WO2020196154A1 - Arylamine compound and use thereof - Google Patents

Arylamine compound and use thereof Download PDF

Info

Publication number
WO2020196154A1
WO2020196154A1 PCT/JP2020/011967 JP2020011967W WO2020196154A1 WO 2020196154 A1 WO2020196154 A1 WO 2020196154A1 JP 2020011967 W JP2020011967 W JP 2020011967W WO 2020196154 A1 WO2020196154 A1 WO 2020196154A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
charge
thin film
organic
Prior art date
Application number
PCT/JP2020/011967
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 首藤
歳幸 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080023854.5A priority Critical patent/CN113614068A/en
Priority to JP2021509253A priority patent/JP7491302B2/en
Priority to KR1020217032880A priority patent/KR20210144758A/en
Publication of WO2020196154A1 publication Critical patent/WO2020196154A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to arylamine compounds and their use.
  • organic electroluminescence (hereinafter referred to as organic EL) elements are expected to be put into practical use in fields such as displays and lighting, and various developments related to materials and element structures are expected for the purpose of low voltage drive, high brightness, long life, etc. Has been made.
  • a plurality of functional thin films are used in this organic EL element, and one of them, the hole injection layer, is responsible for the transfer of electric charge between the anode and the hole transport layer or the light emitting layer, and is low in the organic EL element. It plays an important role in achieving voltage drive and high brightness.
  • the method for producing the hole injection layer is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing these processes, the wet process can efficiently produce a thin film with a large area and high flatness. For this reason, as the area of organic EL displays is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventors have a charge transporting property that provides a thin film that can be applied to various wet processes and can realize excellent EL device characteristics when applied to a hole injection layer of an organic EL device.
  • the present invention has been made in view of such circumstances, and when a thin film having good solubility in an organic solvent and good optical characteristics is provided and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide an arylamine compound capable of realizing an organic EL device having good properties.
  • a predetermined arylamine compound having an arylcarbazole skeleton has good solubility in an organic solvent and a varnish containing the compound.
  • the present invention has been completed by finding that an organic EL element having good characteristics can be obtained when a thin film having excellent optical characteristics is provided and the thin film is applied to a hole injection layer or the like.
  • An arylamine compound which is represented by the following formula (1).
  • R 1 independently represents an aryl group having 6 to 20 carbon atoms
  • R 2 independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, and 1 to 20 carbon atoms.
  • arylamine compounds represented by the following formula (1-1A) or (1-1B), (In the formula, R 1 and R 2 have the same meanings as described above.) 4. An arylamine compound according to any one of 1 to 3, wherein R 1 is a phenyl group, a 1-naphthyl group or a 2-naphthyl group. 5. 4 arylamine compounds in which R 1 is all phenyl groups, 6. An arylamine compound according to any one of 1 to 5, wherein R 2 is an all hydrogen atom. 7. A charge-transporting varnish containing any of the arylamine compounds 1 to 6 and an organic solvent, 8. 7 charge-transporting varnishes containing dopant material, 9.
  • the charge transporting thin film provides twelve organic electroluminescence devices that are hole injection layers or hole transport layers.
  • the arylamine compound of the present invention has good solubility in an organic solvent, and by using a charge-transporting varnish containing this arylamine compound, high transparency (low k (disappearance coefficient)) and high A charge transporting thin film having a refractive index (high n) can be obtained.
  • This charge transporting thin film can be suitably used as a thin film for electronic devices such as organic EL devices, and in particular, by applying the charge transporting thin film of the present invention to a hole injection layer or the like of an organic EL device. , It is possible to manufacture an element having good characteristics.
  • the arylamine compound according to the present invention is characterized by being represented by the following formula (1), and a preferred embodiment is represented by the formula (1-1).
  • R 1 independently represents an aryl group having 6 to 20 carbon atoms
  • R 2 independently represents a hydrogen atom, a halogen atom, and a nitro group. It represents a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl or t-butyl.
  • Alkoxy groups having 1 to 20 carbon atoms may have linear, branched, or cyclically displaced alkyl groups, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. , Isobutoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexyloxy, n-octyloxy, n-decyloxy, 2-methylhexyloxy, 2-ethylhexyloxy, 2-n-propylhexyloxy, 2- Examples thereof include n-butylhexyloxy, 2-ethyldecyloxy, and 3-ethylhexyloxy group.
  • aryl groups having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenyl, 9-phenyl group and the like.
  • the alkyl halide group having 1 to 20 carbon atoms is a group in which at least one hydrogen atom of the alkyl group having 1 to 20 carbon atoms is substituted with a halogen atom, and specific examples thereof include fluoromethyl, difluoromethyl, and tri.
  • Fluoromethyl bromodifluoromethyl, 2-chloroethyl, 2-bromoethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1, 1,2-Trifluoroethyl, pentafluoroethyl, 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1 , 3, 3,3-Hexafluoropropane-2-yl, 3-bromo-2-methylpropyl, 4-bromobutyl, perfluoropentyl, 2- (perfluorohexyl) ethyl group and the like.
  • R 1 is preferably an aryl group having 6 to 14 carbon atoms, more preferably a phenyl group, a 1-naphthyl group, and a 2-naphthyl group, all of which are phenyl groups.
  • a 1-naphthyl or 2-naphthyl group is even more preferred, and a phenyl group is even more preferred.
  • R 2 is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, preferably a hydrogen atom.
  • Alkyl groups having 1 to 10 carbon atoms are more preferable, and all hydrogen atoms are even more preferable.
  • the bonding positions of the three nitrogen atoms of the central carbazole skeleton and the carbazole ring of the arylcarbazole skeleton are not particularly limited, and even if they are bonded at the same position, they are different.
  • the 3-position (meta-position) or 4-position (para-position) with respect to the nitrogen atom of the arylcarbazole skeleton ) Is preferred, and the one bonded at the 3-position is more preferable.
  • arylamine compound suitable in the present invention examples include those represented by the following formulas (2) or (3), but are not limited thereto.
  • the arylamine compound represented by the formula (1) or (1-1) catalyzes the diaminocarbazole compound [Ia] or [Ib] and the halide arylcarbazole compound [II]. It can be produced by reacting in the presence.
  • Examples of the halogen atom include the same as above.
  • Examples of the pseudohalogen group include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy, trifluoromethanesulfonyloxy and nonafluorobutanesulfonyloxy groups; aromatic sulfonyloxy groups such as benzenesulfonyloxy and toluenesulfonyloxy groups. ..
  • the charging ratio of the diaminocarbazole compound [Ia] or [Ib] to the halide arylcarbazole compound [II] is such that the amount of the halide arylcarbazole compound is 5 equivalents or more with respect to the amount of substance of the total NH groups of the diaminocarbazole compound. However, an amount of about 5 to 5.5 equivalents is preferable.
  • Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide and copper iodide; Pd (PPh 3 ) 4 (tetrax (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (Bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt-Bu) 3 ) Examples thereof include palladium catalysts such as 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate). These catalysts may be used alone or in combination of two or more. These catalysts may also be used with suitable known ligands.
  • copper catalysts such as copper chloride, copper bromide and copper iodide
  • ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl ( Phenyl) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphine) ethane, 1,3-bis (diphenylphosphine) propane, 1,4-bis (diphenylphos) Tertiary phosphine such as fino) butane, 1,1'-bis (diphenylphosphine) ferrocene, tertiary phosphine such as trimethylphosphine, triethylphosphine, triphenylphosphine
  • the amount of the catalyst used can be about 0.01 mol to 0.5 mol with respect to 1 mol of the arylcarbazole compound [II], but is preferably about 0.05 to 0.2 mol.
  • the amount used can be 0.1 to 5 equivalents with respect to the metal complex to be used, but 1 to 2 equivalents are preferable.
  • a base for the said reaction.
  • the base include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, sodium hydroxide, potassium hydroxide.
  • alkali metal hydride alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal carbonate; alkali carbonate soil such as calcium carbonate
  • metals n-butyl lithium, s-butyl lithium, t-butyl lithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidin (LiTMP), hexamethyldisilazane lithium (LHMDS), etc.
  • Organic lithium Organic lithium; amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like can be mentioned.
  • amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like can be mentioned.
  • the amount used can be 0.1 to 5 equivalents with respect to the arylcarbazole compound [II] used, but 1 to 2 equivalents are preferable.
  • Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the desired arylamine compound.
  • a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
  • Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), and aromatics.
  • Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mecitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, etc.) P-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methylethylketone, etc.) Methylisobutylketone, di-n-butylketone, cyclohexanone, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc
  • the reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent used, but is particularly preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
  • post-treatment can be carried out according to a conventional method to obtain the desired arylamine compound.
  • the above-mentioned arylamine compound of the present invention can be suitably used as a charge transporting substance.
  • it can be used as a charge-transporting varnish containing the arylamine compound of the present invention and an organic solvent, and the charge-transporting varnish can be used to improve its charge-transporting ability depending on the use of the obtained thin film.
  • It may contain a dopant substance for the purpose of.
  • the arylamine compound of the present invention can be used in combination with other conventionally known charge-transporting substances such as an aniline derivative and a thiophene derivative, but the arylamine compound of the present invention alone can be used as a charge-transporting substance. preferable.
  • charge transportability is synonymous with conductivity.
  • the charge-transporting varnish may be a varnish having a charge-transporting property by itself, or the solid film obtained thereby may have a charge-transporting property.
  • the dopant substance is not particularly limited as long as it is soluble in at least one solvent used for varnish, and either an inorganic dopant substance or an organic dopant substance can be used. Further, the inorganic and organic dopant substances may be used alone or in combination of two or more. Furthermore, the dopant substance first exhibits its function as a dopant substance in the process of obtaining a charge-transporting thin film which is a solid film from the varnish, for example, when a part of the molecule is removed by an external stimulus such as heating during firing. Alternatively, it may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
  • a heteropolyacid is preferable as the inorganic dopant substance.
  • the heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type represented by the formula (H1) or a Dawson type chemical structure represented by the formula (H2). It is a polyacid formed by condensing an isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and an oxygen acid of a different element.
  • Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
  • heteropolyacid examples include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, phosphotungstic acid, and the like, and these may be used alone or in combination of two or more. Good.
  • these heteropolyacids are available as commercial products, and can also be synthesized by a known method.
  • the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable.
  • one of the two or more types of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • heteropolyacids in quantitative analysis such as elemental analysis, have a large number of elements or a small number of elements from the structure represented by the general formula, but they are commercially available products or known synthetics. As long as it is properly synthesized according to the method, it can be used in the present invention.
  • phosphotungstic acid is represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O
  • phosphomolybdic acid is represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O, respectively.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product.
  • it can be used in the present invention as long as it is appropriately synthesized according to a known synthesis method.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
  • the amount of the heteropolyacid used can be about 0.001 to 50.0 with respect to the charge transporting substance 1 in terms of mass ratio, but is preferably about 0.01 to 20.0, more preferably 0. It is about 1 to 10.0.
  • a tetracyanoquinodimethane derivative or a benzoquinone derivative can be particularly used as the organic dopant substance.
  • the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and halotetracyanoquinodimethane represented by the formula (H3).
  • the benzoquinone derivative include tetrafluoro-1,4-benzoquinone (F4BQ), tetrachloro-1,4-benzoquinone (chloranil), tetrabromo-1,4-benzoquinone, 2,3-dichloro-5, and so on. 6-Dicyano-1,4-benzoquinone (DDQ) and the like can be mentioned.
  • R 500 to R 503 each independently represent a hydrogen atom or a halogen atom, but at least one is a halogen atom, at least two are preferably halogen atoms, and at least three are halogen atoms. More preferably, all are halogen atoms.
  • the halogen atom include the same ones as described above, but a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
  • halotetracyanoquinodimethane examples include 2-fluoro-7,7,8,8-tetracyanoquinodimethane and 2-chloro-7,7,8,8-tetracyanoquinodimethane.
  • 2,5-Difluoro-7,7,8,8-Tetracyanoquinodimethane 2,5-Dichloro-7,7,8,8-Tetracyanoquinodimethane, 2,3,5,6-Tetra
  • the amount of the tetracyanoquinodimethane derivative and the benzoquinone derivative used is preferably 0.0001 to 100 equivalents, more preferably 0.01 to 50 equivalents, and even more preferably 1 to 20 equivalents, relative to the charge transporting substance. is there.
  • the organic dopant substance is an electrically neutral onium composed of a monovalent or divalent anion represented by the following formula (a1) and a counter cation represented by the formulas (c1) to (c5). Borate salts can also be used.
  • Ar independently represents an aryl group having 6 to 20 carbon atoms which may have a substituent or a heteroaryl group having 2 to 20 carbon atoms which may have a substituent
  • L Represents an alkylene group having 1 to 20 carbon atoms, -NH-, an oxygen atom, a sulfur atom or -CN + -.
  • the alkylene group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, methylmethylene, dimethylmethylene, ethylene, trimethylene and propylene. , Tetramethylene, pentamethylene, hexamethylene group and the like. Examples of the aryl group and the heteroaryl group include the same as above.
  • anion of the above formula (a1) include, but are not limited to, those represented by the formula (a2).
  • the amount of the onium borate salt used can be about 0.1 to 10 with respect to the charge-transporting substance in terms of the amount of substance (molar).
  • the onium borate salt can be synthesized by referring to, for example, a known method described in Japanese Patent Application Laid-Open No. 2005-314682.
  • an aryl sulfonic acid compound or an aryl sulfonic acid ester compound can also be preferably used.
  • aryl sulfonic acid compound examples include benzene sulfonic acid, tosylic acid, p-styrene sulfonic acid, 2-naphthalene sulfonic acid, 4-hydroxybenzene sulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzene sulfonic acid, and dihexyl benzene.
  • aryl sulfonic acid compounds examples include aryl sulfonic acid compounds represented by the formula (H4) or (H5).
  • a 1 represents O or S, with O being preferred.
  • a 2 represents a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
  • a 3 represents a 2- to tetravalent perfluorobiphenyl group, p represents the number of bonds between A 1 and A 3, and is an integer satisfying 2 ⁇ p ⁇ 4, where A 3 is perfluorobiphenyldiyl.
  • the group, preferably a perfluorobiphenyl-4,4'-diyl group, preferably has a p of 2.
  • q represents the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ⁇ q ⁇ 4, but 2 is optimal.
  • a 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms, or halogenation having 2 to 20 carbon atoms. Representing an alkenyl group, at least three of A 4 to A 8 are halogen atoms.
  • alkyl halide group having 1 to 20 carbon atoms trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl. , 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4 , 4-Pentafluorobutyl, 2,2,3,3,4,5,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. Be done.
  • halogenated alkenyl group having 2 to 20 carbon atoms examples include perfluorovinyl, perfluoropropenyl (allyl), perfluorobutenyl group and the like.
  • Other examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms include the same as above, but the halogen atom is preferably a fluorine atom.
  • a 4 to A 8 are a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or an alkenyl halide having 2 to 10 carbon atoms.
  • a 4 ⁇ a 8 is preferably a fluorine atom, a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 5 carbon atoms, having 1 to 5 carbon atoms More preferably, it is an alkyl fluoride group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and hydrogen atom, fluorine atom, cyano group, and the like.
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
  • R represents the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ⁇ r ⁇ 4, but 2 to 4 is preferable, and 2 is optimal.
  • the molecular weight of the aryl sulfonic acid compound used as the dopant substance is not particularly limited, but is preferably 2000 or less, more preferably 2000 or less, considering the solubility in an organic solvent when used together with the arylamine compound of the present invention. It is 1500 or less.
  • the amount of the aryl sulfonic acid compound used is preferably about 0.01 to 20.0, more preferably about 0.4 to 5.0 with respect to the charge transporting substance 1 in terms of the amount of substance (molar). ..
  • a commercially available product may be used as the aryl sulfonic acid compound, but it can also be synthesized by a known method described in International Publication No. 2006/025342, International Publication No. 2009/09632, and the like.
  • the aryl sulfonic acid ester compound the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217457, and Japanese Patent Application No. 2017-243631.
  • the above-mentioned aryl sulfonic acid ester compounds and the like can be mentioned, and specifically, those represented by any of the following formulas (H6) to (H8) are preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • a 11 is an m-valent group derived from perfluorobiphenyl.
  • a 12 is —O— or —S—, but —O— is preferred.
  • a 13 is a (n + 1) -valent group derived from naphthalene or anthracene, but a group derived from naphthalene is preferable.
  • R s1 to R s4 are each independently a hydrogen atom or a linear or branched chain alkyl group having 1 to 6 carbon atoms, and R s5 is an optionally substituted alkyl group having 2 to 20 carbon atoms. It is a monovalent hydrocarbon group of.
  • linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl group and the like.
  • An alkyl group having 1 to 3 carbon atoms is preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl.
  • Alkyl groups such as groups; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
  • R s1 to R s4 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. Therefore, it is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • a 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring. Examples of such a hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
  • a part or all of the hydrogen atom may be further substituted with a substituent, and such a substituent includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro.
  • Cyano hydroxy, amino, silanol, thiol, carboxy, sulfonic acid ester, phosphoric acid, phosphoric acid ester, ester, thioester, amide, organooxy, organoamino, organosilyl, organothio, acyl, sulfo, monovalent hydrocarbon group And so on.
  • a 14 a group derived from benzene, biphenyl or the like is preferable.
  • a 15 is —O— or —S—, but —O— is preferable.
  • a 16 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms. Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s6 and R s7 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups, and R s8 is a linear or branched chain monovalent aliphatic hydrocarbon. It is a hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • linear or branched monovalent aliphatic hydrocarbon group examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, n-octyl, and the like.
  • Alkyl groups having 1 to 20 carbon atoms such as 2-ethylhexyl and decyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a hydrocarbon group.
  • R s6 is preferably a hydrogen atom
  • R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
  • R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group having 1 to 10 carbon atoms. Alternatively, it is a halogenated alkenyl group having 2 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and s-butyl.
  • Examples thereof include t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group and the like.
  • the alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms is substituted with a halogen atom.
  • Specific examples include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3.
  • the halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms is substituted with a halogen atom.
  • Specific examples include perfluorovinyl, perfluoro-1-propenyl, perfluoro-2-propenyl, perfluoro-1-butenyl, perfluoro-2-butenyl, perfluoro-3-butenyl group and the like.
  • R s9 a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable.
  • the alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable.
  • R s10 to R s13 a halogen atom is preferable, and a fluorine atom is more preferable.
  • a 17 is -O-, -S- or -NH-, but -O- is preferable.
  • a 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms. Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s14 to R s17 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • Specific examples of the monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl and n.
  • -Alkyl groups having 1 to 20 carbon atoms such as heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl
  • alkenyl groups having 2 to 20 carbon atoms such as -2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl and hexenyl groups, but alkyl groups having 1 to 20 carbon atoms are preferable, and alkyl groups having 1 to 20 carbon atoms are preferable.
  • An alkyl group of 10 is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
  • R s18 is a linear or branched chain monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or OR s19 .
  • R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted. Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms of R s18 include the same as above.
  • R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
  • Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms of R s19 include those other than the methyl group among the above-mentioned monovalent aliphatic hydrocarbon groups, and aryl groups such as phenyl, naphthyl and phenanthryl groups. Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms. Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
  • Suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
  • the amount of the aryl sulfonic acid ester compound used is preferably about 0.01 to 20, more preferably about 0.05 to 10 with respect to the charge transporting substance 1 in terms of the amount of substance (molar).
  • aryl sulfonic acid compound or an aryl sulfonic acid ester compound as the dopant substance, and the solubility in a solvent is preferable.
  • an aryl sulfonic acid ester compound in consideration of obtaining a thin film having a smaller extinction coefficient.
  • the charge transport varnish is an organic silane compound for the purpose of improving the injection property into the hole transport layer and the life characteristics of the device. May include. Its content is usually about 1 to 30% by mass with respect to the total mass of the charge transporting substance and the dopant substance.
  • a highly polar solvent capable of satisfactorily dissolving the arylamine compound of the present invention can be used as the organic solvent used when preparing the charge transporting varnish of the present invention.
  • the arylamine compound of the present invention can be dissolved in a solvent regardless of the polarity of the solvent.
  • a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent.
  • a low polar solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz
  • a high polar solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
  • low polar solvents include, for example. Chlorine-based solvents such as chloroform and chlorobenzene; Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene; Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol; Ethereal solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether; Esters such as methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl maleate,
  • Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone; Ketone solvents such as ethyl methyl ketone, isophorone, cyclohexanone; Cyan-based solvents such as acetonitrile and 3-methoxypropionitrile; Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, and 2,3-butanediol; Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenyl
  • the viscosity of the charge-transporting varnish is appropriately determined depending on the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content means a component other than the solvent contained in the charge transport varnish.
  • the solid content concentration of the charge-transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. It is about%, preferably about 0.5 to 5.0% by mass, and more preferably about 1.0 to 3.0% by mass in consideration of improving the coatability of the varnish.
  • the method for preparing the charge-transporting varnish is not particularly limited, but for example, a solid content such as a charge-transporting substance containing the arylamine compound of the present invention is dissolved in a high-polarity solvent, and a low-polarity solvent is dissolved therein.
  • a submicrometer order filter or the like is used. It is desirable to use and filter.
  • the charge-transporting varnish described above can easily produce a charge-transporting thin film by using the varnish, it can be suitably used when manufacturing an electronic device, particularly an organic EL device.
  • the charge-transporting thin film can be formed by applying the above-mentioned charge-transporting varnish on a substrate and firing it.
  • the varnish coating method is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an inkjet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
  • the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum can be obtained. Although it can be obtained, depending on the type of dopant substance used, a thin film having charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
  • the firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., for example, the obtained thin film.
  • it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but the arylamine compound represented by the above formula (1) is used as a charge transporting substance.
  • a thin film having good charge transportability can be obtained even at a low temperature of 200 ° C. or lower.
  • a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate. It may be carried out using an appropriate device such as an oven.
  • the thickness of the charge transporting thin film is not particularly limited, but when it is used as a functional layer provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer of an organic EL element. It is preferably 5 to 300 nm.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate at the time of coating.
  • the charge-transporting thin film of the present invention described above usually exhibits a refractive index (n) of 1.50 or more and an extinction coefficient (k) of 0.10 or less with an average value in the wavelength region of 400 to 800 nm. In some embodiments, it exhibits a refractive index (n) of 1.60 or higher, in other embodiments it exhibits a refractive index (n) of 1.70 or higher, and in some embodiments it has an extinction coefficient of 0.07 or lower. (K) shows an extinction coefficient (k) of 0.02 or less in some other embodiments.
  • the above-mentioned charge-transporting thin film When the above-mentioned charge-transporting thin film is applied to an organic EL element, the above-mentioned charge-transporting thin film can be provided between a pair of electrodes constituting the organic EL element.
  • Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f).
  • an electron block layer or the like may be provided between the light emitting layer and the anode
  • a hole block layer or the like may be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer or the hole injection transport layer may also have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer is a hole (hole).
  • A Antenna / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode
  • c Electron / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • the "hole injection layer”, the “hole transport layer” and the “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer.
  • it has a function and only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and between the light emitting layer and the anode,
  • the layer close to the anode is the “hole injection layer” and the other layers are the “hole transport layer”.
  • the hole injection (transport) layer a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
  • the "electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer.
  • an “electron injection transporting layer” When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injection transporting layer”, and a layer of electron transporting material is provided between the light emitting layer and the cathode.
  • the layer close to the cathode is the “electron injection layer”, and the other layers are the “electron transport layers”.
  • the "light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted.
  • the host material mainly promotes the recombination of electrons and holes and has a function of confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. Has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge transporting thin film of the present invention can be used as a functional layer provided between the anode and the light emitting layer in an organic EL device, but is suitable as a hole injection layer, a hole transport layer, and a hole injection transport layer. , More suitable as a hole injection layer or a hole transport layer, and even more suitable as a hole injection layer.
  • Examples of materials and methods used when manufacturing an EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for manufacturing an OLED device having a hole injection layer made of a thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrodes are preliminarily cleaned with alcohol, pure water, or the like, or surface-treated with UV ozone treatment, oxygen-plasma treatment, or the like, as long as the electrodes are not adversely affected.
  • a hole injection layer made of the charge-transporting thin film of the present invention is formed on the anode substrate by the above method.
  • a hole transport layer, a light emitting layer, an electron transport layer, an electron transport layer / hole block layer, and a cathode metal are sequentially vapor-deposited.
  • a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and metal anodes composed of metals typified by aluminum and alloys thereof, which are flat. Those that have undergone chemical treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, and N, N'-bis (naphthalen-1-yl) -N, N'-bis.
  • Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo.
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo.
  • Low molecular weight luminescent materials such as thiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3-alkyl Examples thereof include, but are not limited to, a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) and polyvinylcarbazole.
  • the light emitting layer When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant is a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). , A naphthacene derivative such as rubrene, a quinacridone derivative, a condensed polycyclic aromatic ring such as perylene, and the like, but are not limited thereto.
  • Examples of the material forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
  • Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). Metal fluorides, but are not limited to these.
  • Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • the luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH-).
  • polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF)
  • MEH- poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene)
  • PVCz polyvinylcarbazole
  • the charge transporting varnish of the present invention is suitable for forming a functional layer provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer of an organic EL device.
  • Fine shape measuring machine Surfcoder ET-4000 Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd. (7) Measurement of element current density and brightness: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Life measurement of EL element (brightness half-life measurement): Organic EL brightness life manufactured by EHC Co., Ltd. Evaluation system PEL-105S (9) Measurement of refractive index (n) and extinction coefficient (k): Multi-incident angle spectroscopic ellipsometer VASE manufactured by JA Woolam Japan
  • the obtained filtrate was added dropwise to a mixed solvent of ethyl acetate and methanol, and the mixture was stirred at room temperature for 1 hour.
  • the precipitated solid was separated by filtration and the obtained solid was dried to obtain 3.50 g of arylamine compound B (yield 98%).
  • Example 2-1 Arylamine compound A (0.027 g) obtained in Example 1-1 and an arylsulfonic acid ester represented by the following formula synthesized in chloroform (10 g) according to the method described in International Publication No. 2017/217455.
  • the solution obtained by adding A (0.024 g) and stirring at room temperature to dissolve the solution was filtered through a syringe filter having a pore size of 0.2 ⁇ m to obtain a charge-transporting varnish A1.
  • Example 2-2 A charge-transporting varnish B1 was obtained in the same manner as in Example 2-1 except that the arylamine compound A was changed to the arylamine compound B obtained in Example 1-2.
  • Example 2-3 A charge-transporting varnish A2 was obtained in the same manner as in Example 2-1 except that the amount of the arylamine compound A used was changed to 0.040 g.
  • Example 2-4 A charge-transporting varnish B2 was obtained in the same manner as in Example 2-2, except that the amount of the arylamine compound B used was changed to 0.040 g.
  • Example 3-1 and Example 3-2 Production of thin film and evaluation of film physical properties
  • Example 3-1 and Example 3-2 The varnishes obtained in Example 2-1 and Example 2-2 were each applied to a quartz substrate using a spin coater, dried in air at 120 ° C. for 1 minute, and then dried in air at 200 ° C. at 15 ° C. It was fired for a minute to form a uniform thin film of 50 nm on a quartz substrate.
  • the visible region average refractive index n and the visible region average extinction coefficient k at a wavelength of 400 to 800 nm were measured. The results are shown in Table 1.
  • the thin film obtained from the charge-transporting varnish of the present invention has a high refractive index and a low extinction coefficient.
  • Example 4-1 As the ITO substrate, a 25 mm ⁇ 25 mm ⁇ 0.7 t glass substrate in which indium tin oxide (ITO) is patterned on the surface with a thickness of 150 nm is used, and before use, an O 2 plasma cleaning device (150 W, 30 seconds) is used. Impurities on the surface were removed. Subsequently, the hole injection layer forming solution prepared as described above is applied onto the ITO substrate by spin coating, heated to 80 ° C. on a hot plate in the air, dried for 1 minute, and then further dried at 230 ° C. for 15 ° C. The hole injection layer (film thickness: 30 nm) was formed by heating and firing for 1 minute.
  • ITO indium tin oxide
  • Example 2-3 the charge-transporting varnish A2 obtained in Example 2-3 was applied onto the hole injection layer using a spin coater, and then calcined at 130 ° C. for 10 minutes in an air atmosphere to obtain holes of 40 nm.
  • a transport layer thin film was formed.
  • a hole-only element (HOD) was obtained by forming an aluminum thin film of 80 nm at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa).
  • Example 4-2 HOD was prepared in the same manner as in Example 4-1 except that the charge transporting varnish B2 obtained in Example 2-4 was used instead of the charge transporting varnish A2.
  • the thin film prepared from the charge transporting varnish of the present invention exhibits excellent charge transporting property as a hole transporting layer.
  • Example 5-1 Fabrication of Single-Layer Element (SLD)
  • SLD Single-Layer Element
  • Example 5-1 The charge-transporting varnish A1 obtained in Example 2-1 was applied on an ITO substrate similar to that in Example 4-1 by spin coating, dried in air at 120 ° C. for 1 minute, and then further in the air atmosphere. Below, it was fired at 200 ° C. for 15 minutes to form a hole injection layer (film thickness: 50 nm). On this, an aluminum thin film of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa) to obtain a single-layer element (SLD).
  • a vapor deposition apparatus vacuum degree 1.0 ⁇ 10 -5 Pa
  • Example 5-2 An SLD was prepared in the same manner as in Example 5-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.
  • Example 6-1 The charge-transporting varnish A1 obtained in Example 2-1 was applied onto an ITO substrate similar to that in Example 4-1 using a spin coater, dried in the air at 120 ° C. for 1 minute, and then The hole injection layer (film thickness: 50 nm) was formed by firing at 200 ° C. for 15 minutes. On top of this, a thin film of ⁇ -NPD and aluminum was sequentially laminated using a vapor deposition apparatus (vacuum degree 2.0 ⁇ 10 -5 Pa) to obtain HOD. The vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec. The film thicknesses of the ⁇ -NPD and aluminum thin films were 30 nm and 80 nm, respectively.
  • Example 6-2 HOD was prepared in the same manner as in Example 6-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.
  • the thin film prepared from the charge-transporting varnish of the present invention exhibits good hole-injecting properties into the hole-transporting layer as the hole-injecting layer.
  • Example 7-1 Fabrication of organic EL device and evaluation of characteristics
  • the charge-transporting varnish A1 obtained in Example 2-1 was applied onto an ITO substrate similar to that in Example 4-1 using a spin coater, dried in the air at 120 ° C. for 1 minute, and then It was calcined at 200 ° C. for 15 minutes to form a thin film of 50 nm.
  • ⁇ -NPD was deposited at 0.2 nm / sec at 30 nm using a thin film deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa).
  • a 10 nm film was formed on the electronic block material HTEB-01 manufactured by Kanto Chemical Co., Inc.
  • the light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and the light emitting layer dopant material Ir (ppy) 3 were co-deposited.
  • the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated.
  • thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL device.
  • the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, respectively, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, an organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together. At this time, a water catching agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • UV light wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2
  • Example 7-2 An organic EL device was produced in the same manner as in Example 7-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This arylamine compound represented by formula (1) has good solubility in an organic solvent, and provides a thin film having excellent optical characteristics, wherein when said thin film is applied to a hole injection layer or the like, an organic EL element having good characteristics can be achieved. (In the formula, R1's each independently represent an aryl group having 6-20 carbon atoms, and R2's each independently represent a hydrogen atom, a halogen atom, a nitro group, a cyano group, an alkyl group having 1-20 carbon atoms, a halogenated alkyl group having 1-20 carbon atoms, an alkoxy group having 1-20 carbon atoms, or an aryl group having 6-20 carbon atoms.)

Description

アリールアミン化合物およびその利用Arylamine compounds and their uses
 本発明は、アリールアミン化合物およびその利用に関する。 The present invention relates to arylamine compounds and their use.
 有機エレクトロルミネッセンス(以下、有機ELという)素子は、ディスプレイや照明といった分野での実用化が期待されており、低電圧駆動、高輝度、高寿命等を目的とし、材料や素子構造に関する様々な開発がなされている。
 この有機EL素子では複数の機能性薄膜が用いられるが、その中の1つである正孔注入層は、陽極と正孔輸送層または発光層との電荷の授受を担い、有機EL素子の低電圧駆動および高輝度を達成するために重要な役割を果たす。
Organic electroluminescence (hereinafter referred to as organic EL) elements are expected to be put into practical use in fields such as displays and lighting, and various developments related to materials and element structures are expected for the purpose of low voltage drive, high brightness, long life, etc. Has been made.
A plurality of functional thin films are used in this organic EL element, and one of them, the hole injection layer, is responsible for the transfer of electric charge between the anode and the hole transport layer or the light emitting layer, and is low in the organic EL element. It plays an important role in achieving voltage drive and high brightness.
 この正孔注入層の作製方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別される。これらのプロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。
 このため、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
The method for producing the hole injection layer is roughly classified into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing these processes, the wet process can efficiently produce a thin film with a large area and high flatness.
For this reason, as the area of organic EL displays is being increased, a hole injection layer that can be formed by a wet process is desired.
 このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(特許文献1~3参照)。 In view of these circumstances, the present inventors have a charge transporting property that provides a thin film that can be applied to various wet processes and can realize excellent EL device characteristics when applied to a hole injection layer of an organic EL device. We have been developing compounds with good solubility in materials and organic solvents used for them (see Patent Documents 1 to 3).
 一方、これまで、有機EL素子を高性能化するために様々な取り込みがなされてきているが、光取出し効率を向上させる等の目的で、用いる機能膜の屈折率を調整する取り組みがなされている。具体的には、素子の全体構成や隣接する他の部材の屈折率を考慮して、相対的に高いあるいは低い屈折率の正孔注入層や正孔輸送層を用いることで、素子の高効率化を図る試みがなされている(特許文献4,5参照)。
 このように、屈折率は有機EL素子の設計上重要な要素であり、有機EL素子用材料では、屈折率も考慮すべき重要な物性値と考えられている。
On the other hand, various incorporations have been made so far in order to improve the performance of organic EL elements, but efforts are being made to adjust the refractive index of the functional film used for the purpose of improving the light extraction efficiency. .. Specifically, by using a hole injection layer or a hole transport layer having a relatively high or low refractive index in consideration of the overall configuration of the device and the refractive index of other adjacent members, the efficiency of the device is high. Attempts have been made to achieve this (see Patent Documents 4 and 5).
As described above, the refractive index is an important factor in the design of the organic EL element, and in the material for the organic EL element, the refractive index is also considered to be an important physical property value to be considered.
 また、有機EL素子に用いられる電荷輸送性薄膜の着色は、有機EL素子の色純度および色再現性を低下させる等の事情から、近年、有機EL素子用の電荷輸送性薄膜は、可視領域での透過率が高く、高透明性を有することが望まれている(特許文献6参照)。
 このように、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスを用いた有機ELディスプレイの実用化に向けてその開発が精力的に行われており、透明性が良好な電荷輸送性薄膜を与えるウェットプロセス用材料が常に求められている。
Further, since coloring of the charge transporting thin film used for the organic EL element lowers the color purity and color reproducibility of the organic EL element, in recent years, the charge transporting thin film for the organic EL element has been in the visible region. It is desired to have high transparency and high transparency (see Patent Document 6).
In this way, as the area of organic EL displays is increasing, the development of organic EL displays using a wet process is being energetically carried out, and charge transport with good transparency is being carried out. There is a constant demand for materials for wet processes that provide a thin film.
国際公開第2008/129947号International Publication No. 2008/129947 国際公開第2015/050253号International Publication No. 2015/050253 国際公開第2017/217457号International Publication No. 2017/217457 特表2007-536718号公報Special Table 2007-536718 特表2017-501585号公報Special Table 2017-501585 Gazette 国際公開第2013/042623号International Publication No. 2013/0426223
 本発明は、このような事情に鑑みてなされたものであり、有機溶媒への溶解性が良好であるとともに、光学特性が良好な薄膜を与え、この薄膜を正孔注入層等に適用した場合に良好な特性を有する有機EL素子を実現できるアリールアミン化合物を提供することを目的とする。 The present invention has been made in view of such circumstances, and when a thin film having good solubility in an organic solvent and good optical characteristics is provided and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide an arylamine compound capable of realizing an organic EL device having good properties.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、アリールカルバゾール骨格を有する所定のアリールアミン化合物が、有機溶媒への溶解性が良好であるとともに、当該化合物を含むワニスが光学特性に優れた薄膜を与え、この薄膜を正孔注入層等に適用した場合に良好な特性を有する有機EL素子が得られることを見出し、本発明を完成した。 As a result of diligent studies to achieve the above object, the present inventors have found that a predetermined arylamine compound having an arylcarbazole skeleton has good solubility in an organic solvent and a varnish containing the compound. The present invention has been completed by finding that an organic EL element having good characteristics can be obtained when a thin film having excellent optical characteristics is provided and the thin film is applied to a hole injection layer or the like.
 すなわち、本発明は、
1. 下記式(1)で表されることを特徴とするアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000004
(式中、R1は、それぞれ独立して、炭素数6~20のアリール基を表し、R2は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表す。)
2. 下記式(1-1)で表される1のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000005
(式中、R1およびR2は、前記と同じ意味を表す。)
3. 下記式(1-1A)または(1-1B)で表される2のアリールアミン化合物、
Figure JPOXMLDOC01-appb-C000006
(式中、R1およびR2は、前記と同じ意味を表す。)
4. 前記R1が、フェニル基、1-ナフチル基または2-ナフチル基である1~3のいずれかのアリールアミン化合物、
5. 前記R1が、すべてフェニル基である4のアリールアミン化合物、
6. 前記R2が、すべて水素原子である1~5のいずれかのアリールアミン化合物、
7. 1~6のいずれかのアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニス、
8. ドーパント物質を含む7の電荷輸送性ワニス、
9. 前記ドーパント物質が、アリールスルホン酸エステル化合物である8の電荷輸送性ワニス、
10. 7~9のいずれかの電荷輸送性ワニスを用いて作製される電荷輸送性薄膜、
11. 10の電荷輸送性薄膜を備える電子素子、
12. 10の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子、
13. 前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である12の有機エレクトロルミネッセンス素子
を提供する。
That is, the present invention
1. 1. An arylamine compound, which is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 independently represents an aryl group having 6 to 20 carbon atoms, and R 2 independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, and 1 to 20 carbon atoms. , An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
2. 2. 1 arylamine compound represented by the following formula (1-1),
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 1 and R 2 have the same meanings as described above.)
3. 3. 2 arylamine compounds represented by the following formula (1-1A) or (1-1B),
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 and R 2 have the same meanings as described above.)
4. An arylamine compound according to any one of 1 to 3, wherein R 1 is a phenyl group, a 1-naphthyl group or a 2-naphthyl group.
5. 4 arylamine compounds in which R 1 is all phenyl groups,
6. An arylamine compound according to any one of 1 to 5, wherein R 2 is an all hydrogen atom.
7. A charge-transporting varnish containing any of the arylamine compounds 1 to 6 and an organic solvent,
8. 7 charge-transporting varnishes containing dopant material,
9. Eight charge-transporting varnishes in which the dopant substance is an aryl sulfonic acid ester compound,
10. A charge-transporting thin film prepared by using any of the charge-transporting varnishes 7 to 9.
11. Electronic devices with 10 charge transport thin films,
12. Organic electroluminescence device with 10 charge transport thin films,
13. The charge transporting thin film provides twelve organic electroluminescence devices that are hole injection layers or hole transport layers.
 本発明のアリールアミン化合物は、有機溶媒への溶解性が良好であり、このアリールアミン化合物を含む電荷輸送性ワニスを用いることで、高透明性(低k(消衰係数))、かつ、高屈折率(高n)な電荷輸送性薄膜を得ることができる。
 この電荷輸送性薄膜は、有機EL素子をはじめとした電子素子用薄膜として好適に用いることができ、特に、本発明の電荷輸送性薄膜を有機EL素子の正孔注入層等に適用することで、良好な特性を有する素子を作製することができる。
The arylamine compound of the present invention has good solubility in an organic solvent, and by using a charge-transporting varnish containing this arylamine compound, high transparency (low k (disappearance coefficient)) and high A charge transporting thin film having a refractive index (high n) can be obtained.
This charge transporting thin film can be suitably used as a thin film for electronic devices such as organic EL devices, and in particular, by applying the charge transporting thin film of the present invention to a hole injection layer or the like of an organic EL device. , It is possible to manufacture an element having good characteristics.
 以下、本発明についてさらに詳しく説明する。
 本発明に係るアリールアミン化合物は、下記式(1)で表されることを特徴とし、好ましい一態様としては、式(1-1)で表される。
Hereinafter, the present invention will be described in more detail.
The arylamine compound according to the present invention is characterized by being represented by the following formula (1), and a preferred embodiment is represented by the formula (1-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1)および(1-1)において、R1は、それぞれ独立して、炭素数6~20のアリール基を表し、R2は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表す。 In formulas (1) and (1-1), R 1 independently represents an aryl group having 6 to 20 carbon atoms, and R 2 independently represents a hydrogen atom, a halogen atom, and a nitro group. It represents a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkyl halide group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等の炭素数1~20の直鎖または分岐鎖状アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、ビシクロブチル、ビシクロペンチル、ビシクロヘキシル、ビシクロヘプチル、ビシクロオクチル、ビシクロノニル、ビシクロデシル基等の炭素数3~20の環状アルキル基などが挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and may be, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl or t-butyl. , N-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group and other linear or branched alkyl groups having 1 to 20 carbon atoms; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. , Cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, bicyclobutyl, bicyclopentyl, bicyclohexyl, bicycloheptyl, bicyclooctyl, bicyclononyl, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
 炭素数1~20のアルコキシ基は、その中のアルキル基が直鎖状、分岐鎖状、環状のずれでもよく、その具体例としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、s-ブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキシルオキシ、n-オクチルオキシ、n-デシルオキシ、2-メチルヘキシルオキシ、2-エチルヘキシルオキシ、2-n-プロピルヘキシルオキシ、2-n-ブチルヘキシルオキシ、2-エチルデシルオキシ、3-エチルヘキシルオキシ基等が挙げられる。 Alkoxy groups having 1 to 20 carbon atoms may have linear, branched, or cyclically displaced alkyl groups, and specific examples thereof include methoxy, ethoxy, n-propoxy, isopropoxy, and n-butoxy. , Isobutoxy, s-butoxy, t-butoxy, n-pentoxy, n-hexyloxy, n-octyloxy, n-decyloxy, 2-methylhexyloxy, 2-ethylhexyloxy, 2-n-propylhexyloxy, 2- Examples thereof include n-butylhexyloxy, 2-ethyldecyloxy, and 3-ethylhexyloxy group.
 炭素数6~20のアリール基の具体例としては、フェニル、1-ナフチル、2-ナフチル、1-アントリル、2-アントリル、9-アントリル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル、9-フェナントリル基等が挙げられる。 Specific examples of aryl groups having 6 to 20 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4- Examples include phenyl, 9-phenyl group and the like.
 炭素数1~20のハロゲン化アルキル基は、上記炭素数1~20のアルキル基の少なくとも1つの水素原子をハロゲン原子で置換した基であり、その具体例としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモジフルオロメチル、2-クロロエチル、2-ブロモエチル、1,1-ジフルオロエチル、2,2,2-トリフルオロエチル、1,1,2,2-テトラフルオロエチル、2-クロロ-1,1,2-トリフルオロエチル、ペンタフルオロエチル、3-ブロモプロピル、2,2,3,3-テトラフルオロプロピル、1,1,2,3,3,3-ヘキサフルオロプロピル、1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル、3-ブロモ-2-メチルプロピル、4-ブロモブチル、パーフルオロペンチル、2-(パーフルオロヘキシル)エチル基等が挙げられる。 The alkyl halide group having 1 to 20 carbon atoms is a group in which at least one hydrogen atom of the alkyl group having 1 to 20 carbon atoms is substituted with a halogen atom, and specific examples thereof include fluoromethyl, difluoromethyl, and tri. Fluoromethyl, bromodifluoromethyl, 2-chloroethyl, 2-bromoethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1, 1,2-Trifluoroethyl, pentafluoroethyl, 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1 , 3, 3,3-Hexafluoropropane-2-yl, 3-bromo-2-methylpropyl, 4-bromobutyl, perfluoropentyl, 2- (perfluorohexyl) ethyl group and the like.
 特に、化合物の有機溶媒への溶解性を考慮すると、R1は、炭素数6~14のアリール基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基がより好ましく、いずれもフェニル基、1-ナフチルまたは2-ナフチル基がより一層好ましく、いずれもフェニル基がさらに好ましい。 In particular, considering the solubility of the compound in an organic solvent, R 1 is preferably an aryl group having 6 to 14 carbon atoms, more preferably a phenyl group, a 1-naphthyl group, and a 2-naphthyl group, all of which are phenyl groups. A 1-naphthyl or 2-naphthyl group is even more preferred, and a phenyl group is even more preferred.
 化合物の有機溶媒への溶解性を考慮すると、R2は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基が好ましく、水素原子、炭素数1~10のアルキル基がより好ましく、すべて水素原子がより一層好ましい。 Considering the solubility of the compound in an organic solvent, R 2 is preferably a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, preferably a hydrogen atom. , Alkyl groups having 1 to 10 carbon atoms are more preferable, and all hydrogen atoms are even more preferable.
 式(1-1)において、中心のカルバゾール骨格が有する3つの窒素原子と、アリールカルバゾール骨格のカルバゾール環との結合位置は特に限定されるものではなく、それぞれ同一の位置で結合しても、別々の位置で結合してもよいが、下記式(1-1A)または(1-1B)で示されるように、アリールカルバゾール骨格の窒素原子に対して3位(メタ位)または4位(パラ位)で結合するものが好ましく、3位で結合するものがより好ましい。 In the formula (1-1), the bonding positions of the three nitrogen atoms of the central carbazole skeleton and the carbazole ring of the arylcarbazole skeleton are not particularly limited, and even if they are bonded at the same position, they are different. However, as represented by the following formula (1-1A) or (1-1B), the 3-position (meta-position) or 4-position (para-position) with respect to the nitrogen atom of the arylcarbazole skeleton ) Is preferred, and the one bonded at the 3-position is more preferable.
Figure JPOXMLDOC01-appb-C000009
(式中、R1およびR2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the equation, R 1 and R 2 have the same meaning as above.)
 本発明で好適なアリールアミン化合物としては、下記式(2)または(3)で表されるものが挙げられるが、これらに限定されるものではない。 Examples of the arylamine compound suitable in the present invention include those represented by the following formulas (2) or (3), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 下記スキームに示されるように、式(1)または(1-1)で表されるアリールアミン化合物は、ジアミノカルバゾール化合物[Ia]または[Ib]と、ハロゲン化アリールカルバゾール化合物[II]とを触媒存在下で反応させて製造できる。 As shown in the scheme below, the arylamine compound represented by the formula (1) or (1-1) catalyzes the diaminocarbazole compound [Ia] or [Ib] and the halide arylcarbazole compound [II]. It can be produced by reacting in the presence.
Figure JPOXMLDOC01-appb-C000011
(式中、Xは、ハロゲン原子または擬ハロゲン基を表し、R1およびR2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, X represents a halogen atom or a pseudohalogen group, and R 1 and R 2 have the same meanings as above.)
Figure JPOXMLDOC01-appb-C000012
(式中、X、R1およびR2は、上記と同じ意味を表す。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, X, R 1 and R 2 have the same meanings as above.)
 ハロゲン原子としては、上記と同様のものが挙げられる。
 擬ハロゲン基としては、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
Examples of the halogen atom include the same as above.
Examples of the pseudohalogen group include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy, trifluoromethanesulfonyloxy and nonafluorobutanesulfonyloxy groups; aromatic sulfonyloxy groups such as benzenesulfonyloxy and toluenesulfonyloxy groups. ..
 ジアミノカルバゾール化合物[Ia]または[Ib]と、ハロゲン化アリールカルバゾール化合物[II]との仕込み比は、ジアミノカルバゾール化合物の全NH基の物質量に対し、ハロゲン化アリールカルバゾール化合物を5当量以上とすることができるが、5~5.5当量程度が好適である。 The charging ratio of the diaminocarbazole compound [Ia] or [Ib] to the halide arylcarbazole compound [II] is such that the amount of the halide arylcarbazole compound is 5 equivalents or more with respect to the amount of substance of the total NH groups of the diaminocarbazole compound. However, an amount of about 5 to 5.5 equivalents is preferable.
 上記反応に用いられる触媒としては、例えば、塩化銅、臭化銅、ヨウ化銅等の銅触媒;Pd(PPh34(テトラキス(トリフェニルホスフィン)パラジウム)、Pd(PPh32Cl2(ビス(トリフェニルホスフィン)ジクロロパラジウム)、Pd(dba)2(ビス(ジベンジリデンアセトン)パラジウム)、Pd2(dba)3(トリス(ジベンジリデンアセトン)ジパラジウム)、Pd(P-t-Bu32(ビス(トリ(t-ブチルホスフィン))パラジウム)、Pd(OAc)2(酢酸パラジウム)等のパラジウム触媒などが挙げられる。これらの触媒は、単独で用いてもよく、2種以上組み合わせて用いてもよい。また、これらの触媒は、公知の適切な配位子とともに使用してもよい。 Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide and copper iodide; Pd (PPh 3 ) 4 (tetrax (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (Bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt-Bu) 3 ) Examples thereof include palladium catalysts such as 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate). These catalysts may be used alone or in combination of two or more. These catalysts may also be used with suitable known ligands.
 このような配位子としては、トリフェニルホスフィン、トリ-o-トリルホスフィン、ジフェニルメチルホスフィン、フェニルジメチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ-t-ブチルホスフィン、ジ-t-ブチル(フェニル)ホスフィン、ジ-t-ブチル(4-ジメチルアミノフェニル)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等の3級ホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト等の3級ホスファイト、Aldrich社で市販されている、JohnPhos, CyjohnPhos, DavePhos, XPhos, SPhos, tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2’-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me3(OMe)tBuXPhos, (2-Biphenyl)di-1-adamantylphosphine, RockPhos, CPhos等のビフェニルホスフィン化合物などが挙げられる。 Examples of such ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-t-butylphosphine, di-t-butyl ( Phenyl) phosphine, di-t-butyl (4-dimethylaminophenyl) phosphine, 1,2-bis (diphenylphosphine) ethane, 1,3-bis (diphenylphosphine) propane, 1,4-bis (diphenylphos) Tertiary phosphine such as fino) butane, 1,1'-bis (diphenylphosphine) ferrocene, tertiary phosphine such as trimethylphosphine, triethylphosphine, triphenylphosphine, John Phos commercially available from Aldrich. , CyjohnPhos, DavePhos, XPhos, SPhos , tBuXPhos, RuPhos, Me4tBuXPhos, sSPhos, tBuMePhos, MePhos, tBuDavePhos, PhDavePhos, 2'-Dicyclohexylphosphino-2,4,6-trimethoxybiphenyl, BrettPhos, tBuBrettPhos, AdBrettPhos, Me 3 (OMe) tBuXPhos , (2-Biphenyl) di-1-adamantylphosphine, RockPhos, CPhos and other biphenylphosphine compounds.
 触媒の使用量は、ハロゲン化アリールカルバゾール化合物[II]1molに対して、0.01mol~0.5mol程度とすることができるが、0.05~0.2mol程度が好適である。
 また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
The amount of the catalyst used can be about 0.01 mol to 0.5 mol with respect to 1 mol of the arylcarbazole compound [II], but is preferably about 0.05 to 0.2 mol.
When a ligand is used, the amount used can be 0.1 to 5 equivalents with respect to the metal complex to be used, but 1 to 2 equivalents are preferable.
 また、上記反応には塩基を用いてもよい。塩基としては、例えば、リチウム、ナトリウム、カリウム、水素化リチウム、水素化ナトリウム、水酸化リチウム、水酸化カリウム、t-ブトキシリチウム、t-ブトキシナトリウム、t-ブトキシカリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属単体、水素化アルカリ金属、水酸化アルカリ金属、アルコキシアルカリ金属、炭酸アルカリ金属、炭酸水素アルカリ金属;炭酸カルシウム等の炭酸アルカリ土類金属;n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、リチウムジイソプロピルアミド(LDA),リチウム2,2,6,6-テトラメチルピペリジン(LiTMP),ヘキサメチルジシラザンリチウム(LHMDS)等の有機リチウム;トリエチルアミン、ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、トリエチレンジアミン、ピリジン等のアミン類などが挙げられる。
 塩基を用いる場合、その使用量は、使用するハロゲン化アリールカルバゾール化合物[II]に対し0.1~5当量とすることができるが、1~2当量が好適である。
Moreover, you may use a base for the said reaction. Examples of the base include lithium, sodium, potassium, lithium hydride, sodium hydride, lithium hydroxide, potassium hydroxide, t-butoxylithium, t-butoxysodium, t-butoxypotassium, sodium hydroxide, potassium hydroxide. , Sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., alkali metal hydride, alkali metal hydroxide, alkoxy alkali metal, alkali metal carbonate, alkali metal carbonate; alkali carbonate soil such as calcium carbonate Kinds of metals: n-butyl lithium, s-butyl lithium, t-butyl lithium, lithium diisopropylamide (LDA), lithium 2,2,6,6-tetramethylpiperidin (LiTMP), hexamethyldisilazane lithium (LHMDS), etc. Organic lithium; amines such as triethylamine, diisopropylethylamine, tetramethylethylenediamine, triethylenediamine, pyridine and the like can be mentioned.
When a base is used, the amount used can be 0.1 to 5 equivalents with respect to the arylcarbazole compound [II] used, but 1 to 2 equivalents are preferable.
 原料化合物が全て固体である場合あるいは目的とするアリールアミン化合物を効率よく得る観点から、上記各反応は溶媒中で行う。溶媒を使用する場合、その種類は、反応に悪影響を及ぼさないものであれば特に制限はない。具体例としては、脂肪族炭化水素類(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素類(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素類(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素類(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル類(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ラクタムおよびラクトン類(N-メチルピロリドン、γ-ブチロラクトン等)、尿素類(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド類(ジメチルスルホキシド、スルホラン等)、ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上混合して用いてもよい。 Each of the above reactions is carried out in a solvent when all the raw material compounds are solid or from the viewpoint of efficiently obtaining the desired arylamine compound. When a solvent is used, the type is not particularly limited as long as it does not adversely affect the reaction. Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), and aromatics. Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mecitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, etc.) P-dichlorobenzene, etc.), ethers (diethyl ether, diisopropyl ether, t-butylmethyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), ketones (acetone, methylethylketone, etc.) Methylisobutylketone, di-n-butylketone, cyclohexanone, etc.), amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), lactams and lactones (N-methylpyrrolidone, γ-butyrolactone, etc.), urea Species (N, N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethylsulfoxide, sulfolane, etc.), nitriles (acetoyl, propionitrile, butyronitrile, etc.), etc., and these solvents alone It may be used, or two or more kinds may be mixed and used.
 反応温度は、用いる溶媒の融点から沸点までの範囲で適宜設定すればよいが、特に、0~200℃程度が好ましく、20~150℃がより好ましい。
 反応終了後は、常法にしたがって後処理をし、目的とするアリールアミン化合物を得ることができる。
The reaction temperature may be appropriately set in the range from the melting point to the boiling point of the solvent used, but is particularly preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
After completion of the reaction, post-treatment can be carried out according to a conventional method to obtain the desired arylamine compound.
 上述した本発明のアリールアミン化合物は、電荷輸送性物質として好適に利用することができる。この場合、本発明のアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニスとして用いることができるが、この電荷輸送性ワニスには、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパント物質を含んでいてもよい。また、本発明のアリールアミン化合物は、アニリン誘導体、チオフェン誘導体等の従来公知のその他の電荷輸送性物質と併用することもできるが、本発明のアリールアミン化合物単独で電荷輸送性物質として用いることが好ましい。
 なお、本発明において、電荷輸送性とは導電性と同義である。電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
The above-mentioned arylamine compound of the present invention can be suitably used as a charge transporting substance. In this case, it can be used as a charge-transporting varnish containing the arylamine compound of the present invention and an organic solvent, and the charge-transporting varnish can be used to improve its charge-transporting ability depending on the use of the obtained thin film. It may contain a dopant substance for the purpose of. Further, the arylamine compound of the present invention can be used in combination with other conventionally known charge-transporting substances such as an aniline derivative and a thiophene derivative, but the arylamine compound of the present invention alone can be used as a charge-transporting substance. preferable.
In the present invention, charge transportability is synonymous with conductivity. The charge-transporting varnish may be a varnish having a charge-transporting property by itself, or the solid film obtained thereby may have a charge-transporting property.
 ドーパント物質としては、ワニスに使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント物質、有機系のドーパント物質のいずれも使用できる。
 また、無機系および有機系のドーパント物質は、1種類単独で用いてもよく、2種類以上組み合わせて用いてもよい。
 さらにドーパント物質は、ワニスから固体膜である電荷輸送性薄膜を得る過程で、例えば焼成時の加熱といった外部からの刺激によって、例えば分子内の一部が外れることによってドーパント物質としての機能が初めて発現または向上するようになる物質、例えばスルホン酸基が脱離しやすい基で保護されたアリールスルホン酸エステル化合物であってもよい。
The dopant substance is not particularly limited as long as it is soluble in at least one solvent used for varnish, and either an inorganic dopant substance or an organic dopant substance can be used.
Further, the inorganic and organic dopant substances may be used alone or in combination of two or more.
Furthermore, the dopant substance first exhibits its function as a dopant substance in the process of obtaining a charge-transporting thin film which is a solid film from the varnish, for example, when a part of the molecule is removed by an external stimulus such as heating during firing. Alternatively, it may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
 特に、本発明においては、無機系のドーパント物質としては、ヘテロポリ酸が好ましい。
 ヘテロポリ酸とは、代表的に式(H1)で表されるKeggin型あるいは式(H2)で表されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
In particular, in the present invention, a heteropolyacid is preferable as the inorganic dopant substance.
The heteropolyacid has a structure in which a hetero atom is located at the center of a molecule, which is typically represented by a Keggin type represented by the formula (H1) or a Dawson type chemical structure represented by the formula (H2). It is a polyacid formed by condensing an isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and an oxygen acid of a different element. Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ヘテロポリ酸の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられ、これらは単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、これらのヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。
 特に、1種類のヘテロポリ酸を用いる場合、その1種類のヘテロポリ酸は、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、2種類以上のヘテロポリ酸を用いる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸またはリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で示される構造から元素の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。
 すなわち、例えば、一般的には、リンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ示されるが、定量分析において、この式中のP(リン)、O(酸素)またはW(タングステン)もしくはMo(モリブデン)の数が多いもの、または少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態および公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。
Specific examples of the heteropolyacid include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, phosphotungstic acid, and the like, and these may be used alone or in combination of two or more. Good. In addition, these heteropolyacids are available as commercial products, and can also be synthesized by a known method.
In particular, when one kind of heteropolyacid is used, the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable. When two or more types of heteropolyacids are used, one of the two or more types of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
In addition, in quantitative analysis such as elemental analysis, heteropolyacids have a large number of elements or a small number of elements from the structure represented by the general formula, but they are commercially available products or known synthetics. As long as it is properly synthesized according to the method, it can be used in the present invention.
That is, for example, in general, phosphotungstic acid is represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O, and phosphomolybdic acid is represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O, respectively. , In quantitative analysis, even if the number of P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product. Alternatively, it can be used in the present invention as long as it is appropriately synthesized according to a known synthesis method. In this case, the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
 ヘテロポリ酸の使用量は、質量比で、電荷輸送性物質1に対して0.001~50.0程度とすることができるが、好ましくは0.01~20.0程度、より好ましくは0.1~10.0程度である。 The amount of the heteropolyacid used can be about 0.001 to 50.0 with respect to the charge transporting substance 1 in terms of mass ratio, but is preferably about 0.01 to 20.0, more preferably 0. It is about 1 to 10.0.
 一方、有機系のドーパント物質としては、特にテトラシアノキノジメタン誘導体やベンゾキノン誘導体を用いることができる。
 テトラシアノキノジメタン誘導体の具体例としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)や、式(H3)で表されるハロテトラシアノキノジメタンなどが挙げられる。
 また、ベンゾキノン誘導体の具体例としては、テトラフルオロ-1,4-ベンゾキノン(F4BQ)、テトラクロロ-1,4-ベンゾキノン(クロラニル)、テトラブロモ-1,4-ベンゾキノン、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)などが挙げられる。
On the other hand, as the organic dopant substance, a tetracyanoquinodimethane derivative or a benzoquinone derivative can be particularly used.
Specific examples of the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and halotetracyanoquinodimethane represented by the formula (H3).
Specific examples of the benzoquinone derivative include tetrafluoro-1,4-benzoquinone (F4BQ), tetrachloro-1,4-benzoquinone (chloranil), tetrabromo-1,4-benzoquinone, 2,3-dichloro-5, and so on. 6-Dicyano-1,4-benzoquinone (DDQ) and the like can be mentioned.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中、R500~R503は、それぞれ独立して、水素原子またはハロゲン原子を表すが、少なくとも1つはハロゲン原子であり、少なくとも2つがハロゲン原子であることが好ましく、少なくとも3つがハロゲン原子であることがより好ましく、全てがハロゲン原子であることが最も好ましい。
 ハロゲン原子としては上記と同じものが挙げられるが、フッ素原子または塩素原子が好ましく、フッ素原子がより好ましい。
In the formula, R 500 to R 503 each independently represent a hydrogen atom or a halogen atom, but at least one is a halogen atom, at least two are preferably halogen atoms, and at least three are halogen atoms. More preferably, all are halogen atoms.
Examples of the halogen atom include the same ones as described above, but a fluorine atom or a chlorine atom is preferable, and a fluorine atom is more preferable.
 このようなハロテトラシアノキノジメタンの具体例としては、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2-クロロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジクロロ-7,7,8,8-テトラシアノキノジメタン、2,3,5,6-テトラクロロ-7,7,8,8-テトラシアノキノジメタン、2,3,5,6-テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)等が挙げられる。 Specific examples of such halotetracyanoquinodimethane include 2-fluoro-7,7,8,8-tetracyanoquinodimethane and 2-chloro-7,7,8,8-tetracyanoquinodimethane. , 2,5-Difluoro-7,7,8,8-Tetracyanoquinodimethane, 2,5-Dichloro-7,7,8,8-Tetracyanoquinodimethane, 2,3,5,6-Tetra Examples thereof include chloro-7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).
 テトラシアノキノジメタン誘導体およびベンゾキノン誘導体の使用量は、電荷輸送性物質に対して、好ましくは0.0001~100当量、より好ましくは0.01~50当量、より一層好ましくは1~20当量である。 The amount of the tetracyanoquinodimethane derivative and the benzoquinone derivative used is preferably 0.0001 to 100 equivalents, more preferably 0.01 to 50 equivalents, and even more preferably 1 to 20 equivalents, relative to the charge transporting substance. is there.
 また、有機系ドーパント物質としては、下記式(a1)で表される1価または2価のアニオンと式(c1)~(c5)で表される対カチオンからなる、電気的に中性なオニウムボレート塩を用いることもできる。 The organic dopant substance is an electrically neutral onium composed of a monovalent or divalent anion represented by the following formula (a1) and a counter cation represented by the formulas (c1) to (c5). Borate salts can also be used.
Figure JPOXMLDOC01-appb-C000015
(式中、Arは、それぞれ独立して、置換基を有してもよい炭素数6~20のアリール基または置換基を有してもよい炭素数2~20のヘテロアリール基を表し、Lは、炭素数1~20のアルキレン基、-NH-、酸素原子、硫黄原子または-CN+-を表す。)
Figure JPOXMLDOC01-appb-C000015
(In the formula, Ar independently represents an aryl group having 6 to 20 carbon atoms which may have a substituent or a heteroaryl group having 2 to 20 carbon atoms which may have a substituent, and L. Represents an alkylene group having 1 to 20 carbon atoms, -NH-, an oxygen atom, a sulfur atom or -CN + -.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(a1)において、炭素数1~20のアルキレン基としては、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチレン、メチルメチレン、ジメチルメチレン、エチレン、トリメチレン、プロピレン、テトラメチレン、ペンタメチレン、ヘキサメチレン基等が挙げられる。なお、アリール基、ヘテロアリール基としては、上記と同様のものが挙げられる。 In the formula (a1), the alkylene group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methylene, methylmethylene, dimethylmethylene, ethylene, trimethylene and propylene. , Tetramethylene, pentamethylene, hexamethylene group and the like. Examples of the aryl group and the heteroaryl group include the same as above.
 上記式(a1)のアニオンの好適例としては、式(a2)で表されるものが挙げられるが、これに限定されるものではない。 Preferable examples of the anion of the above formula (a1) include, but are not limited to, those represented by the formula (a2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 オニウムボレート塩の使用量は、物質量(モル)比で、電荷輸送性物質に対して、0.1~10程度とすることができる。
 なお、上記オニウムボレート塩は、例えば、特開2005-314682号公報等に記載された公知の方法を参考に合成することができる。
The amount of the onium borate salt used can be about 0.1 to 10 with respect to the charge-transporting substance in terms of the amount of substance (molar).
The onium borate salt can be synthesized by referring to, for example, a known method described in Japanese Patent Application Laid-Open No. 2005-314682.
 また、有機系のドーパント物質として、アリールスルホン酸化合物やアリールスルホン酸エステル化合物も好適に用いることができる。 Further, as an organic dopant substance, an aryl sulfonic acid compound or an aryl sulfonic acid ester compound can also be preferably used.
 アリールスルホン酸化合物の具体例としては、ベンゼンスルホン酸、トシル酸、p-スチレンスルホン酸、2-ナフタレンスルホン酸、4-ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、p-ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5-ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7-ジブチル-2-ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3-ドデシル-2-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4-ヘキシル-1-ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2-オクチル-1-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7-へキシル-1-ナフタレンスルホン酸、6-ヘキシル-2-ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7-ジノニル-4-ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、2,7-ジノニル-4,5-ナフタレンジスルホン酸、国際公開第2005/000832号記載の1,4-ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号記載のアリールスルホン酸化合物、国際公開第2009/096352号記載のアリールスルホン酸化合物等が挙げられる。 Specific examples of the aryl sulfonic acid compound include benzene sulfonic acid, tosylic acid, p-styrene sulfonic acid, 2-naphthalene sulfonic acid, 4-hydroxybenzene sulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzene sulfonic acid, and dihexyl benzene. Sulfonic acid, 2,5-dihexylbenzene sulfonic acid, dibutylnaphthalene sulfonic acid, 6,7-dibutyl-2-naphthalene sulfonic acid, dodecylnaphthalene sulfonic acid, 3-dodecyl-2-naphthalene sulfonic acid, hexylnaphthalene sulfonic acid, 4 -Hexyl-1-naphthalene sulfonic acid, octylnaphthalene sulfonic acid, 2-octyl-1-naphthalene sulfonic acid, hexylnaphthalene sulfonic acid, 7-hexyl-1-naphthalene sulfonic acid, 6-hexyl-2-naphthalene sulfonic acid, Dinonylnaphthalene sulfonic acid, 2,7-dinonyl-4-naphthalene sulfonic acid, dinonylnaphthalenedisulfonic acid, 2,7-dinonyl-4,5-naphthalenedisulfonic acid, International Publication No. 2005/000832, 1,4 -Benzodioxane disulfonic acid compounds, aryl sulfonic acid compounds described in International Publication No. 2006/0254342, aryl sulfonic acid compounds described in International Publication No. 2009/096322, and the like can be mentioned.
 好ましいアリールスルホン酸化合物の例としては、式(H4)または(H5)で表されるアリールスルホン酸化合物が挙げられる。 Examples of preferable aryl sulfonic acid compounds include aryl sulfonic acid compounds represented by the formula (H4) or (H5).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 A1は、OまたはSを表すが、Oが好ましい。
 A2は、ナフタレン環またはアントラセン環を表すが、ナフタレン環が好ましい。
 A3は、2~4価のパーフルオロビフェニル基を表し、pは、A1とA3との結合数を示し、2≦p≦4を満たす整数であるが、A3がパーフルオロビフェニルジイル基、好ましくはパーフルオロビフェニル-4,4’-ジイル基であり、かつ、pが2であることが好ましい。
 qは、A2に結合するスルホン酸基数を表し、1≦q≦4を満たす整数であるが、2が最適である。
A 1 represents O or S, with O being preferred.
A 2 represents a naphthalene ring or an anthracene ring, but a naphthalene ring is preferable.
A 3 represents a 2- to tetravalent perfluorobiphenyl group, p represents the number of bonds between A 1 and A 3, and is an integer satisfying 2 ≦ p ≦ 4, where A 3 is perfluorobiphenyldiyl. The group, preferably a perfluorobiphenyl-4,4'-diyl group, preferably has a p of 2.
q represents the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ≦ q ≦ 4, but 2 is optimal.
 A4~A8は、それぞれ独立して、水素原子、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、または炭素数2~20のハロゲン化アルケニル基を表すが、A4~A8のうち少なくとも3つは、ハロゲン原子である。 A 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms, or halogenation having 2 to 20 carbon atoms. Representing an alkenyl group, at least three of A 4 to A 8 are halogen atoms.
 炭素数1~20のハロゲン化アルキル基としては、トリフルオロメチル、2,2,2-トリフルオロエチル、1,1,2,2,2-ペンタフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,2,2,3,3,3-ヘプタフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 As the alkyl halide group having 1 to 20 carbon atoms, trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl. , 2,2,3,3,3-pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,4 , 4-Pentafluorobutyl, 2,2,3,3,4,5,4-heptafluorobutyl, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. Be done.
 炭素数2~20のハロゲン化アルケニル基としては、パーフルオロビニル、パーフルオロプロペニル(アリル)、パーフルオロブテニル基等が挙げられる。
 その他、ハロゲン原子、炭素数1~20のアルキル基の例としては上記と同様のものが挙げられるが、ハロゲン原子としては、フッ素原子が好ましい。
Examples of the halogenated alkenyl group having 2 to 20 carbon atoms include perfluorovinyl, perfluoropropenyl (allyl), perfluorobutenyl group and the like.
Other examples of the halogen atom and the alkyl group having 1 to 20 carbon atoms include the same as above, but the halogen atom is preferably a fluorine atom.
 これらの中でも、A4~A8は、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数2~10のハロゲン化アルケニル基であり、かつ、A4~A8のうち少なくとも3つは、フッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のアルキル基、炭素数1~5のフッ化アルキル基、または炭素数2~5のフッ化アルケニル基であり、かつ、A4~A8のうち少なくとも3つはフッ素原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のパーフルオロアルキル基、または炭素数1~5のパーフルオロアルケニル基であり、かつ、A4、A5およびA8がフッ素原子であることがより一層好ましい。
 なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。
Among these, A 4 to A 8 are a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 10 carbon atoms, an alkyl halide group having 1 to 10 carbon atoms, or an alkenyl halide having 2 to 10 carbon atoms. a group, and at least 3 of the a 4 ~ a 8 is preferably a fluorine atom, a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 5 carbon atoms, having 1 to 5 carbon atoms More preferably, it is an alkyl fluoride group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and hydrogen atom, fluorine atom, cyano group, and the like. It is even more preferable that it is a perfluoroalkyl group having 1 to 5 carbon atoms or a perfluoroalkenyl group having 1 to 5 carbon atoms, and A 4 , A 5 and A 8 are fluorine atoms.
The perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
 rは、ナフタレン環に結合するスルホン酸基数を表し、1≦r≦4を満たす整数であるが、2~4が好ましく、2が最適である。 R represents the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ≦ r ≦ 4, but 2 to 4 is preferable, and 2 is optimal.
 ドーパント物質として用いるアリールスルホン酸化合物の分子量は、特に限定されるものではないが、本発明のアリールアミン化合物とともに用いた場合における有機溶媒への溶解性を考慮すると、好ましくは2000以下、より好ましくは1500以下である。 The molecular weight of the aryl sulfonic acid compound used as the dopant substance is not particularly limited, but is preferably 2000 or less, more preferably 2000 or less, considering the solubility in an organic solvent when used together with the arylamine compound of the present invention. It is 1500 or less.
 以下、好適なアリールスルホン酸化合物の具体例を挙げるが、これらに限定されるわけではない。 Specific examples of suitable aryl sulfonic acid compounds will be given below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 アリールスルホン酸化合物の使用量は、物質量(モル)比で、電荷輸送性物質1に対して、好ましくは0.01~20.0程度、より好ましくは0.4~5.0程度である。
 アリールスルホン酸化合物は市販品を用いてもよいが、国際公開第2006/025342号、国際公開第2009/096352号等に記載の公知の方法で合成することもできる。
The amount of the aryl sulfonic acid compound used is preferably about 0.01 to 20.0, more preferably about 0.4 to 5.0 with respect to the charge transporting substance 1 in terms of the amount of substance (molar). ..
A commercially available product may be used as the aryl sulfonic acid compound, but it can also be synthesized by a known method described in International Publication No. 2006/025342, International Publication No. 2009/09632, and the like.
 一方、アリールスルホン酸エステル化合物としては、国際公開第2017/217455号に開示されたアリールスルホン酸エステル化合物、国際公開第2017/217457号に開示されたアリールスルホン酸エステル化合物、特願2017-243631に記載のアリールスルホン酸エステル化合物等が挙げられ、具体的には、下記式(H6)~(H8)のいずれかで表されるものが好ましい。 On the other hand, as the aryl sulfonic acid ester compound, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217457, and Japanese Patent Application No. 2017-243631. The above-mentioned aryl sulfonic acid ester compounds and the like can be mentioned, and specifically, those represented by any of the following formulas (H6) to (H8) are preferable.
Figure JPOXMLDOC01-appb-C000020
(式中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。)
Figure JPOXMLDOC01-appb-C000020
(In the formula, m is an integer satisfying 1 ≦ m ≦ 4, preferably 2. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.)
 式(H6)において、A11は、パーフルオロビフェニルから誘導されるm価の基である。
 A12は、-O-または-S-であるが、-O-が好ましい。
 A13は、ナフタレンまたはアントラセンから誘導される(n+1)価の基であるが、ナフタレンから誘導される基が好ましい。
 Rs1~Rs4は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の炭素数1~6のアルキル基であり、Rs5は、置換されていてもよい炭素数2~20の1価炭化水素基である。
In formula (H6), A 11 is an m-valent group derived from perfluorobiphenyl.
A 12 is —O— or —S—, but —O— is preferred.
A 13 is a (n + 1) -valent group derived from naphthalene or anthracene, but a group derived from naphthalene is preferable.
R s1 to R s4 are each independently a hydrogen atom or a linear or branched chain alkyl group having 1 to 6 carbon atoms, and R s5 is an optionally substituted alkyl group having 2 to 20 carbon atoms. It is a monovalent hydrocarbon group of.
 直鎖状または分岐鎖状の炭素数1~6アルキル基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ヘキシル基等が挙げられるが、炭素数1~3のアルキル基が好ましい。
 炭素数2~20の1価炭化水素基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル基等のアルキル基;フェニル、ナフチル、フェナントリル基等のアリール基などが挙げられる。
Specific examples of the linear or branched alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl group and the like. , An alkyl group having 1 to 3 carbon atoms is preferable.
The monovalent hydrocarbon group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethyl, n-propyl, isopropyl, n-butyl, isobutyl and t-butyl. Alkyl groups such as groups; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
 特に、Rs1~Rs4のうち、Rs1またはRs3が炭素数1~3の直鎖アルキル基であり、残りが水素原子であるか、Rs1が炭素数1~3の直鎖アルキル基であり、Rs2~Rs4が水素原子であることが好ましい。この場合、炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。
 また、Rs5としては、炭素数2~4の直鎖アルキル基またはフェニル基が好ましい。
In particular, among R s1 to R s4 , R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. Therefore, it is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms.
Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
 式(H7)において、A14は、置換されていてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基であり、この炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素化合物からm個の水素原子を取り除いて得られる基である。
 このような炭化水素化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等が挙げられる。
 なお、上記炭化水素基は、その水素原子の一部または全部が、更に置換基で置換されていてもよく、このような置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ、シアノ、ヒドロキシ、アミノ、シラノール、チオール、カルボキシ、スルホン酸エステル、リン酸、リン酸エステル、エステル、チオエステル、アミド、オルガノオキシ、オルガノアミノ、オルガノシリル、オルガノチオ、アシル、スルホ、1価炭化水素基等が挙げられる。
 これらの中でも、A14としては、ベンゼン、ビフェニル等から誘導される基が好ましい。
In the formula (H7), A 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring.
Examples of such a hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
In the above hydrocarbon group, a part or all of the hydrogen atom may be further substituted with a substituent, and such a substituent includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and a nitro. , Cyano, hydroxy, amino, silanol, thiol, carboxy, sulfonic acid ester, phosphoric acid, phosphoric acid ester, ester, thioester, amide, organooxy, organoamino, organosilyl, organothio, acyl, sulfo, monovalent hydrocarbon group And so on.
Among these, as A 14 , a group derived from benzene, biphenyl or the like is preferable.
 また、A15は、-O-または-S-であるが、-O-が好ましい。
 A16は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。
 このような芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。
 中でも、A16としては、ナフタレンまたはアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。
Further, A 15 is —O— or —S—, but —O— is preferable.
A 16 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms.
Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 Rs6およびRs7は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の1価脂肪族炭化水素基であり、Rs8は、直鎖状または分岐鎖状の1価脂肪族炭化水素基である。ただし、Rs6、Rs7およびRs8の炭素数の合計は6以上である。Rs6、Rs7およびRs8の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。
 上記直鎖状または分岐鎖状の1価脂肪族炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、デシル基等の炭素数1~20のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~20のアルケニル基などが挙げられる。
 これらの中でも、Rs6は水素原子が好ましく、Rs7およびRs8は、それぞれ独立して、炭素数1~6のアルキル基が好ましい。
R s6 and R s7 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups, and R s8 is a linear or branched chain monovalent aliphatic hydrocarbon. It is a hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
Specific examples of the linear or branched monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-hexyl, n-octyl, and the like. Alkyl groups having 1 to 20 carbon atoms such as 2-ethylhexyl and decyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl-2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, Examples thereof include an alkenyl group having 2 to 20 carbon atoms such as a hydrocarbon group.
Among these, R s6 is preferably a hydrogen atom, and R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
 式(H8)において、Rs9~Rs13は、それぞれ独立して、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、または炭素数2~10のハロゲン化アルケニル基である。
 炭素数1~10のアルキル基は、直鎖状、分岐鎖状、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、シクロペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル基等が挙げられる。
In the formula (H8), R s9 to R s13 independently represent a hydrogen atom, a nitro group, a cyano group, a halogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkyl halide group having 1 to 10 carbon atoms. Alternatively, it is a halogenated alkenyl group having 2 to 10 carbon atoms.
The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and s-butyl. Examples thereof include t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, n-octyl, n-nonyl, n-decyl group and the like.
 炭素数1~10のハロゲン化アルキル基は、上記炭素数1~10のアルキル基の水素原子の一部または全部がハロゲン原子で置換された基であれば、特に限定されるものではなく、その具体例としては、トリフルオロメチル、2,2,2-トリフルオロエチル、1,1,2,2,2-ペンタフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、1,1,2,2,3,3,3-ヘプタフルオロプロピル、4,4,4-トリフルオロブチル、3,3,4,4,4-ペンタフルオロブチル、2,2,3,3,4,4,4-ヘプタフルオロブチル、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The alkyl halide group having 1 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms is substituted with a halogen atom. Specific examples include trifluoromethyl, 2,2,2-trifluoroethyl, 1,1,2,2,2-pentafluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3. , 3-Pentafluoropropyl, 1,1,2,2,3,3,3-heptafluoropropyl, 4,4,4-trifluorobutyl, 3,3,4,5,4-pentafluorobutyl, 2 , 2,3,3,4,5,4-heptafluorobutyl, 1,1,2,2,3,3,4,4-nonafluorobutyl group and the like.
 炭素数2~10のハロゲン化アルケニル基としては、炭素数2~10のアルケニル基の水素原子の一部または全部がハロゲン原子で置換された基であれば、特に限定されるものではなく、その具体例としては、パーフルオロビニル、パーフルオロ-1-プロペニル、パーフルオロ-2-プロペニル、パーフルオロ-1-ブテニル、パーフルオロ-2-ブテニル、パーフルオロ-3-ブテニル基等が挙げられる。 The halogenated alkenyl group having 2 to 10 carbon atoms is not particularly limited as long as it is a group in which a part or all of hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms is substituted with a halogen atom. Specific examples include perfluorovinyl, perfluoro-1-propenyl, perfluoro-2-propenyl, perfluoro-1-butenyl, perfluoro-2-butenyl, perfluoro-3-butenyl group and the like.
 これらの中でも、Rs9としては、ニトロ基、シアノ基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のハロゲン化アルケニル基が好ましく、ニトロ基、シアノ基、炭素数1~4のハロゲン化アルキル基、炭素数2~4のハロゲン化アルケニル基がより好ましく、ニトロ基、シアノ基、トリフルオロメチル基、パーフルオロプロペニル基がより一層好ましい。
 Rs10~Rs13としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。
Among these, as R s9 , a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable. The alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable.
As R s10 to R s13 , a halogen atom is preferable, and a fluorine atom is more preferable.
 A17は、-O-、-S-または-NH-であるが、-O-が好ましい。
 A18は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。
 このような芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。
 これらの中でも、A18としては、ナフタレンまたはアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。
A 17 is -O-, -S- or -NH-, but -O- is preferable.
A 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is (n + 1) from the aromatic ring of the aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing individual hydrogen atoms.
Examples of such aromatic hydrocarbon compounds include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
Among these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 Rs14~Rs17は、それぞれ独立して、水素原子、または直鎖状もしくは分岐鎖状の炭素数1~20の1価脂肪族炭化水素基である。
 1価脂肪族炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、シクロペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル基等の炭素数1~20のアルキル基;ビニル、1-プロペニル、2-プロペニル、イソプロペニル、1-メチル-2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、ヘキセニル基等の炭素数2~20のアルケニル基などが挙げられるが、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。
R s14 to R s17 are independently hydrogen atoms or linear or branched chain monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
Specific examples of the monovalent aliphatic hydrocarbon group include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, cyclopentyl, n-hexyl, cyclohexyl and n. -Alkyl groups having 1 to 20 carbon atoms such as heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl groups; vinyl, 1-propenyl, 2-propenyl, isopropenyl, 1-methyl Examples thereof include alkenyl groups having 2 to 20 carbon atoms such as -2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl and hexenyl groups, but alkyl groups having 1 to 20 carbon atoms are preferable, and alkyl groups having 1 to 20 carbon atoms are preferable. An alkyl group of 10 is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
 Rs18は、直鎖状または分岐鎖状の炭素数1~20の1価脂肪族炭化水素基、またはORs19である。Rs19は、置換されていてもよい炭素数2~20の1価炭化水素基である。
 Rs18の直鎖状または分岐状の炭素数1~20の1価脂肪族炭化水素基としては、上記と同様のものが挙げられる。
 Rs18が1価脂肪族炭化水素基である場合、Rs18は、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。
 Rs19の炭素数2~20の1価炭化水素基としては、前述した1価脂肪族炭化水素基のうちメチル基以外のもののほか、フェニル、ナフチル、フェナントリル基等のアリール基などが挙げられる。
 これらの中でも、Rs19は、炭素数2~4の直鎖アルキル基またはフェニル基が好ましい。
 なお、上記1価炭化水素基が有していてもよい置換基としては、フッ素原子、炭素数1~4のアルコキシ基、ニトロ基、シアノ基等が挙げられる。
R s18 is a linear or branched chain monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or OR s19 . R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms of R s18 include the same as above.
When R s18 is a monovalent aliphatic hydrocarbon group, R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
Examples of the monovalent hydrocarbon group having 2 to 20 carbon atoms of R s19 include those other than the methyl group among the above-mentioned monovalent aliphatic hydrocarbon groups, and aryl groups such as phenyl, naphthyl and phenanthryl groups.
Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms.
Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
 好適なアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。 Specific examples of suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 アリールスルホン酸エステル化合物の使用量は、物質量(モル)比で、電荷輸送性物質1に対して、好ましくは0.01~20程度、より好ましくは0.05~10程度である。 The amount of the aryl sulfonic acid ester compound used is preferably about 0.01 to 20, more preferably about 0.05 to 10 with respect to the charge transporting substance 1 in terms of the amount of substance (molar).
 本発明においては、透明性に優れ、高屈折率の電荷輸送性薄膜を作製することを考慮すると、ドーパント物質として、アリールスルホン酸化合物、アリールスルホン酸エステル化合物を用いることが好ましく、溶媒に対する溶解性や、消衰係数のより小さい薄膜を得ることを考慮すると、アリールスルホン酸エステル化合物を用いることがより好ましい。 In the present invention, considering the production of a charge-transporting thin film having excellent transparency and a high refractive index, it is preferable to use an aryl sulfonic acid compound or an aryl sulfonic acid ester compound as the dopant substance, and the solubility in a solvent is preferable. In addition, it is more preferable to use an aryl sulfonic acid ester compound in consideration of obtaining a thin film having a smaller extinction coefficient.
 さらに、得られる薄膜を有機EL素子の正孔注入層として用いる場合、正孔輸送層への注入性の向上、素子の寿命特性等の改善を目的として、上記電荷輸送性ワニスは、有機シラン化合物を含んでいてもよい。その含有量は、電荷輸送性物質およびドーパント物質の合計質量に対して、通常1~30質量%程度である。 Further, when the obtained thin film is used as the hole injection layer of the organic EL device, the charge transport varnish is an organic silane compound for the purpose of improving the injection property into the hole transport layer and the life characteristics of the device. May include. Its content is usually about 1 to 30% by mass with respect to the total mass of the charge transporting substance and the dopant substance.
 本発明の電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、本発明のアリールアミン化合物を良好に溶解し得る高極性溶媒を用いることができる。本発明のアリールアミン化合物は、溶媒の極性を問わず、溶媒中に溶解することが可能である。また、必要に応じて、高極性溶媒よりもプロセス適合性に優れている点で低極性溶媒を用いてもよい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものを、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。 As the organic solvent used when preparing the charge transporting varnish of the present invention, a highly polar solvent capable of satisfactorily dissolving the arylamine compound of the present invention can be used. The arylamine compound of the present invention can be dissolved in a solvent regardless of the polarity of the solvent. Further, if necessary, a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent. In the present invention, a low polar solvent is defined as a solvent having a relative permittivity of less than 7 at a frequency of 100 kHz, and a high polar solvent is defined as a solvent having a relative permittivity of 7 or more at a frequency of 100 kHz.
 低極性溶媒としては、例えば、
クロロホルム、クロロベンゼン等の塩素系溶媒;
トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;
1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;
テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;
安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒
等が挙げられる。
Examples of low polar solvents include, for example.
Chlorine-based solvents such as chloroform and chlorobenzene;
Aromatic hydrocarbon solvents such as toluene, xylene, tetralin, cyclohexylbenzene, decylbenzene;
Aliphatic alcohol solvents such as 1-octanol, 1-nonanol, 1-decanol;
Ethereal solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether;
Esters such as methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Examples include a solvent.
 また、高極性溶媒としては、例えば、
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;
エチルメチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;
アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;
エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;
ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;
ジメチルスルホキシド等のスルホキシド系溶媒
等が挙げられる。
Further, as a highly polar solvent, for example,
Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone;
Ketone solvents such as ethyl methyl ketone, isophorone, cyclohexanone;
Cyan-based solvents such as acetonitrile and 3-methoxypropionitrile;
Polyhydric alcohol solvents such as ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, and 2,3-butanediol;
Other than aliphatic alcohols such as diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3-phenoxybenzyl alcohol, and tetrahydrofurfuryl alcohol. Monohydric alcohol solvent;
Examples thereof include sulfoxide-based solvents such as dimethyl sulfoxide.
 電荷輸送性ワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜定まるものではあるが、通常、25℃で1~50mPa・sである。なお、本発明において固形分とは、電荷輸送ワニスに含まれる溶媒以外の成分を意味する。
 また、電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%程度、より好ましくは1.0~3.0質量%程度である。
The viscosity of the charge-transporting varnish is appropriately determined depending on the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa · s at 25 ° C. In the present invention, the solid content means a component other than the solvent contained in the charge transport varnish.
The solid content concentration of the charge-transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. It is about%, preferably about 0.5 to 5.0% by mass, and more preferably about 1.0 to 3.0% by mass in consideration of improving the coatability of the varnish.
 電荷輸送性ワニスの調製法としては、特に限定されるものではないが、例えば、本発明のアリールアミン化合物を含む電荷輸送性物質等の固形分を高極性溶媒に溶解させ、そこへ低極性溶媒を加える手法や、高極性溶媒と低極性溶媒を混合し、そこへ電荷輸送性物質を溶解させる手法などが挙げられる。 The method for preparing the charge-transporting varnish is not particularly limited, but for example, a solid content such as a charge-transporting substance containing the arylamine compound of the present invention is dissolved in a high-polarity solvent, and a low-polarity solvent is dissolved therein. A method of adding a charge, a method of mixing a high polar solvent and a low polar solvent, and a method of dissolving a charge transporting substance therein.
 特に、電荷輸送性ワニスの調製の際、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質、ドーパント物質等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いて濾過することが望ましい。 In particular, when preparing a charge transporting varnish, from the viewpoint of obtaining a thin film with higher flatness with good reproducibility, after dissolving a charge transporting substance, a dopant substance, etc. in an organic solvent, a submicrometer order filter or the like is used. It is desirable to use and filter.
 以上説明した電荷輸送性ワニスは、これを用いることで容易に電荷輸送性薄膜を製造できることから、電子素子、特に有機EL素子を製造する際に好適に用いることができる。
 この場合、電荷輸送性薄膜は、上述した電荷輸送性ワニスを基材上に塗布して焼成して形成することができる。
 ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
Since the charge-transporting varnish described above can easily produce a charge-transporting thin film by using the varnish, it can be suitably used when manufacturing an electronic device, particularly an organic EL device.
In this case, the charge-transporting thin film can be formed by applying the above-mentioned charge-transporting varnish on a substrate and firing it.
The varnish coating method is not particularly limited, and examples thereof include a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an inkjet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish accordingly.
 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されるものではなく、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面および高い電荷輸送性を有する薄膜を得ることができるが、用いるドーパント物質の種類によっては、ワニスを大気雰囲気下で焼成することで、電荷輸送性を有する薄膜が再現性よく得られる場合がある。 Further, the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum can be obtained. Although it can be obtained, depending on the type of dopant substance used, a thin film having charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜設定され、例えば得られる薄膜を有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましいが、上述した式(1)で表されるアリールアミン化合物を電荷輸送性物質として用いる場合、200℃以下という低温焼成でも、良好な電荷輸送性を有する薄膜を得ることができる。
 なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
The firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., for example, the obtained thin film. When is used as a hole injection layer of an organic EL device, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but the arylamine compound represented by the above formula (1) is used as a charge transporting substance. When used, a thin film having good charge transportability can be obtained even at a low temperature of 200 ° C. or lower.
In addition, at the time of firing, a temperature change of two or more steps may be applied for the purpose of exhibiting higher uniform film forming property or allowing the reaction to proceed on the substrate. It may be carried out using an appropriate device such as an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層、正孔輸送層、正孔注入輸送層等の陽極と発光層との間に設けられる機能層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。 The thickness of the charge transporting thin film is not particularly limited, but when it is used as a functional layer provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer of an organic EL element. It is preferably 5 to 300 nm. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate at the time of coating.
 以上説明した本発明の電荷輸送性薄膜は、400~800nmの波長領域の平均値で、通常、1.50以上の屈折率(n)と0.10以下の消衰係数(k)を示すが、ある態様においては1.60以上の屈折率(n)を、その他のある態様においては1.70以上の屈折率(n)を示し、また、ある態様においては0.07以下の消衰係数(k)を、その他のある態様においては0.02以下の消衰係数(k)を示す。 The charge-transporting thin film of the present invention described above usually exhibits a refractive index (n) of 1.50 or more and an extinction coefficient (k) of 0.10 or less with an average value in the wavelength region of 400 to 800 nm. In some embodiments, it exhibits a refractive index (n) of 1.60 or higher, in other embodiments it exhibits a refractive index (n) of 1.70 or higher, and in some embodiments it has an extinction coefficient of 0.07 or lower. (K) shows an extinction coefficient (k) of 0.02 or less in some other embodiments.
 上記電荷輸送性薄膜を有機EL素子に適用する場合、有機EL素子を構成する一対の電極の間に、上述の電荷輸送性薄膜を備える構成とすることができる。
 有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。さらに、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
When the above-mentioned charge-transporting thin film is applied to an organic EL element, the above-mentioned charge-transporting thin film can be provided between a pair of electrodes constituting the organic EL element.
Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configuration, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injection layer, the hole transport layer or the hole injection transport layer may also have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer is a hole (hole). It may also have a function as a block layer or the like. Further, if necessary, an arbitrary functional layer can be provided between the layers.
(A) Antenna / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) Electron / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
 「正孔注入層」、「正孔輸送層」および「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものであり、発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
The "hole injection layer", the "hole transport layer" and the "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. When it has a function and only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and between the light emitting layer and the anode, When two or more layers of the hole transporting material are provided, the layer close to the anode is the "hole injection layer" and the other layers are the "hole transport layer". In particular, as the hole injection (transport) layer, a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
The "electron injection layer", "electron transport layer" and "electron injection transport layer" are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an "electron injection transporting layer", and a layer of electron transporting material is provided between the light emitting layer and the cathode. When two or more layers are provided, the layer close to the cathode is the "electron injection layer", and the other layers are the "electron transport layers".
The "light emitting layer" is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly promotes the recombination of electrons and holes and has a function of confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. Has a function. In the case of a phosphorescent device, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 本発明の電荷輸送性薄膜は、有機EL素子において、陽極と発光層との間に設けられる機能層として用い得るが、正孔注入層、正孔輸送層、正孔注入輸送層として好適であり、正孔注入層または正孔輸送層としてより好適であり、正孔注入層としてより一層好適である。 The charge transporting thin film of the present invention can be used as a functional layer provided between the anode and the light emitting layer in an organic EL device, but is suitable as a hole injection layer, a hole transport layer, and a hole injection transport layer. , More suitable as a hole injection layer or a hole transport layer, and even more suitable as a hole injection layer.
 本発明の電荷輸送性ワニスを用いてEL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
 本発明の電荷輸送性ワニスから得られる薄膜からなる正孔注入層を有するOLED素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。
 陽極基板上に、上記の方法により、本発明の電荷輸送性薄膜からなる正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子輸送層/ホールブロック層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成する代わりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物を用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。
Examples of materials and methods used when manufacturing an EL device using the charge-transporting varnish of the present invention include, but are not limited to, the following.
An example of a method for manufacturing an OLED device having a hole injection layer made of a thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrodes are preliminarily cleaned with alcohol, pure water, or the like, or surface-treated with UV ozone treatment, oxygen-plasma treatment, or the like, as long as the electrodes are not adversely affected.
A hole injection layer made of the charge-transporting thin film of the present invention is formed on the anode substrate by the above method. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron transport layer / hole block layer, and a cathode metal are sequentially vapor-deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されるわけではない。
Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and metal anodes composed of metals typified by aluminum and alloys thereof, which are flat. Those that have undergone chemical treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used.
Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N’-ビス(ナフタレン-1-イル)-N,N’-ビス(フェニル)-ベンジジン(α-NPD)、4,4’,4”-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5”-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2’:5’,2”-ターチオフェン(BMA-3T)等のオリゴチオフェン類などが挙げられる。 Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, and N, N'-bis (naphthalen-1-yl) -N, N'-bis. (Phenyl) -benzidine (α-NPD), 4,4', 4 "-tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4', 4" -tris [1 -Triarylamines such as -naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5 "-bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2': Examples thereof include oligothiophenes such as 5', 2 "-turthiophene (BMA-3T).
 発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。
Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyrylarylene derivative, and (2-hydroxyphenyl) benzo. Low molecular weight luminescent materials such as thiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3-alkyl Examples thereof include, but are not limited to, a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as thiophene) and polyvinylcarbazole.
When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant is a metal complex such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). , A naphthacene derivative such as rubrene, a quinacridone derivative, a condensed polycyclic aromatic ring such as perylene, and the like, but are not limited thereto.
 電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Examples of the material forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物が挙げられるが、これらに限定されない。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。
 電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。
Materials for forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). Metal fluorides, but are not limited to these.
Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
 正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,1’-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1’-ペンテン-5’-イル}フルオレニル-2,7-ジイル)-co-(N,N’-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルシスキノキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4’-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 As the hole-transporting polymer, poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diaminophenylene) )], Poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,1'-biphenylene-4,4-diamine) )], Poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4 -Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsis quinoxane, poly [(9,9-) Didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like can be mentioned.
 発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2’-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH-). Examples thereof include polyphenylene vinylene derivatives such as PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
 本発明の電荷輸送性ワニスは、上述した通り有機EL素子の正孔注入層、正孔輸送層、正孔注入輸送層等の陽極と発光層との間に設けられる機能層の形成に好適に用いられるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオードおよび有機プラスモン発光素子等の電子素子における電荷輸送性薄膜の形成にも利用することができる。 As described above, the charge transporting varnish of the present invention is suitable for forming a functional layer provided between an anode and a light emitting layer such as a hole injection layer, a hole transport layer, and a hole injection transport layer of an organic EL device. In addition to being used, organic photoelectric conversion elements, organic thin film solar cells, organic perovskite photoelectric conversion elements, organic integrated circuits, organic field effect transistors, organic thin films, organic light emitting transistors, organic optical inspection devices, organic photoreceivers, organic It can also be used to form a charge transporting thin film in electronic devices such as electric field extinguishing devices, light emitting electronic chemical batteries, quantum dot light emitting diodes, quantum lasers, organic laser diodes and organic Plasmon light emitting devices.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した装置は以下のとおりである。
(1)MALDI-TOF-MS:ブルカー社製、autoflex III smartbeam
(2)1H-NMR:日本電子(株)製 JNM-ECP300 FT NMR SYSTEM
(3)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(4)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(5)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(6)素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)素子の電流密度および輝度の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(8)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
(9)屈折率(n)および消衰係数(k)の測定:ジェー・エー・ウーラムジャパン製 多入射角分光エリプソメーターVASE
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The devices used are as follows.
(1) MALDI-TOF-MS: autoflex III smart beam manufactured by Bruker Co., Ltd.
(2) 1 1 H-NMR: JNM-ECP300 FT NMR SYSTEM manufactured by JEOL Ltd.
(3) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method)
(4) Application of varnish: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(5) Film thickness measurement: Kosaka Laboratory Co., Ltd. Fine shape measuring machine Surfcoder ET-4000
(6) Manufacture of element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(7) Measurement of element current density and brightness: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (8) Life measurement of EL element (brightness half-life measurement): Organic EL brightness life manufactured by EHC Co., Ltd. Evaluation system PEL-105S
(9) Measurement of refractive index (n) and extinction coefficient (k): Multi-incident angle spectroscopic ellipsometer VASE manufactured by JA Woolam Japan
[1]アリールアミン化合物の製造
[実施例1-1]アリールアミン化合物Aの合成
Figure JPOXMLDOC01-appb-C000022
[1] Production of arylamine compound [Example 1-1] Synthesis of arylamine compound A
Figure JPOXMLDOC01-appb-C000022
 4つ口フラスコに、3,6-ジアミノカルバゾール0.3g、2-ブロモフェニルカルバゾール2.570g、Pd2(dba)20.086g、[(tBu)3PH]BF4 0.087g、tBuONa1.05g、およびトルエン10gを入れ、80℃で3時間撹拌した。その後、室温に戻してセライトろ過をした。ろ液にトルエンと飽和食塩水を加えて分液し、水層を除いた。得られた有機層にMgSO4を適量加え、室温で10分間静置した。MgSO4をシリカゲルでろ過し、ろ液を濃縮した。得られた濃縮液を、酢酸エチル、メタノールの混合溶媒に滴下し、室温で30分撹拌後、析出した固体をろ別した。得られた固体を乾燥して、アリールアミン化合物A0.82gを得た(収率38%)。 Four-necked flask, 3,6-diaminocarbazole 0.3 g, 2-bromophenyl carbazole 2.570g, Pd 2 (dba) 2 0.086g, [(tBu) 3 PH] BF 4 0.087g, tBuONa1. 05 g and 10 g of toluene were added, and the mixture was stirred at 80 ° C. for 3 hours. Then, it was returned to room temperature and filtered through Celite. Toluene and saturated brine were added to the filtrate to separate the filtrates, and the aqueous layer was removed. An appropriate amount of magnesium 4 was added to the obtained organic layer, and the mixture was allowed to stand at room temperature for 10 minutes. Silica gel 4 was filtered through silica gel, and the filtrate was concentrated. The obtained concentrated solution was added dropwise to a mixed solvent of ethyl acetate and methanol, and the mixture was stirred at room temperature for 30 minutes, and the precipitated solid was filtered off. The obtained solid was dried to obtain 0.82 g of arylamine compound A (yield 38%).
1H-NMR(500MHz,THF-d8)δ[ppm]:7.95-7.92(m,10H),7.72-7.55(m,20H),7.54-7.41(m,5H),7.35-7.20(m,25H),7.16-7.09(m,6H). 1 1 H-NMR (500 MHz, THF-d 8 ) δ [ppm]: 7.95-7.92 (m, 10H), 7.72-7.55 (m, 20H), 7.54-7.41 (M, 5H), 7.35-7.20 (m, 25H), 7.16-7.09 (m, 6H).
[実施例1-2]アリールアミン化合物Bの合成
Figure JPOXMLDOC01-appb-C000023
[Example 1-2] Synthesis of arylamine compound B
Figure JPOXMLDOC01-appb-C000023
 4つ口フラスコに、3,6-ジアミノカルバゾール0.502g、3-ブロモフェニルカルバゾール4.441g、Pd2(dba)20.037g、[(tBu)3PH]BF4 0.037g、tBuONa1.346g、およびトルエン15gを入れ、80℃で5.5時間撹拌した。反応終了後、セライトろ過をして、シリカゲルクロマトグラフィーによって目的物の箇所を濃縮した。濃縮物に活性体を加え、室温で1時間撹拌した後、セライトろ過で活性炭を取り除いた。得られたろ液を酢酸エチル、メタノールの混合溶媒に滴下し、室温で1時間撹拌した。析出した固体をろ別して得られた固体を乾燥し、アリールアミン化合物B3.50gを得た(収率98%)。 Four-necked flask, 3,6-diaminocarbazole 0.502 g, 3- bromophenyl carbazole 4.441g, Pd 2 (dba) 2 0.037g, [(tBu) 3 PH] BF 4 0.037g, tBuONa1. 346 g and 15 g of toluene were added, and the mixture was stirred at 80 ° C. for 5.5 hours. After completion of the reaction, Celite filtration was performed and the target portion was concentrated by silica gel chromatography. The activated carbon was added to the concentrate, and the mixture was stirred at room temperature for 1 hour, and then the activated carbon was removed by filtration through Celite. The obtained filtrate was added dropwise to a mixed solvent of ethyl acetate and methanol, and the mixture was stirred at room temperature for 1 hour. The precipitated solid was separated by filtration and the obtained solid was dried to obtain 3.50 g of arylamine compound B (yield 98%).
1H-NMR(500MHz,THF-d8)δ[ppm]:8.12-7.92(m,10H),7.85-7.67(m,20H),7.66-7.53(m,5H),7.37-7.24(m,25H),7.19-7.10(m,6H). 1 1 H-NMR (500 MHz, THF-d 8 ) δ [ppm]: 8.12-7.92 (m, 10H), 7.85-7.67 (m, 20H), 7.66-7.53 (M, 5H), 7.37-7.24 (m, 25H), 7.19-7.10 (m, 6H).
[2]電荷輸送性ワニスの調製
[実施例2-1]
 クロロホルム(10g)に実施例1-1で得られたアリールアミン化合物A(0.027g)と、国際公開第2017/217455号に記載された方法に従って合成した下記式で表されるアリールスルホン酸エステルA(0.024g)とを加えて室温で撹拌して溶解させて得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスA1を得た。
[2] Preparation of charge-transporting varnish [Example 2-1]
Arylamine compound A (0.027 g) obtained in Example 1-1 and an arylsulfonic acid ester represented by the following formula synthesized in chloroform (10 g) according to the method described in International Publication No. 2017/217455. The solution obtained by adding A (0.024 g) and stirring at room temperature to dissolve the solution was filtered through a syringe filter having a pore size of 0.2 μm to obtain a charge-transporting varnish A1.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
[実施例2-2]
 アルールアミン化合物Aを実施例1-2で得られたアリールアミン化合物Bに変更した以外は、実施例2-1と同様にして電荷輸送性ワニスB1を得た。
[Example 2-2]
A charge-transporting varnish B1 was obtained in the same manner as in Example 2-1 except that the arylamine compound A was changed to the arylamine compound B obtained in Example 1-2.
[実施例2-3]
 アリールアミン化合物Aの使用量を0.040gに変更した以外は、実施例2-1と同様にして電荷輸送性ワニスA2を得た。
[Example 2-3]
A charge-transporting varnish A2 was obtained in the same manner as in Example 2-1 except that the amount of the arylamine compound A used was changed to 0.040 g.
[実施例2-4]
 アリールアミン化合物Bの使用量を0.040gに変更した以外は、実施例2-2と同様にして電荷輸送性ワニスB2を得た。
[Example 2-4]
A charge-transporting varnish B2 was obtained in the same manner as in Example 2-2, except that the amount of the arylamine compound B used was changed to 0.040 g.
[3]薄膜の製造および膜物性評価
[実施例3-1および実施例3-2]
 実施例2-1および実施例2-2で得られたワニスを、それぞれスピンコーターを用いて石英基板に塗布し、大気焼成下、120℃で1分間乾燥後、大気雰囲気下、200℃で15分間焼成し、石英基板上に50nmの均一な薄膜を形成した。
 得られた膜付き石英基板を用いて、波長400~800nmにおける可視域平均屈折率nおよび可視域平均消衰係数kの測定を行った。結果を表1に示す。
[3] Production of thin film and evaluation of film physical properties [Example 3-1 and Example 3-2]
The varnishes obtained in Example 2-1 and Example 2-2 were each applied to a quartz substrate using a spin coater, dried in air at 120 ° C. for 1 minute, and then dried in air at 200 ° C. at 15 ° C. It was fired for a minute to form a uniform thin film of 50 nm on a quartz substrate.
Using the obtained quartz substrate with a film, the visible region average refractive index n and the visible region average extinction coefficient k at a wavelength of 400 to 800 nm were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1に示されるように、本発明の電荷輸送性ワニスから得られた薄膜は、高い屈折率を有し、消衰係数が低いことがわかる。 As shown in Table 1, it can be seen that the thin film obtained from the charge-transporting varnish of the present invention has a high refractive index and a low extinction coefficient.
[4]ホールオンリー素子(HOD)1の作製および特性評価
[正孔注入層形成用溶液の調製]
 国際公開第2013/084664号記載の方法に従って合成した式(T)で表されるアニリン誘導体0.137gと、国際公開第2006/025342号記載の方法に従って合成した式(N)で表されるアリールスルホン酸0.271gとを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン6.7gに溶解させた。得られた溶液に、シクロヘキサノール10g、プロピレングリコール3.3gを順次加えて撹拌し、正孔注入層形成用溶液を調製した。
[4] Preparation and characterization of hole-only device (HOD) 1 [Preparation of solution for hole injection layer formation]
0.137 g of the aniline derivative represented by the formula (T) synthesized according to the method described in WO2013 / 084664 and the aryl represented by the formula (N) synthesized according to the method described in WO 2006/025432. 0.271 g of sulfonic acid was dissolved in 6.7 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. To the obtained solution, 10 g of cyclohexanol and 3.3 g of propylene glycol were sequentially added and stirred to prepare a solution for forming a hole injection layer.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
[実施例4-1]
 ITO基板として、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。続いて、上記のように調製した正孔注入層形成用溶液をスピンコートによりITO基板上に塗布し、大気中、ホットプレート上で80℃に加熱して1分間乾燥後、さらに230℃で15分間の加熱焼成を行い、正孔注入層(膜厚:30nm)を形成した。
 次に、実施例2-3で得られた電荷輸送性ワニスA2を、スピンコーターを用いて正孔注入層上に塗布した後、大気雰囲気下、130℃で10分間焼成し、40nmの正孔輸送層薄膜を形成した。
 この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて80nmのアルミニウム薄膜を形成してホールオンリー素子(HOD)を得た。
[Example 4-1]
As the ITO substrate, a 25 mm × 25 mm × 0.7 t glass substrate in which indium tin oxide (ITO) is patterned on the surface with a thickness of 150 nm is used, and before use, an O 2 plasma cleaning device (150 W, 30 seconds) is used. Impurities on the surface were removed. Subsequently, the hole injection layer forming solution prepared as described above is applied onto the ITO substrate by spin coating, heated to 80 ° C. on a hot plate in the air, dried for 1 minute, and then further dried at 230 ° C. for 15 ° C. The hole injection layer (film thickness: 30 nm) was formed by heating and firing for 1 minute.
Next, the charge-transporting varnish A2 obtained in Example 2-3 was applied onto the hole injection layer using a spin coater, and then calcined at 130 ° C. for 10 minutes in an air atmosphere to obtain holes of 40 nm. A transport layer thin film was formed.
A hole-only element (HOD) was obtained by forming an aluminum thin film of 80 nm at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa).
[実施例4-2]
 電荷輸送性ワニスA2の代わりに、実施例2-4で得られた電荷輸送性ワニスB2を用いた以外は、実施例4-1と同様の方法でHODを作製した。
[Example 4-2]
HOD was prepared in the same manner as in Example 4-1 except that the charge transporting varnish B2 obtained in Example 2-4 was used instead of the charge transporting varnish A2.
 上記で作製したHODについて、駆動電圧4Vでの電流密度を測定した。結果を表2に示す。 The current density of the HOD produced above was measured at a drive voltage of 4 V. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2に示されるように、本発明の電荷輸送性ワニスから作製した薄膜は、正孔輸送層として、優れた電荷輸送性を示すことがわかる。 As shown in Table 2, it can be seen that the thin film prepared from the charge transporting varnish of the present invention exhibits excellent charge transporting property as a hole transporting layer.
[5]単層素子(SLD)の作製
[実施例5-1]
 実施例4-1と同様のITO基板上に、実施例2-1で得られた電荷輸送性ワニスA1を、スピンコートにより塗布し、大気焼成下、120℃で1分間乾燥後、さらに大気雰囲気下、200℃で15分間焼成し、正孔注入層(膜厚:50nm)を形成した。
 この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて80nmのアルミニウム薄膜を形成して単層素子(SLD)を得た。
[5] Fabrication of Single-Layer Element (SLD) [Example 5-1]
The charge-transporting varnish A1 obtained in Example 2-1 was applied on an ITO substrate similar to that in Example 4-1 by spin coating, dried in air at 120 ° C. for 1 minute, and then further in the air atmosphere. Below, it was fired at 200 ° C. for 15 minutes to form a hole injection layer (film thickness: 50 nm).
On this, an aluminum thin film of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) to obtain a single-layer element (SLD).
[実施例5-2]
 電荷輸送性ワニスA1の代わりに、実施例2-2で得られた電荷輸送性ワニスA2を用いた以外は、実施例5-1と同様の方法でSLDを作製した。
[Example 5-2]
An SLD was prepared in the same manner as in Example 5-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.
 上記で作製したSLDについて、駆動電圧4Vでの電流密度を測定した。結果を表3に示す。 The current density of the SLD produced above was measured at a drive voltage of 4 V. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表3に示されるように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示すことがわかる。 As shown in Table 3, it can be seen that the thin film prepared from the charge-transporting varnish of the present invention exhibits good charge-transporting property.
[6]HOD2の作製
[実施例6-1]
 実施例4-1と同様のITO基板上に、実施例2-1で得られた電荷輸送性ワニスA1を、スピンコーターを用いて塗布し、大気下で、120℃で1分間乾燥後、次いで200℃で15分間焼成を行い、正孔注入層(膜厚:50nm)を形成した。
 その上に、蒸着装置(真空度2.0×10-5Pa)を用いてα-NPDおよびアルミニウムの薄膜を順次積層し、HODを得た。蒸着は、蒸着レート0.2nm/秒の条件で行った。α-NPDおよびアルミニウムの薄膜の膜厚は、それぞれ30nmおよび80nmとした。
[6] Preparation of HOD2 [Example 6-1]
The charge-transporting varnish A1 obtained in Example 2-1 was applied onto an ITO substrate similar to that in Example 4-1 using a spin coater, dried in the air at 120 ° C. for 1 minute, and then The hole injection layer (film thickness: 50 nm) was formed by firing at 200 ° C. for 15 minutes.
On top of this, a thin film of α-NPD and aluminum was sequentially laminated using a vapor deposition apparatus (vacuum degree 2.0 × 10 -5 Pa) to obtain HOD. The vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec. The film thicknesses of the α-NPD and aluminum thin films were 30 nm and 80 nm, respectively.
[実施例6-2]
 電荷輸送性ワニスA1の代わりに、実施例2-2で得られた電荷輸送性ワニスA2を用いた以外は、実施例6-1と同様の方法でHODを作製した。
[Example 6-2]
HOD was prepared in the same manner as in Example 6-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.
 上記で作製したHODについて、駆動電圧4Vでの電流密度を測定した。結果を表4に示す。 The current density of the HOD produced above was measured at a drive voltage of 4 V. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表4に示されるように、本発明の電荷輸送性ワニスから作製した薄膜は、正孔注入層として、正孔輸送層への良好な正孔注入性を示すことがわかる。 As shown in Table 4, it can be seen that the thin film prepared from the charge-transporting varnish of the present invention exhibits good hole-injecting properties into the hole-transporting layer as the hole-injecting layer.
[7]有機EL素子の作製および特性評価
[実施例7-1]
 実施例4-1と同様のITO基板上に、実施例2-1で得られた電荷輸送性ワニスA1を、スピンコーターを用いて塗布し、大気下で、120℃で1分間乾燥後、次いで200℃で15分間焼成を行い、50nmの薄膜を形成した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60と発光層ドーパント材料Ir(ppy)3を共蒸着した。共蒸着は、Ir(ppy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウムおよびアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[7] Fabrication of organic EL device and evaluation of characteristics [Example 7-1]
The charge-transporting varnish A1 obtained in Example 2-1 was applied onto an ITO substrate similar to that in Example 4-1 using a spin coater, dried in the air at 120 ° C. for 1 minute, and then It was calcined at 200 ° C. for 15 minutes to form a thin film of 50 nm.
Next, on the ITO substrate on which the thin film was formed, α-NPD was deposited at 0.2 nm / sec at 30 nm using a thin film deposition apparatus (vacuum degree 1.0 × 10 -5 Pa). Next, a 10 nm film was formed on the electronic block material HTEB-01 manufactured by Kanto Chemical Co., Inc. Next, the light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and the light emitting layer dopant material Ir (ppy) 3 were co-deposited. For co-evaporation, the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated. Next, thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL device. At this time, the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, respectively, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
In order to prevent the deterioration of the characteristics due to the influence of oxygen, water, etc. in the air, the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, an organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together. At this time, a water catching agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ) and then annealed at 80 ° C. for 1 hour to cure the adhesive.
[実施例7-2]
 電荷輸送性ワニスA1の代わりに、実施例2-2で得られた電荷輸送性ワニスA2を用いた以外は、実施例7-1と同様の方法で有機EL素子を作製した。
[Example 7-2]
An organic EL device was produced in the same manner as in Example 7-1 except that the charge transporting varnish A2 obtained in Example 2-2 was used instead of the charge transporting varnish A1.
 得られた有機EL素子について、5,000cd/m2で発光させた場合における駆動電圧、電流密度、電流効率、発光効率、外部発光量子収率(EQE)、およびLT85(初期輝度5,000cd/m2の15%減少に要する時間)を測定した。結果を表5に示す。 The drive voltage, current density, current efficiency, luminous efficiency, external emission quantum yield (EQE), and LT85 (initial brightness 5,000 cd /) when the obtained organic EL element is made to emit light at 5,000 cd / m 2. The time required for a 15% reduction in m 2 ) was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表5に示されるように、本発明の有機EL素子はいずれも高い電流効率と高いEQEを示し、かつ、良好な寿命特性を示すことがわかる。 As shown in Table 5, it can be seen that all of the organic EL devices of the present invention exhibit high current efficiency and high EQE, and also exhibit good life characteristics.

Claims (13)

  1.  下記式(1)で表されることを特徴とするアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、それぞれ独立して、炭素数6~20のアリール基を表し、R2は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数1~20のアルコキシ基、または炭素数6~20のアリール基を表す。)
    An arylamine compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 independently represents an aryl group having 6 to 20 carbon atoms, and R 2 independently represents a hydrogen atom, a halogen atom, a nitro group, a cyano group, and 1 to 20 carbon atoms. , An alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  2.  下記式(1-1)で表される請求項1記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1およびR2は、前記と同じ意味を表す。)
    The arylamine compound according to claim 1, which is represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 have the same meanings as described above.)
  3.  下記式(1-1A)または(1-1B)で表される請求項2記載のアリールアミン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1およびR2は、前記と同じ意味を表す。)
    The arylamine compound according to claim 2, which is represented by the following formula (1-1A) or (1-1B).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 and R 2 have the same meanings as described above.)
  4.  前記R1が、フェニル基、1-ナフチル基または2-ナフチル基である請求項1~3のいずれか1項記載のアリールアミン化合物。 The arylamine compound according to any one of claims 1 to 3, wherein R 1 is a phenyl group, a 1-naphthyl group or a 2-naphthyl group.
  5.  前記R1が、すべてフェニル基である請求項4記載のアリールアミン化合物。 The arylamine compound according to claim 4, wherein R 1 is all a phenyl group.
  6.  前記R2が、すべて水素原子である請求項1~5のいずれか1項記載のアリールアミン化合物。 The arylamine compound according to any one of claims 1 to 5, wherein R 2 is an all hydrogen atom.
  7.  請求項1~6のいずれか1項記載のアリールアミン化合物と、有機溶媒とを含む電荷輸送性ワニス。 A charge-transporting varnish containing the arylamine compound according to any one of claims 1 to 6 and an organic solvent.
  8.  ドーパント物質を含む請求項7記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 7, which contains a dopant substance.
  9.  前記ドーパント物質が、アリールスルホン酸エステル化合物である請求項8記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 8, wherein the dopant substance is an aryl sulfonic acid ester compound.
  10.  請求項7~9のいずれか1項記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。 A charge-transporting thin film produced by using the charge-transporting varnish according to any one of claims 7 to 9.
  11.  請求項10記載の電荷輸送性薄膜を備える電子素子。 An electronic device including the charge transporting thin film according to claim 10.
  12.  請求項10記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 The organic electroluminescence device including the charge transporting thin film according to claim 10.
  13.  前記電荷輸送性薄膜が、正孔注入層または正孔輸送層である請求項12記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 12, wherein the charge transporting thin film is a hole injection layer or a hole transport layer.
PCT/JP2020/011967 2019-03-27 2020-03-18 Arylamine compound and use thereof WO2020196154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080023854.5A CN113614068A (en) 2019-03-27 2020-03-18 Arylamine compound and use thereof
JP2021509253A JP7491302B2 (en) 2019-03-27 2020-03-18 Arylamine compounds and their uses
KR1020217032880A KR20210144758A (en) 2019-03-27 2020-03-18 Arylamine compounds and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060190 2019-03-27
JP2019-060190 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196154A1 true WO2020196154A1 (en) 2020-10-01

Family

ID=72609802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011967 WO2020196154A1 (en) 2019-03-27 2020-03-18 Arylamine compound and use thereof

Country Status (5)

Country Link
JP (1) JP7491302B2 (en)
KR (1) KR20210144758A (en)
CN (1) CN113614068A (en)
TW (1) TWI839495B (en)
WO (1) WO2020196154A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220922B (en) * 2021-11-18 2024-07-16 华中科技大学 Method for in-situ passivation of thermal evaporation perovskite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056841A (en) * 2004-08-23 2006-03-02 Mitsui Chemicals Inc Amine compound and organic electroluminescent element containing the amine compound
WO2008129947A1 (en) * 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021567A1 (en) 2004-05-03 2005-12-08 Covion Organic Semiconductors Gmbh Electronic devices containing organic semiconductors
EP2085382B1 (en) * 2006-11-24 2016-04-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
EP2759574B1 (en) 2011-09-21 2019-08-21 Nissan Chemical Corporation Charge-transporting varnish
EP3053910B1 (en) 2013-10-04 2021-04-28 Nissan Chemical Corporation Aniline derivatives and uses thereof
WO2015101335A1 (en) 2013-12-31 2015-07-09 昆山工研院新型平板显示技术中心有限公司 Organic light-emitting display device and top emitting oled device for improving viewing angle characteristics
EP3118190A4 (en) * 2014-03-14 2017-11-08 Nissan Chemical Industries, Ltd. Aniline derivative and use thereof
KR102411286B1 (en) * 2014-03-14 2022-06-21 닛산 가가쿠 가부시키가이샤 Aniline derivative and use thereof
CN108884016B (en) * 2016-03-24 2022-11-01 日产化学株式会社 Arylamine derivatives and use thereof
EP3473614A4 (en) 2016-06-16 2020-02-26 Nissan Chemical Corporation Sulfonic acid ester compound and use therefor
KR102579611B1 (en) * 2016-07-22 2023-09-20 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element comprising the same and electronic device thereof
KR102440766B1 (en) * 2016-11-16 2022-09-05 호도가야 가가쿠 고교 가부시키가이샤 organic electroluminescent device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056841A (en) * 2004-08-23 2006-03-02 Mitsui Chemicals Inc Amine compound and organic electroluminescent element containing the amine compound
WO2008129947A1 (en) * 2007-04-12 2008-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound

Also Published As

Publication number Publication date
CN113614068A (en) 2021-11-05
TW202104181A (en) 2021-02-01
TWI839495B (en) 2024-04-21
JPWO2020196154A1 (en) 2020-10-01
KR20210144758A (en) 2021-11-30
JP7491302B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
JP7310609B2 (en) charge transport varnish
WO2016190326A1 (en) Charge-transporting varnish, and organic electroluminescent element
JP6760455B2 (en) Aniline derivative and its manufacturing method
JP2023126469A (en) Charge transporting varnish
EP3000804B1 (en) Triphenylamine derivative and use therefor
JP7351314B2 (en) Charge transport varnish
JP7491302B2 (en) Arylamine compounds and their uses
WO2020241730A1 (en) Arylamine compound and use thereof
JP7290149B2 (en) Aniline derivative and its use
EP3012245A1 (en) Aniline derivative, charge-transporting varnish and organic electroluminescent device
JP7298611B2 (en) Composition for forming charge-transporting thin film
JP7420073B2 (en) Aniline derivative
WO2020203594A1 (en) Fluorene derivative and use thereof
JPWO2020027262A1 (en) Charge transporting composition
TWI855047B (en) Fluorine derivatives and their use
WO2020027014A1 (en) Polymer and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032880

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20779457

Country of ref document: EP

Kind code of ref document: A1