WO2020262419A1 - Charge-transporting varnish - Google Patents

Charge-transporting varnish Download PDF

Info

Publication number
WO2020262419A1
WO2020262419A1 PCT/JP2020/024704 JP2020024704W WO2020262419A1 WO 2020262419 A1 WO2020262419 A1 WO 2020262419A1 JP 2020024704 W JP2020024704 W JP 2020024704W WO 2020262419 A1 WO2020262419 A1 WO 2020262419A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
charge
carbon atoms
transporting
transporting varnish
Prior art date
Application number
PCT/JP2020/024704
Other languages
French (fr)
Japanese (ja)
Inventor
将之 東
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080045342.9A priority Critical patent/CN114008147B/en
Priority to JP2021527667A priority patent/JPWO2020262419A1/ja
Priority to KR1020227001764A priority patent/KR20220025814A/en
Publication of WO2020262419A1 publication Critical patent/WO2020262419A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • the present invention relates to a charge transporting varnish.
  • the method for forming an organic functional layer such as a hole injection layer used in an organic electroluminescence (EL) device is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, at present, the area of organic EL displays is being increased, and a hole injection layer that can be formed by a wet process is desired.
  • the applicant has applied a charge transporting material that can be applied to various wet processes and provides a thin film capable of realizing excellent EL device characteristics when applied to a hole injection layer of an organic EL device.
  • we have been developing compounds with good solubility in organic solvents used for them see, for example, Patent Documents 1 to 3).
  • a partition wall (bank) is generally provided so as to surround the layer formation region, and a partition wall (bank) is provided in the opening of the partition wall.
  • Organic functional ink is applied.
  • the ink applied in the opening may crawl up on the side surface of the partition wall, and the thickness of the peripheral portion of the coating film in contact with the side surface of the partition wall may be thicker than that of the central portion of the coating film, so-called crawling phenomenon may occur. ..
  • crawling phenomenon occurs, the plurality of organic functional layers formed between the electrodes do not function in the order of stacking, causing a situation in which a leak current path is formed.
  • Patent Documents 4 and 5 propose means for suppressing the crawling phenomenon, but in response to the recent situation in which the development of organic EL displays using a wet process is further accelerated, the suppression of such a crawling phenomenon is suppressed.
  • the demand for technology related to is increasing.
  • the present invention has been made in view of the above circumstances, and is a charge-transporting varnish that does not cause a creep-up phenomenon, and has excellent characteristics when a thin film obtained from the varnish is applied to a hole injection layer or the like. It is an object of the present invention to provide a charge transporting varnish capable of realizing an organic EL device.
  • the present inventor has obtained (A) a monodisperse charge-transporting organic compound, (B) a dopant containing two predetermined compounds, and (C) an organic solvent.
  • the present invention has been completed by finding that when the charge-transporting varnish containing the varnish is applied into the partition wall by a wet process, the creeping up of the varnish is extremely suppressed.
  • the present invention provides the following charge transporting varnish.
  • a charge-transporting varnish containing (A) a monodisperse charge-transporting organic compound, (B) a dopant, and (C) an organic solvent.
  • a 1 may have a substituent and is represented by an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings or the following formula (B1a) or (B1b). Is an m-valent group derived from the compound to be (In the formula, W 1 and W 2 may independently have -O-, -S-, -S (O)-or -S (O 2 )-, or -N.
  • a 2 is -O-, -S- or -NH-;
  • a 3 is, or an (n + 1) -valent aromatic group with 6 to 20 carbon atoms;
  • X 1 is an alkylene group having 2 to 5 carbon atoms, and an —O—, —S— or carbonyl group may be interposed between the carbon atoms of the alkylene group, and one of the hydrogen atoms of the alkylene group.
  • X 2 is a single bond, -O-, -S- or -NR-, and R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • X 3 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • m is an integer that satisfies 1 ⁇ m ⁇ 4.
  • n is an integer that satisfies 1 ⁇ n ⁇ 4.
  • R s1 to R s4 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and R s5 may have a substituent. It is a monovalent hydrocarbon group having 2 to 20 carbon atoms; A 11 is an m-valent group derived from perfluorobiphenyl, A 12 is an -O- or -S-, and A 13 is a (n + 1) -valent group derived from naphthalene or anthracene. Yes; m and n are the same as described above.
  • R s6 and R s7 are each independently a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group, and R s8 is a linear or branched monovalent fat. Although it is a group hydrocarbon group, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more;
  • a 14 is an m-valent hydrocarbon group containing one or more aromatic rings, which may have a substituent, A 15 is —O— or —S—, and A 16 is ( It is an n + 1) valent aromatic group; m and n are the same as described above.
  • R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or carbon number of carbon atoms. 2-10 halogenated alkenyl groups; R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms; R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or ⁇ OR s19 , and R s19 has 2 to 20 carbon atoms which may have a substituent.
  • R q1 to R q4 are independently hydrogen atoms or halogen atoms, but at least one is a halogen atom.
  • B3 A charge-transporting varnish according to any one of 1 to 8, wherein the halogenated or cyanated benzoquinone is represented by the following formula (B3).
  • R q5 to R q8 are independently hydrogen atoms, halogen atoms or cyano groups, but at least one is a halogen atom or cyano group.
  • the content of the (B1) aryl sulfonic acid ester compound is 0.01 to 50 in molar ratio with respect to the (B2) halogenated tetracyanoquinodimethane or the (B3) halogenated or cyanated benzoquinone.
  • the charge-transporting varnish of the present invention By using the charge-transporting varnish of the present invention, it is possible to produce a charge-transporting thin film in which the varnish creeps up (so-called pile-up) is extremely suppressed even when it is applied into the partition wall by a wet process. Further, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention is excellent in flatness and charge-transporting property. Therefore, the charge transporting varnish of the present invention can be suitably used for producing a thin film for an electronic device including an organic EL device, particularly a thin film for an organic EL display.
  • the charge transport varnish of the present invention is a charge transport varnish containing (A) a monodisperse charge transport organic compound, (B) a dopant and (C) an organic solvent, and (B) the dopant is (B1). It contains an aryl sulfonic acid ester compound and (B2) halogenated tetracyanoquinodimethane or (B3) halogenated or cyanated benzoquinone.
  • charge transporting organic compound for example, those conventionally used in the field of organic EL can be used.
  • arylamine derivatives aniline derivatives
  • oligoaniline derivatives N, N'-diarylbenzidine derivatives, N, N, N', N'-tetraarylbenzidine derivatives, oligothiophene derivatives, and thienothiophene derivatives.
  • Thionophen derivatives such as thienobenzothiophene derivatives
  • various charge-transporting organic compounds such as pyrrole derivatives such as oligopyrrole.
  • arylamine derivatives and thiophene derivatives are preferable.
  • the charge-transporting organic compound needs to be monodisperse (that is, the molecular weight distribution is 1).
  • the molecular weight of the charge-transporting organic compound is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness, but 300 from the viewpoint of obtaining a thin film having more excellent charge-transporting property.
  • the above is preferable, 400 or more is more preferable, and from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness with better reproducibility, 8,000 or less is preferable, 7,000 or less is more preferable, and 6,000 or less is preferable. Even more preferably, 5,000 or less is even more preferable.
  • Examples of the charge-transporting organic compound include JP-A-2002-151272, International Publication No. 2004/105446, International Publication No. 2005/043962, International Publication No. 2008/032617, and International Publication No. 2008/032616. , International Publication No. 2013/0426223, International Publication No. 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. Examples thereof are those disclosed in Publication No. 2015/146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, and the like.
  • a tertiary arylamine compound having at least one nitrogen atom and all nitrogen atoms having a tertiary arylamine structure is also preferable. That is, the tertiary arylamine compound has at least one nitrogen atom and has a structure in which three aromatic groups are bonded to all the nitrogen atoms.
  • the tertiary arylamine compound preferably has two or more nitrogen atoms.
  • tertiary arylamine compound examples include a compound represented by the following formula (A1) or (A2).
  • R 1 and R 2 are independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, respectively, an alkyl group having 1 to 20 carbon atoms, and carbon. It is an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl.
  • Chain or branched alkyl group cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , Bicyclooctyl group, bicyclononyl group, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a vinyl group, an n-1-propenyl group, an n-2-propenyl group and 1-methyl.
  • Examples thereof include a -1-propenyl group, a 1-methyl-2-propenyl group, an n-1-pentenyl group, an n-1-decenyl group, an n-1-eicosenyl group and the like.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group and an n-1.
  • n-2-butynyl group n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n- 4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, Examples thereof include an n-1-decynyl group, an n-1-pentadecynyl group, and an n-1-eicosynyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group and a 2-phenanthryl group. Examples thereof include a 3-phenanthryl group, a 4-phenanthryl group and a 9-phenanthryl group.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group and 3-.
  • Isooxazolyl group 4-isoxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, 4- Examples thereof include an imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group.
  • R 1 and R 2 include an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group and a halogen atom, and a carbon number which may be substituted with a halogen atom.
  • An aryl group of 6 to 20 or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom is preferable, and a heteroaryl group having 1 carbon atom which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom is preferable.
  • a phenyl group which may be substituted with an alkyl group of to 10 or a halogen atom is more preferable, a hydrogen atom or a fluorine atom is more preferable, and a hydrogen atom is the most suitable.
  • Ph 1 is a group represented by the formula (P1).
  • R 3 to R 6 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkenyl having 2 to 20 carbon atoms.
  • R 3 to R 6 include an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group and a halogen atom, and 6 to 6 carbon atoms which may be substituted with a halogen atom.
  • a heteroaryl group having 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom is preferable, and a heteroaryl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom is preferable.
  • the alkyl group or the phenyl group which may be substituted with the halogen atom is more preferable, the hydrogen atom or the fluorine atom is more preferable, and the hydrogen atom is the most suitable.
  • Suitable groups for Ph 1 include, but are not limited to, 1,4-phenylene groups.
  • Ar 1 is a group independently represented by any of the following formulas (Ar1-1) to (Ar1-11), and in particular, the following formulas (Ar1-1') to (Ar1-1') to ( A group represented by any one of Ar1-11') is preferable.
  • R 7 to R 27 , R 30 to R 51 and R 53 to R 154 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, a diphenylamino group, respectively.
  • R 28 and R 29 are aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms, which may be independently substituted with Z 1 .
  • R 52 is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 1 .
  • Z 1 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or Z 2.
  • Z 2 is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or Z 3 .
  • Z 3 is a halogen atom, a nitro group or a cyano group.
  • R 7 to R 27 , R 30 to R 51 and R 53 to R 154 are substituted with a diphenylamino group or a halogen atom which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom.
  • An alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with a halogen atom, or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom may be used.
  • an alkyl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom, or a phenyl group which may be substituted with a halogen atom is more preferable, and a hydrogen atom or a fluorine atom is preferable. Is even more preferred, and a hydrogen atom is optimal.
  • an aryl group having 6 to 14 carbon atoms which may be substituted with a halogen atom or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with a halogen atom is preferable, and a halogen atom.
  • a phenyl group optionally substituted with, or a naphthyl group optionally substituted with a halogen atom is more preferred, a phenyl group optionally substituted with a halogen atom is even more preferred, and a phenyl group is even more preferred.
  • a hydrogen atom is preferably an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted by a hydrogen atom, an optionally substituted phenyl group Z 1, or substituted with Z 1
  • a good naphthyl group is more preferred, a phenyl group which may be substituted with Z 1 is even more preferred, and a phenyl group is even more preferred.
  • Ar 4 is independently composed of an aryl group having 6 to 20 carbon atoms. It is an aryl group having 6 to 20 carbon atoms which may be substituted with a certain diallylamino group. Specific examples of the aryl group having 6 to 20 carbon atoms include those similar to those described in R 1 and R 2 above.
  • diarylamino group examples include a diphenylamino group, a 1-naphthylphenylamino group, a di (1-naphthyl) amino group, a 1-naphthyl-2-naphthylamino group, a di (2-naphthyl) amino group and the like. Can be mentioned.
  • Ar 4 includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthril group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4- Phenantryl group, 9-phenanthryl group, p- (diphenylamino) phenyl group, p- (1-naphthylphenylamino) phenyl group, p- (di (1-naphthyl) amino) phenyl group, p- (1-naphthyl-) 2-Phenylamino) phenyl group, p- [di (2-naphthyl) amino] phenyl group and the like are preferable, and p- (diphenylamino) phenyl group is more preferable.
  • Ar 2 is a group independently represented by any of the formulas (Ar2-1) to (Ar2-18), and in particular, the formulas (Ar2-1'-1) to (Ar2-1'-1) to ( The group represented by any one of Ar2-18'-2) is preferable.
  • Ar 4 is the same as described above, DPA is a diphenylamino group, and the broken line is a bond.
  • R 155 is a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1. , Or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1 .
  • Examples of the aryl group and the heteroaryl group include those similar to those described in the description of R 1 and R 2 .
  • R 155 a hydrogen atom, Z 1 optionally substituted by a phenyl group, Z 1 in optionally substituted 1-naphthyl group, which may have been or 2-naphthyl substituted with Z 1 group, may be substituted with Z 1 in optionally substituted 2-pyridyl group, optionally substituted 3-pyridyl group by a phenyl group which may be substituted with Z 1, or Z 1 4
  • a pyridyl group is preferred, a phenyl group which may be substituted with Z 1 is even more preferred, and a phenyl group or a (2,3,5,6-tetrafluoro-4- (trifluoromethyl) phenyl) group is even more preferred. ..
  • R 156 and R 157 may be substituted with a phenyl group which may be substituted with Z 1.
  • Examples of the aryl group and the heteroaryl group include those similar to those described in the description of R 1 and R 2 .
  • an aryl group optionally having 6 to 14 carbon atoms is preferably substituted by a phenyl group which may be substituted with Z 1, which may be substituted with Z 1
  • Ar 3 is a group represented by any of the formulas (Ar3-1) to (Ar3-8), and in particular, in the formulas (Ar3-1') to (Ar3-8').
  • the group represented by either is preferable.
  • DPA is the same as described above, and the broken line is the bond.
  • p is an integer of 1 to 10, but from the viewpoint of increasing the solubility of the compound in an organic solvent, 1 to 5 is preferable, 1 to 3 is more preferable, and 1 or 2 is even more preferable. 1 is optimal.
  • q is 1 or 2.
  • the aniline derivative represented by the formula (A1) and the aniline derivative represented by the formula (A2) can be produced, for example, according to the method described in International Publication No. 2015/050253.
  • tertiary arylamine compound examples include, for example, a compound represented by the following formula (A3).
  • r is an integer of 2-4.
  • Ar 11 is an r-valent aromatic group having 6 to 20 carbon atoms which may be substituted.
  • the aromatic group is a group obtained by removing r hydrogen atoms from the aromatic ring of an aromatic compound having 6 to 20 carbon atoms.
  • a group derived from a compound represented by any of the following formulas (A3-1) to (A3-8) is particularly preferable.
  • L 1 ⁇ L 3 are each independently a single bond, - (CR 201 R 202) s -, - C (O) -, - O -, - S -, - S (O) -, - S (O 2) - or -NR 203 - a.
  • s is an integer from 1 to 6.
  • L 4 ⁇ L 13 each independently represent a single bond, -CR 201 R 202 -, - C (O) -, - O -, - S-, -S (O) -, - S (O 2) - or -NR 203 - a.
  • R 201 and R 202 are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms, and R 201 and R 202 are bonded to each other to form a ring together with the carbon atom to which they are bonded. You may be doing it.
  • ⁇ (CR 201 R 202 ) s ⁇ when s is 2 or more, each R 201 and R 202 may be the same or different from each other.
  • R 203 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the aromatic group may have a part or all of its hydrogen atom further substituted with a substituent.
  • substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a cyano group, a hydroxy group, an amino group, a silanol group, a thiol group, a carboxy group, a sulfonic acid ester group, a phosphoric acid group and a phosphoric acid.
  • Examples thereof include an ester group, an ester group, a thioester group, an amide group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group.
  • a cyano group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.
  • 1,4-phenylene group, fluorene-2,7-diyl group, 9,9-dimethylfluorene-2,7-diyl group and the like which may be substituted are preferable, and even if they are substituted. Good, 1,4-phenylene group or biphenyl-4,4'-diyl group is more preferable.
  • Ar 12 and Ar 13 are monovalent aromatic groups having 6 to 20 carbon atoms which may be independently substituted with Z 11 , and Ar 12 and Ar 13 are bonded to each other. Then, they may form a ring together with the nitrogen atom to which they are bonded. Further, each of Ar 12 and Ar 13 may be the same as or different from each other.
  • Z 11 is a monovalent aliphatic hydrocarbon group or monovalent aromatic group having 1 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, or a polymerizable group. ..
  • Examples of the monovalent aromatic group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, and a 3-phenanthryl group.
  • Examples thereof include an aryl group such as a group, a 4-phenylyl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group and a 4-biphenylyl group.
  • the monovalent aliphatic hydrocarbon may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Examples of the polymerizable group include, but are not limited to, those represented by the following formulas.
  • Ra is a hydrogen atom or a methyl group.
  • R b and R d are independently hydrogen atoms or alkyl groups having 1 to 6 carbon atoms, but methyl groups and ethyl groups are preferable.
  • R c , R e, and R f are alkylene groups having 1 to 8 carbon atoms, which may independently contain a single bond or an oxygen atom, a sulfur atom, or a nitrogen atom.
  • R g , R h and R i are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group and n-propyl.
  • Y a and Y b are independently single bonds or divalent aromatic groups having 6 to 20 carbon atoms.
  • the divalent aromatic group includes a 1,3-phenylene group, a 1,4-phenylene group, a 1,5-naphthylene group, a 1,6-naphthylene group, a 1,7-naphthylene group, and a 2,6-naphthylene group. Examples thereof include a 4,4'-biphenylylene group. Of these, a 1,3-phenylene group or a 1,4-phenylene group is preferable.
  • Ar a is a monovalent aromatic group having 6 to 20 carbon atoms which may have a substituent.
  • Examples of the monovalent aromatic group include those similar to those described above.
  • a methyl group, an ethyl group, a polymerizable group represented by the following formula and the like are preferable. (In the formula, the broken line is the bond.)
  • Ar 12 and Ar 13 examples include phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group and 2-vinyl.
  • a phenyl group, a 3-vinylphenyl group, a 4-vinylphenyl group, a 1-naphthyl group, a 2-naphthyl group and the like are preferable.
  • the compound represented by the formula (A3) can be synthesized by a known method, or a commercially available product can also be used.
  • tertiary arylamine compound examples include those represented by the following formula (A4), for example.
  • Ar 21 to Ar 23 are independently divalent aromatic groups having 6 to 20 carbon atoms.
  • a divalent group derived from the compound represented by the above-mentioned formula (A3-1), (A3-3) or (A3-4) is preferable.
  • a 1,4-phenylene group a biphenyl-4,4'-diyl group, a terphenyl-4,4''-diyl group and the like are preferable, and a 1,4-phenylene group.
  • a biphenyl-4,4'-diyl group is more preferable.
  • Ar 24 to Ar 29 are monovalent aromatic groups having 6 to 20 carbon atoms which may be independently substituted with Z 21 .
  • the monovalent aromatic group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, and a 3-phenanthryl group.
  • Examples thereof include an aryl group such as a group, a 4-phenylyl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group and a 4-biphenylyl group.
  • Z 21 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, a nitro group or a cyano group, ⁇ N (Ar 30 ) ( Ar 31 ), or a polymerizable group.
  • the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and n.
  • -Butyl group isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Alkyl group having 1 to 20 carbon atoms such as decyl group, n-undecyl group, n-dodecyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1 Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group.
  • Examples of the polymerizable group include those similar to those described above.
  • Ar 30 and Ar 31 are each independently an aryl group having 6 to 20 carbon atoms which may be substituted with Z 22 , and they may be bonded to each other to form a ring with the nitrogen atom to which they are bonded.
  • Z 22 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, a nitro group or a cyano group.
  • aryl group having 6 to 20 carbon atoms and the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms are the same as those described above.
  • phenyl group, 1-naphthyl group, 2-naphthyl group, 1-biphenylyl group are preferable, and phenyl group, 1-biphenylyl group and the like are more preferable.
  • -N (Ar 30 ) (Ar 31 ) a diphenylamino group, a phenyl (4-biphenylyl) amino group, a bis (4-biphenylyl) amino group, an N-carbazolyl group and the like are preferable.
  • an alkyl group having 1 to 10 carbon atoms, ⁇ N (Ar 30 ) (Ar 31 ) and the like are preferable.
  • Ar 24 to Ar 29 examples include phenyl group, 4-biphenylyl group, 4-diphenylaminophenyl group, 4-phenyl (4-biphenylyl) aminophenyl group, bis (4-biphenylyl) aminophenyl group, and 4'-diphenylamino.
  • -4-biphenylyl group, 4-phenyl (4-biphenylyl) amino-4-biphenylyl group, 4'-bis (4-biphenylyl) amino-4-biphenylyl group, N-carbazolylphenyl group, 4'-N- Carbazolyl-4-biphenylyl groups and the like are preferred.
  • the compound represented by the formula (A4) can be synthesized by a known method, or a commercially available product can also be used.
  • tertiary arylamine compound examples include those represented by the following formula (A5), for example.
  • Ar 41 and Ar 42 are independently phenyl groups, 1-naphthyl groups or 2-naphthyl groups, respectively.
  • R 301 and R 302 are independently hydrogen atoms, diarylaminophenyl groups in which each aryl group is an aryl group having 6 to 20 carbon atoms, a chlorine atom, a bromine atom, and an iodine atom. Examples of the aryl group include those similar to those described in the description of R 1 and R 2 in the formula (A2).
  • L 21 is a divalent linking group containing a propane-2,2-diyl group or a 1,1,1,1,3,3,3-hexafluoropropane-2,2-diyl group.
  • x is an integer from 1 to 10.
  • the compound represented by the formula (A5) can be synthesized by a known method, or a commercially available product can also be used.
  • the tertiary arylamine compound is not limited to the above-mentioned compound as long as it has at least one nitrogen atom and all nitrogen atoms have a tertiary arylamine structure.
  • Other tertiary arylamine compounds that can be used in the present invention include, for example, the arylamine compound described in International Publication No. 2005/094133, and the triarylamine partial structure and polymerizable property described in Japanese Patent No. 5287455. Examples thereof include a polymerizable compound having a group, a triarylamine compound described in Japanese Patent No. 5602191, a compound described in paragraph [0054] of Japanese Patent No. 6177771, and the like.
  • Preferred examples of the tertiary arylamine compound include, but are not limited to, those shown below.
  • the charge-transporting varnish of the present invention contains (B1) aryl sulfonic acid ester compound and (B2) halogenated tetracyanoquinodimethane or (B3) halogenated or cyanated benzoquinone as the dopant of the component (B).
  • the aryl sulfonic acid ester compound is not particularly limited as long as it has a sulfonic acid ester group bonded to the aromatic ring.
  • the molecular weight of the aryl sulfonic acid ester compound is preferably 100 or more, more preferably 200 or more, preferably 5,000 or less, more preferably 4,000 or less, still more preferably. It is 3,000 or less, more preferably 2,000 or less.
  • the number of sulfonic acid ester groups contained in the aryl sulfonic acid ester compound is preferably 2 or more, more preferably 3 or more, preferably 6 or less, and more preferably 5 or less.
  • the aryl sulfonic acid ester compound preferably comprises a fluorine-substituted aromatic ring.
  • aryl sulfonic acid ester compound those represented by the following formula (B1) or (B1') are preferable.
  • a 1 may have a substituent and is an m-valent hydrocarbon group having 6 to 20 carbon atoms including one or more aromatic rings, or the following formula ( Obtained by removing the m-valent group derived from the compound represented by B1a) or (B1b) (that is, m hydrogen atoms on the aromatic ring of the compound represented by the following formula (B1a) or (B1b). The group to be used).
  • W 1 and W 2 may independently have -O-, -S-, -S (O)-or -S (O 2 )-, or -N. -, -Si-, -P- or -P (O)-)
  • the m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings is obtained by removing m hydrogen atoms from the hydrocarbon having 6 to 20 carbon atoms containing one or more aromatic rings. It is a group.
  • the hydrocarbon containing one or more aromatic rings include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as the m-valent hydrocarbon group, a group derived from benzene, biphenyl, or the like is preferable.
  • a part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent.
  • substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a cyano group, a hydroxy group, an amino group, a silanol group, a thiol group, a carboxy group, a sulfonic acid ester group, a phosphoric acid group and a phosphoric acid.
  • an ester group an ester group, a thioester group, an amide group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfo group and the like.
  • the monovalent hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl.
  • Carbons such as groups, sec-butyl groups, tert-butyl groups, n-pentyl groups, cyclopentyl groups, n-hexyl groups, cyclohexyl groups, n-heptyl groups, n-octyl groups, n-nonyl groups and n-decyl groups.
  • An alkenyl group having 2 to 10 carbon atoms such as a group; an aryl group having 6 to 20 carbon atoms such as a phenyl group, a xsilyl group, a trill group, a 1-naphthyl group and a 2-naphthyl group; a carbon such as a benzyl group and a phenylethyl group.
  • the number 7 to 20 aralkyl groups and the like can be mentioned.
  • organooxy group examples include an alkoxy group, an alkenyloxy group, and an aryloxy group.
  • alkyl group, alkenyl group and aryl group contained therein examples include those similar to those described above.
  • organoamino group examples include methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group and dodecyl.
  • Alkylamino group having 1 to 12 carbon atoms such as amino group; dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, dicyclohexylamino group, diheptylamino group, dioctylamino group , Dialkylamino group in which each alkyl group such as dinonylamino group and didecylamino group is an alkyl group having 1 to 12 carbon atoms; morpholino group and the like can be mentioned.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, a hexyldimethylsilyl group, an octyldimethylsilyl group and a decyldimethyl group.
  • examples thereof include a trialkylsilyl group in which each alkyl group such as a silyl group is an alkyl group having 1 to 10 carbon atoms.
  • organothio group examples include alkylthio groups having 1 to 12 carbon atoms such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group and dodecylthio group. Be done.
  • acyl group examples include acyl groups having 1 to 10 carbon atoms such as formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group and benzoyl group.
  • the carbon number of the monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group and acyl group is preferably 1 to 8.
  • a fluorine atom, a sulfonic acid group, an alkyl group, an organooxy group, and an organosilyl group are more preferable.
  • a 2 is -O-, -S- or -NH-. Of these, —O— is preferable because it is easy to synthesize.
  • a 3 is a (n + 1) -valent aromatic group having 6 to 20 carbon atoms.
  • the aromatic group is a group obtained by removing (n + 1) hydrogen atoms on an aromatic ring from an aromatic compound having 6 to 20 carbon atoms.
  • the aromatic compound means an aromatic hydrocarbon and an aromatic heterocyclic compound. Examples of the aromatic compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
  • the aromatic group represented by A 3 is a group derived from naphthalene or anthracene. Is preferable.
  • X 1 is an alkylene group having 2 to 5 carbon atoms, and the alkylene group is formed between the carbon atoms (carbon-carbon bond) of ⁇ O—, ⁇ .
  • An S- or a carbonyl group may be interposed, and a part or all of the hydrogen atom may be further substituted with an alkyl group having 1 to 20 carbon atoms.
  • X 1 an ethylene group, a trimethylene group, a methyleneoxymethylene group, a methylenethiomethylene group and the like are preferable, and a part or all of the hydrogen atoms of these groups are further substituted with an alkyl group having 1 to 20 carbon atoms. You may.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group and n-hexyl group. , Cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, bicyclohexyl group and the like.
  • X 2 is a single bond, -O-, -S- or -NR-.
  • R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the monovalent hydrocarbon group an alkyl group such as a methyl group, an ethyl group or an n-propyl group is preferable.
  • X 2 a single bond, —O— or —S— is preferable, and a single bond or —O— is more preferable.
  • X 3 is a monovalent hydrocarbon group substituted by 1 carbon atoms which may be 1-20.
  • the monovalent hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and sec.
  • a part or all of the hydrogen atoms of the monovalent hydrocarbon group may be further substituted with a substituent.
  • substituents include those similar to those described in the description of A 1 .
  • X 3 an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms is preferable.
  • m is an integer satisfying 1 ⁇ m ⁇ 4, but 2 is preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • the aryl sulfonic acid ester compounds represented by the formulas (B1) and (B1') are highly soluble in a wide range of solvents including low protic solvents, the physical properties of the solution are prepared using a wide variety of solvents. It is possible to do so and the coating characteristics are high. Therefore, it is preferable to apply in the state of a sulfonic acid ester and generate sulfonic acid when the coating film is dried or fired.
  • the temperature at which sulfonic acid is generated from the sulfonic acid ester is preferably 40 to 260 ° C. because it is stable at room temperature and preferably equal to or lower than the firing temperature. Further, considering the high stability in the varnish and the ease of desorption during firing, 80 to 230 ° C. is preferable, and 120 to 180 ° C. is more preferable.
  • aryl sulfonic acid ester compound represented by the formula (B1) those represented by any of the following formulas (B1-1) to (B1-3) are preferable.
  • a 11 is an m-valent group derived from perfluorobiphenyl (that is, a group obtained by removing m fluorine atoms from perfluorobiphenyl).
  • a 12 is —O— or —S—, but —O— is preferred.
  • a 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing (n + 1) hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable. ..
  • R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 may be substituted. It is a good monovalent hydrocarbon group having 2 to 20 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. , N-Hexyl group and the like. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl.
  • Examples include an alkyl group such as a group, a sec-butyl group and a tert-butyl group; and an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group.
  • R s1 to R s4 it is preferable that R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms and the rest are hydrogen atoms. Further, it is preferable that R s1 is a linear alkyl group having 1 to 3 carbon atoms and R s2 to R s4 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • a 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms and containing one or more aromatic rings which may be substituted.
  • the hydrocarbon group is a group obtained by removing m hydrogen atoms from a hydrocarbon having one or more aromatic rings and having 6 to 20 carbon atoms.
  • Examples of the hydrocarbon include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
  • a part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro.
  • Group cyano group, hydroxy group, amino group, silanol group, thiol group, carboxy group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, monovalent hydrocarbon group, organo Examples thereof include an oxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. Of these, as A 14 , a group derived from benzene, biphenyl, or the like is preferable.
  • a 15 is —O— or —S—, but —O— is preferred.
  • a 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s6 and R s7 are each independently a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group.
  • R s8 is a linear or branched monovalent aliphatic hydrocarbon group.
  • the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more.
  • the upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • linear or branched monovalent aliphatic hydrocarbon group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-.
  • Alkyl group having 1 to 20 carbon atoms such as butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a methyl-2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group.
  • R s6 A hydrogen atom is preferable as R s6
  • R s7 and R s8 an alkyl group having 1 to 6 carbon atoms is preferable as R s7 and R s8 .
  • R s7 and R s8 may be the same or different.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, and alkyl halide group having 1 to 10 carbon atoms, respectively. , Or a halogenated alkenyl group having 2 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl.
  • the alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with halogen atoms.
  • the alkyl halide group may be linear, branched or cyclic, and specific examples thereof include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, 1,1,2,2, 2-Pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl Group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1 , 2,2,3,3,4,4,4-nonafluorobutyl group and the like.
  • the halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms.
  • Specific examples thereof include a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro-3-butenyl group. And so on.
  • R s9 a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, an alkenyl halide group having 2 to 10 carbon atoms and the like are preferable, and a nitro group, a cyano group and 1 to 10 carbon atoms are preferable.
  • the alkyl halide group of 4 and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group, the perfluoropropenyl group and the like are even more preferable.
  • R s10 to R s13 a halogen atom is preferable, and a fluorine atom is more preferable.
  • a 17 is -O-, -S- or -NH-, but -O- is preferable.
  • a 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • the monovalent aliphatic hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or ⁇ OR s19 .
  • R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
  • Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 .
  • R s18 is a monovalent aliphatic hydrocarbon group
  • R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Is even more preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 includes an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group. And so on. Of these, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • aryl sulfonic acid ester compound represented by the formula (B1-3) those represented by the following formula (B1-3-1) or (B1-3-2) are particularly preferable.
  • R s20 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and specific examples thereof include those described in the description of R s18 .
  • R s14 to R s17 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is hydrogen. It is preferably an atom. Further, it is preferable that R s14 is a linear alkyl group having 1 to 3 carbon atoms and R s15 to R s17 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • the total number of carbon atoms of R s14 , R s16 and R s20 is preferably 6 or more.
  • the upper limit of the total number of carbon atoms of R s14 , R s16 and R s20 is preferably 20 or less, and more preferably 10 or less.
  • R s14 is preferably a hydrogen atom
  • R s16 and R s20 are preferably an alkyl group having 1 to 6 carbon atoms.
  • R s16 and R s20 may be the same as or different from each other.
  • the aryl sulfonic acid ester compound represented by the formula (B1) may be used alone or in combination of two or more.
  • Suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
  • the aryl sulfonic acid ester compound represented by the formula (B1) is obtained by reacting the sulfonate compound represented by the formula (B1A) with a halogenating agent, for example, as shown in the following scheme A, to form the following formula (B1).
  • the sulfonyl halide compound represented by B1B) is synthesized (hereinafter, also referred to as step 1), and the sulfonyl halide compound is reacted with the compound represented by the formula (B1C) (hereinafter, also referred to as step 2).
  • step 1 In the formula, A 1 to A 3 , X 1 to X 3 , m and n are the same as described above.
  • M + is a monovalent cation such as sodium ion, potassium ion, pyridinium ion, quaternary ammonium ion and the like.
  • .Hal is a halogen atom such as a chlorine atom and a bromine atom.
  • the sulfonate compound represented by the formula (B1A) can be synthesized according to a known method.
  • halogenating agent used in step 1 examples include halogenating agents such as thionyl chloride, oxalyl chloride, phosphorus oxychloride, and phosphorus (V) chloride, but thionyl chloride is preferable.
  • the amount of the halogenating agent used is not limited as long as it is 1 times or more the molar amount of the sulfonate compound, but it is preferably used in an amount of 2 to 10 times the mass ratio of the sulfonate compound.
  • the reaction solvent used in step 1 is preferably a solvent that does not react with the halogenating agent, and examples thereof include chloroform, dichloroethane, carbon tetrachloride, hexane, and heptane. Further, the reaction can be carried out without a solvent, and in this case, it is preferable to use a halogenating agent in an amount equal to or more than a uniform solution at the end of the reaction. Further, in order to promote the reaction, a catalyst such as N, N-dimethylformamide may be used.
  • the reaction temperature can be about 0 to 150 ° C., but is preferably 20 to 100 ° C. and below the boiling point of the halogenating agent used. After completion of the reaction, the crude product obtained by concentration under reduced pressure or the like is generally used in the next step.
  • Examples of the compound represented by the formula (B1C) include glycols such as propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monophenyl ether, ethylene glycol monobutyl ether, and ethylene glycol monohexyl ether.
  • Ethers; alcohols such as 2-ethyl-1-hexanol, 2-butyl-1-octanol, 1-octanol, 3-nonanol and the like can be mentioned.
  • a base may be used in combination.
  • the base that can be used include sodium hydride, pyridine, triethylamine, diisopropylethylamine and the like, but sodium hydride, pyridine and triethylamine are preferable.
  • the amount of the base used is preferably 1 times the molar amount to the amount of the solvent with respect to the sulfonyl halide compound.
  • reaction solvent used in step 2 various organic solvents can be used, but tetrahydrofuran, dichloroethane, chloroform and pyridine are preferable.
  • the reaction temperature is not particularly limited, but 0 to 80 ° C. is preferable.
  • a pure aryl sulfonic acid ester compound can be obtained by post-treatment and purification using conventional methods such as concentration under reduced pressure, liquid separation extraction, washing with water, reprecipitation, recrystallization, and chromatography. It is also possible to obtain a high-purity sulfonic acid compound by subjecting the obtained pure aryl sulfonic acid ester compound to heat treatment or the like.
  • the aryl sulfonic acid ester compound represented by the formula (B1) can also be synthesized from the sulfonic acid compound represented by the formula (B1D) as shown in the following scheme B.
  • the halogenating agent used in the first and second stage reactions, the compound represented by the formula (B1C), the reaction solvent and other components are the same as in steps 1 and 2 in the scheme A. Can be used.
  • a 1 to A 3 , X 1 to X 3 , Hal, m and n are the same as above.
  • the sulfonic acid compound represented by the formula (B1D) can be synthesized according to a known method.
  • the aryl sulfonic acid ester compound represented by the formula (B1') can be synthesized according to a conventionally known method, for example, the method described in Japanese Patent No. 5136795.
  • R q1 to R q4 are independently hydrogen atoms or halogen atoms, but at least one is a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
  • at least two of R q1 to R q4 are preferably halogen atoms, at least three are more preferably halogen atoms, and most preferably all are halogen atoms.
  • tetracyanoquinodimethane derivative examples include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro.
  • F4TCNQ Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane
  • F4TCNQ Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane
  • Tetrachloro-7,7,8,8-Tetracyanoquinodimethane Methane 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2-chloro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8, Examples thereof include 8-tetracyanoquinodimethane, 2,5-dichloro-7,7,8,8-tetracyanoquinodimethane.
  • F4TCNQ is preferable.
  • R q5 to R q8 are independently hydrogen atoms, halogen atoms or cyano groups, but at least one is a halogen atom or cyano group.
  • the halogen atom include the same as those described above, and a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
  • halogenated or cyanated benzoquinone 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (chloranil), trifluoro-1
  • DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
  • chloranil tetrachloro-1,4-benzoquinone
  • trifluoro-1 examples thereof include 4-benzoquinone, tetrafluoro-1,4-benzoquinone, tetrabromo-1,4-benzoquinone, tetracyano-1,4-benzoquinone and the like.
  • 2,3-dichloro-5,6-dicyano-p-benzoquinone, trifluorobenzoquinone, tetrafluorobenzoquinone, and tetracyanobenzoquinone are preferable, and DDQ, chloranil, tetrafluoro-1,4-benzoquinone, and tetracyano-1 are preferable.
  • 4-Benzoquinone is more preferred, and DDQ is even more preferred.
  • the content of the (B1) aryl sulfonic acid ester compound is usually 0 in molar ratio with respect to (B2) tetracyanoquinodimethane halogenated or (B3) halogenated or benzoquinone cyanated.
  • the amount is about .01 to 50, preferably about 0.1 to 20, and more preferably about 1.0 to 10.
  • the total content of the dopant of the component (B) is such that the ratio (D / H) of the content of the dopant to the charge-transporting organic compound is usually about 0.01 to 50 in terms of molar ratio. It is preferably an amount of about 0.1 to 10, and more preferably an amount of about 1.0 to 5.0.
  • (B2) halogenated tetracyanoquinodimethane can be used alone or in combination of two or more, and (B3) halogenated or cyanated benzoquinone can be used alone or in combination of two or more. be able to. Further, (B2) halogenated tetracyanoquinodimethane and (B3) halogenated or cyanated benzoquinone can be used in combination.
  • the organic solvent (C) is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and each of the optional components described below, but a low-polarity solvent may be used because of its excellent process compatibility. preferable.
  • a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz
  • a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
  • low polar solvent examples include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like.
  • Alibo alcohol solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc.
  • Solvents Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dimethyl phthalate, diisopropyl malate, dibutyl maleate, dibutyl oxalate, hexyl acetate, propylene glycol monomethyl ether
  • ester solvents such as acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate.
  • Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
  • Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone; Cyano solvent such as acetonitrile and 3-methoxypropionitrile; Ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, Polyhydric alcohol solvents such as 2,3-butanediol; diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyl Monohydric alcohol solvents other than aliphatic alcohols such as oxyethanol, 3-phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol; sulfoxide solvents such as dimethyl sulfoxide and the like can be mentioned.
  • Ketone solvent such as ethyl methyl ketone, isophor
  • the amount of the organic solvent used is such that the solid content concentration in the varnish of the present invention is usually 0.1 to 20% by mass from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge-transporting organic compound.
  • the amount is preferably 0.5 to 10% by mass.
  • the solid content means a component other than the solvent among the components contained in the varnish.
  • the solvent may be used alone or in combination of two or more.
  • the charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical characteristics of the obtained charge-transporting thin film.
  • organic silane compound examples include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound.
  • a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
  • the organic silane compound may be used alone or in combination of two or more.
  • the content thereof is usually about 0.1 to 50% by mass in the solid content, but the flatness of the obtained thin film is improved and the decrease in charge transportability is suppressed. In consideration of such a balance, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.
  • the charge-transporting varnish of the present invention may contain an amine compound from the viewpoint of dissolving a charge-transporting organic compound or a dopant in a solvent to obtain a highly uniform varnish, and the content thereof is usually 0 in the solid content. It is about 1 to 50% by mass.
  • the method for preparing the charge-transporting varnish is not particularly limited, and examples thereof include a method of adding a charge-transporting organic compound and a dopant and, if necessary, other components to the organic solvent in any order or at the same time.
  • each component may be dissolved in one solvent sequentially or simultaneously, and another solvent may be added thereto.
  • Each component may be sequentially or simultaneously dissolved in a mixed solvent of a plurality of organic solvents. It may be dissolved.
  • the charge transporting varnish of the present invention is filtered using a submicrometer order filter or the like after dissolving each component in an organic solvent.
  • the viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C.
  • the viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd.
  • the surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.
  • the viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.
  • the charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.
  • varnish coating method examples include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.
  • the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and charge-transporting property can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum.
  • an inert gas such as nitrogen or in a vacuum.
  • a thin film having higher charge transportability can be obtained with good reproducibility.
  • the firing temperature is usually set appropriately within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, and the like.
  • a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
  • the film thickness of the charge transporting thin film is not particularly limited, but when it is used as a functional layer between the anode and the light emitting layer such as a hole injection layer, a hole transport layer or a hole injection transport layer of an organic EL element, 5 It is preferably about 300 nm.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of liquid on the substrate at the time of coating.
  • the charge-transporting thin film of the present invention can be formed by the method described above, but by using the charge-transporting varnish of the present invention, the charge-transporting thin film can be suitably formed in the partition wall of the substrate with a partition wall.
  • the substrate with a partition wall is not particularly limited as long as it is a substrate on which a predetermined pattern is formed by a known photolithography method or the like. Normally, there are a plurality of openings defined by the partition wall on the substrate. Usually, the size of the opening is 100 to 210 ⁇ m on the long side, 40 ⁇ m ⁇ 100 ⁇ m on the short side, and the bank taper angle is 20 to 80 °.
  • the material of the substrate is not particularly limited, but is a transparent electrode material typified by indium tin oxide (ITO) and indium zinc oxide (IZO) used as an anode material of an electronic element; aluminum, gold, Metal anode materials composed of metals typified by silver, copper, indium, etc. or alloys thereof; polymer anode materials such as polythiophene derivatives and polyaniline derivatives having high charge transport properties, etc., are subjected to flattening treatment. Is preferable.
  • the charge transporting varnish of the present invention is applied to the inside of the partition wall of the substrate with a partition wall by an inkjet method, then depressurized, and further heated if necessary to remove the solvent from the charge transporting varnish coated inside the partition wall.
  • a charge-transporting thin film can be produced to produce a substrate with a charge-transporting thin film, and further, by laminating other functional films on the charge-transporting thin film, an electronic element such as an organic EL element can be formed. Can be manufactured.
  • the atmosphere at the time of coating with the inkjet is not particularly limited, and may be any of an air atmosphere, an atmosphere of an inert gas such as nitrogen, and a reduced pressure.
  • the degree of decompression (vacuum degree) at the time of depressurization is not particularly limited as long as the solvent of the varnish evaporates, but is usually 1,000 Pa or less, preferably 100 Pa or less, more preferably 50 Pa or less, still more preferably 25 Pa or less, and further. It is preferably 10 Pa or less.
  • the depressurization time is also not particularly limited as long as the solvent evaporates, but is usually about 0.1 to 60 minutes, preferably about 1 to 30 minutes.
  • the conditions for firing (heating) are the same as the above-mentioned conditions.
  • the pile-up index described later is usually a high value of 83% or more, preferably 86% or more, more preferably 89% or more, even more preferably 92% or more, still more preferably 95% or more. Up can be suppressed.
  • the pile-up index is when the partition wall (bank) width is A ( ⁇ m) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B ( ⁇ m). It can be calculated by the formula (B / A) ⁇ 100 (%).
  • the organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f).
  • an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of.
  • an arbitrary functional layer can be provided between the layers.
  • Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) Electron / hole injection transport layer / light emitting layer / cathode
  • the "hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and a layer of hole transporting material between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is the “hole injection layer”, and the other layers are the “hole transport layers”.
  • the hole injection (transport) layer a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
  • the "electron injection layer”, “electron transport layer” and “electron transport layer” are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injection transporting layer”, and two layers of electron transporting material are provided between the light emitting layer and the cathode. When the above is provided, the layer close to the cathode is the “electron injection layer”, and the other layers are the “electron transport layer”.
  • the "light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted.
  • the host material mainly has a function of promoting the recombination of electrons and holes and confining the excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.
  • the materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.
  • a hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited.
  • a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include transparent electrodes typified by ITO and IZO, metals typified by aluminum, and metal anodes composed of alloys thereof, and those subjected to flattening treatment are preferable.
  • Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used.
  • other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-.
  • Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.
  • the light emitting layer When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.
  • Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
  • Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.
  • cathode material examples include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • hole-transporting polymer examples include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,4-diamino).
  • Phenylene poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis ⁇ 1'-penten-5'-yl ⁇ fluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like
  • luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH).
  • PDAF poly (9,9-dialkylfluorene)
  • MEH poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene)
  • -PPV polyphenylene vinylene derivatives
  • PAT poly (3-alkylthiophene)
  • PVCz polyvinylcarbazole
  • the materials forming the anode and cathode and the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..
  • a transparent anode is used on the substrate side to extract light from the substrate side
  • a reflective anode made of metal is used and the direction is opposite to that of the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.
  • the charge transporting thin film of the present invention can be used as a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, an organic integrated circuit, and an organic Electric field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes, organic Plasmon light emitting devices, etc. It can also be used as a functional layer of an electronic device.
  • the equipment used is as follows. (1) MALDI-TOF-MS: Bruker's autoflex III smart beam (2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd. (3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method) (4) Varnish application: Spin coater MS-A100 manufactured by Mikasa Co., Ltd. (5) Film thickness measurement and surface shape measurement: Fine shape measuring machine surf coder ET-4000A manufactured by Kosaka Laboratory Co., Ltd. (6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
  • Measurement of element current density Multi-channel IVL measuring device manufactured by EHC Co., Ltd.
  • Inkjet device Dedicated driver WAVE BUILDER (model number: PIJD-1) manufactured by Cluster Technology Co., Ltd., observation device with camera inkjetlado, automatic stage Inkjet Designer and inkjet head PIJ-25NSET
  • MMA Methyl methacrylate
  • HEMA 2-Hydroxyethyl methacrylate
  • HPMA 4-Hydroxyphenyl methacrylate
  • HPMA-QD Condensation reaction of 1 mol of 4-hydroxyphenyl methacrylate with 1.1 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride
  • Compound CHMI N-cyclohexylmaleimide
  • PFHMA 2- (perfluorohexyl) ethyl methacrylate
  • MAA AIBN methacrylate: ⁇ , ⁇ '-azobisisobutyronitrile
  • QD1 ⁇ , ⁇ , ⁇ '-tris (4) -Hydroxyphenyl
  • GT-401 Tetrabutanetetracarboxylate (Tetrabutantetracarboxylate) 3,4-Epoxycyclohexylmethyl) modified ⁇ -caprolactone (trade name: Epolide GT-401, manufactured by Daicel Co., Ltd.)
  • PGME Propylene Glycol Monomethyl Ether
  • PGMEA Propylene Glycol Monomethyl Ether Acetate
  • CHN Cyclohexanone
  • TMAH Tetramethylammonium Hydroxide
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the acrylic polymers P1 and P2 were measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Chromatograph GPC device LC-20AD manufactured by Shimadzu Corporation -Column: Shodex KF-804L and 803L (manufactured by Showa Denko KK) and TSK-GEL (manufactured by Tosoh Corporation) are connected in series.
  • the thin film was immersed in a 1.0 mass% TMAH aqueous solution for 120 seconds for development, and then the thin film was washed with running water for 20 seconds using ultrapure water. Next, the thin film on which this rectangular pattern was formed was post-baked (230 ° C., 30 minutes) and cured to prepare a substrate with a partition wall.
  • the reaction mixture was cooled to room temperature, and the cooled reaction mixture, toluene, and ion-exchanged water were mixed and subjected to liquid separation treatment.
  • the obtained organic layer was dried over sodium sulfate and concentrated.
  • the concentrated solution was filtered through silica gel, 0.2 g of activated carbon was added to the obtained filtrate, and the mixture was stirred at room temperature for 30 minutes. Then, the activated carbon was removed by filtration, and the filtrate was concentrated.
  • the concentrate was added dropwise to a mixed solvent of methanol and ethyl acetate (500 mL / 500 mL), the obtained slurry was stirred at room temperature overnight, and then the slurry was filtered to recover the filtrate.
  • Example 1-2 To 0.057 g of the aniline derivative A, 0.245 g of the aryl sulfonic acid ester and 0.025 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish B.
  • Example 1-3 To 0.184 g of the aniline derivative A, 0.327 g of the aryl sulfonic acid ester and 0.015 g of DDQ, 5.00 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish C.
  • Example 1-4 To 0.003 g of aniline derivative B, 0.325 g of aryl sulfonic acid ester and 0.018 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish D.
  • Example 1-5 To aniline derivative B 0.257 g, aryl sulfonic acid ester D 0.245 g and F4TCNQ 0.025 g, triethylene glycol butyl methyl ether 5.0 g, diisopropyl malonic acid 3.00 g and dimethyl phthalate 2.00 g were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish E.
  • Example 1-6 To aniline derivative B 0.184 g, aryl sulfonic acid ester C 0.327 g and DDQ 0.015 g, triethylene glycol butyl methyl ether 5.0 g, diisopropyl malonic acid 3.0 g and dimethyl phthalate 2.0 g were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish F.
  • Polymer H1 (TFB polymer, LT-N148 manufactured by Luminescence Technology Co., Ltd.) represented by the following formula (H1) is 0.180 g, aryl sulfonic acid ester C 0.120 g and F4TCNQ 0.002 g, and triethylene glycol butyl methyl ether 5.00 g. 3.00 g of diisopropyl malonate and 2.00 g of dimethyl phthalate were added and stirred at room temperature to dissolve. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 ⁇ m to prepare a charge-transporting varnish K.
  • the single-layer element A was formed by forming aluminum on the ITO substrate on which the thin film was formed at a vacuum level of 1.0 ⁇ 10 -5 Pa at 0.2 nm / sec to 80 nm. Made.
  • the elements were sealed with a sealing substrate and then their characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the elements are placed between the sealing substrates, and the sealing substrate is attached with an adhesive (Morresco Moisture Cut WB90US (P) manufactured by MORESCO Corporation).
  • a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the element.
  • the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, Irradiation amount: 6,000 mJ / cm 2 ) and then annealing treatment at 80 ° C. for 1 hour to cure the adhesive.
  • Example 2-2 A single-layer device B was produced in the same manner as in Example 2-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
  • Example 2-3 A single-layer device C was produced in the same manner as in Example 2-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
  • Example 2-4 A single-layer element D was produced in the same manner as in Example 2-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 2-5 A single-layer element E was produced in the same manner as in Example 2-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 2-6 A single-layer device F was produced in the same manner as in Example 2-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 2-1 A single-layer device G was produced in the same manner as in Example 2-1 except that the charge-transporting varnish G was used instead of the charge-transporting varnish A.
  • Example 2-2 A single-layer device H was produced in the same manner as in Example 2-1 except that the charge-transporting varnish H was used instead of the charge-transporting varnish A.
  • Example 2-3 A single-layer device I was produced in the same manner as in Example 2-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 2-4 A single-layer element J was produced in the same manner as in Example 2-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • the vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec.
  • the film thicknesses of the ⁇ -NPD and aluminum thin films were 30 nm and 80 nm, respectively.
  • the element was sealed in the same manner as in Example 2-1 and then its characteristics were evaluated.
  • Example 3-2 A hole-only element B was produced in the same manner as in Example 3-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
  • Example 3-3 A hole-only element C was produced in the same manner as in Example 3-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
  • Example 3-4 A hole-only element D was produced in the same manner as in Example 3-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 3-5 A hole-only element E was produced in the same manner as in Example 3-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 3-6 A hole-only element F was produced in the same manner as in Example 3-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 3-3 A hole-only element I was produced in the same manner as in Example 3-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 3-4 A hole-only element J was produced in the same manner as in Example 3-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • the thin film prepared from the charge transporting varnish of the present invention exhibits good hole injectability into ⁇ -NPD, which is often used as a hole transporting layer.
  • Example 4-1 The charge-transporting varnish A is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film of 50 nm on the ITO substrate. did. On it, ⁇ -NPD was deposited at 0.2 nm / sec at 30 nm using a thin film deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa). Next, CBP and Ir (PPy) 3 were co-deposited.
  • the vapor deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and 40 nm was laminated.
  • a thin film of tris (8-quinolinolate) aluminum (III) (Alq 3 ), lithium fluoride, and aluminum was sequentially laminated to obtain an organic EL element A.
  • the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the element was sealed in the same manner as in Example 2-1 and then its characteristics were evaluated.
  • Example 4-2 An organic EL element B was produced in the same manner as in Example 4-1 except that the charge transporting varnish B was used instead of the charge transporting varnish A.
  • Example 4-3 The organic EL element C was produced in the same manner as in Example 4-1 except that the charge transporting varnish C was used instead of the charge transporting varnish A.
  • Example 4-4 An organic EL element D was produced in the same manner as in Example 4-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 4-5 An organic EL element E was produced in the same manner as in Example 4-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 4-6 An organic EL element F was produced in the same manner as in Example 4-1 except that a charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 4-3 An organic EL element I was produced in the same manner as in Example 4-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • Example 4-4 An organic EL element J was produced in the same manner as in Example 4-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
  • the thin film prepared from the charge-transporting varnish of the present invention showed high organic EL characteristics.
  • Example 5-2 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
  • Example 5-3 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
  • Example 5-4 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A.
  • Example 5-5 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A.
  • Example 5-6 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A.
  • Example 5-1 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish G was used instead of the charge-transporting varnish A.
  • Example 5-2 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish H was used instead of the charge-transporting varnish A.
  • Example 5-3 A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A.
  • Example 5-4 A substrate K with a charge-transporting thin film was produced in the same manner as in Example 5-1 except that the charge-transporting varnish K was used instead of the charge-transporting varnish A, but an uneven structure was generated on the film surface. No flat film was obtained.
  • Example 5-5 A substrate L with a charge-transporting thin film was produced in the same manner as in Example 5-1 except that the charge-transporting varnish L was used instead of the charge-transporting varnish A, but an uneven structure was generated on the film surface. No flat film was obtained.
  • the pile-up index was calculated for the prepared charge-transporting thin film.
  • the pile-up index is (B) when the partition wall (bank) width is A ( ⁇ m) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B ( ⁇ m). It was calculated as / A) ⁇ 100 (%).
  • Tables 4-5 In addition, Examples 5-1 to 5-3 and 5-6 and Comparative Examples 5-1 and 5-2 have a short side, and Examples 5-4 and 5-5 and Comparative Example 5-3 have a long side.
  • the pile-up index was calculated as the partition wall width for each.
  • the charge-transporting thin film formed by using the charge-transporting varnish of the present invention had good flatness and showed a high pile-up index of 95% or more.
  • the charge-transporting thin film formed by using the charge-transporting varnish of the comparative example showed a lower pile-up index as compared with the example.
  • the polymer H1 was used (Comparative Examples 5-4 and 5-5), an uneven structure was generated on the film surface, and a flat film could not be obtained.

Abstract

Provided is a charge-transporting varnish that includes a monodisperse charge-transporting organic compound (A), a dopant (B), and an organic solvent (C). The dopant (B) includes: an aryl sulfonic acid ester compound (B1); and halogenated tetracyanoquinodimethane (B2) or halogenated or cyanated benzoquinone (B3).

Description

電荷輸送性ワニスCharge transport varnish
 本発明は、電荷輸送性ワニスに関する。 The present invention relates to a charge transporting varnish.
 有機エレクトロルミネッセンス(EL)素子に用いられる正孔注入層等の有機機能層の形成方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別される。これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。このような事情に鑑み、本出願人は、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば、特許文献1~3参照)。 The method for forming an organic functional layer such as a hole injection layer used in an organic electroluminescence (EL) device is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, at present, the area of organic EL displays is being increased, and a hole injection layer that can be formed by a wet process is desired. In view of these circumstances, the applicant has applied a charge transporting material that can be applied to various wet processes and provides a thin film capable of realizing excellent EL device characteristics when applied to a hole injection layer of an organic EL device. In addition, we have been developing compounds with good solubility in organic solvents used for them (see, for example, Patent Documents 1 to 3).
 有機ELディスプレイの製造において、ウェットプロセスで正孔注入層やその他の有機機能層を形成する場合、一般的に、層の形成領域を取り囲むように隔壁(バンク)を設け、その隔壁の開口部内に有機機能インクが塗布される。この際、開口部内に塗布されたインクが隔壁の側面を這い上がり、隔壁の側面と接触する塗膜周縁部の厚みが塗膜中央部よりも厚くなる、いわゆる這い上がり現象が発生することがある。このような這い上がり現象が起こると、電極間に形成された複数の有機機能層がその積層順に機能せず、リーク電流路が形成されるという事態を引き起こす。その結果、所望の素子特性が実現できないこととなる。また、這い上がった正孔注入層等の有機機能層は、得られる有機EL素子の発光ムラを引き起こすことがある。特許文献4や5には這い上がり現象を抑制する手段が提案されているが、ウェットプロセスを用いた有機ELディスプレイの開発がより一層加速する昨今の状況を受け、このような這い上がり現象の抑制に関する技術への要求は更に高まっている。 In the manufacture of organic EL displays, when a hole injection layer or other organic functional layer is formed by a wet process, a partition wall (bank) is generally provided so as to surround the layer formation region, and a partition wall (bank) is provided in the opening of the partition wall. Organic functional ink is applied. At this time, the ink applied in the opening may crawl up on the side surface of the partition wall, and the thickness of the peripheral portion of the coating film in contact with the side surface of the partition wall may be thicker than that of the central portion of the coating film, so-called crawling phenomenon may occur. .. When such a crawling phenomenon occurs, the plurality of organic functional layers formed between the electrodes do not function in the order of stacking, causing a situation in which a leak current path is formed. As a result, the desired device characteristics cannot be realized. Further, the organic functional layer such as the crawling hole injection layer may cause uneven light emission of the obtained organic EL element. Patent Documents 4 and 5 propose means for suppressing the crawling phenomenon, but in response to the recent situation in which the development of organic EL displays using a wet process is further accelerated, the suppression of such a crawling phenomenon is suppressed. The demand for technology related to is increasing.
国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/217457号International Publication No. 2017/217457 特開2009-104859号公報JP-A-2009-104859 特開2011-103222号公報Japanese Unexamined Patent Publication No. 2011-103222
 本発明は、前記事情に鑑みなされたものであり、這い上がり現象が発生しない電荷輸送性ワニスであって、該ワニスから得られる薄膜を正孔注入層等に適用した場合に優れた特性を有する有機EL素子を実現できる電荷輸送性ワニスを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a charge-transporting varnish that does not cause a creep-up phenomenon, and has excellent characteristics when a thin film obtained from the varnish is applied to a hole injection layer or the like. It is an object of the present invention to provide a charge transporting varnish capable of realizing an organic EL device.
 本発明者は、前記目的を達成するために鋭意検討を重ねた結果、(A)単分散の電荷輸送性有機化合物、(B)所定の2種類の化合物を含むドーパント及び(C)有機溶媒を含む電荷輸送性ワニスをウェットプロセスで隔壁内に塗布した場合に、ワニスの這い上がりが極めて抑制されることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventor has obtained (A) a monodisperse charge-transporting organic compound, (B) a dopant containing two predetermined compounds, and (C) an organic solvent. The present invention has been completed by finding that when the charge-transporting varnish containing the varnish is applied into the partition wall by a wet process, the creeping up of the varnish is extremely suppressed.
 すなわち、本発明は、下記電荷輸送性ワニスを提供する。
1.(A)単分散の電荷輸送性有機化合物、(B)ドーパント及び(C)有機溶媒を含む電荷輸送性ワニスであって、
 (B)ドーパントが、(B1)アリールスルホン酸エステル化合物と、(B2)ハロゲン化テトラシアノキノジメタン又は(B3)ハロゲン化若しくはシアノ化ベンゾキノンとを含む電荷輸送性ワニス。
2.前記単分散の電荷輸送性有機化合物が、アリールアミン誘導体である1の電荷輸送性ワニス。
3.前記アリールアミン誘導体が、3級アリールアミン化合物である2の輸送性ワニス。
4.前記3級アリールアミン化合物が、少なくとも1つの窒素原子を有し、かつ全ての窒素原子が3級アリールアミン構造を有するものである3の電荷輸送性ワニス。
5.前記3級アリールアミン化合物が、少なくとも2つの窒素原子を有し、かつ全ての窒素原子が3級アリールアミン構造を有するものである4の電荷輸送性ワニス。
6.前記アリールスルホン酸エステル化合物が、下記式(B1)又は(B1')で表されるものである1~5のいずれかの電荷輸送性ワニス。
Figure JPOXMLDOC01-appb-C000008
[式中、A1は、置換基を有していてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基又は下記式(B1a)若しくは(B1b)で表される化合物から誘導されるm価の基であり;
Figure JPOXMLDOC01-appb-C000009
(式中、W1及びW2は、それぞれ独立に、-O-、-S-、-S(O)-若しくは-S(O2)-、又は置換基を有していてもよい-N-、-Si-、-P-若しくは-P(O)-である。)
 A2は、-O-、-S-又は-NH-であり;
 A3は、又は炭素数6~20の(n+1)価の芳香族基であり;
 X1は、炭素数2~5のアルキレン基であり、該アルキレン基の炭素原子間に、-O-、-S-又はカルボニル基が介在していてもよく、該アルキレン基の水素原子の一部又は全部が、更に炭素数1~20のアルキル基で置換されていてもよく;
 X2は、単結合、-O-、-S-又は-NR-であり、Rは、水素原子又は炭素数1~10の1価炭化水素基であり;
 X3は、置換基を有していてもよい炭素数1~20の1価炭化水素基であり;
 mは、1≦m≦4を満たす整数であり;
 nは、1≦n≦4を満たす整数である。]
7.前記アリールスルホン酸エステル化合物が、下記式(B1-1)~(B1-3)のいずれかで表されるものである6の電荷輸送性ワニス。
Figure JPOXMLDOC01-appb-C000010
(式中、Rs1~Rs4は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基であり、Rs5は、置換基を有していてもよい炭素数2~20の1価炭化水素基であり;
 A11は、パーフルオロビフェニルから誘導されるm価の基であり、A12は、-O-又は-S-であり、A13は、ナフタレン又はアントラセンから誘導される(n+1)価の基であり;
 m及びnは、前記と同じである。)
Figure JPOXMLDOC01-appb-C000011
(式中、Rs6及びRs7は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基であり、Rs8は、直鎖状若しくは分岐状の1価脂肪族炭化水素基であるが、Rs6、Rs7及びRs8の炭素数の合計は6以上であり;
 A14は、置換基を有していてもよい、1つ以上の芳香環を含むm価の炭化水素基であり、A15は、-O-又は-S-であり、A16は、(n+1)価の芳香族基であり;
 m及びnは、前記と同じである。)
Figure JPOXMLDOC01-appb-C000012
(式中、Rs9~Rs13は、それぞれ独立に、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、又は炭素数2~10のハロゲン化アルケニル基であり;
 Rs14~Rs17は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基であり;
 Rs18は、直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基、又は-ORs19であり、Rs19は、置換基を有していてもよい炭素数2~20の1価炭化水素基であり;
 A17は、-O-、-S-又は-NH-であり;
 A18は、(n+1)価の芳香族基であり;
 nは、前記と同じである。)
8.(B2)ハロゲン化テトラシアノキノジメタンが、下記式(B2)で表されるものである1~7のいずれかの電荷輸送性ワニス。
Figure JPOXMLDOC01-appb-C000013
(式中、Rq1~Rq4は、それぞれ独立に、水素原子又はハロゲン原子であるが、少なくとも1つはハロゲン原子である。)
9.(B3)ハロゲン化又はシアノ化ベンゾキノンが、下記式(B3)で表されるものである1~8のいずれかの電荷輸送性ワニス。
Figure JPOXMLDOC01-appb-C000014
(式中、Rq5~Rq8は、それぞれ独立に、水素原子、ハロゲン原子又はシアノ基であるが、少なくとも1つはハロゲン原子又はシアノ基である。)
10.前記(B1)アリールスルホン酸エステル化合物の含有量が、前記(B2)ハロゲン化テトラシアノキノジメタン又は前記(B3)ハロゲン化若しくはシアノ化ベンゾキノンに対し、モル比で、0.01~50である1~9のいずれかの電荷輸送性ワニス。
11.前記単分散の電荷輸送性有機化合物の分子量が、200~9,000である1~10のいずれかの電荷輸送性ワニス。
12.前記有機溶媒が、低極性有機溶媒を含む1~11のいずれかの電荷輸送性ワニス。
13.1~12のいずれかの電荷輸送性ワニスから得られる電荷輸送性薄膜。
14.13の電荷輸送性薄膜を備える有機EL素子。
15.前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である14の有機EL素子。
That is, the present invention provides the following charge transporting varnish.
1. 1. A charge-transporting varnish containing (A) a monodisperse charge-transporting organic compound, (B) a dopant, and (C) an organic solvent.
A charge-transporting varnish in which the dopant (B) comprises (B1) an aryl sulfonic acid ester compound and (B2) a halogenated tetracyanoquinodimethane or (B3) a halogenated or cyanated benzoquinone.
2. 2. The charge-transporting varnish of 1 in which the monodisperse charge-transporting organic compound is an arylamine derivative.
3. 3. 2. Transport varnish of 2 in which the arylamine derivative is a tertiary arylamine compound.
4. 3. A charge-transporting varnish of 3, wherein the tertiary arylamine compound has at least one nitrogen atom and all nitrogen atoms have a tertiary arylamine structure.
5. 4. The charge-transporting varnish of 4, wherein the tertiary arylamine compound has at least two nitrogen atoms and all nitrogen atoms have a tertiary arylamine structure.
6. A charge-transporting varnish according to any one of 1 to 5, wherein the aryl sulfonic acid ester compound is represented by the following formula (B1) or (B1').
Figure JPOXMLDOC01-appb-C000008
[In the formula, A 1 may have a substituent and is represented by an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings or the following formula (B1a) or (B1b). Is an m-valent group derived from the compound to be
Figure JPOXMLDOC01-appb-C000009
(In the formula, W 1 and W 2 may independently have -O-, -S-, -S (O)-or -S (O 2 )-, or -N. -, -Si-, -P- or -P (O)-)
A 2 is -O-, -S- or -NH-;
A 3 is, or an (n + 1) -valent aromatic group with 6 to 20 carbon atoms;
X 1 is an alkylene group having 2 to 5 carbon atoms, and an —O—, —S— or carbonyl group may be interposed between the carbon atoms of the alkylene group, and one of the hydrogen atoms of the alkylene group. Part or all may be further substituted with an alkyl group having 1 to 20 carbon atoms;
X 2 is a single bond, -O-, -S- or -NR-, and R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms;
X 3 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent;
m is an integer that satisfies 1 ≦ m ≦ 4.
n is an integer that satisfies 1 ≦ n ≦ 4. ]
7. The charge transporting varnish of 6 in which the aryl sulfonic acid ester compound is represented by any of the following formulas (B1-1) to (B1-3).
Figure JPOXMLDOC01-appb-C000010
(In the formula, R s1 to R s4 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and R s5 may have a substituent. It is a monovalent hydrocarbon group having 2 to 20 carbon atoms;
A 11 is an m-valent group derived from perfluorobiphenyl, A 12 is an -O- or -S-, and A 13 is a (n + 1) -valent group derived from naphthalene or anthracene. Yes;
m and n are the same as described above. )
Figure JPOXMLDOC01-appb-C000011
(In the formula, R s6 and R s7 are each independently a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group, and R s8 is a linear or branched monovalent fat. Although it is a group hydrocarbon group, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more;
A 14 is an m-valent hydrocarbon group containing one or more aromatic rings, which may have a substituent, A 15 is —O— or —S—, and A 16 is ( It is an n + 1) valent aromatic group;
m and n are the same as described above. )
Figure JPOXMLDOC01-appb-C000012
(In the formula, R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or carbon number of carbon atoms. 2-10 halogenated alkenyl groups;
R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms;
R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or −OR s19 , and R s19 has 2 to 20 carbon atoms which may have a substituent. Is a monovalent hydrocarbon group of
A 17 is -O-, -S- or -NH-;
A 18 is an (n + 1) -valent aromatic group;
n is the same as described above. )
8. (B2) A charge-transporting varnish according to any one of 1 to 7, wherein the halogenated tetracyanoquinodimethane is represented by the following formula (B2).
Figure JPOXMLDOC01-appb-C000013
(In the formula, R q1 to R q4 are independently hydrogen atoms or halogen atoms, but at least one is a halogen atom.)
9. (B3) A charge-transporting varnish according to any one of 1 to 8, wherein the halogenated or cyanated benzoquinone is represented by the following formula (B3).
Figure JPOXMLDOC01-appb-C000014
(In the formula, R q5 to R q8 are independently hydrogen atoms, halogen atoms or cyano groups, but at least one is a halogen atom or cyano group.)
10. The content of the (B1) aryl sulfonic acid ester compound is 0.01 to 50 in molar ratio with respect to the (B2) halogenated tetracyanoquinodimethane or the (B3) halogenated or cyanated benzoquinone. A charge transporting varnish of any one of 1-9.
11. A charge-transporting varnish according to any one of 1 to 10, wherein the monodisperse charge-transporting organic compound has a molecular weight of 200 to 9,000.
12. The charge transporting varnish according to any one of 1 to 11, wherein the organic solvent contains a low-polarity organic solvent.
A charge-transporting thin film obtained from any of the charge-transporting varnishes of 13.1-12.
An organic EL device including a charge transporting thin film of 14.13.
15. 14 organic EL devices in which the charge transporting thin film is a hole injection layer or a hole transport layer.
 本発明の電荷輸送性ワニスを用いることで、ウェットプロセスで隔壁内に塗布した場合でも、ワニスの這い上がり(いわゆるパイルアップ)が極めて抑制された電荷輸送性薄膜を作製できる。また、本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜は、平坦性と電荷輸送性に優れる。したがって、本発明の電荷輸送性ワニスは、有機EL素子をはじめとする電子素子用薄膜、特に有機ELディスプレイ用薄膜の製造に好適に用いることができる。 By using the charge-transporting varnish of the present invention, it is possible to produce a charge-transporting thin film in which the varnish creeps up (so-called pile-up) is extremely suppressed even when it is applied into the partition wall by a wet process. Further, the charge-transporting thin film obtained from the charge-transporting varnish of the present invention is excellent in flatness and charge-transporting property. Therefore, the charge transporting varnish of the present invention can be suitably used for producing a thin film for an electronic device including an organic EL device, particularly a thin film for an organic EL display.
[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、(A)単分散の電荷輸送性有機化合物、(B)ドーパント及び(C)有機溶媒を含む電荷輸送性ワニスであって、(B)ドーパントが、(B1)アリールスルホン酸エステル化合物と、(B2)ハロゲン化テトラシアノキノジメタン又は(B3)ハロゲン化若しくはシアノ化ベンゾキノンとを含むものである。
[Charge transport varnish]
The charge transport varnish of the present invention is a charge transport varnish containing (A) a monodisperse charge transport organic compound, (B) a dopant and (C) an organic solvent, and (B) the dopant is (B1). It contains an aryl sulfonic acid ester compound and (B2) halogenated tetracyanoquinodimethane or (B3) halogenated or cyanated benzoquinone.
[(A)電荷輸送性有機化合物]
 本発明において、電荷輸送性有機化合物としては、例えば従来有機ELの分野等で用いられるものを用いることができる。その具体例としては、オリゴアニリン誘導体、N,N'-ジアリールベンジジン誘導体、N,N,N',N'-テトラアリールベンジジン誘導体等のアリールアミン誘導体(アニリン誘導体)、オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体、オリゴピロール等のピロール誘導体等の各種電荷輸送性有機化合物が挙げられる。これらのうち、アリールアミン誘導体、チオフェン誘導体が好ましい。
[(A) Charge-transporting organic compound]
In the present invention, as the charge transporting organic compound, for example, those conventionally used in the field of organic EL can be used. Specific examples thereof include arylamine derivatives (aniline derivatives) such as oligoaniline derivatives, N, N'-diarylbenzidine derivatives, N, N, N', N'-tetraarylbenzidine derivatives, oligothiophene derivatives, and thienothiophene derivatives. , Thionophen derivatives such as thienobenzothiophene derivatives, and various charge-transporting organic compounds such as pyrrole derivatives such as oligopyrrole. Of these, arylamine derivatives and thiophene derivatives are preferable.
 本発明において、前記電荷輸送性有機化合物は、単分散である(すなわち、分子量分布が1である)必要がある。分子量分布を有するオリゴマーやポリマーを使用すると、這い上がり現象を抑制する効果が不十分となる。前記電荷輸送性有機化合物の分子量は、平坦性の高い薄膜を与える均一なワニスを調製する観点から、通常200~9,000程度であるが、より電荷輸送性に優れる薄膜を得る観点から、300以上が好ましく、400以上がより好ましく、平坦性の高い薄膜をより再現性よく与える均一なワニスを調製する観点から、8,000以下が好ましく、7,000以下がより好ましく、6,000以下がより一層好ましく、5,000以下が更に好ましい。 In the present invention, the charge-transporting organic compound needs to be monodisperse (that is, the molecular weight distribution is 1). When an oligomer or polymer having a molecular weight distribution is used, the effect of suppressing the creep-up phenomenon becomes insufficient. The molecular weight of the charge-transporting organic compound is usually about 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness, but 300 from the viewpoint of obtaining a thin film having more excellent charge-transporting property. The above is preferable, 400 or more is more preferable, and from the viewpoint of preparing a uniform varnish that gives a thin film having high flatness with better reproducibility, 8,000 or less is preferable, 7,000 or less is more preferable, and 6,000 or less is preferable. Even more preferably, 5,000 or less is even more preferable.
 前記電荷輸送性有機化合物としては、例えば、特開2002-151272号公報、国際公開第2004/105446号、国際公開第2005/043962号、国際公開第2008/032617号、国際公開第2008/032616号、国際公開第2013/042623号、国際公開第2014/141998号、国際公開第2014/185208号、国際公開第2015/050253号、国際公開第2015/137391号、国際公開第2015/137395号、国際公開第2015/146912号、国際公開第2015/146965号、国際公開第2016/190326号、国際公開第2016/136544号、国際公開第2016/204079号等に開示されたものが挙げられる。 Examples of the charge-transporting organic compound include JP-A-2002-151272, International Publication No. 2004/105446, International Publication No. 2005/043962, International Publication No. 2008/032617, and International Publication No. 2008/032616. , International Publication No. 2013/0426223, International Publication No. 2014/141998, International Publication No. 2014/185208, International Publication No. 2015/050253, International Publication No. 2015/137391, International Publication No. 2015/137395, International Publication No. Examples thereof are those disclosed in Publication No. 2015/146912, International Publication No. 2015/146965, International Publication No. 2016/190326, International Publication No. 2016/136544, International Publication No. 2016/204079, and the like.
 また、前記電荷輸送性有機化合物としては、少なくとも1つの窒素原子を有し、かつ全ての窒素原子が3級アリールアミン構造を有する3級アリールアミン化合物も好ましい。すなわち、前記3級アリールアミン化合物は、少なくとも1つの窒素原子を有し、全ての窒素原子に3つの芳香族基が結合した構造を有するものである。前記3級アリールアミン化合物中、窒素原子は、2つ以上あることが好ましい。 Further, as the charge transporting organic compound, a tertiary arylamine compound having at least one nitrogen atom and all nitrogen atoms having a tertiary arylamine structure is also preferable. That is, the tertiary arylamine compound has at least one nitrogen atom and has a structure in which three aromatic groups are bonded to all the nitrogen atoms. The tertiary arylamine compound preferably has two or more nitrogen atoms.
 前記3級アリールアミン化合物の好適な例としては、例えば、下記式(A1)又は(A2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Preferable examples of the tertiary arylamine compound include a compound represented by the following formula (A1) or (A2).
Figure JPOXMLDOC01-appb-C000015
 式(A2)中、R1及びR2は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基若しくはシアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である。 In the formula (A2), R 1 and R 2 are independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, respectively, an alkyl group having 1 to 20 carbon atoms, and carbon. It is an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
 前記炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched, or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, and isobutyl. Group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc. with 1 to 20 carbon atoms. Chain or branched alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group , Bicyclooctyl group, bicyclononyl group, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
 前記炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、ビニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルビニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルビニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。 The alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a vinyl group, an n-1-propenyl group, an n-2-propenyl group and 1-methyl. Vinyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylvinyl group, 1-methyl Examples thereof include a -1-propenyl group, a 1-methyl-2-propenyl group, an n-1-pentenyl group, an n-1-decenyl group, an n-1-eicosenyl group and the like.
 前記炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。 The alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group and an n-1. -Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n- 4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, Examples thereof include an n-1-decynyl group, an n-1-pentadecynyl group, and an n-1-eicosynyl group.
 前記炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group and a 2-phenanthryl group. Examples thereof include a 3-phenanthryl group, a 4-phenanthryl group and a 9-phenanthryl group.
 前記炭素数2~20のヘテロアリール基としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 Examples of the heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group and 3-. Isooxazolyl group, 4-isoxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, 4- Examples thereof include an imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group.
 これらのうち、R1及びR2としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、又はハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、又はハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子又はフッ素原子がより一層好ましく、水素原子が最適である。 Of these, R 1 and R 2 include an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group and a halogen atom, and a carbon number which may be substituted with a halogen atom. An aryl group of 6 to 20 or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom is preferable, and a heteroaryl group having 1 carbon atom which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom is preferable. A phenyl group which may be substituted with an alkyl group of to 10 or a halogen atom is more preferable, a hydrogen atom or a fluorine atom is more preferable, and a hydrogen atom is the most suitable.
 式(A1)及び(A2)中、Ph1は、式(P1)で表される基である。
Figure JPOXMLDOC01-appb-C000016
In the formulas (A1) and (A2), Ph 1 is a group represented by the formula (P1).
Figure JPOXMLDOC01-appb-C000016
 式(P1)中、破線は、結合手である。R3~R6は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基若しくはシアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である。これらの具体例としては、R1及びR2の説明において述べたものと同様のものが挙げられる。 In the formula (P1), the broken line is a bond. R 3 to R 6 are each independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkenyl having 2 to 20 carbon atoms. A group, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms. Specific examples of these include the same as those described in the description of R 1 and R 2 .
 特に、R3~R6としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、又はハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、又はハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子又はフッ素原子がより一層好ましく、水素原子が最適である。 In particular, R 3 to R 6 include an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group and a halogen atom, and 6 to 6 carbon atoms which may be substituted with a halogen atom. A heteroaryl group having 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom is preferable, and a heteroaryl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom is preferable. The alkyl group or the phenyl group which may be substituted with the halogen atom is more preferable, the hydrogen atom or the fluorine atom is more preferable, and the hydrogen atom is the most suitable.
 Ph1として好適な基としては、1,4-フェニレン基が挙げられるが、これに限定されない。 Suitable groups for Ph 1 include, but are not limited to, 1,4-phenylene groups.
 式(A1)中、Ar1は、それぞれ独立に、下記式(Ar1-1)~(Ar1-11)のいずれかで表される基であるが、特に下記式(Ar1-1')~(Ar1-11')のいずれかで表される基が好ましい。
Figure JPOXMLDOC01-appb-C000017
In the formula (A1), Ar 1 is a group independently represented by any of the following formulas (Ar1-1) to (Ar1-11), and in particular, the following formulas (Ar1-1') to (Ar1-1') to ( A group represented by any one of Ar1-11') is preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(Ar1-1)~(Ar1-11)及び式(Ar1-1')~(Ar1-11')中、破線は、結合手である。R7~R27、R30~R51及びR53~R154は、それぞれ独立に、水素原子、ハロゲン原子、ニトロ基若しくはシアノ基、又はハロゲン原子で置換されていてもよい、ジフェニルアミノ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である。R28及びR29は、それぞれ独立に、Z1で置換されていてもよい、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基である。R52は、Z1で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である。 In the formulas (Ar1-1) to (Ar1-11) and the formulas (Ar1-1') to (Ar1-11'), the broken line is a bond. R 7 to R 27 , R 30 to R 51 and R 53 to R 154 may be independently substituted with a hydrogen atom, a halogen atom, a nitro group or a cyano group, or a halogen atom, a diphenylamino group, respectively. It is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms. R 28 and R 29 are aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms, which may be independently substituted with Z 1 . R 52 is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 1 .
 Z1は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ2で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基若しくは炭素数2~20のアルキニル基である。Z2は、ハロゲン原子、ニトロ基若しくはシアノ基、又はZ3で置換されていてもよい、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基である。Z3は、ハロゲン原子、ニトロ基又はシアノ基である。 Z 1 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or Z 2. Is. Z 2 is an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or Z 3 . Z 3 is a halogen atom, a nitro group or a cyano group.
 特に、R7~R27、R30~R51及びR53~R154としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよいジフェニルアミノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、又はハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、又はハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子又はフッ素原子がより一層好ましく、水素原子が最適である。 In particular, R 7 to R 27 , R 30 to R 51 and R 53 to R 154 are substituted with a diphenylamino group or a halogen atom which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom. An alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with a halogen atom, or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom may be used. Preferably, an alkyl group having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom, or a phenyl group which may be substituted with a halogen atom is more preferable, and a hydrogen atom or a fluorine atom is preferable. Is even more preferred, and a hydrogen atom is optimal.
 R28及びR29としては、ハロゲン原子で置換されていてもよい炭素数6~14のアリール基、又はハロゲン原子で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、ハロゲン原子で置換されていてもよいフェニル基、又はハロゲン原子で置換されていてもよいナフチル基がより好ましく、ハロゲン原子で置換されていてもよいフェニル基がより一層好ましく、フェニル基が更に好ましい。 As R 28 and R 29 , an aryl group having 6 to 14 carbon atoms which may be substituted with a halogen atom or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with a halogen atom is preferable, and a halogen atom. A phenyl group optionally substituted with, or a naphthyl group optionally substituted with a halogen atom is more preferred, a phenyl group optionally substituted with a halogen atom is even more preferred, and a phenyl group is even more preferred.
 R52としては、水素原子、Z1で置換されていてもよい炭素数6~20のアリール基が好ましく、水素原子、Z1で置換されていてもよいフェニル基、又はZ1で置換されてもよいナフチル基がより好ましく、Z1で置換されていてもよいフェニル基がより一層好ましく、フェニル基が更に好ましい。 As R 52, a hydrogen atom is preferably an aryl group of Z 1 is carbon atoms 6 also be ~ 20 substituted by a hydrogen atom, an optionally substituted phenyl group Z 1, or substituted with Z 1 A good naphthyl group is more preferred, a phenyl group which may be substituted with Z 1 is even more preferred, and a phenyl group is even more preferred.
 式(Ar1-10)、(Ar1-11)、(Ar1-10')及び(Ar1-11')中、Ar4は、それぞれ独立に、各々のアリール基が炭素数6~20のアリール基であるジアリールアミノ基で置換されていてもよい炭素数6~20のアリール基である。炭素数6~20のアリール基の具体例としては、前記R1及びR2で説明したものと同様のものが挙げられる。前記ジアリールアミノ基の具体例としては、ジフェニルアミノ基、1-ナフチルフェニルアミノ基、ジ(1-ナフチル)アミノ基、1-ナフチル-2-ナフチルアミノ基、ジ(2-ナフチル)アミノ基等が挙げられる。 In the formulas (Ar1-10), (Ar1-11), (Ar1-10') and (Ar1-11'), Ar 4 is independently composed of an aryl group having 6 to 20 carbon atoms. It is an aryl group having 6 to 20 carbon atoms which may be substituted with a certain diallylamino group. Specific examples of the aryl group having 6 to 20 carbon atoms include those similar to those described in R 1 and R 2 above. Specific examples of the diarylamino group include a diphenylamino group, a 1-naphthylphenylamino group, a di (1-naphthyl) amino group, a 1-naphthyl-2-naphthylamino group, a di (2-naphthyl) amino group and the like. Can be mentioned.
 Ar4としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、p-(ジフェニルアミノ)フェニル基、p-(1-ナフチルフェニルアミノ)フェニル基、p-(ジ(1-ナフチル)アミノ)フェニル基、p-(1-ナフチル-2-ナフチルアミノ)フェニル基、p-[ジ(2-ナフチル)アミノ]フェニル基等が好ましく、p-(ジフェニルアミノ)フェニル基がより好ましい。 Ar 4 includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthril group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4- Phenantryl group, 9-phenanthryl group, p- (diphenylamino) phenyl group, p- (1-naphthylphenylamino) phenyl group, p- (di (1-naphthyl) amino) phenyl group, p- (1-naphthyl-) 2-Phenylamino) phenyl group, p- [di (2-naphthyl) amino] phenyl group and the like are preferable, and p- (diphenylamino) phenyl group is more preferable.
 式(A1)中、Ar2は、それぞれ独立に、式(Ar2-1)~(Ar2-18)のいずれかで表される基であるが、特に式(Ar2-1'-1)~(Ar2-18'-2)のいずれかで表される基が好ましい。なお、下記式中、Ar4は前記と同じであり、DPAはジフェニルアミノ基であり、破線は結合手である。
Figure JPOXMLDOC01-appb-C000019
In the formula (A1), Ar 2 is a group independently represented by any of the formulas (Ar2-1) to (Ar2-18), and in particular, the formulas (Ar2-1'-1) to (Ar2-1'-1) to ( The group represented by any one of Ar2-18'-2) is preferable. In the following formula, Ar 4 is the same as described above, DPA is a diphenylamino group, and the broken line is a bond.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(Ar2-16)、(Ar2-16'-1)及び(Ar2-16'-2)中、R155は、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、又はZ1で置換されていてもよい炭素数2~14のヘテロアリール基である。前記アリール基及びヘテロアリール基としては、R1及びR2の説明において述べたものと同様のものが挙げられる。これらのうち、R155としては、水素原子、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基、Z1で置換されていてもよい2-ピリジル基、Z1で置換されていてもよいフェニル基により置換されていてもよい3-ピリジル基、又はZ1で置換されていてもよい4-ピリジル基が好ましく、Z1で置換されていてもよいフェニル基がより一層好ましく、フェニル基又は(2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)フェニル)基が更に好ましい。 In formulas (Ar2-16), (Ar2-16'-1) and (Ar2-16'-2), R 155 is a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1. , Or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1 . Examples of the aryl group and the heteroaryl group include those similar to those described in the description of R 1 and R 2 . Among these, R 155, a hydrogen atom, Z 1 optionally substituted by a phenyl group, Z 1 in optionally substituted 1-naphthyl group, which may have been or 2-naphthyl substituted with Z 1 group, may be substituted with Z 1 in optionally substituted 2-pyridyl group, optionally substituted 3-pyridyl group by a phenyl group which may be substituted with Z 1, or Z 1 4 A pyridyl group is preferred, a phenyl group which may be substituted with Z 1 is even more preferred, and a phenyl group or a (2,3,5,6-tetrafluoro-4- (trifluoromethyl) phenyl) group is even more preferred. ..
 式(Ar2-17)、(Ar2-17'-1)及び(Ar2-17'-2)中、R156及びR157は、Z1で置換されていてもよいフェニル基により置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよいフェニル基により置換されていてもよい炭素数2~14のヘテロアリール基である。前記アリール基及びヘテロアリール基としては、R1及びR2の説明において述べたものと同様のものが挙げられる。これらのうち、R156及びR157としては、Z1で置換されていてもよいフェニル基により置換されていてもよい炭素数6~14のアリール基が好ましく、Z1で置換されていてもよいフェニル基により置換されていてもよいフェニル基、Z1で置換されていてもよいフェニル基により置換されていてもよい1-ナフチル基、又はZ1で置換されていてもよい2-ナフチル基がより好ましい。 In formulas (Ar2-17), (Ar2-17'-1) and (Ar2-17'-2), R 156 and R 157 may be substituted with a phenyl group which may be substituted with Z 1. A good aryl group having 6 to 14 carbon atoms and a heteroaryl group having 2 to 14 carbon atoms which may be substituted with a phenyl group which may be substituted with Z 1 . Examples of the aryl group and the heteroaryl group include those similar to those described in the description of R 1 and R 2 . Of these, R 156 and R 157, an aryl group optionally having 6 to 14 carbon atoms is preferably substituted by a phenyl group which may be substituted with Z 1, which may be substituted with Z 1 A phenyl group optionally substituted with a phenyl group, a 1 -naphthyl group optionally substituted with a Z 1 or a 2-naphthyl group optionally substituted with a Z 1 or a 2-naphthyl group optionally substituted with Z 1 More preferred.
 式(A2)中、Ar3は、式(Ar3-1)~(Ar3-8)のいずれかで表される基であるが、特に式(Ar3-1')~(Ar3-8')のいずれかで表される基が好ましい。なお、下記式中、DPAは前記と同じであり、破線は結合手である。
Figure JPOXMLDOC01-appb-C000021
In the formula (A2), Ar 3 is a group represented by any of the formulas (Ar3-1) to (Ar3-8), and in particular, in the formulas (Ar3-1') to (Ar3-8'). The group represented by either is preferable. In the following formula, DPA is the same as described above, and the broken line is the bond.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(A1)中、pは、1~10の整数であるが、化合物の有機溶媒に対する溶解性を高める観点から、1~5が好ましく、1~3がより好ましく、1又は2がより一層好ましく、1が最適である。式(A2)中、qは、1又は2である。 In the formula (A1), p is an integer of 1 to 10, but from the viewpoint of increasing the solubility of the compound in an organic solvent, 1 to 5 is preferable, 1 to 3 is more preferable, and 1 or 2 is even more preferable. 1 is optimal. In formula (A2), q is 1 or 2.
 式(A1)で表されるアニリン誘導体及び式(A2)で表されるアニリン誘導体は、例えば、国際公開第2015/050253号に記載の方法に従って製造することができる。 The aniline derivative represented by the formula (A1) and the aniline derivative represented by the formula (A2) can be produced, for example, according to the method described in International Publication No. 2015/050253.
 前記3級アリールアミン化合物の他の好適な例としては、例えば、下記式(A3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Other suitable examples of the tertiary arylamine compound include, for example, a compound represented by the following formula (A3).
Figure JPOXMLDOC01-appb-C000023
 式(A3)中、rは、2~4の整数である。Ar11は、置換されていてもよい炭素数6~20のr価の芳香族基である。前記芳香族基は、炭素数6~20の芳香族化合物の芳香環上からr個の水素原子を取り除いて得られる基である。前記芳香族基としては、特に、下記式(A3-1)~(A3-8)のいずれかで表される化合物から誘導される基が好ましい。
Figure JPOXMLDOC01-appb-C000024
In formula (A3), r is an integer of 2-4. Ar 11 is an r-valent aromatic group having 6 to 20 carbon atoms which may be substituted. The aromatic group is a group obtained by removing r hydrogen atoms from the aromatic ring of an aromatic compound having 6 to 20 carbon atoms. As the aromatic group, a group derived from a compound represented by any of the following formulas (A3-1) to (A3-8) is particularly preferable.
Figure JPOXMLDOC01-appb-C000024
 式(A3-3)及び(A3-4)中、L1~L3は、それぞれ独立に、単結合、-(CR201202)s-、-C(O)-、-O-、-S-、-S(O)-、-S(O2)-又は-NR203-である。sは、1~6の整数である。式(A3-5)~(A3-8)中、L4~L13は、それぞれ独立に、単結合、-CR201202-、-C(O)-、-O-、-S-、-S(O)-、-S(O2)-又は-NR203-である。R201及びR202は、それぞれ独立に、水素原子、又は炭素数1~20の1価炭化水素基であり、R201及びR202は、互いに結合してこれらが結合する炭素原子と共に環を形成していてもよい。なお、-(CR201202)s-において、sが2以上のとき、各R201及びR202は、互いに同一でも異なっていてもよい。R203は、水素原子、又は炭素数1~20の1価炭化水素基である。 Wherein (A3-3) and (A3-4), L 1 ~ L 3 are each independently a single bond, - (CR 201 R 202) s -, - C (O) -, - O -, - S -, - S (O) -, - S (O 2) - or -NR 203 - a. s is an integer from 1 to 6. Wherein (A3-5) ~ (A3-8), L 4 ~ L 13 each independently represent a single bond, -CR 201 R 202 -, - C (O) -, - O -, - S-, -S (O) -, - S (O 2) - or -NR 203 - a. R 201 and R 202 are independently hydrogen atoms or monovalent hydrocarbon groups having 1 to 20 carbon atoms, and R 201 and R 202 are bonded to each other to form a ring together with the carbon atom to which they are bonded. You may be doing it. In − (CR 201 R 202 ) s −, when s is 2 or more, each R 201 and R 202 may be the same or different from each other. R 203 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
 また、前記芳香族基は、その水素原子の一部又は全部が、更に置換基で置換されていてもよい。前記置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシ基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホ基等が挙げられるが、ハロゲン原子、ニトロ基、シアノ基、又は炭素数1~20の1価炭化水素基が好ましい。 Further, the aromatic group may have a part or all of its hydrogen atom further substituted with a substituent. Examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a cyano group, a hydroxy group, an amino group, a silanol group, a thiol group, a carboxy group, a sulfonic acid ester group, a phosphoric acid group and a phosphoric acid. Examples thereof include an ester group, an ester group, a thioester group, an amide group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. A cyano group or a monovalent hydrocarbon group having 1 to 20 carbon atoms is preferable.
 Ar11としては、置換されていてもよい、1,4-フェニレン基、フルオレン-2,7-ジイル基、9,9-ジメチルフルオレン-2,7-ジイル基等が好ましく、置換されていてもよい、1,4-フェニレン基又はビフェニル-4,4'-ジイル基がより好ましい。 As Ar 11 , 1,4-phenylene group, fluorene-2,7-diyl group, 9,9-dimethylfluorene-2,7-diyl group and the like which may be substituted are preferable, and even if they are substituted. Good, 1,4-phenylene group or biphenyl-4,4'-diyl group is more preferable.
 式(A3)中、Ar12及びAr13は、それぞれ独立に、Z11で置換されていてもよい炭素数6~20の1価芳香族基であり、Ar12とAr13とが、互いに結合してこれらが結合する窒素原子と共に環を形成してもよい。また、各Ar12及びAr13は、互いに同一でも異なっていてもよい。Z11は、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはハロゲン原子で置換されていてもよい、炭素数1~20の1価脂肪族炭化水素基若しくは1価芳香族基、又は重合性基である。 In the formula (A3), Ar 12 and Ar 13 are monovalent aromatic groups having 6 to 20 carbon atoms which may be independently substituted with Z 11 , and Ar 12 and Ar 13 are bonded to each other. Then, they may form a ring together with the nitrogen atom to which they are bonded. Further, each of Ar 12 and Ar 13 may be the same as or different from each other. Z 11 is a monovalent aliphatic hydrocarbon group or monovalent aromatic group having 1 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, or a polymerizable group. ..
 前記1価芳香族基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、2-ビフェニリル基、3-ビフェニリル基、4-ビフェニリル基等のアリール基等が挙げられる。 Examples of the monovalent aromatic group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, and a 3-phenanthryl group. Examples thereof include an aryl group such as a group, a 4-phenylyl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group and a 4-biphenylyl group.
 前記1価脂肪族炭化水素は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる The monovalent aliphatic hydrocarbon may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group , N-Dodecyl group and other alkyl groups with 1 to 20 carbon atoms; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2-butenyl Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a group, a 3-butenyl group and a hexenyl group.
 前記重合性基としては、下記式で表されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000025
Examples of the polymerizable group include, but are not limited to, those represented by the following formulas.
Figure JPOXMLDOC01-appb-C000025
 式中、破線は、結合手である。Raは、水素原子又はメチル基である。Rb及びRdは、それぞれ独立に、水素原子、又は炭素数1~6のアルキル基であるが、メチル基、エチル基が好ましい。Rc、Re及びRfは、それぞれ独立に、単結合、又は酸素原子、硫黄原子若しくは窒素原子を含んでいてもよい炭素数1~8のアルキレン基である。Rg、Rh及びRiは、それぞれ独立に、水素原子、又はメチル基、エチル基、n-プロピル等の炭素数1~10のアルキル基である。 In the formula, the broken line is the bond. Ra is a hydrogen atom or a methyl group. R b and R d are independently hydrogen atoms or alkyl groups having 1 to 6 carbon atoms, but methyl groups and ethyl groups are preferable. R c , R e, and R f are alkylene groups having 1 to 8 carbon atoms, which may independently contain a single bond or an oxygen atom, a sulfur atom, or a nitrogen atom. R g , R h and R i are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group and n-propyl.
 Ya及びYbは、それぞれ独立に、単結合、又は炭素数6~20の2価芳香族基である。前記2価芳香族基としては、1,3-フェニレン基、1,4-フェニレン基、1,5-ナフチレン基、1,6-ナフチレン基、1,7-ナフチレン基、2,6-ナフチレン基、4,4'-ビフェニリレン基等が挙げられる。これらのうち、1,3-フェニレン基又は1,4-フェニレン基が好ましい。 Y a and Y b are independently single bonds or divalent aromatic groups having 6 to 20 carbon atoms. The divalent aromatic group includes a 1,3-phenylene group, a 1,4-phenylene group, a 1,5-naphthylene group, a 1,6-naphthylene group, a 1,7-naphthylene group, and a 2,6-naphthylene group. Examples thereof include a 4,4'-biphenylylene group. Of these, a 1,3-phenylene group or a 1,4-phenylene group is preferable.
 Araは、置換基を有していてもよい炭素数6~20の1価芳香族基である。前記1価芳香族基としては、前述したものと同様のものが挙げられる。 Ar a is a monovalent aromatic group having 6 to 20 carbon atoms which may have a substituent. Examples of the monovalent aromatic group include those similar to those described above.
 Z11としては、メチル基、エチル基、下記式で表される重合性基等が好ましい。
Figure JPOXMLDOC01-appb-C000026
(式中、破線は、結合手である。)
As Z 11 , a methyl group, an ethyl group, a polymerizable group represented by the following formula and the like are preferable.
Figure JPOXMLDOC01-appb-C000026
(In the formula, the broken line is the bond.)
 Ar12及びAr13としては、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-ビニルフェニル基、3-ビニルフェニル基、4-ビニルフェニル基、1-ナフチル基、2-ナフチル基等が好ましい。 Examples of Ar 12 and Ar 13 include phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group and 2-vinyl. A phenyl group, a 3-vinylphenyl group, a 4-vinylphenyl group, a 1-naphthyl group, a 2-naphthyl group and the like are preferable.
 式(A3)で表される化合物は、公知の方法で合成することができ、また、市販品を使用することもできる。 The compound represented by the formula (A3) can be synthesized by a known method, or a commercially available product can also be used.
 前記3級アリールアミン化合物の他の好適な例としては、例えば、下記式(A4)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000027
Other suitable examples of the tertiary arylamine compound include those represented by the following formula (A4), for example.
Figure JPOXMLDOC01-appb-C000027
 式(A4)中、Ar21~Ar23は、それぞれ独立に、炭素数6~20の2価芳香族基である。前記2価芳香族基としては、前述した式(A3-1)、(A3-3)又は(A3-4)で表される化合物から誘導される2価の基が好ましい。 In the formula (A4), Ar 21 to Ar 23 are independently divalent aromatic groups having 6 to 20 carbon atoms. As the divalent aromatic group, a divalent group derived from the compound represented by the above-mentioned formula (A3-1), (A3-3) or (A3-4) is preferable.
 これらのうち、Ar21~Ar23としては、1,4-フェニレン基、ビフェニル-4,4'-ジイル基、ターフェニル-4,4''-ジイル基等が好ましく、1,4-フェニレン基又はビフェニル-4,4'-ジイル基がより好ましい。 Of these, as Ar 21 to Ar 23 , a 1,4-phenylene group, a biphenyl-4,4'-diyl group, a terphenyl-4,4''-diyl group and the like are preferable, and a 1,4-phenylene group. Alternatively, a biphenyl-4,4'-diyl group is more preferable.
 式(A4)中、Ar24~Ar29は、それぞれ独立に、Z21で置換されていてもよい炭素数6~20の1価芳香族基である。前記1価芳香族基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、2-ビフェニリル基、3-ビフェニリル基、4-ビフェニリル基等のアリール基等が挙げられる。 In the formula (A4), Ar 24 to Ar 29 are monovalent aromatic groups having 6 to 20 carbon atoms which may be independently substituted with Z 21 . Examples of the monovalent aromatic group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, a 2-phenanthryl group, and a 3-phenanthryl group. Examples thereof include an aryl group such as a group, a 4-phenylyl group, a 9-phenanthryl group, a 2-biphenylyl group, a 3-biphenylyl group and a 4-biphenylyl group.
 Z21は、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはハロゲン原子、ニトロ基若しくはシアノ基で置換されていてもよい炭素数1~20の1価脂肪族炭化水素基、-N(Ar30)(Ar31)、又は重合性基である。前記炭素数1~20の1価脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。前記重合性基としては、前述したものと同様のものが挙げられる。 Z 21 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, a nitro group or a cyano group, −N (Ar 30 ) ( Ar 31 ), or a polymerizable group. The monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and n. -Butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Alkyl group having 1 to 20 carbon atoms such as decyl group, n-undecyl group, n-dodecyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1 Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group. Examples of the polymerizable group include those similar to those described above.
 Ar30及びAr31は、それぞれ独立に、Z22で置換されていてもよい炭素数6~20のアリール基であり、これらは互いに結合してこれらが結合する窒素原子と共に環を形成してもよい。Z22は、ハロゲン原子、ニトロ基若しくはシアノ基、若しくはハロゲン原子、ニトロ基若しくはシアノ基で置換されていてもよい炭素数1~20の1価脂肪族炭化水素基である。 Ar 30 and Ar 31 are each independently an aryl group having 6 to 20 carbon atoms which may be substituted with Z 22 , and they may be bonded to each other to form a ring with the nitrogen atom to which they are bonded. Good. Z 22 is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a halogen atom, a nitro group or a cyano group, or a halogen atom, a nitro group or a cyano group.
 前記炭素数6~20のアリール基及び炭素数1~20の1価脂肪族炭化水素基としては、前述したものと同様のものが挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms and the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms are the same as those described above.
 Ar30及びAr31としては、フェニル基、1-ナフチル基、2-ナフチル基、1-ビフェニリル基が好ましく、フェニル基、1-ビフェニリル基等がより好ましい。 As Ar 30 and Ar 31 , phenyl group, 1-naphthyl group, 2-naphthyl group, 1-biphenylyl group are preferable, and phenyl group, 1-biphenylyl group and the like are more preferable.
 特に、-N(Ar30)(Ar31)としては、ジフェニルアミノ基、フェニル(4-ビフェニリル)アミノ基、ビス(4-ビフェニリル)アミノ基、N-カルバゾリル基等が好ましい。 In particular, as -N (Ar 30 ) (Ar 31 ), a diphenylamino group, a phenyl (4-biphenylyl) amino group, a bis (4-biphenylyl) amino group, an N-carbazolyl group and the like are preferable.
 Z21としては、炭素数1~10のアルキル基、-N(Ar30)(Ar31)等が好ましい。 As Z 21 , an alkyl group having 1 to 10 carbon atoms, −N (Ar 30 ) (Ar 31 ) and the like are preferable.
 Ar24~Ar29としては、フェニル基、4-ビフェニリル基、4-ジフェニルアミノフェニル基、4-フェニル(4-ビフェニリル)アミノフェニル基、ビス(4-ビフェニリル)アミノフェニル基、4'-ジフェニルアミノ-4-ビフェニリル基、4-フェニル(4-ビフェニリル)アミノ-4-ビフェニリル基、4'-ビス(4-ビフェニリル)アミノ-4-ビフェニリル基、N-カルバゾリルフェニル基、4'-N-カルバゾリル-4-ビフェニリル基等が好ましい。 Examples of Ar 24 to Ar 29 include phenyl group, 4-biphenylyl group, 4-diphenylaminophenyl group, 4-phenyl (4-biphenylyl) aminophenyl group, bis (4-biphenylyl) aminophenyl group, and 4'-diphenylamino. -4-biphenylyl group, 4-phenyl (4-biphenylyl) amino-4-biphenylyl group, 4'-bis (4-biphenylyl) amino-4-biphenylyl group, N-carbazolylphenyl group, 4'-N- Carbazolyl-4-biphenylyl groups and the like are preferred.
 式(A4)で表される化合物は、公知の方法で合成することができ、また、市販品を使用することもできる。 The compound represented by the formula (A4) can be synthesized by a known method, or a commercially available product can also be used.
 前記3級アリールアミン化合物の他の好適な例としては、例えば、下記式(A5)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000028
Other suitable examples of the tertiary arylamine compound include those represented by the following formula (A5), for example.
Figure JPOXMLDOC01-appb-C000028
 式(A5)中、Ar41及びAr42は、それぞれ独立に、フェニル基、1-ナフチル基又は2-ナフチル基である。R301及びR302は、それぞれ独立に、水素原子、各アリール基が炭素数6~20のアリール基であるジアリールアミノフェニル基、塩素原子、臭素原子、ヨウ素原子である。前記アリール基としては、式(A2)中のR1及びR2の説明において述べたものと同様のものが挙げられる。L21は、プロパン-2,2-ジイル基又は1,1,1,3,3,3-ヘキサフルオロプロパン-2,2-ジイル基を含む2価の連結基である。xは、1~10の整数である。 In formula (A5), Ar 41 and Ar 42 are independently phenyl groups, 1-naphthyl groups or 2-naphthyl groups, respectively. R 301 and R 302 are independently hydrogen atoms, diarylaminophenyl groups in which each aryl group is an aryl group having 6 to 20 carbon atoms, a chlorine atom, a bromine atom, and an iodine atom. Examples of the aryl group include those similar to those described in the description of R 1 and R 2 in the formula (A2). L 21 is a divalent linking group containing a propane-2,2-diyl group or a 1,1,1,1,3,3,3-hexafluoropropane-2,2-diyl group. x is an integer from 1 to 10.
 式(A5)で表される化合物は、公知の方法で合成することができ、また、市販品を使用することもできる。 The compound represented by the formula (A5) can be synthesized by a known method, or a commercially available product can also be used.
 前記3級アリールアミン化合物は、少なくとも1つの窒素原子を有し、全ての窒素原子が3級アリールアミン構造を有するものであれば、前述したものに限定されない。本発明において使用可能な他の3級アリールアミン化合物としては、例えば、国際公開第2005/094133号に記載されたアリールアミン化合物、特許第5287455号公報に記載されたトリアリールアミン部分構造と重合性基とを有する重合性化合物、特許第5602191号公報に記載されたトリアリールアミン化合物、特許第6177771号公報の段落[0054]に記載された化合物等が挙げられる。 The tertiary arylamine compound is not limited to the above-mentioned compound as long as it has at least one nitrogen atom and all nitrogen atoms have a tertiary arylamine structure. Other tertiary arylamine compounds that can be used in the present invention include, for example, the arylamine compound described in International Publication No. 2005/094133, and the triarylamine partial structure and polymerizable property described in Japanese Patent No. 5287455. Examples thereof include a polymerizable compound having a group, a triarylamine compound described in Japanese Patent No. 5602191, a compound described in paragraph [0054] of Japanese Patent No. 6177771, and the like.
 前記3級アリールアミン化合物として好ましくは、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000029
Preferred examples of the tertiary arylamine compound include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
[(B)ドーパント]
 本発明の電荷輸送性ワニスは、(B)成分のドーパントとして、(B1)アリールスルホン酸エステル化合物及び(B2)ハロゲン化テトラシアノキノジメタン又は(B3)ハロゲン化若しくはシアノ化ベンゾキノンを含む。
[(B) Dopant]
The charge-transporting varnish of the present invention contains (B1) aryl sulfonic acid ester compound and (B2) halogenated tetracyanoquinodimethane or (B3) halogenated or cyanated benzoquinone as the dopant of the component (B).
[(B1)アリールスルホン酸エステル化合物]
 前記アリールスルホン酸エステル化合物は、芳香環上にスルホン酸エステル基が結合したものであれば特に限定されない。本発明の好ましい一態様において、前記アリールスルホン酸エステル化合物の分子量は、好ましくは100以上、より好ましくは200以上であり、好ましくは5,000以下、より好ましくは4,000以下、より一層好ましくは3,000以下、更に好ましくは2,000以下である。本発明の好ましい一態様において、前記アリールスルホン酸エステル化合物が有するスルホン酸エステル基の数は、好ましくは2以上、より好ましくは3以上であり、好ましくは6以下、より好ましくは5以下である。本発明の好ましい一態様において、前記アリールスルホン酸エステル化合物は、好ましくはフッ素で置換された芳香環を含む。
[(B1) Aryl sulfonic acid ester compound]
The aryl sulfonic acid ester compound is not particularly limited as long as it has a sulfonic acid ester group bonded to the aromatic ring. In a preferred embodiment of the present invention, the molecular weight of the aryl sulfonic acid ester compound is preferably 100 or more, more preferably 200 or more, preferably 5,000 or less, more preferably 4,000 or less, still more preferably. It is 3,000 or less, more preferably 2,000 or less. In a preferred embodiment of the present invention, the number of sulfonic acid ester groups contained in the aryl sulfonic acid ester compound is preferably 2 or more, more preferably 3 or more, preferably 6 or less, and more preferably 5 or less. In a preferred embodiment of the invention, the aryl sulfonic acid ester compound preferably comprises a fluorine-substituted aromatic ring.
 前記アリールスルホン酸エステル化合物としては、下記式(B1)又は(B1')で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000039
As the aryl sulfonic acid ester compound, those represented by the following formula (B1) or (B1') are preferable.
Figure JPOXMLDOC01-appb-C000039
 式(B1)及び(B1')中、A1は、置換基を有していてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基、又は下記式(B1a)若しくは(B1b)で表される化合物から誘導されるm価の基(すなわち、下記式(B1a)又は(B1b)で表される化合物の芳香環上のm個の水素原子を取り除いて得られる基)である。
Figure JPOXMLDOC01-appb-C000040
(式中、W1及びW2は、それぞれ独立に、-O-、-S-、-S(O)-若しくは-S(O2)-、又は置換基を有していてもよい-N-、-Si-、-P-若しくは-P(O)-である。)
In the formulas (B1) and (B1'), A 1 may have a substituent and is an m-valent hydrocarbon group having 6 to 20 carbon atoms including one or more aromatic rings, or the following formula ( Obtained by removing the m-valent group derived from the compound represented by B1a) or (B1b) (that is, m hydrogen atoms on the aromatic ring of the compound represented by the following formula (B1a) or (B1b). The group to be used).
Figure JPOXMLDOC01-appb-C000040
(In the formula, W 1 and W 2 may independently have -O-, -S-, -S (O)-or -S (O 2 )-, or -N. -, -Si-, -P- or -P (O)-)
 前記1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素からm個の水素原子を取り除いて得られる基である。前記1つ以上の芳香環を含む炭化水素としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらのうち、前記m価炭化水素基としては、ベンゼン、ビフェニル等から誘導される基が好ましい。 The m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings is obtained by removing m hydrogen atoms from the hydrocarbon having 6 to 20 carbon atoms containing one or more aromatic rings. It is a group. Examples of the hydrocarbon containing one or more aromatic rings include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as the m-valent hydrocarbon group, a group derived from benzene, biphenyl, or the like is preferable.
 前記炭化水素基は、その水素原子の一部又は全部が、更に置換基で置換されていてもよい。前記置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシ基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホ基等で置換されていてもよい。 A part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent. Examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a cyano group, a hydroxy group, an amino group, a silanol group, a thiol group, a carboxy group, a sulfonic acid ester group, a phosphoric acid group and a phosphoric acid. It may be substituted with an ester group, an ester group, a thioester group, an amide group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, a sulfo group and the like.
 ここで、前記1価炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~10のアルケニル基;フェニル基、キシリル基、トリル基、1-ナフチル基、2-ナフチル基等の炭素数6~20のアリール基;ベンジル基、フェニルエチル基等の炭素数7~20アラルキル基等が挙げられる。 Here, the monovalent hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl. Carbons such as groups, sec-butyl groups, tert-butyl groups, n-pentyl groups, cyclopentyl groups, n-hexyl groups, cyclohexyl groups, n-heptyl groups, n-octyl groups, n-nonyl groups and n-decyl groups. Alkyl groups of numbers 1-10; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, hexenyl An alkenyl group having 2 to 10 carbon atoms such as a group; an aryl group having 6 to 20 carbon atoms such as a phenyl group, a xsilyl group, a trill group, a 1-naphthyl group and a 2-naphthyl group; a carbon such as a benzyl group and a phenylethyl group. The number 7 to 20 aralkyl groups and the like can be mentioned.
 前記オルガノオキシ基としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基等が挙げられる。これらに含まれるアルキル基、アルケニル基及びアリール基としては、前述したものと同様のものが挙げられる。 Examples of the organooxy group include an alkoxy group, an alkenyloxy group, and an aryloxy group. Examples of the alkyl group, alkenyl group and aryl group contained therein include those similar to those described above.
 前記オルガノアミノ基としては、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ドデシルアミノ基等の炭素数1~12のアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジシクロヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基等の各アルキル基が炭素数1~12のアルキル基であるジアルキルアミノ基;モルホリノ基等が挙げられる。 Examples of the organoamino group include methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group and dodecyl. Alkylamino group having 1 to 12 carbon atoms such as amino group; dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, dicyclohexylamino group, diheptylamino group, dioctylamino group , Dialkylamino group in which each alkyl group such as dinonylamino group and didecylamino group is an alkyl group having 1 to 12 carbon atoms; morpholino group and the like can be mentioned.
 前記オルガノシリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基等の各アルキル基が炭素数1~10のアルキル基であるトリアルキルシリル基が挙げられる。 Examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, a hexyldimethylsilyl group, an octyldimethylsilyl group and a decyldimethyl group. Examples thereof include a trialkylsilyl group in which each alkyl group such as a silyl group is an alkyl group having 1 to 10 carbon atoms.
 前記オルガノチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ドデシルチオ基等の炭素数1~12のアルキルチオ基が挙げられる。 Examples of the organothio group include alkylthio groups having 1 to 12 carbon atoms such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group and dodecylthio group. Be done.
 前記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等の炭素数1~10のアシル基が挙げられる。 Examples of the acyl group include acyl groups having 1 to 10 carbon atoms such as formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group and benzoyl group.
 なお、前記1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基及びアシル基の炭素数は、1~8が好ましい。 The carbon number of the monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group and acyl group is preferably 1 to 8.
 これら各置換基の中でも、フッ素原子、スルホン酸基、アルキル基、オルガノオキシ基、オルガノシリル基がより好ましい。 Among each of these substituents, a fluorine atom, a sulfonic acid group, an alkyl group, an organooxy group, and an organosilyl group are more preferable.
 式(B1)中、A2は、-O-、-S-又は-NH-である。これらのうち、合成が容易であることから、-O-が好ましい。 In formula (B1), A 2 is -O-, -S- or -NH-. Of these, —O— is preferable because it is easy to synthesize.
 式(B1)中、A3は、炭素数6~20の(n+1)価の芳香族基である。前記芳香族基は、炭素数6~20の芳香族化合物から芳香環上の(n+1)個の水素原子を取り除いて得られる基である。なお、本発明において芳香族化合物は、芳香族炭化水素及び芳香族複素環式化合物を意味する。前記芳香族化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられるが、これらのうち、A3で表される芳香族基としては、ナフタレン又はアントラセンから誘導される基が好ましい。 In formula (B1), A 3 is a (n + 1) -valent aromatic group having 6 to 20 carbon atoms. The aromatic group is a group obtained by removing (n + 1) hydrogen atoms on an aromatic ring from an aromatic compound having 6 to 20 carbon atoms. In the present invention, the aromatic compound means an aromatic hydrocarbon and an aromatic heterocyclic compound. Examples of the aromatic compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among these, the aromatic group represented by A 3 is a group derived from naphthalene or anthracene. Is preferable.
 式(B1)及び(B1')中、X1は、炭素数2~5のアルキレン基である、また、前記アルキレン基は、その炭素原子(炭素-炭素結合)間に、-O-、-S-又はカルボニル基が介在していてもよく、その水素原子の一部又は全部が、更に炭素数1~20のアルキル基で置換されていてもよい。X1としては、エチレン基、トリメチレン基、メチレンオキシメチレン基、メチレンチオメチレン基等が好ましく、これらの基の水素原子の一部又は全部が、更に炭素数1~20のアルキル基で置換されていてもよい。前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、ビシクロヘキシル基等が挙げられる。 In formulas (B1) and (B1'), X 1 is an alkylene group having 2 to 5 carbon atoms, and the alkylene group is formed between the carbon atoms (carbon-carbon bond) of −O—, −. An S- or a carbonyl group may be interposed, and a part or all of the hydrogen atom may be further substituted with an alkyl group having 1 to 20 carbon atoms. As X 1 , an ethylene group, a trimethylene group, a methyleneoxymethylene group, a methylenethiomethylene group and the like are preferable, and a part or all of the hydrogen atoms of these groups are further substituted with an alkyl group having 1 to 20 carbon atoms. You may. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group and n-hexyl group. , Cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, bicyclohexyl group and the like.
 式(B1)及び(B1')中、X2は、単結合、-O-、-S-又は-NR-である。Rは、水素原子又は炭素数1~10の1価炭化水素基である。前記1価炭化水素基としては、メチル基、エチル基、n-プロピル基等のアルキル基が好ましい。X2としては、単結合、-O-又は-S-が好ましく、単結合又は-O-がより好ましい。 In formulas (B1) and (B1'), X 2 is a single bond, -O-, -S- or -NR-. R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. As the monovalent hydrocarbon group, an alkyl group such as a methyl group, an ethyl group or an n-propyl group is preferable. As X 2 , a single bond, —O— or —S— is preferable, and a single bond or —O— is more preferable.
 式(B1)及び(B1')中、X3は、置換されていてもよい炭素数1~20の1価炭化水素基である。前記1価炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、ビシクロヘキシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基;フェニル基、キシリル基、トリル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、2-ビフェニリル基、3-ビフェニリル基、4-ビフェニリル基等の炭素数6~20のアリール基;ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等の炭素数7~20のアラルキル基等が挙げられる。また、前記1価炭化水素基の水素原子の一部又は全部が、更に置換基で置換されていてもよい。前記置換基としては、A1の説明において述べたものと同様のものが挙げられる。X3としては、炭素数1~20のアルキル基、又は炭素数6~20のアリール基が好ましい。 Wherein (B1) and (B1 '), X 3 is a monovalent hydrocarbon group substituted by 1 carbon atoms which may be 1-20. The monovalent hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group and sec. -Butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Alkyl groups having 1 to 20 carbon atoms such as n-dodecyl group and bicyclohexyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, Alkenyl groups having 2 to 20 carbon atoms such as 2-butenyl group, 3-butenyl group, hexenyl group; phenyl group, xsilyl group, trill group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group Group, 9-anthril group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group and the like Examples thereof include an aryl group of 6 to 20; an aralkyl group having 7 to 20 carbon atoms such as a benzyl group, a phenylethyl group and a phenylcyclohexyl group. Further, a part or all of the hydrogen atoms of the monovalent hydrocarbon group may be further substituted with a substituent. Examples of the substituent include those similar to those described in the description of A 1 . As X 3 , an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms is preferable.
 式(B1)及び(B1')中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formulas (B1) and (B1'), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.
 式(B1)及び(B1')で表されるアリールスルホン酸エステル化合物は低極性溶媒を含む広範囲の溶媒に対して高溶解性を示すため、多種多様な溶媒を使用して溶液の物性を調製することが可能であり、塗布特性が高い。そのため、スルホン酸エステルの状態で塗布し、塗膜の乾燥時又は焼成時にスルホン酸を発生させることが好ましい。スルホン酸エステルからスルホン酸が発生する温度は、室温で安定、かつ焼成温度以下であることが好ましいため、40~260℃がよい。更に、ワニス内での高い安定性と焼成時の脱離の容易性を考慮すると、80~230℃が好ましく、120~180℃がより好ましい。 Since the aryl sulfonic acid ester compounds represented by the formulas (B1) and (B1') are highly soluble in a wide range of solvents including low protic solvents, the physical properties of the solution are prepared using a wide variety of solvents. It is possible to do so and the coating characteristics are high. Therefore, it is preferable to apply in the state of a sulfonic acid ester and generate sulfonic acid when the coating film is dried or fired. The temperature at which sulfonic acid is generated from the sulfonic acid ester is preferably 40 to 260 ° C. because it is stable at room temperature and preferably equal to or lower than the firing temperature. Further, considering the high stability in the varnish and the ease of desorption during firing, 80 to 230 ° C. is preferable, and 120 to 180 ° C. is more preferable.
 式(B1)で表されるアリールスルホン酸エステル化合物としては、下記式(B1-1)~(B1-3)のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000041
As the aryl sulfonic acid ester compound represented by the formula (B1), those represented by any of the following formulas (B1-1) to (B1-3) are preferable.
Figure JPOXMLDOC01-appb-C000041
 式(B1-1)中、A11は、パーフルオロビフェニルから誘導されるm価の基(すなわち、パーフルオロビフェニルからm個のフッ素原子を取り除いて得られる基)である。A12は、-O-又は-S-であるが、-O-が好ましい。A13は、ナフタレン又はアントラセンから誘導される(n+1)価の基(すなわち、ナフタレン又はアントラセンから(n+1)個の水素原子を取り除いて得られる基)であるが、ナフタレンから誘導される基が好ましい。 In formula (B1-1), A 11 is an m-valent group derived from perfluorobiphenyl (that is, a group obtained by removing m fluorine atoms from perfluorobiphenyl). A 12 is —O— or —S—, but —O— is preferred. A 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing (n + 1) hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable. ..
 式(B1-1)中、Rs1~Rs4は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基であり、Rs5は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In the formula (B1-1), R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 may be substituted. It is a good monovalent hydrocarbon group having 2 to 20 carbon atoms.
 前記直鎖状又は分岐状の炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基等が挙げられる。これらのうち、炭素数1~3のアルキル基が好ましい。 Examples of the linear or branched alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group. , N-Hexyl group and the like. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
 前記炭素数2~20の1価炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;フェニル基、ナフチル基、フェナントリル基等のアリール基等が挙げられる。 The monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. Examples include an alkyl group such as a group, a sec-butyl group and a tert-butyl group; and an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group.
 Rs1~Rs4のうち、Rs1又はRs3が炭素数1~3の直鎖アルキル基であり、残りが水素原子であることが好ましい。更に、Rs1が炭素数1~3の直鎖アルキル基であり、Rs2~Rs4が水素原子であることが好ましい。前記炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。また、Rs5としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。 Of R s1 to R s4 , it is preferable that R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms and the rest are hydrogen atoms. Further, it is preferable that R s1 is a linear alkyl group having 1 to 3 carbon atoms and R s2 to R s4 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
 式(B1-1)中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (B1-1), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.
 式(B1-2)中、A14は、置換されていてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基である。前記炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素からm個の水素原子を取り除いて得られる基である。前記炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等が挙げられる。 In formula (B1-2), A 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms and containing one or more aromatic rings which may be substituted. The hydrocarbon group is a group obtained by removing m hydrogen atoms from a hydrocarbon having one or more aromatic rings and having 6 to 20 carbon atoms. Examples of the hydrocarbon include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
 また、前記炭化水素基は、その水素原子の一部又は全部が、更に置換基で置換されていてもよく、このような置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシ基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホ基等が挙げられる。これらのうち、A14としては、ベンゼン、ビフェニル等から誘導される基が好ましい。 In addition, a part or all of the hydrogen atom of the hydrocarbon group may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro. Group, cyano group, hydroxy group, amino group, silanol group, thiol group, carboxy group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, monovalent hydrocarbon group, organo Examples thereof include an oxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. Of these, as A 14 , a group derived from benzene, biphenyl, or the like is preferable.
 式(B1-2)中、A15は、-O-又は-S-であるが、-O-が好ましい。 In formula (B1-2), A 15 is —O— or —S—, but —O— is preferred.
 式(B1-2)中、A16は、炭素数6~20の(n+1)価の芳香族炭化水素基である。前記芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらのうち、A16としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In the formula (B1-2), A 16 is a (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms. The aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 式(B1-2)中、Rs6及びRs7は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基である。Rs8は、直鎖状又は分岐状の1価脂肪族炭化水素基である。ただし、Rs6、Rs7及びRs8の炭素数の合計は6以上である。Rs6、Rs7及びRs8の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。 In formula (B1-2), R s6 and R s7 are each independently a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group. R s8 is a linear or branched monovalent aliphatic hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
 前記直鎖状又は分岐状の1価脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、デシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。 Specific examples of the linear or branched monovalent aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-. Alkyl group having 1 to 20 carbon atoms such as butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, decyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a methyl-2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group and a hexenyl group.
 Rs6としては水素原子が好ましく、Rs7及びRs8としては炭素数1~6のアルキル基が好ましい。この場合、Rs7及びRs8は、同一であっても異なっていてもよい。 A hydrogen atom is preferable as R s6 , and an alkyl group having 1 to 6 carbon atoms is preferable as R s7 and R s8 . In this case, R s7 and R s8 may be the same or different.
 式(B1-2)中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (B1-2), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.
 式(B1-3)中、Rs9~Rs13は、それぞれ独立に、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、又は炭素数2~10のハロゲン化アルケニル基である。 In the formula (B1-3), R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, and alkyl halide group having 1 to 10 carbon atoms, respectively. , Or a halogenated alkenyl group having 2 to 10 carbon atoms.
 前記炭素数1~10のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and isobutyl. Group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like. Be done.
 前記炭素数1~10のハロゲン化アルキル基は、前記炭素数1~10のアルキル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されない。前記ハロゲン化アルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with halogen atoms. The alkyl halide group may be linear, branched or cyclic, and specific examples thereof include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, 1,1,2,2, 2-Pentafluoroethyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl Group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1 , 2,2,3,3,4,4,4-nonafluorobutyl group and the like.
 前記炭素数2~10のハロゲン化アルケニル基としては、炭素数2~10のアルケニル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されない。その具体例としては、パーフルオロビニル基、パーフルオロ-1-プロペニル基、パーフルオロ-2-プロペニル基、パーフルオロ-1-ブテニル基、パーフルオロ-2-ブテニル基、パーフルオロ-3-ブテニル基等が挙げられる。 The halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms. Specific examples thereof include a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro-3-butenyl group. And so on.
 これらのうち、Rs9としては、ニトロ基、シアノ基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のハロゲン化アルケニル基等が好ましく、ニトロ基、シアノ基、炭素数1~4のハロゲン化アルキル基、炭素数2~4のハロゲン化アルケニル基等がより好ましく、ニトロ基、シアノ基、トリフルオロメチル基、パーフルオロプロペニル基等がより一層好ましい。また、Rs10~Rs13としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Of these, as R s9 , a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, an alkenyl halide group having 2 to 10 carbon atoms and the like are preferable, and a nitro group, a cyano group and 1 to 10 carbon atoms are preferable. The alkyl halide group of 4 and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group, the perfluoropropenyl group and the like are even more preferable. Further, as R s10 to R s13 , a halogen atom is preferable, and a fluorine atom is more preferable.
 式(B1-3)中、A17は、-O-、-S-又は-NH-であるが、-O-が好ましい。 In formula (B1-3), A 17 is -O-, -S- or -NH-, but -O- is preferable.
 式(B1-3)中、A18は、炭素数6~20の(n+1)価の芳香族炭化水素基である。前記芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらのうち、A18としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In the formula (B1-3), A 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms. The aromatic hydrocarbon group is a group obtained by removing (n + 1) hydrogen atoms from the aromatic ring of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Of these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 式(B1-3)中、Rs14~Rs17は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基である。前記1価脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。これらのうち、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 In the formula (B1-3), R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms. The monovalent aliphatic hydrocarbon group may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. , Se-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl Alkyl group having 1 to 20 carbon atoms such as group, n-dodecyl group; vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2- Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a butenyl group, a 3-butenyl group and a hexenyl group. Of these, an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
 式(B1-3)中、Rs18は、直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基、又は-ORs19である。Rs19は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In formula (B1-3), R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or −OR s19 . R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
 Rs18で表される直鎖状又は分岐状の炭素数1~20の1価脂肪族炭化水素基としては、Rs14~Rs17の説明において述べたものと同様のものが挙げられる。Rs18が1価脂肪族炭化水素基である場合、Rs18としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 . When R s18 is a monovalent aliphatic hydrocarbon group, R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Is even more preferable.
 Rs19で表される炭素数2~20の1価炭化水素基としては、前述した1価脂肪族炭化水素基のうちメチル基以外のもののほか、フェニル基、ナフチル基、フェナントリル基等のアリール基等が挙げられる。これらのうち、Rs19としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。なお、前記1価炭化水素基が有していてもよい置換基としては、フッ素原子、炭素数1~4のアルコキシ基、ニトロ基、シアノ基等が挙げられる。 The monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 includes an aryl group such as a phenyl group, a naphthyl group and a phenanthryl group in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group. And so on. Of these, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
 式(B1-3)中、nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formula (B1-3), n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.
 式(B1-3)で表されるアリールスルホン酸エステル化合物としては、特に、下記式(B1-3-1)又は(B1-3-2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000042
As the aryl sulfonic acid ester compound represented by the formula (B1-3), those represented by the following formula (B1-3-1) or (B1-3-2) are particularly preferable.
Figure JPOXMLDOC01-appb-C000042
 式(B1-3-1)及び(B1-3-2)中、A17、A18、Rs9~Rs17、Rs19及びnは、前記と同じ。Rs20は、直鎖状又は分岐状の炭素数1~20の1価脂肪族炭化水素基であり、その具体例としては、Rs18の説明において述べたものと同様のものが挙げられる。 In formulas (B1-3-1) and (B1--3-2), A 17 , A 18 , R s9 to R s17 , R s19 and n are the same as described above. R s20 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and specific examples thereof include those described in the description of R s18 .
 式(B1-3-1)で表されるアリールスルホン酸エステル化合物においては、Rs14~Rs17のうち、Rs14又はRs16が炭素数1~3の直鎖アルキル基であり、残りが水素原子であることが好ましい。更に、Rs14が、炭素数1~3の直鎖アルキル基であり、Rs15~Rs17が水素原子であることが好ましい。前記炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。また、Rs19としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。 In the aryl sulfonic acid ester compound represented by the formula (B1-3-1), among R s14 to R s17 , R s14 or R s16 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is hydrogen. It is preferably an atom. Further, it is preferable that R s14 is a linear alkyl group having 1 to 3 carbon atoms and R s15 to R s17 are hydrogen atoms. As the linear alkyl group having 1 to 3 carbon atoms, a methyl group is preferable. Further, as R s19 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
 式(B1-3-2)で表されるアリールスルホン酸エステル化合物においては、Rs14、Rs16及びRs20の炭素数の合計は6以上であることが好ましい。Rs14、Rs16及びRs20の炭素数の合計の上限は、20以下が好ましく、10以下がより好ましい。この場合、Rs14としては、水素原子が好ましく、Rs16及びRs20としては、炭素数1~6のアルキル基が好ましい。また、Rs16及びRs20は、互いに同一であっても異なっていてもよい。 In the aryl sulfonic acid ester compound represented by the formula (B1-3-2), the total number of carbon atoms of R s14 , R s16 and R s20 is preferably 6 or more. The upper limit of the total number of carbon atoms of R s14 , R s16 and R s20 is preferably 20 or less, and more preferably 10 or less. In this case, R s14 is preferably a hydrogen atom, and R s16 and R s20 are preferably an alkyl group having 1 to 6 carbon atoms. Further, R s16 and R s20 may be the same as or different from each other.
 式(B1)で表されるアリールスルホン酸エステル化合物は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 The aryl sulfonic acid ester compound represented by the formula (B1) may be used alone or in combination of two or more.
 好適なアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000043
Specific examples of suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 式(B1)で表されるアリールスルホン酸エステル化合物は、例えば、下記スキームAに示すように、式(B1A)で表されるスルホン酸塩化合物とハロゲン化剤とを反応させて、下記式(B1B)で表されるスルホニルハライド化合物を合成し(以下、工程1ともいう。)、該スルホニルハライド化合物と式(B1C)で表される化合物とを反応させる(以下、工程2ともいう。)ことで合成することができる。
Figure JPOXMLDOC01-appb-C000045
(式中、A1~A3、X1~X3、m及びnは、前記と同じ。M+は、ナトリウムイオン、カリウムイオン、ピリジニウムイオン、4級アンモニウムイオン等の1価のカチオンである。Halは、塩素原子、臭素原子等のハロゲン原子である。)
The aryl sulfonic acid ester compound represented by the formula (B1) is obtained by reacting the sulfonate compound represented by the formula (B1A) with a halogenating agent, for example, as shown in the following scheme A, to form the following formula (B1). The sulfonyl halide compound represented by B1B) is synthesized (hereinafter, also referred to as step 1), and the sulfonyl halide compound is reacted with the compound represented by the formula (B1C) (hereinafter, also referred to as step 2). Can be synthesized with.
Figure JPOXMLDOC01-appb-C000045
(In the formula, A 1 to A 3 , X 1 to X 3 , m and n are the same as described above. M + is a monovalent cation such as sodium ion, potassium ion, pyridinium ion, quaternary ammonium ion and the like. .Hal is a halogen atom such as a chlorine atom and a bromine atom.)
 式(B1A)で表されるスルホン酸塩化合物は、公知の方法に従って合成することができる。 The sulfonate compound represented by the formula (B1A) can be synthesized according to a known method.
 工程1において使用するハロゲン化剤としては、塩化チオニル、塩化オキサリル、オキシ塩化リン、塩化リン(V)等のハロゲン化剤が挙げられるが、塩化チオニルが好適である。ハロゲン化剤の使用量は、スルホン酸塩化合物に対して1倍モル以上であれば限定されないが、スルホン酸塩化合物に対して質量比で2~10倍量用いることが好ましい。 Examples of the halogenating agent used in step 1 include halogenating agents such as thionyl chloride, oxalyl chloride, phosphorus oxychloride, and phosphorus (V) chloride, but thionyl chloride is preferable. The amount of the halogenating agent used is not limited as long as it is 1 times or more the molar amount of the sulfonate compound, but it is preferably used in an amount of 2 to 10 times the mass ratio of the sulfonate compound.
 工程1において使用される反応溶媒としては、ハロゲン化剤と反応しない溶媒が好ましく、クロロホルム、ジクロロエタン、四塩化炭素、ヘキサン、ヘプタン等を挙げることができる。また、無溶媒でも反応を行うことができ、この場合、反応終了時には均一系溶液となる量以上でハロゲン化剤を用いることが好ましい。また、反応を促進させるため、N,N-ジメチルホルムアミド等の触媒を使用してもよい。反応温度は0~150℃程度とすることができるが、20~100℃、かつ、使用するハロゲン化剤の沸点以下が好ましい。反応終了後、一般的には、減圧濃縮等により得た粗生成物を次工程に用いる。 The reaction solvent used in step 1 is preferably a solvent that does not react with the halogenating agent, and examples thereof include chloroform, dichloroethane, carbon tetrachloride, hexane, and heptane. Further, the reaction can be carried out without a solvent, and in this case, it is preferable to use a halogenating agent in an amount equal to or more than a uniform solution at the end of the reaction. Further, in order to promote the reaction, a catalyst such as N, N-dimethylformamide may be used. The reaction temperature can be about 0 to 150 ° C., but is preferably 20 to 100 ° C. and below the boiling point of the halogenating agent used. After completion of the reaction, the crude product obtained by concentration under reduced pressure or the like is generally used in the next step.
 式(B1C)で表される化合物としては、例えば、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル等のグリコールエーテル類;2-エチル-1-ヘキサノール、2-ブチル-1-オクタノール、1-オクタノール、3-ノナノール等のアルコール類等が挙げられる。 Examples of the compound represented by the formula (B1C) include glycols such as propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monophenyl ether, ethylene glycol monobutyl ether, and ethylene glycol monohexyl ether. Ethers; alcohols such as 2-ethyl-1-hexanol, 2-butyl-1-octanol, 1-octanol, 3-nonanol and the like can be mentioned.
 工程2においては、塩基を併用してもよい。使用可能な塩基としては、水素化ナトリウム、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン等が挙げられるが、水素化ナトリウム、ピリジン、トリエチルアミンが好適である。塩基の使用量は、スルホニルハライド化合物に対して1倍モル~溶媒量が好適である。 In step 2, a base may be used in combination. Examples of the base that can be used include sodium hydride, pyridine, triethylamine, diisopropylethylamine and the like, but sodium hydride, pyridine and triethylamine are preferable. The amount of the base used is preferably 1 times the molar amount to the amount of the solvent with respect to the sulfonyl halide compound.
 工程2において使用される反応溶媒としては、各種有機溶媒を用いることができるが、テトラヒドロフラン、ジクロロエタン、クロロホルム、ピリジンが好適である。反応温度は特に限定されないが、0~80℃が好適である。反応終了後、減圧濃縮、分液抽出、水洗、再沈殿、再結晶、クロマトグラフィー等の常法を用いて後処理、精製し、純粋なアリールスルホン酸エステル化合物を得ることができる。なお、得られた純粋なアリールスルホン酸エステル化合物に熱処理等を施すことで、高純度のスルホン酸化合物に導くこともできる。 As the reaction solvent used in step 2, various organic solvents can be used, but tetrahydrofuran, dichloroethane, chloroform and pyridine are preferable. The reaction temperature is not particularly limited, but 0 to 80 ° C. is preferable. After completion of the reaction, a pure aryl sulfonic acid ester compound can be obtained by post-treatment and purification using conventional methods such as concentration under reduced pressure, liquid separation extraction, washing with water, reprecipitation, recrystallization, and chromatography. It is also possible to obtain a high-purity sulfonic acid compound by subjecting the obtained pure aryl sulfonic acid ester compound to heat treatment or the like.
 また、式(B1)で表されるアリールスルホン酸エステル化合物は、下記スキームBに示すように、式(B1D)で表されるスルホン酸化合物から合成することもできる。なお、下記スキームBにおいて、1段目及び2段目の反応で使用するハロゲン化剤、式(B1C)で表される化合物、反応溶媒及びその他の成分は、スキームAにおける工程1及び2と同様のものを使用することができる。
Figure JPOXMLDOC01-appb-C000046
(式中、A1~A3、X1~X3、Hal、m及びnは、前記と同じ。)
Further, the aryl sulfonic acid ester compound represented by the formula (B1) can also be synthesized from the sulfonic acid compound represented by the formula (B1D) as shown in the following scheme B. In the scheme B below, the halogenating agent used in the first and second stage reactions, the compound represented by the formula (B1C), the reaction solvent and other components are the same as in steps 1 and 2 in the scheme A. Can be used.
Figure JPOXMLDOC01-appb-C000046
(In the formula, A 1 to A 3 , X 1 to X 3 , Hal, m and n are the same as above.)
 式(B1D)で表されるスルホン酸化合物は、公知の方法に従って合成することができる。 The sulfonic acid compound represented by the formula (B1D) can be synthesized according to a known method.
 式(B1')で表されるアリールスルホン酸エステル化合物は、従来公知の方法、例えば、特許第5136795号公報に記載された方法に従って合成することができる。 The aryl sulfonic acid ester compound represented by the formula (B1') can be synthesized according to a conventionally known method, for example, the method described in Japanese Patent No. 5136795.
[(B2)ハロゲン化テトラシアノキノジメタン]
 前記ハロゲン化テトラシアノキノジメタンとしては、下記式(B2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000047
[(B2) Halogenated Tetracyanoquinodimethane]
As the halogenated tetracyanoquinodimethane, those represented by the following formula (B2) are preferable.
Figure JPOXMLDOC01-appb-C000047
 式(B2-1)中、Rq1~Rq4は、それぞれ独立に、水素原子又はハロゲン原子であるが、少なくとも1つはハロゲン原子である。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。また、Rq1~Rq4の少なくとも2つがハロゲン原子であることが好ましく、少なくとも3つがハロゲン原子であることがより好ましく、全てがハロゲン原子であることが最も好ましい。 In the formula ( B2-1 ), R q1 to R q4 are independently hydrogen atoms or halogen atoms, but at least one is a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable. Further , at least two of R q1 to R q4 are preferably halogen atoms, at least three are more preferably halogen atoms, and most preferably all are halogen atoms.
 前記テトラシアノキノジメタン誘導体としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)や2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)、テトラクロロ-7,7,8,8-テトラシアノキノジメタン、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2-クロロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジクロロ-7,7,8,8-テトラシアノキノジメタン等が挙げられる。これらのうち、F4TCNQが好ましい。 Examples of the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro. -7,7,8,8-Tetracyanoquinodimethane, Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4TCNQ), Tetrachloro-7,7,8,8-Tetracyanoquinodimethane Methane, 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2-chloro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8, Examples thereof include 8-tetracyanoquinodimethane, 2,5-dichloro-7,7,8,8-tetracyanoquinodimethane. Of these, F4TCNQ is preferable.
[(B3)ハロゲン化又はシアノ化ベンゾキノン]
 前記ハロゲン化又はシアノ化ベンゾキノンとしては、式(B3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000048
[(B3) Halogenated or cyanated benzoquinone]
As the halogenated or cyanated benzoquinone, those represented by the formula (B3) are preferable.
Figure JPOXMLDOC01-appb-C000048
 式(B2-2)中、Rq5~Rq8は、それぞれ独立に、水素原子、ハロゲン原子又はシアノ基であるが、少なくとも1つはハロゲン原子又はシアノ基である。前記ハロゲン原子としては前述したものと同じものが挙げられ、フッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。また、Rq5~Rq8の少なくとも2つがハロゲン原子又はシアノ基であることが好ましく、少なくとも3つがハロゲン原子又はシアノ基であることがより好ましく、全てがハロゲン原子又はシアノ基であることがより一層好ましい。 In the formula (B2-2), R q5 to R q8 are independently hydrogen atoms, halogen atoms or cyano groups, but at least one is a halogen atom or cyano group. Examples of the halogen atom include the same as those described above, and a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable. Further, it is preferable that at least two of R q5 to R q8 are halogen atoms or cyano groups, more preferably at least three are halogen atoms or cyano groups, and even more preferably all of them are halogen atoms or cyano groups. preferable.
 ハロゲン化又はシアノ化ベンゾキノンとして具体的には、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)、テトラクロロ-1,4-ベンゾキノン(クロラニル)、トリフルオロ-1,4-ベンゾキノン、テトラフルオロ-1,4-ベンゾキノン、テトラブロモ-1,4-ベンゾキノン、テトラシアノ-1,4-ベンゾキノン等が挙げられる。これらのうち、2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン、トリフルオロベンゾキノン、テトラフルオロベンゾキノン、テトラシアノベンゾキノンが好ましく、DDQ、クロラニル、テトラフルオロ-1,4-ベンゾキノン、テトラシアノ-1,4-ベンゾキノンがより好ましく、DDQがより一層好ましい。 Specifically, as halogenated or cyanated benzoquinone, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone (chloranil), trifluoro-1, Examples thereof include 4-benzoquinone, tetrafluoro-1,4-benzoquinone, tetrabromo-1,4-benzoquinone, tetracyano-1,4-benzoquinone and the like. Of these, 2,3-dichloro-5,6-dicyano-p-benzoquinone, trifluorobenzoquinone, tetrafluorobenzoquinone, and tetracyanobenzoquinone are preferable, and DDQ, chloranil, tetrafluoro-1,4-benzoquinone, and tetracyano-1 are preferable. , 4-Benzoquinone is more preferred, and DDQ is even more preferred.
 (B)成分のドーパントにおいて、(B1)アリールスルホン酸エステル化合物の含有量は、(B2)ハロゲン化テトラシアノキノジメタン又は(B3)ハロゲン化若しくはシアノ化ベンゾキノンに対し、モル比で、通常0.01~50程度となる量であり、好ましくは0.1~20程度となる量であり、より好ましくは1.0~10程度となる量である。また、(B)成分のドーパントの合計の含有量は、電荷輸送性有機化合物に対するドーパントの含有量の比(D/H)が、モル比で、通常0.01~50程度となる量であり、好ましくは0.1~10程度となる量であり、より好ましくは1.0~5.0程度となる量である。 In the dopant of the component (B), the content of the (B1) aryl sulfonic acid ester compound is usually 0 in molar ratio with respect to (B2) tetracyanoquinodimethane halogenated or (B3) halogenated or benzoquinone cyanated. The amount is about .01 to 50, preferably about 0.1 to 20, and more preferably about 1.0 to 10. The total content of the dopant of the component (B) is such that the ratio (D / H) of the content of the dopant to the charge-transporting organic compound is usually about 0.01 to 50 in terms of molar ratio. It is preferably an amount of about 0.1 to 10, and more preferably an amount of about 1.0 to 5.0.
 なお、(B2)ハロゲン化テトラシアノキノジメタンは1種単独で又は2種以上組み合わせて用いることができ、(B3)ハロゲン化又はシアノ化ベンゾキノンは1種単独で又は2種以上を組み合わせて用いることができる。また、(B2)ハロゲン化テトラシアノキノジメタンと(B3)ハロゲン化又はシアノ化ベンゾキノンとは、組み合わせて用いることができる。 In addition, (B2) halogenated tetracyanoquinodimethane can be used alone or in combination of two or more, and (B3) halogenated or cyanated benzoquinone can be used alone or in combination of two or more. be able to. Further, (B2) halogenated tetracyanoquinodimethane and (B3) halogenated or cyanated benzoquinone can be used in combination.
[(C)有機溶媒]
 (C)有機溶媒としては、前述した各成分や後述する各任意成分を溶解又は分散可能なものであれば、特に限定されないが、プロセス適合性に優れている点で低極性溶媒を用いることが好ましい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものを、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。
[(C) Organic solvent]
The organic solvent (C) is not particularly limited as long as it can dissolve or disperse each of the above-mentioned components and each of the optional components described below, but a low-polarity solvent may be used because of its excellent process compatibility. preferable. In the present invention, a low-polarity solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz, and a high-polarity solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
 前記低極性溶媒としては、例えば、クロロホルム、クロロベンゼン等の塩素系溶媒;トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、フタル酸ジメチル、マロン酸ジイソプロピル、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒等が挙げられる。 Examples of the low polar solvent include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like. Alibo alcohol solvents; ethers such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc. Solvents: Methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dimethyl phthalate, diisopropyl malate, dibutyl maleate, dibutyl oxalate, hexyl acetate, propylene glycol monomethyl ether Examples thereof include ester solvents such as acetate, diethylene glycol monoethyl ether acetate, and diethylene glycol monobutyl ether acetate.
 前記高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;エチルメチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒等が挙げられる。 Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone. System solvent: Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone; Cyano solvent such as acetonitrile and 3-methoxypropionitrile; Ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, Polyhydric alcohol solvents such as 2,3-butanediol; diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyl Monohydric alcohol solvents other than aliphatic alcohols such as oxyethanol, 3-phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol; sulfoxide solvents such as dimethyl sulfoxide and the like can be mentioned.
 (C)有機溶媒の使用量は、電荷輸送性有機化合物の析出を抑制しつつ十分な膜厚を確保する観点から、本発明のワニス中の固形分濃度が、通常0.1~20質量%程度、好ましくは0.5~10質量%となる量である。なお、固形分とは、ワニスに含まれる成分のうち溶媒以外の成分を意味する。前記溶媒は、1種単独で又は2種以上を混合して用いてもよい。 (C) The amount of the organic solvent used is such that the solid content concentration in the varnish of the present invention is usually 0.1 to 20% by mass from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge-transporting organic compound. The amount is preferably 0.5 to 10% by mass. The solid content means a component other than the solvent among the components contained in the varnish. The solvent may be used alone or in combination of two or more.
[その他の成分]
 本発明の電荷輸送性ワニスは、得られる電荷輸送性薄膜の膜物性の調整等の目的で、更に有機シラン化合物を含んでもよい。前記有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物又はテトラアルコキシシラン化合物が挙げられる。とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物又はトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。有機シラン化合物は、1種単独で又は2種以上を組み合わせて用いてもよい。
[Other ingredients]
The charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical characteristics of the obtained charge-transporting thin film. Examples of the organic silane compound include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound. In particular, as the organic silane compound, a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable. The organic silane compound may be used alone or in combination of two or more.
 本発明のワニスが有機シラン化合物を含む場合、その含有量は、固形分中、通常0.1~50質量%程度であるが、得られる薄膜の平坦性の向上や電荷輸送性の低下の抑制等のバランスを考慮すると、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%程度である。 When the varnish of the present invention contains an organic silane compound, the content thereof is usually about 0.1 to 50% by mass in the solid content, but the flatness of the obtained thin film is improved and the decrease in charge transportability is suppressed. In consideration of such a balance, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.
 本発明の電荷輸送性ワニスは、電荷輸送性有機化合物やドーパントを溶媒に溶解させて均一性の高いワニスを得る観点から、アミン化合物を含んでもよく、その含有量は、固形分中、通常0.1~50質量%程度である。 The charge-transporting varnish of the present invention may contain an amine compound from the viewpoint of dissolving a charge-transporting organic compound or a dopant in a solvent to obtain a highly uniform varnish, and the content thereof is usually 0 in the solid content. It is about 1 to 50% by mass.
 電荷輸送性ワニスの調製方法は、特に限定されないが、例えば、電荷輸送性有機化合物及びドーパント、並びに必要に応じてその他の成分を任意の順で又は同時に有機溶媒に加える方法が挙げられる。また、有機溶媒が複数ある場合は、まず各成分を1種の溶媒に順次又は同時に溶解させ、そこへ他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に各成分を順次又は同時に溶解させてもよい。 The method for preparing the charge-transporting varnish is not particularly limited, and examples thereof include a method of adding a charge-transporting organic compound and a dopant and, if necessary, other components to the organic solvent in any order or at the same time. When there are a plurality of organic solvents, each component may be dissolved in one solvent sequentially or simultaneously, and another solvent may be added thereto. Each component may be sequentially or simultaneously dissolved in a mixed solvent of a plurality of organic solvents. It may be dissolved.
 本発明の電荷輸送性ワニスは、より平坦性の高い薄膜を再現性よく得る観点から、各成分を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過することが望ましい。 From the viewpoint of obtaining a thin film having higher flatness with good reproducibility, it is desirable that the charge transporting varnish of the present invention is filtered using a submicrometer order filter or the like after dissolving each component in an organic solvent.
 本発明の電荷輸送性ワニスの粘度は、通常、25℃で1~50mPa・sである。また、本発明の電荷輸送性ワニスの表面張力は、通常、25℃で20~50mN/mである。なお、粘度は、東機産業(株)製TVE-25形粘度計で測定した値である。表面張力は、協和界面科学(株)製、自動表面張力計CBVP-Z型で測定した値である。ワニスの粘度と表面張力は、所望の膜厚等の各種要素を考慮して、前述した溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。 The viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa · s at 25 ° C. The surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C. The viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd. The surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. The viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.
[電荷輸送性薄膜]
 本発明の電荷輸送性薄膜は、本発明の電荷輸送性ワニスを基材上に塗布し、焼成することで形成することができる。
[Charge transport thin film]
The charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.
 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。 Examples of the varnish coating method include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.
 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されず、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面及び電荷輸送性を有する薄膜を得ることができるが、通常、ワニスを大気雰囲気下で焼成することで、より高い電荷輸送性を有する薄膜を再現性よく得ることができる。 Further, the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and charge-transporting property can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. However, usually, by firing the varnish in an air atmosphere, a thin film having higher charge transportability can be obtained with good reproducibility.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、通常100~260℃程度の範囲内で適宜設定される。なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。 The firing temperature is usually set appropriately within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, and the like. At the time of firing, a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層、正孔輸送層又は正孔注入輸送層等の陽極と発光層との間の機能層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の液量を変化させたりする等の方法がある。 The film thickness of the charge transporting thin film is not particularly limited, but when it is used as a functional layer between the anode and the light emitting layer such as a hole injection layer, a hole transport layer or a hole injection transport layer of an organic EL element, 5 It is preferably about 300 nm. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of liquid on the substrate at the time of coating.
 以上説明した方法によって、本発明の電荷輸送性薄膜を形成できるが、本発明の電荷輸送性ワニスを用いることで、隔壁付き基板の隔壁内に電荷輸送性薄膜を好適に形成できる。 The charge-transporting thin film of the present invention can be formed by the method described above, but by using the charge-transporting varnish of the present invention, the charge-transporting thin film can be suitably formed in the partition wall of the substrate with a partition wall.
 このような隔壁付基板としては、公知のフォトリソグラフィー法等によって所定のパターンが形成された基板であれば特に限定されない。なお、通常、基板上において隔壁によって規定される開口部は複数存在する。通常、開口部の大きさは、長辺100~210μm、短辺40μm×100μmであり、バンクテーパー角度は20~80°である。基板の材質としては、特に限定されるものではないが、電子素子の陽極材料として用いられるインジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極材料;アルミニウム、金、銀、銅、インジウム等に代表される金属又はこれらの合金等から構成される金属陽極材料;高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体等のポリマー陽極材料等が挙げられ、平坦化処理を行ったものが好ましい。 The substrate with a partition wall is not particularly limited as long as it is a substrate on which a predetermined pattern is formed by a known photolithography method or the like. Normally, there are a plurality of openings defined by the partition wall on the substrate. Usually, the size of the opening is 100 to 210 μm on the long side, 40 μm × 100 μm on the short side, and the bank taper angle is 20 to 80 °. The material of the substrate is not particularly limited, but is a transparent electrode material typified by indium tin oxide (ITO) and indium zinc oxide (IZO) used as an anode material of an electronic element; aluminum, gold, Metal anode materials composed of metals typified by silver, copper, indium, etc. or alloys thereof; polymer anode materials such as polythiophene derivatives and polyaniline derivatives having high charge transport properties, etc., are subjected to flattening treatment. Is preferable.
 本発明の電荷輸送性ワニスを隔壁付基板の隔壁内にインクジェット法で塗布した後、減圧し、更に必要に応じて加熱することで、隔壁内に塗布された電荷輸送性ワニスから溶媒を除去して電荷輸送性薄膜を作製して電荷輸送性薄膜付き基板を製造することができ、更には、この電荷輸送性薄膜上にその他の機能膜を積層することで、有機EL素子等の電子素子を製造することができる。この際、インクジェット塗布時の雰囲気は特に限定されず、大気雰囲気、窒素等の不活性ガス雰囲気、減圧下のいずれでもよい。 The charge transporting varnish of the present invention is applied to the inside of the partition wall of the substrate with a partition wall by an inkjet method, then depressurized, and further heated if necessary to remove the solvent from the charge transporting varnish coated inside the partition wall. A charge-transporting thin film can be produced to produce a substrate with a charge-transporting thin film, and further, by laminating other functional films on the charge-transporting thin film, an electronic element such as an organic EL element can be formed. Can be manufactured. At this time, the atmosphere at the time of coating with the inkjet is not particularly limited, and may be any of an air atmosphere, an atmosphere of an inert gas such as nitrogen, and a reduced pressure.
 減圧時の減圧度(真空度)は、ワニスの溶媒が蒸発する限り特に限定されないが、通常1,000Pa以下であり、好ましくは100Pa以下、より好ましくは50Pa以下、より一層好ましくは25Pa以下、更に好ましくは10Pa以下である。減圧時間も、溶媒が蒸発する限り特に制限はないが、通常、0.1~60分程度であり、1~30分程度が好ましい。なお、焼成(加熱)をする場合の条件は、前述した条件と同じである。 The degree of decompression (vacuum degree) at the time of depressurization is not particularly limited as long as the solvent of the varnish evaporates, but is usually 1,000 Pa or less, preferably 100 Pa or less, more preferably 50 Pa or less, still more preferably 25 Pa or less, and further. It is preferably 10 Pa or less. The depressurization time is also not particularly limited as long as the solvent evaporates, but is usually about 0.1 to 60 minutes, preferably about 1 to 30 minutes. The conditions for firing (heating) are the same as the above-mentioned conditions.
 以上説明した方法によれば、隔壁内おいて、ワニスの這い上がりを効果的に抑制できる。具体的には、後述のパイルアップ指数として、通常83%以上、好ましくは86%以上、より好ましくは89%以上、より一層好ましくは92%以上、更に好ましくは95%以上という高い値で、パイルアップを抑制することができる。なお、パイルアップ指数は、隔壁(バンク)幅をA(μm)とし、隔壁(バンク)中央部の電荷輸送性薄膜の膜厚から+10%の膜厚の範囲をB(μm)とした場合における(B/A)×100(%)との式で求めることができる。 According to the method described above, the creeping up of the varnish can be effectively suppressed in the partition wall. Specifically, the pile-up index described later is usually a high value of 83% or more, preferably 86% or more, more preferably 89% or more, even more preferably 92% or more, still more preferably 95% or more. Up can be suppressed. The pile-up index is when the partition wall (bank) width is A (μm) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B (μm). It can be calculated by the formula (B / A) × 100 (%).
[有機EL素子]
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、本発明の電荷輸送性薄膜からなる機能層を有するものである。
[Organic EL element]
The organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.
 有機EL素子の代表的な構成としては、以下の(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層又は電子注入輸送層がホールブロック層等としての機能を兼ね備えていてもよい。更に、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configuration, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of. Further, if necessary, an arbitrary functional layer can be provided between the layers.
(A) Electron / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) Electron / hole injection transport layer / light emitting layer / cathode
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。 The "hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and a layer of hole transporting material between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is the "hole injection layer", and the other layers are the "hole transport layers". In particular, as the hole injection (transport) layer, a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。 The "electron injection layer", "electron transport layer" and "electron transport layer" are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an "electron injection transporting layer", and two layers of electron transporting material are provided between the light emitting layer and the cathode. When the above is provided, the layer close to the cathode is the "electron injection layer", and the other layers are the "electron transport layer".
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料とを含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。 The "light emitting layer" is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly has a function of promoting the recombination of electrons and holes and confining the excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function. In the case of a phosphorescent device, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 本発明の電荷輸送性薄膜は、有機EL素子において、陽極と発光層との間に設けられる機能層として好適に用いることができ、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適に用いることができ、正孔注入層としてより一層好適に用いることができる。 The charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されない。 The materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.
 本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜からなる正孔注入層を有する有機EL素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。 An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrode is preliminarily subjected to surface treatment such as cleaning with alcohol, pure water or the like, UV ozone treatment, oxygen-plasma treatment or the like within a range that does not adversely affect the electrode.
 陽極基板上に、前記方法により、本発明の電荷輸送性ワニスを用いて正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成するかわりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。 A hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
 前記陽極材料としては、ITO、IZOに代表される透明電極や、アルミニウムに代表される金属、又はこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されない。 Examples of the anode material include transparent electrodes typified by ITO and IZO, metals typified by aluminum, and metal anodes composed of alloys thereof, and those subjected to flattening treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
 前記正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等が挙げられる。 Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-. Bis (phenyl) -benzidine (α-NPD), 4,4', 4''-tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4', 4''- Triarylamines such as tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5''-bis- {4- [bis (4-methylphenyl) amino] phenyl} -2 , 2': 5', 2''-oligothiophenes such as turthiophene (BMA-3T) and the like can be mentioned.
 前記発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。 Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl). Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、前記発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香環等が挙げられるが、これらに限定されない。 When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.
 前記電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
 前記電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物などが挙げられるが、これらに限定されない。 Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.
 前記陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。 Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
 前記電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。 Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
 前記正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of the hole-transporting polymer include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diamino). Phenylene)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like can be mentioned.
 前記発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH). -PPV) and other polyphenylene vinylene derivatives, poly (3-alkylthiophene) (PAT) and other polythiophene derivatives, polyvinylcarbazole (PVCz) and the like can be mentioned.
 陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料を選択する。 The materials forming the anode and cathode and the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。 Normally, in an element having a bottom emission structure, a transparent anode is used on the substrate side to extract light from the substrate side, whereas in an element having a top emission structure, a reflective anode made of metal is used and the direction is opposite to that of the substrate. Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等と共に封止してもよい。 The organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.
 本発明の電荷輸送性薄膜は、前述したとおり、有機EL素子の機能層として用いることができるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオード及び有機プラスモン発光素子等の電子素子の機能層としても用いることができる。 As described above, the charge transporting thin film of the present invention can be used as a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, an organic integrated circuit, and an organic Electric field effect transistors, organic thin films, organic light emitting transistors, organic optical testers, organic photoreceivers, organic electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes, organic Plasmon light emitting devices, etc. It can also be used as a functional layer of an electronic device.
 以下、合成例、製造例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to synthetic examples, production examples, examples and comparative examples, but the present invention is not limited to the following examples.
 使用した装置は、以下のとおりである。
(1)MALDI-TOF-MS:ブルカー社製autoflex III smartbeam
(2)1H-NMR:日本電子(株)製JNM-ECP300 FT NMR SYSTEM
(3)基板洗浄:長州産業(株)製基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製スピンコーターMS-A100
(5)膜厚測定及び表面形状測定:(株)小坂研究所製微細形状測定機サーフコーダET-4000A
(6)素子の作製:長州産業(株)製多機能蒸着装置システムC-E2L1G1-N
(7)素子の電流密度の測定:(株)イーエッチシー製多チャンネルIVL測定装置
(8)インクジェット装置:クラスターテクノロジー(株)製専用ドライバWAVE BUILDER(型番:PIJD-1)、カメラ付き観測装置inkjetlado、自動ステージInkjet Designer及びインクジェットヘッドPIJ-25NSET
The equipment used is as follows.
(1) MALDI-TOF-MS: Bruker's autoflex III smart beam
(2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd.
(3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method)
(4) Varnish application: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement and surface shape measurement: Fine shape measuring machine surf coder ET-4000A manufactured by Kosaka Laboratory Co., Ltd.
(6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of element current density: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Inkjet device: Dedicated driver WAVE BUILDER (model number: PIJD-1) manufactured by Cluster Technology Co., Ltd., observation device with camera inkjetlado, automatic stage Inkjet Designer and inkjet head PIJ-25NSET
 使用した試薬は、以下のとおりである。
MMA:メチルメタクリレート
HEMA:2-ヒドロキシエチルメタクリレート
HPMA:4-ヒドロキシフェニルメタクリレート
HPMA-QD:4-ヒドロキシフェニルメタクリレート1molと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド1.1molとの縮合反応によって合成した化合物
CHMI:N-シクロヘキシルマレイミド
PFHMA:2-(パーフルオロヘキシル)エチルメタクリレート
MAA:メタクリル酸
AIBN:α,α'-アゾビスイソブチロニトリル
QD1:α,α,α'-トリス(4-ヒドロキシフェニル)-1-エチル-4-イソプロピルベンゼン1molと1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド1.5molとの縮合反応によって合成した化合物
GT-401:ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン(商品名:エポリードGT-401、(株)ダイセル製)
PGME:プロピレングリコールモノメチルエーテル
PGMEA:プロピレングリコールモノメチルエーテルアセテート
CHN:シクロヘキサノン
TMAH:テトラメチルアンモニウムヒドロキシド
The reagents used are as follows.
MMA: Methyl methacrylate HEMA: 2-Hydroxyethyl methacrylate HPMA: 4-Hydroxyphenyl methacrylate HPMA-QD: Condensation reaction of 1 mol of 4-hydroxyphenyl methacrylate with 1.1 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride Compound CHMI: N-cyclohexylmaleimide PFHMA: 2- (perfluorohexyl) ethyl methacrylate MAA: AIBN methacrylate: α, α'-azobisisobutyronitrile QD1: α, α, α'-tris (4) -Hydroxyphenyl) A compound synthesized by a condensation reaction of 1 mol of -1-ethyl-4-isopropylbenzene and 1.5 mol of 1,2-naphthoquinone-2-diazide-5-sulfonyl chloride. GT-401: Tetrabutanetetracarboxylate (Tetrabutantetracarboxylate) 3,4-Epoxycyclohexylmethyl) modified ε-caprolactone (trade name: Epolide GT-401, manufactured by Daicel Co., Ltd.)
PGME: Propylene Glycol Monomethyl Ether PGMEA: Propylene Glycol Monomethyl Ether Acetate CHN: Cyclohexanone TMAH: Tetramethylammonium Hydroxide
[1]隔壁(バンク)付基板の作製
(1)アクリル重合体の合成
[合成例1-1]
 MMA(10.0g)、HEMA(12.5g)、CHMI(20.0g)、HPMA(2.50g)、MAA(5.00g)及びAIBN(3.20g)をPGME(79.8g)に溶解し、60~100℃にて20時間反応させることにより、アクリル重合体P1溶液(固形分濃度40質量%)を得た。アクリル重合体P1のMnは3,700、Mwは6,100であった。
[1] Preparation of substrate with partition wall (bank) (1) Synthesis of acrylic polymer [Synthesis Example 1-1]
MMA (10.0 g), HEMA (12.5 g), CHMI (20.0 g), HPMA (2.50 g), MAA (5.00 g) and AIBN (3.20 g) are dissolved in PGME (79.8 g). Then, the reaction was carried out at 60 to 100 ° C. for 20 hours to obtain an acrylic polymer P1 solution (solid content concentration: 40% by mass). The Mn of the acrylic polymer P1 was 3,700 and the Mw was 6,100.
[合成例1-2]
 HPMA-QD(2.50g)、PFHMA(7.84g)、MAA(0.70g)、CHMI(1.46g)及びAIBN(0.33g)をCHN(51.3g)に溶解し、110℃にて20時間攪拌して反応させることにより、アクリル重合体P2溶液(固形分濃度20質量%)を得た。アクリル重合体P2のMnは4,300、Mwは6,300であった。
[Synthesis Example 1-2]
HPMA-QD (2.50 g), PFHMA (7.84 g), MAA (0.70 g), CHMI (1.46 g) and AIBN (0.33 g) were dissolved in CHN (51.3 g) and heated to 110 ° C. By stirring and reacting for 20 hours, an acrylic polymer P2 solution (solid content concentration: 20% by mass) was obtained. The Mn of the acrylic polymer P2 was 4,300 and the Mw was 6,300.
 なお、アクリル重合体P1及びP2の数平均分子量(Mn)及び重量平均分子量(Mw)は、下記条件によるゲルパーミエーションクロマトグラフィー(GPC)によって測定した。
・クロマトグラフ:(株)島津製作所製GPC装置LC-20AD
・カラム:Shodex KF-804L及び803L(昭和電工(株)製)並びにTSK-GEL(東ソー(株)製)を直列接続
・カラム温度:40℃ 
・検出器:UV検出器(254nm)及びRI検出器
・溶離液:テトラヒドロフラン
・カラム流速:1mL/分
The number average molecular weight (Mn) and weight average molecular weight (Mw) of the acrylic polymers P1 and P2 were measured by gel permeation chromatography (GPC) under the following conditions.
・ Chromatograph: GPC device LC-20AD manufactured by Shimadzu Corporation
-Column: Shodex KF-804L and 803L (manufactured by Showa Denko KK) and TSK-GEL (manufactured by Tosoh Corporation) are connected in series.-Column temperature: 40 ° C
-Detector: UV detector (254 nm) and RI detector-Eluent: tetrahydrofuran-Column flow rate: 1 mL / min
(2)ポジ型感光性樹脂組成物の製造
[製造例1]
 アクリル重合体P1溶液(5.04g)、アクリル重合体P2溶液(0.05g)、QD1(0.40g)、GT-401(0.09g)及びPGMEA(6.42g)を混合し、室温で3時間攪拌して均一な溶液とし、ポジ型感光性樹脂組成物を得た。
(2) Production of Positive Photosensitive Resin Composition [Production Example 1]
Acrylic polymer P1 solution (5.04 g), acrylic polymer P2 solution (0.05 g), QD1 (0.40 g), GT-401 (0.09 g) and PGMEA (6.42 g) are mixed and at room temperature. The mixture was stirred for 3 hours to obtain a uniform solution to obtain a positive photosensitive resin composition.
(3)隔壁(バンク)付基板の作製
[製造例2]
 (株)テクノビジョン製UV-312を用いて10分間オゾン洗浄したITO-ガラス基板上に、スピンコーターを用いて、製造例1で得られたポジ型感光性樹脂組成物を塗布した後、基板をホットプレート上でプリベーク(100℃、120秒間)し、膜厚1.2μmの薄膜を形成した。この薄膜に、長辺200μm、短辺100μmの長方形が多数描かれたパターンのマスクを介して、キヤノン(株)製紫外線照射装置PLA-600FAにより、波長365nmの紫外線を用いて175mJ/cm2で露光した。その後、薄膜を1.0質量%TMAH水溶液に120秒間浸漬して現像を行った後、超純水を用いて薄膜の流水洗浄を20秒間行った。次いで、この長方形パターンが形成された薄膜をポストベーク(230℃、30分間)して硬化させ、隔壁付基板を作製した。
(3) Fabrication of Substrate with Partition (Bank) [Manufacturing Example 2]
The positive photosensitive resin composition obtained in Production Example 1 was applied to an ITO-glass substrate that had been ozone-cleaned for 10 minutes using UV-312 manufactured by Technovision Co., Ltd. using a spin coater, and then the substrate. Was prebaked (100 ° C., 120 seconds) on a hot plate to form a thin film having a film thickness of 1.2 μm. At 175 mJ / cm 2 using ultraviolet rays with a wavelength of 365 nm by the ultraviolet irradiation device PLA-600FA manufactured by Canon Inc. through a mask with a pattern in which a large number of rectangles with a long side of 200 μm and a short side of 100 μm are drawn on this thin film. Exposed. Then, the thin film was immersed in a 1.0 mass% TMAH aqueous solution for 120 seconds for development, and then the thin film was washed with running water for 20 seconds using ultrapure water. Next, the thin film on which this rectangular pattern was formed was post-baked (230 ° C., 30 minutes) and cured to prepare a substrate with a partition wall.
[2]電荷輸送性有機化合物の合成
[合成例2-1]アニリン誘導体Aの合成
Figure JPOXMLDOC01-appb-C000049
[2] Synthesis of charge-transporting organic compound [Synthesis Example 2-1] Synthesis of aniline derivative A
Figure JPOXMLDOC01-appb-C000049
 N1-(4-アミノフェニル)ベンゼン-1,4-ジアミン1.00g、2-ブロモ-9-フェニル-9H-カルバゾール8.89g、酢酸パラジウム112mg及びtert-ブトキシナトリウム3.47gをフラスコに入れた後、フラスコ内を窒素置換した。そこへ、トルエン30mL及び予め調製しておいたジ-tert-ブチル(フェニル)ホスフィンのトルエン溶液2.75mL(濃度81.0g/L)を入れ、90℃で6時間攪拌した。
 攪拌終了後、反応混合物を室温まで冷却し、冷却した反応混合物と、トルエンと、イオン交換水とを混合して分液処理をした。得られた有機層を硫酸ナトリウムで乾燥し、濃縮した。濃縮液をシリカゲルにてろ過を行い、得られたろ液に活性炭0.2gを加え、室温で30分攪拌した。
 その後、ろ過にて活性炭を取り除き、ろ液を濃縮した。濃縮液をメタノール及び酢酸エチルの混合溶媒(500mL/500mL)に滴下し、得られたスラリーを室温で一晩攪拌し、次いでスラリーをろ過してろ物を回収した。得られたろ物を乾燥し、目的とするアニリン誘導体Aを得た(収量5.88g、収率83%)。
1H-NMR(500MHz, THF-d8) δ[ppm]: 8.02-8.10(m, 10H), 7.48-7.63(m, 22H), 7.28-7.39(m, 14H), 7.19-7.24(m, 10H), 7.02-7.09(m, 12H).
MALDI-TOF-MS m/Z found: 1404.88 ([M]+calcd:1404.56).
1.00 g of N1- (4-aminophenyl) benzene-1,4-diamine, 8.89 g of 2-bromo-9-phenyl-9H-carbazole, 112 mg of palladium acetate and 3.47 g of tert-butoxysodium were placed in a flask. After that, the inside of the flask was replaced with nitrogen. Toluene (30 mL) and a previously prepared toluene solution of di-tert-butyl (phenyl) phosphine (2.75 mL (concentration: 81.0 g / L)) were added thereto, and the mixture was stirred at 90 ° C. for 6 hours.
After the stirring was completed, the reaction mixture was cooled to room temperature, and the cooled reaction mixture, toluene, and ion-exchanged water were mixed and subjected to liquid separation treatment. The obtained organic layer was dried over sodium sulfate and concentrated. The concentrated solution was filtered through silica gel, 0.2 g of activated carbon was added to the obtained filtrate, and the mixture was stirred at room temperature for 30 minutes.
Then, the activated carbon was removed by filtration, and the filtrate was concentrated. The concentrate was added dropwise to a mixed solvent of methanol and ethyl acetate (500 mL / 500 mL), the obtained slurry was stirred at room temperature overnight, and then the slurry was filtered to recover the filtrate. The obtained filtrate was dried to obtain the desired aniline derivative A (yield 5.88 g, yield 83%).
1 H-NMR (500MHz, THF-d 8 ) δ [ppm]: 8.02-8.10 (m, 10H), 7.48-7.63 (m, 22H), 7.28-7.39 (m, 14H), 7.19-7.24 (m, 10H), 7.02-7.09 (m, 12H).
MALDI-TOF-MS m / Z found: 1404.88 ([M] + calcd: 1404.56).
[合成例2-2]アニリン誘導体Bの合成
 国際公開第2015/050253号に記載された方法に従って、下記式で表されるアニリン誘導体Bを合成した。
Figure JPOXMLDOC01-appb-C000050
[Synthesis Example 2-2] Synthesis of Aniline Derivative B Aniline derivative B represented by the following formula was synthesized according to the method described in International Publication No. 2015/050253.
Figure JPOXMLDOC01-appb-C000050
[3]ドーパントの合成
[合成例3-1]アリールスルホン酸エステルCの合成
 国際公開第2017/217455号に記載された方法に従って、下記式で表されるアリールスルホン酸エステルCを合成した。
Figure JPOXMLDOC01-appb-C000051
[3] Synthesis of dopant [Synthesis Example 3-1] Synthesis of aryl sulfonic acid ester C Aryl sulfonic acid ester C represented by the following formula was synthesized according to the method described in International Publication No. 2017/217455.
Figure JPOXMLDOC01-appb-C000051
[合成例3-2]アリールスルホン酸エステルDの合成
 まず、国際公開第2015/111654号に記載の方法に従って、下記式で表されるアリールスルホン酸D'を合成した。
 アリールスルホン酸D'(4.97g、10mmol)に、塩化チオニル(25g)及び触媒としてN,N-ジメチルホルムアミド(0.4mL)を加え、1時間加熱還流した後、塩化チオニルを留去し、アリールスルホン酸D'の酸クロリドを含む固体を得た。本化合物はこれ以上精製することなく次工程に使用した。
 前記固体にクロロホルム(30mL)及びピリジン(20mL)を加え、0℃にてプロピレングリコールモノエチルエーテル6.24g(60mmol)を加えた。室温まで昇温し、その後1.5時間攪拌した。溶媒を留去した後、水を加え、酢酸エチルにて抽出し、有機層を硫酸ナトリウムにて乾燥させた。ろ過、濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することにより、アリールスルホン酸エステルD1.32gを白色固体として得た(収率20%(アリールスルホン酸D'からの2段階収率))。1H-NMR及びLC/MSの測定結果を以下に示す。
1H-NMR(500MHz, CDCl3): δ 0.89-0.95(m, 6H), 1.34 and 1.39(a pair of d, J=6.5Hz, 6H), 3.28-3.50(m, 8H), 4.81-4.87(m, 2H), 7.26(s, 1H), 8.22(d, J=9.0Hz, 1H), 8.47(s, 1H), 8.54(d, J=9.0Hz, 1H) , 8.68(s, 1H).
LC/MS (ESI+) m/z; 687 [M+NH4]+
Figure JPOXMLDOC01-appb-C000052
[Synthesis Example 3-2] Synthesis of Aryl Sulfonic Acid Ester First, aryl sulfonic acid D'represented by the following formula was synthesized according to the method described in International Publication No. 2015/111654.
Thionyl chloride (25 g) and N, N-dimethylformamide (0.4 mL) as a catalyst were added to aryl sulfonic acid D'(4.97 g, 10 mmol), heated and refluxed for 1 hour, and then thionyl chloride was distilled off. A solid containing the acid chloride of aryl sulfonic acid D'was obtained. This compound was used in the next step without further purification.
Chloroform (30 mL) and pyridine (20 mL) were added to the solid, and 6.24 g (60 mmol) of propylene glycol monoethyl ether was added at 0 ° C. The temperature was raised to room temperature, and then the mixture was stirred for 1.5 hours. After distilling off the solvent, water was added, the mixture was extracted with ethyl acetate, and the organic layer was dried over sodium sulfate. After filtration and concentration, the obtained crude product was purified by silica gel column chromatography (hexane / ethyl acetate) to obtain 1.32 g of aryl sulfonic acid ester D as a white solid (yield 20% (aryl sulfonic acid). Two-step yield from D')). 1 The measurement results of 1 H-NMR and LC / MS are shown below.
1 1 H-NMR (500MHz, CDCl 3 ): δ 0.89-0.95 (m, 6H), 1.34 and 1.39 (a pair of d, J = 6.5Hz, 6H), 3.28-3.50 (m, 8H), 4.81-4.87 (m, 2H), 7.26 (s, 1H), 8.22 (d, J = 9.0Hz, 1H), 8.47 (s, 1H), 8.54 (d, J = 9.0Hz, 1H), 8.68 (s, 1H) ..
LC / MS (ESI + ) m / z; 687 [M + NH 4 ] +
Figure JPOXMLDOC01-appb-C000052
[4]電荷輸送性ワニスの調製
[実施例1-1]
 アニリン誘導体A0.183g、アリールスルホン酸エステルC0.325g及びF4TCNQ0.018gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスAを調製した。
[4] Preparation of charge-transporting varnish [Example 1-1]
To 0.003 g of aniline derivative A, 0.325 g of aryl sulfonic acid ester and 0.018 g of F4TCNQ, 5.00 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added and stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish A.
[実施例1-2]
 アニリン誘導体A0.257g、アリールスルホン酸エステルD0.245g及びF4TCNQ0.025gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスBを調製した。
[Example 1-2]
To 0.057 g of the aniline derivative A, 0.245 g of the aryl sulfonic acid ester and 0.025 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish B.
[実施例1-3]
 アニリン誘導体A0.184g、アリールスルホン酸エステルC0.327g及びDDQ0.015gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスCを調製した。
[Example 1-3]
To 0.184 g of the aniline derivative A, 0.327 g of the aryl sulfonic acid ester and 0.015 g of DDQ, 5.00 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish C.
[実施例1-4]
 アニリン誘導体B0.183g、アリールスルホン酸エステルC0.325g及びF4TCNQ0.018gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスDを調製した。
[Example 1-4]
To 0.003 g of aniline derivative B, 0.325 g of aryl sulfonic acid ester and 0.018 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish D.
[実施例1-5]
 アニリン誘導体B0.257g、アリールスルホン酸エステルD0.245g及びF4TCNQ0.025gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスEを調製した。
[Example 1-5]
To aniline derivative B 0.257 g, aryl sulfonic acid ester D 0.245 g and F4TCNQ 0.025 g, triethylene glycol butyl methyl ether 5.0 g, diisopropyl malonic acid 3.00 g and dimethyl phthalate 2.00 g were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish E.
[実施例1-6]
 アニリン誘導体B0.184g、アリールスルホン酸エステルC0.327g及びDDQ0.015gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスFを調製した。
[Example 1-6]
To aniline derivative B 0.184 g, aryl sulfonic acid ester C 0.327 g and DDQ 0.015 g, triethylene glycol butyl methyl ether 5.0 g, diisopropyl malonic acid 3.0 g and dimethyl phthalate 2.0 g were added, and the mixture was stirred at room temperature. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish F.
[比較例1-1]
 アニリン誘導体A0.479g及びF4TCNQ0.047gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスGを調製した。
[Comparative Example 1-1]
To 0.009 g of aniline derivative A and 0.047 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was dissolved by stirring at room temperature. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish G.
[比較例1-2]
 アニリン誘導体A0.487g及びDDQ0.039gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスHを調製した。
[Comparative Example 1-2]
To 0.487 g of aniline derivative A and 0.039 g of DDQ, 5.00 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was dissolved by stirring at room temperature. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish H.
[比較例1-3]
 アニリン誘導体B0.479g及びF4TCNQ0.047gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスIを調製した。
[Comparative Example 1-3]
To 0.007 g of aniline derivative B and 0.047 g of F4TCNQ, 5.0 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was dissolved by stirring at room temperature. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish I.
[比較例1-4]
 アニリン誘導体B0.487g及びDDQ0.039gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスJを調製した。
[Comparative Example 1-4]
To 0.487 g of aniline derivative B and 0.039 g of DDQ, 5.00 g of triethylene glycol butyl methyl ether, 3.00 g of diisopropyl malonic acid and 2.00 g of dimethyl phthalate were added, and the mixture was dissolved by stirring at room temperature. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish J.
[比較例1-5]
 下記式(H1)で表されるポリマーH1(TFBポリマー、Luminescence Technology社製LT-N148)0.180g、アリールスルホン酸エステルC0.120g及びF4TCNQ0.002gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスKを調製した。
Figure JPOXMLDOC01-appb-C000053
[Comparative Example 1-5]
Polymer H1 (TFB polymer, LT-N148 manufactured by Luminescence Technology Co., Ltd.) represented by the following formula (H1) is 0.180 g, aryl sulfonic acid ester C 0.120 g and F4TCNQ 0.002 g, and triethylene glycol butyl methyl ether 5.00 g. 3.00 g of diisopropyl malonate and 2.00 g of dimethyl phthalate were added and stirred at room temperature to dissolve. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish K.
Figure JPOXMLDOC01-appb-C000053
[比較例1-6]
 ポリマーH1 0.180g、アリールスルホン酸エステルD0.120g及びF4TCNQ0.002gに、トリエチレングリコールブチルメチルエーテル5.00g、マロン酸ジイソプロピル3.00g及びフタル酸ジメチル2.00gを加え、室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのPTFEシリンジフィルターでろ過し、電荷輸送性ワニスLを調製した。
[Comparative Example 1-6]
To 0.180 g of polymer H1. It was dissolved. The obtained solution was filtered through a PTFE syringe filter having a pore size of 0.2 μm to prepare a charge-transporting varnish L.
[5]単層素子(SLD)の作製及び特性評価
[実施例2-1]
 電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に厚さ50nmの均一な薄膜を形成した。ITO基板としては、パターニングされた厚さ150nmのITO膜が表面に形成された、25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いて、アルミニウムを0.2nm/秒にて80nm成膜することで、単層素子Aを作製した。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、素子を封止基板の間に収め、封止基板を接着剤(((株)MORESCO製モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[5] Fabrication and characterization of single-layer device (SLD) [Example 2-1]
The charge-transporting varnish A is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film having a thickness of 50 nm on the ITO substrate. Was formed. As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate having a patterned ITO film having a thickness of 150 nm formed on the surface was used, and the surface was subjected to an O 2 plasma cleaning device (150 W, 30 seconds) before use. The above impurities were removed. Next, the single-layer element A was formed by forming aluminum on the ITO substrate on which the thin film was formed at a vacuum level of 1.0 × 10 -5 Pa at 0.2 nm / sec to 80 nm. Made.
In order to prevent deterioration of characteristics due to the influence of oxygen, water, etc. in the air, the elements were sealed with a sealing substrate and then their characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the elements are placed between the sealing substrates, and the sealing substrate is attached with an adhesive (Morresco Moisture Cut WB90US (P) manufactured by MORESCO Corporation). At this time, a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the element. The bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, Irradiation amount: 6,000 mJ / cm 2 ) and then annealing treatment at 80 ° C. for 1 hour to cure the adhesive.
[実施例2-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例2-1と同様の方法で単層素子Bを作製した。
[Example 2-2]
A single-layer device B was produced in the same manner as in Example 2-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
[実施例2-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスCを用いた以外は、実施例2-1と同様の方法で単層素子Cを作製した。
[Example 2-3]
A single-layer device C was produced in the same manner as in Example 2-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
[実施例2-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスDを用い、230℃で15分間焼成した以外は、実施例2-1と同様の方法で単層素子Dを作製した。
[Example 2-4]
A single-layer element D was produced in the same manner as in Example 2-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例2-5]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスEを用い、230℃で15分間焼成した以外は、実施例2-1と同様の方法で単層素子Eを作製した。
[Example 2-5]
A single-layer element E was produced in the same manner as in Example 2-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例2-6]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスFを用い、230℃で15分間焼成した以外は、実施例2-1と同様の方法で単層素子Fを作製した。
[Example 2-6]
A single-layer device F was produced in the same manner as in Example 2-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例2-1]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスGを用いた以外は、実施例2-1と同様の方法で単層素子Gを作製した。
[Comparative Example 2-1]
A single-layer device G was produced in the same manner as in Example 2-1 except that the charge-transporting varnish G was used instead of the charge-transporting varnish A.
[比較例2-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスHを用いた以外は、実施例2-1と同様の方法で単層素子Hを作製した。
[Comparative Example 2-2]
A single-layer device H was produced in the same manner as in Example 2-1 except that the charge-transporting varnish H was used instead of the charge-transporting varnish A.
[比較例2-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスIを用い、230℃で15分間焼成した以外は、実施例2-1と同様の方法で単層素子Iを作製した。
[Comparative Example 2-3]
A single-layer device I was produced in the same manner as in Example 2-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例2-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスJを用い、230℃で15分間焼成した以外は、実施例2-1と同様の方法で単層素子Jを作製した。
[Comparative Example 2-4]
A single-layer element J was produced in the same manner as in Example 2-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
 作製した単層素子を3Vで駆動した場合の電流密度を測定した。結果を表1に示す。 The current density when the manufactured single-layer element was driven at 3 V was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 表1に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示すことがわかった。 As shown in Table 1, it was found that the thin film prepared from the charge-transporting varnish of the present invention exhibited good charge-transporting property.
[6]ホールオンリー素子(HOD)の作製及び特性評価
 以下の実施例及び比較例において、ITO基板は、前記と同様のものを使用した。
[実施例3-1]
 電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。
 その上に、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPD及びアルミニウムの薄膜を順次積層し、ホールオンリー素子Aを得た。蒸着は、蒸着レート0.2nm/秒の条件で行った。α-NPD及びアルミニウムの薄膜の膜厚は、それぞれ30nm及び80nmとした。
 なお、素子は、実施例2-1と同様の方法で封止した後、その特性を評価した。
[6] Fabrication and Characteristic Evaluation of Hole-Only Device (HOD) In the following Examples and Comparative Examples, the same ITO substrate as described above was used.
[Example 3-1]
The charge-transporting varnish A is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film of 50 nm on the ITO substrate. did.
A thin film of α-NPD and aluminum was sequentially laminated on it using a thin film deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) to obtain a hole-only element A. The vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec. The film thicknesses of the α-NPD and aluminum thin films were 30 nm and 80 nm, respectively.
The element was sealed in the same manner as in Example 2-1 and then its characteristics were evaluated.
[実施例3-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例3-1と同様の方法でホールオンリー素子Bを作製した。
[Example 3-2]
A hole-only element B was produced in the same manner as in Example 3-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
[実施例3-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスCを用いた以外は、実施例3-1と同様の方法でホールオンリー素子Cを作製した。
[Example 3-3]
A hole-only element C was produced in the same manner as in Example 3-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
[実施例3-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスDを用い、230℃で15分間焼成した以外は、実施例3-1と同様の方法でホールオンリー素子Dを作製した。
[Example 3-4]
A hole-only element D was produced in the same manner as in Example 3-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例3-5]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスEを用い、230℃で15分間焼成した以外は、実施例3-1と同様の方法でホールオンリー素子Eを作製した。
[Example 3-5]
A hole-only element E was produced in the same manner as in Example 3-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例3-6]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスFを用い、230℃で15分間焼成した以外は、実施例3-1と同様の方法でホールオンリー素子Fを作製した。
[Example 3-6]
A hole-only element F was produced in the same manner as in Example 3-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例3-1]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスGを用いた以外は、実施例3-1と同様の方法でホールオンリー素子Gを作製した。
[Comparative Example 3-1]
A hole-only element G was produced in the same manner as in Example 3-1 except that the charge-transporting varnish G was used instead of the charge-transporting varnish A.
[比較例3-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスHを用いた以外は、実施例3-1と同様の方法でホールオンリー素子Hを作製した。
[Comparative Example 3-2]
A hole-only element H was produced in the same manner as in Example 3-1 except that the charge-transporting varnish H was used instead of the charge-transporting varnish A.
[比較例3-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスIを用い、230℃で15分間焼成した以外は、実施例3-1と同様の方法でホールオンリー素子Iを作製した。
[Comparative Example 3-3]
A hole-only element I was produced in the same manner as in Example 3-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例3-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスJを用い、230℃で15分間焼成した以外は、実施例3-1と同様の方法でホールオンリー素子Jを作製した。
[Comparative Example 3-4]
A hole-only element J was produced in the same manner as in Example 3-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
 作製したホールオンリー素子を3Vで駆動した場合の電流密度を測定した。結果を表2に示す。 The current density when the manufactured hole-only element was driven at 3 V was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 表2に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、正孔輸送層としてよく用いられるα-NPDへの良好な正孔注入性を示すことがわかった。 As shown in Table 2, it was found that the thin film prepared from the charge transporting varnish of the present invention exhibits good hole injectability into α-NPD, which is often used as a hole transporting layer.
[7]有機EL素子の作製及び特性評価
 以下の実施例及び比較例において、ITO基板は、前記と同様のものを使用した。
[実施例4-1]
 電荷輸送性ワニスAを、スピンコーターを用いてITO基板に塗布した後、大気下、120℃で1分間乾燥し、次いで200℃で15分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。
 その上に、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、CBPとIr(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、フッ化リチウム及びアルミニウムの薄膜を順次積層して有機EL素子Aを得た。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
 なお、素子は、実施例2-1と同様の方法で封止した後、その特性を評価した。
[7] Fabrication and Characteristic Evaluation of Organic EL Element In the following Examples and Comparative Examples, the same ITO substrate as described above was used.
[Example 4-1]
The charge-transporting varnish A is applied to an ITO substrate using a spin coater, dried in the air at 120 ° C. for 1 minute, and then fired at 200 ° C. for 15 minutes to form a uniform thin film of 50 nm on the ITO substrate. did.
On it, α-NPD was deposited at 0.2 nm / sec at 30 nm using a thin film deposition apparatus (vacuum degree 1.0 × 10 -5 Pa). Next, CBP and Ir (PPy) 3 were co-deposited. For co-evaporation, the vapor deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and 40 nm was laminated. Next, a thin film of tris (8-quinolinolate) aluminum (III) (Alq 3 ), lithium fluoride, and aluminum was sequentially laminated to obtain an organic EL element A. At this time, the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
The element was sealed in the same manner as in Example 2-1 and then its characteristics were evaluated.
[実施例4-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例4-1と同様の方法で有機EL素子Bを作製した。
[Example 4-2]
An organic EL element B was produced in the same manner as in Example 4-1 except that the charge transporting varnish B was used instead of the charge transporting varnish A.
[実施例4-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスCを用いた以外は、実施例4-1と同様の方法で有機EL素子Cを作製した。
[Example 4-3]
The organic EL element C was produced in the same manner as in Example 4-1 except that the charge transporting varnish C was used instead of the charge transporting varnish A.
[実施例4-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスDを用い、230℃で15分間焼成した以外は、実施例4-1と同様の方法で有機EL素子Dを作製した。
[Example 4-4]
An organic EL element D was produced in the same manner as in Example 4-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例4-5]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスEを用い、230℃で15分間焼成した以外は、実施例4-1と同様の方法で有機EL素子Eを作製した。
[Example 4-5]
An organic EL element E was produced in the same manner as in Example 4-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[実施例4-6]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスFを用い、230℃で15分間焼成した以外は、実施例4-1と同様の方法で有機EL素子Fを作製した。
[Example 4-6]
An organic EL element F was produced in the same manner as in Example 4-1 except that a charge-transporting varnish F was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例4-1]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスGを用いた以外は、実施例4-1と同様の方法で有機EL素子Gを作製した。
[Comparative Example 4-1]
An organic EL device G was produced in the same manner as in Example 4-1 except that the charge transporting varnish G was used instead of the charge transporting varnish A.
[比較例4-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスHを用いた以外は、実施例4-1と同様の方法で有機EL素子Hを作製した。
[Comparative Example 4-2]
The organic EL element H was produced in the same manner as in Example 4-1 except that the charge transporting varnish H was used instead of the charge transporting varnish A.
[比較例4-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスIを用い、230℃で15分間焼成した以外は、実施例4-1と同様の方法で有機EL素子Iを作製した。
[Comparative Example 4-3]
An organic EL element I was produced in the same manner as in Example 4-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
[比較例4-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスJを用い、230℃で15分間焼成した以外は、実施例4-1と同様の方法で有機EL素子Jを作製した。
[Comparative Example 4-4]
An organic EL element J was produced in the same manner as in Example 4-1 except that the charge-transporting varnish J was used instead of the charge-transporting varnish A and was fired at 230 ° C. for 15 minutes.
 作製した有機EL素子を8Vで駆動した場合の輝度を測定した。結果を表3に示す。 The brightness when the produced organic EL element was driven at 8 V was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表3に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、高い有機EL特性を示した。 As shown in Table 3, the thin film prepared from the charge-transporting varnish of the present invention showed high organic EL characteristics.
[7]インクジェット塗布による電荷輸送性薄膜付き基板の作製
[実施例5-1]
 電荷輸送性ワニスAを、固形分濃度が2.3質量%となるように溶媒で希釈し、製造例2で作製した隔壁付基板上の長方形の開口部(膜形成領域)に、インクジェット装置を用いて吐出した。なお、電荷輸送性ワニスを希釈する際に、ワニス中の混合溶媒の組成比率が変化しないように希釈した。得られた塗膜を、その後すぐに、常温で10Pa以下の減圧度(真空度)で15分間減圧乾燥し、次いで常圧で、200℃15分間乾燥して隔壁内に電荷輸送性薄膜を形成し、電荷輸送性薄膜付き基板Aを得た。なお、電荷輸送性薄膜の開口部中央付近の膜厚が90~110nmとなるように吐出した。
[7] Fabrication of a substrate with a charge-transporting thin film by coating with an inkjet [Example 5-1]
The charge-transporting varnish A is diluted with a solvent so that the solid content concentration is 2.3% by mass, and an inkjet device is placed in a rectangular opening (film forming region) on the partition substrate prepared in Production Example 2. Discharged using. When the charge transporting varnish was diluted, it was diluted so that the composition ratio of the mixed solvent in the varnish did not change. Immediately thereafter, the obtained coating film was dried under reduced pressure (vacuum degree) of 10 Pa or less at room temperature for 15 minutes, and then dried at 200 ° C. for 15 minutes at normal pressure to form a charge-transporting thin film in the partition wall. A substrate A with a charge-transporting thin film was obtained. The charge-transporting thin film was discharged so that the film thickness near the center of the opening was 90 to 110 nm.
[実施例5-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスBを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Example 5-2]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish B was used instead of the charge-transporting varnish A.
[実施例5-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスCを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Example 5-3]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish C was used instead of the charge-transporting varnish A.
[実施例5-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスDを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Example 5-4]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish D was used instead of the charge-transporting varnish A.
[実施例5-5]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスEを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Example 5-5]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish E was used instead of the charge-transporting varnish A.
[実施例5-6]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスFを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Example 5-6]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish F was used instead of the charge-transporting varnish A.
[比較例5-1]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスGを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Comparative Example 5-1]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish G was used instead of the charge-transporting varnish A.
[比較例5-2]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスHを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Comparative Example 5-2]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish H was used instead of the charge-transporting varnish A.
[比較例5-3]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスIを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板を作製した。
[Comparative Example 5-3]
A substrate with a charge-transporting thin film was prepared in the same manner as in Example 5-1 except that the charge-transporting varnish I was used instead of the charge-transporting varnish A.
[比較例5-4]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスKを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板Kを作製したが、膜表面に凹凸構造が発生し、平坦な膜は得られなかった。
[Comparative Example 5-4]
A substrate K with a charge-transporting thin film was produced in the same manner as in Example 5-1 except that the charge-transporting varnish K was used instead of the charge-transporting varnish A, but an uneven structure was generated on the film surface. No flat film was obtained.
[比較例5-5]
 電荷輸送性ワニスAのかわりに電荷輸送性ワニスLを用いた以外は、実施例5-1と同様の方法で電荷輸送性薄膜付き基板Lを作製したが、膜表面に凹凸構造が発生し、平坦な膜は得られなかった。
[Comparative Example 5-5]
A substrate L with a charge-transporting thin film was produced in the same manner as in Example 5-1 except that the charge-transporting varnish L was used instead of the charge-transporting varnish A, but an uneven structure was generated on the film surface. No flat film was obtained.
 作製した電荷輸送性薄膜についてパイルアップ指数を求めた。パイルアップ指数は、隔壁(バンク)幅をA(μm)とし、隔壁(バンク)中央部の電荷輸送性薄膜の膜厚から+10%の膜厚の範囲をB(μm)とした場合における(B/A)×100(%)として求めた。結果を表4~5に示す。なお、実施例5-1~5-3及び5-6並びに比較例5-1及び5-2は短辺を、実施例5-4及び5-5並びに比較例5-3は長辺を、それぞれ隔壁幅としてパイルアップ指数を算出した。 The pile-up index was calculated for the prepared charge-transporting thin film. The pile-up index is (B) when the partition wall (bank) width is A (μm) and the film thickness range of + 10% from the film thickness of the charge-transporting thin film at the center of the partition wall (bank) is B (μm). It was calculated as / A) × 100 (%). The results are shown in Tables 4-5. In addition, Examples 5-1 to 5-3 and 5-6 and Comparative Examples 5-1 and 5-2 have a short side, and Examples 5-4 and 5-5 and Comparative Example 5-3 have a long side. The pile-up index was calculated as the partition wall width for each.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 表4及び5に示したように、本発明の電荷輸送性ワニスを用いて形成された電荷輸送性薄膜は、良好な平坦性を有し、95%以上の高いパイルアップ指数を示した。一方で、比較例の電荷輸送性ワニスを用いて形成された電荷輸送性薄膜は、実施例と比べて、低いパイルアップ指数を示した。また、ポリマーH1を用いた場合(比較例5-4及び5-5)、膜表面に凹凸構造が発生し、平坦な膜は得られなかった。 As shown in Tables 4 and 5, the charge-transporting thin film formed by using the charge-transporting varnish of the present invention had good flatness and showed a high pile-up index of 95% or more. On the other hand, the charge-transporting thin film formed by using the charge-transporting varnish of the comparative example showed a lower pile-up index as compared with the example. Further, when the polymer H1 was used (Comparative Examples 5-4 and 5-5), an uneven structure was generated on the film surface, and a flat film could not be obtained.

Claims (15)

  1.  (A)単分散の電荷輸送性有機化合物、(B)ドーパント及び(C)有機溶媒を含む電荷輸送性ワニスであって、
     (B)ドーパントが、(B1)アリールスルホン酸エステル化合物と、(B2)ハロゲン化テトラシアノキノジメタン又は(B3)ハロゲン化若しくはシアノ化ベンゾキノンとを含む電荷輸送性ワニス。
    A charge-transporting varnish containing (A) a monodisperse charge-transporting organic compound, (B) a dopant, and (C) an organic solvent.
    A charge-transporting varnish in which the dopant (B) comprises (B1) an aryl sulfonic acid ester compound and (B2) a halogenated tetracyanoquinodimethane or (B3) a halogenated or cyanated benzoquinone.
  2.  前記単分散の電荷輸送性有機化合物が、アリールアミン誘導体である請求項1記載の電荷輸送性ワニス。 The charge-transporting varnish according to claim 1, wherein the monodisperse charge-transporting organic compound is an arylamine derivative.
  3.  前記アリールアミン誘導体が、3級アリールアミン化合物である請求項2記載の輸送性ワニス。 The transportable varnish according to claim 2, wherein the arylamine derivative is a tertiary arylamine compound.
  4.  前記3級アリールアミン化合物が、少なくとも1つの窒素原子を有し、かつ全ての窒素原子が3級アリールアミン構造を有するものである請求項3記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 3, wherein the tertiary arylamine compound has at least one nitrogen atom and all nitrogen atoms have a tertiary arylamine structure.
  5.  前記3級アリールアミン化合物が、少なくとも2つの窒素原子を有し、かつ全ての窒素原子が3級アリールアミン構造を有するものである請求項4記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 4, wherein the tertiary arylamine compound has at least two nitrogen atoms and all nitrogen atoms have a tertiary arylamine structure.
  6.  前記アリールスルホン酸エステル化合物が、下記式(B1)又は(B1')で表されるものである請求項1~5のいずれか1項記載の電荷輸送性ワニス。
    Figure JPOXMLDOC01-appb-C000001
    [式中、A1は、置換基を有していてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基又は下記式(B1a)若しくは(B1b)で表される化合物から誘導されるm価の基であり;
    Figure JPOXMLDOC01-appb-C000002
    (式中、W1及びW2は、それぞれ独立に、-O-、-S-、-S(O)-若しくは-S(O2)-、又は置換基を有していてもよい-N-、-Si-、-P-若しくは-P(O)-である。)
     A2は、-O-、-S-又は-NH-であり;
     A3は、又は炭素数6~20の(n+1)価の芳香族基であり;
     X1は、炭素数2~5のアルキレン基であり、該アルキレン基の炭素原子間に、-O-、-S-又はカルボニル基が介在していてもよく、該アルキレン基の水素原子の一部又は全部が、更に炭素数1~20のアルキル基で置換されていてもよく;
     X2は、単結合、-O-、-S-又は-NR-であり、Rは、水素原子又は炭素数1~10の1価炭化水素基であり;
     X3は、置換基を有していてもよい炭素数1~20の1価炭化水素基であり;
     mは、1≦m≦4を満たす整数であり;
     nは、1≦n≦4を満たす整数である。]
    The charge-transporting varnish according to any one of claims 1 to 5, wherein the aryl sulfonic acid ester compound is represented by the following formula (B1) or (B1').
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, A 1 may have a substituent and is represented by an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings or the following formula (B1a) or (B1b). Is an m-valent group derived from the compound to be
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, W 1 and W 2 may independently have -O-, -S-, -S (O)-or -S (O 2 )-, or -N. -, -Si-, -P- or -P (O)-)
    A 2 is -O-, -S- or -NH-;
    A 3 is, or an (n + 1) -valent aromatic group with 6 to 20 carbon atoms;
    X 1 is an alkylene group having 2 to 5 carbon atoms, and an —O—, —S— or carbonyl group may be interposed between the carbon atoms of the alkylene group, and one of the hydrogen atoms of the alkylene group. Part or all may be further substituted with an alkyl group having 1 to 20 carbon atoms;
    X 2 is a single bond, -O-, -S- or -NR-, and R is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms;
    X 3 is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may have a substituent;
    m is an integer that satisfies 1 ≦ m ≦ 4.
    n is an integer that satisfies 1 ≦ n ≦ 4. ]
  7.  前記アリールスルホン酸エステル化合物が、下記式(B1-1)~(B1-3)のいずれかで表されるものである請求項6記載の電荷輸送性ワニス。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rs1~Rs4は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基であり、Rs5は、置換基を有していてもよい炭素数2~20の1価炭化水素基であり;
     A11は、パーフルオロビフェニルから誘導されるm価の基であり、A12は、-O-又は-S-であり、A13は、ナフタレン又はアントラセンから誘導される(n+1)価の基であり;
     m及びnは、前記と同じである。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rs6及びRs7は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基であり、Rs8は、直鎖状若しくは分岐状の1価脂肪族炭化水素基であるが、Rs6、Rs7及びRs8の炭素数の合計は6以上であり;
     A14は、置換基を有していてもよい、1つ以上の芳香環を含むm価の炭化水素基であり、A15は、-O-又は-S-であり、A16は、(n+1)価の芳香族基であり;
     m及びnは、前記と同じである。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rs9~Rs13は、それぞれ独立に、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、又は炭素数2~10のハロゲン化アルケニル基であり;
     Rs14~Rs17は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基であり;
     Rs18は、直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基、又は-ORs19であり、Rs19は、置換基を有していてもよい炭素数2~20の1価炭化水素基であり;
     A17は、-O-、-S-又は-NH-であり;
     A18は、(n+1)価の芳香族基であり;
     nは、前記と同じである。)
    The charge transporting varnish according to claim 6, wherein the aryl sulfonic acid ester compound is represented by any of the following formulas (B1-1) to (B1-3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R s1 to R s4 are each independently a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, and R s5 may have a substituent. It is a monovalent hydrocarbon group having 2 to 20 carbon atoms;
    A 11 is an m-valent group derived from perfluorobiphenyl, A 12 is an -O- or -S-, and A 13 is a (n + 1) -valent group derived from naphthalene or anthracene. Yes;
    m and n are the same as described above. )
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R s6 and R s7 are each independently a hydrogen atom or a linear or branched monovalent aliphatic hydrocarbon group, and R s8 is a linear or branched monovalent fat. Although it is a group hydrocarbon group, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more;
    A 14 is an m-valent hydrocarbon group containing one or more aromatic rings, which may have a substituent, A 15 is —O— or —S—, and A 16 is ( It is an n + 1) valent aromatic group;
    m and n are the same as described above. )
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or carbon number of carbon atoms. 2-10 halogenated alkenyl groups;
    R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms;
    R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or −OR s19 , and R s19 has 2 to 20 carbon atoms which may have a substituent. Is a monovalent hydrocarbon group of
    A 17 is -O-, -S- or -NH-;
    A 18 is an (n + 1) -valent aromatic group;
    n is the same as described above. )
  8.  (B2)ハロゲン化テトラシアノキノジメタンが、下記式(B2)で表されるものである請求項1~7のいずれか1項記載の電荷輸送性ワニス。
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rq1~Rq4は、それぞれ独立に、水素原子又はハロゲン原子であるが、少なくとも1つはハロゲン原子である。)
    (B2) The charge-transporting varnish according to any one of claims 1 to 7, wherein the halogenated tetracyanoquinodimethane is represented by the following formula (B2).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R q1 to R q4 are independently hydrogen atoms or halogen atoms, but at least one is a halogen atom.)
  9.  (B3)ハロゲン化又はシアノ化ベンゾキノンが、下記式(B3)で表されるものである請求項1~8のいずれか1項記載の電荷輸送性ワニス。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rq5~Rq8は、それぞれ独立に、水素原子、ハロゲン原子又はシアノ基であるが、少なくとも1つはハロゲン原子又はシアノ基である。)
    (B3) The charge-transporting varnish according to any one of claims 1 to 8, wherein the halogenated or cyanated benzoquinone is represented by the following formula (B3).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R q5 to R q8 are independently hydrogen atoms, halogen atoms or cyano groups, but at least one is a halogen atom or cyano group.)
  10.  前記(B1)アリールスルホン酸エステル化合物の含有量が、前記(B2)ハロゲン化テトラシアノキノジメタン又は前記(B3)ハロゲン化若しくはシアノ化ベンゾキノンに対し、モル比で、0.01~50である請求項1~9のいずれか1項記載の電荷輸送性ワニス。 The content of the (B1) aryl sulfonic acid ester compound is 0.01 to 50 in molar ratio with respect to the (B2) halogenated tetracyanoquinodimethane or the (B3) halogenated or cyanated benzoquinone. The charge-transporting varnish according to any one of claims 1 to 9.
  11.  前記単分散の電荷輸送性有機化合物の分子量が、200~9,000である請求項1~10のいずれか1項記載の電荷輸送性ワニス。 The charge-transporting varnish according to any one of claims 1 to 10, wherein the monodisperse charge-transporting organic compound has a molecular weight of 200 to 9,000.
  12.  前記有機溶媒が、低極性有機溶媒を含む請求項1~11のいずれか1項記載の電荷輸送性ワニス。 The charge-transporting varnish according to any one of claims 1 to 11, wherein the organic solvent contains a low-polarity organic solvent.
  13.  請求項1~12のいずれか1項記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。 A charge-transporting thin film obtained from the charge-transporting varnish according to any one of claims 1 to 12.
  14.  請求項13記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 The organic electroluminescence device including the charge transporting thin film according to claim 13.
  15.  前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である請求項14記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 14, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
PCT/JP2020/024704 2019-06-26 2020-06-24 Charge-transporting varnish WO2020262419A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080045342.9A CN114008147B (en) 2019-06-26 2020-06-24 Charge-transporting varnish
JP2021527667A JPWO2020262419A1 (en) 2019-06-26 2020-06-24
KR1020227001764A KR20220025814A (en) 2019-06-26 2020-06-24 charge transport varnish

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019118169 2019-06-26
JP2019-118169 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262419A1 true WO2020262419A1 (en) 2020-12-30

Family

ID=74060157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024704 WO2020262419A1 (en) 2019-06-26 2020-06-24 Charge-transporting varnish

Country Status (5)

Country Link
JP (1) JPWO2020262419A1 (en)
KR (1) KR20220025814A (en)
CN (1) CN114008147B (en)
TW (1) TW202115202A (en)
WO (1) WO2020262419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773677A (en) * 2021-10-18 2021-12-10 中国人民解放军陆军装甲兵学院 Perovskite coating powder for thermal spraying and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
WO2017217455A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor
WO2017217457A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101557109B1 (en) 2007-04-12 2015-10-02 닛산 가가쿠 고교 가부시키 가이샤 Oligoaniline compound
JP2009104859A (en) * 2007-10-23 2009-05-14 Canon Inc Organic el element, and manufacturing method thereof
CN105254645A (en) * 2009-10-29 2016-01-20 住友化学株式会社 Compound for forming MACROMOLECULAR COMPOUND
JP5343815B2 (en) 2009-11-11 2013-11-13 セイコーエプソン株式会社 Organic EL device, organic EL device manufacturing method, organic EL device, electronic device
CN107236258A (en) * 2010-05-11 2017-10-10 索尔维美国有限公司 The conjugated polymer and device of doping
CN103460428B (en) * 2011-03-28 2016-09-07 住友化学株式会社 The preparation method of electronic equipment, macromolecular compound, organic compound and macromolecular compound
US9282893B2 (en) * 2012-09-11 2016-03-15 L.I.F.E. Corporation S.A. Wearable communication platform
JP5951539B2 (en) * 2013-03-26 2016-07-13 富士フイルム株式会社 Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power source for sensor
KR102270654B1 (en) * 2013-10-04 2021-06-30 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish, charge-transporting thin film, organic electroluminescent device, and manufacturing method for charge-transporting thin film
JP2016045248A (en) * 2014-08-20 2016-04-04 富士フイルム株式会社 Photosensitive resin composition, production method of cured film, cured film, liquid crystal display device, organic electroluminescence display device and touch panel
CN107073914A (en) * 2014-09-30 2017-08-18 东丽株式会社 Display supporting substrates, use its colour filter and its manufacture method, organic EL element and its manufacture method and flexible organic el display
CN105932037B (en) * 2016-05-12 2018-10-12 京东方科技集团股份有限公司 A kind of organic electroluminescent display substrate and preparation method thereof, display device
WO2018000179A1 (en) * 2016-06-28 2018-01-04 Dow Global Technologies Llc Process for making an organic charge transporting film
SI3668512T1 (en) * 2017-08-15 2023-06-30 Agios Pharmaceuticals, Inc. Pyruvate kinase modulators and use thereof
CN107732021B (en) * 2017-11-23 2019-09-03 京东方科技集团股份有限公司 A kind of organic electroluminescence device and preparation method thereof and display device
CN109735167B (en) * 2019-01-08 2021-11-05 京东方科技集团股份有限公司 Hole injection layer ink, organic electroluminescent device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050253A1 (en) * 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
WO2017217455A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor
WO2017217457A1 (en) * 2016-06-16 2017-12-21 日産化学工業株式会社 Sulfonic acid ester compound and use therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113773677A (en) * 2021-10-18 2021-12-10 中国人民解放军陆军装甲兵学院 Perovskite coating powder for thermal spraying and preparation method thereof

Also Published As

Publication number Publication date
JPWO2020262419A1 (en) 2020-12-30
TW202115202A (en) 2021-04-16
CN114008147A (en) 2022-02-01
KR20220025814A (en) 2022-03-03
CN114008147B (en) 2023-05-02

Similar Documents

Publication Publication Date Title
JP5790901B1 (en) Aniline derivatives and uses thereof
JP7310609B2 (en) charge transport varnish
JP6947180B2 (en) Varnish for forming charge-transporting thin films
JPWO2015141585A1 (en) Oligoaniline derivative, charge transporting varnish, and organic electroluminescence device
JP6424835B2 (en) Aryl sulfonic acid compound and use thereof
JP7351314B2 (en) Charge transport varnish
CN114008147B (en) Charge-transporting varnish
EP3101003B1 (en) Aryl sulfonic acid compound and use thereof
JPWO2020067288A1 (en) Polymers and their uses
WO2020262418A1 (en) Charge-transporting varnish
JP7298611B2 (en) Composition for forming charge-transporting thin film
CN111836816B (en) Aniline derivatives and use thereof
WO2020203594A1 (en) Fluorene derivative and use thereof
WO2020196154A1 (en) Arylamine compound and use thereof
WO2020158410A1 (en) Charge-transporting varnish
WO2020066979A1 (en) Method for manufacturing substrate with attached organic functional film
CN117121652A (en) Charge-transporting varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227001764

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20831478

Country of ref document: EP

Kind code of ref document: A1