WO2020262291A1 - 積層造形方法、積層造形装置及びコントローラ - Google Patents

積層造形方法、積層造形装置及びコントローラ Download PDF

Info

Publication number
WO2020262291A1
WO2020262291A1 PCT/JP2020/024378 JP2020024378W WO2020262291A1 WO 2020262291 A1 WO2020262291 A1 WO 2020262291A1 JP 2020024378 W JP2020024378 W JP 2020024378W WO 2020262291 A1 WO2020262291 A1 WO 2020262291A1
Authority
WO
WIPO (PCT)
Prior art keywords
bead
model
laminated
layer
parallelogram
Prior art date
Application number
PCT/JP2020/024378
Other languages
English (en)
French (fr)
Inventor
藤井 達也
正俊 飛田
碩 黄
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US17/622,612 priority Critical patent/US20220355407A1/en
Priority to CN202080045113.7A priority patent/CN114007794B/zh
Priority to EP20833390.6A priority patent/EP3974091A4/en
Publication of WO2020262291A1 publication Critical patent/WO2020262291A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a laminated modeling method, a laminated modeling device, and a controller for producing a modeled object by laminating beads.
  • Patent Documents 1 and 2 A technique for laminating beads formed by a welding technique such as arc welding to produce a welded structure or a laminated model is known (for example, Patent Documents 1 and 2).
  • Patent Document 1 describes a technique for appropriately setting the conditions of a welding path by analyzing and modeling the weld cross-sectional shape and performing elasto-plastic analysis or the like when performing groove welding.
  • Patent Document 2 describes a technique for representing a bead to be laminated by an elliptical model and planning a trajectory for forming a bead in the laminated modeling. In this trajectory plan, a database of the relationship between specific parameters representing an elliptical model and modeling conditions is created in advance, and the modeling conditions of the target shape are determined by simulation based on this database.
  • the present invention provides a laminated modeling method, a laminated modeling device, and a controller that can create a bead formation trajectory plan for a laminated model without requiring complicated calculations and can obtain a laminated model easily and with high accuracy. With the goal.
  • the present invention has the following configuration.
  • (1) A laminated modeling method in which beads formed by melting and solidifying a filler metal are laminated on a base to produce a modeled object.
  • the process of forming the bead according to the bead model is repeated from the lower layer to the upper layer of the plurality of layers to prepare the modeled object.
  • the step of dividing into the bead model of the plurality of lines is At the position where the bead is formed in a portion of the layer that is not adjacent to the existing bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction in the layer are not parallel to each other.
  • Applying a trapezoidal bead model with a trapezoidal vertical cross section in the longitudinal direction At the position where the bead is formed adjacent to the already formed bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction are parallel to the side sides of other adjacent bead models.
  • a laminated molding method that applies a parallelogram bead model in which the vertical cross section in the longitudinal direction of the bead is a parallelogram.
  • the three-dimensional shape data of the modeled object is read, the stacking direction of the beads is determined according to the three-dimensional model shape of the three-dimensional shape data, and the three-dimensional model shape is divided into a plurality of layers along the stacking direction.
  • a controller that determines the trajectory plan of the torch by dividing each divided layer into a multi-line bead model according to the bead shape in the bead formation order.
  • a laminated modeling device that repeats the process of forming the bead according to the bead model from the lower layer to the upper layer of the plurality of layers to produce the modeled object.
  • the stacking direction of the beads is determined, the three-dimensional model shape is divided into a plurality of layers along the stacking direction, and each of the divided layers is divided into a multi-line bead model according to the bead shape in the order of forming the beads. Then, it is a controller that determines the trajectory plan of the torch.
  • the controller is divided into the multi-line bead model, At the position where the bead is formed in a portion of the layer that is not adjacent to the existing bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction in the layer are not parallel to each other.
  • a trajectory plan for bead formation of a laminated model can be created without requiring complicated calculations, and a laminated model can be obtained easily and with high accuracy.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus for manufacturing a laminated model that implements a laminated modeling method.
  • FIG. 2 is a perspective view showing a plurality of linear beads formed on the base plate.
  • FIG. 3 is a cross-sectional view showing a conventional bead model shown as a reference example.
  • FIG. 4 is a cross-sectional view showing a bead of the first layer formed on the base plate shown in FIG. 2 and a bead model fitted to each bead.
  • FIG. 5 is an explanatory diagram of a bead model in which a plurality of bead layers are laminated on the bead layer of the first layer.
  • FIG. 6 is a schematic explanatory view of the partial circular model.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus for manufacturing a laminated model that implements a laminated modeling method.
  • FIG. 2 is a perspective view showing a plurality of linear beads formed on the base plate.
  • FIG. 7 is a detailed explanatory view geometrically showing the model shown in FIG.
  • FIG. 8 is an explanatory view when a bead is formed starting from one end of the base plate.
  • FIG. 9 is an explanatory view in the case where beads are alternately formed on both sides of the bead centering on the bead inside the end of the base plate.
  • FIG. 1 is a schematic configuration diagram showing an example of an apparatus for manufacturing a laminated model that implements the laminated modeling method according to the present invention.
  • the laminated model manufacturing device 100 having this configuration is an device for forming a laminated model or a laminated model as a rough material for obtaining a model having a desired shape, and is a laminated model 11 and a laminated model. It includes a controller 15 that controls 11 in an integrated manner.
  • the laminated modeling device 11 has a welding robot 19 having a torch 17 on the tip shaft, and a filler material supply unit 23 that supplies a filler metal (welding wire) M to the torch 17.
  • the torch 17 holds the filler metal M in a state of protruding from the tip.
  • the welding robot 19 is an articulated robot, and the filler metal M is supported on the torch 17 so that it can be continuously supplied.
  • the position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.
  • the torch 17 has a shield nozzle (not shown), and shield gas is supplied from the shield nozzle.
  • the arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminated model to be manufactured. Weld.
  • the contact tip is arranged inside the shield nozzle, and the filler metal M to which the melting current is supplied is held by the contact tip.
  • the torch 17 generates an arc from the tip of the filler metal M in a shield gas atmosphere while holding the filler metal M.
  • the filler metal M is fed from the filler metal supply unit 23 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, when the filler M, which is continuously fed, is melted and solidified while moving the torch 17, a linear bead 25 which is a molten solid of the filler M is formed on the base plate 27.
  • the heat source for melting the filler metal M is not limited to the above-mentioned arc.
  • a heat source by another method such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted.
  • the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the laminated model can be further improved.
  • any commercially available welding wire can be used as the filler metal M.
  • it is defined by MAG welding and MIG welding solid wire for mild steel, high-strength steel and low-temperature steel (JIS Z 3312), and arc welding flux-welded wire for mild steel, high-strength steel and low-temperature steel (JIS Z 3313). Wire can be used.
  • the controller 15 has a CAD / CAM unit 31, an orbit calculation unit 33, a storage unit 35, and a control unit 37 to which these are connected.
  • the controller 15 is composed of a computer device including a CPU, a memory, a storage, and the like. Further, the controller 15 includes a display unit 39 such as a liquid crystal display that displays information representing the shape of the laminated model, the movement locus of the torch 17 during the laminated model, and track plan information indicating welding conditions and the like. It further includes an input unit 40 such as a keyboard and a mouse that accepts various input information.
  • the CAD / CAM unit 31 reads the three-dimensional shape data (CAD data, etc.) of the laminated model to be manufactured, divides the three-dimensional model corresponding to the three-dimensional shape data into a plurality of layers, and obtains the shape of each layer. Generate the layer shape data to be represented.
  • the trajectory calculation unit 33 divides the generated layer shape data into bead models of a plurality of lines, which will be described later, and determines the movement trajectory of the torch 17.
  • the storage unit 35 stores various data including information such as the generated layer shape data and the movement locus of the torch 17, and a driving program.
  • the control unit 37 drives the welding robot 19 by executing a drive program created according to the layer shape data stored in the storage unit 35 and the movement locus of the torch 17. That is, the welding robot 19 moves the torch 17 along the trajectory trajectory created by the trajectory calculation unit 33 in response to a command from the controller 15.
  • the laminated model manufacturing apparatus 100 moves the torch 17 by driving the welding robot 19 along the movement locus of the torch 17 generated from the layer shape data. Along with the movement of the torch 17, the filler metal M is melted, and the melted filler metal M is supplied onto the base plate 27. As a result, as shown in FIG. 2, a bead layer 29 in which a plurality of linear beads 25A, 25B, 25C, and 25D are coagulated and arranged is formed on the base plate 27.
  • FIG. 2 shows the bead layer 29 of the first layer. By laminating the same bead layer a plurality of times on the bead layer 29, a laminated model W having a multilayer structure as shown in FIG. 1 is formed. Will be done.
  • the base plate 27 is made of a metal plate such as a steel plate, but is not limited to a plate shape, and may be a base having another shape such as a block body or a rod shape.
  • the above-mentioned laminated model W is formed based on a laminating plan showing a procedure for laminating and forming a plurality of beads 25.
  • the controller 15 shown in FIG. 1 generates a drive program based on the stacking plan, and the control unit 37 executes the generated drive program.
  • the control unit 37 drives each part such as the torch 17 of the laminated modeling device 11 according to the drive program to form a bead.
  • the laminated model W having a desired shape is formed.
  • the drive program may input the required information into another computer device different from the controller 15 and generate it in the other computer device. In that case, the generated drive program is input to the storage unit 35 of the controller 15 via an appropriate communication means such as LAN.
  • the above-mentioned stacking plan includes a process of converting the shape of the laminated model W into an aggregate of models (bead models) representing the bead shape.
  • the bead model when the torch 17 is moved along the bead model to form a bead, the position information (information on the torch movement locus) at which the laminated model W is finally obtained, and the size and length of each bead are obtained.
  • Has information such as cross-sectional shape.
  • the controller 15 or another computer device that functions as the controller 15 displays the display unit 39 with a three-dimensional model according to the three-dimensional shape data of the laminated model W, the stacking direction of the beads, the divided layer, and the like. It is preferable to display information on the trajectory plan such as a multi-line bead model. By displaying the stacking plan on the display unit 9 in an easy-to-understand manner, it is possible to efficiently support the operator in determining the stacking plan.
  • FIG. 3 is a cross-sectional view showing a conventional bead model shown as a reference example.
  • a shape such as an elliptical shape or a substantially crescent shape with a vertical cross section in the longitudinal direction of the bead has been widely used.
  • the shape of the bead at the radial position P 0 of the way to the circumference of the upper circle 41 from the center O, of the base plate 27 the upper surface of the substantially crescent shaped cut at (linear) of the cross-sectional shape It is approximated to the bead model BM0. That is, the shape of the bead is represented by using the bead model BM0 represented by the radius r, the bead height h, the bead width W 0 , and the cross-sectional area S 0 .
  • the lamination plan is a plan for continuously forming beads under certain welding conditions from the viewpoint of construction and quality. Therefore, it is desired that the bead cross-sectional shape (cross-sectional area S 0 ) be constant.
  • the bead model BM0 substantially crescent surface arcuate, when obtaining the cross-sectional area S 1 of the bead model BM1 corresponding to other adjacent beads, in order to arcuate portion of the bead model BM0 and the bead model BM1 overlap (Because the pitch Pt ⁇ bead width W 0 ), the calculation for obtaining the cross-sectional area S 1 becomes complicated.
  • the calculation for obtaining the same manner sectional area S 2 also bead model BM2 adjacent to the bead model BM1 becomes complicated. This also applies to the elliptical bead model.
  • the shape of the bead model is changed from the conventional crescent shape or ellipse to a trapezoid and a parallelogram that are closer to the cross-sectional shape of the actual bead.
  • a bead model with a trapezoidal cross section trapezoidal bead model
  • a bead model with a parallelogram at the same height parallelogram bead model
  • This laminated molding method basically has the following steps. (1) A step of reading three-dimensional shape data of a laminated model. (2) A step of determining the stacking direction of beads according to the three-dimensional model shape of the three-dimensional shape data. (3) A step of dividing the three-dimensional model shape into a plurality of layers along the stacking direction. (4) A step of dividing each divided layer into a multi-line bead model according to the bead shape in the order of bead formation. (5) A step of repeating a process of forming a bead according to a bead model from a lower layer to an upper layer of a plurality of divided layers to produce a laminated model.
  • step (1) to (3) are carried out by the controller 15 (FIG. 1) as described above, and the step (5) is carried out by driving the welding robot 19 according to the drive program.
  • step (4) will be described in detail.
  • FIG. 4 is a cross-sectional view showing the first layer beads 25A, 25B, 25C, 25D formed on the base plate 27 shown in FIG. 2 and the bead model applied to each bead.
  • four beads are shown for the sake of simplicity, but the number of beads, the bead height h, and the like are arbitrarily set depending on the shape of the laminated model, the welding conditions, and the like.
  • the beads 25A, 25B, 25C and 25D shown in FIG. 4 are formed in this order.
  • the actual cross-sectional shapes of the beads 25A, 25B, 25C, and 25D are not necessarily trapezoids or parallelograms, but at least they are more like trapezoids or parallelograms than crescents or ellipses, and have high fitting properties with the bead model. Is obtained.
  • the trapezoid referred to here is a shape in which the upper base 43 and the lower base 45, which are opposite sides in the bead stacking direction DH, are parallel to each other, and the side sides 47, 49, which are opposite sides in the bead arrangement direction DV, are not parallel to each other. ..
  • the parallelogram means that the upper side 51 and the lower side 53, which are the opposite sides of the bead stacking direction DH, are parallel to each other, and the side sides 55, 57, which are the opposite sides of the bead arrangement direction DV.
  • the shape is parallel to the side 49 of another bead model (trapezoidal bead model BMa) adjacent to this parallelogram. It is assumed that the height h of the trapezoid and the parallelogram described above are equal.
  • the bead 25A shown in FIG. 4 is the bead to be formed first, and its cross-sectional shape tends to be wider on the lower side (base plate 21 side) than on the upper side. Therefore, the trapezoidal bead model BMa is applied to the bead 25A.
  • the bead 25B formed adjacent to the bead 25A is joined by melting a part on one side surface of the bead 25A, and is formed close to the bead 25A.
  • one side 55 of the bead 25B is joined to the side 49 of the adjacent bead 25A, and the other side 57 is substantially parallel to the one side 55 accordingly. Therefore, the parallelogram bead model BMb is applied to the bead 25B.
  • the parallelogram bead models BMc and BMd are applied to the bead 25C formed adjacent to the bead 25B and the bead 25D formed adjacent to the bead 25C, respectively.
  • the trapezoidal bead model is applied to the bead of the first pass in the movement locus of the torch, and the parallelogram bead model is applied to the bead of the second and subsequent passes.
  • Each bead model is shaped to fit the width and height of the layers it forms. Further, since each bead in the layer is laminated at a common height h, it is preferable to finely adjust the target forming positions Pb, Pc, and Pd of each bead.
  • the adjustment distance Le the distance to the target formation position Pb of the corresponding bead.
  • the distance to Pc is defined as the adjustment distance Le.
  • the distance between the end Pr on the parallelogram bead model BMc side of the base of the parallelogram bead model BMc and the target formation position Pd of the bead is defined as the adjustment distance Le.
  • adjustment distances Le are adjusted so that the height h of each bead to be formed is constant. At this time, other welding conditions (welding current, welding voltage, shield gas flow rate, etc.) are considered to be constant.
  • Each adjustment distance Le may be constant or may be set to a different distance.
  • FIG. 5 is an explanatory diagram of a bead model in which a plurality of bead layers are laminated on the bead layer of the first layer.
  • parallelogram bead models BMb, BMc, and BMd are sequentially arranged adjacent to each other at the position of the bead layer of the first layer, starting from the trapezoidal bead model BMa.
  • layers of the trapezoidal bead model BMa and the parallelogram bead models BMb, BMc, and BMd are arranged in a multi-stage manner on the model layer.
  • the pitches Pt 1 , Pt 2 , and Pt 3 are all finely adjusted by the adjustment distance Le shown in FIG. 4 so that the bead heights h, h1, and h2 of each layer are constant.
  • the bead widths W 0 , W 1 , W 2 , and W 3 correspond to each other.
  • the bead model aggregate composed of a plurality of bead models has a medium body width WA and a medium body height HA set to a size that includes the size of the laminated model to be formed.
  • the three-dimensional model according to the three-dimensional shape data is divided into a plurality of layers, each divided layer is divided into a trapezoidal bead model and a parallelogram bead model, and each bead model is divided into bead formation orders. Arrange according to. Then, the process of forming the bead along the arranged bead model is repeated from the lower layer to the upper layer of the divided plurality of layers to form the laminated model.
  • the procedure for forming beads according to the arranged bead model is performed by executing the drive program described above. As a result, the desired laminated model can be formed accurately and efficiently.
  • the bead model as shown in FIG. 5 is displayed on the display unit, and various feature points such as the edge, top, bottom, top, and hypotenuse of the model, and the pitch, bead height, bead width, and medium body width are displayed.
  • Various parameters such as medium height can be fine-tuned.
  • the feature points can be moved on the screen of the display unit 39, parameter values, etc. can be input, and the position and shape of the model can be easily finely adjusted. ..
  • the knowledge gained by the operator's experience can be easily spread to the mechanically generated model, and higher quality and more productive laminated modeling can be performed.
  • each bead model is a simple shape without a curved portion, it is possible to easily extract the bead boundary and evaluate the bead height and bead width. Therefore, the path of bead formation and the number of layers can be easily and accurately estimated from the shape information of the laminated model such as CAD data, and the lamination plan is not complicated.
  • the design can be easily changed because it can be easily replanned even if various conditions such as the end position of the laminated model, the repeated welding conditions, and the pitch of the target shape position of the bead are changed.
  • a process of setting welding conditions that can realize the above laminating plan is also required.
  • a database of modeling result information that combines trapezoidal bead model and parallelogram bead model with predetermined width and height and each welding condition is created, and the correspondence between the model condition and the welding condition is simplified. To be able to refer to.
  • the welding conditions suitable for the bead model can be determined using the database, and more appropriate beads can be formed.
  • the bead width of the bead model of the portion corresponding to the outer edge and the surplus portion of the three-dimensional model is set to the surplus thickness amount (bead) of the surplus portion. It may be changed according to the surplus width in the cross section orthogonal to the longitudinal direction).
  • the width (bead width) of the bead model close to the position of the surplus portion, that is, the bead model at the end is simply changed.
  • the outer shape can be easily changed without repeating complicated calculations.
  • the trapezoidal bead model and the parallelogram bead model described in the first laminated modeling method are models that can easily predict the shape after modeling. However, if it is desired to search for the molding conditions more accurately, the amount of overlap with the adjacent beads may be evaluated, and the bead model obtained by the first laminated molding method may be corrected.
  • a substantially crescent-shaped bead model (partially circular bead model) is used, and by considering the amount of overlap with the adjacent bead, a bead model capable of laminating design with high accuracy is realized.
  • FIG. 6 is a schematic explanatory view of the partial circular model
  • FIG. 7 is a detailed explanatory view geometrically showing the model shown in FIG.
  • the partial circular bead models BMP 0 , BMP 1 , BMP 2 , and BMP 3 having a circumference (arc) of radius r are used.
  • overlapping portions are generated between the arcs of the adjacent bead models.
  • the overlap of the beads is represented by the overlap amount (cross feed length) Cf.
  • the overlap amount Cf can be expressed by the relational expression between the above-mentioned bead width W 0 and the adjustment distance Le, as shown by the following equation (1).
  • Cf (1/2) W 0- Le ... (1)
  • This overlap amount Cf is set to an appropriate value that is determined in advance and is unlikely to cause welding defects. That is, the adjustment distance Le determined by using the trapezoidal bead model and the parallelogram bead model described above is corrected according to the overlap amount Cf of the set partial circular bead model. As a result, the pitches Pt 1 , Pt 2 , and Pt 3 (see FIG. 4) of each bead can be set more appropriately.
  • partial circular bead model fitting of BMP 0 to trapezoidal bead model BMa the circumference of the partial circular bead model BMP 0 is, across the public feeding of the lower base 45 of the trapezoidal bead model BMa, and, trapezoidal bead This is done by selecting the radius r in contact with the upper bottom 43 of the model. Further, instead of the circumference of the partial circular bead model BMP 0 being in contact with the upper base 43 of the trapezoidal bead model, the radius r is selected so that the area of the partial circular bead model BMP 0 has a desired cross-sectional area S 0. You may.
  • a virtual reference circle 61 having a radius r that passes through both ends Ps and Pr of the lower base 45 of the trapezoidal bead model BMa and is in contact with the upper base 43 is defined.
  • the adjustment distance Le is corrected so that the overlap amount Cf becomes the value obtained in advance. May also be determined by determining the radius r sectional area S 1 is equal to the sectional area S 0 of the trapezoidal bead model BMa.
  • the pitch Pt 1 between the bead target forming positions Pa and Pb is changed according to the position of the virtual circle 63 determined in this way.
  • Parallelogram bead model BMc Similarly for BMd, as overlapping amount Cf of the bead model is a set value as described above, or, the adjustment distance Le corrected so that the cross-sectional area S 2, S 3 equals ,
  • the pitches Pt 2 and Pt 3 of the bead target formation positions Pc and Pd are changed.
  • the pitches Pt 1 , Pt 2 , and Pt 3 are evenly spaced.
  • the stacking plan is performed using the trapezoidal bead model and the parallelogram bead model, the approximate position of the bead formation is determined, and then the overlapping amount Cf of each partial circular model is determined by using the partial circular model.
  • the target formation position of the bead is corrected so as to obtain a desired value.
  • the laminated planning can be performed considering the overlapping part of the beads without complicating the arithmetic processing, and the actual bead of the bead model can be planned. The shape deviation from and can be reduced. Then, this method can also be used for verification of the validity of the adjustment distance Le set by the trapezoidal bead model and the parallelogram bead model in the first laminated modeling method.
  • the trapezoidal bead model is used as a starting point, and the parallelogram bead model is repeatedly arranged in one direction adjacent to the trapezoidal bead model, but the present invention is not limited to this.
  • a weld metal such as a molten metal is formed on the base plate 27. May hang down from the edge.
  • the bead formation order is changed so that the bead (parallelogram bead model BMb, BMc, BMd, BMme) is alternately formed on both sides of the starting bead (trapezoidal bead model BMa).
  • the end of the bead row shown by the dotted line is arranged at the end of the base plate 27, but when the bead is formed, the arc generated from the torch 17 approaches the existing bead side. Therefore, even when a bead is formed at the end of the base plate 27, it can be inferred that the dripping of the weld metal is suppressed.
  • the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the combination of the configurations of the embodiments with each other, the description of the specification, and the well-known technique. This is also the subject of the present invention and is included in the scope for which protection is sought.
  • a laminated modeling method in which beads formed by melting and solidifying a filler metal are laminated on a base to produce a modeled object.
  • the process of forming the bead according to the bead model is repeated from the lower layer to the upper layer of the plurality of layers to prepare the modeled object.
  • the step of dividing into the bead model of the plurality of lines is At the position where the bead is formed in a portion of the layer that is not adjacent to the existing bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction in the layer are not parallel to each other.
  • Applying a trapezoidal bead model with a trapezoidal vertical cross section in the longitudinal direction At the position where the bead is formed adjacent to the already formed bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction are parallel to the side sides of other adjacent bead models.
  • a laminated molding method that applies a parallelogram bead model in which the vertical cross section in the longitudinal direction of the bead is a parallelogram.
  • this laminated molding method the path of bead formation and the number of layers can be easily and accurately estimated from the shape of the laminated model, and the stacking plan is not complicated.
  • the design can be easily changed because it can be easily replanned even if various conditions such as the end position of the laminated model, the repeated welding conditions, and the pitch of the target shape position of the bead are changed.
  • the laminated molding method according to (1) which comprises a step of changing the welding conditions of the bead according to the height and width of the bead model in the vertical cross section. According to this laminated molding method, a more appropriate bead can be formed by determining the welding conditions according to the bead model with reference to the database.
  • a step of fitting a partially circular bead model having an arc at least in a part in the vertical cross section to the trapezoidal bead model and the parallelogram bead model is provided.
  • the laminated molding method according to (4), wherein the adjustment distance is corrected so that the overlap between the arcs of the adjacent partial circular bead models becomes a predetermined amount of overlap is provided.
  • the bead model can be determined in consideration of the amount of overlap between the beads, and a more accurate lamination plan can be realized.
  • a device for manufacturing a laminated model in which beads formed by melting and solidifying a filler metal with a torch are laminated on a base to produce a model.
  • the three-dimensional shape data of the modeled object is read, the stacking direction of the beads is determined according to the three-dimensional model shape of the three-dimensional shape data, and the three-dimensional model shape is divided into a plurality of layers along the stacking direction.
  • a controller that determines the trajectory plan of the torch by dividing each divided layer into a multi-line bead model according to the bead shape in the bead formation order.
  • a laminated modeling device that repeats the process of forming the bead according to the bead model from the lower layer to the upper layer of the plurality of layers to produce the modeled object.
  • the controller is divided into the multi-line bead model, At the position where the bead is formed in a portion of the layer that is not adjacent to the existing bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction in the layer are not parallel to each other.
  • Applying a trapezoidal bead model with a trapezoidal vertical cross section in the longitudinal direction At the position where the bead is formed adjacent to the already formed bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction are parallel to the side sides of other adjacent bead models.
  • the bead forming path and the number of layers can be easily and accurately estimated from the shape of the laminated model, and the stacking plan is not complicated.
  • the design can be easily changed because it can be easily replanned even if various conditions such as the end position of the laminated model, the repeated welding conditions, and the pitch of the target shape position of the bead are changed.
  • the three-dimensional shape data of the modeled object created by laminating the beads formed by melting and solidifying the filler metal with the torch on the base is read, and according to the three-dimensional model shape of the three-dimensional shape data.
  • the stacking direction of the beads is determined, the three-dimensional model shape is divided into a plurality of layers along the stacking direction, and each of the divided layers is divided into a multi-line bead model according to the bead shape in the order of forming the beads. Then, it is a controller that determines the trajectory plan of the torch.
  • the controller When the controller is divided into the multi-line bead model, At the position where the bead is formed in a portion of the layer that is not adjacent to the existing bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction in the layer are not parallel to each other.
  • Applying a trapezoidal bead model with a trapezoidal vertical cross section in the longitudinal direction At the position where the bead is formed adjacent to the already formed bead, the opposite sides in the bead stacking direction are parallel to each other, and the opposite sides in the bead arrangement direction are parallel to the side sides of other adjacent bead models.
  • the controller according to (7) further including a display unit for displaying the track plan information. According to this controller, by displaying the stacking plan on the display unit, the stacking plan can be visually understood by the operator, and the operator can support the generation and determination work of the stacking plan.
  • the controller according to (8) further including an input unit that receives input information for changing the track plan information. According to this controller, the trajectory plan can be arbitrarily changed according to the input information received by the input unit.
  • the track planning information includes feature points representing at least one of the shapes of the trapezoidal bead model and the parallelogram bead model.
  • the shapes of the trapezoidal bead model and the parallelogram bead model are changed according to the input information received by the input unit.
  • the controller according to (9). According to this controller, the shapes of various bead models can be freely changed, and higher quality and more productive laminated molding can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)

Abstract

ビードを積層して造形物を作製する際に、複数のビードモデルに分割する工程は、既存のビードと隣接しない部位にビードを形成する位置には、断面台形の台形ビードモデルを適用する。既に形成されたビードに隣接して形成される位置には、ビード積層方向の対辺が互いに平行で、且つビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である断面平行四辺形の平行四辺形ビードモデルを適用する。

Description

積層造形方法、積層造形装置及びコントローラ
 本発明は、ビードを積層して造形物を作製する積層造形方法、積層造形装置及びコントローラに関する。
 アーク溶接等の溶接技術によって形成されるビードを積層し、溶接構造物や積層造形物を作製する技術が知られている(例えば、特許文献1,2)。
 特許文献1には、開先溶接を行うに際して、溶接断面形状を解析モデル化して弾塑性解析等を行うことにより、溶接パスの条件を適切に設定する技術が記載されている。また、特許文献2には、積層するビードを楕円モデルで表して、積層造形のビード形成の軌道計画を行う技術が記載されている。この軌道計画では、楕円モデルを表す特定のパラメータと造形条件との関係のデータベースを予め作成しておき、このデータベースに基づくシミュレーションにより目標形状の造形条件を決定している。
日本国特開2010-201474号公報 日本国特開2018-27558号公報
 しかし、上記のような溶接パスの設定や積層造形の軌道計画において、ビード形状を円や楕円で近似して計算すると、例えば、曲面同士の交点の位置抽出など、幾何学的な計算が複雑となる。また、溶接条件から計算される接合断面を表現するには、適切な曲率等を設定する必要があり、ビード形成の軌道計画が煩雑となる。
 そこで本発明は、積層造形物のビード形成の軌道計画を、煩雑な演算を要することなく作成でき、簡単且つ高精度に積層造形物が得られる積層造形方法、積層造形装置及びコントローラを提供することを目的とする。
 本発明は下記の構成からなる。
(1) 溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形方法であって、
 前記造形物の3次元形状データを読み込む工程と、
 前記3次元形状データの立体モデル形状に応じて、前記ビードの積層方向を決定する工程と、
 前記立体モデル形状を前記積層方向に沿って複数の層に分割する工程と、
 分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割する工程と、
 前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する工程と、を有し、
 前記複数ラインのビードモデルに分割する工程は、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する積層造形方法。
(2) トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形物の製造装置であって、
 前記造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラと、
 前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する積層造形装置と、
を備え、
 前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
積層造形物の製造装置。
(3) トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して作成される造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラであって、
 前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
コントローラ。
 本発明によれば、積層造形物のビード形成の軌道計画を、煩雑な演算を要することなく作成でき、簡単且つ高精度に積層造形物が得られる。
図1は、積層造形方法を実施する積層造形物の製造装置の一例を示す概略構成図である。 図2は、ベースプレート上に形成された複数の線状のビードを示す斜視図である。 図3は、参考例として示す従来のビードモデルを示す断面図である。 図4は、図2に示すベースプレート上に形成された初層のビードと、各ビードに当てはめたビードモデルを示す断面図である。 図5は、初層のビード層の上に複数のビード層を積層したビードモデルの説明図である。 図6は、部分円形モデルの模式的な説明図である。 図7は、図6に示すモデルを幾何学的に示す詳細説明図である。 図8は、ベースプレートの一端部を起点としてビードを形成する場合の説明図である。 図9は、ベースプレートの端部よりも内側のビードを中心に、ビード両脇へ交互にビードを形成する場合の説明図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
<積層造形物の製造装置>
 図1は本発明に係る積層造形方法を実施する積層造形物の製造装置の一例を示す概略構成図である。
 本構成の積層造形物の製造装置100は、積層造形物、又は所望形状の造形物を得るための粗形材としての積層造形物を形成する装置であり、積層造形装置11と、積層造形装置11を統括制御するコントローラ15と、を備える。
 積層造形装置11は、先端軸にトーチ17を有する溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Mを供給する溶加材供給部23とを有する。トーチ17は、溶加材Mを先端から突出した状態に保持する。
 溶接ロボット19は、多関節ロボットであり、トーチ17には溶加材Mが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。
 トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給される。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。
 例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。トーチ17は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。溶加材Mは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部23からトーチ17に送給される。そして、トーチ17を移動しつつ、連続送給される溶加材Mを溶融及び凝固させると、ベースプレート27上に溶加材Mの溶融凝固体である線状のビード25が形成される。
 なお、溶加材Mを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。電子ビームやレーザにより加熱する場合、加熱量をさらに細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物の更なる品質向上に寄与できる。
 溶加材Mは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。
 コントローラ15は、CAD/CAM部31と、軌道演算部33と、記憶部35と、これらが接続される制御部37と、を有する。このコントローラ15は、CPU、メモリ、ストレージ等を備えるコンピュータ装置により構成される。また、コントローラ15は、積層造形物の形状を表す情報、積層造形時におけるトーチ17の移動軌跡、及び溶接条件等を表す軌道計画の情報、等が表示される液晶ディスプレイ等の表示部39と、各種入力情報を受け付けるキーボード、マウス等の入力部40と、を更に備える。
 CAD/CAM部31は、作製しようとする積層造形物の3次元形状データ(CADデータ等)を読み込み、この3次元形状データに応じた立体モデルを複数の層に分割して、各層の形状を表す層形状データを生成する。軌道演算部33は、生成された層形状データから、後述する複数ラインのビードモデルに分割して、トーチ17の移動軌跡を決定する。記憶部35は、生成された層形状データやトーチ17の移動軌跡等の情報を含む各種のデータや駆動プログラムを記憶する。
 制御部37は、記憶部35に記憶された層形状データやトーチ17の移動軌跡に応じて作成される駆動プログラムを実行して、溶接ロボット19を駆動する。つまり、溶接ロボット19は、コントローラ15からの指令により、軌道演算部33で作成した軌道軌跡に沿ってトーチ17を移動させる。
 上記構成の積層造形物の製造装置100は、層形状データから生成されるトーチ17の移動軌跡に沿って、トーチ17を溶接ロボット19の駆動により移動させる。このトーチ17の移動と共に、溶加材Mを溶融させ、溶融した溶加材Mをベースプレート27上に供給する。これにより、図2に示すように、ベースプレート27上に複数の線状のビード25A,25B,25C,25Dが凝固して配列されたビード層29が形成される。図2は初層のビード層29を示しているが、このビード層29の上に、同様のビード層を複数回積層することで、図1に示すような多層構造の積層造形物Wが造形される。
 ベースプレート27は、鋼板等の金属板からなるが、板状に限らず、ブロック体や棒状等、他の形状のベースであってもよい。
<第1の積層造形方法>
 上記した積層造形物Wは、複数のビード25を積層して形成する手順を示す積層計画に基づいて形成される。具体的には、図1に示すコントローラ15により、積層計画に基づく駆動プログラムを生成し、生成した駆動プログラムを制御部37が実行する。制御部37は、駆動プログラムに従って積層造形装置11のトーチ17等の各部を駆動して、ビードを形成する。これにより、所望の形状の積層造形物Wが形成される。なお、駆動プログラムは、必要とされる情報をコントローラ15とは異なる他のコンピュータ装置に入力して、他のコンピュータ装置で生成してもよい。その場合、生成した駆動プログラムは、LAN等の適宜な通信手段を介してコントローラ15の記憶部35に入力される。
 上記した積層計画には、積層造形物Wの形状を、ビード形状を表すモデル(ビードモデル)の集合体に変換する処理が含まれる。ビードモデルは、そのビードモデルに沿ってトーチ17を移動させてビードを形成すると、最終的に積層造形物Wが得られる位置情報(トーチ移動軌跡の情報)と、各ビードの大きさ、長さ、断面形状等の情報を有する。
 積層計画を決定する際、コントローラ15、又はコントローラ15として機能する他のコンピュータ装置は、表示部39に、積層造形物Wの3次元形状データに応じた立体モデル、ビードの積層方向、分割層、複数ラインのビードモデル、等の軌道計画の情報を表示するのが好ましい。表示部9に積層計画が視覚的に分かりやすく表示されることで、操作者の積層計画の決定作業を効率よく支援できる。
 図3は参考例として示す従来のビードモデルを示す断面図である。
 積層造形物を形成するための従来のビードモデルとしては、ビード長手方向の垂直断面で楕円形状や略三日月形等の形状が広く用いられていた。図3に例示する場合では、ビードの形状を、円41を中心Oから上方の円周に向かう途中の半径位置Pで、ベースプレート27の上面(直線)で切断した略三日月形の断面形状のビードモデルBM0に近似させている。つまり、ビードの形状を、半径r、ビード高さh、ビード幅W、断面積Sで表されるビードモデルBM0を用いて表している。
 このビードモデルBM0では、溶接によって得られる実際のビード断面形状と必ずしも一致せず、その断面形状の差が設計誤差を増加させる要因となっていた。また、積層計画は、一定の溶接条件で連続してビード形成する計画であることが施工上、及び品質上の観点から好ましい。そのため、ビード断面形状(断面積S)を一定にすることが望まれる。しかし、表面が円弧状の略三日月形のビードモデルBM0では、他の隣接するビードに対応するビードモデルBM1の断面積Sを求める際、ビードモデルBM0とビードモデルBM1の円弧部分が重なるために(ピッチPt<ビード幅Wのため)、断面積Sを求める演算が煩雑となる。また、ビードモデルBM1に隣接するビードモデルBM2についても同様に断面積Sを求める演算が煩雑となる。このことは、楕円形状のビードモデルについても同様である。
 そこで、本積層造形方法においては、ビードモデルの形状を、従来の三日月形や楕円形から、実際のビードの断面形状により近い、台形と平行四辺形にする。また、断面形状が台形のビードモデル(台形ビードモデル)に、同じ高さで断面形状が平行四辺形のビードモデル(平行四辺形ビードモデル)を隣接させて配置することで、前述した重なり部分がなくなり、ビードモデルの断面積の演算を簡単にできる。
 本積層造形方法は、基本的に次の工程を有する。
(1)積層造形物の3次元形状データを読み込む工程。
(2)3次元形状データの立体モデル形状に応じて、ビードの積層方向を決定する工程。
(3)立体モデル形状を積層方向に沿って複数の層に分割する工程。
(4)分割された各層を、ビードの形成順に、ビード形状に応じた複数ラインのビードモデルに分割する工程。
(5)ビードモデルに沿ってビードを形成する処理を、分割された複数の層の下層から上層まで繰り返し、積層造形物を作製する工程。
 上記の(1)~(3)の工程は、前述したようにコントローラ15(図1)によって実施され、(5)の工程は、駆動プログラムに従って溶接ロボット19が駆動されることで実施される。以下、(4)の工程について詳細に説明する。
 図4は図2に示すベースプレート27上に形成された初層のビード25A,25B,25C,25Dと、各ビードに当てはめたビードモデルを示す断面図である。ここでは、説明を簡単にするために4つのビードを示しているが、ビード数やビード高さh等は、積層造形物の形状や溶接条件等によって任意に設定されるものである。
 図4に示すビード25A,25B,25C,25Dは、この順に形成されるものとする。実際のビード25A,25B,25C,25Dの各断面形状は、必ずしも台形や平行四辺形ではないが、少なくとも三日月形や楕円よりは台形又は平行四辺形に近い形状となり、ビードモデルとの高いフィッティング性が得られる。
 ここでいう台形とは、ビード積層方向DHの対辺となる上底43と下底45が互いに平行で、且つビード配列方向DVの対辺となる側辺47,49が互いに非平行となる形状である。また、平行四辺形とは、平行四辺形ビードモデルBMbを参照すると、ビード積層方向DHの対辺となる上辺51と下辺53が互いに平行で、且つビード配列方向DVの対辺である側辺55,57が、この平行四辺形に隣接する他のビードモデル(台形ビードモデルBMa)の側辺49と平行となる形状である。なお、上記した台形と平行四辺形の高さhは等しいものとする。
 図4に示すビード25Aは、最初に形成するビードであって、その断面形状は上側よりも下側(ベースプレート21側)が幅広となる傾向がある。そこで、ビード25Aには台形ビードモデルBMaを適用する。
 ビード25Aに隣接して形成するビード25Bは、ビード25Aの一方の側面に一部を溶融させて接合され、ビード25Aに寄り添って形成される。その断面形状は、ビード25Bの一方の側辺55が、これに隣接するビード25Aの側辺49と接合され、これに伴い他方の側辺57が、一方の側辺55と略平行となる。そこで、ビード25Bには平行四辺形ビードモデルBMbを適用する。同様に、ビード25Bに隣接して形成するビード25C、さらにビード25Cに隣接して形成するビード25Dには、それぞれ平行四辺形ビードモデルBMc,BMdを適用する。
 このように、トーチの移動軌跡における1パス目のビードには台形ビードモデルを適用し、2パス目以降のビードには、平行四辺形ビードモデルを適用する。各ビードモデルは、形成する層の幅と高さに合うように形状が決定される。また、層内の各ビードを共通する高さhで積層するため、各ビードの目標形成位置Pb,Pc,Pdを微調整することが好ましい。
 具体的には、台形ビードモデルBMaの底辺(下底45)と、台形ビードモデルBMaに隣接する平行四辺形ビードモデルBMbとの境界の端部Prから、その隣接する平行四辺形ビードモデルBMbに対応するビードの目標形成位置Pbまでの距離を調整距離Leとする。平行四辺形ビードモデルBMcについても同様に、先にビード形成する隣接した平行四辺形ビードモデルBMbの底辺(下辺53)の、平行四辺形ビードモデルBMc側の端部Prと、ビードの目標形成位置Pcまでの距離を調整距離Leとする。平行四辺形ビードモデルBMdについても同様に、平行四辺形ビードモデルBMcの底辺の、平行四辺形ビードモデルBMc側の端部Prと、ビードの目標形成位置Pdまでの距離を調整距離Leとする。
 これらの調整距離Leを、形成する各ビードの高さhが一定になるように調整する。このとき、他の溶接条件(溶接電流、溶接電圧、シールドガス流量等)は一定とみなす。各調整距離Leは、一定であってもよく、それぞれ異なる距離に設定されてもよい。この調整作業により、各ビードの目標形性位置同士間のピッチPt,Pt,Ptがそれぞれ求められる。
 図5は初層のビード層の上に複数のビード層を積層したビードモデルの説明図である。
 図5に示すように、初層のビード層の位置には、台形ビードモデルBMaを始点として平行四辺形ビードモデルBMb,BMc,BMdが順次に隣接して配置される。このモデル層の上に、同様に台形ビードモデルBMa,平行四辺形ビードモデルBMb,BMc,BMdの層が、多段状に配置される。
 ピッチPt,Pt,Ptは、各層のビード高さh、h1,h2が一定になるように、いずれも図4に示す調整距離Leにより微調整された長さとなっており、これに応じたビード幅W,W,W,Wとなっている。
 複数のビードモデルからなるビードモデル集合体は、形成する積層造形物のサイズが内包される大きさに設定された中実体幅WA,中実体高さHAを有する。これにより、ビードモデルに沿ってビードを積層すれば、必要十分なサイズ(中実体幅WA,中実体高さHA)の積層造形物が得られる。
 上記のようにして、3次元形状データに応じた立体モデルを複数の層に分割し、分割した各層を、台形ビードモデルと平行四辺形ビードモデルに分割して、各ビードモデルをビードの形成順に応じて配列する。そして、配列したビードモデルに沿ってビードを形成する処理を、分割された複数の層の下層から上層まで繰り返すことで、積層造形物を形成する。
 配列したビードモデルに沿ってビードを形成する処理の手順は、前述した駆動プログラムの実行によりなされる。これにより、所望の積層造形物を正確に、しかも効率よく形成できる。
 また、図5に示すようなビードモデルを表示部に表示して、モデルの端部、頂部、底辺、上辺、斜辺等の各種の特徴点、及びピッチ、ビード高さ、ビード幅、中実体幅、中実体高さ等の各種のパラメータを微調整することもできる。例えば、入力部40のマウス、キーボード等の操作により、表示部39の画面上で特徴点を移動したり、パラメータ値等を入力したりして、モデルの位置、形状の微調整が簡単に行える。その場合、例えば操作者が持つ経験による知見を、機械的に生成されたモデルに簡単に波及させることができ、より高品位でより生産性の高い積層造形が行える。
 本積層造形方法によれば、個々のビードモデルの断面形状が曲線部の存在しない単純な形状であるため、ビード境界の抽出やビード高さ、ビード幅の評価が簡単に行える。よって、CADデータ等の積層造形物の形状情報からビード形成のパスと層数を簡単かつ正確に見積もりでき、積層計画が煩雑とならない。また、積層造形物の端部位置や、繰り返しの溶接条件、ビードの目標形性位置のピッチ等、各種の条件を変更しても簡単に再計画できるため、設計変更が容易に行える。
 また、実際の造形においては、上記の積層計画が実現可能な溶接条件を設定する工程も必要となる。そのためには、所定の幅・高さを有する台形ビードモデル、平行四辺形ビードモデルと各溶接条件とを組み合わせた造形結果の情報をデータベース化しておき、モデル条件と溶接条件との対応関係を簡単に参照できるようにする。これにより、データベースを用いてビードモデルに適した溶接条件を決定でき、より適切なビードの形成が行える。
 さらに、3次元形状データに応じた立体モデルの外縁に余肉部を設ける場合、立体モデルの外縁及び余肉部に対応する部位のビードモデルのビード幅を、余肉部の余肉量(ビード長手方向に直交する断面における余肉幅)に応じて変更すればよい。本積層造形方法では、立体モデルに余肉部が設けられた場合でも、その余肉部の位置に近接するビードモデル、つまり、端部のビードモデルの幅(ビード幅)を変更するだけで、煩雑な演算を繰り返すことなく、簡単に外形状の変更が可能となる。
<第2の積層造形方法>
 次に、第2の積層造形方法を説明する。
 第1の積層造形方法で説明した台形ビードモデル、及び平行四辺形ビードモデルは、造形後の形状を簡易に予測できるモデルである。しかし、造形条件をさらに正確に探索したい場合には、隣接するビードとの重なり量を評価して、第1の積層造形方法により求めたビードモデルを補正すればよい。本積層造形方法では、略三日月形のビードモデル(部分円形ビードモデル)を用い、隣接ビードとの重なり量を考慮することで、高精度に積層設計できるビードモデルを実現する。
 図6は部分円形モデルの模式的な説明図、図7は図6に示すモデルを幾何学的に示す詳細説明図である。
 本積層造形方法では、図6に示すように、ビードを一方向に並設する場合に、半径rの円周(円弧)を有する部分円形ビードモデルBMP,BMP,BMP,BMPを用いる。この場合、隣接するビードモデルの円弧同士に重なり部が生じる。このビードの重なりを、図7に示すように、重なり量(クロスフィード長さ)Cfで表す。
 重なり量Cfは、一例として下記の(1)式で示すように、前述したビード幅Wと、調整距離Leとの関係式で表すことができる。
 Cf=(1/2)W-Le ・・・(1)
 この重なり量Cfを、予め求めた溶接欠陥の発生しにくい適切な値に設定する。つまり、設定した部分円形ビードモデルの重なり量Cfに応じて、前述した台形ビードモデル、及び平行四辺形ビードモデルを用いて決定した調整距離Leを補正する。これにより、各ビードのピッチPt,Pt,Pt(図4参照)をより適正に設定できる。
 具体的には、台形ビードモデルBMaへの部分円形ビードモデルBMPのフィッティングは、部分円形ビードモデルBMPの円周が、台形ビードモデルBMaの下底45の両端と公差し、且つ、台形ビードモデルの上底43に接する半径rを選定することで行う。また、部分円形ビードモデルBMPの円周が台形ビードモデルの上底43に接することに代えて、部分円形ビードモデルBMPの面積が、所望の断面積Sとなるように半径rを選定してもよい。
 ここでは、台形ビードモデルBMaの下底45の両端部Ps,Prを通り、且つ上底43に接する半径rの仮想基準円61を定義する。また、台形ビードモデルBMaに隣接する平行四辺形ビードモデルBMbの下辺53の、台形ビードモデルBMa側とは反対側の端部Prを通り、且つ上辺51に接する仮想円63を、仮想基準円61の少なくとも一部と重ねて(オーバーラップさせて)定義する。この仮想円63を求める際、重なり量Cfが上記した予め求めた値になるように、調整距離Leを補正する。また、断面積Sが台形ビードモデルBMaの断面積Sと等しくなる半径rに決定することで求めてもよい。
 こうして決定した仮想円63の位置に応じて、ビードの目標形成位置Pa,Pb間のピッチPtを変更する。平行四辺形ビードモデルBMc、BMdについても同様に、ビードモデルの重なり量Cfが上記した設定値になるように、又は、各断面積S,Sが等しくなるように調整距離Leを補正し、ビードの目標形成位置Pc,PdのピッチPt,Ptを変更する。
 ビードモデルの重なり量Cfが各部分円形ビードモデルBMP,BMP,BMP,BMPで一定であれば、ピッチPt,Pt,Ptは等間隔となる。
 この手法によれば、台形ビードモデルと平行四辺形ビードモデルを用いて積層計画を行い、ビード形成の概略位置を決定した後、部分円形モデルを用いて、それぞれの部分円形モデルの重なり量Cfが所望の値になるようにビードの目標形成位置が補正される。これにより、ビードの重なり部分が考慮された、より正確なビード形成位置を決定でき、積層計画の精度をさらに向上できる。また、最初から部分円形ビードモデルのみで積層造形の軌道計画を行う場合と比較して、演算処理を複雑化させることなく、ビードの重なり部分を考慮した積層計画が行え、ビードモデルの実際のビードとの形状ズレを低減できる。
 そして、この手法は、第1の積層造形方法における台形ビードモデルと平行四辺形ビードモデルにより設定された調整距離Leの、妥当性の検証に用いることもできる。
<第3の積層造形方法>
 上記した積層造形方法においては、台形ビードモデルを起点とし、台形ビードモデルに隣接して平行四辺形ビードモデルを一方向に沿って繰り返し配置する形態を示したが、これに限らない。
 例えば、図8に示すように、ベースプレート27の一端部を起点としてビードを形成する場合に、最初に形成するビード(台形ビードモデルBMa)において、溶融した溶加材等の溶接金属がベースプレート27の端部から垂れ落ちることがある。
 このような場合、ビード形成順序を変更することが好ましい。例えば、図9に示すように、ベースプレート27の端部よりも内側にビード形成の起点を設ける。そして、起点のビード(台形ビードモデルBMa)を中心に、その両脇へ交互にビード(平行四辺形ビードモデルBMb,BMc,BMd,BMe)を形成するビード形成順序にする。
 また、図9に示す場合では、点線で示すビード列の端部がベースプレート27の端部に配置されるが、ビード形成時には、トーチ17から生じるアークが既設のビード側に寄る。そのため、ベースプレート27の端部にビードを形成する場合でも、溶接金属の垂れ落ちが抑制されると推察できる。
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
 以上の通り、本明細書には次の事項が開示されている。
(1) 溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形方法であって、
 前記造形物の3次元形状データを読み込む工程と、
 前記3次元形状データの立体モデル形状に応じて、前記ビードの積層方向を決定する工程と、
 前記立体モデル形状を前記積層方向に沿って複数の層に分割する工程と、
 分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割する工程と、
 前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する工程と、を有し、
 前記複数ラインのビードモデルに分割する工程は、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する積層造形方法。
 この積層造形方法によれば、積層造形物の形状からビード形成のパスと層数を簡単かつ正確に見積もりでき、積層計画が煩雑とならない。また、積層造形物の端部位置や、繰り返しの溶接条件、ビードの目標形性位置のピッチ等、各種の条件を変更しても簡単に再計画できるため、設計変更が容易に行える。
(2) 複数種の溶接条件、ビード高さ、ビード幅の組み合わせによる造形結果が記憶されたデータベースを参照して、
 前記ビードモデルの前記垂直断面における高さと幅に応じて、前記ビードの溶接条件を変更する工程を有する(1)に記載の積層造形方法。
 この積層造形方法によれば、データベースを参照してビードモデルに応じた溶接条件を決定することで、より適切なビードの形成が行える。
(3) 前記立体モデル形状の外縁に余肉部を追加する工程と、
 追加された前記余肉部の位置に近接する前記ビードモデルに対して、前記垂直断面において、前記近接するビードモデルの幅を、前記余肉部の幅に応じて変更する工程と、を有する(1)又は(2)に記載の積層造形方法。
 この積層造形方法によれば、余肉部が設けられた場合でも、その余肉部に対応する端部のビードモデルを変更するだけで、簡単に外形状の変更が可能となる。
(4) 同じ層内に配置され互いに隣接する一対の前記ビードモデルの底辺同士の境界位置から、前記一対のビードモデルのうちビード形成順が後のビードモデルのビード目標形成位置までの調整距離を、前記層内の前記ビードの高さが一定になるように決定する(1)又は(2)に記載の積層造形方法。
 この積層造形方法によれば、調整距離を適切に調整することで、層内の各ビードの高さを一定に揃えることができる。
(5) 前記台形ビードモデルと前記平行四辺形ビードモデルに対して、前記垂直断面において少なくとも一部に円弧を有する部分円形ビードモデルをそれぞれ当てはめる工程を有し、
 前記工程では、隣り合う前記部分円形ビードモデルの前記円弧同士の重なりが、予め定めた重なり量になるように、前記調整距離を補正する(4)に記載の積層造形方法。
 この積層造形方法によれば、ビード同士の重なり量を考慮してビードモデルを決定でき、より高精度な積層計画が実現できる。
(6) トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形物の製造装置であって、
 前記造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラと、
 前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する積層造形装置と、
を備え、
 前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
積層造形物の製造装置。
 この積層造形物の製造装置によれば、積層造形物の形状からビード形成のパスと層数を簡単かつ正確に見積もりでき、積層計画が煩雑とならない。また、積層造形物の端部位置や、繰り返しの溶接条件、ビードの目標形性位置のピッチ等、各種の条件を変更しても簡単に再計画できるため、設計変更が容易に行える。
(7) トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して作成される造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラであって、
 前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
 前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
 前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
コントローラ。
 このコントローラによれば、台形ビードモデルと平行四辺形ビードモデルを用いることで、複雑な計算を要することなく、積層計画を決定できる。
(8) 前記軌道計画の情報を表示する表示部を更に備える(7)に記載のコントローラ。
 このコントローラによれば、積層計画を表示部に表示することで、操作者にとって積層計画が視覚的に分かりやすくなり、操作者による積層計画の生成及び決定作業を支援できる。
(9) 前記軌道計画の情報を変更する入力情報を受け付ける入力部を更に備える(8)に記載のコントローラ。
 このコントローラによれば、入力部で受け付けた入力情報に応じて軌道計画を任意に変更できる。
(10) 前記軌道計画の情報は、前記台形ビードモデル及び前記平行四辺形ビードモデルの少なくともいずれかの形状を表す特徴点を含み、
 前記入力部が受け付けた前記入力情報に応じて、前記台形ビードモデル及び前記平行四辺形ビードモデルの形状を変更する、
(9)に記載のコントローラ。
 このコントローラによれば、各種のビードモデルの形状を自在に変更でき、より高品位でより生産性の高い積層造形が行える。
 なお、本出願は、2019年6月26日出願の日本特許出願(特願2019-118745)に基づくものであり、その内容は本出願の中に参照として援用される。
 11 積層造形装置
 15 コントローラ
 17 トーチ
 19 溶接ロボット
 23 溶加材供給部
 25,25A,25B,25C,25D ビード
 27 ベースプレート
 29 ビード層
 31 CAD/CAM部
 33 軌道演算部
 35 記憶部
 37 制御部
 39 表示部
 40 入力部
 43 上底
 45 下底(底辺)
 47,49 側辺
 51 上辺
 53 下辺
 55,57 側辺
 61 仮想基準円
 63 仮想円
100 積層造形物の製造装置
 BMa 台形ビードモデル
 BMb,BMc,BMd,BMe 平行四辺形ビードモデル
 BMP,BMP,BMP,BMP 部分円形ビードモデル
 Cf 重なり量
 DH ビード積層方向
 DV ビード配列方向
 h ビード高さ
 Le 調整距離
 Pa,Pb,Pc,Pd 目標形成位置
 Pt,Pt,Pt,Pt ピッチ
 W 積層造形物
 W,W,W,W ビード幅

Claims (10)

  1.  溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形方法であって、
     前記造形物の3次元形状データを読み込む工程と、
     前記3次元形状データの立体モデル形状に応じて、前記ビードの積層方向を決定する工程と、
     前記立体モデル形状を前記積層方向に沿って複数の層に分割する工程と、
     分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割する工程と、
     前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する工程と、を有し、
     前記複数ラインのビードモデルに分割する工程は、
     前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
     前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する積層造形方法。
  2.  複数種の溶接条件、ビード高さ、ビード幅の組み合わせによる造形結果が記憶されたデータベースを参照して、
     前記ビードモデルの前記垂直断面における高さと幅に応じて、前記ビードの溶接条件を変更する工程を有する請求項1に記載の積層造形方法。
  3.  前記立体モデル形状の外縁に余肉部を追加する工程と、
     追加された前記余肉部の位置に近接する前記ビードモデルに対して、前記垂直断面において、前記近接するビードモデルの幅を、前記余肉部の幅に応じて変更する工程と、を有する請求項1又は2に記載の積層造形方法。
  4.  同じ層内に配置され互いに隣接する一対の前記ビードモデルの底辺同士の境界位置から、前記一対のビードモデルのうちビード形成順が後のビードモデルのビード目標形成位置までの調整距離を、前記層内の前記ビードの高さが一定になるように決定する請求項1又は2に記載の積層造形方法。
  5.  前記台形ビードモデルと前記平行四辺形ビードモデルに対して、前記垂直断面において少なくとも一部に円弧を有する部分円形ビードモデルをそれぞれ当てはめる工程を有し、
     前記工程では、隣り合う前記部分円形ビードモデルの前記円弧同士の重なりが、予め定めた重なり量になるように、前記調整距離を補正する請求項4に記載の積層造形方法。
  6.  トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して造形物を作製する積層造形物の製造装置であって、
     前記造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラと、
     前記ビードモデルに沿って前記ビードを形成する処理を、前記複数の層の下層から上層まで繰り返して前記造形物を作製する積層造形装置と、
    を備え、
     前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
     前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
     前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
    積層造形物の製造装置。
  7.  トーチにより溶加材を溶融及び固化して形成されるビードをベース上に積層して作成される造形物の3次元形状データを読み込み、前記3次元形状データの立体モデル形状に応じて前記ビードの積層方向を決定し、前記立体モデル形状を前記積層方向に沿って複数の層に分割し、分割された各層を、前記ビードの形成順にビード形状に応じた複数ラインのビードモデルに分割して、前記トーチの軌道計画を決定するコントローラであって、
     前記コントローラは、前記複数ラインのビードモデルに分割する場合に、
     前記層内において、前記ビードを既存のビードと隣接しない部位に形成する位置には、ビード積層方向の対辺が互いに平行で、且つ前記層内のビード配列方向の対辺が互いに非平行である、ビード長手方向の垂直断面が台形の台形ビードモデルを適用し、
     前記ビードを既に形成されたビードに隣接して形成する位置には、前記ビード積層方向の対辺が互いに平行で、且つ前記ビード配列方向の対辺が、隣接する他のビードモデルの側辺と平行である、ビード長手方向の垂直断面が平行四辺形の平行四辺形ビードモデルを適用する、
    コントローラ。
  8.  前記軌道計画の情報を表示する表示部を更に備える請求項7に記載のコントローラ。
  9.  前記軌道計画の情報を変更する入力情報を受け付ける入力部を更に備える請求項8に記載のコントローラ。
  10.  前記軌道計画の情報は、前記台形ビードモデル及び前記平行四辺形ビードモデルの少なくともいずれかの形状を表す特徴点を含み、
     前記入力部が受け付けた前記入力情報に応じて、前記台形ビードモデル及び前記平行四辺形ビードモデルの形状を変更する、
    請求項9に記載のコントローラ。
PCT/JP2020/024378 2019-06-26 2020-06-22 積層造形方法、積層造形装置及びコントローラ WO2020262291A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/622,612 US20220355407A1 (en) 2019-06-26 2020-06-22 Additive manufacturing method, additive manufacturing device, and controller
CN202080045113.7A CN114007794B (zh) 2019-06-26 2020-06-22 层叠造型方法、层叠造型装置以及控制器
EP20833390.6A EP3974091A4 (en) 2019-06-26 2020-06-22 ADDITIONAL MANUFACTURING PROCESS, ADDITIONAL MANUFACTURING DEVICE AND CONTROLLER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-118745 2019-06-26
JP2019118745A JP6797244B1 (ja) 2019-06-26 2019-06-26 積層造形方法

Publications (1)

Publication Number Publication Date
WO2020262291A1 true WO2020262291A1 (ja) 2020-12-30

Family

ID=73646786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024378 WO2020262291A1 (ja) 2019-06-26 2020-06-22 積層造形方法、積層造形装置及びコントローラ

Country Status (5)

Country Link
US (1) US20220355407A1 (ja)
EP (1) EP3974091A4 (ja)
JP (1) JP6797244B1 (ja)
CN (1) CN114007794B (ja)
WO (1) WO2020262291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021914A1 (ja) * 2021-08-20 2023-02-23 株式会社神戸製鋼所 軌道計画作成支援方法、軌道計画作成支援装置、積層造形方法、積層造形装置及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311481B2 (ja) * 2020-12-11 2023-07-19 株式会社神戸製鋼所 積層造形方法及び積層造形装置、並びにモデル表示装置
JP2022108621A (ja) 2021-01-13 2022-07-26 キヤノン株式会社 制御装置、システム、リソグラフィ装置、物品の製造方法、制御方法及びプログラム
JP2022117082A (ja) * 2021-01-29 2022-08-10 株式会社神戸製鋼所 積層造形物の変形予測方法
CN113792028B (zh) * 2021-08-26 2024-04-16 上海航天精密机械研究所 一种电弧增材制造沉积层的工艺数据库构建方法
CN117300360B (zh) * 2023-11-28 2024-01-30 山东创瑞激光科技有限公司 一种结合电弧送丝技术的激光铺粉增材制造方法
CN117583698B (zh) * 2024-01-19 2024-04-26 中建材(合肥)粉体科技装备有限公司 一种自动堆焊装置及堆焊控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201474A (ja) 2009-03-04 2010-09-16 Toshiba Corp 溶接最適化方法及びシステム並びに溶接方法
WO2017141639A1 (ja) * 2016-02-16 2017-08-24 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム
JP2018027558A (ja) 2016-08-18 2018-02-22 国立大学法人山梨大学 三次元造形のためのコンピュータ支援製造装置,方法およびプログラム,三次元造形のための制御プログラム生成装置,ならびに三次元造形システム
CN109145524A (zh) * 2018-10-31 2019-01-04 哈尔滨阿尔特机器人技术有限公司 排布坡口焊道的多层多道获取方法
JP2019076916A (ja) * 2017-10-23 2019-05-23 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物
JP2019118745A (ja) 2018-01-11 2019-07-22 株式会社三共 遊技機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201728479U (zh) * 2010-06-12 2011-02-02 青岛东方铁塔股份有限公司 板材焊接接口
KR102280355B1 (ko) * 2014-11-14 2021-07-21 가부시키가이샤 니콘 조형 장치 및 조형 방법
CN206677434U (zh) * 2017-03-23 2017-11-28 广州容柏生建筑结构设计事务所 一种建筑钢结构墙、柱构件自动焊接装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201474A (ja) 2009-03-04 2010-09-16 Toshiba Corp 溶接最適化方法及びシステム並びに溶接方法
WO2017141639A1 (ja) * 2016-02-16 2017-08-24 株式会社神戸製鋼所 積層制御装置、積層制御方法及びプログラム
JP2018027558A (ja) 2016-08-18 2018-02-22 国立大学法人山梨大学 三次元造形のためのコンピュータ支援製造装置,方法およびプログラム,三次元造形のための制御プログラム生成装置,ならびに三次元造形システム
JP2019076916A (ja) * 2017-10-23 2019-05-23 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物
JP2019118745A (ja) 2018-01-11 2019-07-22 株式会社三共 遊技機
CN109145524A (zh) * 2018-10-31 2019-01-04 哈尔滨阿尔特机器人技术有限公司 排布坡口焊道的多层多道获取方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974091A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023021914A1 (ja) * 2021-08-20 2023-02-23 株式会社神戸製鋼所 軌道計画作成支援方法、軌道計画作成支援装置、積層造形方法、積層造形装置及びプログラム

Also Published As

Publication number Publication date
JP2021003724A (ja) 2021-01-14
CN114007794A (zh) 2022-02-01
EP3974091A1 (en) 2022-03-30
EP3974091A4 (en) 2022-08-10
CN114007794B (zh) 2023-01-24
JP6797244B1 (ja) 2020-12-09
US20220355407A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2020262291A1 (ja) 積層造形方法、積層造形装置及びコントローラ
JP7048435B2 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP5859065B2 (ja) 溶接条件導出装置
US10994370B2 (en) Lamination control device, and lamination control method and program
JP6797324B1 (ja) 積層造形方法
WO2019098097A1 (ja) 造形物の製造方法及び製造装置
JP6978350B2 (ja) ワーク姿勢調整方法、造形物の製造方法及び製造装置
JP6912636B1 (ja) 積層造形物の製造システム、積層造形物の製造方法、及び積層造形物の製造プログラム
JP7028737B2 (ja) 造形物の製造方法、製造装置及び造形物
WO2022019013A1 (ja) 機械学習装置、積層造形システム、溶接条件の機械学習方法、溶接条件の決定方法、およびプログラム
CN116867595A (zh) 层叠计划制作方法
WO2019098021A1 (ja) 造形物の製造方法、製造装置及び造形物
JP6859471B1 (ja) 積層造形物の製造方法
JP7311481B2 (ja) 積層造形方法及び積層造形装置、並びにモデル表示装置
JP7376455B2 (ja) 積層計画作成方法
WO2024029276A1 (ja) 制御情報修正方法、制御情報修正装置及びプログラム
WO2023149142A1 (ja) 制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラム
JPH0999368A (ja) 自動溶接装置
JP2023178726A (ja) 造形計画支援装置およびプログラム
WO2024095596A1 (ja) 積層造形装置の制御情報修正方法、制御情報修正装置及びプログラム
WO2023021914A1 (ja) 軌道計画作成支援方法、軌道計画作成支援装置、積層造形方法、積層造形装置及びプログラム
JP2024021423A (ja) 造形計画支援装置、造形計画支援方法及びプログラム
WO2024018803A1 (ja) 画像情報生成装置及び画像情報生成方法、画像処理装置及び画像処理方法、欠陥予測装置及び欠陥予測方法、並びにプログラム
JP2024013526A (ja) 制御情報修正方法、制御情報修正装置及びプログラム
JP2023029198A (ja) 軌道計画作成支援方法、軌道計画作成支援装置、積層造形方法、積層造形装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833390

Country of ref document: EP

Effective date: 20211223