WO2020203594A1 - Fluorene derivative and use thereof - Google Patents

Fluorene derivative and use thereof Download PDF

Info

Publication number
WO2020203594A1
WO2020203594A1 PCT/JP2020/013505 JP2020013505W WO2020203594A1 WO 2020203594 A1 WO2020203594 A1 WO 2020203594A1 JP 2020013505 W JP2020013505 W JP 2020013505W WO 2020203594 A1 WO2020203594 A1 WO 2020203594A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
represented
groups
Prior art date
Application number
PCT/JP2020/013505
Other languages
French (fr)
Japanese (ja)
Inventor
博史 太田
歳幸 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021511886A priority Critical patent/JPWO2020203594A1/ja
Priority to CN202080025418.1A priority patent/CN113631536A/en
Priority to KR1020217032421A priority patent/KR20210144750A/en
Publication of WO2020203594A1 publication Critical patent/WO2020203594A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/48Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring being part of a condensed ring system of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/14Preparation of carboxylic acid amides by formation of carboxamide groups together with reactions not involving the carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/77Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/80Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Definitions

  • the present invention relates to a fluorene derivative and its use.
  • a charge transporting thin film made of an organic compound is used as a light emitting layer and a charge injection layer.
  • the hole injection layer is responsible for the transfer of electric charges between the anode and the hole transport layer or the light emitting layer, and fulfills an important function for achieving low voltage drive and high brightness of the organic EL element.
  • the refractive index of the functional film used for the purpose of improving the light extraction efficiency is achieved by using a hole injection layer or a hole transport layer having a relatively high or low refractive index in consideration of the overall configuration of the device and the refractive index of other adjacent members. Attempts have been made to achieve this (Patent Documents 1 and 2).
  • the refractive index is an important factor in the design of the organic EL element, and in the material for the organic EL element, the refractive index is also considered to be an important physical property value to be considered.
  • the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see Patent Document 3).
  • the method of forming the hole injection layer is roughly divided into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, as the area of organic EL displays is increasing, there is always a demand for a wet process material that can be formed by a wet process and provides a charge-transporting thin film having excellent refractive index and transparency. ..
  • the present invention has been made in view of the above circumstances, and when a thin film having good charge transportability, high refractive index and high transparency is provided by low-temperature firing, and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide a compound capable of realizing an organic EL device having excellent characteristics.
  • the present inventors have obtained a thin film obtained by using a predetermined fluorene derivative, which exhibits high charge transportability, high transparency and high refractive index.
  • a predetermined fluorene derivative which exhibits high charge transportability, high transparency and high refractive index.
  • an organic EL device having excellent properties can be obtained when this thin film is applied to a hole injection layer or the like, and completed the present invention.
  • a fluorene derivative represented by the following formula (1) [In the formula, Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently; (Wherein, a broken line is a bond .R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.) Ar 1 and Ar 2 are independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and are a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, and 1 carbon atom.
  • Ar 3 and Ar 4 are groups represented by any of the following formulas (8) to (11) independently.
  • R 1 is substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms.
  • a heteroaryl group having 6 to 20 carbon atoms, or a heteroaryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms, or the following.
  • R 2 to R 52 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms.
  • D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group
  • R 53 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms.
  • Ar 1 and Ar 2 are independently phenyl group, 1-naphthyl group or 2-naphthyl group, or the following formulas (T1-1) to (T11-4), formulas (F1-1) to (F4-4). ), The fluorene derivative of 1 which is a group represented by the formulas (N1-1) to (N10-7) or the formulas (M1-1) to (M4-3).
  • a charge-transporting substance comprising a fluorene derivative according to any one of 7.1 to 6.
  • the compound represented by the formula (15) is reacted with the compound represented by the formula (16-1) and the compound represented by the formula (16-2) to obtain an intermediate represented by the formula (17).
  • Process The step of reducing the intermediate represented by the formula (17) to obtain the intermediate represented by the formula (18), and the intermediate represented by the formula (18) and the intermediate represented by the formula (19-1).
  • a method for producing a fluorene derivative represented by the following formula (1) which comprises a step of reacting a halide with a halide represented by the formula (19-2).
  • a halide represented by the formula (19-2) In the formula, Z 1 , Z 2 , Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same as above; X is a halogen atom or pseudohalogen group.
  • the charge-transporting varnish containing the fluorene derivative of the present invention By using the charge-transporting varnish containing the fluorene derivative of the present invention, a thin film having high transparency and high refractive index can be produced, and a thin film having excellent charge transportability even when fired at a low temperature of 200 ° C. or lower. Can be produced.
  • the charge-transporting thin film obtained from the charge-transporting varnish of the present invention can be suitably used as a thin film for electronic devices such as organic EL devices, and the hole injection layer and the hole transport layer of the organic EL device, particularly By using it as a hole injection layer, an organic EL device having excellent characteristics can be obtained.
  • fluorene derivative The fluorene derivative of the present invention is represented by the following formula (1).
  • Examples of the compound represented by the formula (1) include, but are not limited to, those shown below.
  • Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently.
  • Z 1 and Z 2 are groups represented by the formula (4) or (5), the carbon atom contained in this group is bonded to the nitrogen atom in the formula (1).
  • R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, a hydrogen atom is preferable.
  • Alkyl groups R A and 1 to 20 carbon atoms represented by R B is a linear, branched, may be any of cyclic, and examples thereof include a methyl group, an ethyl group, n- propyl group, isopropyl Group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc.
  • Linear or branched alkyl group having 1 to 20 carbon atoms ; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group , Bicyclohexyl group, bicycloheptyl group, bicyclooctyl group, bicyclononyl group, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
  • the groups represented by the formulas (2), (3), (4), (5) or (6) are preferable, and the groups represented by the formulas (2), (4) or (6) are represented.
  • the group represented by the formula (2) is more preferable, and the group represented by the formula (2) is even more preferable.
  • Ar 1 and Ar 2 are independently aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by Ar 1 and Ar 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group and a 1-. Examples thereof include a phenanthryl group, a 2-phenanthril group, a 3-phenanthril group, a 4-phenylantril group, a 9-phenanthril group and the like.
  • Examples of the heteroaryl group having 2 to 20 carbon atoms represented by Ar 1 and Ar 2 include the following formulas (T1-1) to (T11-4), formulas (F1-1) to (F4-4), and formulas (F4-4). Examples thereof include groups represented by N1-1) to (N10-7) and formulas (M1-1) to (M4-3), but the present invention is not limited thereto. Among them, from the viewpoint of realizing a higher refractive index, the sulfur-containing heteroaryl group and the nitrogen-containing heteroaryl group are preferable, and the sulfur-containing heteroaryl group is more preferable. (In the formula, the broken line is the joiner.)
  • the aryl group having 6 to 20 carbon atoms or the heteroaryl group having 2 to 20 carbon atoms represented by Ar 1 and Ar 2 has a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group and 1 to 20 carbon atoms. It may be substituted with an alkyl group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • Alkyl group having 1 to 20 carbon atoms may be linear, branched, may be any of cyclic, and examples thereof include those of formula similar to that described in the description of R A and R B (6) Can be mentioned.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethenyl group, an n-1-propenyl group, an n-2-propenyl group and 1-methylethenyl.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group and an n-1.
  • n-2-butynyl group n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n- 4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, Examples thereof include an n-1-decynyl group, an n-1-pentadecynyl group, and an n-1-eicosynyl group.
  • the alkoxy group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group and an n-butoxy group. Number of carbon atoms of isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc.
  • cyclopropyloxy group cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group, cyclodecyloxy group , Bicyclobutyloxy group, bicyclopentyloxy group, bicyclohexyloxy group, bicycloheptyloxy group, bicyclooctyloxy group, bicyclononyloxy group, bicyclodecyloxy group and other cyclic alkoxy groups having 3 to 20 carbon atoms.
  • Ar 1 and Ar 2 include phenyl group; nitrophenyl group; methylphenyl group, ethylphenyl group, propylphenyl group, dimethylphenyl group, diethylphenyl group, dipropylphenyl group, trimethylphenyl group, and triethylphenyl.
  • tripropylphenyl group alkylphenyl group such as these structural isomers; alkenylphenyl group such as vinylphenyl group, 1-propenylphenyl group, 2-propenylphenyl group; ethynylphenyl group, 1-propynylphenyl group, 2 -Alquinylphenyl group such as propynylphenyl group; 1-naphthyl group; nitro-1-naphthyl group; methyl-1-naphthyl group, ethyl-1-naphthyl group, propyl-1-naphthyl group, dimethyl-1-naphthyl group, Diethyl-1-naphthyl group, dipropyl-1-naphthyl group, trimethyl-1-naphthyl group, triethyl-1-naphthyl group, tripropyl-1-n-n
  • -2-naphthyl group alkenyl-2-naphthyl group such as vinyl-2-naphthyl group, 1-propenyl-2-naphthyl group, 2-propenyl-2-naphthyl group; ethynyl-2-naphthyl group, 1-propynyl- Alkinyl-2-naphthyl groups such as 2-naphthyl group and 2-propynyl-2-naphthyl group; 9-anthryl group, 1-phenyl group, 2-phenyl group, 3-phenyl group, 9-phenyl group; formula (T1).
  • the groups represented by -1) to (T11-4) are preferable.
  • Ar 1 and Ar 2 are preferably the same group from the viewpoint of easiness of synthesizing the fluorene derivative.
  • Ar 3 and Ar 4 are groups represented by any of the following formulas (8) to (11) independently.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms.
  • D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group.
  • Examples of the alkyl group having 1 to 20 carbon atoms is an alkyl group and the substituent group having 1 to 20 carbon atoms represented by R 1, the same as those described in the description of R A and R B of formula (6) Things can be mentioned.
  • Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include those similar to those described in the description of Ar 1 and Ar 2 of the formula (1).
  • the heteroaryl group having 2 to 20 carbon atoms represented by R 1 includes 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group and 5-.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • alkyl halide group having 1 to 20 carbon atoms examples include those in which a part or all of the hydrogen atoms of the alkyl group having 1 to 20 carbon atoms are substituted with the halogen atom. In the description of (B), the same ones as those described later can be mentioned.
  • diarylamino group examples include a diphenylamino group, a dinaphthylamino group, a dianthrylamino group, an N-phenyl-N-naphthylamino group, an N-phenyl-N-anthrylamino group, and an N-naphthyl-N-anthryl. Amino groups and the like can be mentioned.
  • R 1 includes a hydrogen atom, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, and a 2-phenanthryl group.
  • 3-Phenyltril group, 4-Phenyltril group, 9-Phenyltril group, group represented by the formula (12-1), group represented by the formula (13-1) and the like are preferable, and the group represented by the formula (12-1) is preferable.
  • the group to be used, the group represented by the formula (13-1) and the phenyl group are more preferable, and the phenyl group is even more preferable.
  • R 2 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or halogenated groups having 1 to 20 carbon atoms. It is an alkyl group.
  • the alkyl group of R 2 ⁇ 1 to 20 carbon atoms represented by R 76, include the same ones as mentioned in the description of R A and R B of formula (6).
  • R 2 to R 76 a hydrogen atom, a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl halide group having 1 to 10 carbon atoms are preferable, and a hydrogen atom and a cyano group are used.
  • a group, a nitro group, a halogen atom and a trifluoromethyl group are more preferable, and it is even more preferable that all of them are hydrogen atoms.
  • Examples of the groups represented by the formulas (8) to (11) include, but are not limited to, those shown below. (In the formula, R 1 to R 52 are the same as above. The broken line is the connecting hand.)
  • the fluorene derivative of the present invention can be synthesized by the method shown in Scheme A below. (In the formula, Z 1 , Z 2 , Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same as above. X is a halogen atom or a pseudohalogen group.)
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the pseudo-halogen group includes a fluoroalkylsulfonyloxy group such as a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group and a nonafluorobutanesulfonyloxy group; and an aromatic sulfonyloxy group such as a benzenesulfonyloxy group and a toluenesulfonyloxy group. And so on.
  • the compound represented by the formula (15) can be synthesized by a conventionally known method, for example, according to the method described in J. Mater. Chem. C, 2014, pp. 1068-1075.
  • the first step is carried out by a coupling reaction from the compound represented by the formula (15), the compound represented by the formula (16-1) and the compound represented by the formula (16-2). This is a step of obtaining an intermediate represented by the formula (17).
  • a synthesis method using the Suzuki-Miyaura coupling reaction is shown as an example, but it is also possible to synthesize using another coupling reaction.
  • the catalysts used in the Suzuki-Miyaura coupling reaction are [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)), tetrakis (triphenylphosphine) palladium (Pd (PPh)).
  • preferred catalysts are PdCl 2 (dppf), Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , and Pd (Pt-Bu 3 ) 2 from the viewpoint of efficiently obtaining the desired product. More preferably, it is Pd (PPh 3 ) 4 and Pd (Pt-Bu 3 ) 2 .
  • the amount of the catalyst used is usually about 0.1 to 50 mol%, preferably 0.1 to 30 mol%, and more preferably 1 to 10 mol% with respect to the compound represented by the formula (15).
  • a base is also used in the Suzuki-Miyaura coupling reaction, and the base includes hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide, tert-butoxysodium, tert-butoxypotassium and the like.
  • bases are carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, and phosphates such as potassium phosphate from the viewpoint of efficiently obtaining the desired product.
  • Potassium carbonate and cesium carbonate are preferable.
  • the amount of the base used is usually about 2 to 20 equivalents, preferably 1 to 20 equivalents, and more preferably 2 to 8 equivalents, relative to the compound represented by the formula (15).
  • the solvent used in the first step is not particularly limited as long as it does not adversely affect the reaction, but specific examples thereof include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin).
  • Etc. halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mecitylene, etc.), ether (Diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), amide (N, N-dimethylformamide (DMF), N , N-dimethylacetamide, etc.), lactam and lactone (N-methylpyrrolidone, ⁇ -butyrolactone, etc.), urea derivatives (N, N-dimethylimidazolidinone, tetramethylurea, etc.
  • preferred solvents are aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.) and aromatic hydrocarbons (benzene, nitrobenzene, toluene, etc.) from the viewpoint of efficiently obtaining the desired product.
  • aliphatic hydrocarbons penentane, n-hexane, n-octane, n-decane, decalin, etc.
  • aromatic hydrocarbons benzene, nitrobenzene, toluene, etc.
  • ether diethyl ether, diisopropyl ether, tert-butylmethyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.
  • aromatic hydrocarbons benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.
  • ethers diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, Dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.
  • the charging ratio of the compound represented by the formula (15) to the compound represented by the formula (16-1) and the compound represented by the formula (16-2) is based on the compound represented by the formula (15).
  • the total of the compound represented by the formula (16-1) and the compound represented by the formula (16-2) is preferably 2 to 6 equivalents, and more preferably 2 to 3 equivalents.
  • the compound represented by the formula (16-1) and the compound represented by the formula (16-2) may be the same or different from each other.
  • the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent while considering the type and amount of the raw material compound and the catalyst to be used, but is usually about 0 to 200 ° C., preferably 0. ⁇ 50 ° C.
  • the reaction time cannot be unconditionally specified because it varies depending on the raw material compound used, the reaction temperature, and the like, but it is usually about 1 to 24 hours.
  • the second step is a step of reducing the intermediate represented by the formula (17) to obtain the intermediate represented by the formula (18).
  • the reducing method include known methods such as catalytic hydrogenation and chemical reduction with a metal and an acid.
  • catalytic hydrogenation When reduction is performed by catalytic hydrogenation, known catalysts such as palladium carbon, Raney nickel catalyst, platinum oxide, ruthenium carbon, rhodium carbon, and platinum carbon may be used.
  • the conditions for catalytic hydrogenation include, for example, a hydrogen pressure of 1 to 10 atm, a reaction temperature of 20 to 100 ° C., and a reaction time of 1 to 48 hours.
  • the third step is to react the intermediate represented by the formula (18) with the compound represented by the formula (19-1) and the compound represented by the formula (19-2). This is a step of synthesizing the fluorene derivative represented by (1).
  • a base may be used in the third step.
  • Examples of the base include those similar to those that can be used in the first step. Of these, triethylamine, pyridine, diisopropylethylamine and the like are preferable because they are particularly easy to handle.
  • the reaction solvent is preferably an aprotic organic solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, tetrahydrofuran, Examples thereof include dioxane.
  • N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, toluene, xylene, mesitylene and the like are preferable.
  • the charging ratio of the intermediate represented by the formula (18) to the compound represented by the formula (19-1) and the compound represented by the formula (19-2) is the intermediate represented by the formula (18).
  • the total of the compound represented by the formula (19-1) and the compound represented by the formula (19-2) is preferably 2 to 6 equivalents, and more preferably 2 to 3 equivalents.
  • the compound represented by the formula (19-1) and the compound represented by the formula (19-2) may be the same as or different from each other.
  • the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent while considering the type and amount of the raw material compound and the catalyst to be used, but is usually about 0 to 200 ° C., preferably 0. ⁇ 50 ° C.
  • the reaction time cannot be unconditionally specified because it varies depending on the raw material compound used, the reaction temperature, and the like, but it is usually about 1 to 24 hours.
  • post-treatment can be performed according to a conventional method to obtain the desired fluorene derivative.
  • the compound represented by the formula (19-1) and the compound represented by the formula (19-2) can be obtained by a known method or the availability of a commercially available product.
  • the fluorene derivative of the present invention can be suitably used as a charge transporting substance, particularly as a hole transporting substance.
  • charge transportability is synonymous with conductivity.
  • a charge-transporting substance is a substance that has a charge-transporting property in itself. Further, the charge-transporting varnish itself may have a charge-transporting property, and the solid film obtained thereby may have a charge-transporting property.
  • the charge-transporting varnish of the present invention contains a charge-transporting substance composed of the fluorene derivative and an organic solvent.
  • the charge transporting substance may be used alone or in combination of two or more.
  • Organic solvent a highly polar solvent capable of satisfactorily dissolving the fluorene derivative can be used.
  • the fluorene derivative of the present invention can be dissolved in a solvent regardless of the polarity of the solvent.
  • a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent.
  • a low-polarity solvent is defined as having a relative permittivity of less than 7 at a frequency of 100 kHz
  • a high-polarity solvent is defined as having a relative permittivity of 7 or more at a frequency of 100 kHz.
  • low polar solvent examples include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like.
  • Alibo alcohol solvents such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc.
  • Solvents methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Examples thereof include ester solvents.
  • Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
  • Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone
  • Cyano solvent such as acetonitrile and 3-methoxypropionitrile
  • Ethylene glycol diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol
  • Polyhydric alcohol solvents such as 2,3-butanediol
  • Monovalent alcohol-based solvents other than aliphatic alcohols such as phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol
  • sulfoxide-based solvents such as dimethyl sulfoxide, and the like can be mentioned.
  • the amount of the solvent used is such that the solid content concentration in the varnish of the present invention is usually about 0.1 to 20% by mass, preferably from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge transporting substance.
  • the amount is 0.5 to 10% by mass.
  • the solid content as used herein means a component other than the solvent among the components contained in the varnish.
  • the solvent may be used alone or in combination of two or more.
  • the charge-transporting varnish of the present invention may contain a dopant for the purpose of improving the charge-transporting property of the thin film obtained from the charge-transporting varnish of the present invention.
  • the dopant is not particularly limited as long as it is soluble in at least one solvent used in the composition, and either an inorganic dopant or an organic dopant can be used.
  • the dopant first develops its function as a dopant by removing a part of the molecule due to an external stimulus such as heating at the time of firing. It may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
  • Heteropolyacid is preferable as the inorganic dopant, and specific examples thereof include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, phosphotungstic acid, and silicate tungstic acid.
  • the heteropolyacid has a structure in which the hetero atom is located at the center of the molecule, which is typically represented by a Keggin type represented by the following formula (HPA1) or a Dawson type chemical structure represented by the following formula (HPA2).
  • HPA1 Keggin type represented by the following formula
  • HPA2 Dawson type chemical structure represented by the following formula
  • Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
  • heteropolyacid examples include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, and phosphotungstic acid. These may be used individually by 1 type or in combination of 2 or more type.
  • the heteropolyacid used in the present invention is available as a commercially available product, and can also be synthesized by a known method.
  • the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable.
  • one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
  • heteropolyacids are those obtained as commercial products or known synthetics even if the number of elements is large or small from the structure represented by the general formula. As long as it is properly synthesized according to the method, it can be used in the present invention.
  • phosphotungsten acid is generally represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O
  • phosphomolybdic acid is generally represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O.
  • P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, or As long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention.
  • the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
  • organic dopant examples include aryl sulfonic acid, aryl sulfonic acid ester, an ionic compound composed of a predetermined anion and its counter cation, a tetracyanoquinodimethane derivative, a benzoquinone derivative and the like.
  • the aryl sulfonic acid compound is preferably represented by the following formula (A) or (B) from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
  • a 1 is -O- or -S-, but -O- is preferable.
  • a 2 is a (p 2 + 1) -valent group derived from naphthalene or anthracene (ie, a group obtained by removing p 2 + 1 hydrogen atoms from naphthalene or anthracene), but is derived from naphthalene. A group is preferred.
  • a 3 is a 2- to 4-valent perfluorobiphenyl group.
  • p 1 is the number of bonds between A 1 and A 3, and is an integer satisfying 2 ⁇ p 1 ⁇ 4, but A 3 is a divalent perfluorobiphenyl group and p 1 is 2. Is preferable.
  • p 2 is the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ⁇ p 2 ⁇ 4, but 2 is preferable.
  • a 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms or 2 to 2 carbon atoms, respectively. There are 20 halogenated alkenyl groups, but at least 3 of A 4 to A 8 are halogen atoms.
  • q is the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ⁇ q ⁇ 4, but 2 to 4 is preferable, and 2 is more preferable.
  • alkyl halide group having 1 to 20 carbon atoms examples include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, and a 3,3,3-trifluoropropyl group, 2,2, 3,3,3-Pentafluoropropyl group, perfluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3, Examples thereof include 4,4,4-heptafluorobutyl group and perfluorobutyl group.
  • halogenated alkenyl group having 2 to 20 carbon atoms examples include a perfluoroethenyl group, a 1-perfluoropropenyl group, a perfluoroallyl group, a perfluorobutenyl group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group having 1 to 20 carbon atoms include the same ones as mentioned in the description of R A and R B of formula (6).
  • a 4 to A 8 include hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or alkenyl halide having 2 to 10 carbon atoms.
  • a group it is preferable that at least three fluorine atoms of a 4 - a 8, a hydrogen atom, a fluorine atom, fluorinated cyano group, an alkyl group having 1 to 5 carbon atoms, 5 It is more preferably an alkyl group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, and 1 to 1 carbon atoms.
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms
  • the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
  • Suitable aryl sulfonic acids include, but are not limited to, those shown below.
  • the aryl sulfonic acid ester compound As the aryl sulfonic acid ester compound, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, International Publication No. 2017/217457, from the viewpoint of the transparency of the thin film obtained from the charge transport varnish of the present invention. Examples thereof include the aryl sulfonic acid ester compound disclosed in No. 2, the aryl sulfonic acid ester compound described in Japanese Patent Application No. 2017-243631 and the like.
  • the aryl sulfonic acid ester compound is preferably represented by any of the following formulas (C) to (E).
  • m is an integer satisfying 1 ⁇ m ⁇ 4, but 2 is preferable.
  • n is an integer satisfying 1 ⁇ n ⁇ 4, but 2 is preferable.
  • a 11 is an m-valent group derived from perfluorobiphenyl (ie, a group obtained by removing m fluorine atoms from perfluorobiphenyl).
  • a 12 is —O— or —S—, but —O— is preferred.
  • a 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing n + 1 hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable.
  • R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 has 2 to 20 carbon atoms which may be substituted. It is a monovalent hydrocarbon group.
  • the linear or branched alkyl group having 1 to 6 carbon atoms represented by R s1 to R s4 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and sec. -Butyl group, tert-butyl group, n-hexyl group and the like can be mentioned. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
  • the monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s5 may be linear, branched or cyclic, and specific examples thereof include an ethyl group, an n-propyl group, an isopropyl group and n.
  • -Alkyl groups such as butyl group, isobutyl group, sec-butyl group and tert-butyl group; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
  • R s1 to R s4 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. It is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
  • a 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring.
  • the hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
  • a part or all of the hydrogen atom may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom and a bromine atom.
  • substituents include a fluorine atom, a chlorine atom and a bromine atom.
  • monovalent Examples thereof include a hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group.
  • a 14 a group derived from benzene, biphenyl or the like is preferable.
  • a 15 is —O— or —S—, but —O— is preferred.
  • a 16 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and this aromatic hydrocarbon group is the aroma of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing (n + 1) hydrogen atoms from the ring.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s6 and R s7 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups, and R s8 is linear or branched. It is a monovalent aliphatic hydrocarbon group.
  • the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more.
  • the upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • linear or branched monovalent aliphatic hydrocarbon group represented by R s6 , R s7 and R s8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group.
  • R s6 is preferably a hydrogen atom
  • R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
  • R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, and alkyl halide group having 1 to 10 carbon atoms, respectively. Alternatively, it is a halogenated alkenyl group having 2 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms represented by R s9 to R s13 may be linear, branched, or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the alkyl halide group having 1 to 10 carbon atoms represented by R s9 to R s13 is particularly a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with a halogen atom.
  • a halogen atom such as a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 1,1,2,2,2-pentafluoroethyl group, a 3,3,3-trifluoropropyl group, and a 2,2.
  • the halogenated alkenyl group having 2 to 10 carbon atoms represented by R s9 to R s13 is a group in which some or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms.
  • Specific examples thereof include, but are not limited to, a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro.
  • -3-Butenyl group and the like can be mentioned.
  • R s9 a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable.
  • the alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable.
  • R s10 to R s13 a halogen atom is preferable, and a fluorine atom is more preferable.
  • a 17 is -O-, -S- or -NH-, but -O- is preferable.
  • a 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms
  • the aromatic hydrocarbon group is the aromatic of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing (n + 1) hydrogen atoms from the ring.
  • the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like.
  • a 18 a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
  • R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms.
  • the monovalent aliphatic hydrocarbon group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and a cyclopentyl group.
  • Examples include alkenyl groups. Of these, an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
  • R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or ⁇ OR s19 .
  • R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
  • Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 .
  • R s18 is a monovalent aliphatic hydrocarbon group
  • R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
  • R s19 As the monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 , in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group, aryl groups such as phenyl, naphthyl and phenanthryl groups are used. Can be mentioned. Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms.
  • Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
  • Suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
  • the ionic compound represented by the following formula (F) is preferable from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
  • E is a Group 13 element of the long periodic table
  • Ar 101 to Ar 104 are independently aryl groups having 6 to 20 carbon atoms or heteroaryls having 2 to 20 carbon atoms.
  • a group such as a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group. It may be substituted with an alkylated group.
  • a boron atom, an aluminum atom and a gallium atom are preferable, and a boron atom is more preferable.
  • the aryl group having 6 to 20 carbon atoms represented by Ar 101 to Ar 104 include the same aryl groups as those described in the description of Ar 1 and Ar 2 in the formula (1).
  • the heteroaryl group having 2 to 20 carbon atoms represented by Ar 101 to Ar 104 include a 2-thienyl group, a 3-thienyl group, a 2-furanyl group, a 3-furanyl group, a 2-oxazolyl group and a 4-oxazolyl group.
  • M + is an onium ion.
  • the onium ion include iodonium ion, sulfonium ion, ammonium ion, phosphonium ion and the like, and iodonium ion represented by the following formula (G) is particularly preferable.
  • R 101 and R 102 independently have an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, and 6 to 20 carbon atoms, respectively.
  • tetracyanoquinodimethane derivative examples include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro.
  • benzoquinone derivative examples include tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and the like.
  • the charge-transporting varnish of the present invention contains a dopant
  • the content thereof varies depending on the type of dopant, the desired charge-transporting property, and the like, and therefore cannot be unconditionally defined.
  • it is a mass ratio with respect to the charge-transporting substance 1. It is usually about 0.01 to 50, preferably about 0.1 to 10, and more preferably about 1.0 to 5.0.
  • the charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical properties of the obtained charge-transporting thin film.
  • organic silane compound examples include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound.
  • a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable.
  • the organic silane compound may be used alone or in combination of two or more.
  • the organic silane compound When the organic silane compound is contained, its content is usually about 0.1 to 50% by mass with respect to the total mass of the charge-transporting substance and the dopant, but it suppresses a decrease in the charge-transporting property of the obtained thin film.
  • it is intended to enhance the hole injection ability into a layer (for example, a hole transport layer or a light emitting layer) laminated on the opposite side of the anode so as to be in contact with the hole injection layer made of the charge transport thin film of the present invention. In consideration, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.
  • the method for preparing the charge transporting varnish is not particularly limited, and examples thereof include a method in which the fluorene derivative and, if necessary, a dopant and the like are added to the organic solvent in any order or at the same time.
  • the fluorene derivative and, if necessary, a dopant or the like may be first dissolved in one solvent, and another solvent may be added thereto, and the mixed solvent of the plurality of organic solvents may be used.
  • the fluorene derivative and, if necessary, a dopant or the like may be dissolved sequentially or simultaneously.
  • the fluorene derivative and, if necessary, a dopant or the like are dissolved in an organic solvent, and then a filter or the like on the order of submicrometer is used. It is desirable to use and filter.
  • the viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C.
  • the viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd.
  • the surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.
  • the viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.
  • the charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.
  • varnish coating method examples include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.
  • the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and it is possible to obtain a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can. Depending on the type of dopant used together, a thin film having charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
  • the firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., and the obtained thin film is obtained.
  • it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but the charge transporting varnish of the present invention has a good charge even at a low temperature of 200 ° C. or lower.
  • a thin film having transportability can be obtained.
  • a temperature change of two or more steps may be applied for the purpose of developing higher uniform film forming property or advancing the reaction on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
  • the film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a hole injection layer, a hole transport layer, or a hole transport layer of an organic EL element.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of liquid on the substrate at the time of coating.
  • the charge-transporting thin film of the present invention exhibits a refractive index of 1.6 or more and an extinction coefficient of 0.030 or less on average in the wavelength region of 400 to 800 nm, but in some embodiments, a refraction of 1.65 or more.
  • the organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f).
  • an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of.
  • an arbitrary functional layer can be provided between the layers.
  • A Antenna / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode
  • c Electron / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • the "hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer”, and there are two layers of hole transporting material between the light emitting layer and the anode. When more than one layer is provided, the layer close to the anode is the “hole injection layer” and the other layers are the “hole transport layer”.
  • the hole injection (transport) layer a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
  • the "electron injection layer”, “electron transport layer” and “electron transport layer” are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injection transporting layer”, and two or more layers of electron transporting material are provided between the light emitting layer and the cathode. If so, the layer close to the cathode is the “electron injection layer” and the other layers are the “electron transport layer”.
  • the "light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted.
  • the host material mainly has a function of promoting the recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.
  • the materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.
  • An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrodes are preliminarily cleaned with alcohol, pure water, or the like, or surface-treated with UV ozone treatment, oxygen-plasma treatment, or the like, as long as the electrodes are not adversely affected.
  • a hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited.
  • a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metals typified by aluminum, and metal anodes composed of alloys thereof. , A flattened product is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
  • Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-.
  • Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl).
  • Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.
  • the light emitting layer When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.
  • Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
  • Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.
  • cathode material examples include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
  • Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
  • hole-transporting polymer examples include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,4-diamino).
  • Phenylene poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis ⁇ 1'-penten-5'-yl ⁇ fluorenyl-2,7-diyl) -co- (N, N'-bis ⁇ p-butylphenyl ⁇ -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like
  • luminescent polymer examples include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH).
  • PDAF poly (9,9-dialkylfluorene)
  • MEH poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene)
  • -PPV polyphenylene vinylene derivatives
  • PAT poly (3-alkylthiophene)
  • PVCz polyvinylcarbazole
  • the anode, cathode, and the material forming the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..
  • a transparent anode is used on the substrate side and light is extracted from the substrate side
  • a reflective anode made of metal is used and the direction is opposite to that of the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.
  • the charge transporting varnish of the present invention is suitably used for forming a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, and an organic integrated circuit , Organic field effect transistor, organic thin film, organic light emitting transistor, organic optical tester, organic photoreceiver, organic electric field extinguishing element, light emitting electronic chemical battery, quantum dot light emitting diode, quantum laser, organic laser diode and organic Plasmon light emitting device It can also be used to form a functional layer in an electronic device such as.
  • EL element Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd. (6) Measurement of brightness, etc. of EL element: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (7) Life measurement of EL element (luminance half-life measurement): Organic EL brightness manufactured by EHC Co., Ltd. Life evaluation system PEL-105S (8) Measurement of refractive index and extinction coefficient: J.A. Woolam Japan, multi-entry angle spectroscopic ellipsometer VASE
  • the concentrate was added dropwise to 2-propanol (20 mL) and the suspension was stirred at room temperature. Filter, dry the filter, and obtain the desired fluorene derivative A (N, N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4). , 1-Phenylene)) bis (1-naphthamide)) was obtained in an amount of 1.16 g (yield: 85%). The measurement results of 1 H-NMR are shown below.
  • Example 1-2 Synthesis of fluorene derivative B The purpose is the same as in Example 1-1-3, except that benzoyl chloride (304 ⁇ L, 2.64 mmol) is used instead of 1-naphthoyl chloride. 1.07 g of fluorene derivative B (N, N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bisbenzamide) Obtained (yield: 85%). The measurement results of 1 H-NMR are shown below.
  • the target fluorene derivative C (N, N'-(((N, N'-(() is the same as in Example 1-1-3, except that Intermediate E (1.13 g, 1.36 mmol) is used instead of Intermediate C. Obtained 1.46 g of 2,7-bis (9-phenyl-9H-carbazole-3-yl) -9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (1-naphthamide). (Yield: 94%). The measurement results of 1 H-NMR are shown below.
  • intermediate A (0.57 g, 1 mmol), 9-phenylcarbazole-2-boronic acid (0.63 g, 2.2 mmol), potassium carbonate (0.55 g, 4 mmol), 1,4-dioxane ( 11 mL), ion-exchanged water (2.8 mL) and Pd (PPh 3 ) 4 (57.8 mg, 0.05 mmol) were added, and after nitrogen substitution, the mixture was stirred at 90 ° C. for 3 hours. After cooling to room temperature, ion-exchanged water (8.4 mL) was added to the reaction mixture, filtration was performed, and the filtrate was washed with ion-exchanged water (11 mL).
  • Example 1-1 except that Intermediate G (0.9 g, 1.08 mmol) was used in place of Intermediate A and Benzoyl chloride (274 ⁇ L, 2.38 mmol) was used in place of 1-naphthoyl chloride.
  • the target fluorene derivative D N, N'-((2,7-bis (9-phenyl-9H-carbazole-2-yl) -9H-fluorene-9,9-diyl) bis
  • the measurement results of 1 H-NMR are shown below.
  • the target fluorene derivative E (N, N'-) was used in the same manner as in Example 1-1-3, except that 2-tenoyl chloride (280 ⁇ L, 2.64 mmol) was used instead of 1-naphthoyl chloride. 1.02 g of (2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (thiophene-2-carboxamide)) was obtained ( Yield: 80%). The measurement results of 1 H-NMR are shown below.
  • the fluorene derivative F of interest was prepared in the same manner as in Example 1-1-3, except that benzo [b] thiophene-2-carbonyl chloride (517 mg, 2.64 mmol) was used instead of 1-naphthoyl chloride.
  • N N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (benzo [b] thiophene-2-carboxamide) )
  • Yield: 83% The measurement results of 1 H-NMR are shown below.
  • the charge-transporting thin film of the present invention had a high refractive index of 1.65 or more and a low extinction coefficient of 0.03 or less.
  • the ITO substrate is a 25 mm ⁇ 25 mm ⁇ 0.7 t glass substrate in which ITO is patterned on the surface with a film thickness of 150 nm, and is an O 2 plasma cleaning device (150 W, 30 seconds) before use. ) was used to remove impurities on the surface.
  • Example 4-1 The hole injection layer solution was applied onto an ITO substrate using a spin coater, then provisionally fired on a hot plate at 80 ° C. for 1 minute in an air atmosphere, and then main fired at 230 ° C. for 15 minutes. A hole injection layer (thickness 30 nm) was formed. Next, the charge-transporting varnish A2 was applied onto the hole injection layer using a spin coater, the solvent was removed by vacuum drying at room temperature, and the mixture was fired at 130 ° C. for 10 minutes in an air atmosphere to have a film thickness of 40 nm. Hole transport layer was formed. On this, an aluminum thin film of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 ⁇ 10 -5 Pa) to prepare a hole-only element (HOD).
  • a hole-only element HID
  • Example 4-2 to 4-5 HOD was prepared in the same manner as in Example 4-1 except that the charge-transporting varnish A2 was replaced with the charge-transporting varnish B2, C2, E2 or F2.
  • the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting properties.
  • Example 5-2 to 5-6 An SLD was prepared in the same manner as in Example 5-1 except that the charge-transporting varnishes B1, C1, D1, E1 or F1 were used instead of the charge-transporting varnish A1.
  • the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting properties.
  • Example 6-2 to 6-5 HOD was prepared in the same manner as in Example 6-1 except that the charge-transporting varnishes B1, C1, E1 or F1 were used instead of the charge-transporting varnish A1.
  • the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting property.
  • the light emitting layer host material NS60 and the light emitting layer dopant material Ir (ppy) 3 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. were co-deposited.
  • the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated.
  • a thin film of Alq 3 , lithium fluoride, and aluminum was sequentially laminated to prepare an organic EL device.
  • the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
  • the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together. At this time, a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • UV light wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2
  • Example 7-2 to 7-5 An organic EL device was produced in the same manner as in Example 7-1 except that the charge-transporting varnishes B1, C1, E1 or F1 were used instead of the charge-transporting varnish A1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a fluorene derivative represented by formula (1). (In the formula, Z1 and Z2 are predetermined divalent groups, and Ar1 and Ar2 are each independently a C6-20 aryl group or a C2-20 heteroaryl group, and may be substituted with a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, a C1-20 alkyl group, a C3-20 cycloalkyl group, a C4-20 bicycloalkyl group, a C2-20 alkenyl group, a C2-20 alkynyl group, or a C1-20 alkoxy group. Ar3 and Ar4 are each independently a predetermined aromatic-ring-containing group.)

Description

フルオレン誘導体及びその利用Fluorene derivatives and their use
 本発明は、フルオレン誘導体及びその利用に関する。 The present invention relates to a fluorene derivative and its use.
 有機エレクトロルミネッセンス(EL)素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。 In the organic electroluminescence (EL) device, a charge transporting thin film made of an organic compound is used as a light emitting layer and a charge injection layer. In particular, the hole injection layer is responsible for the transfer of electric charges between the anode and the hole transport layer or the light emitting layer, and fulfills an important function for achieving low voltage drive and high brightness of the organic EL element.
 これまで、有機EL素子を高性能化するために様々な取り込みがなされてきているが、光取出し効率を向上させる等の目的で、用いる機能膜の屈折率を調整する取り組みがなされている。具体的には、素子の全体構成や隣接する他の部材の屈折率を考慮して、相対的に高い又は低い屈折率の正孔注入層や正孔輸送層を用いることで、素子の高効率化を図る試みがなされている(特許文献1、2)。このように、屈折率は有機EL素子の設計上重要な要素であり、有機EL素子用材料では、屈折率も考慮すべき重要な物性値と考えられている。 Until now, various incorporations have been made to improve the performance of organic EL elements, but efforts are being made to adjust the refractive index of the functional film used for the purpose of improving the light extraction efficiency. Specifically, the high efficiency of the device is achieved by using a hole injection layer or a hole transport layer having a relatively high or low refractive index in consideration of the overall configuration of the device and the refractive index of other adjacent members. Attempts have been made to achieve this (Patent Documents 1 and 2). As described above, the refractive index is an important factor in the design of the organic EL element, and in the material for the organic EL element, the refractive index is also considered to be an important physical property value to be considered.
 また、有機EL素子に用いられる電荷輸送性薄膜の着色は、有機EL素子の色純度及び色再現性を低下させる等の事情から、近年、有機EL素子用の電荷輸送性薄膜は、可視領域での透過率が高く、高透明性を有することが望まれている(特許文献3参照)。 Further, in recent years, the charge-transporting thin film for organic EL elements has been in the visible region because the coloring of the charge-transporting thin film used for the organic EL element reduces the color purity and color reproducibility of the organic EL element. It is desired to have high transparency and high transparency (see Patent Document 3).
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別される。これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能であり、屈折率や透明性にも優れた電荷輸送性薄膜を与えるウェットプロセス用材料が常に求められている。 The method of forming the hole injection layer is roughly divided into a dry process represented by a vapor deposition method and a wet process represented by a spin coating method. Comparing each of these processes, the wet process can efficiently produce a thin film having a large area and high flatness. Therefore, as the area of organic EL displays is increasing, there is always a demand for a wet process material that can be formed by a wet process and provides a charge-transporting thin film having excellent refractive index and transparency. ..
特表2007-536718号公報Special Table 2007-536718 特表2017-501585号公報Special Table 2017-501585 国際公開第2013/042623号International Publication No. 2013/0426223
 本発明は、前記事情に鑑みなされたものであり、低温焼成にて、電荷輸送性が良好で、高屈折率で高透明性の薄膜を与え、この薄膜を正孔注入層等に適用した場合に優れた特性を有する有機EL素子を実現できる化合物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and when a thin film having good charge transportability, high refractive index and high transparency is provided by low-temperature firing, and this thin film is applied to a hole injection layer or the like. It is an object of the present invention to provide a compound capable of realizing an organic EL device having excellent characteristics.
 本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、所定のフルオレン誘導体を用いて得られる薄膜が、高い電荷輸送性を示し、かつ高透明性及び高屈折率の薄膜であり、この薄膜を正孔注入層等に適用した場合に優れた特性を有する有機EL素子が得られることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have obtained a thin film obtained by using a predetermined fluorene derivative, which exhibits high charge transportability, high transparency and high refractive index. We have found that an organic EL device having excellent properties can be obtained when this thin film is applied to a hole injection layer or the like, and completed the present invention.
 すなわち、本発明は、下記フルオレン誘導体及びその利用を提供する。
1.下記式(1)で表されるフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000015
[式中、Z1及びZ2は、それぞれ独立に、下記式(2)~(7)のいずれかで表される基であり;
Figure JPOXMLDOC01-appb-C000016
(式中、破線は、結合手である。RA及びRBは、それぞれ独立に、水素原子又は炭素数1~20のアルキル基である。)
 Ar1及びAr2は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数4~20のビシクロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基又は炭素数1~20のアルコキシ基で置換されていてもよく;
 Ar3及びAr4は、それぞれ独立に、下記式(8)~(11)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000017
(式中、破線は、結合手であり、
 R1は、水素原子、炭素数1~20のアルキル基、若しくはシアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のアリール基、若しくは炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のヘテロアリール基、又は下記式(12)~(14)のいずれかで表される基であり、
 R2~R52は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。
Figure JPOXMLDOC01-appb-C000018
(式中、破線は、結合手であり、
 DAは、各々のアリール基がそれぞれ独立に炭素数6~20のアリール基であるジアリールアミノ基であり、
 R53~R76は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。))]
2.Ar1及びAr2が、それぞれ独立に、フェニル基、1-ナフチル基若しくは2-ナフチル基、又は下記式(T1-1)~(T11-4)、式(F1-1)~(F4-4)、式(N1-1)~(N10-7)若しくは式(M1-1)~(M4-3)で表される基である1のフルオレン誘導体。
Figure JPOXMLDOC01-appb-C000019
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000020
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000021
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000022
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000023
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000024
(式中、破線は、結合手である。)
3.Ar1及びAr2が、同一の基である1又は2のフルオレン誘導体。
4.Z1及びZ2が、式(2)で表される基である1~3のいずれかのフルオレン誘導体。
5.R1が、フェニル基である1~4のいずれかのフルオレン誘導体。
6.R2~R76が、水素原子である1~5のいずれかのフルオレン誘導体。
7.1~6のいずれかのフルオレン誘導体からなる電荷輸送性物質。
8.7の電荷輸送性物質及び有機溶媒を含む電荷輸送性ワニス。
9.更に、ドーパントを含む8の電荷輸送性ワニス。
10.8又は9の電荷輸送性ワニスから得られる電荷輸送性薄膜。
11.10の電荷輸送性薄膜を備える有機EL素子。
12.式(15)で表される化合物と式(16-1)で表される化合物及び式(16-2)で表される化合物とを反応させて式(17)で表される中間体を得る工程、
 式(17)で表される中間体を還元して式(18)で表される中間体を得る工程、及び
 式(18)で表される中間体と式(19-1)で表されるハロゲン化物及び式(19-2)で表されるハロゲン化物とを反応させる工程
を含む下記式(1)で表されるフルオレン誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000025
(式中、Z1、Z2、Ar1、Ar2、Ar3及びAr4は、前記と同じであり;Xは、ハロゲン原子又は擬ハロゲン基である。)
That is, the present invention provides the following fluorene derivatives and their uses.
1. 1. A fluorene derivative represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000015
[In the formula, Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently;
Figure JPOXMLDOC01-appb-C000016
(Wherein, a broken line is a bond .R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
Ar 1 and Ar 2 are independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and are a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, and 1 carbon atom. Alkyl group of ~ 20, cycloalkyl group of 3 to 20 carbons, bicycloalkyl group of 4 to 20 carbons, alkoxy group of 2 to 20 carbons, alkynyl group of 2 to 20 carbons or alkynyl group of 1 to 20 carbons May be substituted with an alkoxy group;
Ar 3 and Ar 4 are groups represented by any of the following formulas (8) to (11) independently.
Figure JPOXMLDOC01-appb-C000017
(In the formula, the broken line is the join hand,
R 1 is substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms. A heteroaryl group having 6 to 20 carbon atoms, or a heteroaryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms, or the following. A group represented by any of the formulas (12) to (14).
R 2 to R 52 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms.
Figure JPOXMLDOC01-appb-C000018
(In the formula, the broken line is the join hand,
D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group,
R 53 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms. ))]
2. Ar 1 and Ar 2 are independently phenyl group, 1-naphthyl group or 2-naphthyl group, or the following formulas (T1-1) to (T11-4), formulas (F1-1) to (F4-4). ), The fluorene derivative of 1 which is a group represented by the formulas (N1-1) to (N10-7) or the formulas (M1-1) to (M4-3).
Figure JPOXMLDOC01-appb-C000019
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000020
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000021
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000022
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000023
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000024
(In the formula, the broken line is the joiner.)
3. 3. A fluorene derivative of 1 or 2 in which Ar 1 and Ar 2 are the same group.
4. A fluorene derivative according to any one of 1 to 3, wherein Z 1 and Z 2 are groups represented by the formula (2).
5. A fluorene derivative in which R 1 is a phenyl group.
6. A fluorene derivative in which R 2 to R 76 is a hydrogen atom.
A charge-transporting substance comprising a fluorene derivative according to any one of 7.1 to 6.
A charge-transporting varnish containing a charge-transporting substance and an organic solvent of 8.7.
9. In addition, 8 charge transport varnishes containing dopants.
A charge transport thin film obtained from a charge transport varnish of 10.8 or 9.
An organic EL device including a charge transporting thin film of 11.10.
12. The compound represented by the formula (15) is reacted with the compound represented by the formula (16-1) and the compound represented by the formula (16-2) to obtain an intermediate represented by the formula (17). Process,
The step of reducing the intermediate represented by the formula (17) to obtain the intermediate represented by the formula (18), and the intermediate represented by the formula (18) and the intermediate represented by the formula (19-1). A method for producing a fluorene derivative represented by the following formula (1), which comprises a step of reacting a halide with a halide represented by the formula (19-2).
Figure JPOXMLDOC01-appb-C000025
(In the formula, Z 1 , Z 2 , Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same as above; X is a halogen atom or pseudohalogen group.)
 本発明のフルオレン誘導体を含む電荷輸送性ワニスを用いることで、高透明性及び高屈折率の薄膜を作製することができ、また、200℃以下という低温で焼成した場合でも電荷輸送性に優れる薄膜を作製することができる。本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜は、有機EL素子をはじめとする電子素子用薄膜として好適に用いることができ、有機EL素子の正孔注入層や正孔輸送層、特に正孔注入層として用いることで、特性に優れた有機EL素子が得られる。 By using the charge-transporting varnish containing the fluorene derivative of the present invention, a thin film having high transparency and high refractive index can be produced, and a thin film having excellent charge transportability even when fired at a low temperature of 200 ° C. or lower. Can be produced. The charge-transporting thin film obtained from the charge-transporting varnish of the present invention can be suitably used as a thin film for electronic devices such as organic EL devices, and the hole injection layer and the hole transport layer of the organic EL device, particularly By using it as a hole injection layer, an organic EL device having excellent characteristics can be obtained.
[フルオレン誘導体]
 本発明のフルオレン誘導体は、下記式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000026
[Fluorene derivative]
The fluorene derivative of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000026
 式(1)で表される化合物としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000027
Examples of the compound represented by the formula (1) include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000027
 式(1)中、Z1及びZ2は、それぞれ独立に、下記式(2)~(7)のいずれかで表される基である。なお、Z1及びZ2が式(4)又は(5)で表される基の場合、この基に含まれる炭素原子が、式(1)中の窒素原子と結合する。
Figure JPOXMLDOC01-appb-C000028
In formula (1), Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently. When Z 1 and Z 2 are groups represented by the formula (4) or (5), the carbon atom contained in this group is bonded to the nitrogen atom in the formula (1).
Figure JPOXMLDOC01-appb-C000028
 式(2)~(7)中、破線は、結合手である。式(6)中、RA及びRBは、それぞれ独立に、水素原子又は炭素数1~20のアルキル基であるが、水素原子が好ましい。 In the equations (2) to (7), the broken line is the connecting hand. Wherein (6), R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, a hydrogen atom is preferable.
 RA及びRBで表される炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。 Alkyl groups R A and 1 to 20 carbon atoms represented by R B is a linear, branched, may be any of cyclic, and examples thereof include a methyl group, an ethyl group, n- propyl group, isopropyl Group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc. Linear or branched alkyl group having 1 to 20 carbon atoms; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group , Bicyclohexyl group, bicycloheptyl group, bicyclooctyl group, bicyclononyl group, bicyclodecyl group and other cyclic alkyl groups having 3 to 20 carbon atoms.
 Z1及びZ2としては、式(2)、(3)、(4)、(5)又は(6)で表される基が好ましく、式(2)、(4)又は(6)で表される基がより好ましく、式(2)で表される基がより一層好ましい。 As Z 1 and Z 2 , the groups represented by the formulas (2), (3), (4), (5) or (6) are preferable, and the groups represented by the formulas (2), (4) or (6) are represented. The group represented by the formula (2) is more preferable, and the group represented by the formula (2) is even more preferable.
 式(1)中、Ar1及びAr2は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基である。 In the formula (1), Ar 1 and Ar 2 are independently aryl groups having 6 to 20 carbon atoms or heteroaryl groups having 2 to 20 carbon atoms.
 Ar1及びAr2で表される炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms represented by Ar 1 and Ar 2 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group and a 1-. Examples thereof include a phenanthryl group, a 2-phenanthril group, a 3-phenanthril group, a 4-phenylantril group, a 9-phenanthril group and the like.
 Ar1及びAr2で表される炭素数2~20のヘテロアリール基としては、下記式(T1-1)~(T11-4)、式(F1-1)~(F4-4)、式(N1-1)~(N10-7)、式(M1-1)~(M4-3)で表される基等が挙げられるが、これらに限定されない。中でも、より高い屈折率を実現する観点から、前記ヘテロアリール基としては、含硫黄ヘテロアリール基、含窒素ヘテロアリール基が好ましく、含硫黄ヘテロアリール基がより好ましい。
Figure JPOXMLDOC01-appb-C000029
(式中、破線は、結合手である。)
Examples of the heteroaryl group having 2 to 20 carbon atoms represented by Ar 1 and Ar 2 include the following formulas (T1-1) to (T11-4), formulas (F1-1) to (F4-4), and formulas (F4-4). Examples thereof include groups represented by N1-1) to (N10-7) and formulas (M1-1) to (M4-3), but the present invention is not limited thereto. Among them, from the viewpoint of realizing a higher refractive index, the sulfur-containing heteroaryl group and the nitrogen-containing heteroaryl group are preferable, and the sulfur-containing heteroaryl group is more preferable.
Figure JPOXMLDOC01-appb-C000029
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000030
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000030
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000031
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000031
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000032
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000032
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000033
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000033
(In the formula, the broken line is the joiner.)
Figure JPOXMLDOC01-appb-C000034
(式中、破線は、結合手である。)
Figure JPOXMLDOC01-appb-C000034
(In the formula, the broken line is the joiner.)
 Ar1及びAr2で表される炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基は、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基又は炭素数1~20のアルコキシ基で置換されていてもよい。 The aryl group having 6 to 20 carbon atoms or the heteroaryl group having 2 to 20 carbon atoms represented by Ar 1 and Ar 2 has a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group and 1 to 20 carbon atoms. It may be substituted with an alkyl group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
 前記炭素数1~20のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、式(6)のRA及びRBの説明において述べたものと同様のものが挙げられる。 Alkyl group having 1 to 20 carbon atoms may be linear, branched, may be any of cyclic, and examples thereof include those of formula similar to that described in the description of R A and R B (6) Can be mentioned.
 前記炭素数2~20のアルケニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。 The alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethenyl group, an n-1-propenyl group, an n-2-propenyl group and 1-methylethenyl. Group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl- Examples thereof include 1-propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl group, n-1-decenyl group, n-1-eicosenyl group and the like.
 前記炭素数2~20のアルキニル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。 The alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include an ethynyl group, an n-1-propynyl group, an n-2-propynyl group and an n-1. -Butynyl group, n-2-butynyl group, n-3-butynyl group, 1-methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n- 4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n-butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl group, Examples thereof include an n-1-decynyl group, an n-1-pentadecynyl group, and an n-1-eicosynyl group.
 前記炭素数1~20のアルコキシ基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の炭素数1~20の直鎖状又は分岐状アルコキシ基;シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、シクロノニルオキシ基、シクロデシルオキシ基、ビシクロブチルオキシ基、ビシクロペンチルオキシ基、ビシクロヘキシルオキシ基、ビシクロヘプチルオキシ基、ビシクロオクチルオキシ基、ビシクロノニルオキシ基、ビシクロデシルオキシ基等の炭素数3~20の環状アルコキシ基が挙げられる。 The alkoxy group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group and an n-butoxy group. Number of carbon atoms of isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. 1 to 20 linear or branched alkoxy groups; cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, cyclononyloxy group, cyclodecyloxy group , Bicyclobutyloxy group, bicyclopentyloxy group, bicyclohexyloxy group, bicycloheptyloxy group, bicyclooctyloxy group, bicyclononyloxy group, bicyclodecyloxy group and other cyclic alkoxy groups having 3 to 20 carbon atoms.
 これらのうち、Ar1及びAr2としては、フェニル基;ニトロフェニル基;メチルフェニル基、エチルフェニル基、プロピルフェニル基、ジメチルフェニル基、ジエチルフェニル基、ジプロピルフェニル基、トリメチルフェニル基、トリエチルフェニル基、トリプロピルフェニル基、これらの構造異性体等のアルキルフェニル基;ビニルフェニル基、1-プロペニルフェニル基、2-プロペニルフェニル基等のアルケニルフェニル基;エチニルフェニル基、1-プロピニルフェニル基、2-プロピニルフェニル基等のアルキニルフェニル基;1-ナフチル基;ニトロ-1-ナフチル基;メチル-1-ナフチル基、エチル-1-ナフチル基、プロピル-1-ナフチル基、ジメチル-1-ナフチル基、ジエチル-1-ナフチル基、ジプロピル-1-ナフチル基、トリメチル-1-ナフチル基、トリエチル-1-ナフチル基、トリプロピル-1-ナフチル基、これらの構造異性体等のアルキル-1-ナフチル基;ビニル-1-ナフチル基、1-プロペニル-1-ナフチル基、2-プロペニル-1-ナフチル基等のアルケニル-1-ナフチル基;エチニル-1-ナフチル基、1-プロピニル-1-ナフチル基、2-プロピニル-1-ナフチル基等のアルキニル-1-ナフチル基;2-ナフチル基;ニトロ-2-ナフチル基;メチル-2-ナフチル基、エチル-2-ナフチル基、プロピル-2-ナフチル基、ジメチル-2-ナフチル基、ジエチル-2-ナフチル基、ジプロピル-2-ナフチル基、トリメチル-2-ナフチル基、トリエチル-2-ナフチル基、トリプロピル-2-ナフチル基、これらの構造異性体等のアルキル-2-ナフチル基;ビニル-2-ナフチル基、1-プロペニル-2-ナフチル基、2-プロペニル-2-ナフチル基等のアルケニル-2-ナフチル基;エチニル-2-ナフチル基、1-プロピニル-2-ナフチル基、2-プロピニル-2-ナフチル基等のアルキニル-2-ナフチル基;9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、9-フェナントリル基;式(T1-1)~(T11-4)で表される基等が好ましい。また、Ar1及びAr2は、前記フルオレン誘導体の合成容易性の観点から、同一の基であることが好ましい。 Of these, Ar 1 and Ar 2 include phenyl group; nitrophenyl group; methylphenyl group, ethylphenyl group, propylphenyl group, dimethylphenyl group, diethylphenyl group, dipropylphenyl group, trimethylphenyl group, and triethylphenyl. Group, tripropylphenyl group, alkylphenyl group such as these structural isomers; alkenylphenyl group such as vinylphenyl group, 1-propenylphenyl group, 2-propenylphenyl group; ethynylphenyl group, 1-propynylphenyl group, 2 -Alquinylphenyl group such as propynylphenyl group; 1-naphthyl group; nitro-1-naphthyl group; methyl-1-naphthyl group, ethyl-1-naphthyl group, propyl-1-naphthyl group, dimethyl-1-naphthyl group, Diethyl-1-naphthyl group, dipropyl-1-naphthyl group, trimethyl-1-naphthyl group, triethyl-1-naphthyl group, tripropyl-1-naphthyl group, alkyl-1-naphthyl group such as these structural isomers; Alkenyl-1-naphthyl groups such as vinyl-1-naphthyl group, 1-propenyl-1-naphthyl group, 2-propenyl-1-naphthyl group; ethynyl-1-naphthyl group, 1-propynyl-1-naphthyl group, 2 -Alkinyl-1-naphthyl group such as propynyl-1-naphthyl group; 2-naphthyl group; nitro-2-naphthyl group; methyl-2-naphthyl group, ethyl-2-naphthyl group, propyl-2-naphthyl group, dimethyl Alkyl of -2-naphthyl group, diethyl-2-naphthyl group, dipropyl-2-naphthyl group, trimethyl-2-naphthyl group, triethyl-2-naphthyl group, tripropyl-2-naphthyl group, structural isomers of these, etc. -2-naphthyl group; alkenyl-2-naphthyl group such as vinyl-2-naphthyl group, 1-propenyl-2-naphthyl group, 2-propenyl-2-naphthyl group; ethynyl-2-naphthyl group, 1-propynyl- Alkinyl-2-naphthyl groups such as 2-naphthyl group and 2-propynyl-2-naphthyl group; 9-anthryl group, 1-phenyl group, 2-phenyl group, 3-phenyl group, 9-phenyl group; formula (T1). The groups represented by -1) to (T11-4) are preferable. Further, Ar 1 and Ar 2 are preferably the same group from the viewpoint of easiness of synthesizing the fluorene derivative.
 式(1)中、Ar3及びAr4は、それぞれ独立に、下記式(8)~(11)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000035
In the formula (1), Ar 3 and Ar 4 are groups represented by any of the following formulas (8) to (11) independently.
Figure JPOXMLDOC01-appb-C000035
 式(8)~(11)中、破線は、結合手である。式(8)中、R1は、水素原子、炭素数1~20のアルキル基、若しくはシアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のアリール基、若しくは炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のヘテロアリール基、又は下記式(12)~(14)のいずれかで表される基である。
Figure JPOXMLDOC01-appb-C000036
In the equations (8) to (11), the broken line is the joiner. In formula (8), R 1 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl halide having 1 to 20 carbon atoms. An aryl group having 6 to 20 carbon atoms which may be substituted with a group, or an alkyl group having 1 to 20 carbon atoms or an alkyl halide having 1 to 20 carbon atoms which may be substituted with an alkyl group having 6 to 20 carbon atoms. It is a heteroaryl group or a group represented by any of the following formulas (12) to (14).
Figure JPOXMLDOC01-appb-C000036
 式(12)~(14)中、破線は、結合手である。DAは、各々のアリール基がそれぞれ独立に炭素数6~20のアリール基であるジアリールアミノ基である。 In the equations (12) to (14), the broken line is the joiner. D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group.
 R1で表される炭素数1~20のアルキル基及び前記置換基である炭素数1~20のアルキル基としては、式(6)のRA及びRBの説明において述べたものと同様のものが挙げられる。R1で表される炭素数6~20のアリール基としては、式(1)のAr1及びAr2の説明において述べたものと同様のものが挙げられる。R1で表される炭素数2~20のヘテロアリール基としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms is an alkyl group and the substituent group having 1 to 20 carbon atoms represented by R 1, the same as those described in the description of R A and R B of formula (6) Things can be mentioned. Examples of the aryl group having 6 to 20 carbon atoms represented by R 1 include those similar to those described in the description of Ar 1 and Ar 2 of the formula (1). The heteroaryl group having 2 to 20 carbon atoms represented by R 1 includes 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group and 5-. Oxazolyl group, 3-isooxazolyl group, 4-isooxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2- Examples thereof include an imidazolyl group, a 4-imidazolyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group and the like.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。前記炭素数1~20のハロゲン化アルキル基としては、前記炭素数1~20のアルキル基の水素原子の一部又は全部が前記ハロゲン原子で置換されたものが挙げられ、具体的には、式(B)の説明において後述するものと同様のものが挙げられる。前記ジアリールアミノ基としては、ジフェニルアミノ基、ジナフチルアミノ基、ジアントリルアミノ基、N-フェニル-N-ナフチルアミノ基、N-フェニル-N-アントリルアミノ基、N-ナフチル-N-アントリルアミノ基等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like. Examples of the alkyl halide group having 1 to 20 carbon atoms include those in which a part or all of the hydrogen atoms of the alkyl group having 1 to 20 carbon atoms are substituted with the halogen atom. In the description of (B), the same ones as those described later can be mentioned. Examples of the diarylamino group include a diphenylamino group, a dinaphthylamino group, a dianthrylamino group, an N-phenyl-N-naphthylamino group, an N-phenyl-N-anthrylamino group, and an N-naphthyl-N-anthryl. Amino groups and the like can be mentioned.
 式(12)~(14)で表される基としては、下記式(12-1)~(14-1)等で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000037
As the group represented by the formulas (12) to (14), those represented by the following formulas (12-1) to (14-1) are preferable.
Figure JPOXMLDOC01-appb-C000037
 これらのうち、R1としては、水素原子、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、式(12-1)で表される基、式(13-1)で表される基等が好ましく、式(12-1)で表される基、式(13-1)で表される基、フェニル基がより好ましく、フェニル基がより一層好ましい。 Of these, R 1 includes a hydrogen atom, a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a 1-phenanthryl group, and a 2-phenanthryl group. 3-Phenyltril group, 4-Phenyltril group, 9-Phenyltril group, group represented by the formula (12-1), group represented by the formula (13-1) and the like are preferable, and the group represented by the formula (12-1) is preferable. The group to be used, the group represented by the formula (13-1) and the phenyl group are more preferable, and the phenyl group is even more preferable.
 式(8)~(14)中、R2~R76は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。R2~R76で表される炭素数1~20のアルキル基としては、式(6)のRA及びRBの説明において述べたものと同様のものが挙げられる。これらのうち、R2~R76としては、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のハロゲン化アルキル基が好ましく、水素原子、シアノ基、ニトロ基、ハロゲン原子、トリフルオロメチル基がより好ましく、全て水素原子であることがより一層好ましい。 In formulas (8) to (14), R 2 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or halogenated groups having 1 to 20 carbon atoms. It is an alkyl group. The alkyl group of R 2 ~ 1 to 20 carbon atoms represented by R 76, include the same ones as mentioned in the description of R A and R B of formula (6). Of these, as R 2 to R 76 , a hydrogen atom, a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl halide group having 1 to 10 carbon atoms are preferable, and a hydrogen atom and a cyano group are used. A group, a nitro group, a halogen atom and a trifluoromethyl group are more preferable, and it is even more preferable that all of them are hydrogen atoms.
 式(8)~(11)で表される基としては以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000038
(式中、R1~R52は、前記と同じ。破線は、結合手である。)
Examples of the groups represented by the formulas (8) to (11) include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000038
(In the formula, R 1 to R 52 are the same as above. The broken line is the connecting hand.)
 式(8)~(11)で表される基としては、特に、以下に示すものが好ましい。
Figure JPOXMLDOC01-appb-C000039
(式中、破線は、結合手である。)
As the groups represented by the formulas (8) to (11), those shown below are particularly preferable.
Figure JPOXMLDOC01-appb-C000039
(In the formula, the broken line is the joiner.)
[フルオレン誘導体の合成方法]
 本発明のフルオレン誘導体は、下記スキームAに示される方法によって合成することができる。
Figure JPOXMLDOC01-appb-C000040
(式中、Z1、Z2、Ar1、Ar2、Ar3及びAr4は、前記と同じ。Xは、ハロゲン原子又は擬ハロゲン基である。)
[Method for synthesizing fluorene derivatives]
The fluorene derivative of the present invention can be synthesized by the method shown in Scheme A below.
Figure JPOXMLDOC01-appb-C000040
(In the formula, Z 1 , Z 2 , Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same as above. X is a halogen atom or a pseudohalogen group.)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。また、前記擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等のフルオロアルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like. The pseudo-halogen group includes a fluoroalkylsulfonyloxy group such as a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group and a nonafluorobutanesulfonyloxy group; and an aromatic sulfonyloxy group such as a benzenesulfonyloxy group and a toluenesulfonyloxy group. And so on.
 式(15)で表される化合物は、従来公知の方法で合成することができ、例えば、J. Mater. Chem. C, 2014, pp. 1068-1075に記載の方法に従って合成することができる。 The compound represented by the formula (15) can be synthesized by a conventionally known method, for example, according to the method described in J. Mater. Chem. C, 2014, pp. 1068-1075.
 スキームA中、第1工程は、カップリング反応によって、式(15)で表される化合物と式(16-1)で表される化合物及び式(16-2)で表される化合物とから、式(17)で表される中間体を得る工程である。なお、スキームAでは例として鈴木・宮浦カップリング反応を利用した合成方法を示しているが、他のカップリング反応を利用して合成することも可能である。 In Scheme A, the first step is carried out by a coupling reaction from the compound represented by the formula (15), the compound represented by the formula (16-1) and the compound represented by the formula (16-2). This is a step of obtaining an intermediate represented by the formula (17). In Scheme A, a synthesis method using the Suzuki-Miyaura coupling reaction is shown as an example, but it is also possible to synthesize using another coupling reaction.
 鈴木・宮浦カップリング反応において用いる触媒としては、[1,1'-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、テトラキス(トリフェニルホスフィン)パラジウム(Pd(PPh3)4)、ビス(トリフェニルホスフィン)ジクロロパラジウム(Pd(PPh3)2Cl2)、ビス(ベンジリデンアセトン)パラジウム(Pd(dba)2)、トリス(ベンジリデンアセトン)ジパラジウム(Pd2(dba)3)、ビス(トリtert-ブチルホスフィン)パラジウム(Pd(P-t-Bu3)2)、酢酸パラジウム(Pd(OAc)2)等のパラジウム触媒等が挙げられる。これらのうち、目的物を効率よく得る観点から、好ましい触媒は、PdCl2(dppf)、Pd(PPh3)4、Pd(PPh3)2Cl2、Pd(P-t-Bu3)2であり、より好ましくはPd(PPh3)4、Pd(P-t-Bu3)2である。前記触媒の使用量は、式(15)で表される化合物に対し、通常0.1~50mol%程度であり、好ましくは0.1~30mol%、より好ましくは1~10mol%である。 The catalysts used in the Suzuki-Miyaura coupling reaction are [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride (PdCl 2 (dppf)), tetrakis (triphenylphosphine) palladium (Pd (PPh)). 3 ) 4 ), bis (triphenylphosphine) dichloropalladium (Pd (PPh 3 ) 2 Cl 2 ), bis (benzylideneacetone) palladium (Pd (dba) 2 ), tris (benzylideneacetone) dipalladium (Pd 2 (dba)) ) 3 ), Palladium catalysts such as bis (tritert-butylidphosphine) palladium (Pd (Pt-Bu 3 ) 2 ) and palladium acetate (Pd (OAc) 2 ). Of these, preferred catalysts are PdCl 2 (dppf), Pd (PPh 3 ) 4 , Pd (PPh 3 ) 2 Cl 2 , and Pd (Pt-Bu 3 ) 2 from the viewpoint of efficiently obtaining the desired product. More preferably, it is Pd (PPh 3 ) 4 and Pd (Pt-Bu 3 ) 2 . The amount of the catalyst used is usually about 0.1 to 50 mol%, preferably 0.1 to 30 mol%, and more preferably 1 to 10 mol% with respect to the compound represented by the formula (15).
 また、鈴木・宮浦カップリング反応においては塩基も使用されるが、前記塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等の水酸化物類、tert-ブトキシナトリウム、tert-ブトキシカリウム等のアルコキシド類;フッ化リチウム、フッ化カリウム、フッ化セシウム等のフッ化物塩類;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸塩類;リン酸カリウム等のリン酸塩類、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、n-ブチルアミン、ジイソプロピルエチルアミン等のアミン類が挙げられる。これらのうち、目的物を効率よく得る観点から、好ましい塩基は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸塩類、リン酸カリウム等のリン酸塩類であり、より好ましくは炭酸カリウム、炭酸セシウムである。前記塩基の使用量は、式(15)で表される化合物に対し、通常2~20当量程度であり、好ましくは1~20当量、より好ましくは2~8当量である。 In addition, a base is also used in the Suzuki-Miyaura coupling reaction, and the base includes hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide, tert-butoxysodium, tert-butoxypotassium and the like. Alkoxides; Fluoride salts such as lithium fluoride, potassium fluoride, cesium fluoride; carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc .; Examples thereof include amines such as phosphates, trimethylamine, triethylamine, diisopropylamine, n-butylamine and diisopropylethylamine. Of these, preferable bases are carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, and phosphates such as potassium phosphate from the viewpoint of efficiently obtaining the desired product. Potassium carbonate and cesium carbonate are preferable. The amount of the base used is usually about 2 to 20 equivalents, preferably 1 to 20 equivalents, and more preferably 2 to 8 equivalents, relative to the compound represented by the formula (15).
 第1工程において用いる溶媒としては、反応に悪影響を及ぼさないものであれば特に限定されないが、その具体例としては、脂肪族炭化水素(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、ハロゲン化脂肪族炭化水素(クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等)、芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、アミド(N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等)、ラクタム及びラクトン(N-メチルピロリドン、γ-ブチロラクトン等)、尿素誘導体(N,N-ジメチルイミダゾリジノン、テトラメチルウレア等)、スルホキシド(ジメチルスルホキシド、スルホラン等)、ニトリル(アセトニトリル、プロピオニトリル、ブチロニトリル等)等が挙げられる。これらのうち、目的物を効率よく得る観点から、好ましい溶媒は、脂肪族炭化水素(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、THF、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)であり、より好ましくは芳香族炭化水素(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、エーテル(ジエチルエーテル、ジイソプロピルエーテル、tert-ブチルメチルエーテル、THF、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)である。 The solvent used in the first step is not particularly limited as long as it does not adversely affect the reaction, but specific examples thereof include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin). Etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mecitylene, etc.), ether (Diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran (THF), dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.), amide (N, N-dimethylformamide (DMF), N , N-dimethylacetamide, etc.), lactam and lactone (N-methylpyrrolidone, γ-butyrolactone, etc.), urea derivatives (N, N-dimethylimidazolidinone, tetramethylurea, etc.), sulfoxides (dimethyl sulfoxide, sulfolane, etc.), Examples thereof include nitriles (acetoyl, propionitrile, butyronitrile, etc.). Of these, preferred solvents are aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.) and aromatic hydrocarbons (benzene, nitrobenzene, toluene, etc.) from the viewpoint of efficiently obtaining the desired product. , O-Xylene, m-xylene, p-xylene, mesitylene, etc.), ether (diethyl ether, diisopropyl ether, tert-butylmethyl ether, THF, dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc. ), More preferably aromatic hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), ethers (diethyl ether, diisopropyl ether, tert-butyl methyl ether, THF, Dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, etc.).
 式(15)で表される化合物と式(16-1)で表される化合物及び式(16-2)で表される化合物との仕込み比は、式(15)で表される化合物に対し、式(16-1)で表される化合物及び式(16-2)で表される化合物の合計が、2~6当量が好ましく、2~3当量がより好ましい。式(16-1)で表される化合物及び式(16-2)で表される化合物は、互いに同一であってもよく、異なっていてもよい。 The charging ratio of the compound represented by the formula (15) to the compound represented by the formula (16-1) and the compound represented by the formula (16-2) is based on the compound represented by the formula (15). , The total of the compound represented by the formula (16-1) and the compound represented by the formula (16-2) is preferably 2 to 6 equivalents, and more preferably 2 to 3 equivalents. The compound represented by the formula (16-1) and the compound represented by the formula (16-2) may be the same or different from each other.
 第1工程において、反応温度は、用いる原料化合物や触媒の種類や量を考慮しつつ、溶媒の融点から沸点までの範囲で適宜設定されるが、通常0~200℃程度であり、好ましくは0~50℃である。また、反応時間は、用いる原料化合物や反応温度等に応じて異なるため一概に規定できないが、通常1~24時間程度である。 In the first step, the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent while considering the type and amount of the raw material compound and the catalyst to be used, but is usually about 0 to 200 ° C., preferably 0. ~ 50 ° C. The reaction time cannot be unconditionally specified because it varies depending on the raw material compound used, the reaction temperature, and the like, but it is usually about 1 to 24 hours.
 スキームA中、第2工程は、式(17)で表される中間体を還元して式(18)で表される中間体を得る工程である。還元方法としては、接触水素化、金属と酸による化学的還元等の公知の方法が挙げられる。 In Scheme A, the second step is a step of reducing the intermediate represented by the formula (17) to obtain the intermediate represented by the formula (18). Examples of the reducing method include known methods such as catalytic hydrogenation and chemical reduction with a metal and an acid.
 接触水素化によって還元を行う場合は、パラジウム炭素、ラネーニッケル触媒、酸化白金、ルテニウム炭素、ロジウム炭素、白金炭素等の公知の触媒を用いて行えばよい。また、接触水素化の条件としては、例えば水素圧力1~10気圧、反応温度20~100℃、反応時間1~48時間が挙げられる。 When reduction is performed by catalytic hydrogenation, known catalysts such as palladium carbon, Raney nickel catalyst, platinum oxide, ruthenium carbon, rhodium carbon, and platinum carbon may be used. The conditions for catalytic hydrogenation include, for example, a hydrogen pressure of 1 to 10 atm, a reaction temperature of 20 to 100 ° C., and a reaction time of 1 to 48 hours.
 スキームA中、第3工程は、式(18)で表される中間体と式(19-1)で表される化合物及び式(19-2)で表される化合物とを反応させて、式(1)で表されるフルオレン誘導体を合成する工程である。 In Scheme A, the third step is to react the intermediate represented by the formula (18) with the compound represented by the formula (19-1) and the compound represented by the formula (19-2). This is a step of synthesizing the fluorene derivative represented by (1).
 第3工程において、塩基を用いてもよい。前記塩基としては、第1工程において使用可能なものと同様のものが挙げられる。これらのうち、特に取り扱いが容易であることから、トリエチルアミン、ピリジン、ジイソプロピルエチルアミン等が好適である。 A base may be used in the third step. Examples of the base include those similar to those that can be used in the first step. Of these, triethylamine, pyridine, diisopropylethylamine and the like are preferable because they are particularly easy to handle.
 反応溶媒は、非プロトン性有機溶媒が好ましく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等が挙げられる。反応後の反応溶媒の除去容易性の観点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、トルエン、キシレン、メシチレン等が好適である。 The reaction solvent is preferably an aprotic organic solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, tetrahydrofuran, Examples thereof include dioxane. From the viewpoint of easy removal of the reaction solvent after the reaction, N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane, toluene, xylene, mesitylene and the like are preferable.
 式(18)で表される中間体と式(19-1)で表される化合物及び式(19-2)で表される化合物との仕込み比は、式(18)で表される中間体に対し、式(19-1)で表される化合物及び式(19-2)で表される化合物の合計が、2~6当量が好ましく、2~3当量がより好ましい。式(19-1)で表される化合物及び式(19-2)で表される化合物は、互いに同一であってもよく、異なっていてもよい。 The charging ratio of the intermediate represented by the formula (18) to the compound represented by the formula (19-1) and the compound represented by the formula (19-2) is the intermediate represented by the formula (18). On the other hand, the total of the compound represented by the formula (19-1) and the compound represented by the formula (19-2) is preferably 2 to 6 equivalents, and more preferably 2 to 3 equivalents. The compound represented by the formula (19-1) and the compound represented by the formula (19-2) may be the same as or different from each other.
 第3工程において、反応温度は、用いる原料化合物や触媒の種類や量を考慮しつつ、溶媒の融点から沸点までの範囲で適宜設定されるが、通常0~200℃程度であり、好ましくは0~50℃である。また、反応時間は、用いる原料化合物や反応温度等に応じて異なるため一概に規定できないが、通常1~24時間程度である。 In the third step, the reaction temperature is appropriately set in the range from the melting point to the boiling point of the solvent while considering the type and amount of the raw material compound and the catalyst to be used, but is usually about 0 to 200 ° C., preferably 0. ~ 50 ° C. The reaction time cannot be unconditionally specified because it varies depending on the raw material compound used, the reaction temperature, and the like, but it is usually about 1 to 24 hours.
 反応終了後は、常法に従って後処理をし、目的とするフルオレン誘導体を得ることができる。 After completion of the reaction, post-treatment can be performed according to a conventional method to obtain the desired fluorene derivative.
 なお、式(19-1)で表される化合物及び式(19-2)で表される化合物は、公知の方法又は市販品の入手によって得ることができる。 The compound represented by the formula (19-1) and the compound represented by the formula (19-2) can be obtained by a known method or the availability of a commercially available product.
[電荷輸送性物質]
 本発明のフルオレン誘導体は、電荷輸送性物質として、特に正孔輸送性物質として好適に使用できる。本発明において、電荷輸送性とは、導電性と同義である。電荷輸送性物質とは、それ自体に電荷輸送性があるものである。また、電荷輸送性ワニスとは、それ自体に電荷輸送性があるものでもよく、それにより得られる固形膜が電荷輸送性を有するものでもよい。
[Charge transporting substance]
The fluorene derivative of the present invention can be suitably used as a charge transporting substance, particularly as a hole transporting substance. In the present invention, charge transportability is synonymous with conductivity. A charge-transporting substance is a substance that has a charge-transporting property in itself. Further, the charge-transporting varnish itself may have a charge-transporting property, and the solid film obtained thereby may have a charge-transporting property.
[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、前記フルオレン誘導体からなる電荷輸送性物質及び有機溶媒を含むものである。前記電荷輸送性物質は、1種単独で又は2種以上を組み合わせて用いてもよい。
[Charge transport varnish]
The charge-transporting varnish of the present invention contains a charge-transporting substance composed of the fluorene derivative and an organic solvent. The charge transporting substance may be used alone or in combination of two or more.
[有機溶媒]
 前記有機溶媒としては、前記フルオレン誘導体を良好に溶解し得る高極性溶媒を用いることができる。本発明のフルオレン誘導体は、溶媒の極性を問わず、溶媒中に溶解することが可能である。また、必要に応じて、高極性溶媒よりもプロセス適合性に優れている点で低極性溶媒を用いてもよい。本発明において、低極性溶媒とは周波数100kHzでの比誘電率が7未満のものと定義し、高極性溶媒とは周波数100kHzでの比誘電率が7以上のものと定義する。
[Organic solvent]
As the organic solvent, a highly polar solvent capable of satisfactorily dissolving the fluorene derivative can be used. The fluorene derivative of the present invention can be dissolved in a solvent regardless of the polarity of the solvent. Further, if necessary, a low-polarity solvent may be used because it is superior in process compatibility to a high-polarity solvent. In the present invention, a low-polarity solvent is defined as having a relative permittivity of less than 7 at a frequency of 100 kHz, and a high-polarity solvent is defined as having a relative permittivity of 7 or more at a frequency of 100 kHz.
 前記低極性溶媒としては、例えば、クロロホルム、クロロベンゼン等の塩素系溶媒;トルエン、キシレン、テトラリン、シクロヘキシルベンゼン、デシルベンゼン等の芳香族炭化水素系溶媒;1-オクタノール、1-ノナノール、1-デカノール等の脂肪族アルコール系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メトキシトルエン、3-フェノキシトルエン、ジベンジルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル等のエーテル系溶媒;安息香酸メチル、安息香酸エチル、安息香酸ブチル、安息香酸イソアミル、フタル酸ビス(2-エチルヘキシル)、マレイン酸ジブチル、シュウ酸ジブチル、酢酸ヘキシル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のエステル系溶媒等が挙げられる。 Examples of the low polar solvent include chlorine-based solvents such as chloroform and chlorobenzene; aromatic hydrocarbon-based solvents such as toluene, xylene, tetraline, cyclohexylbenzene and decylbenzene; 1-octanol, 1-nonanol, 1-decanol and the like. Alibo alcohol solvents; ethers such as tetrahydrofuran, dioxane, anisole, 4-methoxytoluene, 3-phenoxytoluene, dibenzyl ether, diethylene glycol dimethyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, etc. Solvents: methyl benzoate, ethyl benzoate, butyl benzoate, isoamyl benzoate, bis (2-ethylhexyl) phthalate, dibutyl maleate, dibutyl oxalate, hexyl acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc. Examples thereof include ester solvents.
 前記高極性溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等のアミド系溶媒;エチルメチルケトン、イソホロン、シクロヘキサノン等のケトン系溶媒;アセトニトリル、3-メトキシプロピオニトリル等のシアノ系溶媒;エチレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール等の多価アルコール系溶媒;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ベンジルアルコール、2-フェノキシエタノール、2-ベンジルオキシエタノール、3-フェノキシベンジルアルコール、テトラヒドロフルフリルアルコール等の脂肪族アルコール以外の1価アルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒等が挙げられる。 Examples of the highly polar solvent include amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutylamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone. System solvent; Ketone solvent such as ethyl methyl ketone, isophorone, cyclohexanone; Cyano solvent such as acetonitrile and 3-methoxypropionitrile; Ethylene glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 1,3-butanediol, Polyhydric alcohol solvents such as 2,3-butanediol; diethylene glycol monomethyl ether, diethylene glycol monophenyl ether, triethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, benzyl alcohol, 2-phenoxyethanol, 2-benzyloxyethanol, 3- Monovalent alcohol-based solvents other than aliphatic alcohols such as phenoxybenzyl alcohol and tetrahydrofurfuryl alcohol; sulfoxide-based solvents such as dimethyl sulfoxide, and the like can be mentioned.
 前記溶媒の使用量は、電荷輸送性物質の析出を抑制しつつ十分な膜厚を確保する観点から、本発明のワニス中の固形分濃度が、通常0.1~20質量%程度、好ましくは0.5~10質量%となる量である。なお、ここでいう固形分とは、ワニスに含まれる成分のうち溶媒以外の成分を意味する。前記溶媒は、1種単独で又は2種以上を混合して用いてもよい。 The amount of the solvent used is such that the solid content concentration in the varnish of the present invention is usually about 0.1 to 20% by mass, preferably from the viewpoint of ensuring a sufficient film thickness while suppressing the precipitation of the charge transporting substance. The amount is 0.5 to 10% by mass. The solid content as used herein means a component other than the solvent among the components contained in the varnish. The solvent may be used alone or in combination of two or more.
[ドーパント(電荷受容性ドーパント)]
 本発明の電荷輸送性ワニスは、本発明の電荷輸送性ワニスから得られる薄膜の電荷輸送性を向上させる等の目的で、ドーパントを含んでもよい。ドーパントとしては、組成物に使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系のドーパント、有機系のドーパントのいずれも使用できる。更にドーパントは、組成物から固体膜である電荷輸送性薄膜を得る過程で、例えば、焼成時の加熱といった外部からの刺激によって、分子内の一部が外れることによってドーパントとしての機能が初めて発現又は向上するようになる物質、例えば、スルホン酸基が脱離しやすい基で保護されたアリールスルホン酸エステル化合物であってもよい。
[Dopant (charge-accepting dopant)]
The charge-transporting varnish of the present invention may contain a dopant for the purpose of improving the charge-transporting property of the thin film obtained from the charge-transporting varnish of the present invention. The dopant is not particularly limited as long as it is soluble in at least one solvent used in the composition, and either an inorganic dopant or an organic dopant can be used. Further, in the process of obtaining a charge-transporting thin film which is a solid film from the composition, the dopant first develops its function as a dopant by removing a part of the molecule due to an external stimulus such as heating at the time of firing. It may be a substance that improves, for example, an aryl sulfonic acid ester compound protected by a group in which a sulfonic acid group is easily eliminated.
 前記無機系ドーパントとしては、ヘテロポリ酸が好ましく、その具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸、ケイタングステン酸等が挙げられる。 Heteropolyacid is preferable as the inorganic dopant, and specific examples thereof include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, phosphotungstic acid, and silicate tungstic acid.
 ヘテロポリ酸とは、代表的に下記式(HPA1)で表されるKeggin型又は下記式(HPA2)で表されるDawson型の化学構造で示される、ヘテロ原子が分子の中心に位置する構造を有し、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。このような異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
Figure JPOXMLDOC01-appb-C000041
The heteropolyacid has a structure in which the hetero atom is located at the center of the molecule, which is typically represented by a Keggin type represented by the following formula (HPA1) or a Dawson type chemical structure represented by the following formula (HPA2). However, it is a polyacid formed by condensing an isopolyacid, which is an oxygen acid such as vanadium (V), molybdenum (Mo), and tungsten (W), and an oxygen acid of a different element. Oxygen acids of such dissimilar elements mainly include oxygen acids of silicon (Si), phosphorus (P), and arsenic (As).
Figure JPOXMLDOC01-appb-C000041
 前記ヘテロポリ酸としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸、リンタングストモリブデン酸等が挙げられる。これらは、1種単独で又は2種以上を組み合わせて用いてもよい。なお、本発明で用いるヘテロポリ酸は、市販品として入手可能であり、また、公知の方法により合成することもできる。特に、1種類のヘテロポリ酸を用いる場合、その1種類のヘテロポリ酸は、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸が最適である。また、2種類以上のヘテロポリ酸を用いる場合、その2種類以上のヘテロポリ酸の1つは、リンタングステン酸又はリンモリブデン酸が好ましく、リンタングステン酸がより好ましい。 Examples of the heteropolyacid include phosphomolybdic acid, silicate molybdic acid, phosphotungstic acid, silicate tungstic acid, and phosphotungstic acid. These may be used individually by 1 type or in combination of 2 or more type. The heteropolyacid used in the present invention is available as a commercially available product, and can also be synthesized by a known method. In particular, when one kind of heteropolyacid is used, the one kind of heteropolyacid is preferably phosphotungstic acid or phosphomolybdic acid, and phosphotungstic acid is most suitable. When two or more kinds of heteropolyacids are used, one of the two or more kinds of heteropolyacids is preferably phosphotungstic acid or phosphomolybdic acid, and more preferably phosphotungstic acid.
 なお、ヘテロポリ酸は、元素分析等の定量分析において、一般式で表される構造から元素の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは、公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。 In addition, in quantitative analysis such as elemental analysis, heteropolyacids are those obtained as commercial products or known synthetics even if the number of elements is large or small from the structure represented by the general formula. As long as it is properly synthesized according to the method, it can be used in the present invention.
 すなわち、例えば、一般的にリンタングステン酸は化学式H3(PW1240)・nH2Oで、リンモリブデン酸は化学式H3(PMo1240)・nH2Oでそれぞれ表されるが、定量分析において、この式中のP(リン)、O(酸素)又はW(タングステン)若しくはMo(モリブデン)の数が多いもの又は少ないものであっても、それが市販品として入手したもの、あるいは公知の合成方法にしたがって適切に合成したものである限り、本発明において用いることができる。この場合、本発明に規定されるヘテロポリ酸の質量とは、合成物や市販品中における純粋なリンタングステン酸の質量(リンタングステン酸含量)ではなく、市販品として入手可能な形態及び公知の合成法にて単離可能な形態において、水和水やその他の不純物等を含んだ状態での全質量を意味する。 That is, for example, phosphotungsten acid is generally represented by the chemical formulas H 3 (PW 12 O 40 ) and nH 2 O, and phosphomolybdic acid is generally represented by the chemical formulas H 3 (PMo 12 O 40 ) and nH 2 O. In the quantitative analysis, even if the number of P (phosphorus), O (oxygen) or W (tungsten) or Mo (molybdenum) in this formula is large or small, it is obtained as a commercial product, or As long as it is appropriately synthesized according to a known synthesis method, it can be used in the present invention. In this case, the mass of the heteropolyacid defined in the present invention is not the mass of pure phosphotungstic acid (phosphotungstic acid content) in the synthetic product or the commercially available product, but the form available as the commercially available product and the known synthesis. In a form that can be isolated by the method, it means the total mass in a state containing hydrated water and other impurities.
 前記有機系ドーパントとしては、アリールスルホン酸、アリールスルホン酸エステル、所定のアニオンとその対カチオンとからなるイオン化合物、テトラシアノキノジメタン誘導体、ベンゾキノン誘導体等が挙げられる。 Examples of the organic dopant include aryl sulfonic acid, aryl sulfonic acid ester, an ionic compound composed of a predetermined anion and its counter cation, a tetracyanoquinodimethane derivative, a benzoquinone derivative and the like.
 前記アリールスルホン酸化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、下記式(A)又は(B)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000042
The aryl sulfonic acid compound is preferably represented by the following formula (A) or (B) from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
Figure JPOXMLDOC01-appb-C000042
 式(A)中、A1は、-O-又は-S-であるが、-O-が好ましい。A2は、ナフタレン又はアントラセンから誘導される(p2+1)価の基(すなわち、ナフタレン又はアントラセンからからp2+1個の水素原子を取り除いて得られる基)であるが、ナフタレンから誘導される基が好ましい。A3は、2~4価のパーフルオロビフェニル基である。p1は、A1とA3との結合数であり、2≦p1≦4を満たす整数であるが、A3が2価のパーフルオロビフェニル基であり、かつ、p1が2であることが好ましい。p2は、A2に結合するスルホン酸基数であり、1≦p2≦4を満たす整数であるが、2が好適である。 In the formula (A), A 1 is -O- or -S-, but -O- is preferable. A 2 is a (p 2 + 1) -valent group derived from naphthalene or anthracene (ie, a group obtained by removing p 2 + 1 hydrogen atoms from naphthalene or anthracene), but is derived from naphthalene. A group is preferred. A 3 is a 2- to 4-valent perfluorobiphenyl group. p 1 is the number of bonds between A 1 and A 3, and is an integer satisfying 2 ≤ p 1 ≤ 4, but A 3 is a divalent perfluorobiphenyl group and p 1 is 2. Is preferable. p 2 is the number of sulfonic acid groups bonded to A 2 , and is an integer satisfying 1 ≦ p 2 ≦ 4, but 2 is preferable.
 式(B)中、A4~A8は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基又は炭素数2~20のハロゲン化アルケニル基であるが、A4~A8のうち少なくとも3つはハロゲン原子である。qは、ナフタレン環に結合するスルホン酸基数であり、1≦q≦4を満たす整数であるが、2~4が好ましく、2がより好ましい。 In the formula (B), A 4 to A 8 are independently hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 20 carbon atoms, alkyl halide group having 1 to 20 carbon atoms or 2 to 2 carbon atoms, respectively. There are 20 halogenated alkenyl groups, but at least 3 of A 4 to A 8 are halogen atoms. q is the number of sulfonic acid groups bonded to the naphthalene ring and is an integer satisfying 1 ≦ q ≦ 4, but 2 to 4 is preferable, and 2 is more preferable.
 前記炭素数1~20のハロゲン化アルキル基としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、パーフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、パーフルオロブチル基等が挙げられる。前記炭素数2~20のハロゲン化アルケニル基としては、パーフルオロエテニル基、1-パーフルオロプロペニル基、パーフルオロアリル基、パーフルオロブテニル基等が挙げられる。 Examples of the alkyl halide group having 1 to 20 carbon atoms include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a perfluoroethyl group, and a 3,3,3-trifluoropropyl group, 2,2, 3,3,3-Pentafluoropropyl group, perfluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 2,2,3,3, Examples thereof include 4,4,4-heptafluorobutyl group and perfluorobutyl group. Examples of the halogenated alkenyl group having 2 to 20 carbon atoms include a perfluoroethenyl group, a 1-perfluoropropenyl group, a perfluoroallyl group, a perfluorobutenyl group and the like.
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられるが、フッ素原子が好ましい。前記炭素数1~20のアルキル基としては、式(6)のRA及びRBの説明において述べたものと同様のものが挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom is preferable. The alkyl group having 1 to 20 carbon atoms include the same ones as mentioned in the description of R A and R B of formula (6).
 これらの中でも、A4~A8としては、水素原子、ハロゲン原子、シアノ基、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基又は炭素数2~10のハロゲン化アルケニル基であり、かつA4~A8のうち少なくとも3つはフッ素原子であることが好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のアルキル基、炭素数1~5のフッ化アルキル基又は炭素数2~5のフッ化アルケニル基であり、かつA4~A8のうち少なくとも3つはフッ素原子であることがより好ましく、水素原子、フッ素原子、シアノ基、炭素数1~5のパーフルオロアルキル基又は炭素数1~5のパーフルオロアルケニル基であり、かつA4、A5及びA8がフッ素原子であることがより一層好ましい。なお、パーフルオロアルキル基とは、アルキル基の水素原子全てがフッ素原子に置換された基であり、パーフルオロアルケニル基とは、アルケニル基の水素原子全てがフッ素原子に置換された基である。 Among these, A 4 to A 8 include hydrogen atom, halogen atom, cyano group, alkyl group having 1 to 10 carbon atoms, alkyl halide group having 1 to 10 carbon atoms, or alkenyl halide having 2 to 10 carbon atoms. a group, and it is preferable that at least three fluorine atoms of a 4 - a 8, a hydrogen atom, a fluorine atom, fluorinated cyano group, an alkyl group having 1 to 5 carbon atoms, 5 It is more preferably an alkyl group or a fluorinated alkenyl group having 2 to 5 carbon atoms, and at least 3 of A 4 to A 8 are fluorine atoms, and a hydrogen atom, a fluorine atom, a cyano group, and 1 to 1 carbon atoms. It is even more preferable that it is a perfluoroalkyl group of 5 or a perfluoroalkenyl group having 1 to 5 carbon atoms, and that A 4 , A 5 and A 8 are fluorine atoms. The perfluoroalkyl group is a group in which all the hydrogen atoms of the alkyl group are substituted with fluorine atoms, and the perfluoroalkyl group is a group in which all the hydrogen atoms of the alkenyl group are substituted with fluorine atoms.
 好適なアリールスルホン酸の具体例としては、以下に示すものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000043
Specific examples of suitable aryl sulfonic acids include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000043
 前記アリールスルホン酸エステル化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、国際公開第2017/217455号に開示されたアリールスルホン酸エステル化合物、国際公開第2017/217457号に開示されたアリールスルホン酸エステル化合物、特願2017-243631に記載のアリールスルホン酸エステル化合物等が挙げられる。 As the aryl sulfonic acid ester compound, the aryl sulfonic acid ester compound disclosed in International Publication No. 2017/217455, International Publication No. 2017/217457, from the viewpoint of the transparency of the thin film obtained from the charge transport varnish of the present invention. Examples thereof include the aryl sulfonic acid ester compound disclosed in No. 2, the aryl sulfonic acid ester compound described in Japanese Patent Application No. 2017-243631 and the like.
 具体的には、低極性溶媒への溶解性の観点から、アリールスルホン酸エステル化合物としては、下記式(C)~(E)のいずれかで表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000044
Specifically, from the viewpoint of solubility in a low-polarity solvent, the aryl sulfonic acid ester compound is preferably represented by any of the following formulas (C) to (E).
Figure JPOXMLDOC01-appb-C000044
 式(C)~(E)中、mは、1≦m≦4を満たす整数であるが、2が好ましい。nは、1≦n≦4を満たす整数であるが、2が好ましい。 In the formulas (C) to (E), m is an integer satisfying 1 ≦ m ≦ 4, but 2 is preferable. n is an integer satisfying 1 ≦ n ≦ 4, but 2 is preferable.
 式(C)中、A11は、パーフルオロビフェニルから誘導されるm価の基(すなわち、パーフルオロビフェニルからm個のフッ素原子を取り除いて得られる基)である。A12は、-O-又は-S-であるが、-O-が好ましい。A13は、ナフタレン又はアントラセンから誘導される(n+1)価の基(すなわち、ナフタレン又はアントラセンからからn+1個の水素原子を取り除いて得られる基)であるが、ナフタレンから誘導される基が好ましい。Rs1~Rs4は、それぞれ独立して、水素原子、又は直鎖状若しくは分岐状の炭素数1~6のアルキル基であり、Rs5は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In formula (C), A 11 is an m-valent group derived from perfluorobiphenyl (ie, a group obtained by removing m fluorine atoms from perfluorobiphenyl). A 12 is —O— or —S—, but —O— is preferred. A 13 is a (n + 1) -valent group derived from naphthalene or anthracene (that is, a group obtained by removing n + 1 hydrogen atoms from naphthalene or anthracene), but a group derived from naphthalene is preferable. R s1 to R s4 are independently hydrogen atoms or linear or branched alkyl groups having 1 to 6 carbon atoms, and R s5 has 2 to 20 carbon atoms which may be substituted. It is a monovalent hydrocarbon group.
 Rs1~Rs4で表される直鎖状又は分岐状の炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基等が挙げられる。これらのうち、炭素数1~3のアルキル基が好ましい。 The linear or branched alkyl group having 1 to 6 carbon atoms represented by R s1 to R s4 includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and sec. -Butyl group, tert-butyl group, n-hexyl group and the like can be mentioned. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
 Rs5で表される炭素数2~20の1価炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;フェニル、ナフチル、フェナントリル基等のアリール基等が挙げられる。 The monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s5 may be linear, branched or cyclic, and specific examples thereof include an ethyl group, an n-propyl group, an isopropyl group and n. -Alkyl groups such as butyl group, isobutyl group, sec-butyl group and tert-butyl group; aryl groups such as phenyl, naphthyl and phenanthryl groups can be mentioned.
 特に、Rs1~Rs4のうち、Rs1又はRs3が炭素数1~3の直鎖アルキル基であり、残りが水素原子であるか、Rs1が炭素数1~3の直鎖アルキル基であり、Rs2~Rs4が水素原子であることが好ましい。この場合、炭素数1~3の直鎖アルキル基としては、メチル基が好ましい。また、Rs5としては、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。 In particular, among R s1 to R s4 , R s1 or R s3 is a linear alkyl group having 1 to 3 carbon atoms, and the rest is a hydrogen atom, or R s1 is a linear alkyl group having 1 to 3 carbon atoms. It is preferable that R s2 to R s4 are hydrogen atoms. In this case, the methyl group is preferable as the linear alkyl group having 1 to 3 carbon atoms. Further, as R s5 , a linear alkyl group or a phenyl group having 2 to 4 carbon atoms is preferable.
 式(D)中、A14は、置換されていてもよい、1つ以上の芳香環を含む炭素数6~20のm価の炭化水素基であり、この炭化水素基は、1つ以上の芳香環を含む炭素数6~20の炭化水素化合物からm個の水素原子を取り除いて得られる基である。前記炭化水素化合物としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ビフェニル、ナフタレン、アントラセン、フェナントレン等が挙げられる。 In the formula (D), A 14 is an m-valent hydrocarbon group having 6 to 20 carbon atoms containing one or more aromatic rings which may be substituted, and the hydrocarbon group may be one or more. It is a group obtained by removing m hydrogen atoms from a hydrocarbon compound having 6 to 20 carbon atoms containing an aromatic ring. Examples of the hydrocarbon compound include benzene, toluene, xylene, ethylbenzene, biphenyl, naphthalene, anthracene, phenanthrene and the like.
 なお、A14で表される炭化水素基は、その水素原子の一部又は全部が、更に置換基で置換されていてもよく、このような置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、シラノール基、チオール基、カルボキシ基、スルホン酸エステル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、1価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、スルホ基等が挙げられる。これらの中でも、A14としては、ベンゼン、ビフェニル等から誘導される基が好ましい。 In the hydrocarbon group represented by A 14 , a part or all of the hydrogen atom may be further substituted with a substituent, and such substituents include a fluorine atom, a chlorine atom and a bromine atom. , Iodine atom, nitro group, cyano group, hydroxy group, amino group, silanol group, thiol group, carboxy group, sulfonic acid ester group, phosphoric acid group, phosphoric acid ester group, ester group, thioester group, amide group, monovalent Examples thereof include a hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group and a sulfo group. Among these, as A 14 , a group derived from benzene, biphenyl or the like is preferable.
 式(D)中、A15は、-O-又は-S-であるが、-O-が好ましい。 In formula (D), A 15 is —O— or —S—, but —O— is preferred.
 式(D)中、A16は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。中でも、A16としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In the formula (D), A 16 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and this aromatic hydrocarbon group is the aroma of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing (n + 1) hydrogen atoms from the ring. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among them, as A 16 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 式(D)中、Rs6及びRs7は、それぞれ独立して、水素原子、又は直鎖状若しくは分岐状の1価脂肪族炭化水素基であり、Rs8は、直鎖状又は分岐状の1価脂肪族炭化水素基である。ただし、Rs6、Rs7及びRs8の炭素数の合計は6以上である。Rs6、Rs7及びRs8の炭素数の合計の上限は、特に限定されないが、20以下が好ましく、10以下がより好ましい。 In formula (D), R s6 and R s7 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups, and R s8 is linear or branched. It is a monovalent aliphatic hydrocarbon group. However, the total number of carbon atoms of R s6 , R s7 and R s8 is 6 or more. The upper limit of the total number of carbon atoms of R s6 , R s7 and R s8 is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
 Rs6、Rs7及びRs8で表される直鎖状又は分岐状の1価脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、デシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。これらの中でも、Rs6は水素原子が好ましく、Rs7及びRs8は、それぞれ独立して、炭素数1~6のアルキル基が好ましい。 Specific examples of the linear or branched monovalent aliphatic hydrocarbon group represented by R s6 , R s7 and R s8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group. , Isobutyl group, sec-butyl group, tert-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group, decyl group and other alkyl groups having 1 to 20 carbon atoms; vinyl group, 1-propenyl group, Examples thereof include alkenyl groups having 2 to 20 carbon atoms such as 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and hexenyl group. Among these, R s6 is preferably a hydrogen atom, and R s7 and R s8 are each independently preferably an alkyl group having 1 to 6 carbon atoms.
 式(E)中、Rs9~Rs13は、それぞれ独立して、水素原子、ニトロ基、シアノ基、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、又は炭素数2~10のハロゲン化アルケニル基である。 In the formula (E), R s9 to R s13 are independently hydrogen atom, nitro group, cyano group, halogen atom, alkyl group having 1 to 10 carbon atoms, and alkyl halide group having 1 to 10 carbon atoms, respectively. Alternatively, it is a halogenated alkenyl group having 2 to 10 carbon atoms.
 Rs9~Rs13で表される炭素数1~10のアルキル基は、直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 The alkyl group having 1 to 10 carbon atoms represented by R s9 to R s13 may be linear, branched, or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. Group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group , N-decyl group and the like.
 Rs9~Rs13で表される炭素数1~10のハロゲン化アルキル基は、炭素数1~10のアルキル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されない。その具体例としては、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基等が挙げられる。 The alkyl halide group having 1 to 10 carbon atoms represented by R s9 to R s13 is particularly a group in which a part or all of the hydrogen atoms of the alkyl group having 1 to 10 carbon atoms are substituted with a halogen atom. Not limited. Specific examples thereof include a trifluoromethyl group, a 2,2,2-trifluoroethyl group, a 1,1,2,2,2-pentafluoroethyl group, a 3,3,3-trifluoropropyl group, and a 2,2. 2,3,3,3-pentafluoropropyl group, 1,1,2,2,3,3,3-heptafluoropropyl group, 4,4,4-trifluorobutyl group, 3,3,4,4 , 4-Pentafluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group, etc. Can be mentioned.
 Rs9~Rs13で表される炭素数2~10のハロゲン化アルケニル基としては、炭素数2~10のアルケニル基の水素原子の一部又は全部がハロゲン原子で置換された基であれば、特に限定されず、その具体例としては、パーフルオロビニル基、パーフルオロ-1-プロペニル基、パーフルオロ-2-プロペニル基、パーフルオロ-1-ブテニル基、パーフルオロ-2-ブテニル基、パーフルオロ-3-ブテニル基等が挙げられる。 The halogenated alkenyl group having 2 to 10 carbon atoms represented by R s9 to R s13 is a group in which some or all of the hydrogen atoms of the alkenyl group having 2 to 10 carbon atoms are substituted with halogen atoms. Specific examples thereof include, but are not limited to, a perfluorovinyl group, a perfluoro-1-propenyl group, a perfluoro-2-propenyl group, a perfluoro-1-butenyl group, a perfluoro-2-butenyl group, and a perfluoro. -3-Butenyl group and the like can be mentioned.
 これらの中でも、Rs9としては、ニトロ基、シアノ基、炭素数1~10のハロゲン化アルキル基、炭素数2~10のハロゲン化アルケニル基が好ましく、ニトロ基、シアノ基、炭素数1~4のハロゲン化アルキル基、炭素数2~4のハロゲン化アルケニル基がより好ましく、ニトロ基、シアノ基、トリフルオロメチル基、パーフルオロプロペニル基がより一層好ましい。Rs10~Rs13としては、ハロゲン原子が好ましく、フッ素原子がより好ましい。 Among these, as R s9 , a nitro group, a cyano group, an alkyl halide group having 1 to 10 carbon atoms, and an alkenyl halide group having 2 to 10 carbon atoms are preferable, and a nitro group, a cyano group, and 1 to 4 carbon atoms are preferable. The alkyl halide group and the alkenyl halide group having 2 to 4 carbon atoms are more preferable, and the nitro group, the cyano group, the trifluoromethyl group and the perfluoropropenyl group are even more preferable. As R s10 to R s13 , a halogen atom is preferable, and a fluorine atom is more preferable.
 式(E)中、A17は、-O-、-S-又は-NH-であるが、-O-が好ましい。 In formula (E), A 17 is -O-, -S- or -NH-, but -O- is preferable.
 式(E)中、A18は、炭素数6~20の(n+1)価の芳香族炭化水素基であり、この芳香族炭化水素基は、炭素数6~20の芳香族炭化水素化合物の芳香環上から(n+1)個の水素原子を取り除いて得られる基である。前記芳香族炭化水素化合物としては、ベンゼン、トルエン、キシレン、ビフェニル、ナフタレン、アントラセン、ピレン等が挙げられる。これらの中でも、A18としては、ナフタレン又はアントラセンから誘導される基が好ましく、ナフタレンから誘導される基がより好ましい。 In the formula (E), A 18 is an (n + 1) -valent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the aromatic hydrocarbon group is the aromatic of an aromatic hydrocarbon compound having 6 to 20 carbon atoms. It is a group obtained by removing (n + 1) hydrogen atoms from the ring. Examples of the aromatic hydrocarbon compound include benzene, toluene, xylene, biphenyl, naphthalene, anthracene, pyrene and the like. Among these, as A 18 , a group derived from naphthalene or anthracene is preferable, and a group derived from naphthalene is more preferable.
 式(E)中、Rs14~Rs17は、それぞれ独立に、水素原子、又は直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基である。前記1価脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等の炭素数1~20のアルキル基;ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-メチル-2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ヘキセニル基等の炭素数2~20のアルケニル基等が挙げられる。これらのうち、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 In the formula (E), R s14 to R s17 are independently hydrogen atoms or linear or branched monovalent aliphatic hydrocarbon groups having 1 to 20 carbon atoms. The monovalent aliphatic hydrocarbon group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and a cyclopentyl group. , N-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group and other alkyl groups having 1 to 20 carbon atoms; vinyl Group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, hexenyl group, etc. having 2 to 20 carbon atoms Examples include alkenyl groups. Of these, an alkyl group having 1 to 20 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
 式(E)中、Rs18は、直鎖状若しくは分岐状の炭素数1~20の1価脂肪族炭化水素基、又は-ORs19である。Rs19は、置換されていてもよい炭素数2~20の1価炭化水素基である。 In formula (E), R s18 is a linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, or −OR s19 . R s19 is a monovalent hydrocarbon group having 2 to 20 carbon atoms which may be substituted.
 Rs18で表される直鎖状又は分岐状の炭素数1~20の1価脂肪族炭化水素基としては、Rs14~Rs17の説明において述べたものと同様のものが挙げられる。Rs18が1価脂肪族炭化水素基である場合、Rs18は、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~8のアルキル基がより一層好ましい。 Examples of the linear or branched monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms represented by R s18 include those similar to those described in the description of R s14 to R s17 . When R s18 is a monovalent aliphatic hydrocarbon group, R s18 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 8 carbon atoms. Even more preferable.
 Rs19で表される炭素数2~20の1価炭化水素基としては、前述した1価脂肪族炭化水素基のうちメチル基以外のもののほか、フェニル、ナフチル、フェナントリル基等のアリール基などが挙げられる。これらの中でも、Rs19は、炭素数2~4の直鎖アルキル基又はフェニル基が好ましい。 As the monovalent hydrocarbon group having 2 to 20 carbon atoms represented by R s19 , in addition to the above-mentioned monovalent aliphatic hydrocarbon groups other than the methyl group, aryl groups such as phenyl, naphthyl and phenanthryl groups are used. Can be mentioned. Among these, R s19 is preferably a linear alkyl group or a phenyl group having 2 to 4 carbon atoms.
 なお、前記1価炭化水素基が有していてもよい置換基としては、フッ素原子、炭素数1~4のアルコキシ基、ニトロ基、シアノ基等が挙げられる。 Examples of the substituent that the monovalent hydrocarbon group may have include a fluorine atom, an alkoxy group having 1 to 4 carbon atoms, a nitro group, and a cyano group.
 好適なアリールスルホン酸エステル化合物の具体例としては、以下に示すものが挙げられるが、これらに限定されない。 Specific examples of suitable aryl sulfonic acid ester compounds include, but are not limited to, those shown below.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 前記所定のアニオンとその対カチオンとからなるイオン化合物としては、本発明の電荷輸送性ワニスから得られる薄膜の透明性の点から、下記式(F)で表されるイオン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000046
As the ionic compound composed of the predetermined anion and its counter cation, the ionic compound represented by the following formula (F) is preferable from the viewpoint of the transparency of the thin film obtained from the charge transporting varnish of the present invention.
Figure JPOXMLDOC01-appb-C000046
 式(F)中、Eは、長周期型周期表の第13族元素であり、Ar101~Ar104は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、フッ素原子、塩素原子、臭素原子等のハロゲン原子、シアノ基、ニトロ基、アセチル基等の炭素数2~12のアシル基、又はトリフルオロメチル基等の炭素数1~10のハロゲン化アルキル基で置換されていてもよい。 In the formula (F), E is a Group 13 element of the long periodic table, and Ar 101 to Ar 104 are independently aryl groups having 6 to 20 carbon atoms or heteroaryls having 2 to 20 carbon atoms. A group, such as a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an acyl group having 2 to 12 carbon atoms such as a cyano group, a nitro group or an acetyl group, or a halogen having 1 to 10 carbon atoms such as a trifluoromethyl group. It may be substituted with an alkylated group.
 Eで表される第13族元素としては、ホウ素原子、アルミニウム原子、ガリウム原子が好ましく、ホウ素原子がより好ましい。Ar101~Ar104で表される炭素数6~20のアリール基としては、式(1)のAr1及びAr2の説明において述べたものと同様のものが挙げられる。Ar101~Ar104で表される炭素数2~20のヘテロアリール基としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。 As the Group 13 element represented by E, a boron atom, an aluminum atom and a gallium atom are preferable, and a boron atom is more preferable. Examples of the aryl group having 6 to 20 carbon atoms represented by Ar 101 to Ar 104 include the same aryl groups as those described in the description of Ar 1 and Ar 2 in the formula (1). Examples of the heteroaryl group having 2 to 20 carbon atoms represented by Ar 101 to Ar 104 include a 2-thienyl group, a 3-thienyl group, a 2-furanyl group, a 3-furanyl group, a 2-oxazolyl group and a 4-oxazolyl group. , 5-Oxazolyl group, 3-isooxazolyl group, 4-isooxazolyl group, 5-isooxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group. , 2-Imidazolyl group, 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group and the like.
 式(F)中、M+は、オニウムイオンである。前記オニウムイオンとしては、ヨードニウムイオン、スルホニウムイオン、アンモニウムイオン、ホスホニウムイオン等が挙げられるが、特に、下記式(G)で表されるヨードニウムイオンが好ましい。
Figure JPOXMLDOC01-appb-C000047
In formula (F), M + is an onium ion. Examples of the onium ion include iodonium ion, sulfonium ion, ammonium ion, phosphonium ion and the like, and iodonium ion represented by the following formula (G) is particularly preferable.
Figure JPOXMLDOC01-appb-C000047
 式(G)中、R101及びR102は、それぞれ独立に、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、ハロゲン原子、シアノ基、ニトロ基、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数2~12のアルキニル基、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基で置換されていてもよい。 In the formula (G), R 101 and R 102 independently have an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, and 6 to 20 carbon atoms, respectively. Aryl group or heteroaryl group having 2 to 20 carbon atoms, halogen atom, cyano group, nitro group, alkyl group having 1 to 12 carbon atoms, alkenyl group having 2 to 12 carbon atoms, alkynyl group having 2 to 12 carbon atoms. , It may be substituted with an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms.
 前記テトラシアノキノジメタン誘導体としては、7,7,8,8-テトラシアノキノジメタン(TCNQ)、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、テトラフルオロ-7,7,8,8-テトラシアノキノジメタン(F4TCNQ)、テトラクロロ-7,7,8,8-テトラシアノキノジメタン、2-フルオロ-7,7,8,8-テトラシアノキノジメタン、2-クロロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジフルオロ-7,7,8,8-テトラシアノキノジメタン、2,5-ジクロロ-7,7,8,8-テトラシアノキノジメタン等が挙げられる。 Examples of the tetracyanoquinodimethane derivative include 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro. -7,7,8,8-Tetracyanoquinodimethane, Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4TCNQ), Tetrachloro-7,7,8,8-Tetracyanoquinodimethane Methane, 2-fluoro-7,7,8,8-tetracyanoquinodimethane, 2-chloro-7,7,8,8-tetracyanoquinodimethane, 2,5-difluoro-7,7,8, Examples thereof include 8-tetracyanoquinodimethane, 2,5-dichloro-7,7,8,8-tetracyanoquinodimethane.
 前記ベンゾキノン誘導体としては、テトラクロロ-1,4-ベンゾキノン(クロラニル)、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)等が挙げられる。 Examples of the benzoquinone derivative include tetrachloro-1,4-benzoquinone (chloranil), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and the like.
 本発明の電荷輸送性ワニスがドーパントを含む場合、その含有量は、ドーパントの種類、所望の電荷輸送性等に応じて異なるため一概に規定できないが、電荷輸送性物質1に対し、質量比で、通常0.01~50程度であり、好ましくは0.1~10程度、より好ましくは1.0~5.0程度である。 When the charge-transporting varnish of the present invention contains a dopant, the content thereof varies depending on the type of dopant, the desired charge-transporting property, and the like, and therefore cannot be unconditionally defined. However, it is a mass ratio with respect to the charge-transporting substance 1. It is usually about 0.01 to 50, preferably about 0.1 to 10, and more preferably about 1.0 to 5.0.
 本発明の電荷輸送性ワニスは、得られる電荷輸送性薄膜の膜物性の調整等の目的で、更に有機シラン化合物を含んでもよい。前記有機シラン化合物としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物又はテトラアルコキシシラン化合物が挙げられる。とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物又はトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。有機シラン化合物は、1種単独で又は2種以上を組み合わせて用いてもよい。 The charge-transporting varnish of the present invention may further contain an organic silane compound for the purpose of adjusting the film physical properties of the obtained charge-transporting thin film. Examples of the organic silane compound include a dialkoxysilane compound, a trialkoxysilane compound, and a tetraalkoxysilane compound. In particular, as the organic silane compound, a dialkoxysilane compound or a trialkoxysilane compound is preferable, and a trialkoxysilane compound is more preferable. The organic silane compound may be used alone or in combination of two or more.
 有機シラン化合物を含む場合、その含有量は、電荷輸送性物質及びドーパントの総質量に対し、通常0.1~50質量%程度であるが、得られる薄膜の電荷輸送性の低下を抑制し、かつ、本発明の電荷輸送性薄膜からなる正孔注入層に接するように陽極とは反対側に積層される層(例えば、正孔輸送層や発光層)への正孔注入能を高めることを考慮すると、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%程度である。 When the organic silane compound is contained, its content is usually about 0.1 to 50% by mass with respect to the total mass of the charge-transporting substance and the dopant, but it suppresses a decrease in the charge-transporting property of the obtained thin film. In addition, it is intended to enhance the hole injection ability into a layer (for example, a hole transport layer or a light emitting layer) laminated on the opposite side of the anode so as to be in contact with the hole injection layer made of the charge transport thin film of the present invention. In consideration, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and even more preferably about 1 to 20% by mass.
 電荷輸送性ワニスの調製方法としては、特に限定されないが、例えば、前記フルオレン誘導体及び必要に応じてドーパント等を任意の順で又は同時に有機溶媒に加える方法が挙げられる。また、有機溶媒が複数ある場合は、まず前記フルオレン誘導体及び必要に応じてドーパント等を1種の溶媒に溶解させ、そこへ他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、前記フルオレン誘導体及び必要に応じてドーパント等を順次又は同時に溶解させてもよい。 The method for preparing the charge transporting varnish is not particularly limited, and examples thereof include a method in which the fluorene derivative and, if necessary, a dopant and the like are added to the organic solvent in any order or at the same time. When there are a plurality of organic solvents, the fluorene derivative and, if necessary, a dopant or the like may be first dissolved in one solvent, and another solvent may be added thereto, and the mixed solvent of the plurality of organic solvents may be used. The fluorene derivative and, if necessary, a dopant or the like may be dissolved sequentially or simultaneously.
 本発明の電荷輸送性ワニスは、より平坦性の高い薄膜を再現性よく得る観点から、前記フルオレン誘導体及び必要に応じてドーパント等を有機溶媒に溶解させた後、サブマイクロメートルオーダーのフィルター等を用いてろ過することが望ましい。 In the charge transporting varnish of the present invention, from the viewpoint of obtaining a thin film having higher flatness with good reproducibility, the fluorene derivative and, if necessary, a dopant or the like are dissolved in an organic solvent, and then a filter or the like on the order of submicrometer is used. It is desirable to use and filter.
 本発明の電荷輸送性ワニスの粘度は、通常、25℃で1~50mPa・sである。また、本発明の電荷輸送性ワニスの表面張力は、通常、25℃で20~50mN/mである。なお、粘度は、東機産業(株)製TVE-25形粘度計で測定した値である。表面張力は、協和界面科学(株)製、自動表面張力計CBVP-Z型で測定した値である。ワニスの粘度と表面張力は、所望の膜厚等の各種要素を考慮して、前述した溶媒の種類やそれらの比率、固形分濃度等を変更することで調整可能である。 The viscosity of the charge-transporting varnish of the present invention is usually 1 to 50 mPa · s at 25 ° C. The surface tension of the charge-transporting varnish of the present invention is usually 20 to 50 mN / m at 25 ° C. The viscosity is a value measured by a TVE-25 type viscometer manufactured by Toki Sangyo Co., Ltd. The surface tension is a value measured by an automatic surface tension meter CBVP-Z manufactured by Kyowa Interface Science Co., Ltd. The viscosity and surface tension of the varnish can be adjusted by changing the types of solvents described above, their ratios, the solid content concentration, and the like in consideration of various factors such as a desired film thickness.
[電荷輸送性薄膜]
 本発明の電荷輸送性薄膜は、本発明の電荷輸送性ワニスを基材上に塗布し、焼成することで形成することができる。
[Charge transport thin film]
The charge-transporting thin film of the present invention can be formed by applying the charge-transporting varnish of the present invention on a substrate and firing it.
 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。 Examples of the varnish coating method include, but are not limited to, the dip method, spin coating method, transfer printing method, roll coating method, brush coating, inkjet method, spray method, slit coating method, and the like. It is preferable to adjust the viscosity and surface tension of the varnish according to the coating method.
 また、塗布後の電荷輸送性ワニスの焼成雰囲気も特に限定されず、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面及び高い電荷輸送性を有する薄膜を得ることができる。共に用いるドーパントの種類によっては、ワニスを大気雰囲気下で焼成することで、電荷輸送性を有する薄膜が再現性よく得られる場合がある。 Further, the firing atmosphere of the charge-transporting varnish after coating is not particularly limited, and it is possible to obtain a thin film having a uniform film-forming surface and high charge-transporting property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. it can. Depending on the type of dopant used together, a thin film having charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度、溶媒の種類や沸点等を勘案して、100~260℃程度の範囲内で適宜設定され、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましいが、本発明の電荷輸送性ワニスでは、200℃以下という低温焼成でも、良好な電荷輸送性を有する薄膜を得ることができる。なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。 The firing temperature is appropriately set within the range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability applied to the obtained thin film, the type of solvent, the boiling point, etc., and the obtained thin film is obtained. When used as a hole injection layer for an organic EL element, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C., but the charge transporting varnish of the present invention has a good charge even at a low temperature of 200 ° C. or lower. A thin film having transportability can be obtained. At the time of firing, a temperature change of two or more steps may be applied for the purpose of developing higher uniform film forming property or advancing the reaction on the substrate, and heating may be performed by, for example, a hot plate or the like. It may be carried out using an appropriate device such as an oven.
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子の正孔注入層、正孔輸送層又は正孔注入輸送層として用いる場合、5~300nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の液量を変化させたりする等の方法がある。 The film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 300 nm when used as a hole injection layer, a hole transport layer, or a hole transport layer of an organic EL element. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of liquid on the substrate at the time of coating.
 本発明の電荷輸送性薄膜は、400~800nmの波長領域の平均値で、1.6以上の屈折率と0.030以下の消衰係数を示すが、ある態様においては1.65以上の屈折率を、その他のある態様においては1.70以上の屈折率を示し、また、ある態様においては0.020以下の消衰係数を、その他のある態様においては0.005以下の消衰係数を示す。 The charge-transporting thin film of the present invention exhibits a refractive index of 1.6 or more and an extinction coefficient of 0.030 or less on average in the wavelength region of 400 to 800 nm, but in some embodiments, a refraction of 1.65 or more. A rate, a refractive index of 1.70 or higher in some other embodiments, an extinction coefficient of 0.020 or less in some embodiments, and an extinction coefficient of 0.005 or less in other embodiments. Shown.
[有機EL素子]
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、本発明の電荷輸送性薄膜からなる機能層を有するものである。
[Organic EL element]
The organic EL device of the present invention has a pair of electrodes, and has a functional layer made of the charge-transporting thin film of the present invention between these electrodes.
 有機EL素子の代表的な構成としては、以下の(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層又は電子注入輸送層がホールブロック層等としての機能を兼ね備えていてもよい。更に、必要に応じて各層の間に任意の機能層を設けることも可能である。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
Typical configurations of the organic EL element include, but are not limited to, the following (a) to (f). In the following configuration, if necessary, an electron block layer or the like may be provided between the light emitting layer and the anode, and a hole block layer or the like may be provided between the light emitting layer and the cathode. Further, the hole injection layer, the hole transport layer or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer or the electron injection transport layer may serve as a hole block layer or the like. It may also have the functions of. Further, if necessary, an arbitrary functional layer can be provided between the layers.
(A) Antenna / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) anode / hole injection layer / hole transport layer / light emitting layer / electron injection transport layer / Cathode (c) Electron / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入(輸送)層は、陽極からの正孔受容性だけでなく、正孔輸送(発光)層への正孔注入性にも優れる薄膜が用いられる。 The "hole injection layer", "hole transport layer" and "hole injection transport layer" are layers formed between the light emitting layer and the anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of hole transporting material is provided between the light emitting layer and the anode, it is a "hole injection transport layer", and there are two layers of hole transporting material between the light emitting layer and the anode. When more than one layer is provided, the layer close to the anode is the "hole injection layer" and the other layers are the "hole transport layer". In particular, as the hole injection (transport) layer, a thin film having excellent not only hole acceptability from the anode but also hole injection property into the hole transport (emission) layer is used.
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。 The "electron injection layer", "electron transport layer" and "electron transport layer" are layers formed between the light emitting layer and the cathode and have a function of transporting electrons from the cathode to the light emitting layer. Is. When only one layer of electron transporting material is provided between the light emitting layer and the cathode, it is an "electron injection transporting layer", and two or more layers of electron transporting material are provided between the light emitting layer and the cathode. If so, the layer close to the cathode is the "electron injection layer" and the other layers are the "electron transport layer".
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料とを含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。 The "light emitting layer" is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is adopted. At this time, the host material mainly has a function of promoting the recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by the recombination. Has a function. In the case of a phosphorescent device, the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
 本発明の電荷輸送性薄膜は、有機EL素子において、陽極と発光層との間に設けられる機能層として好適に用いることができ、正孔注入層、正孔輸送層、正孔注入輸送層としてより好適に用いることができ、正孔注入層としてより一層好適に用いることができる。 The charge transporting thin film of the present invention can be suitably used as a functional layer provided between the anode and the light emitting layer in an organic EL device, and can be used as a hole injection layer, a hole transport layer, or a hole injection transport layer. It can be used more preferably, and can be used even more preferably as a hole injection layer.
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されない。 The materials and manufacturing methods used when manufacturing an organic EL device using the charge transporting varnish of the present invention include, but are not limited to, the following.
 本発明の電荷輸送性ワニスから得られる電荷輸送性薄膜からなる正孔注入層を有する有機EL素子の作製方法の一例は、以下のとおりである。なお、電極は、電極に悪影響を与えない範囲で、アルコール、純水等による洗浄や、UVオゾン処理、酸素-プラズマ処理等による表面処理を予め行うことが好ましい。 An example of a method for producing an organic EL device having a hole injection layer made of a charge transporting thin film obtained from the charge transporting varnish of the present invention is as follows. It is preferable that the electrodes are preliminarily cleaned with alcohol, pure water, or the like, or surface-treated with UV ozone treatment, oxygen-plasma treatment, or the like, as long as the electrodes are not adversely affected.
 陽極基板上に、前記方法により、本発明の電荷輸送性ワニスを用いて正孔注入層を形成する。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層/ホールブロック層、電子注入層、陰極金属を順次蒸着する。あるいは、当該方法において蒸着で正孔輸送層と発光層を形成するかわりに、正孔輸送性高分子を含む正孔輸送層形成用組成物と発光性高分子を含む発光層形成用組成物とを用いてウェットプロセスによってこれらの層を形成する。なお、必要に応じて、発光層と正孔輸送層との間に電子ブロック層を設けてよい。 A hole injection layer is formed on the anode substrate by the above method using the charge transporting varnish of the present invention. This is introduced into a vacuum vapor deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer / hole block layer, an electron injection layer, and a cathode metal are sequentially vapor-deposited. Alternatively, instead of forming the hole transport layer and the light emitting layer by vapor deposition in the method, a composition for forming a hole transport layer containing a hole transport polymer and a composition for forming a light emitting layer containing a light emitting polymer are used. These layers are formed by a wet process using. If necessary, an electron block layer may be provided between the light emitting layer and the hole transport layer.
 前記陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属、又はこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。なお、金属陽極を構成するその他の金属としては、金、銀、銅、インジウムやこれらの合金等が挙げられるが、これらに限定されない。 Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metals typified by aluminum, and metal anodes composed of alloys thereof. , A flattened product is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transport properties can also be used. Examples of other metals constituting the metal anode include, but are not limited to, gold, silver, copper, indium, and alloys thereof.
 前記正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等が挙げられる。 Examples of the material for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, and N, N'-bis (naphthalen-1-yl) -N, N'-. Bis (phenyl) -benzidine (α-NPD), 4,4', 4''-tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4', 4''- Triarylamines such as tris [1-naphthyl (phenyl) amino] triphenylamine (1-TNATA), 5,5''-bis- {4- [bis (4-methylphenyl) amino] phenyl} -2 , 2': 5', 2''-oligothiophenes such as turthiophene (BMA-3T) and the like can be mentioned.
 前記発光層を形成する材料としては、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10-ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、ビススチリルアリーレン誘導体、(2-ヒドロキシフェニル)ベンゾチアゾールの金属錯体、シロール誘導体等の低分子発光材料;ポリ(p-フェニレンビニレン)、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]、ポリ(3-アルキルチオフェン)、ポリビニルカルバゾール等の高分子化合物に発光材料と電子移動材料を混合した系等が挙げられるが、これらに限定されない。 Examples of the material forming the light emitting layer include a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a bisstyryl arylene derivative, and (2-hydroxyphenyl). Low molecular weight luminescent materials such as benzothiazole metal complexes and silol derivatives; poly (p-phenylene vinylene), poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene], poly (3- Alkylthiophene), a system in which a light emitting material and an electron transfer material are mixed with a polymer compound such as polyvinylcarbazole, and the like, but are not limited thereto.
 また、蒸着で発光層を形成する場合、発光性ドーパントと共蒸着してもよく、前記発光性ドーパントとしては、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)等の金属錯体や、ルブレン等のナフタセン誘導体、キナクリドン誘導体、ペリレン等の縮合多環芳香族環等が挙げられるが、これらに限定されない。 When the light emitting layer is formed by vapor deposition, it may be co-deposited with a light emitting dopant, and the light emitting dopant may be a metal such as tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3 ). Examples thereof include, but are not limited to, a complex, a naphthacene derivative such as rubrene, a quinacridone derivative, and a condensed polycyclic aromatic ring such as perylene.
 前記電子輸送層/ホールブロック層を形成する材料としては、オキシジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、フェニルキノキサリン誘導体、ベンズイミダゾール誘導体、ピリミジン誘導体等が挙げられるが、これらに限定されない。 Examples of the material for forming the electron transport layer / whole block layer include, but are not limited to, an oxydiazole derivative, a triazole derivative, a phenanthroline derivative, a phenylquinoxaline derivative, a benzimidazole derivative, and a pyrimidine derivative.
 前記電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)等の金属酸化物、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)の金属フッ化物などが挙げられるが、これらに限定されない。 Examples of the material forming the electron injection layer include metal oxides such as lithium oxide (Li 2 O), magnesium oxide (Mg O), and alumina (Al 2 O 3 ), lithium fluoride (LiF), and sodium fluoride (NaF). ), But is not limited to these.
 前記陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金等が挙げられるが、これらに限定されない。 Examples of the cathode material include, but are not limited to, aluminum, magnesium-silver alloy, aluminum-lithium alloy, and the like.
 前記電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられるが、これに限定されない。 Examples of the material for forming the electron block layer include, but are not limited to, tris (phenylpyrazole) iridium and the like.
 前記正孔輸送性高分子としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。 Examples of the hole-transporting polymer include poly [(9,9-dihexylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,4-diamino). Phenylene)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1,1'-biphenylene-4,4- Diamine)], poly [(9,9-bis {1'-penten-5'-yl} fluorenyl-2,7-diyl) -co- (N, N'-bis {p-butylphenyl} -1, 4-Diaminophenylene)], poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) -benzidine] -endcapped with polysilsesquioxane, poly [(9,, 9-didioctylfluorenyl-2,7-diyl) -co- (4,4'-(N- (p-butylphenyl)) diphenylamine)] and the like can be mentioned.
 前記発光性高分子としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。 Examples of the luminescent polymer include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF) and poly (2-methoxy-5- (2'-ethylhexoxy) -1,4-phenylene vinylene) (MEH). -PPV) and other polyphenylene vinylene derivatives, poly (3-alkylthiophene) (PAT) and other polythiophene derivatives, polyvinylcarbazole (PVCz) and the like can be mentioned.
 陽極、陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料を選択する。 The anode, cathode, and the material forming the layer formed between them differ depending on whether the element having the bottom emission structure or the top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. ..
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。 Normally, in an element having a bottom emission structure, a transparent anode is used on the substrate side and light is extracted from the substrate side, whereas in an element having a top emission structure, a reflective anode made of metal is used and the direction is opposite to that of the substrate. Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等と共に封止してもよい。 The organic EL device of the present invention may be sealed together with a water catching agent or the like, if necessary, in accordance with a conventional method in order to prevent deterioration of characteristics.
 本発明の電荷輸送性ワニスは、前述したとおり、有機EL素子の機能層の形成に好適に用いられるが、その他にも有機光電変換素子、有機薄膜太陽電池、有機ペロブスカイト光電変換素子、有機集積回路、有機電界効果トランジスタ、有機薄膜トランジスタ、有機発光トランジスタ、有機光学検査器、有機光受容器、有機電場消光素子、発光電子化学電池、量子ドット発光ダイオード、量子レーザー、有機レーザーダイオード及び有機プラスモン発光素子等の電子素子における機能層の形成にも利用することができる。 As described above, the charge transporting varnish of the present invention is suitably used for forming a functional layer of an organic EL element, but in addition, an organic photoelectric conversion element, an organic thin film solar cell, an organic perovskite photoelectric conversion element, and an organic integrated circuit , Organic field effect transistor, organic thin film, organic light emitting transistor, organic optical tester, organic photoreceiver, organic electric field extinguishing element, light emitting electronic chemical battery, quantum dot light emitting diode, quantum laser, organic laser diode and organic Plasmon light emitting device It can also be used to form a functional layer in an electronic device such as.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、使用した装置は以下のとおりである。
(1)1H-NMR:ブルカー・バイオスピン(株)製、核磁気共鳴分光計AVANCE III HD 500MHz
(2)基板洗浄:長州産業(株)製、基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製、スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製、微細形状測定機サーフコーダET-4000
(5)EL素子の作製:長州産業(株)製、多機能蒸着装置システムC-E2L1G1-N
(6)EL素子の輝度等の測定:(株)イーエッチシー製、多チャンネルIVL測定装置
(7)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製、有機EL輝度寿命評価システムPEL-105S
(8)屈折率及び消衰係数の測定:ジェー・エー・ウーラムジャパン製、多入社角分光エリプソメーターVASE
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples. The devices used are as follows.
(1) 1 H-NMR: Nuclear magnetic resonance spectrometer AVANCE III HD 500MHz manufactured by Bruker Biospin Co., Ltd.
(2) Substrate cleaning: Substrate cleaning equipment manufactured by Choshu Sangyo Co., Ltd. (decompression plasma method)
(3) Varnish application: Spin coater MS-A100 manufactured by Mikasa Co., Ltd.
(4) Film thickness measurement: Fine shape measuring machine surf coder ET-4000 manufactured by Kosaka Laboratory Co., Ltd.
(5) Manufacture of EL element: Multi-function vapor deposition equipment system C-E2L1G1-N manufactured by Choshu Sangyo Co., Ltd.
(6) Measurement of brightness, etc. of EL element: Multi-channel IVL measuring device manufactured by EHC Co., Ltd. (7) Life measurement of EL element (luminance half-life measurement): Organic EL brightness manufactured by EHC Co., Ltd. Life evaluation system PEL-105S
(8) Measurement of refractive index and extinction coefficient: J.A. Woolam Japan, multi-entry angle spectroscopic ellipsometer VASE
[1]化合物の合成
[合成例1]中間体Aの合成
Figure JPOXMLDOC01-appb-C000048
[1] Synthesis of compound [Synthesis example 1] Synthesis of intermediate A
Figure JPOXMLDOC01-appb-C000048
 J. Mater. Chem. C, 2014, pp. 1068-1075の記載の方法に従って合成を実施し、中間体A(2,7-ジブロモ-9,9-ビス(4-ニトロフェニル)-9H-フルオレン)を得た。 Synthesis was carried out according to the method described in J. Mater. Chem. C, 2014, pp. 1068-1075, and Intermediate A (2,7-dibromo-9,9-bis (4-nitrophenyl) -9H-fluorene ) Was obtained.
[実施例1-1]フルオレン誘導体Aの合成
[実施例1-1-1]中間体Bの合成
Figure JPOXMLDOC01-appb-C000049
[Example 1-1] Synthesis of fluorene derivative A [Example 1-1-1] Synthesis of intermediate B
Figure JPOXMLDOC01-appb-C000049
 国際公開第2017/122649号記載の方法に従って合成を実施し、中間体B(4,4'-(9,9-ビス(4-ニトロフェニル)-9H-フルオレン-2,7-ジイル)ビス(N,N-ジフェニルアニリン))を得た。 Synthesis was carried out according to the method described in WO 2017/122649, and Intermediate B (4,4'-(9,9-bis (4-nitrophenyl) -9H-fluorene-2,7-diyl) bis ( N, N-diphenylaniline)) was obtained.
[実施例1-1-2]中間体Cの合成
Figure JPOXMLDOC01-appb-C000050
[Example 1-1-2] Synthesis of Intermediate C
Figure JPOXMLDOC01-appb-C000050
 国際公開第2017/122649号記載の方法に従って合成を実施し、中間体C(4,4'-(9,9-ビス(4-アミノフェニル)-9H-フルオレン-2,7-ジイル)ビス(N,N-ジフェニルアミン))を得た。 Synthesis was carried out according to the method described in WO 2017/122649, and intermediate C (4,4'-(9,9-bis (4-aminophenyl) -9H-fluorene-2,7-diyl) bis ( N, N-diphenylamine)) was obtained.
[実施例1-1-3]フルオレン誘導体Aの合成
Figure JPOXMLDOC01-appb-C000051
[Example 1-1-3] Synthesis of fluorene derivative A
Figure JPOXMLDOC01-appb-C000051
 反応容器に、中間体C(1g、1.2mmol)、THF(2mL)及びトリメチルアミン(368μL、2.64mmol)を入れ窒素置換を行った後、氷浴で冷却しながら、1-ナフトイルクロリド(396μL、2.6mmol)を滴下した。滴下終了後、室温で1時間攪拌した。反応混合物にイオン交換水(25mL)を加え、酢酸エチル(25mL)で抽出した。抽出操作は、3回行った。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。濃縮液を2-プロパノール(20mL)に滴下し、懸濁液を室温で攪拌した。ろ過を行い、ろ物を乾燥し、目的とするフルオレン誘導体A(N,N'-(2,7-ビス(4-(ジフェニルアミノ)フェニル-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビス(1-ナフトアミド))を1.16g得た(収率:85%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.05-7.07(m, 16H), 7.26-7.33(m, 12H), 7.56-7.60(m, 10H), 7.62-7.74(m, 10H), 7.99-8.06(m, 6H), 8.13-8.15(m, 2H), 10.58(brs, 2H).
Intermediate C (1 g, 1.2 mmol), THF (2 mL) and trimethylamine (368 μL, 2.64 mmol) were placed in a reaction vessel to carry out nitrogen substitution, and then 1-naphthoyl chloride (1-naphthoyl chloride) (cooled in an ice bath). 396 μL (2.6 mmol) was added dropwise. After completion of the dropping, the mixture was stirred at room temperature for 1 hour. Ion-exchanged water (25 mL) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (25 mL). The extraction operation was performed three times. After drying the organic layer with anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The concentrate was added dropwise to 2-propanol (20 mL) and the suspension was stirred at room temperature. Filter, dry the filter, and obtain the desired fluorene derivative A (N, N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4). , 1-Phenylene)) bis (1-naphthamide)) was obtained in an amount of 1.16 g (yield: 85%). The measurement results of 1 H-NMR are shown below.
1 1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.05-7.07 (m, 16H), 7.26-7.33 (m, 12H), 7.56-7.60 (m, 10H), 7.62-7.74 (m, 10H) ), 7.99-8.06 (m, 6H), 8.13-8.15 (m, 2H), 10.58 (brs, 2H).
[実施例1-2]フルオレン誘導体Bの合成
 1-ナフトイルクロリドのかわりにベンゾイルクロリド(304μL、2.64mmol)を用いた以外は、実施例1-1-3と同様の方法で目的とするフルオレン誘導体B(N,N'-(2,7-ビス(4-(ジフェニルアミノ)フェニル-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビスベンズアミド)を1.07g得た(収率:85%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.03-7.07(m, 16H), 7.24(d, J=8.5Hz, 4H), 7.29-7.33(m, 8H), 7.49-7.52(m, 4H), 7.55-7.61(m, 6H), 7.69-7.73(m, 8H), 7.90(dd, J=1.5Hz, 8.5Hz, 4H), 8.20(d, J=7.5Hz, 2H), 10.24(brs, 2H).
Figure JPOXMLDOC01-appb-C000052
[Example 1-2] Synthesis of fluorene derivative B The purpose is the same as in Example 1-1-3, except that benzoyl chloride (304 μL, 2.64 mmol) is used instead of 1-naphthoyl chloride. 1.07 g of fluorene derivative B (N, N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bisbenzamide) Obtained (yield: 85%). The measurement results of 1 H-NMR are shown below.
1 1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.03-7.07 (m, 16H), 7.24 (d, J = 8.5Hz, 4H), 7.29-7.33 (m, 8H), 7.49-7.52 ( m, 4H), 7.55-7.61 (m, 6H), 7.69-7.73 (m, 8H), 7.90 (dd, J = 1.5Hz, 8.5Hz, 4H), 8.20 (d, J = 7.5Hz, 2H), 10.24 (brs, 2H).
Figure JPOXMLDOC01-appb-C000052
[実施例1-3]フルオレン誘導体Cの合成
[実施例1-3-1]中間体Dの合成
Figure JPOXMLDOC01-appb-C000053
[Example 1-3] Synthesis of fluorene derivative C [Example 1-3-1] Synthesis of intermediate D
Figure JPOXMLDOC01-appb-C000053
 国際公開第2017/122649号記載の方法に従って合成を実施し、中間体D(3,3'-(9,9-ビス(4-ニトロフェニル)-9H-フルオレン-2,7-ジイル)ビス(9-フェニル-9H-カルバゾール))を得た。 Synthesis was carried out according to the method described in WO 2017/122649, and Intermediate D (3,3'-(9,9-bis (4-nitrophenyl) -9H-fluorene-2,7-diyl) bis ( 9-Phenyl-9H-carbazole)) was obtained.
[実施例1-3-2]中間体Eの合成
Figure JPOXMLDOC01-appb-C000054
[Example 1-3-2] Synthesis of intermediate E
Figure JPOXMLDOC01-appb-C000054
 国際公開第2017/122649号記載の方法に従って合成を実施し、中間体E(4,4'-(2,7-ビス(9-フェニル-9H-カルバゾール-3-イル)-9H-フルオレン-9,9-ジイル)ジアニリン)を得た。 Synthesis was carried out according to the method described in WO 2017/122649, and Intermediate E (4,4'-(2,7-bis (9-phenyl-9H-carbazole-3-yl) -9H-fluorene-9) was carried out. , 9-jiyl) dianiline) was obtained.
[実施例1-3-3]フルオレン誘導体Cの合成
Figure JPOXMLDOC01-appb-C000055
[Example 1-3-3] Synthesis of fluorene derivative C
Figure JPOXMLDOC01-appb-C000055
 中間体Cのかわりに中間体E(1.13g、1.36mmol)を用いた以外は、実施例1-1-3と同様の方法で目的とするフルオレン誘導体C(N,N'-((2,7-ビス(9-フェニル-9H-カルバゾール-3-イル)-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビス(1-ナフトアミド))を1.46g得た(収率:94%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.32(t, J=7.0Hz, 2H), 7.39-7.41(m, 6H), 7.46(t, J=7.5Hz, 4H), 7.54-7.58(m, 8H), 7.65-7.72(m, 10H), 7.78-7.80(m, 6H), 7.91-7.99(m, 6H), 8.04 (d, J=8.5Hz, 2H), 8.12-8.15(m, 4H), 8.41 (d, J=8.0Hz, 2H), 8.65(s, 2H), 10.59(brs, 2H).
The target fluorene derivative C (N, N'-(((N, N'-(() is the same as in Example 1-1-3, except that Intermediate E (1.13 g, 1.36 mmol) is used instead of Intermediate C. Obtained 1.46 g of 2,7-bis (9-phenyl-9H-carbazole-3-yl) -9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (1-naphthamide). (Yield: 94%). The measurement results of 1 H-NMR are shown below.
1 1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.32 (t, J = 7.0Hz, 2H), 7.39-7.41 (m, 6H), 7.46 (t, J = 7.5Hz, 4H), 7.54 -7.58 (m, 8H), 7.65-7.72 (m, 10H), 7.78-7.80 (m, 6H), 7.91-7.99 (m, 6H), 8.04 (d, J = 8.5Hz, 2H), 8.12-8.15 (m, 4H), 8.41 (d, J = 8.0Hz, 2H), 8.65 (s, 2H), 10.59 (brs, 2H).
[実施例1-4]フルオレン誘導体Dの合成
[実施例1-4-1]中間体Fの合成
Figure JPOXMLDOC01-appb-C000056
[Example 1-4] Synthesis of fluorene derivative D [Example 1-4-1] Synthesis of intermediate F
Figure JPOXMLDOC01-appb-C000056
 反応容器に、中間体A(0.57g、1mmol)、9-フェニルカルバゾール-2-ボロン酸(0.63g、2.2mmol)、炭酸カリウム(0.55g、4mmol)、1,4-ジオキサン(11mL)、イオン交換水(2.8mL)及びPd(PPh3)4(57.8mg、0.05mmol)を入れ、窒素置換を行った後、90℃で3時間攪拌した。室温まで冷却した後、反応混合物にイオン交換水(8.4mL)を加え、ろ過を行い、ろ物をイオン交換水(11mL)で洗浄した。洗浄は、2回行った。ろ物に1,4-ジオキサン(5.6g)を加え、90℃で1時間攪拌した。室温まで冷却した後、ろ過を行い、ろ物を1,4-ジオキサン(5.6g)で洗浄し、目的とする中間体F(2,2'-(9,9-ビス(4-ニトロフェニル)-9H-フルオレン-2,7-ジイル)ビス(9-フェニル-9H-カルバゾール))を0.68g得た(収率:76%)。 In the reaction vessel, intermediate A (0.57 g, 1 mmol), 9-phenylcarbazole-2-boronic acid (0.63 g, 2.2 mmol), potassium carbonate (0.55 g, 4 mmol), 1,4-dioxane ( 11 mL), ion-exchanged water (2.8 mL) and Pd (PPh 3 ) 4 (57.8 mg, 0.05 mmol) were added, and after nitrogen substitution, the mixture was stirred at 90 ° C. for 3 hours. After cooling to room temperature, ion-exchanged water (8.4 mL) was added to the reaction mixture, filtration was performed, and the filtrate was washed with ion-exchanged water (11 mL). Washing was performed twice. 1,4-Dioxane (5.6 g) was added to the filter, and the mixture was stirred at 90 ° C. for 1 hour. After cooling to room temperature, filtration is performed, the filtrate is washed with 1,4-dioxane (5.6 g), and the target intermediate F (2,2'-(9,9-bis (4-nitrophenyl)) is used. ) -9H-Fluorene-2,7-diyl) bis (9-phenyl-9H-carbazole)) was obtained in an amount of 0.68 g (yield: 76%).
[実施例1-4-2]中間体Gの合成
Figure JPOXMLDOC01-appb-C000057
[Example 1-4-2] Synthesis of intermediate G
Figure JPOXMLDOC01-appb-C000057
 反応容器に、中間体F(3g、3.3mmol)、DMF(60mL)及び5%Pd/C(0.3g)を入れ、水素置換を行った後、室温で48時間攪拌した。窒素置換した後に、セライトろ過し、DMF(30mL)で洗浄した。ろ液を減圧留去し、濃縮液を酢酸エチル(20mL)に滴下し、懸濁液を室温で攪拌した。ろ過を行い、ろ物を乾燥し、目的とする中間体G(4,4'-(2,7-ビス(9-フェニル-9H-カルバゾール-2-イル)-9H-フルオレン-9,9-ジイル)ジアニリン)を2.10g得た(収率:77%)。 Intermediate F (3 g, 3.3 mmol), DMF (60 mL) and 5% Pd / C (0.3 g) were placed in a reaction vessel, hydrogen substituted, and then stirred at room temperature for 48 hours. After nitrogen substitution, it was filtered through Celite and washed with DMF (30 mL). The filtrate was evaporated under reduced pressure, the concentrate was added dropwise to ethyl acetate (20 mL), and the suspension was stirred at room temperature. Filter and dry the filter to obtain the desired intermediate G (4,4'-(2,7-bis (9-phenyl-9H-carbazole-2-yl) -9H-fluorene-9,9-). 2.10 g of diyl) dianiline) was obtained (yield: 77%).
[実施例1-4-3]フルオレン誘導体Dの合成
Figure JPOXMLDOC01-appb-C000058
[Example 1-4-3] Synthesis of fluorene derivative D
Figure JPOXMLDOC01-appb-C000058
 中間体Aのかわりに中間体G(0.9g、1.08mmol)を用い、1-ナフトイルクロリドのかわりにベンゾイルクロリド(274μL、2.38mmol)を用いた以外は、実施例1-1-3と同様の方法で目的とするフルオレン誘導体D(N,N'-((2,7-ビス(9-フェニル-9H-カルバゾール-2-イル)-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビスベンズアミド)を0.86g得た(収率:69%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.26-7.32(m, 6H), 7.40-7.42(m, 4H), 7.43-7.59(m, 12H), 7.68-7.77(m, 16H), 7.93-7.94(m, 4H), 8.04 (d, J=7.5Hz, 2H), 8.27 (d, J=7.5Hz, 2H), 8.32(d, J=8.0Hz, 2H), 10.26(brs, 2H).
Example 1-1-except that Intermediate G (0.9 g, 1.08 mmol) was used in place of Intermediate A and Benzoyl chloride (274 μL, 2.38 mmol) was used in place of 1-naphthoyl chloride. The target fluorene derivative D (N, N'-((2,7-bis (9-phenyl-9H-carbazole-2-yl) -9H-fluorene-9,9-diyl) bis) in the same manner as in 3. (4,1-phenylene)) bisbenzamide) was obtained in an amount of 0.86 g (yield: 69%). The measurement results of 1 H-NMR are shown below.
1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.26-7.32 (m, 6H), 7.40-7.42 (m, 4H), 7.43-7.59 (m, 12H), 7.68-7.77 (m, 16H) ), 7.93-7.94 (m, 4H), 8.04 (d, J = 7.5Hz, 2H), 8.27 (d, J = 7.5Hz, 2H), 8.32 (d, J = 8.0Hz, 2H), 10.26 (brs) , 2H).
[実施例1-5]フルオレン誘導体Eの合成
Figure JPOXMLDOC01-appb-C000059
[Example 1-5] Synthesis of fluorene derivative E
Figure JPOXMLDOC01-appb-C000059
 1-ナフトイルクロリドのかわりに2-テノイルクロリド(280μL、2.64mmol)を用いた以外は、実施例1-1-3と同様の方法で目的とするフルオレン誘導体E(N,N'-(2,7-ビス(4-(ジフェニルアミノ)フェニル-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビス(チオフェン-2-カルボキサミド))を1.02g得た(収率:80%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.02-7.07(m, 16H), 7.20(dd, J=4Hz, 4.5Hz, 2H), 7.23(d, J=9.0Hz, 4H), 7.30-7.33(m, 8H), 7.60(d, J=8.5Hz, 4H), 7.64(d, J=8.5Hz, 4H), 7.69(s, 2H), 7.72(d, J=8.0Hz, 2H), 7.83(d, J=5.0Hz, 2H), 7.97(d, J=3.5Hz, 2H), 8.01(d, J=8.5Hz, 2H), 10.21(brs, 2H).
The target fluorene derivative E (N, N'-) was used in the same manner as in Example 1-1-3, except that 2-tenoyl chloride (280 μL, 2.64 mmol) was used instead of 1-naphthoyl chloride. 1.02 g of (2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (thiophene-2-carboxamide)) was obtained ( Yield: 80%). The measurement results of 1 H-NMR are shown below.
1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.02-7.07 (m, 16H), 7.20 (dd, J = 4Hz, 4.5Hz, 2H), 7.23 (d, J = 9.0Hz, 4H) , 7.30-7.33 (m, 8H), 7.60 (d, J = 8.5Hz, 4H), 7.64 (d, J = 8.5Hz, 4H), 7.69 (s, 2H), 7.72 (d, J = 8.0Hz, 2H), 7.83 (d, J = 5.0Hz, 2H), 7.97 (d, J = 3.5Hz, 2H), 8.01 (d, J = 8.5Hz, 2H), 10.21 (brs, 2H).
[実施例1-6]フルオレン誘導体Fの合成
Figure JPOXMLDOC01-appb-C000060
[Example 1-6] Synthesis of fluorene derivative F
Figure JPOXMLDOC01-appb-C000060
 1-ナフトイルクロリドのかわりにベンゾ[b]チオフェン-2-カルボニルクロリド(517mg、2.64mmol)を用いた以外は、実施例1-1-3と同様の方法で目的とするフルオレン誘導体F(N,N'-(2,7-ビス(4-(ジフェニルアミノ)フェニル-9H-フルオレン-9,9-ジイル)ビス(4,1-フェニレン))ビス(ベンゾ[b]チオフェン-2-カルボキサミド))を1.14g得た(収率:83%)。1H-NMRの測定結果を以下に示す。
1H-NMR(500MHz, DMSO-d6) δ[ppm]: 7.03-7.07(m, 16H), 7.26-7.33(m, 12H), 7.44-7.50(m, 4H), 7.61(d, J=8.5Hz, 4H), 7.69-7.74(m, 8H), 7.99(d, J=7.5Hz, 2H), 8.03(dd, J=6.5Hz, 8.0Hz, 4H), 8.32(s, 2H), 10.51(brs, 2H).
The fluorene derivative F of interest was prepared in the same manner as in Example 1-1-3, except that benzo [b] thiophene-2-carbonyl chloride (517 mg, 2.64 mmol) was used instead of 1-naphthoyl chloride. N, N'-(2,7-bis (4- (diphenylamino) phenyl-9H-fluorene-9,9-diyl) bis (4,1-phenylene)) bis (benzo [b] thiophene-2-carboxamide) )) Was obtained (yield: 83%). The measurement results of 1 H-NMR are shown below.
1 H-NMR (500MHz, DMSO-d6) δ [ppm]: 7.03-7.07 (m, 16H), 7.26-7.33 (m, 12H), 7.44-7.50 (m, 4H), 7.61 (d, J = 8.5) Hz, 4H), 7.69-7.74 (m, 8H), 7.99 (d, J = 7.5Hz, 2H), 8.03 (dd, J = 6.5Hz, 8.0Hz, 4H), 8.32 (s, 2H), 10.51 ( brs, 2H).
[2]電荷輸送性ワニスの調製
[実施例2-1]電荷輸送性ワニスA1の調製
 フルオレン誘導体A(174mg)と国際公開第2017/217455号に記載された方法に従って合成した下記式で表されるアリールスルホン酸エステルA(0.189g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を孔径0.2μmのポリテトラフルオロエチレン(PTFE)製フィルターを用いてろ過し、電荷輸送性ワニスA1を得た。
Figure JPOXMLDOC01-appb-C000061
[2] Preparation of charge-transporting varnish [Example 2-1] Preparation of charge-transporting varnish A1 It is represented by the following formula synthesized with fluorene derivative A (174 mg) according to the method described in International Publication No. 2017/217455. Arylsulfonic acid ester A (0.189 g) was dissolved in a mixed solvent of triethylene glycol butyl methyl ether (2 g), butyl benzoate (4 g) and dimethyl phthalate (4 g) with stirring at room temperature. The obtained solution was filtered using a filter made of polytetrafluoroethylene (PTFE) having a pore size of 0.2 μm to obtain a charge-transporting varnish A1.
Figure JPOXMLDOC01-appb-C000061
[実施例2-2]電荷輸送性ワニスB1の調製
 フルオレン誘導体B(165mg)とアリールスルホン酸エステルA(0.198g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスB1を得た。
[Example 2-2] Preparation of charge-transporting varnish B1 Fluolene derivative B (165 mg) and aryl sulfonic acid ester A (0.198 g) were mixed with triethylene glycol butyl methyl ether (2 g) and butyl benzoate (4 g). And dimethyl phthalate (4 g) were dissolved in a mixed solvent at room temperature with stirring. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish B1.
[実施例2-3]電荷輸送性ワニスC1の調製
 フルオレン誘導体C(173mg)とアリールスルホン酸エステルA(0.190g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスC1を得た。
[Example 2-3] Preparation of charge-transporting varnish C1 Fluolene derivative C (173 mg) and aryl sulfonic acid ester A (0.190 g) were mixed with triethylene glycol butyl methyl ether (2 g) and butyl benzoate (4 g). And dimethyl phthalate (4 g) were dissolved in a mixed solvent at room temperature with stirring. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish C1.
[実施例2-4]電荷輸送性ワニスD1の調製
 フルオレン誘導体D(165mg)とアリールスルホン酸エステルA(0.198g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスD1を得た。
[Example 2-4] Preparation of charge-transporting varnish D1 Fluolene derivative D (165 mg) and aryl sulfonic acid ester A (0.198 g) were mixed with triethylene glycol butyl methyl ether (2 g) and butyl benzoate (4 g). And dimethyl phthalate (4 g) were dissolved in a mixed solvent at room temperature with stirring. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish D1.
[実施例2-5]電荷輸送性ワニスE1の調製
 フルオレン誘導体E(166mg)とアリールスルホン酸エステルA(0.197g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスE1を得た。
[Example 2-5] Preparation of charge-transporting varnish E1 Fluolene derivative E (166 mg) and aryl sulfonic acid ester A (0.197 g) were mixed with triethylene glycol butyl methyl ether (2 g) and butyl benzoate (4 g). And dimethyl phthalate (4 g) were dissolved in a mixed solvent at room temperature with stirring. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish E1.
[実施例2-6]電荷輸送性ワニスF1の調製
 フルオレン誘導体F(175mg)とアリールスルホン酸エステルA(0.188g)とを、トリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスF1を得た。
[Example 2-6] Preparation of charge-transporting varnish F1 Fluolene derivative F (175 mg) and aryl sulfonic acid ester A (0.188 g) were mixed with triethylene glycol butyl methyl ether (2 g) and butyl benzoate (4 g). And dimethyl phthalate (4 g) were dissolved in a mixed solvent at room temperature with stirring. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish F1.
[実施例2-7]電荷輸送性ワニスA2の調製
 フルオレン誘導体A(363mg)をトリエチレングリコールブチルメチルエーテル(2g)、安息香酸ブチル(4g)及びフタル酸ジメチル(4g)の混合溶媒に室温で攪拌して溶解させた。得られた溶液を、孔径0.2μmのPTFE製フィルターを用いてろ過し、電荷輸送性ワニスA2を得た。
[Example 2-7] Preparation of charge-transporting varnish A2 Fluorene derivative A (363 mg) is mixed with triethylene glycol butylmethyl ether (2 g), butyl benzoate (4 g) and dimethyl phthalate (4 g) at room temperature. It was stirred and dissolved. The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a charge-transporting varnish A2.
[実施例2-8~2-12]電荷輸送性ワニスB2、C2、E2及びF2の調製
 フルオレン誘導体Aを、それぞれフルオレン誘導体B、C、E及びFに変更した以外は、実施例2-7と同様の方法で電荷輸送性ワニスB2、C2、E2及びF2を得た。
[Examples 2-8 to 2-12] Preparation of charge-transporting varnishes B2, C2, E2 and F2 Examples 2-7 except that the fluorene derivative A was changed to the fluorene derivatives B, C, E and F, respectively. Charge-transporting varnishes B2, C2, E2 and F2 were obtained in the same manner as in the above.
[3]屈折率(n)及び消衰係数(k)の評価
[実施例3-1~3-5]
 電荷輸送性ワニスA1、B1、C1、E1及びF1を、それぞれスピンコーターを用いて石英基板に塗布した後、大気雰囲気下、120℃で1分間仮焼成し、次いで大気雰囲気下、200℃で15分間本焼成し、石英基板上に50nmの均一な薄膜を形成した。
 得られた膜付き石英基板を用いて、波長400~800nmにおける可視域平均屈折率n及び可視域平均消衰係数kの測定を行った。結果を表1に示す。
[3] Evaluation of Refractive Index (n) and Extinction Coefficient (k) [Examples 3-1 to 3-5]
Charge-transporting varnishes A1, B1, C1, E1 and F1 are each applied to a quartz substrate using a spin coater, and then calcined at 120 ° C. for 1 minute in an air atmosphere, and then 15 at 200 ° C. This firing was carried out for a minute to form a uniform thin film of 50 nm on a quartz substrate.
Using the obtained quartz substrate with a film, the visible region average refractive index n and the visible region average extinction coefficient k at a wavelength of 400 to 800 nm were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 表1に示したように、本発明の電荷輸送性薄膜は、屈折率が1.65以上と高い値であり、消衰係数が0.03以下と低い値であった。 As shown in Table 1, the charge-transporting thin film of the present invention had a high refractive index of 1.65 or more and a low extinction coefficient of 0.03 or less.
[4]ホールオンリー素子(HOD)の作製及び特性評価-1
 以下の実施例において、ITO基板としては、ITOが表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板であって、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去したものを使用した。
[4] Fabrication and characterization of hole-only elements (HOD) -1
In the following examples, the ITO substrate is a 25 mm × 25 mm × 0.7 t glass substrate in which ITO is patterned on the surface with a film thickness of 150 nm, and is an O 2 plasma cleaning device (150 W, 30 seconds) before use. ) Was used to remove impurities on the surface.
[正孔注入層溶液の調製]
 国際公開第2013/084664号記載の方法に従って合成した下記式(S1)で表されるアニリン誘導体0.137gと、国際公開第2006/025342号記載の方法に従って合成した式(S2)で表されるアリールスルホン酸0.271gとを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン6.7gに溶解させた。得られた溶液に、シクロヘキサノール10g及びプロピレングリコール3.3gを順次加えて攪拌し、正孔注入層溶液を調製した。
Figure JPOXMLDOC01-appb-C000063
[Preparation of hole injection layer solution]
It is represented by 0.137 g of an aniline derivative represented by the following formula (S1) synthesized according to the method described in WO2013 / 084664 and the formula (S2) synthesized according to the method described in WO 2006/025432. 0.271 g of aryl sulfonic acid was dissolved in 6.7 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. To the obtained solution, 10 g of cyclohexanol and 3.3 g of propylene glycol were sequentially added and stirred to prepare a hole injection layer solution.
Figure JPOXMLDOC01-appb-C000063
[実施例4-1]
 前記正孔注入層溶液を、スピンコーターを用いてITO基板上に塗布した後、大気雰囲気下、ホットプレート上で80℃で1分間仮焼成をし、次いで230℃で15分間本焼成をし、正孔注入層(膜厚30nm)を形成した。次に、電荷輸送性ワニスA2を、スピンコーターを用いて正孔注入層上に塗布した後、常温の真空乾燥により溶媒を除去し、大気雰囲気下、130℃で10分間焼成し、膜厚40nmの正孔輸送層を形成した。この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて80nmのアルミニウム薄膜を形成し、ホールオンリー素子(HOD)を作製した。
[Example 4-1]
The hole injection layer solution was applied onto an ITO substrate using a spin coater, then provisionally fired on a hot plate at 80 ° C. for 1 minute in an air atmosphere, and then main fired at 230 ° C. for 15 minutes. A hole injection layer (thickness 30 nm) was formed. Next, the charge-transporting varnish A2 was applied onto the hole injection layer using a spin coater, the solvent was removed by vacuum drying at room temperature, and the mixture was fired at 130 ° C. for 10 minutes in an air atmosphere to have a film thickness of 40 nm. Hole transport layer was formed. On this, an aluminum thin film of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) to prepare a hole-only element (HOD).
[実施例4-2~4-5]
 電荷輸送性ワニスA2のかわりに電荷輸送性ワニスB2、C2、E2又はF2に変更した以外は、実施例4-1と同様の方法でHODを作製した。
[Examples 4-2 to 4-5]
HOD was prepared in the same manner as in Example 4-1 except that the charge-transporting varnish A2 was replaced with the charge-transporting varnish B2, C2, E2 or F2.
 実施例4-1~4-5で作製した各HODについて、駆動電圧4Vにおける電流密度を測定した。結果を表2に示す。 For each HOD produced in Examples 4-1 to 4-5, the current density at a drive voltage of 4 V was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表2に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示した。 As shown in Table 2, the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting properties.
[5]単層素子(SLD)の作製
[実施例5-1]
 電荷輸送性ワニスA1を、スピンコーターを用いてITO基板上に塗布した後、大気雰囲気下、120℃で1分間仮焼成をし、次いで200℃で15分間本焼成をし、正孔注入層(膜厚50nm)を形成した。この上に、蒸着装置(真空度1.0×10-5Pa)を用いて0.2nm/秒にて膜厚80nmのアルミニウム薄膜を形成し、単層素子(SLD)を作製した。
[5] Fabrication of Single-Layer Element (SLD) [Example 5-1]
After applying the charge-transporting varnish A1 on the ITO substrate using a spin coater, it is tentatively fired at 120 ° C. for 1 minute in an air atmosphere, and then main fired at 200 ° C. for 15 minutes to form a hole injection layer ( A film thickness of 50 nm) was formed. On this, an aluminum thin film having a film thickness of 80 nm was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) to prepare a single-layer element (SLD).
[実施例5-2~5-6]
 電荷輸送性ワニスA1のかわりに電荷輸送性ワニスB1、C1、D1、E1又はF1を用いた以外は、実施例5-1と同様の方法でSLDを作製した。
[Examples 5-2 to 5-6]
An SLD was prepared in the same manner as in Example 5-1 except that the charge-transporting varnishes B1, C1, D1, E1 or F1 were used instead of the charge-transporting varnish A1.
 実施例5-1~5-6で作製した各SLDについて、駆動電圧4Vでの電流密度を測定した。結果を表3に示す。 For each SLD prepared in Examples 5-1 to 5-6, the current density at a drive voltage of 4 V was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 表3に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示した。 As shown in Table 3, the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting properties.
[6]HODの作製及びその評価-2
[実施例6-1]
 電荷輸送性ワニスA1を、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、120℃で1分間仮焼成をし、次いで200℃で15分間本焼成をし、ITO基板上に50nmの薄膜を形成した。その上に、蒸着装置(真空度2.0×10-5Pa)を用いてα-NPD及びアルミニウムの薄膜を順次積層し、HODを作製した。蒸着は、蒸着レート0.2nm/秒の条件で行った。α-NPD及びアルミニウムの薄膜の膜厚は、それぞれ30nm及び80nmとした。
[6] Preparation of HOD and its evaluation-2
[Example 6-1]
After applying the charge-transporting varnish A1 to the ITO substrate using a spin coater, it is tentatively fired at 120 ° C. for 1 minute in an air atmosphere, then main fired at 200 ° C. for 15 minutes, and then fired on the ITO substrate at 50 nm. A thin film was formed. On top of this, a thin film of α-NPD and aluminum was sequentially laminated using a vapor deposition apparatus (vacuum degree 2.0 × 10 -5 Pa) to prepare a HOD. The vapor deposition was carried out under the condition of a vapor deposition rate of 0.2 nm / sec. The film thicknesses of the α-NPD and aluminum thin films were 30 nm and 80 nm, respectively.
[実施例6-2~6-5]
 電荷輸送性ワニスA1のかわりに電荷輸送性ワニスB1、C1、E1又はF1を用いた以外は、実施例6-1と同様の方法でHODを作製した。
[Examples 6-2 to 6-5]
HOD was prepared in the same manner as in Example 6-1 except that the charge-transporting varnishes B1, C1, E1 or F1 were used instead of the charge-transporting varnish A1.
 実施例6-1~6-5で作製したHODについて、駆動電圧4Vでの電流密度を測定した。結果を表4に示す。 The current densities of the HODs produced in Examples 6-1 to 6-5 at a drive voltage of 4 V were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 表4に示したように、本発明の電荷輸送性ワニスから作製した薄膜は、良好な電荷輸送性を示した。 As shown in Table 4, the thin film prepared from the charge-transporting varnish of the present invention showed good charge-transporting property.
[7]有機EL素子の作製及び特性評価
[実施例7-1]
 電荷輸送性ワニスA1を、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、120℃で1分間仮焼成をし、次いで200℃で15分間本焼成をし、ITO基板上に50nmの薄膜を形成した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPDを0.2nm/秒にて30nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60及び発光層ドーパント材料Ir(ppy)3を共蒸着した。共蒸着は、Ir(ppy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウム及びアルミニウムの薄膜を順次積層して有機EL素子を作製した。この際、蒸着レートは、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nm及び80nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
[7] Fabrication of organic EL device and evaluation of characteristics [Example 7-1]
After applying the charge-transporting varnish A1 to the ITO substrate using a spin coater, it is tentatively fired at 120 ° C. for 1 minute in an air atmosphere, then main fired at 200 ° C. for 15 minutes, and then fired on the ITO substrate at 50 nm. A thin film was formed.
Next, α-NPD was formed on the ITO substrate on which the thin film was formed at 0.2 nm / sec using a vapor deposition apparatus (vacuum degree 1.0 × 10 -5 Pa) at 30 nm. Next, a 10 nm film was formed on the electronic block material HTEB-01 manufactured by Kanto Chemical Co., Inc. Next, the light emitting layer host material NS60 and the light emitting layer dopant material Ir (ppy) 3 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. were co-deposited. For co-evaporation, the vapor deposition rate was controlled so that the concentration of Ir (ppy) 3 was 6%, and 40 nm was laminated. Next, a thin film of Alq 3 , lithium fluoride, and aluminum was sequentially laminated to prepare an organic EL device. At this time, the vapor deposition rate was 0.2 nm / sec for Alq 3 and aluminum, and 0.02 nm / sec for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
In order to prevent deterioration of the characteristics due to the influence of oxygen, water, etc. in the air, the organic EL element was sealed with a sealing substrate and then the characteristics were evaluated. Sealing was performed by the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -76 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is an adhesive (Matsumura Oil Research Corp., Moresco Moisture Cut WB90US (P)). It was pasted together. At this time, a water trapping agent (HD-071010W-40 manufactured by Dynic Co., Ltd.) was housed in the sealing substrate together with the organic EL element. The bonded substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
[実施例7-2~7-5]
 電荷輸送性ワニスA1のかわりに電荷輸送性ワニスB1、C1、E1又はF1を用いた以外は、実施例7-1と同様の方法で有機EL素子を作製した。
[Examples 7-2 to 7-5]
An organic EL device was produced in the same manner as in Example 7-1 except that the charge-transporting varnishes B1, C1, E1 or F1 were used instead of the charge-transporting varnish A1.
 得られた有機EL素子について、5,000cd/m2で発光させた場合における駆動電圧、電流密度、電流効率、発光効率、外部発光量子収率(EQE)、及びLT90(初期輝度5,000cd/m2の10%減少に要する時間)を測定した。結果を表5に示す。 The drive voltage, current density, current efficiency, luminous efficiency, external emission quantum yield (EQE), and LT90 (initial brightness 5,000 cd /) when the obtained organic EL element is made to emit light at 5,000 cd / m 2. The time required for a 10% reduction in m 2 ) was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
 表5に示したように、本発明の有機EL素子はいずれも高い電流効率と高いEQEを示し、かつ良好な寿命特性を示した。 As shown in Table 5, all of the organic EL devices of the present invention showed high current efficiency and high EQE, and also showed good life characteristics.

Claims (12)

  1.  下記式(1)で表されるフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Z1及びZ2は、それぞれ独立に、下記式(2)~(7)のいずれかで表される基であり;
    Figure JPOXMLDOC01-appb-C000002
    (式中、破線は、結合手である。RA及びRBは、それぞれ独立に、水素原子又は炭素数1~20のアルキル基である。)
     Ar1及びAr2は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数4~20のビシクロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基又は炭素数1~20のアルコキシ基で置換されていてもよく;
     Ar3及びAr4は、それぞれ独立に、下記式(8)~(11)のいずれかで表される基である。
    Figure JPOXMLDOC01-appb-C000003
    (式中、破線は、結合手であり、
     R1は、水素原子、炭素数1~20のアルキル基、若しくはシアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のアリール基、若しくは炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のヘテロアリール基、又は下記式(12)~(14)のいずれかで表される基であり、
     R2~R52は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。
    Figure JPOXMLDOC01-appb-C000004
    (式中、破線は、結合手であり、
     DAは、各々のアリール基がそれぞれ独立に炭素数6~20のアリール基であるジアリールアミノ基であり、
     R53~R76は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。))]
    A fluorene derivative represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently;
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, a broken line is a bond .R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
    Ar 1 and Ar 2 are independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and are a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, and 1 carbon atom. Alkyl group of ~ 20, cycloalkyl group of 3 to 20 carbons, bicycloalkyl group of 4 to 20 carbons, alkoxy group of 2 to 20 carbons, alkynyl group of 2 to 20 carbons or alkynyl group of 1 to 20 carbons May be substituted with an alkoxy group;
    Ar 3 and Ar 4 are groups represented by any of the following formulas (8) to (11) independently.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, the broken line is the join hand,
    R 1 is substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms. A heteroaryl group having 6 to 20 carbon atoms, or a heteroaryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms, or the following. A group represented by any of the formulas (12) to (14).
    R 2 to R 52 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, the broken line is the join hand,
    D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group,
    R 53 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms. ))]
  2.  Ar1及びAr2が、それぞれ独立に、フェニル基、1-ナフチル基若しくは2-ナフチル基、又は下記式(T1-1)~(T11-4)、式(F1-1)~(F4-4)、式(N1-1)~(N10-7)若しくは式(M1-1)~(M4-3)で表される基である請求項1記載のフルオレン誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、破線は、結合手である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、破線は、結合手である。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、破線は、結合手である。)
    Figure JPOXMLDOC01-appb-C000008
    (式中、破線は、結合手である。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、破線は、結合手である。)
    Figure JPOXMLDOC01-appb-C000010
    (式中、破線は、結合手である。)
    Ar 1 and Ar 2 are independently phenyl group, 1-naphthyl group or 2-naphthyl group, or the following formulas (T1-1) to (T11-4), formulas (F1-1) to (F4-4). ), The fluorene derivative according to claim 1, which is a group represented by the formulas (N1-1) to (N10-7) or the formulas (M1-1) to (M4-3).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, the broken line is the joiner.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, the broken line is the joiner.)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, the broken line is the joiner.)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, the broken line is the joiner.)
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, the broken line is the joiner.)
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, the broken line is the joiner.)
  3.  Ar1及びAr2が、同一の基である請求項1又は2記載のフルオレン誘導体。 The fluorene derivative according to claim 1 or 2, wherein Ar 1 and Ar 2 are the same group.
  4.  Z1及びZ2が、式(2)で表される基である請求項1~3のいずれか1項記載のフルオレン誘導体。 The fluorene derivative according to any one of claims 1 to 3, wherein Z 1 and Z 2 are groups represented by the formula (2).
  5.  R1が、フェニル基である請求項1~4のいずれか1項記載のフルオレン誘導体。 The fluorene derivative according to any one of claims 1 to 4, wherein R 1 is a phenyl group.
  6.  R2~R76が、水素原子である請求項1~5のいずれか1項記載のフルオレン誘導体。 The fluorene derivative according to any one of claims 1 to 5, wherein R 2 to R 76 are hydrogen atoms.
  7.  請求項1~6のいずれか1項記載のフルオレン誘導体からなる電荷輸送性物質。 A charge-transporting substance composed of the fluorene derivative according to any one of claims 1 to 6.
  8.  請求項7記載の電荷輸送性物質及び有機溶媒を含む電荷輸送性ワニス。 A charge-transporting varnish containing the charge-transporting substance and an organic solvent according to claim 7.
  9.  更に、ドーパントを含む請求項8記載の電荷輸送性ワニス。 The charge transporting varnish according to claim 8, further comprising a dopant.
  10.  請求項8又は9記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。 A charge-transporting thin film obtained from the charge-transporting varnish according to claim 8 or 9.
  11.  請求項10記載の電荷輸送性薄膜を備える有機エレクトロルミネッセンス素子。 The organic electroluminescence device including the charge transporting thin film according to claim 10.
  12.  式(15)で表される化合物と式(16-1)で表される化合物及び式(16-2)で表される化合物とを反応させて式(17)で表される中間体を得る工程、
     式(17)で表される中間体を還元して式(18)で表される中間体を得る工程、及び
     式(18)で表される中間体と式(19-1)で表されるハロゲン化物及び式(19-2)で表されるハロゲン化物とを反応させる工程
    を含む下記式(1)で表されるフルオレン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000011
    [式中、Z1及びZ2は、それぞれ独立に、下記式(2)~(7)のいずれかで表される基であり;
    Figure JPOXMLDOC01-appb-C000012
    (式中、破線は、結合手である。RA及びRBは、それぞれ独立に、水素原子又は炭素数1~20のアルキル基である。)
     Ar1及びAr2は、それぞれ独立に、炭素数6~20のアリール基又は炭素数2~20のヘテロアリール基であり、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数4~20のビシクロアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基又は炭素数1~20のアルコキシ基で置換されていてもよく;
     Ar3及びAr4は、それぞれ独立に、下記式(8)~(11)のいずれかで表される基であり;
    Figure JPOXMLDOC01-appb-C000013
    (式中、破線は、結合手であり、
     R1は、水素原子、炭素数1~20のアルキル基、若しくはシアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のアリール基、若しくは炭素数1~20のアルキル基若しくは炭素数1~20のハロゲン化アルキル基で置換されていてもよい炭素数6~20のヘテロアリール基、又は下記式(12)~(14)のいずれかで表される基であり、
     R2~R52は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。
    Figure JPOXMLDOC01-appb-C000014
    (式中、破線は、結合手であり、
     DAは、各々のアリール基がそれぞれ独立に炭素数6~20のアリール基であるジアリールアミノ基であり、
     R53~R76は、それぞれ独立に、水素原子、シアノ基、ニトロ基、ハロゲン原子、炭素数1~20のアルキル基又は炭素数1~20のハロゲン化アルキル基である。))
     Xは、ハロゲン原子又は擬ハロゲン基である。]
    The compound represented by the formula (15) is reacted with the compound represented by the formula (16-1) and the compound represented by the formula (16-2) to obtain an intermediate represented by the formula (17). Process,
    The step of reducing the intermediate represented by the formula (17) to obtain the intermediate represented by the formula (18), and the intermediate represented by the formula (18) and the intermediate represented by the formula (19-1). A method for producing a fluorene derivative represented by the following formula (1), which comprises a step of reacting a halide with a halide represented by the formula (19-2).
    Figure JPOXMLDOC01-appb-C000011
    [In the formula, Z 1 and Z 2 are groups represented by any of the following formulas (2) to (7) independently;
    Figure JPOXMLDOC01-appb-C000012
    (Wherein, a broken line is a bond .R A and R B are each independently a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.)
    Ar 1 and Ar 2 are independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, and are a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, and 1 carbon atom. Alkyl group of ~ 20, cycloalkyl group of 3 to 20 carbons, bicycloalkyl group of 4 to 20 carbons, alkoxy group of 2 to 20 carbons, alkynyl group of 2 to 20 carbons or alkynyl group of 1 to 20 carbons May be substituted with an alkoxy group;
    Ar 3 and Ar 4 are independently represented by any of the following formulas (8) to (11);
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, the broken line is the join hand,
    R 1 is substituted with a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a cyano group, a nitro group, a halogen atom, an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms. A heteroaryl group having 6 to 20 carbon atoms, or a heteroaryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkyl halide group having 1 to 20 carbon atoms, or the following. A group represented by any of the formulas (12) to (14).
    R 2 to R 52 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms.
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, the broken line is the join hand,
    D A is a diarylamino group each aryl group is independently C 6 -C 20 -aryl group,
    R 53 to R 76 are independently hydrogen atoms, cyano groups, nitro groups, halogen atoms, alkyl groups having 1 to 20 carbon atoms, or alkyl halide groups having 1 to 20 carbon atoms. )))
    X is a halogen atom or a pseudohalogen group. ]
PCT/JP2020/013505 2019-03-29 2020-03-26 Fluorene derivative and use thereof WO2020203594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021511886A JPWO2020203594A1 (en) 2019-03-29 2020-03-26
CN202080025418.1A CN113631536A (en) 2019-03-29 2020-03-26 Fluorene derivative and use thereof
KR1020217032421A KR20210144750A (en) 2019-03-29 2020-03-26 Fluorene derivatives and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066821 2019-03-29
JP2019066821 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203594A1 true WO2020203594A1 (en) 2020-10-08

Family

ID=72667837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013505 WO2020203594A1 (en) 2019-03-29 2020-03-26 Fluorene derivative and use thereof

Country Status (4)

Country Link
JP (1) JPWO2020203594A1 (en)
KR (1) KR20210144750A (en)
CN (1) CN113631536A (en)
WO (1) WO2020203594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703718A (en) * 2021-08-09 2023-02-17 华为技术有限公司 Diamine monomer compound, preparation method thereof, resin, flexible film and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204079A1 (en) * 2015-06-15 2016-12-22 日産化学工業株式会社 Charge-transporting varnish and organic electroluminescent element
WO2017122649A1 (en) * 2016-01-14 2017-07-20 日産化学工業株式会社 Fluorine atom-containing compound and use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021567A1 (en) 2004-05-03 2005-12-08 Covion Organic Semiconductors Gmbh Electronic devices containing organic semiconductors
EP2759574B1 (en) 2011-09-21 2019-08-21 Nissan Chemical Corporation Charge-transporting varnish
KR102239026B1 (en) * 2013-04-29 2021-04-12 에스에프씨 주식회사 Aromatic amine derivative and organic electroluminescent device comprising same
KR102257209B1 (en) * 2013-06-21 2021-05-27 닛산 가가쿠 가부시키가이샤 Aniline derivative, charge-transporting varnish and organic electroluminescent device
US20160329383A1 (en) 2013-12-31 2016-11-10 Kunshan New Flat Panel Display Technology Center Co., Ltd An organic light-emitting display device and a top emitting oled device for improving viewing angle characteristics
CN106132921B (en) * 2014-03-28 2018-08-03 日产化学工业株式会社 Fluorene derivative and its utilization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204079A1 (en) * 2015-06-15 2016-12-22 日産化学工業株式会社 Charge-transporting varnish and organic electroluminescent element
WO2017122649A1 (en) * 2016-01-14 2017-07-20 日産化学工業株式会社 Fluorine atom-containing compound and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703718A (en) * 2021-08-09 2023-02-17 华为技术有限公司 Diamine monomer compound, preparation method thereof, resin, flexible film and electronic device

Also Published As

Publication number Publication date
JPWO2020203594A1 (en) 2020-10-08
KR20210144750A (en) 2021-11-30
CN113631536A (en) 2021-11-09
TW202104169A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP7310609B2 (en) charge transport varnish
EP3118191A1 (en) Aniline derivative and use thereof
JP6760455B2 (en) Aniline derivative and its manufacturing method
JP2023126469A (en) Charge transporting varnish
EP3000804B1 (en) Triphenylamine derivative and use therefor
EP3101002A1 (en) Aryl sulfonic acid compound and use of same
EP3118190A1 (en) Aniline derivative and use thereof
JP6402724B2 (en) Arylsulfonic acid compounds and uses thereof
EP3012245B1 (en) Aniline derivative, charge-transporting varnish and organic electroluminescent device
WO2020203594A1 (en) Fluorene derivative and use thereof
WO2020241730A1 (en) Arylamine compound and use thereof
JP7290149B2 (en) Aniline derivative and its use
JP7491302B2 (en) Arylamine compounds and their uses
JP7298611B2 (en) Composition for forming charge-transporting thin film
JP6488616B2 (en) Charge transporting thin film forming varnish, charge transporting thin film and organic electroluminescent device
TWI855047B (en) Fluorine derivatives and their use
EP3118187A1 (en) Aniline derivative and use thereof
JP2015092561A (en) Electric charge transportation type varnish, electric charge transportation type thin film and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032421

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20782200

Country of ref document: EP

Kind code of ref document: A1