hydroxybutyrate- Co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate-co-3-hydroxydecanoate), etc. Be done.
 なお、微生物により産生されるP3HA(微生物産生P3HA)は、通常、D体(R体)のポリヒドロキシアルカン酸モノマー単位のみから構成されるP3HAである。微生物産生P3HAの中でも、工業的生産が容易である点から、P3HB、P3HB3HH、P3HB3HV、P3HB3HV3HH、P3HB4HBが好ましく、P3HB、P3HB3HH、P3HB3HV、P3HB4HBがより好ましい。 Note that P3HA produced by microorganisms (microorganism-produced P3HA) is usually P3HA composed only of D-form (R-form) polyhydroxyalkanoic acid monomer units. Among the microbially produced P3HA, P3HB, P3HB3HH, P3HB3HV, P3HB3HV3HH, and P3HB4HB are preferable, and P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are more preferable, because industrial production is easy.
 本発明の一実施形態において、P3HAは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)およびポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)からなる群より選択される少なくとも1種である。 In one embodiment of the invention, P3HA is poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate). Hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate-co-3) -Hydroxyoctanoate) and poly (3-hydroxybutyrate-co-3-hydroxydecanoate) are at least one selected from the group.
 P3HA(特に、微生物産生P3HA)が3-ヒドロキシブタン酸(3HB)繰り返し単位を必須のモノマー単位として含むものである場合、そのモノマー組成比は、柔軟性と強度のバランスの観点から、全繰り返し単位(100モル%)中、3-ヒドロキシブタン酸(3HB)繰り返し単位が80モル%~99モル%であることが好ましく、より好ましくは85モル%~97モル%である。3HB繰り返し単位の組成比が80モル%以上であることにより、P3HAの剛性がより向上し、また、結晶化度が低くなり過ぎず精製が容易となる傾向がある。一方、3HB繰り返し単位の組成比が99モル%以下であることにより、柔軟性がより向上する傾向がある。なお、P3HAのモノマー組成比は、ガスクロマトグラフィー等によって測定することができる(例えば、国際公開第2014/020838号参照)。 When P3HA (particularly, microbially produced P3HA) contains a 3-hydroxybutanoic acid (3HB) repeating unit as an essential monomer unit, the monomer composition ratio is set to the total repeating unit (100) from the viewpoint of the balance between flexibility and strength. In mol%), the 3-hydroxybutanoic acid (3HB) repeating unit is preferably 80 mol% to 99 mol%, more preferably 85 mol% to 97 mol%. When the composition ratio of the 3HB repeating unit is 80 mol% or more, the rigidity of P3HA is further improved, and the crystallinity does not become too low, which tends to facilitate purification. On the other hand, when the composition ratio of the 3HB repeating unit is 99 mol% or less, the flexibility tends to be further improved. The monomer composition ratio of P3HA can be measured by gas chromatography or the like (see, for example, International Publication No. 2014/02038).
 微生物産生P3HAを生産する微生物としては、P3HA類の生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)等の天然微生物が挙げられる。これらの微生物ではP3HBが菌体内に蓄積されることが知られている。 The microorganism that produces microorganism-produced P3HA is not particularly limited as long as it is a microorganism capable of producing P3HAs. For example, as a P3HB-producing bacterium, Bacillus megaterium discovered in 1925 is the first, and in addition, Cupriavidus necator (former classification: Alcaligenes eutrophos, Ralstonia eutropha) (Ralstonia eutropha) Natural microorganisms such as Alcaligenes ratus can be mentioned. It is known that P3HB is accumulated in the cells of these microorganisms.
 また、ヒドロキシブチレートとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。 Examples of the bacterium producing a copolymer of hydroxybutyrate and other hydroxyalkanoates include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes, which is a P3HB4HB-producing bacterium. It has been known. In particular, regarding P3HB3HH, in order to increase the productivity of P3HB3HH, Alcaligenes utrophas AC32 strain (Alcaligenes europhos AC32, FERM BP-6038) (T. Fukui, Y. Doi, J. Baeri) into which the gene of the P3HA synthase group was introduced. , 179, p4821-4830 (1997)) and the like are more preferable, and microbial cells in which P3HB3HH is accumulated in the cells by culturing these microorganisms under appropriate conditions are used. In addition to the above, a recombinant microorganism into which various P3HA synthesis-related genes have been introduced may be used according to the P3HA to be produced, or the culture conditions including the type of substrate may be optimized.
 P3HAの分子量は、目的とする用途で実質的に十分な物性を示すものであればよく、特に限定されない。P3HAの重量平均分子量の範囲は、50,000~3,000,000が好ましく、より好ましくは100,000~1,000,000、さらに好ましくは300,000~700,000である。重量平均分子量を50,000以上とすることにより、フィルムの強度がより向上する傾向がある。一方、重量平均分子量を3,000,000以下とすることにより、加工性がより向上し、成形がより容易となる傾向がある。当該P3HAは、後述のように、均一に且つ適度に架橋されたP3HAであることが好ましいが、前記重量平均分子量の数値は、P3HAを架橋する前に測定される値である。 The molecular weight of P3HA is not particularly limited as long as it exhibits substantially sufficient physical properties for the intended use. The weight average molecular weight range of P3HA is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,000,000, and even more preferably 300,000 to 700,000. By setting the weight average molecular weight to 50,000 or more, the strength of the film tends to be further improved. On the other hand, when the weight average molecular weight is 3,000,000 or less, the processability tends to be further improved and the molding tends to be easier. As will be described later, the P3HA is preferably a uniformly and appropriately crosslinked P3HA, but the value of the weight average molecular weight is a value measured before the P3HA is crosslinked.
 前記重量平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)を用い、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。この際、検量線は重量平均分子量31,400、197,000、668,000、1,920,000のポリスチレンを使用して作成する。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 As the method for measuring the weight average molecular weight, gel permeation chromatography (GPC) (“Shodex GPC-101” manufactured by Showa Denko Co., Ltd.) was used, and polystyrene gel (“Shodex K-804” manufactured by Showa Denko Co., Ltd.) was used for the column. It can be determined as the molecular weight when chloroform is used as the mobile phase and converted to polystyrene. At this time, the calibration curve is prepared using polystyrene having a weight average molecular weight of 31,400, 197,000, 668,000, and 1,920,000. As the column in the GPC, a column suitable for measuring the molecular weight may be used.
 本発明の一実施形態において、P3HAは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 In one embodiment of the present invention, one type of P3HA may be used alone, or two or more types may be used in combination.
 本発明の一実施形態において、樹脂層におけるP3HAの含有量は、特に限定されないが、20重量%以上が好ましく、より好ましくは30重量%以上、さらに好ましくは40重量%以上、さらに好ましくは60重量%以上、さらに好ましくは70重量%以上である。P3HAの含有量を20重量%以上とすることにより、樹脂層の生分解性がいっそう良好となる傾向がある。P3HAの含有量の上限は特に限定されないが、95重量%以下が好ましく、より好ましくは92重量%以下、さらに好ましくは90重量%以下である。 In one embodiment of the present invention, the content of P3HA in the resin layer is not particularly limited, but is preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 60% by weight. % Or more, more preferably 70% by weight or more. When the content of P3HA is 20% by weight or more, the biodegradability of the resin layer tends to be further improved. The upper limit of the content of P3HA is not particularly limited, but is preferably 95% by weight or less, more preferably 92% by weight or less, and further preferably 90% by weight or less.
 本成形体における、蒸着前の成形体は、少なくとも片面の表面張力が36mN/m以上が好ましく、37mN/m以上がより好ましく、38mN/m以上であることが特に好ましい。表面張力が36mN/m以上である表面に蒸着層を設けることによって、ガスバリア性や蒸着層と樹脂層との密着性に優れる傾向がある。表面張力を36mN/m以上とする方法としては、表面張力を36mN/m以上とすることができれば特に限定されないが、外滑剤を実質的に用いない方法、コロナ処理やプラズマ処理等の放電処理、表面を液体類等で洗浄する方法、表面を粗化する方法等が好ましく用いることができる。 The surface tension of at least one side of the molded product before vapor deposition in the present molded product is preferably 36 mN / m or more, more preferably 37 mN / m or more, and particularly preferably 38 mN / m or more. By providing the vapor-deposited layer on the surface having a surface tension of 36 mN / m or more, the gas barrier property and the adhesion between the vapor-deposited layer and the resin layer tend to be excellent. The method for setting the surface tension to 36 mN / m or more is not particularly limited as long as the surface tension can be set to 36 mN / m or more, but a method that substantially does not use an outer lubricant, a discharge treatment such as corona treatment or plasma treatment, A method of cleaning the surface with liquids or the like, a method of roughening the surface, or the like can be preferably used.
 また、本成形体における、蒸着前の成形体は、少なくとも片面の表面摩擦係数が0.17以上が好ましく、0.18以上がより好ましく、0.19以上であることが特に好ましい。表面摩擦係数が0.17以上である表面に蒸着層を設けることによって、ガスバリア性や蒸着層と樹脂層との密着性に優れる傾向がある。表面摩擦係数を0.17以上とする方法としては、表面摩擦係数を0.17以上とすることができれば特に限定されないが、外滑剤を実質的に用いない方法、コロナ処理やプラズマ処理等の放電処理、表面を液体類等で洗浄する方法、表面を平滑化する方法等が好ましく用いることができる。 Further, in the molded product before vapor deposition in the present molded product, the surface friction coefficient of at least one side is preferably 0.17 or more, more preferably 0.18 or more, and particularly preferably 0.19 or more. By providing the vapor-deposited layer on the surface having a surface friction coefficient of 0.17 or more, the gas barrier property and the adhesion between the vapor-deposited layer and the resin layer tend to be excellent. The method of setting the surface friction coefficient to 0.17 or more is not particularly limited as long as the surface friction coefficient can be set to 0.17 or more, but a method that does not substantially use an outer lubricant, a discharge such as corona treatment or plasma treatment, etc. Treatment, a method of cleaning the surface with liquids or the like, a method of smoothing the surface, or the like can be preferably used.
 (外滑剤)
 本成形体における樹脂層は、外滑剤を実質的に含まないことが好ましい。樹脂層が外滑剤を実質的に含まないことにより、当該樹脂層に無機材料を含む蒸着層を蒸着した際に、当該樹脂層と、当該蒸着層との密着性が増大するという利点がある。また、高いガスバリア性を有する。
(Outer lubricant)
It is preferable that the resin layer in the present molded product is substantially free of the outer lubricant. Since the resin layer does not substantially contain the outer lubricant, there is an advantage that the adhesion between the resin layer and the vapor-deposited layer is increased when the vapor-deposited layer containing the inorganic material is vapor-deposited on the resin layer. It also has a high gas barrier property.
 本明細書において、「外滑剤」とは、成形体の表面にブリードし、成形機のロールや金型からの剥離や、インフレーションフィルムのような2重に重なっているフィルムの口開きを促進する物質を意味する。外滑剤は、上記定義を満たす限り特に限定されないが、例えば、脂肪酸のモノアミド、脂肪酸のビスアミド等が挙げられる。脂肪酸アミドを構成する脂肪酸としては、炭素数12~30の脂肪酸、あるいは炭素数18~22の脂肪酸が挙げられ、例えば、エルカ酸、パルミチン酸、オレイン酸等の高級脂肪酸が挙げられる。脂肪酸アミドの具体例としては、例えば、エルカ酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド等が挙げられる。 In the present specification, the "outer lubricant" bleeds on the surface of a molded product to promote peeling from a roll or mold of a molding machine and opening of a double-layered film such as an inflation film. Means a substance. The outer lubricant is not particularly limited as long as it satisfies the above definition, and examples thereof include a fatty acid monoamide and a fatty acid bisamide. Examples of the fatty acid constituting the fatty acid amide include fatty acids having 12 to 30 carbon atoms and fatty acids having 18 to 22 carbon atoms, and examples thereof include higher fatty acids such as erucic acid, palmitic acid, and oleic acid. Specific examples of the fatty acid amide include erucic acid amide, palmitate amide, oleic acid amide, stearic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, and ethylene biseramic acid amide. Can be mentioned.
 本明細書において、「外滑剤を実質的に含まない」とは、樹脂層が、本発明の効果に影響を与える程度までは外滑剤を含んでいないことを意味する。換言すれば、「外滑剤を実質的に含まない」とは、樹脂層が、本発明の効果に影響を与える程度未満の外滑剤を含み得ることを意味する。 In the present specification, "substantially free of external lubricant" means that the resin layer does not contain external lubricant to the extent that it affects the effects of the present invention. In other words, "substantially free of external lubricant" means that the resin layer may contain less than enough external lubricant to affect the effectiveness of the present invention.
 本発明の一実施形態において、樹脂層における外滑剤の含有量は、好ましくは、0.5重量%以下であり、より好ましくは0.3重量%以下であり、さらに好ましくは0.1重量%以下である。樹脂層が、外滑剤をまったく含んでいないことが最も好ましい。樹脂層における外滑剤の含有量が0.5重量%以下であると、蒸着層との高い密着性が担保され、高いガスバリア性を奏する。 In one embodiment of the present invention, the content of the outer lubricant in the resin layer is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, still more preferably 0.1% by weight. It is as follows. Most preferably, the resin layer does not contain any external lubricant. When the content of the outer lubricant in the resin layer is 0.5% by weight or less, high adhesion to the vapor-deposited layer is ensured and high gas barrier property is exhibited.
 (結晶核剤)
 本成形体における樹脂層は、結晶核剤を含んでいてもよい。本成形体における樹脂層が結晶核剤を含むことにより、P3HAの結晶化速度が向上し、成形加工性を改善できるという効果を奏する。結晶核剤としては、例えば、多価アルコール等が好適に用いられる。多価アルコールの例としては、ペンタエリスリトール、ガラクチトール、マンニトール等が挙げられる。結晶核剤は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。結晶核剤の含有量は、適宜設定することができ、特に限定されない。
(Crystal nucleating agent)
The resin layer in the present molded product may contain a crystal nucleating agent. When the resin layer in the molded product contains a crystal nucleating agent, the crystallization rate of P3HA can be improved and the molding processability can be improved. As the crystal nucleating agent, for example, a polyhydric alcohol or the like is preferably used. Examples of polyhydric alcohols include pentaerythritol, galactitol, mannitol and the like. As the crystal nucleating agent, one type may be used alone, or two or more types may be used in combination. The content of the crystal nucleating agent can be appropriately set and is not particularly limited.
 (他の樹脂)
 本成形体における樹脂層は、P3HA以外の樹脂(以下、「他の樹脂」と称する場合がある。)を含んでいてもよい。他の樹脂としては、本発明の一実施形態における成形体を成形する際に相溶性や成形加工性や機械特性を著しく低下させなければ特に限定されないが、本成形体がP3HAの特徴である生分解性が要求される用途に用いられる場合には、生分解性樹脂であることが好ましい。他の樹脂としては、例えば、脂肪族ジオールおよび脂肪族ジカルボン酸が重縮合した構造からなる脂肪族ポリエステルや、脂肪族化合物と芳香族化合物との両方をモノマーとする脂肪族芳香族ポリエステル等が挙げられる。前者の例としては、ポリエチレンサクシネート、ポリブチレンサクシネート(PBS)、ポリヘキサメチレンサクシネート、ポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリブチレンサクシネートアジペート(PBSA)、ポリエチレンセバケート、ポリブチレンセバケート等が挙げられる。後者の例としては、ポリ(ブチレンアジペート-co-ブチレンテレフタレート)(PBAT)、ポリ(ブチレンセバケート-co-ブチレンテレフタレート)、ポリ(ブチレンアゼレート-co-ブチレンテレフタレート)、ポリ(ブチレンサクシネート-co-ブチレンテレフタレート)(PBST)等が挙げられる。なお、他の樹脂は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
(Other resins)
The resin layer in the present molded product may contain a resin other than P3HA (hereinafter, may be referred to as "another resin"). The other resin is not particularly limited as long as the compatibility, molding processability, and mechanical properties are not significantly reduced when molding the molded product according to the embodiment of the present invention, but the present molded product is a feature of P3HA. When used in applications requiring degradability, it is preferably a biodegradable resin. Examples of other resins include aliphatic polyesters having a structure in which an aliphatic diol and an aliphatic dicarboxylic acid are polycondensed, and an aliphatic aromatic polyester using both an aliphatic compound and an aromatic compound as monomers. Be done. Examples of the former are polyethylene succinate, polybutylene succinate (PBS), polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polybutylene succinate adipate (PBSA), polyethylene sevacate, poly. Butylene succinate and the like can be mentioned. Examples of the latter include poly (butylene adipate-co-butylene terephthalate) (PBAT), poly (butylene sebacate-co-butylene terephthalate), poly (butylene azelate-co-butylene terephthalate), poly (butylene succinate-). Co-butylene terephthalate) (PBST) and the like. As for other resins, one type may be used alone, or two or more types may be used in combination.
 本発明の一実施形態において、樹脂層における他の樹脂の含有量は、特に限定されないが、P3HA100重量部に対して、250重量部以下が好ましく、より好ましくは100重量部以下であり、さらに好ましくは50重量部以下、特に好ましくは20重量部以下である。他の樹脂の含有量の下限は、特に限定されず、0重量部であってもよい。 In one embodiment of the present invention, the content of the other resin in the resin layer is not particularly limited, but is preferably 250 parts by weight or less, more preferably 100 parts by weight or less, still more preferably 100 parts by weight or less, based on 100 parts by weight of P3HA. Is 50 parts by weight or less, particularly preferably 20 parts by weight or less. The lower limit of the content of the other resin is not particularly limited and may be 0 parts by weight.
 (その他の成分)
 本成形体における樹脂層は、上記以外のその他の成分を含んでいてもよい。例えば、本発明の効果を阻害しない範囲で、有機系または無機系フィラー等を含んでいてもよい。中でも、得られるフィルムの生分解性およびカーボンニュートラルの観点から、例えば、木屑、木粉、オガ屑等の木質系材料、米殻、米粉、澱粉、コーンスターチ、稲わら、麦わら、天然ゴム等の天然由来の材料が好ましい。当該有機系または無機系フィラーの含有量は、適宜設定することができ、特に限定されない。有機系または無機系フィラーは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる
 また、上述の有機系または無機系フィラーの他にも、本発明の効果を阻害しない範囲で、通常の添加剤として使用される顔料、染料等の着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、撥水剤、抗菌剤、しゅう動性改良剤、その他の副次的添加剤の一種または二種以上を含んでいてもよい。当該添加剤の含有量も、適宜設定することができる。
(Other ingredients)
The resin layer in the present molded product may contain other components other than the above. For example, an organic or inorganic filler may be contained as long as the effect of the present invention is not impaired. Among them, from the viewpoint of biodegradability and carbon neutrality of the obtained film, for example, wood-based materials such as wood chips, wood flour, and ogas, rice husks, rice flour, starch, cornstarch, rice straw, straw, natural rubber and the like are natural. Derived material is preferred. The content of the organic or inorganic filler can be appropriately set and is not particularly limited. As the organic or inorganic filler, one type may be used alone, or two or more types may be used in combination. In addition to the above-mentioned organic or inorganic filler, the effects of the present invention may be exhibited. Pigments used as ordinary additives, colorants such as dyes, odor absorbers such as activated charcoal and zeolite, fragrances such as vanillin and dextrin, antioxidants, antioxidants, weather resistance improvers, as long as they do not inhibit It may contain one or more of UV absorbers, water repellents, antibacterial agents, sliding improvers and other secondary additives. The content of the additive can also be set as appropriate.
 〔3.蒸着層〕
 本成形体における蒸着層は、無機材料を含むものであればよいが、無機材料のみから構成されるものであってもよい。
[3. Thin film deposition layer]
The vapor-deposited layer in the present molded body may be one containing an inorganic material, but may be composed of only an inorganic material.
 本発明の一実施形態における無機材料は、金属または無機酸化物を例示でき、特に限定されない。好ましい例示としては、例えば、アルミニウム、酸化アルミニウム、ケイ素酸化物(例えば、一酸化ケイ素、二酸化ケイ素、酸化窒化ケイ素等)、酸化セリウム、酸化カルシウム、ダイアモンド状炭素膜、またはそれらの混合物等であり得る。本発明の一実施形態において、無機材料は、蒸着密着性の観点から、好ましくは、アルミニウムまたは二酸化ケイ素である。 The inorganic material in one embodiment of the present invention can be exemplified by a metal or an inorganic oxide, and is not particularly limited. Preferred examples may be, for example, aluminum, aluminum oxide, silicon oxide (eg, silicon monoxide, silicon dioxide, silicon nitride, etc.), cerium oxide, calcium oxide, diamond-like carbon film, or a mixture thereof. .. In one embodiment of the present invention, the inorganic material is preferably aluminum or silicon dioxide from the viewpoint of vapor deposition adhesion.
 蒸着層の厚さは、特に限定されないが、生産性、ハンドリング性、外観等の観点から、5nm~100nmが好ましく、5nm~60nmがより好ましい。蒸着層の厚さが5nm以上であると、蒸着層の欠損(樹脂層からの蒸着層の剥離)が発生しにくく、ガスバリア性が良好である。また、層の厚さが100nm未満であると、蒸着時のコストが低く、蒸着層の着色が目立たずに、外観的に良好である。 The thickness of the thin-film vapor deposition layer is not particularly limited, but is preferably 5 nm to 100 nm, more preferably 5 nm to 60 nm, from the viewpoint of productivity, handleability, appearance, and the like. When the thickness of the thin-film deposition layer is 5 nm or more, the vapor-film deposition layer is less likely to be chipped (peeling of the vapor-deposited layer from the resin layer), and the gas barrier property is good. Further, when the thickness of the layer is less than 100 nm, the cost at the time of vapor deposition is low, the coloring of the vapor deposition layer is not conspicuous, and the appearance is good.
 〔4.成形体の具体的な構成およびその製造方法〕
 (成形体の構成)
 本成形体において、蒸着層は、樹脂層の片面にのみ蒸着されていてもよく、両面に蒸着されていてもよい。P3HAの生分解性を担保する観点から、蒸着層は、樹脂層の片面のみに蒸着されているのが好ましい。また、蒸着層は、他の層を介さず、直接、樹脂層に蒸着されていることが好ましい。
[4. Specific configuration of molded product and its manufacturing method]
(Composition of molded product)
In the present molded product, the thin-film deposition layer may be vapor-deposited on only one side of the resin layer, or may be vapor-deposited on both sides. From the viewpoint of ensuring the biodegradability of P3HA, the vapor deposition layer is preferably vapor-deposited on only one side of the resin layer. Further, it is preferable that the vapor-deposited layer is directly vapor-deposited on the resin layer without interposing another layer.
 本発明の一実施形態において、本成形体における蒸着層は、さらに、樹脂層等が積層されていてもよい。例えば、成形体として、ヒートシールを行う場合は、蒸着層の上に、さらに樹脂層が積層され得る。 In one embodiment of the present invention, the vapor-deposited layer in the molded product may be further laminated with a resin layer or the like. For example, when heat-sealing is performed as a molded product, a resin layer may be further laminated on the vapor-deposited layer.
 本成形体は、ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層が蒸着された構成を有するものであれば特に限定されないが、例えば、紙、フィルム、シート、チューブ、板、棒、容器(例えば、ボトル容器)、袋、部品等が挙げられる。本成形体は、海洋汚染の対策の観点から、好ましくは、フィルムまたはボトル容器である。 The molded product is not particularly limited as long as it has a structure in which a vapor-deposited layer containing an inorganic material is vapor-deposited on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and is not particularly limited. Examples include sheets, tubes, plates, rods, containers (eg, bottle containers), bags, parts and the like. The molded product is preferably a film or a bottle container from the viewpoint of measures against marine pollution.
 本発明の一実施形態において、本成形体における樹脂層のヘイズ値は、例えば、40%以下であり、好ましくは35%以下であり、より好ましくは30%以下であり、さらに好ましくは25%以下であり、特に好ましくは20%以下であり、更に好ましくは10%以下である。樹脂層のヘイズ値が40%以下であると、樹脂層の透明性が良く、包装材として用いた場合に中身の視認性に優れるという利点がある。樹脂層のヘイズ値の下限値は、透明度の観点からは低い程よく、特に限定されないが、例えば、1%以上である。なお、本明細書におけるヘイズ値とは、30μm厚みのシート(フィルム)をJIS K7136-1:1999およびK7316:2000に記載の方法にて測定した値である。 In one embodiment of the present invention, the haze value of the resin layer in the molded product is, for example, 40% or less, preferably 35% or less, more preferably 30% or less, still more preferably 25% or less. It is particularly preferably 20% or less, and further preferably 10% or less. When the haze value of the resin layer is 40% or less, there is an advantage that the transparency of the resin layer is good and the visibility of the contents is excellent when used as a packaging material. The lower limit of the haze value of the resin layer is preferably as low as possible from the viewpoint of transparency, and is not particularly limited, but is, for example, 1% or more. The haze value in the present specification is a value measured by the method described in JIS K7136-1: 1999 and K7316: 2000 on a sheet (film) having a thickness of 30 μm.
 ヘイズ値が40%以下のフィルム(樹脂層)は、樹脂層を成形する際に押出機出口から押出された樹脂が表面荒れを起こさない程度に押出機内の樹脂温度を上げたり、ヘイズ値が高い樹脂(例えば、厚み30μmのヘイズ値が40%以上の樹脂)を一定量配合しなかったり、ヘイズ値を高める充填材を一定量配合しないことで取得できる。 A film (resin layer) having a haze value of 40% or less raises the resin temperature in the extruder to the extent that the resin extruded from the extruder outlet does not cause surface roughness when forming the resin layer, or has a high haze value. It can be obtained by not blending a certain amount of resin (for example, a resin having a thickness of 30 μm and a haze value of 40% or more) or by not blending a constant amount of a filler that increases the haze value.
 本成形体の水蒸気透過度は、例えば、1.00g/m/24h未満であり、好ましくは0.95g/m/24h未満であり、より好ましくは0.90g/m/24h未満であり、さらに好ましくは0.85g/m/24h未満である。水蒸気透過度が上記の範囲内であれば、良好な水蒸気ガスバリア性を得ることができる。また、水蒸気透過度は、低ければ低いほどよく、その下限は特に限定されないが、0.01g/m/24h程度が実現可能な下限と推察される。水蒸気透過度は、蒸着層が形成される層の平均表面粗さ、フィルムのfn、蒸着層の無機材料の種類、蒸着層の厚さ、蒸着層の欠陥(ピンホール、スクラッチなど)量等により制御できる。なお、水蒸気透過度は、実施例に記載の方法で測定および評価される。 The water vapor permeability of the molded product is, for example, less than 1.00 g / m 2 / 24h, preferably less than 0.95 g / m 2 / 24h, and more preferably less than 0.90 g / m 2 / 24h. Yes, more preferably less than 0.85 g / m 2 / 24h. When the water vapor permeability is within the above range, a good water vapor gas barrier property can be obtained. Further, the lower the water vapor permeability, the better, and the lower limit thereof is not particularly limited, but it is presumed that about 0.01 g / m 2 / 24h is a feasible lower limit. The water vapor permeability depends on the average surface roughness of the layer on which the vapor deposition layer is formed, the fn of the film, the type of inorganic material of the vapor deposition layer, the thickness of the vapor deposition layer, the amount of defects (pinholes, scratches, etc.) in the vapor deposition layer. Can be controlled. The water vapor permeability is measured and evaluated by the method described in Examples.
 本成形体の酸素透過度は、例えば、3.00g/m/24h/atm以下であり、好ましくは、2.85g/m/24h/atm以下であり、より好ましくは、2.80g/m/24h/atm以下であり、さらに好ましくは、2.75g/m/24h/atm以下である。酸素透過度が上記の範囲内であれば、良好な酸素ガスバリア性を得ることができる。また、酸素透過度は、低ければ低いほどよく、その下限は特に限定されないが、0.01g/m/24h/atm程度が実現可能な下限と推察される。酸素透過度は、蒸着層が形成される層の平均表面粗さ、フィルムのfn、蒸着層の無機材料の種類、蒸着層の厚さ、蒸着層の欠陥(ピンホール、スクラッチなど)量等により制御できる。なお、酸素透過度は、実施例に記載の方法で測定および評価される。 The oxygen permeability of the molded product is, for example, 3.00 g / m 2 / 24h / atm or less, preferably 2.85 g / m 2 / 24h / atm or less, and more preferably 2.80 g / m. It is m 2 / 24h / atm or less, more preferably 2.75 g / m 2 / 24h / atm or less. When the oxygen permeability is within the above range, good oxygen gas barrier property can be obtained. The oxygen permeability may lower the, its lower limit is not particularly limited, about 0.01g / m 2 / 24h / atm are presumed feasible lower limit. Oxygen permeability depends on the average surface roughness of the layer on which the vapor deposition layer is formed, the fn of the film, the type of inorganic material of the vapor deposition layer, the thickness of the vapor deposition layer, the amount of defects (pinholes, scratches, etc.) in the vapor deposition layer, etc. Can be controlled. The oxygen permeability is measured and evaluated by the method described in Examples.
 なお、本成形体の蒸着密着性は、実施例に記載の方法で測定および評価される。 The vapor deposition adhesion of this molded product is measured and evaluated by the method described in Examples.
 また、本発明の一実施形態において、本成形体は、その物性を改善するために、本成形体とは異なる材料から構成される成形体(例えば、繊維、糸、ロープ、織物、編物、不織布、紙、フィルム、シート、チューブ、板、棒、容器、袋、部品、発泡体等)と複合化することもできる。これらの材料も、生分解性であることが好ましい。 Further, in one embodiment of the present invention, in order to improve the physical properties of the molded body, the molded body (for example, fiber, thread, rope, woven fabric, knitted fabric, non-woven fabric) composed of a material different from the present molded body , Paper, film, sheet, tube, board, rod, container, bag, part, foam, etc.). These materials are also preferably biodegradable.
 本発明の一実施形態において、蒸着フィルムは、包装材料として各種包装体に使用することができる。当該包装体は、特に限定されないが、サイドシール包装体、三方シール包装体、ピロー包装体、スタンディングパウチ等が挙げられる。 In one embodiment of the present invention, the vapor-deposited film can be used in various packaging materials as a packaging material. The package is not particularly limited, and examples thereof include a side-seal package, a three-way seal package, a pillow package, and a standing pouch.
 (製造方法の一例)
 本成形体が蒸着フィルムまたは蒸着ボトル容器である場合、それぞれ、例えば、以下に記載の方法により製造される。
(Example of manufacturing method)
When the molded product is a thin-film film or a thin-film bottle container, they are manufactured by, for example, the methods described below.
 <フィルムの製造方法>
 本発明の一実施形態において、フィルムは、押出フィルム成形からなる成形方法によって製造することができる。例えば、ポリ(3-ヒドロキシブチレート)系樹脂を押出機中で溶融した後、押出機出口に接続されているTダイからフィルム形状に押出す工程、溶融樹脂をロールに当てることで冷却、固化させフィルムとして引き取る工程によって製造することができる。押出フィルム成形の具体的な条件は、常法に従って当業者が適宜設定することができる。
<Film manufacturing method>
In one embodiment of the invention, the film can be produced by a molding method consisting of extrusion film molding. For example, a process in which a poly (3-hydroxybutyrate) resin is melted in an extruder and then extruded into a film shape from a T-die connected to the extruder outlet, and the molten resin is applied to a roll to cool and solidify. It can be manufactured by the process of taking it as a film. Specific conditions for extrusion film molding can be appropriately set by those skilled in the art according to a conventional method.
 <ボトル容器の製造方法>
 本発明の一実施形態において、ボトル容器は、押出ブロー成形からなる成形方法によって製造することができる。例えば、ポリ(3-ヒドロキシブチレート)系樹脂を押出機中で溶融した後、押出機出口に接続されている環状ダイからチューブ形状に押出す工程、溶融している前記チューブを金型で両側面から挟み込む工程と、一端が閉じられた前記チューブに空気を吹込んで金型に合わせてボトル形状に成形すると同時に冷却固化することによって製造することができる。押出ブロー成形の具体的な条件は、常法に従って当業者が適宜設定することができる。ボトル容器は射出ブロー成形からなる成形方法によっても製造することができる。
<Manufacturing method of bottle container>
In one embodiment of the invention, the bottle container can be manufactured by a molding method consisting of extrusion blow molding. For example, a process in which a poly (3-hydroxybutyrate) resin is melted in an extruder and then extruded into a tube shape from an annular die connected to the extruder outlet. It can be manufactured by a step of sandwiching from a surface and by blowing air into the tube whose one end is closed to form a bottle shape according to a mold and at the same time cooling and solidifying. Specific conditions for extrusion blow molding can be appropriately set by those skilled in the art according to a conventional method. The bottle container can also be manufactured by a molding method consisting of injection blow molding.
 <真空蒸着>
 本発明の一実施形態において、蒸着フィルムおよび蒸着ボトル容器は、上記で得られたフィルムおよびボトル容器に、上記蒸着層を蒸着することにより製造される。蒸着方法は、特に限定されることなく、真空蒸着法、スパッタリング法、化学気層蒸着法、イオンプレーティング法等が使用される。
<Vacuum vapor deposition>
In one embodiment of the present invention, the thin-film deposition film and the vapor-deposited bottle container are manufactured by depositing the thin-film deposition layer on the film and the bottle container obtained above. The vapor deposition method is not particularly limited, and a vacuum vapor deposition method, a sputtering method, a chemical vapor deposition method, an ion plating method and the like are used.
 成形体のガスバリア性を向上させるために、蒸着前の成形体の表面をコロナ処理またはプラズマ処理することが好ましい。コロナ処理を行う際の処理強度は、5~80W・min/mが好ましく、より好ましくは10~60W・min/mである。また、蒸着層を設ける前に、プラズマ放電下において核付金属蒸着層を設けることは、蒸着層の密着性向上、ひいてはそれに伴うガスバリア性向上の観点から好ましい。この場合、プラズマ放電を酸素および/または窒素ガス雰囲気で行うことが好ましく、核付金属として銅を用いることが好ましい。 In order to improve the gas barrier property of the molded product, it is preferable to corona-treat or plasma-treat the surface of the molded product before vapor deposition. The processing strength at the time of performing the corona treatment is preferably 5 to 80 W · min / m 2 , and more preferably 10 to 60 W · min / m 2 . Further, it is preferable to provide the cored metal vapor deposition layer under plasma discharge before providing the vapor deposition layer from the viewpoint of improving the adhesion of the vapor deposition layer and, by extension, improving the gas barrier property. In this case, the plasma discharge is preferably carried out in an oxygen and / or nitrogen gas atmosphere, and copper is preferably used as the nucleating metal.
 反応性蒸着法によって酸化アルミニウムを蒸着させるには、アルミニウム金属やアルミナを、抵抗加熱のボート方式、ルツボの高周波誘導加熱、電子ビーム加熱方式等で蒸発させ、酸化雰囲気下で、フィルム上に酸化アルミニウムを堆積させる方式が好ましく用いられる。酸化雰囲気を形成するための反応性ガスとしては、酸素が用いられるが、酸素を主体に水蒸気や希ガスを加えたガスでもよい。さらに、オゾンを加えたり、イオンアシスト等の反応を促進する手法を併用してもよい。酸化ケイ素の蒸着層を反応性蒸着法によって形成させるには、Si金属、SiOやSiOを電子ビーム加熱方式で蒸発させ、酸化雰囲気下、フィルム上に酸化ケイ素を堆積させる方式が採用される。酸化雰囲気を形成する方法は、上記と同様の方法が用いられる。 To vaporize aluminum oxide by the reactive vapor deposition method, aluminum metal or alumina is evaporated by resistance heating boat method, high frequency induction heating of crucible, electron beam heating method, etc., and aluminum oxide is deposited on the film in an oxidizing atmosphere. The method of depositing is preferably used. Oxygen is used as the reactive gas for forming the oxidizing atmosphere, but a gas containing mainly oxygen and water vapor or a rare gas may also be used. Further, a method of adding ozone or promoting a reaction such as ion assist may be used in combination. In order to form the silicon oxide vapor deposition layer by the reactive vapor deposition method, a method of evaporating Si metal, SiO or SiO 2 by an electron beam heating method and depositing silicon oxide on the film in an oxidizing atmosphere is adopted. As a method for forming an oxidizing atmosphere, the same method as described above is used.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
 すなわち、本発明の一実施形態は、以下である。
<1>ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層を設けてなる積層体を含む成形体であって、前記樹脂層の表面張力が36mN/m以上の表面に蒸着層が形成されている、成形体。
<2>前記樹脂層が、外滑剤を実質的に含まない、<1>に記載の成形体。
<3>前記樹脂層のヘイズ値が、40%以下である、<1>または<2>に記載の成形体。
<4>前記無機材料が、アルミニウム、酸化アルミニウム、ケイ素酸化物、酸化セリウム、酸化カルシウム、ダイアモンド状炭素膜、およびそれらの混合物からなる群より選択される少なくとも1種である、<1>~<3>のいずれかに記載の成形体。
<5>水蒸気透過度が、1.00g/m/24h未満である、<1>~<4>のいずれかに記載の成形体。
<6>前記ポリ(3-ヒドロキシアルカノエート)が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)およびポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)からなる群より選択される少なくとも1種である、<1>~<5>のいずれかに記載の成形体。
<7>蒸着フィルムまたは蒸着ボトル容器である、<1>~<6>のいずれかに記載の成形体。
That is, one embodiment of the present invention is as follows.
<1> A molded product containing a laminated body in which a vapor-deposited layer containing an inorganic material is provided on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the surface tension of the resin layer is 36 mN / m. A molded product having a vapor-deposited layer formed on the above surface.
<2> The molded product according to <1>, wherein the resin layer substantially does not contain an outer lubricant.
<3> The molded product according to <1> or <2>, wherein the haze value of the resin layer is 40% or less.
<4> The inorganic material is at least one selected from the group consisting of aluminum, aluminum oxide, silicon oxide, cerium oxide, calcium oxide, diamond-like carbon film, and a mixture thereof, <1> to <. The molded body according to any one of 3>.
<5> The molded product according to any one of <1> to <4>, wherein the water vapor permeability is less than 1.00 g / m 2 / 24h.
<6> The poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly. (3-Hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate- Any one of <1> to <5>, which is at least one selected from the group consisting of co-3-hydroxyoctanoate) and poly (3-hydroxybutyrate-co-3-hydroxydecanoate). The molded body described in.
<7> The molded product according to any one of <1> to <6>, which is a thin-film film or a thin-film bottle container.
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to these Examples.
 〔材料〕
 実施例および比較例において、以下の材料を使用した。
〔material〕
The following materials were used in the examples and comparative examples.
 (P3HA)
 A-1:国際公開第2013/147139号公報に記載の方法に準じて得た、3-ヒドロキシヘキサノエート(3HH)組成が11.2モル%、GPCで測定される標準ポリスチレン換算の重量平均分子量が58万であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(P3HB3HH)
 A-2:国際公開第2008/010296号公報に記載の方法に準じて得た、3HH組成が5.4モル%、GPCで測定される標準ポリスチレン換算の重量平均分子量が62万であるP3HB3HH
 A-3:Ecomann社製EM5400F[ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(P3HB4HB)]
 PBAT/Starch:US2014/0087106に記載の方法に準じて得た、PBAT(ポリ(ブチレンアジペート-co-ブチレンテレフタレート))組成が75重量%、ジャガイモ由来の天然澱粉の組成が25重量%である混合物。
(P3HA)
A-1: The 3-hydroxyhexanoate (3HH) composition obtained according to the method described in International Publication No. 2013/147139, 11.2 mol%, weight average in terms of standard polystyrene measured by GPC. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) having a molecular weight of 580,000 (P3HB3HH)
A-2: P3HB3HH having a 3HH composition of 5.4 mol% and a standard polystyrene-equivalent weight average molecular weight of 620,000 obtained according to the method described in WO 2008/010296.
A-3: Ecomann EM5400F [Poly (3-hydroxybutyrate-4-hydroxybutyrate) (P3HB4HB)]
PBAT / Start: A mixture obtained according to the method described in US2014 / 0087106, having a PBAT (poly (butylene adipate-co-butylene terephthalate)) composition of 75% by weight and a potato-derived natural starch composition of 25% by weight. ..
 (外滑剤)
 B-1:エルカ酸アミド(日本精化社製)
 (結晶核剤)
 C-1:ペンタエリスリトール(日本合成化学社製)
 (無機材料)
 D-1:アルミニウム(高純度化学研究所社製)
 D-2:二酸化ケイ素(オプトサイエンス社製)
 〔測定および評価方法〕
 実施例および比較例における評価を、以下の方法で行った。
(Outer lubricant)
B-1: Erucic acid amide (manufactured by Nippon Fine Chemical Co., Ltd.)
(Crystal nucleating agent)
C-1: Pentaerythritol (manufactured by Nippon Synthetic Chemistry Co., Ltd.)
(Inorganic material)
D-1: Aluminum (manufactured by High Purity Chemical Laboratory)
D-2: Silicon dioxide (manufactured by Optoscience)
[Measurement and evaluation method]
Evaluation in Examples and Comparative Examples was carried out by the following method.
 (水蒸気透過度)
 MOCON社製PERMATRAN-W3/33MG+を用いて水蒸気透過度を測定した。透過セルの温度38℃、相対湿度90%、試験ガス窒素、透過面積50cm、試験枚数1枚にて行った。
(Water vapor permeability)
The water vapor permeability was measured using PERMATRAN-W3 / 33MG + manufactured by MOCON. The temperature of the permeation cell was 38 ° C., the relative humidity was 90%, the test gas nitrogen, the permeation area was 50 cm 2 , and the number of tests was one.
 (酸素透過度)
 MOCON社製OX-TRAN ML2/21を用いて酸素透過度を測定した。温度条件23℃、湿度50%RH、試験ガス酸素100%、透過面積5cm、試験枚数1枚にて行った。
(Oxygen permeability)
Oxygen permeability was measured using OX-TRAN ML2 / 21 manufactured by MOCON. The test was carried out under temperature conditions of 23 ° C., humidity of 50% RH, test gas oxygen of 100%, permeation area of 5 cm 2 , and one test sheet.
 (蒸着密着性)
 積層体(蒸着フィルム)の表面にセロハンテープを貼り付けて瞬時に剥がし、蒸着皮膜が剥がれなければ○、剥がれたら×として、評価した。なお、本測定は、3回行い、一回でも剥がれたら×とした。
(Evaporation adhesion)
A cellophane tape was attached to the surface of the laminate (deposited film) and peeled off instantly. If the vapor-deposited film did not peel off, it was evaluated as ◯, and if it peeled off, it was evaluated as ×. In addition, this measurement was performed three times, and if it peeled off even once, it was marked as x.
 (表面張力)
 綿棒を使用して、富士フィルム和光純薬社製の表面張力試験用混合液を6cm以上の面積に速やかに広げ、2秒以上、塗布されたときの状態を保てば○、保てなければ×として評価した。50mN/mの試験用混合液から始め、○となった試験用混合液の表面張力を数値とした。
(surface tension)
Using a cotton swab, quickly spread the surface tension test mixture manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. to an area of 6 cm 2 or more, and keep the state when it was applied for 2 seconds or more. It was evaluated as x. Starting with the test mixture of 50 mN / m, the surface tension of the test mixture marked with ◯ was set as a numerical value.
 (ヘイズ値)
 スガ試験機製へイズメーターHZ-V3を用いて、JIS K7136-1:1999およびK7316:2000に記載の方法により、厚み30μmのフィルム(樹脂層)のヘイズ値を測定した。
(Haze value)
The haze value of a film (resin layer) having a thickness of 30 μm was measured by the method described in JIS K7136-1: 1999 and K7316: 2000 using a haze meter HZ-V3 manufactured by Suga Test Instruments.
 〔実施例1〕
 P3HA(A-1)、外滑剤(B-1)および結晶核剤(C-1)を表1に示す配合比でドライブレンドした。得られた混合物を、同方向噛合型二軸押出機(東芝機械社製:TEM26ss)に投入し、設定温度120~160℃、スクリュー回転数100rpmで溶融混錬し、ストランドカットすることでペレットを得た。
[Example 1]
P3HA (A-1), an outer lubricant (B-1) and a crystal nucleating agent (C-1) were dry-blended at the blending ratios shown in Table 1. The obtained mixture is put into a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd .: TEM26ss) in the same direction, melt-kneaded at a set temperature of 120 to 160 ° C. and a screw rotation speed of 100 rpm, and pellets are cut by strand cutting. Obtained.
 得られたペレットを用いて、押出機設定温度130~160℃、アダプターおよびダイス設定温度(樹脂温度)160℃、引取速度1m/分を初期条件として、Tダイ成形によるフィルム(シート)の製造を実施した。押出の条件は、スクリュー回転数30rpm、ダイギャップ250umとし、押出後に、60℃に温調したロールをシートに当てながら1m/分で引き取ることにより、フィルム(樹脂層)を製造した。次いで、得られたフィルムのヘイズ値を測定した。結果を表1に示す。 Using the obtained pellets, a film (sheet) is manufactured by T-die molding under the initial conditions of an extruder set temperature of 130 to 160 ° C, an adapter and die set temperature (resin temperature) of 160 ° C, and a take-up speed of 1 m / min. Carried out. The conditions for extrusion were a screw rotation speed of 30 rpm and a die gap of 250 um, and after extrusion, a roll adjusted to a temperature of 60 ° C. was applied to the sheet and taken up at 1 m / min to produce a film (resin layer). Then, the haze value of the obtained film was measured. The results are shown in Table 1.
 また、上記のフィルムに、無機材料(D-1)を用いて真空蒸着を行い、積層体を得た。その後、上記の方法により、当該積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。 Further, the above film was vacuum-deposited using an inorganic material (D-1) to obtain a laminate. Then, the water vapor permeability, oxygen permeability and vapor deposition adhesion of the laminate were measured and evaluated by the above method. The results are shown in Table 1.
 〔実施例2〕
 無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 2]
A film and a laminate were produced in the same manner as in Example 1 except that the types of the inorganic materials were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例3〕
 結晶核剤を除いたこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 3]
A film and a laminate were produced in the same manner as in Example 1 except that the crystal nucleating agent was removed. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例4〕
 結晶核剤を除き、無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 4]
A film and a laminate were produced in the same manner as in Example 1 except that the type of the inorganic material was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例5〕
 P3HAの種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 5]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例6〕
 P3HAの種類および無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 6]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例7〕
 結晶核剤を除き、P3HAの種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 7]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例8〕
 結晶核剤を除き、P3HAの種類および無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 8]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例9〕
 P3HAの種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 9]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例10〕
 P3HAの種類および無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 10]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例11〕
 結晶核剤を除き、P3HAの種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 11]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
 〔実施例12〕
 結晶核剤を除き、P3HAの種類および無機材料の種類を表1に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表1に示す。
[Example 12]
A film and a laminate were produced in the same manner as in Example 1 except that the type of P3HA and the type of the inorganic material were changed as shown in Table 1 except for the crystal nucleating agent. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 〔比較例1〕
 結晶核剤を除き、真空蒸着を行わなかったこと以外は、実施例1と同様にして、フィルムを製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、水蒸気透過度および酸素透過度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
[Comparative Example 1]
A film was produced in the same manner as in Example 1 except that vacuum deposition was not performed except for the crystal nucleating agent. In addition, the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
 〔比較例2〕
 結晶核剤を除き、P3HAの種類を表2に示すように変更し、真空蒸着を行わなかったこと以外は、実施例1と同様にして、フィルムを製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、水蒸気透過度および酸素透過度を測定した。結果を表2に示す。
[Comparative Example 2]
A film was produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 2 except for the crystal nucleating agent and vacuum deposition was not performed. In addition, the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
 〔比較例3〕
 結晶核剤を除き、P3HAの種類を表2に示すように変更し、真空蒸着を行わなかったこと以外は、実施例1と同様にして、フィルムを製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、水蒸気透過度および酸素透過度を測定した。結果を表2に示す。
[Comparative Example 3]
A film was produced in the same manner as in Example 1 except that the type of P3HA was changed as shown in Table 2 except for the crystal nucleating agent and vacuum deposition was not performed. In addition, the haze value, water vapor permeability and oxygen permeability of the obtained film were measured by the same method as in Example 1. The results are shown in Table 2.
 〔比較例4〕
 外滑剤を添加したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 4]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例5〕
 外滑剤を添加し、結晶核剤を除き、無機材料の種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 5]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例6〕
 外滑剤を添加し、P3HAの種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 6]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added and the type of P3HA was changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例7〕
 外滑剤を添加し、結晶核剤を除き、P3HAの種類および無機材料の種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 7]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of P3HA and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例8〕
 外滑剤を添加し、P3HAの種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 8]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added and the type of P3HA was changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例9〕
 外滑剤を添加し、結晶核剤を除き、P3HAの種類および無機材料の種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、ならびに得られた積層体の水蒸気透過度、酸素透過度および蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 9]
A film and a laminate were produced in the same manner as in Example 1 except that an outer lubricant was added, a crystal nucleating agent was removed, and the types of P3HA and the types of inorganic materials were changed as shown in Table 2. Further, the haze value of the obtained film and the water vapor permeability, oxygen permeability and vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例10〕
 結晶核剤を除き、P3HAをPBAT/Starchに変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、および得られた積層体の蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 10]
A film and a laminate were produced in the same manner as in Example 1 except that P3HA was changed to PBAT / Starch except for the crystal nucleating agent. Further, the haze value of the obtained film and the vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
 〔比較例11〕
 結晶核剤を除き、P3HAをPBAT/Starchに変更し、さらに無機材料の種類を表2に示すように変更したこと以外は、実施例1と同様にして、フィルムおよび積層体を製造した。また、実施例1と同様の方法により、得られたフィルムのヘイズ値、および得られた積層体の蒸着密着性を測定および評価した。結果を表2に示す。
[Comparative Example 11]
A film and a laminate were produced in the same manner as in Example 1 except that the crystal nucleating agent was removed, P3HA was changed to PBAT / Starch, and the type of the inorganic material was changed as shown in Table 2. Further, the haze value of the obtained film and the vapor deposition adhesion of the obtained laminate were measured and evaluated by the same method as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 〔結果〕
 表1および2より、実施例では、比較例に比して、積層体の水蒸気透過度および酸素透過度が低い結果となった。また、すべての実施例において、蒸着密着性および樹脂層のヘイズ値が良好な結果となった。
Figure JPOXMLDOC01-appb-T000002
〔result〕
From Tables 1 and 2, in the examples, the water vapor permeability and the oxygen permeability of the laminated body were lower than those in the comparative example. Moreover, in all the examples, the vapor deposition adhesion and the haze value of the resin layer were good results.
 以上より、本発明の成形体(積層体)は、蒸着層が剥がれにくく、ガスバリア性に優れると共に樹脂層の透明性が高い成形体であることが分かった。 From the above, it was found that the molded product (laminated product) of the present invention is a molded product in which the vapor-deposited layer is hard to peel off, the gas barrier property is excellent, and the resin layer is highly transparent.
 本成形体は、農業、漁業、林業、園芸、医学、衛生品、衣料、非衣料、包装、自動車、建材、その他の分野に好適に利用することができる。 This molded product can be suitably used in agriculture, fisheries, forestry, horticulture, medicine, sanitary goods, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

Claims (7)

  1.  ポリ(3-ヒドロキシアルカノエート)を含む樹脂層の少なくとも片面に、無機材料を含む蒸着層を設けてなる積層体を含む成形体であって、前記樹脂層の表面張力が36mN/m以上の表面に蒸着層が形成されている、成形体。 A molded product containing a laminate in which a vapor-deposited layer containing an inorganic material is provided on at least one surface of a resin layer containing poly (3-hydroxyalkanoate), and the surface tension of the resin layer is 36 mN / m or more. A molded body in which a thin-film deposition layer is formed.
  2.  前記樹脂層が、外滑剤を実質的に含まない、請求項1に記載の成形体。 The molded product according to claim 1, wherein the resin layer does not substantially contain an outer lubricant.
  3.  前記樹脂層のヘイズ値が、40%以下である、請求項1または2に記載の成形体。 The molded product according to claim 1 or 2, wherein the haze value of the resin layer is 40% or less.
  4.  前記無機材料が、アルミニウム、酸化アルミニウム、ケイ素酸化物、酸化セリウム、酸化カルシウム、ダイアモンド状炭素膜、およびそれらの混合物からなる群より選択される少なくとも1種である、請求項1~3のいずれか1項に記載の成形体。 Any of claims 1 to 3, wherein the inorganic material is at least one selected from the group consisting of aluminum, aluminum oxide, silicon oxide, cerium oxide, calcium oxide, diamond-like carbon film, and a mixture thereof. The molded body according to item 1.
  5.  水蒸気透過度が、1.00g/m/24h未満である、請求項1~4のいずれか1項に記載の成形体。 The molded product according to any one of claims 1 to 4, wherein the water vapor permeability is less than 1.00 g / m 2 / 24h.
  6.  前記ポリ(3-ヒドロキシアルカノエート)が、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)およびポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)からなる群より選択される少なくとも1種である、請求項1~5のいずれか1項に記載の成形体。 The poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate), poly (3-hydroxyvalerate). Hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly (3-hydroxybutyrate-co-4-hydroxybutyrate), poly (3-hydroxybutyrate-co-3) The item according to any one of claims 1 to 5, which is at least one selected from the group consisting of -hydroxyoctanoate) and poly (3-hydroxybutyrate-co-3-hydroxydecanoate). Molded body.
  7.  蒸着フィルムまたは蒸着ボトル容器である、請求項1~6のいずれか1項に記載の成形体。 The molded product according to any one of claims 1 to 6, which is a thin-film film or a thin-film bottle container.
PCT/JP2020/025255 2019-06-28 2020-06-26 Molded body and use thereof WO2020262619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527777A JP7467454B2 (en) 2019-06-28 2020-06-26 Molded body and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122159 2019-06-28
JP2019-122159 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262619A1 true WO2020262619A1 (en) 2020-12-30

Family

ID=74061778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025255 WO2020262619A1 (en) 2019-06-28 2020-06-26 Molded body and use thereof

Country Status (2)

Country Link
JP (1) JP7467454B2 (en)
WO (1) WO2020262619A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216654A (en) * 1996-02-09 1997-08-19 Sumitomo Bakelite Co Ltd Biodegradable press-through package with moistureproof property
JP2002068201A (en) * 2000-08-31 2002-03-08 Toppan Printing Co Ltd Biodegradable plastic container
US20100330382A1 (en) * 2009-06-26 2010-12-30 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved moisture barrier
WO2013124361A1 (en) * 2012-02-21 2013-08-29 So.F.Ter.Spa Durable polyhydroxyalkanoate compositions
WO2014020838A1 (en) * 2012-08-03 2014-02-06 株式会社カネカ Polyester resin composition and molded body containing this resin composition
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216654A (en) * 1996-02-09 1997-08-19 Sumitomo Bakelite Co Ltd Biodegradable press-through package with moistureproof property
JP2002068201A (en) * 2000-08-31 2002-03-08 Toppan Printing Co Ltd Biodegradable plastic container
US20100330382A1 (en) * 2009-06-26 2010-12-30 Toray Plastics (America), Inc. Biaxially oriented polylactic acid film with improved moisture barrier
WO2013124361A1 (en) * 2012-02-21 2013-08-29 So.F.Ter.Spa Durable polyhydroxyalkanoate compositions
WO2014020838A1 (en) * 2012-08-03 2014-02-06 株式会社カネカ Polyester resin composition and molded body containing this resin composition
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SNOWDON MICHAEL R., MOHANTY AMAR K., MISRA MANJUSRI: "Miscibility and performance evaluation of biocomposites made from polypropylene/poly (lactic acic)/poly(hydroxybutyrate-co-hydroxyvalerate with a sustainable biocarbon filler.", ACS OMEGA, vol. 2, no. 10, 5 October 2017 (2017-10-05), pages 6446 - 6454, XP055778973, DOI: 10.1021/acsomega.7b00983 *

Also Published As

Publication number Publication date
JP7467454B2 (en) 2024-04-15
JPWO2020262619A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
ES2267871T3 (en) TERNARY MIXTURE OF BIODEGRADABLE POLYESTERS AND PRODUCTS OBTAINED FROM THE SAME.
EP1514902B1 (en) Polylactic acid based polymer composition, molding thereof and film
TWI468462B (en) Blends of polylactic acid and thermoplastic polymers for packaging applications
AU2009228938B2 (en) Biodegradable polyester, preparation process thereof and products comprising said polyester
JP4807544B2 (en) Polyester composition
US20200384745A1 (en) Molded article, sheet and container, and tubular article, straw, cotton swab, and stick for balloons
JP4776236B2 (en) Polylactic acid-based stretched laminated film
TW200402448A (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
JP2010150542A (en) Aliphatic-aromatic polyester and article produced from the same
JP2010504396A (en) Reinforced poly (hydroxyalkanoic acid) composition
US20050181157A1 (en) Packaging material
JP2004082512A (en) Biodegradable film and biodegradable bag formed of this film
JP2003181919A (en) Biodegradable heat-shrinkable film and shrink package using the same
JP2005329557A (en) Multilayered film
JP5606159B2 (en) Resin composition, molded article using this resin composition, film, stretched film, heat-shrinkable film, heat-shrinkable label, and container equipped with the label
JP5145695B2 (en) Method for producing polylactic acid resin film
JP5777133B2 (en) Polylactic acid resin film
JP7467454B2 (en) Molded body and its use
JP4836194B2 (en) Transparent biodegradable resin stretched film and resin product with improved gas barrier properties
JPH06263954A (en) Composition and laminate
JP2004149636A (en) Polylactic acid resin composition and molded article
JP7218650B2 (en) Polyester resin composition and molded article
WO2022075232A1 (en) Resin composition, and molded body thereof
CN115803373A (en) Packaging film with antifogging agent
JP2022102160A (en) Molding having inorganic material membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833489

Country of ref document: EP

Kind code of ref document: A1