WO2020262110A1 - Method for manufacturing organic electronic device - Google Patents

Method for manufacturing organic electronic device Download PDF

Info

Publication number
WO2020262110A1
WO2020262110A1 PCT/JP2020/023581 JP2020023581W WO2020262110A1 WO 2020262110 A1 WO2020262110 A1 WO 2020262110A1 JP 2020023581 W JP2020023581 W JP 2020023581W WO 2020262110 A1 WO2020262110 A1 WO 2020262110A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
sealing member
electronic device
organic electronic
Prior art date
Application number
PCT/JP2020/023581
Other languages
French (fr)
Japanese (ja)
Inventor
匡哉 下河原
進一 森島
貴志 藤井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2020262110A1 publication Critical patent/WO2020262110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an organic electronic device.
  • organic electronic devices examples include organic electroluminescence devices (organic EL devices), organic solar cells, organic transistors, and the like.
  • the organic electronic device has a first electrode, a functional layer having a predetermined function (for example, a hole injection layer, a light emitting layer, an electron injection layer, etc. in an organic EL device), and a second electrode, which are It is provided on the substrate.
  • Organic electronic devices usually include an organic layer as one of the functional layers. Therefore, at least the functional layer is usually sealed with a sealing member.
  • a long organic electronic device base material having a first electrode, a functional layer, and a second electrode formed on a long substrate is conveyed by a roller while being conveyed by a roller.
  • An organic electronic device is manufactured by laminating a shaku sealing member to an organic electronic device base material.
  • the sealing member used in an organic electronic device has a sealing base material containing a resin layer and a metal layer such as an inexpensive and lightweight AlPET (composite material of Al and PET), and a viscous adhesive layer.
  • the sealing base material is attached to the organic electronic device base material via the adhesive layer. Therefore, if the adhesive layer contains water, there is a problem that the long-term storage property of the manufactured organic electronic device is deteriorated. In order to avoid such a decrease in long-term storage property, it is conceivable to dry the sealing member in advance.
  • the sealing member when the sealing member is dried, the sealing member is heated to remove water. After drying, when the sealing member heated at a high temperature is cooled, the thermal expansion coefficient of each layer in the sealing member is different, so that stress is generated in the plane of each layer, and the sealing member is wrinkled. Is generated and deformed. Such deformation is likely to occur because the sealing member is rapidly cooled, especially when it comes into contact with the transport roller. When the sealing member is deformed, the adhesion between the organic electronic device base material and the sealing member is lowered due to the mixing of air bubbles or the like, so that the long-term storage property of the organic electronic device is lowered.
  • an object of the present invention is to provide a method for manufacturing an organic electronic device having excellent long-term storage stability by suppressing the occurrence of deformation such as wrinkles in the sealing member.
  • the method for producing an organic electronic device of the present invention includes a step of forming an organic electronic device base material having a first electrode, an organic functional layer and a second electrode in this order on a main surface of a supporting base material, and a resin layer. , A step of drying the sealing member in which the metal layer and the adhesive layer are laminated in this order, and a step of bonding the dried sealing member to the organic electronic device base material via the adhesive layer.
  • the metal layer has a strength of 100 to 200 N / mm 2 .
  • the sealing member has a metal layer having a proof stress of 100 N / mm 2 or more.
  • the sealing member in the manufacturing method of the present invention uses a metal layer having a proof stress of 200 N / mm 2 or less, it has appropriate flexibility and can be easily conveyed by a roller. ..
  • the material of such a metal layer work-hardened aluminum is preferable. Since aluminum has a small specific gravity, it is possible to suppress the load on the organic electronic device manufacturing apparatus. By using hard aluminum as the material of the metal layer, it is possible to more effectively prevent deformation such as wrinkles.
  • the method for producing an organic electronic device of the present invention includes a step of forming an organic electronic device base material having a first electrode, an organic functional layer and a second electrode in this order on a main surface of a supporting base material, and a resin layer. , A step of drying the sealing member in which the metal layer and the adhesive layer are laminated in this order, and a step of bonding the dried sealing member to the organic electronic device base material via the adhesive layer.
  • the method may be such that the material of the metal layer is work-hardened aluminum. Since the work-hardened aluminum is not easily deformed, it is possible to suppress the deformation of the resin layer and the adhesive adhesive layer due to the temperature change after drying, prevent the deformation such as wrinkles, and moderately possible. It has flexibility and is easy to convey with rollers.
  • the proof stress of the metal layer is preferably 100 to 200 N / mm 2 because it can more effectively prevent deformation such as wrinkles and tends to facilitate transportation by a roller.
  • the material of the metal layer is 1N30-H material.
  • a protective film is provided on the surface of the adhesive layer of the sealing member, and in the bonding step, the protective film is peeled off from the sealing member to make the sealing member a base material for an organic electronic device. It is preferable to bond them together.
  • the present invention it is possible to provide a method for manufacturing an organic electronic device having excellent long-term storage property by suppressing deformation such as wrinkles in the sealing member.
  • FIG. 1 is a schematic view showing a configuration of an organic EL device which is an example of an organic electronic device manufactured by the method for manufacturing an organic electronic device according to an embodiment.
  • FIG. 2 is a side view of a long sealing member with a protective film used for manufacturing an organic EL device.
  • FIG. 3 is a flowchart of an example of the method for manufacturing the organic EL device shown in FIG.
  • FIG. 4 is a drawing for explaining the configuration of an organic EL device base material (organic electronic device base material).
  • FIG. 5 is a drawing for explaining a drying process and a bonding process.
  • Examples of the organic electronic device manufactured by the present invention include an organic EL device, an organic solar cell, an organic photodetector, and an organic transistor. Unless otherwise specified, the embodiments described below are embodiments of a method for manufacturing an organic EL device, which is an example of an organic electronic device.
  • the organic EL device 10 manufactured by the method for manufacturing an organic EL device includes a substrate 12, an anode (first electrode) 14, and an organic EL.
  • a unit 18 (organic functional layer) and a cathode (second electrode) 20 are provided.
  • the organic EL device 10 is, for example, an organic EL lighting panel used for lighting.
  • the organic EL device 10 may include an extraction electrode 16 electrically connected to the cathode 20.
  • the organic EL device 10 may include at least a sealing member 22 that seals the organic EL portion 18.
  • the organic EL device 10 may take a form of emitting light from the anode 14 side or a form of emitting light from the cathode 20 side.
  • a mode in which a drawer electrode 16 and a sealing member 22 are provided as the organic EL device 10 and light is emitted from the anode 14 side will be described.
  • the substrate 12 is transparent to visible light (light having a wavelength of 400 nm to 800 nm).
  • the substrate 12 may be in the form of a film, and the thickness of the substrate 12 is, for example, 30 ⁇ m or more and 700 ⁇ m or less.
  • the substrate 12 may be a flexible substrate having flexibility.
  • the flexible substrate is a substrate having flexibility, and the flexibility means that the substrate can be bent without being sheared or broken even when a predetermined force is applied to the substrate. Board.
  • An example of the substrate 12 is a plastic film or a polymer film.
  • Examples of the material of the substrate 12 include polyether sulfone (PES); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin; polyamide.
  • Resins polypropylene resins; polystyrene resins; polyvinyl alcohol resins; saponified products of ethylene-vinyl acetate copolymers; polyacrylonitrile resins; acetal resins; polyimide resins; epoxy resins and the like.
  • a drive circuit for example, a circuit including a thin film transistor or the like for driving the organic EL device 10 may be formed on the substrate 12.
  • Such drive circuits are usually constructed of transparent material.
  • the substrate 12 may be provided with a moisture barrier layer.
  • the moisture barrier layer may have a function of barriering gas (for example, oxygen) in addition to a function of barriering moisture.
  • the moisture barrier layer can be, for example, a film made of silicon, oxygen and carbon, or a film made of silicon, oxygen, carbon and nitrogen.
  • examples of the material of the moisture barrier layer are silicon oxide, silicon nitride, silicon oxynitride and the like.
  • An example of the thickness of the moisture barrier layer is 100 nm or more and 10 ⁇ m or less.
  • the anode 14 is provided on the substrate 12.
  • An electrode exhibiting light transmission may be used for the anode 14.
  • a thin film such as a metal oxide, a metal sulfide, or a metal having high electric conductivity can be used, and a thin film having high light transmittance is preferably used.
  • the anode 14 may have a network structure made of a conductor (for example, metal).
  • the thickness of the anode 14 can be determined in consideration of light transmission, electrical conductivity, and the like.
  • the thickness of the anode 14 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the material of the anode 14 examples include indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (indium Zinc Oxide: abbreviated as IZO), gold, platinum, silver, and copper. Among these, ITO, IZO, or tin oxide is preferable.
  • the anode 14 can be formed as a thin film made of the illustrated materials.
  • an organic substance such as polyaniline and its derivative, polythiophene and its derivative may be used. In this case, the anode 14 can be formed as a transparent conductive film.
  • the anode 14 may have a network structure made of a conductor (for example, metal).
  • the extraction electrode 16 is provided on the substrate 12 in a state of being insulated from the anode 14.
  • the extraction electrode 16 is connected to the cathode 20 and can be used to externally connect the cathode 20.
  • the material and thickness of the extraction electrode 16 may be the same as that of the anode 14.
  • the organic EL unit 18 includes a light emitting layer 181 and has a function of contributing to light emission of the organic EL device 10 such as carrier movement and carrier recombination according to electric power (for example, voltage) applied to the anode 14 and the cathode 20. It is a department.
  • the organic EL portion 18 is provided so as to cover a part of the anode 14, and a part of the organic EL portion 18 is between the anode 14 and the extraction electrode 16 as shown in FIG. It is also arranged on the substrate 12 of. As a result, a short circuit between the anode 14 and other electrodes (for example, the cathode 20 and the extraction electrode 16) is prevented.
  • the organic EL unit 18 has a single-layer structure. That is, the organic EL unit 18 is composed of the light emitting layer 181.
  • the light emitting layer 181 is a functional layer for an organic EL device (organic electronic device) provided on the anode 14.
  • the thickness of the light emitting layer 181 is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 10 nm to 200 nm.
  • the light emitting layer 181 is usually formed of an organic substance that mainly emits at least one of fluorescence and phosphorescence, or an organic substance thereof and a dopant that assists the organic substance. Dopants are added, for example, to improve luminous efficiency and change the emission wavelength.
  • the organic substance contained in the light emitting layer 181 may be a low molecular weight compound or a high molecular weight compound.
  • the organic substance may be an organometallic complex.
  • Examples of the light emitting material constituting the light emitting layer 181 include the following pigment-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
  • the dye-based material examples include cyclopentamine or a derivative thereof, tetraphenylbutadiene or a derivative thereof, triphenylamine or a derivative thereof, oxadiazole or a derivative thereof, pyrazoloquinolin or a derivative thereof, distyrylbenzene or a derivative thereof, or di.
  • Styrylarylene or its derivative, pyrrole or its derivative, thiophene ring compound, pyridine ring compound, perinone or its derivative, perylene or its derivative, oligothiophene or its derivative, oxaziazole dimer or its derivative, pyrazoline dimer or its derivative examples thereof include quinacridone or a derivative thereof, coumarin or a derivative thereof.
  • the metal complex material examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Pt, and Ir as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline.
  • examples thereof include metal complexes having a structure or the like as a ligand.
  • Examples of the metal complex include a metal complex that emits light from a triple-term excited state such as an iridium complex and a platinum complex, an aluminum quinolinol complex, a benzoquinolinol berylium complex, a benzoxazolyl zinc complex, a benzothiazole zinc complex, and an azomethylzinc complex. Examples thereof include a porphyrin zinc complex and a phenanthroline europium complex.
  • polymer-based material examples include polyparaphenylene vinylene or a derivative thereof, polythiophene or a derivative thereof, polyparaphenylene or a derivative thereof, polysilane or a derivative thereof, polyacetylene or a derivative thereof, polyfluorene or a derivative thereof, polyvinylcarbazole or a derivative thereof, and the like.
  • examples thereof include materials obtained by polymerizing at least one of the above dye material and metal complex material.
  • Examples of the dopant material include perylene or its derivative, coumarin or its derivative, rubrene or its derivative, quinacridone or its derivative, squalium or its derivative, porphyrin or its derivative, styryl dye, tetracene or its derivative, pyrazolone or its derivative, decacyclene. Alternatively, a derivative thereof, phenoxazone or a derivative thereof, etc. may be mentioned.
  • FIG. 1 illustrates a form in which the organic EL unit 18 is a light emitting layer 181.
  • the organic EL unit 18 may be a laminate including a light emitting layer 181 and another functional layer.
  • Examples of the functional layer provided between the anode 14 and the light emitting layer 181 include a hole injection layer and a hole transport layer.
  • Examples of the functional layer provided between the cathode 20 and the light emitting layer 181 include an electron injection layer and an electron transport layer. The thicknesses of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be appropriately set according to the device performance of the organic EL device 10.
  • the hole injection layer is a layer having a function of improving the hole injection efficiency from the anode 14 to the light emitting layer 181.
  • a known hole injection material can be used as the material of the hole injection layer.
  • the hole injection material include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline, and polyethylenedioxythiophene. (PEDOT) and other polythiophene derivatives can be mentioned.
  • the hole transport layer is a layer having a function of improving the hole injection efficiency from the anode 14, the hole injection layer, or the hole transport layer closer to the anode 14 to the light emitting layer 181.
  • a known hole transport material can be used as the material of the hole transport layer. Examples of the material of the hole transport layer include polyvinylcarbazole or its derivative, polysilane or its derivative, polysiloxane or its derivative having an aromatic amine in the side chain or main chain, pyrazoline or its derivative, arylamine or its derivative, and stylben.
  • hole transport layer or its derivative, triphenyldiamine or its derivative, polyaniline or its derivative, polythiophene or its derivative, polyarylamine or its derivative, polypyrrole or its derivative, poly (p-phenylene vinylene) or its derivative, or poly (2,5) -Thienylene vinylene) or its derivatives and the like.
  • the material of the hole transport layer include the hole transport layer material disclosed in Japanese Patent Application Laid-Open No. 2012-144722.
  • the electron transport layer is a layer having a function of improving the electron injection efficiency from the cathode 20, the electron injection layer, or the electron transport layer closer to the cathode 20.
  • a known material can be used as the electron transport material constituting the electron transport layer.
  • the electron transporting material constituting the electron transporting layer include oxadiazole or a derivative thereof, anthracinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyanoanthraquinodimethane or a derivative thereof.
  • the electron injection layer is a layer having a function of improving the electron injection efficiency from the cathode 20 to the light emitting layer 181.
  • the electron injection layer may form a part of the cathode 20.
  • a known electron injection material can be used as the material of the electron injection layer.
  • the material of the electron injection layer include alkali metals, alkaline earth metals, alkali metals and alloys containing one or more of alkaline earth metals, alkali metals or oxides of alkaline earth metals, alkali metals or alkaline soil. Examples thereof include halides of similar metals, carbonates of alkali metals or alkaline earth metals, or mixtures of these substances.
  • anode / light emitting layer / cathode (b) anode / hole injection layer / light emitting layer / cathode (c) anode / hole injection layer / light emitting layer / electron injection layer / cathode (d) anode / hole injection layer / Light emitting layer / electron transport layer / electron injection layer / cathode (e) anode / hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection layer / hole transport layer / light emitting layer / Electron injection layer / cathode (g) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (h) anode / light emitting layer / electron injection layer / cathode (i) anode
  • the organic EL device 10 may have a single-layer light emitting layer 181 or may have two or more light emitting layers 181.
  • the two light emitting layers 181 are formed.
  • the configuration of the organic EL device 10 to have, for example, the layer configuration shown in (j) below can be mentioned.
  • the layer structure of the two (structural unit I) may be the same as or different from each other.
  • the charge generation layer is a layer that generates holes and electrons by applying an electric field.
  • the charge generation layer include a thin film made of vanadium oxide, ITO, molybdenum oxide, and the like.
  • Examples of the configuration of the organic EL device 10 having three or more light emitting layers 181 include the layer configuration shown in (k) below. be able to.
  • the symbol "x” represents an integer of 2 or more, and "(Structural unit II) x” has (Structural unit II) in x stages. Represents a laminated body.
  • the layer structure of the plurality of (structural unit II) may be the same or different.
  • the organic EL device 10 may be configured by directly laminating a plurality of light emitting layers 181 without providing a charge generation layer.
  • the cathode 20 is provided on the organic EL unit 18.
  • the cathode 20 is provided on the organic EL unit 18 so as to be connected to the extraction electrode 16, and in this case, one of the cathodes 20.
  • the unit may be arranged on the substrate 12.
  • the optimum value of the thickness of the cathode 20 differs depending on the material used, and is set in consideration of electrical conductivity, durability, and the like.
  • the thickness of the cathode 20 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the material of the cathode 20 is preferably a material having high visible light reflectance.
  • the material of the cathode 20 include alkali metals, alkaline earth metals, transition metals, and Group 13 metals in the periodic table.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance, or the like may be used.
  • the sealing member 22 is a member for sealing at least the organic EL portion 18.
  • the sealing member 22 is provided on the cathode 20.
  • the sealing member 22 is provided so that a part of the anode 14 and a part of the extraction electrode 16 project from the sealing member 22.
  • the portion of the anode 14 and the extraction electrode 16 located outside the sealing member 22 functions as a region for external connection.
  • the sealing member 22 has an adhesive layer 222, a metal layer 223, and a resin layer 224 in this order when viewed from the substrate 12 side.
  • the resin layer 224 is located on the outermost surface of the organic EL device 10 on the opposite side of the substrate 12.
  • Examples of the material of the resin layer 224 include a transparent plastic film such as PET.
  • the resin layer 224 preferably has a thickness of 6 to 51 ⁇ m.
  • the metal layer 223 is a layer containing a metal as a main component, and the metal may be a simple substance of a metal or an alloy.
  • the metal layer 223 in the organic EL device 10 of the present embodiment has a proof stress of 100 to 200 N / mm 2 , and at least one of the conditions that the material of the metal layer 223 is work-hardened aluminum. Satisfy the conditions.
  • Strength of the metal layer 223 is preferable to be 100 ⁇ 200N / mm 2, more preferable to be 110 ⁇ 190N / mm 2, further preferable to be 120 ⁇ 180N / mm 2, is a 150 ⁇ 170N / mm 2 Is particularly preferable. Since the sealing member of the present embodiment has a metal layer 223 having a proof stress of 100 to 200 N / mm 2 , it is possible to suppress deformation such as wrinkles even if the temperature of the sealing member changes after the drying step. , Easy to transport with rollers.
  • the "proof stress” referred to in the present specification means a 0.2% proof stress (offset method) defined in JISZ2241 (metal material tensile test method).
  • the thickness of the metal layer 223 is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m. When the thickness of the metal layer 223 is 5 to 50 ⁇ m, it is possible to achieve both transportability and sealing performance.
  • Examples of the material of the metal layer 223 include work-hardened aluminum (hereinafter, also referred to as hard aluminum) and copper.
  • Hard aluminum is particularly preferable because it can suppress deformation such as wrinkles, tends to be easily conveyed by rollers, and has a small specific gravity, so that it tends to reduce the load on the device.
  • the hard aluminum means an aluminum foil in a state of being work-hardened by being processed (rolled), and examples thereof include a foil after work hardening, a foil which has been subjected to an appropriate heat treatment after work hardening, and the like.
  • Examples of the classification symbols HX1, HX2, HX3, HX4, HX5, HX6, HX7, HX8, and HX9 generally used in the JIS standard (JIS H0001) (however, X: 1 to 3) can be mentioned.
  • More specific materials of hard aluminum include, but are not limited to, 1N30-H defined by JIS H4160 and the like. Generally, the proof stress of 1N30-H is 150 to 170 N / mm 2 .
  • the adhesive layer 222 is provided on the surface of the metal layer 223 on the substrate 12 side, and the metal layer 223 is adhered to the substrate 12 on which the anode 14, the organic EL portion 18, and the cathode 20 are formed. Used for moisture barrier.
  • the adhesive layer 222 may have a thickness capable of embedding a laminated structure including an anode 14, an organic EL portion 18, and a cathode 20, but is preferably 1 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 60 ⁇ m. More preferably, it is 10 ⁇ m to 30 ⁇ m.
  • the thickness of the adhesive layer 222 When the thickness of the adhesive layer 222 is 1 ⁇ m or more, unevenness on the surface of the substrate 12 or mixed dust tends to be sufficiently embedded, and mechanical stress on the organic EL portion 18 due to these tends to be sufficiently embedded. It is possible to suppress the occurrence of dark spots by giving. When the thickness of the adhesive layer 222 is 100 ⁇ m or less, it tends to be less affected by the moisture infiltrating from the end face of the adhesive layer 222.
  • the material of the adhesive layer 222 is, for example, a pressure-sensitive adhesive resin.
  • adhesive resins include acid-modified products of polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, acid-modified products of ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and ethylene-methacrylic acid copolymers. It is a thermoplastic resin such as copolymer, polyamide, and synthetic rubber.
  • the long sealing member 24 with a protective film shown in FIG. 2 is used.
  • the sealing member 24 with a protective film has a sealing member 22 and a protective film 241.
  • the protective film 241 is attached to the surface (the surface opposite to the metal layer 223) 222a of the adhesive layer 222 of the sealing member 22.
  • the protective film 241 is a film for preventing dust from adhering to the adhesive layer 222 and the sealing members 22 from sticking to each other.
  • the material of the protective film 241 is, for example, PET surface-treated with silicone, a fluorine compound, or the like.
  • the thickness of the protective film 241 is, for example, 5 ⁇ m to 50 ⁇ m.
  • the method for manufacturing the organic EL device 10 includes a device base material forming step S10, a drying step S20, a bonding step S30, and a cutting step S40.
  • FIG. 4 schematically shows a cross-sectional configuration when the substrate 12 is cut along a plane orthogonal to the longitudinal direction thereof in the device forming region.
  • the device base material forming step S10 includes an anode (first electrode) forming step S11, an organic EL portion forming step S12, and a cathode (second electrode) forming step S13.
  • the anode 14 is formed in each of a plurality of device forming regions set in the longitudinal direction of the long substrate 12.
  • the extraction electrode 16 is also formed together with the anode 14 in each device formation region.
  • the device forming region is a region corresponding to the product size of the organic EL device 10 to be manufactured.
  • the anode 14 and the extraction electrode 16 can be formed by a method known in the manufacture of the organic EL device 10.
  • the method for forming the anode 14 include a vacuum film forming method, an ion plating method, a plating method, and a coating method.
  • the coating method include an inkjet printing method, but other known coating methods may be used as long as the anode 14 can be formed.
  • Known coating methods other than the inkjet printing method include, for example, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a spray coating method, a screen printing method, a flexographic printing method, and an offset printing method. And the nozzle printing method and the like.
  • the anode 14 and the extraction electrode 16 can be formed, for example, by forming a conductive film to be the anode 14 and the extraction electrode 16 and then patterning the conductive film in each pattern of the anode 14 and the extraction electrode 16.
  • the anode 14 and the extraction electrode 16 may be manufactured by directly forming a conductive film corresponding to each pattern of the anode 14 and the extraction electrode 16.
  • the organic EL portion forming step S12 the organic EL portion 18 is formed on the anode 14.
  • the organic EL portion forming step S12 has a light emitting layer (functional layer) forming step S12A for forming the light emitting layer 181 on the anode 14.
  • the method for forming the light emitting layer 181 include a vacuum film forming method and a coating method.
  • the coating method include an inkjet printing method, but other known coating methods may be used as long as the coating method can form the light emitting layer 181.
  • the coating method exemplified in the description of the case where the anode 14 is formed by the coating method can be mentioned.
  • the functional layers may be formed in order from the anode 14 side according to the layer configuration of the organic EL unit 18.
  • the method for forming each functional layer may be the same as that for the light emitting layer forming step S12A.
  • the cathode 20 is formed on the organic EL portion 18.
  • the cathode 20 can be formed in the same manner as the method for forming the anode 14.
  • the anode forming step S11, the organic EL portion forming step S12, and the cathode forming step S13 may be carried out by a roll-to-roll method.
  • the organic EL portion forming step S12 may be carried out by a roll-to-roll method, or the organic EL portion forming step S12 and the cathode forming step S13 may be continuously carried out by a roll-to-roll method.
  • the sealing member 22 is dried by drying the sealing member 24 with the protective film shown in FIG.
  • the water content of the adhesive layer 222 of the sealing member 22 is 600 ppm or less (ppm is based on mass and is the same in the present specification). The sealing member 22 is dried.
  • the drying step S20 will be described in detail later.
  • the sealing member 22 obtained by peeling the protective film 241 from the sealing member 24 dried in the drying step S20 is bonded to the organic EL device base material 26 via the adhesive layer 222. It fits.
  • the bonding step S30 will be described in detail later.
  • the substrate 12 is cut for each device forming region while transporting the long organic EL device base material 26 to which the sealing member 22 is bonded in the bonding step S30 in the longitudinal direction.
  • a plurality of product-sized organic EL devices 10 can be obtained from the long organic EL device base material 26 to which the sealing member 22 is bonded.
  • FIG. 5 is a drawing for explaining the drying step S20 and the bonding step S30.
  • the organic EL device base material 26 and the sealing member 24 are schematically shown by a thick solid line.
  • the bonding step S30 is performed in the bonding chamber 32 connected to the drying chamber 28 via the connecting portion 30. ..
  • the organic EL device is manufactured by a roll-to-roll method.
  • the roll on which the sealing member 24 with the protective film is wound is referred to as the first roll 34A
  • the roll on which the long organic EL device base material 26 before the sealing member 22 is bonded is wound.
  • a second roll 34B a roll on which the organic EL device base material 26 to which the sealing member 22 is bonded in the bonding step S30 is wound is referred to as a third roll 34C.
  • the sealing member 24 is unwound from the first roll 34A set in the feeding portion 36 in the drying chamber 28, and is conveyed while being guided by the guide roller R1 in the longitudinal direction of the sealing member 24. While transporting the sealing member 24 in this way, the sealing member 24 is irradiated with infrared rays from at least one infrared irradiation unit 38 arranged on the transport path to heat and dry the sealing member 24.
  • FIG. 5 illustrates a case where the sealing member 24 is heated and dried by using a plurality of infrared irradiation units 38.
  • the transport path of the sealing member 24 may be folded back a plurality of times as shown in FIG. In this case, it is possible to secure the drying time while saving space for drying.
  • the infrared irradiation unit 38 may be arranged on both sides of the sealing member 24, or may be arranged only on one side, for example, in the thickness direction of the sealing member 24.
  • the inside of the drying chamber 28 may be filled with, for example, a dew point of ⁇ 40 ° C. or lower and an inert gas atmosphere (for example, a nitrogen gas atmosphere) in order to effectively perform drying.
  • the inside of the drying chamber 28 may be set to a reduced pressure environment of 10 Pa or less in order to effectively perform drying.
  • the sealing member 24 dried in the drying chamber 28 passes through the connecting portion 30 and is carried into the bonding chamber 32, and the bonding step S30 is performed in the bonding chamber 32.
  • the organic EL device base material 26 is fed out from the second roll 34B set in the feeding section 40 in the bonding chamber 32. After the unwound organic EL device base material 26 is conveyed in the longitudinal direction while being guided by the guide roller R2, it is wound around the winding portion 42 to form the third roll 34C from the drying chamber 28.
  • the sealing member 22 obtained by peeling the protective film 241 from the sealing member 24 that has been carried in is bonded to the organic EL device base material 26.
  • a pair of bonding rollers R3 are arranged in the bonding chamber 32 with a gap, and the adhesive layer 222 of the sealing member 22 and the organic EL device base material are arranged in the gap.
  • the organic EL device base material 26 and the sealing member 22 are fed so that the anode 14, the organic EL portion 18, and the cathode 20 are opposed to each other in 26.
  • the organic EL device base material 26 and the sealing member 22 are pressed by the pair of bonding rollers R3.
  • a heater is embedded in the bonding roller R3, and the sealing member 22 is bonded to the organic EL device base material 26 while warming the sealing member 22 by heating the bonding roller R3.
  • the sealing member 24 conveyed from the drying chamber 28 is conveyed while being guided by the guide roller R4.
  • a guide roller R5 is arranged in the transport path of the sealing member 22 by the guide roller R4 in the bonding chamber 32, and the protective film 241 is peeled from the sealing member 22 by the guide roller R5.
  • the sealing member 22 obtained by peeling off the protective film 241 is conveyed by the guide roller R4 and sent to the pair of bonding rollers R3 in the above-mentioned state.
  • the protective film 241 peeled off by the guide roller R5 may be wound up by the film collecting unit 44.
  • the water content of the adhesive layer 222 dried in the drying chamber 28 is maintained, and the organic EL device base material 26 to which the sealing member 22 is not bonded is maintained. It can be adjusted to prevent deterioration.
  • the inside of the connecting portion 30 and the bonding chamber 32 may have a dew point of ⁇ 40 ° C. or lower and an inert gas atmosphere. Therefore, if the drying chamber 28 also has a dew point of ⁇ 40 ° C. or lower and the atmosphere is an inert gas, the connecting portion 30 and the bonding chamber 32 may have the same indoor environment.
  • the feeding portion 36 is arranged in the drying chamber 28, but the feeding portion 36 may be arranged outside the drying chamber 28.
  • the feeding section 40, the winding section 42, and the film collecting section 44 may also be arranged outside the bonding chamber 32.
  • a second roll 34B around which the long organic EL device base material 26 before the sealing member 22 is attached is installed in the feeding portion 40. Therefore, when the feeding portion 40 is arranged outside the bonding chamber 32, the arrangement area of the feeding portion 40 and the transport path of the organic EL device base material 26 fed from the feeding portion 40 are deteriorated in the organic EL device base material 26. Can be configured to prevent.
  • the arrangement region of the feeding section 40 and the transport path of the organic EL device base material 26 fed from the feeding section 40 may be configured such that the dew point is ⁇ 40 ° C. or lower and the inert gas atmosphere can be maintained.
  • the temperature of the connecting portion 30 and the bonding portion 32 of the sealing member 24 with a high-temperature protective film that has been heat-dried in the drying chamber is lower than that of the drying portion.
  • the heat is gradually removed. In particular, it may be rapidly cooled by contact with the guide rollers R4, R5 and the like.
  • the coefficient of thermal expansion of each layer of the sealing member is different, in the conventional sealing member, stress due to the mismatch of shrinkage is generated in the plane of each layer, and the sealing member is deformed such as wrinkles. To do.
  • the proof stress of the metal layer 223 in the sealing member is 100 N / mm 2 to 200 N / mm 2 , or the material of the metal layer 223 is work-hardened aluminum. Therefore, the deformation of the sealing material can be suppressed against the above stress.
  • soft aluminum such as 1N30-O defined in JIS H4160 (generally, the yield strength of 1N30-O is 30 to 40 N / mm 2 ) is used as the metal layer 223. Deformation of the sealing material cannot be sufficiently suppressed.
  • the proof stress of the metal layer 223 in the sealing member is 200 N / mm 2 or less, the sealing member is not too hard and the sealing member has sufficient flexibility, so that the metal layer 223 can be easily transported by a roller.
  • the sealing member 24 formed by bonding the protective film 241 to the sealing member 22 is dried. Therefore, even if the tackiness of the adhesive layer 222 is increased by heating during drying, the adhesive layer 222 does not come into direct contact with the guide roller R1 or the like, so that the adhesive is attached to the guide roller R1 or the like. It can be prevented from adhering.
  • the thickness of the protective film 241 should be thin, but if it is too thin, the protective film 241 may be cut or the protective film 241 may be wrinkled during the transportation process. It becomes difficult to control. On the other hand, if the protective film 241 is too thick, the drying efficiency is lowered, so that the transport path of the sealing member 24 becomes unnecessarily long and the time required for the drying process also becomes long. Further, there is a problem that the first roll 34A around which the sealing member 24 is wound also becomes unnecessarily large. On the other hand, if the protective film 241 is, for example, 5 ⁇ m or more and 50 ⁇ m or less, the sealing member 24 can be easily transported and the drying efficiency can be improved. Further, the size of the first roll 34A can be reduced.
  • the method for manufacturing the organic EL device 10 described in the present embodiment is more effective when the sealing member 22 having the adhesive adhesive layer 222 containing the pressure-sensitive adhesive resin is used.
  • the drying step S20 it is preferable to dry the sealing member 24 (more specifically, the sealing member 22) so that the water content of the adhesive layer 222 is 600 ppm or less. This is because the organic EL device 10 having further improved long-term storage stability can be manufactured by bonding the sealing member 22 in such a dry state to the organic EL device base material 26.
  • the dried sealing member 22 is attached to the organic EL device base material 26. ing. Therefore, it is possible to efficiently manufacture the organic EL device 10 having excellent long-term storage stability while improving the productivity. Further, by drying the sealing member 22 so that the water content is 600 ppm or less, the organic EL device 10 having even better long-term storage stability can be efficiently manufactured.
  • FIG. 5 illustrates a form in which the drying chamber and the bonding chamber are connected by a connecting portion.
  • the drying room and the bonding room do not have to be connected.
  • the sealing member with a protective film dried in the drying chamber may be once wound into a roll, housed in an airtight container, and carried into the bonding chamber.
  • the drying method of the sealing member with a protective film is not limited to infrared heating.
  • the guide roller that guides the sealing member with the protective film may be a heating roller, and the sealing member with the protective film may be dried by the heating roller, or dried by a heating method such as a halogen lamp heater, a laser, or microwave heating. You may.
  • the organic EL device may be manufactured from the substrate on which the anode is formed in advance.
  • the method for manufacturing the organic EL device may include an organic EL portion forming step and a cathode forming step.
  • the manufacturing method by the roll-to-roll method using a long base material and a long sealing member has been described, but the base material and the sealing member are adjusted to a predetermined size in advance by cutting or the like.
  • Organic electronic devices may be manufactured using the single-wafered ones.
  • the peeling step is not limited to the case where it is carried out after the bonding step.
  • the peeling step may be carried out during the device main body forming step, or may be carried out between the device main body forming step and the bonding step.
  • it may be carried out during the device main body forming step, for example, it may be carried out after forming an anode (first electrode).
  • it may be carried out during the organic functional layer forming step, or may be carried out between the organic functional layer forming step and the cathode forming step.
  • the peeling step is performed at least after the anode (first electrode) forming step. It is preferable to carry out.
  • the protective film when a sealing member with a protective film having a protective film provided on the surface of the adhesive layer is used as the sealing member, the protective film may be peeled off before the drying step.
  • a sealing member a member that does not originally have a protective film can also be used.
  • the sealing member having no protective film for example, a sealing member wound in a roll shape so that the adhesive layer and the resin layer are in contact with each other can be used. In this case, the metal of the resin layer is used.
  • the surface opposite to the layer may be subjected to a mold release treatment, if necessary.
  • the first electrode is used as an anode and the second electrode is used as a cathode, but the first electrode may be a cathode and the second electrode may be an anode.
  • the manufacturing method of the organic EL device which is an example of the organic electronic device, has been described.
  • the manufacturing method of the organic electronic device according to the present embodiment is an organic having an organic functional layer such as an organic solar cell, an organic photodetector, or an organic transistor. It can also be applied to electronic devices.
  • the first electrode is, for example, one of a source electrode, a drain electrode and a gate electrode
  • the second electrode is other than the first electrode among the source electrode, the drain electrode and the gate electrode. It is an electrode of.
  • the functional layer for manufacturing an organic transistor may be a gate insulating layer or an organic semiconductor layer.
  • Example 1 As the sealing member A, one having the following layer structure was used. Protective film (thickness 12 ⁇ m) / adhesive layer (thickness 30 ⁇ m) / aluminum layer (thickness 30 ⁇ m, 1N30-H material, manufactured by Toyo Aluminum Co., Ltd.) / PET (thickness 38 ⁇ m) The sealing member A was transported at a transport speed of 1 m / min, infrared-irradiated from the protective film side using a carbon heater so that the temperature of the sealing member A became 160 ° C., heated for 5 minutes, and then wound up. .. No deformation such as wrinkles was observed in the sealing member A. When the protective film of the wound sealing member A was peeled off and bonded to the organic electronic device base material, no wrinkles were observed and a good bonded surface was obtained.
  • Example 1 An experiment was carried out in the same manner as in Example 1 except that the sealing member B in which the aluminum layer of the sealing member A was changed to a layer of 1N30-O material (thickness 30 ⁇ m, manufactured by Toyo Aluminum K.K., Ltd.) was used. In the sealing member B after winding, wrinkles having a width of 5 mm were continuously generated in the transport direction, and deformation was observed. When the protective film of the wound sealing member B was peeled off and bonded to the organic electronic device base material, air bubbles were mixed in the wrinkled portion, and a good bonded surface could not be obtained.
  • 1N30-O material thinness 30 ⁇ m, manufactured by Toyo Aluminum K.K., Ltd.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a method for manufacturing an organic electronic device of superior long-term shelf-life in which the occurrence of deformations, such as wrinkles, in a seal member is suppressed. The present invention pertains to a method for manufacturing an organic electronic device, the method comprising: a step for forming an organic electronic device substrate comprising a first electrode, an organic functional layer, and a second electrode in that order on a main surface of a support substrate; a step for drying a seal member in which a resin layer, a metal layer, and an adhesive layer have been stacked in that order; and a step for bonding the dried seal member to the organic electronic device substrate via the adhesive layer, wherein the metal layer has a load capacity of 100–200 N/mm2.

Description

有機電子デバイスの製造方法Manufacturing method of organic electronic devices
 本発明は、有機電子デバイスの製造方法に関する。 The present invention relates to a method for manufacturing an organic electronic device.
 有機電子デバイスの例として有機エレクトロルミネッセンス素子(有機ELデバイス)、有機太陽電池、有機トランジスタなどが挙げられる。有機電子デバイスは、第1の電極と、所定の機能を有する機能層(例えば、有機ELデバイスでは正孔注入層、発光層、電子注入層など)と、第2の電極を有し、それらは基板上に設けられている。有機電子デバイスは、通常、機能層の一つとして有機層を含む。そのため、通常、少なくとも機能層が封止部材で封止されている。特許文献1では、長尺の基板上に第1の電極、機能層及び第2の電極が形成されてなる長尺の有機電子デバイス基材をローラで搬送しながら、ローラで搬送されてきた長尺の封止部材を、有機電子デバイス基材に貼合して、有機電子デバイスを製造している。 Examples of organic electronic devices include organic electroluminescence devices (organic EL devices), organic solar cells, organic transistors, and the like. The organic electronic device has a first electrode, a functional layer having a predetermined function (for example, a hole injection layer, a light emitting layer, an electron injection layer, etc. in an organic EL device), and a second electrode, which are It is provided on the substrate. Organic electronic devices usually include an organic layer as one of the functional layers. Therefore, at least the functional layer is usually sealed with a sealing member. In Patent Document 1, a long organic electronic device base material having a first electrode, a functional layer, and a second electrode formed on a long substrate is conveyed by a roller while being conveyed by a roller. An organic electronic device is manufactured by laminating a shaku sealing member to an organic electronic device base material.
国際公開第2010/106853号International Publication No. 2010/106853
 有機電子デバイスに使用される封止部材は、安価で軽量なAlPET(AlとPETの複合材)等の樹脂層及び金属層を含む封止基材と、粘接着材層とを有し、粘接着材層を介して封止基材が、有機電子デバイス基材に貼合される。そのため、粘接着材層に水分が含まれていると、製造した有機電子デバイスの長期保管性が低下するという問題がある。このような長期保管性の低下を回避するために、封止部材を予め乾燥させておくことが考えられる。 The sealing member used in an organic electronic device has a sealing base material containing a resin layer and a metal layer such as an inexpensive and lightweight AlPET (composite material of Al and PET), and a viscous adhesive layer. The sealing base material is attached to the organic electronic device base material via the adhesive layer. Therefore, if the adhesive layer contains water, there is a problem that the long-term storage property of the manufactured organic electronic device is deteriorated. In order to avoid such a decrease in long-term storage property, it is conceivable to dry the sealing member in advance.
 ここで、封止部材を乾燥させる際には、封止部材を加熱して水分を除去する。乾燥後、高温で加熱された封止部材が冷却された際に、封止部材における個々の層の熱膨張率が異なるために、各層の面内に応力が発生し、封止部材にしわ等が発生して変形する。このような変形は、特に搬送ローラと接触した際に封止部材が急冷されることよって生じやすい。封止部材に変形が生じた場合、気泡の混入などにより有機電子デバイス基材と封止部材との密着性が低下するため、有機電子デバイスの長期保管性が低下してしまう。 Here, when the sealing member is dried, the sealing member is heated to remove water. After drying, when the sealing member heated at a high temperature is cooled, the thermal expansion coefficient of each layer in the sealing member is different, so that stress is generated in the plane of each layer, and the sealing member is wrinkled. Is generated and deformed. Such deformation is likely to occur because the sealing member is rapidly cooled, especially when it comes into contact with the transport roller. When the sealing member is deformed, the adhesion between the organic electronic device base material and the sealing member is lowered due to the mixing of air bubbles or the like, so that the long-term storage property of the organic electronic device is lowered.
 そこで、本発明は、封止部材にしわ等の変形が生じることを抑制し、長期保管性に優れた有機電子デバイスの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing an organic electronic device having excellent long-term storage stability by suppressing the occurrence of deformation such as wrinkles in the sealing member.
 本発明の有機電子デバイスの製造方法は、支持基材の主面上に、第1の電極、有機機能層及び第2の電極をこの順に有する有機電子デバイス基材を形成する工程と、樹脂層、金属層及び粘接着材層がこの順に積層された封止部材を乾燥する工程と、乾燥された封止部材を、粘接着材層を介して有機電子デバイス基材に貼合する工程と、を備え、金属層の耐力が100~200N/mmである。
 本発明の有機電子デバイスの製造方法では、封止部材は耐力が100N/mm以上である金属層を有する。このような金属層は変形しにくいため、乾燥後の温度変化に伴う樹脂層及び粘接着材層の変形を抑制し、しわ等の変形が生じることを防ぐことができる。当該金属層の耐力が高すぎると、封止部材をローラで搬送する際に、封止部材が硬すぎて搬送路の形状になじみにくく、搬送することが困難になる。しかしながら、本発明の製造方法における封止部材では、耐力が200N/mm以下の金属層を使用しているため、適度な可撓性を有しており、ローラで搬送することが容易である。
 このような金属層の材質としては、加工硬化されたアルミニウムが好ましい。アルミニウムは比重が小さいため、有機電子デバイス製造装置の荷重負荷を抑制できる。金属層の材質を硬質アルミニウムにすることでしわ等の変形が生じることをより効果的に防ぐことができる。
The method for producing an organic electronic device of the present invention includes a step of forming an organic electronic device base material having a first electrode, an organic functional layer and a second electrode in this order on a main surface of a supporting base material, and a resin layer. , A step of drying the sealing member in which the metal layer and the adhesive layer are laminated in this order, and a step of bonding the dried sealing member to the organic electronic device base material via the adhesive layer. The metal layer has a strength of 100 to 200 N / mm 2 .
In the method for manufacturing an organic electronic device of the present invention, the sealing member has a metal layer having a proof stress of 100 N / mm 2 or more. Since such a metal layer is not easily deformed, it is possible to suppress deformation of the resin layer and the adhesive adhesive layer due to a temperature change after drying, and prevent deformation such as wrinkles. If the proof stress of the metal layer is too high, when the sealing member is conveyed by the roller, the sealing member is too hard to fit into the shape of the conveying path, and it becomes difficult to convey the sealing member. However, since the sealing member in the manufacturing method of the present invention uses a metal layer having a proof stress of 200 N / mm 2 or less, it has appropriate flexibility and can be easily conveyed by a roller. ..
As the material of such a metal layer, work-hardened aluminum is preferable. Since aluminum has a small specific gravity, it is possible to suppress the load on the organic electronic device manufacturing apparatus. By using hard aluminum as the material of the metal layer, it is possible to more effectively prevent deformation such as wrinkles.
 本発明の有機電子デバイスの製造方法は、支持基材の主面上に、第1の電極、有機機能層及び第2の電極をこの順に有する有機電子デバイス基材を形成する工程と、樹脂層、金属層及び粘接着材層がこの順に積層された封止部材を乾燥する工程と、乾燥された封止部材を、粘接着材層を介して有機電子デバイス基材に貼合する工程と、を備え、金属層の材質が加工硬化されたアルミニウムである製造方法であってもよい。
 加工硬化されたアルミニウムは、変形しにくいため、乾燥後の温度変化に伴う樹脂層及び粘接着材層の変形を抑制し、しわ等の変形が生じることを防ぐことができると共に、適度な可撓性を有しており、ローラで搬送することが容易である。さらに、アルミニウムは比重が小さいため、有機電子デバイス製造装置の荷重負荷を抑制できる。
 より効果的にしわ等の変形が生じることを防ぐことができ、ローラでの搬送がより容易になる傾向にあることから、金属層の耐力は、100~200N/mmであると好ましい。
The method for producing an organic electronic device of the present invention includes a step of forming an organic electronic device base material having a first electrode, an organic functional layer and a second electrode in this order on a main surface of a supporting base material, and a resin layer. , A step of drying the sealing member in which the metal layer and the adhesive layer are laminated in this order, and a step of bonding the dried sealing member to the organic electronic device base material via the adhesive layer. The method may be such that the material of the metal layer is work-hardened aluminum.
Since the work-hardened aluminum is not easily deformed, it is possible to suppress the deformation of the resin layer and the adhesive adhesive layer due to the temperature change after drying, prevent the deformation such as wrinkles, and moderately possible. It has flexibility and is easy to convey with rollers. Further, since aluminum has a small specific gravity, it is possible to suppress the load of the organic electronic device manufacturing apparatus.
The proof stress of the metal layer is preferably 100 to 200 N / mm 2 because it can more effectively prevent deformation such as wrinkles and tends to facilitate transportation by a roller.
 上記金属層の材質が1N30-H材であるであると好ましい。 It is preferable that the material of the metal layer is 1N30-H material.
 上記封止部材の粘接着材層の表面に保護フィルムが設けられており、上記貼合する工程において、封止部材から当該保護フィルムを剥離して、封止部材を有機電子デバイス基材に貼合すると好ましい。 A protective film is provided on the surface of the adhesive layer of the sealing member, and in the bonding step, the protective film is peeled off from the sealing member to make the sealing member a base material for an organic electronic device. It is preferable to bond them together.
 本発明によれば、封止部材にしわ等の変形が生じることを抑制し、長期保管性に優れた有機電子デバイスの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an organic electronic device having excellent long-term storage property by suppressing deformation such as wrinkles in the sealing member.
図1は、一実施形態に係る有機電子デバイスの製造方法で製造される有機電子デバイスの一例である有機ELデバイスの構成を示す模式図である。FIG. 1 is a schematic view showing a configuration of an organic EL device which is an example of an organic electronic device manufactured by the method for manufacturing an organic electronic device according to an embodiment. 図2は、有機ELデバイスの製造に使用する長尺の保護フィルム付き封止部材の側面図である。FIG. 2 is a side view of a long sealing member with a protective film used for manufacturing an organic EL device. 図3は、図1に示した有機ELデバイスの製造方法の一例のフローチャートである。FIG. 3 is a flowchart of an example of the method for manufacturing the organic EL device shown in FIG. 図4は、有機ELデバイス基材(有機電子デバイス基材)の構成を説明するための図面である。FIG. 4 is a drawing for explaining the configuration of an organic EL device base material (organic electronic device base material). 図5は、乾燥工程及び貼合工程を説明するための図面である。FIG. 5 is a drawing for explaining a drying process and a bonding process.
 以下、本発明の実施形態について図面を参照しながら説明する。同一の要素には同一符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。本発明で製造される有機電子デバイスとしては、例えば有機ELデバイス、有機太陽電池、有機フォトディテクタ及び有機トランジスタが挙げられる。以下に説明する実施形態は、断らない限り、有機電子デバイスの一例である有機ELデバイスの製造方法の実施形態である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same elements are designated by the same reference numerals, and duplicate description will be omitted. The dimensional ratios in the drawings do not always match those described. Examples of the organic electronic device manufactured by the present invention include an organic EL device, an organic solar cell, an organic photodetector, and an organic transistor. Unless otherwise specified, the embodiments described below are embodiments of a method for manufacturing an organic EL device, which is an example of an organic electronic device.
 図1に模式的に示されているように、一実施形態に係る有機ELデバイスの製造方法で製造される有機ELデバイス10は、基板12と、陽極(第1の電極)14と、有機EL部18(有機機能層)と、陰極(第2の電極)20と、を備える。有機ELデバイス10は、例えば照明に使用される有機EL照明パネルである。 As schematically shown in FIG. 1, the organic EL device 10 manufactured by the method for manufacturing an organic EL device according to one embodiment includes a substrate 12, an anode (first electrode) 14, and an organic EL. A unit 18 (organic functional layer) and a cathode (second electrode) 20 are provided. The organic EL device 10 is, for example, an organic EL lighting panel used for lighting.
 有機ELデバイス10は、陰極20に電気的に接続された引出電極16を備えてもよい。有機ELデバイス10は、少なくとも有機EL部18を封止する封止部材22を備えてもよい。有機ELデバイス10は、陽極14側から光を出射する形態、又は、陰極20側から光を出射する形態を取り得る。以下では、有機ELデバイス10として、引出電極16及び封止部材22を備えており、陽極14側から光を出射する形態について説明する。 The organic EL device 10 may include an extraction electrode 16 electrically connected to the cathode 20. The organic EL device 10 may include at least a sealing member 22 that seals the organic EL portion 18. The organic EL device 10 may take a form of emitting light from the anode 14 side or a form of emitting light from the cathode 20 side. Hereinafter, a mode in which a drawer electrode 16 and a sealing member 22 are provided as the organic EL device 10 and light is emitted from the anode 14 side will be described.
 [基板]
 基板12は、可視光(波長400nm~800nmの光)に対して透光性を有するものである。基板12はフィルム状を呈してもよく、基板12の厚さは、例えば、30μm以上700μm以下である。
[substrate]
The substrate 12 is transparent to visible light (light having a wavelength of 400 nm to 800 nm). The substrate 12 may be in the form of a film, and the thickness of the substrate 12 is, for example, 30 μm or more and 700 μm or less.
 基板12は、可撓性を有する可撓性基板であってもよい。可撓性基板とは、可撓性を有する基板であり、可撓性とは、基板に所定の力を加えても剪断したり破断したりすることがなく、基板を撓めることが可能な基板である。基板12の例としては、プラスチックフィルム又は高分子フィルムである。基板12の材料としては、例えばポリエーテルスルホン(PES);ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;エポキシ樹脂などが挙げられる。 The substrate 12 may be a flexible substrate having flexibility. The flexible substrate is a substrate having flexibility, and the flexibility means that the substrate can be bent without being sheared or broken even when a predetermined force is applied to the substrate. Board. An example of the substrate 12 is a plastic film or a polymer film. Examples of the material of the substrate 12 include polyether sulfone (PES); polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resin such as polyethylene (PE), polypropylene (PP) and cyclic polyolefin; polyamide. Resins; polypropylene resins; polystyrene resins; polyvinyl alcohol resins; saponified products of ethylene-vinyl acetate copolymers; polyacrylonitrile resins; acetal resins; polyimide resins; epoxy resins and the like.
 基板12には、有機ELデバイス10を駆動するための駆動回路(例えば、薄膜トランジスタなどを含む回路)が形成されていてもよい。このような駆動回路は、通常、透明材料から構成される。 A drive circuit (for example, a circuit including a thin film transistor or the like) for driving the organic EL device 10 may be formed on the substrate 12. Such drive circuits are usually constructed of transparent material.
 基板12には、水分バリア層が設けられてもよい。水分バリア層は、水分をバリアする機能に加えて、ガス(例えば酸素)をバリアする機能を有してもよい。水分バリア層は、例えば、ケイ素、酸素及び炭素からなる膜、又は、ケイ素、酸素、炭素及び窒素からなる膜であり得る。具体的には、水分バリア層の材料の例は、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等である。水分バリア層の厚さの例は、100nm以上10μm以下である。 The substrate 12 may be provided with a moisture barrier layer. The moisture barrier layer may have a function of barriering gas (for example, oxygen) in addition to a function of barriering moisture. The moisture barrier layer can be, for example, a film made of silicon, oxygen and carbon, or a film made of silicon, oxygen, carbon and nitrogen. Specifically, examples of the material of the moisture barrier layer are silicon oxide, silicon nitride, silicon oxynitride and the like. An example of the thickness of the moisture barrier layer is 100 nm or more and 10 μm or less.
 [陽極]
 陽極14は、基板12上に設けられている。陽極14には、光透過性を示す電極が用いられてもよい。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。陽極14は、導電体(例えば金属)からなるネットワーク構造を有してもよい。
[anode]
The anode 14 is provided on the substrate 12. An electrode exhibiting light transmission may be used for the anode 14. As the electrode exhibiting light transmittance, a thin film such as a metal oxide, a metal sulfide, or a metal having high electric conductivity can be used, and a thin film having high light transmittance is preferably used. The anode 14 may have a network structure made of a conductor (for example, metal).
 陽極14の厚さは、光の透過性、電気伝導度等を考慮して決定され得る。陽極14の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。 The thickness of the anode 14 can be determined in consideration of light transmission, electrical conductivity, and the like. The thickness of the anode 14 is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 陽極14の材料としては、例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅等が挙げられ、これらの中でもITO、IZO、又は酸化スズが好ましい。陽極14は、例示した材料からなる薄膜として形成され得る。陽極14の材料には、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物を用いてもよい。この場合、陽極14は、透明導電膜として形成され得る。前述したように、陽極14は、導電体(例えば金属)からなるネットワーク構造を有してもよい。 Examples of the material of the anode 14 include indium oxide, zinc oxide, tin oxide, indium tin oxide (abbreviated as ITO), indium zinc oxide (indium Zinc Oxide: abbreviated as IZO), gold, platinum, silver, and copper. Among these, ITO, IZO, or tin oxide is preferable. The anode 14 can be formed as a thin film made of the illustrated materials. As the material of the anode 14, an organic substance such as polyaniline and its derivative, polythiophene and its derivative may be used. In this case, the anode 14 can be formed as a transparent conductive film. As described above, the anode 14 may have a network structure made of a conductor (for example, metal).
 [引出電極]
 引出電極16は、陽極14と絶縁した状態で基板12上に設けられている。引出電極16は、陰極20に接続されており、陰極20を外部接続するために使用され得る。引出電極16の材料及び厚さは、陽極14と同様とし得る。
[Drawer electrode]
The extraction electrode 16 is provided on the substrate 12 in a state of being insulated from the anode 14. The extraction electrode 16 is connected to the cathode 20 and can be used to externally connect the cathode 20. The material and thickness of the extraction electrode 16 may be the same as that of the anode 14.
 [有機EL部]
 有機EL部18は、発光層181を含み、陽極14及び陰極20に印加された電力(例えば電圧)に応じて、キャリアの移動及びキャリアの再結合などの有機ELデバイス10の発光に寄与する機能部である。
[Organic EL part]
The organic EL unit 18 includes a light emitting layer 181 and has a function of contributing to light emission of the organic EL device 10 such as carrier movement and carrier recombination according to electric power (for example, voltage) applied to the anode 14 and the cathode 20. It is a department.
 本実施形態では、有機EL部18は陽極14の一部を覆うように設けられており、有機EL部18の一部は、図1に示したように、陽極14と引出電極16との間の基板12上にも配置されている。これにより、陽極14と他の電極(例えば、陰極20及び引出電極16)との短絡が防止されている。 In the present embodiment, the organic EL portion 18 is provided so as to cover a part of the anode 14, and a part of the organic EL portion 18 is between the anode 14 and the extraction electrode 16 as shown in FIG. It is also arranged on the substrate 12 of. As a result, a short circuit between the anode 14 and other electrodes (for example, the cathode 20 and the extraction electrode 16) is prevented.
 図1に示した例では、有機EL部18は単層構造を有する。すなわち、有機EL部18は、発光層181から構成されている。発光層181は、陽極14上に設けられている有機ELデバイス(有機電子デバイス)用の機能層である。発光層181の厚さは、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは10nm~200nmである。 In the example shown in FIG. 1, the organic EL unit 18 has a single-layer structure. That is, the organic EL unit 18 is composed of the light emitting layer 181. The light emitting layer 181 is a functional layer for an organic EL device (organic electronic device) provided on the anode 14. The thickness of the light emitting layer 181 is, for example, 1 nm to 1 μm, preferably 2 nm to 500 nm, and more preferably 10 nm to 200 nm.
 発光層181は、通常、主として蛍光及びりん光の少なくとも一方を発光する有機物、又は、その有機物とこれを補助するドーパントとから形成される。ドーパントは、例えば発光効率の向上や、発光波長を変化させるために加えられる。発光層181に含まれる有機物は、低分子化合物でも高分子化合物でもよい。当該有機物は、有機金属錯体であってもよい。発光層181を構成する発光材料としては、下記の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料等が挙げられる。 The light emitting layer 181 is usually formed of an organic substance that mainly emits at least one of fluorescence and phosphorescence, or an organic substance thereof and a dopant that assists the organic substance. Dopants are added, for example, to improve luminous efficiency and change the emission wavelength. The organic substance contained in the light emitting layer 181 may be a low molecular weight compound or a high molecular weight compound. The organic substance may be an organometallic complex. Examples of the light emitting material constituting the light emitting layer 181 include the following pigment-based materials, metal complex-based materials, polymer-based materials, and dopant materials.
 色素系材料としては、例えばシクロペンタミン若しくはその誘導体、テトラフェニルブタジエン若しくはその誘導体、トリフェニルアミン若しくはその誘導体、オキサジアゾール若しくはその誘導体、ピラゾロキノリン若しくはその誘導体、ジスチリルベンゼン若しくはその誘導体、ジスチリルアリーレン若しくはその誘導体、ピロール若しくはその誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン若しくはその誘導体、ペリレン若しくはその誘導体、オリゴチオフェン若しくはその誘導体、オキサジアゾールダイマー若しくはその誘導体、ピラゾリンダイマー若しくはその誘導体、キナクリドン若しくはその誘導体、クマリン若しくはその誘導体等が挙げられる。 Examples of the dye-based material include cyclopentamine or a derivative thereof, tetraphenylbutadiene or a derivative thereof, triphenylamine or a derivative thereof, oxadiazole or a derivative thereof, pyrazoloquinolin or a derivative thereof, distyrylbenzene or a derivative thereof, or di. Styrylarylene or its derivative, pyrrole or its derivative, thiophene ring compound, pyridine ring compound, perinone or its derivative, perylene or its derivative, oligothiophene or its derivative, oxaziazole dimer or its derivative, pyrazoline dimer or its derivative, Examples thereof include quinacridone or a derivative thereof, coumarin or a derivative thereof.
 金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、又はAl、Zn、Be、Pt、Ir等を中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を配位子に有する金属錯体が挙げられる。金属錯体としては、例えばイリジウム錯体、白金錯体等の三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体等が挙げられる。 Examples of the metal complex material include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Pt, and Ir as the central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline. Examples thereof include metal complexes having a structure or the like as a ligand. Examples of the metal complex include a metal complex that emits light from a triple-term excited state such as an iridium complex and a platinum complex, an aluminum quinolinol complex, a benzoquinolinol berylium complex, a benzoxazolyl zinc complex, a benzothiazole zinc complex, and an azomethylzinc complex. Examples thereof include a porphyrin zinc complex and a phenanthroline europium complex.
 高分子系材料としては、例えばポリパラフェニレンビニレン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリパラフェニレン若しくはその誘導体、ポリシラン若しくはその誘導体、ポリアセチレン若しくはその誘導体、ポリフルオレン若しくはその誘導体、ポリビニルカルバゾール若しくはその誘導体、上記色素材料及び金属錯体材料の少なくとも一方を高分子化した材料等が挙げられる。 Examples of the polymer-based material include polyparaphenylene vinylene or a derivative thereof, polythiophene or a derivative thereof, polyparaphenylene or a derivative thereof, polysilane or a derivative thereof, polyacetylene or a derivative thereof, polyfluorene or a derivative thereof, polyvinylcarbazole or a derivative thereof, and the like. Examples thereof include materials obtained by polymerizing at least one of the above dye material and metal complex material.
 ドーパント材料としては、例えばペリレン若しくはその誘導体、クマリン若しくはその誘導体、ルブレン若しくはその誘導体、キナクリドン若しくはその誘導体、スクアリウム若しくはその誘導体、ポルフィリン若しくはその誘導体、スチリル色素、テトラセン若しくはその誘導体、ピラゾロン若しくはその誘導体、デカシクレン若しくはその誘導体、フェノキサゾン若しくはその誘導体等が挙げられる。 Examples of the dopant material include perylene or its derivative, coumarin or its derivative, rubrene or its derivative, quinacridone or its derivative, squalium or its derivative, porphyrin or its derivative, styryl dye, tetracene or its derivative, pyrazolone or its derivative, decacyclene. Alternatively, a derivative thereof, phenoxazone or a derivative thereof, etc. may be mentioned.
 図1では、有機EL部18が発光層181である形態を例示しているが、有機EL部18は、発光層181と、他の機能層を含む積層体でもよい。 FIG. 1 illustrates a form in which the organic EL unit 18 is a light emitting layer 181. However, the organic EL unit 18 may be a laminate including a light emitting layer 181 and another functional layer.
 陽極14と発光層181との間に設けられる機能層の例としては、正孔注入層及び正孔輸送層が挙げられる。陰極20と発光層181との間に設けられる機能層の例としては、電子注入層及び電子輸送層が挙げられる。正孔注入層、正孔輸送層、電子輸送層及び電子注入層の厚さは、有機ELデバイス10のデバイス性能などに応じて適宜設定され得る。 Examples of the functional layer provided between the anode 14 and the light emitting layer 181 include a hole injection layer and a hole transport layer. Examples of the functional layer provided between the cathode 20 and the light emitting layer 181 include an electron injection layer and an electron transport layer. The thicknesses of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer can be appropriately set according to the device performance of the organic EL device 10.
 正孔注入層は、陽極14から発光層181への正孔注入効率を改善する機能を有する層である。正孔注入層の材料には、公知の正孔注入材料が用いられ得る。正孔注入材料としては、例えば酸化バナジウム、酸化モリブデン、酸化ルテニウム、及び、酸化アルミニウム等の酸化物、フェニルアミン化合物、スターバースト型アミン化合物、フタロシアニン化合物、アモルファスカーボン、ポリアニリン、及び、ポリエチレンジオキシチオフェン(PEDOT)等のポリチオフェン誘導体を挙げることができる。 The hole injection layer is a layer having a function of improving the hole injection efficiency from the anode 14 to the light emitting layer 181. A known hole injection material can be used as the material of the hole injection layer. Examples of the hole injection material include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine compounds, starburst amine compounds, phthalocyanine compounds, amorphous carbon, polyaniline, and polyethylenedioxythiophene. (PEDOT) and other polythiophene derivatives can be mentioned.
 正孔輸送層は、陽極14、正孔注入層又は陽極14により近い正孔輸送層から発光層181への正孔注入効率を改善する機能を有する層である。正孔輸送層の材料には、公知の正孔輸送材料が用いられ得る。正孔輸送層の材料としては、例えばポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン若しくはその誘導体、ピラゾリン若しくはその誘導体、アリールアミン若しくはその誘導体、スチルベン若しくはその誘導体、トリフェニルジアミン若しくはその誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体等が挙げられる。正孔輸送層の材料としては、例えば特開2012-144722号公報に開示されている正孔輸層材料も挙げられる。 The hole transport layer is a layer having a function of improving the hole injection efficiency from the anode 14, the hole injection layer, or the hole transport layer closer to the anode 14 to the light emitting layer 181. A known hole transport material can be used as the material of the hole transport layer. Examples of the material of the hole transport layer include polyvinylcarbazole or its derivative, polysilane or its derivative, polysiloxane or its derivative having an aromatic amine in the side chain or main chain, pyrazoline or its derivative, arylamine or its derivative, and stylben. Or its derivative, triphenyldiamine or its derivative, polyaniline or its derivative, polythiophene or its derivative, polyarylamine or its derivative, polypyrrole or its derivative, poly (p-phenylene vinylene) or its derivative, or poly (2,5) -Thienylene vinylene) or its derivatives and the like. Examples of the material of the hole transport layer include the hole transport layer material disclosed in Japanese Patent Application Laid-Open No. 2012-144722.
 電子輸送層は、陰極20、電子注入層又は陰極20により近い電子輸送層からの電子注入効率を改善する機能を有する層である。電子輸送層を構成する電子輸送材料には、公知の材料が用いられ得る。電子輸送層を構成する電子輸送材料としては、オキサジアゾール若しくはその誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン若しくはその誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン若しくはその誘導体、8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。 The electron transport layer is a layer having a function of improving the electron injection efficiency from the cathode 20, the electron injection layer, or the electron transport layer closer to the cathode 20. A known material can be used as the electron transport material constituting the electron transport layer. Examples of the electron transporting material constituting the electron transporting layer include oxadiazole or a derivative thereof, anthracinodimethane or a derivative thereof, benzoquinone or a derivative thereof, naphthoquinone or a derivative thereof, anthraquinone or a derivative thereof, tetracyanoanthraquinodimethane or a derivative thereof. Derivatives, fluorenone or its derivatives, diphenyldicyanoethylene or its derivatives, diphenoquinone or its derivatives, metal complexes of 8-hydroxyquinoline or its derivatives, polyquinolin or its derivatives, polyquinoxalin or its derivatives, polyfluorene or its derivatives, etc. Can be done.
 電子注入層は、陰極20から発光層181への電子注入効率を改善する機能を有する層である。電子注入層は、陰極20の一部を構成する場合もある。電子注入層の材料には、公知の電子注入材料が用いられ得る。電子注入層の材料としては、例えばアルカリ金属、アルカリ土類金属、アルカリ金属及びアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、アルカリ金属若しくはアルカリ土類金属のハロゲン化物、アルカリ金属若しくはアルカリ土類金属の炭酸塩、又はこれらの物質の混合物等が挙げられる。 The electron injection layer is a layer having a function of improving the electron injection efficiency from the cathode 20 to the light emitting layer 181. The electron injection layer may form a part of the cathode 20. A known electron injection material can be used as the material of the electron injection layer. Examples of the material of the electron injection layer include alkali metals, alkaline earth metals, alkali metals and alloys containing one or more of alkaline earth metals, alkali metals or oxides of alkaline earth metals, alkali metals or alkaline soil. Examples thereof include halides of similar metals, carbonates of alkali metals or alkaline earth metals, or mixtures of these substances.
 上述した各種の機能層を含む有機ELデバイス10の層構成の例を以下に示す。
(a)陽極/発光層/陰極
(b)陽極/正孔注入層/発光層/陰極
(c)陽極/正孔注入層/発光層/電子注入層/陰極
(d)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(g)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(h)陽極/発光層/電子注入層/陰極
(i)陽極/発光層/電子輸送層/電子注入層/陰極
 記号「/」は、記号「/」の両側の層同士が接合していることを意味している。上記(a)の構成が図1に示した構成に対応する。
An example of the layer structure of the organic EL device 10 including the various functional layers described above is shown below.
(A) anode / light emitting layer / cathode (b) anode / hole injection layer / light emitting layer / cathode (c) anode / hole injection layer / light emitting layer / electron injection layer / cathode (d) anode / hole injection layer / Light emitting layer / electron transport layer / electron injection layer / cathode (e) anode / hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection layer / hole transport layer / light emitting layer / Electron injection layer / cathode (g) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (h) anode / light emitting layer / electron injection layer / cathode (i) anode / Light emitting layer / electron transport layer / electron injection layer / cathode The symbol "/" means that the layers on both sides of the symbol "/" are joined to each other. The configuration of (a) above corresponds to the configuration shown in FIG.
 有機ELデバイス10は単層の発光層181を有していても2層以上の発光層181を有していてもよい。上記(a)~(i)の層構成のうちのいずれか1つにおいて、陽極14と陰極20との間に配置された積層構造を「構造単位I」とすると、2層の発光層181を有する有機ELデバイス10の構成として、例えば、下記(j)に示す層構成を挙げることができる。2個ある(構造単位I)の層構成は互いに同じであっても、異なっていてもよい。
(j)陽極/(構造単位I)/電荷発生層/(構造単位I)/陰極
 ここで電荷発生層とは、電界を印加することにより、正孔と電子とを発生する層である。電荷発生層としては、例えば酸化バナジウム、ITO、酸化モリブデンなどからなる薄膜を挙げることができる。
The organic EL device 10 may have a single-layer light emitting layer 181 or may have two or more light emitting layers 181. In any one of the layer configurations (a) to (i) above, assuming that the laminated structure arranged between the anode 14 and the cathode 20 is the "structural unit I", the two light emitting layers 181 are formed. As the configuration of the organic EL device 10 to have, for example, the layer configuration shown in (j) below can be mentioned. The layer structure of the two (structural unit I) may be the same as or different from each other.
(J) Anode / (Structural unit I) / Charge generation layer / (Structural unit I) / Cathode Here, the charge generation layer is a layer that generates holes and electrons by applying an electric field. Examples of the charge generation layer include a thin film made of vanadium oxide, ITO, molybdenum oxide, and the like.
 「(構造単位I)/電荷発生層」を「構造単位II」とすると、3層以上の発光層181を有する有機ELデバイス10の構成として、例えば、以下の(k)に示す層構成を挙げることができる。
(k)陽極/(構造単位II)x/(構造単位I)/陰極
 記号「x」は、2以上の整数を表し、「(構造単位II)x」は、(構造単位II)がx段積層された積層体を表す。複数ある(構造単位II)の層構成は同じでも、異なっていてもよい。
Assuming that "(structural unit I) / charge generation layer" is "structural unit II", examples of the configuration of the organic EL device 10 having three or more light emitting layers 181 include the layer configuration shown in (k) below. be able to.
(K) Anode / (Structural unit II) x / (Structural unit I) / Cathode The symbol "x" represents an integer of 2 or more, and "(Structural unit II) x" has (Structural unit II) in x stages. Represents a laminated body. The layer structure of the plurality of (structural unit II) may be the same or different.
 電荷発生層を設けずに、複数の発光層181を直接的に積層させて有機ELデバイス10を構成してもよい。 The organic EL device 10 may be configured by directly laminating a plurality of light emitting layers 181 without providing a charge generation layer.
 [陰極]
 陰極20は、有機EL部18上に設けられている。本実施形態のように、有機ELデバイス10が引出電極16を有する形態では、陰極20は、引出電極16に接続されるように、有機EL部18上に設けられ、この場合、陰極20の一部は、基板12上に配置されてもよい。陰極20の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。陰極20の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
[cathode]
The cathode 20 is provided on the organic EL unit 18. In the embodiment in which the organic EL device 10 has the extraction electrode 16 as in the present embodiment, the cathode 20 is provided on the organic EL unit 18 so as to be connected to the extraction electrode 16, and in this case, one of the cathodes 20. The unit may be arranged on the substrate 12. The optimum value of the thickness of the cathode 20 differs depending on the material used, and is set in consideration of electrical conductivity, durability, and the like. The thickness of the cathode 20 is usually 10 nm to 10 μm, preferably 20 nm to 1 μm, and more preferably 50 nm to 500 nm.
 発光層181からの光を陽極14側に陰極20で反射するために、陰極20の材料は、可視光反射率の高い材料が好ましい。陰極20の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表の13族金属等が挙げられる。陰極20として、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いてもよい。 In order to reflect the light from the light emitting layer 181 toward the anode 14 side by the cathode 20, the material of the cathode 20 is preferably a material having high visible light reflectance. Examples of the material of the cathode 20 include alkali metals, alkaline earth metals, transition metals, and Group 13 metals in the periodic table. As the cathode 20, a transparent conductive electrode made of a conductive metal oxide, a conductive organic substance, or the like may be used.
 [封止部材]
 封止部材22は、少なくとも有機EL部18を封止するための部材である。封止部材22は、陰極20上に設けられている。本実施形態において、封止部材22は、陽極14の一部及び引出電極16の一部が、封止部材22から突出するように設けられている。陽極14及び引出電極16のうち封止部材22の外部に位置する部分は、外部接続のための領域として機能する。封止部材22は、基板12側から見て、粘接着材層222と、金属層223と、樹脂層224とをこの順に有する。
[Sealing member]
The sealing member 22 is a member for sealing at least the organic EL portion 18. The sealing member 22 is provided on the cathode 20. In the present embodiment, the sealing member 22 is provided so that a part of the anode 14 and a part of the extraction electrode 16 project from the sealing member 22. The portion of the anode 14 and the extraction electrode 16 located outside the sealing member 22 functions as a region for external connection. The sealing member 22 has an adhesive layer 222, a metal layer 223, and a resin layer 224 in this order when viewed from the substrate 12 side.
 樹脂層224は、有機ELデバイス10において基板12と反対側の最表面に位置する。樹脂層224の材質としては、PET等の透明なプラスチックフィルムが挙げられる。
樹脂層224は6~51μmの厚さであると好ましい。
The resin layer 224 is located on the outermost surface of the organic EL device 10 on the opposite side of the substrate 12. Examples of the material of the resin layer 224 include a transparent plastic film such as PET.
The resin layer 224 preferably has a thickness of 6 to 51 μm.
 金属層223は、主成分として金属を含む層であり、当該金属は、金属の単体であっても合金であってもよい。本実施形態の有機ELデバイス10における金属層223は、耐力が100~200N/mmであるとの条件、及び金属層223の材質が加工硬化されたアルミニウムであるとの条件のうち、少なくとも一方の条件を満たす。 The metal layer 223 is a layer containing a metal as a main component, and the metal may be a simple substance of a metal or an alloy. The metal layer 223 in the organic EL device 10 of the present embodiment has a proof stress of 100 to 200 N / mm 2 , and at least one of the conditions that the material of the metal layer 223 is work-hardened aluminum. Satisfy the conditions.
 金属層223の耐力は、100~200N/mmであると好ましく、110~190N/mmであるとより好ましく、120~180N/mmであると更に好ましく、150~170N/mmであると特に好ましい。本実施形態の封止部材は、耐力が100~200N/mmの金属層223を有するため、乾燥工程の後、封止部材が温度変化してもしわ等の変形が生じることを抑制できると共に、ローラで搬送することが容易である。本明細書で言う「耐力」とは、JISZ2241(金属材料引張試験方法)に規定する0.2%耐力(オフセット法)を意味する。 Strength of the metal layer 223 is preferable to be 100 ~ 200N / mm 2, more preferable to be 110 ~ 190N / mm 2, further preferable to be 120 ~ 180N / mm 2, is a 150 ~ 170N / mm 2 Is particularly preferable. Since the sealing member of the present embodiment has a metal layer 223 having a proof stress of 100 to 200 N / mm 2 , it is possible to suppress deformation such as wrinkles even if the temperature of the sealing member changes after the drying step. , Easy to transport with rollers. The "proof stress" referred to in the present specification means a 0.2% proof stress (offset method) defined in JISZ2241 (metal material tensile test method).
 金属層223の厚さは、5~50μmであることが好ましく、10~40μmであるとがより好ましい。金属層223の厚さが5~50μmであると、搬送性と封止性能を両立することが可能となる。 The thickness of the metal layer 223 is preferably 5 to 50 μm, more preferably 10 to 40 μm. When the thickness of the metal layer 223 is 5 to 50 μm, it is possible to achieve both transportability and sealing performance.
 金属層223の材質としては、加工硬化されたアルミニウム(以下、硬質アルミニウムとも言う。)、銅等が挙げられる。しわ等の変形が生じることを抑制できると共に、ローラで搬送することが容易である傾向にあり、更に比重が小さいため、装置への荷重負荷を軽減できる傾向があることから硬質アルミニウムが特に好ましい。 Examples of the material of the metal layer 223 include work-hardened aluminum (hereinafter, also referred to as hard aluminum) and copper. Hard aluminum is particularly preferable because it can suppress deformation such as wrinkles, tends to be easily conveyed by rollers, and has a small specific gravity, so that it tends to reduce the load on the device.
 ここで、硬質アルミニウムとは、加工(圧延)を施して加工硬化させた状態のアルミニウム箔を意味し、例えば、加工硬化上がりの箔、加工硬化後に適度な熱処理を施した箔等が挙げられ、一般的にJIS規格(JIS H0001)で用いられている質別記号HX1、HX2、HX3、HX4、HX5、HX6、HX7、HX8、HX9のもの(ただし、X:1~3)が挙げられる。 Here, the hard aluminum means an aluminum foil in a state of being work-hardened by being processed (rolled), and examples thereof include a foil after work hardening, a foil which has been subjected to an appropriate heat treatment after work hardening, and the like. Examples of the classification symbols HX1, HX2, HX3, HX4, HX5, HX6, HX7, HX8, and HX9 generally used in the JIS standard (JIS H0001) (however, X: 1 to 3) can be mentioned.
 硬質アルミニウムのより具体的な材質としては、特に限定されるものではないが、JIS H4160で定義される1N30-H等が挙げられる。一般的に、1N30-Hの耐力は、150~170N/mmである。 More specific materials of hard aluminum include, but are not limited to, 1N30-H defined by JIS H4160 and the like. Generally, the proof stress of 1N30-H is 150 to 170 N / mm 2 .
 粘接着材層222は、金属層223における基板12側の表面に設けられており、上記金属層223を、陽極14、有機EL部18及び陰極20が形成された基板12に接着させるとともに、水分バリアのために用いられる。粘接着材層222は、陽極14、有機EL部18及び陰極20からなる積層構造を埋設可能な厚さを有していればよいが、好ましくは1μm~100μm、より好ましくは5μm~60μm、さらに好ましくは10μm~30μmである。粘接着材層222の厚さが1μm以上であると、基板12表面の凹凸又は混入した塵埃を十分埋め込むことができる傾向にあり、それらに起因する有機EL部18への機械的なストレスを与えることによるダークスポットの発生を抑制できる。粘接着材層222の厚さが100μm以下であると、粘接着材層222の端面から浸入する水分の影響を受けにくくなる傾向にある。 The adhesive layer 222 is provided on the surface of the metal layer 223 on the substrate 12 side, and the metal layer 223 is adhered to the substrate 12 on which the anode 14, the organic EL portion 18, and the cathode 20 are formed. Used for moisture barrier. The adhesive layer 222 may have a thickness capable of embedding a laminated structure including an anode 14, an organic EL portion 18, and a cathode 20, but is preferably 1 μm to 100 μm, more preferably 5 μm to 60 μm. More preferably, it is 10 μm to 30 μm. When the thickness of the adhesive layer 222 is 1 μm or more, unevenness on the surface of the substrate 12 or mixed dust tends to be sufficiently embedded, and mechanical stress on the organic EL portion 18 due to these tends to be sufficiently embedded. It is possible to suppress the occurrence of dark spots by giving. When the thickness of the adhesive layer 222 is 100 μm or less, it tends to be less affected by the moisture infiltrating from the end face of the adhesive layer 222.
 粘接着材層222の材料は、例えば感圧型の粘着樹脂である。粘着樹脂の例は、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体などのポリオレフィンの酸変性物、エチレン・酢酸ビニル共重合体の酸変性物、エチレン・アクリル酸共重合体、エチレン・メタクリル酸共重合体、ポリアミド、合成ゴム等の熱可塑性樹脂である。 The material of the adhesive layer 222 is, for example, a pressure-sensitive adhesive resin. Examples of adhesive resins include acid-modified products of polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers, acid-modified products of ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and ethylene-methacrylic acid copolymers. It is a thermoplastic resin such as copolymer, polyamide, and synthetic rubber.
 次に、図1に示した構成を有する有機ELデバイス10の製造方法の一例として、可撓性を有する長尺の基板12を用いて有機ELデバイス10を製造する方法について説明する。 Next, as an example of the method for manufacturing the organic EL device 10 having the configuration shown in FIG. 1, a method for manufacturing the organic EL device 10 using the long flexible substrate 12 will be described.
 本実施形態の有機ELデバイス10の製造方法では、図2に示した長尺の保護フィルム付き封止部材24を使用する。 In the method for manufacturing the organic EL device 10 of the present embodiment, the long sealing member 24 with a protective film shown in FIG. 2 is used.
 保護フィルム付き封止部材24は、封止部材22と、保護フィルム241とを有する。
保護フィルム241は、封止部材22が有する粘接着材層222の表面(金属層223と反対側の面)222aに貼合されている。保護フィルム241は、粘接着材層222にゴミが付着したり、封止部材22同士が貼合したりすることなどを防止するためのフィルムである。保護フィルム241の材料は、例えばシリコーンやフッ素化合物等で表面処理されたPETである。保護フィルム241の厚さは、例えば5μm~50μmである。
The sealing member 24 with a protective film has a sealing member 22 and a protective film 241.
The protective film 241 is attached to the surface (the surface opposite to the metal layer 223) 222a of the adhesive layer 222 of the sealing member 22. The protective film 241 is a film for preventing dust from adhering to the adhesive layer 222 and the sealing members 22 from sticking to each other. The material of the protective film 241 is, for example, PET surface-treated with silicone, a fluorine compound, or the like. The thickness of the protective film 241 is, for example, 5 μm to 50 μm.
 有機ELデバイス10の製造方法は、図3に示したように、デバイス基材形成工程S10と、乾燥工程S20と、貼合工程S30と、切断工程S40と、を有する。 As shown in FIG. 3, the method for manufacturing the organic EL device 10 includes a device base material forming step S10, a drying step S20, a bonding step S30, and a cutting step S40.
 [デバイス基材形成工程]
 デバイス基材形成工程S10では、図4に模式的に示したように、長尺の基板12上の長手方向に設定される複数のデバイス形成領域のそれぞれに、陽極14、引出電極16、有機EL部18及び陰極20が設けられた有機ELデバイス基材(有機電子デバイス基材)26を形成する。図4は、デバイス形成領域において、基板12を、その長手方向に直交する面で切断した場合の断面構成を模式的に示している。
[Device base material forming process]
In the device base material forming step S10, as schematically shown in FIG. 4, the anode 14, the extraction electrode 16, and the organic EL are in each of the plurality of device forming regions set in the longitudinal direction on the long substrate 12. An organic EL device base material (organic electronic device base material) 26 provided with a portion 18 and a cathode 20 is formed. FIG. 4 schematically shows a cross-sectional configuration when the substrate 12 is cut along a plane orthogonal to the longitudinal direction thereof in the device forming region.
 デバイス基材形成工程S10は、図3に示したように、陽極(第1の電極)形成工程S11、有機EL部形成工程S12及び陰極(第2の電極)形成工程S13を有する。 As shown in FIG. 3, the device base material forming step S10 includes an anode (first electrode) forming step S11, an organic EL portion forming step S12, and a cathode (second electrode) forming step S13.
 <陽極形成工程>
 陽極形成工程S11では、長尺の基板12の長手方向に設定される複数のデバイス形成領域にそれぞれ陽極14を形成する。この際、各デバイス形成領域に、陽極14とともに、引出電極16も形成する。デバイス形成領域は、製造する有機ELデバイス10の製品サイズに対応する領域である。
<Anode forming process>
In the anode forming step S11, the anode 14 is formed in each of a plurality of device forming regions set in the longitudinal direction of the long substrate 12. At this time, the extraction electrode 16 is also formed together with the anode 14 in each device formation region. The device forming region is a region corresponding to the product size of the organic EL device 10 to be manufactured.
 陽極14及び引出電極16は、有機ELデバイス10の製造において公知の方法で形成され得る。陽極14の形成方法としては、例えば真空成膜法、イオンプレーティング法、メッキ法、塗布法等が挙げられる。塗布法としては、例えばインクジェット印刷法が挙げられるが、陽極14を形成可能な塗布法であれば、他の公知の塗布法でもよい。インクジェット印刷法以外の公知の塗布法としては、例えばマイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法及びノズルプリント法等が挙げられる。 The anode 14 and the extraction electrode 16 can be formed by a method known in the manufacture of the organic EL device 10. Examples of the method for forming the anode 14 include a vacuum film forming method, an ion plating method, a plating method, and a coating method. Examples of the coating method include an inkjet printing method, but other known coating methods may be used as long as the anode 14 can be formed. Known coating methods other than the inkjet printing method include, for example, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, a spray coating method, a screen printing method, a flexographic printing method, and an offset printing method. And the nozzle printing method and the like.
 陽極14及び引出電極16は、例えば陽極14及び引出電極16となる導電膜を形成した後に、その導電膜を、陽極14及び引出電極16それぞれのパターンにパターニングすることで形成され得る。陽極14及び引出電極16は、陽極14及び引出電極16それぞれのパターンに対応した導電膜を直接形成することで作製されてもよい。 The anode 14 and the extraction electrode 16 can be formed, for example, by forming a conductive film to be the anode 14 and the extraction electrode 16 and then patterning the conductive film in each pattern of the anode 14 and the extraction electrode 16. The anode 14 and the extraction electrode 16 may be manufactured by directly forming a conductive film corresponding to each pattern of the anode 14 and the extraction electrode 16.
 <有機EL部形成工程>
 有機EL部形成工程S12では、陽極14上に有機EL部18を形成する。図1に示した形態では、有機EL部18は発光層181を有するため、有機EL部形成工程S12は、陽極14上に発光層181を形成する発光層(機能層)形成工程S12Aを有する。発光層181の形成方法としては、例えば真空成膜法、塗布法等が挙げられる。塗布法としては、例えばインクジェット印刷法が挙げられるが、発光層181を形成可能な塗布法であれば、他の公知の塗布法でもよい。インクジェット印刷法以外の公知の塗布法としては、陽極14を塗布法で形成する場合の説明で例示した塗布法が挙げられる。
<Organic EL part forming process>
In the organic EL portion forming step S12, the organic EL portion 18 is formed on the anode 14. In the form shown in FIG. 1, since the organic EL portion 18 has a light emitting layer 181. Therefore, the organic EL portion forming step S12 has a light emitting layer (functional layer) forming step S12A for forming the light emitting layer 181 on the anode 14. Examples of the method for forming the light emitting layer 181 include a vacuum film forming method and a coating method. Examples of the coating method include an inkjet printing method, but other known coating methods may be used as long as the coating method can form the light emitting layer 181. As a known coating method other than the inkjet printing method, the coating method exemplified in the description of the case where the anode 14 is formed by the coating method can be mentioned.
 有機EL部18が発光層181以外の機能層を含む場合、有機EL部18の層構成に応じて陽極14側から順に機能層を形成すればよい。各機能層の形成方法は、発光層形成工程S12Aと同様とし得る。 When the organic EL unit 18 includes a functional layer other than the light emitting layer 181, the functional layers may be formed in order from the anode 14 side according to the layer configuration of the organic EL unit 18. The method for forming each functional layer may be the same as that for the light emitting layer forming step S12A.
 <陰極形成工程>
 陰極形成工程S13では、有機EL部18上に陰極20を形成する。陰極20は、陽極14の形成方法と同様の方法で形成され得る。
<Cathode formation process>
In the cathode forming step S13, the cathode 20 is formed on the organic EL portion 18. The cathode 20 can be formed in the same manner as the method for forming the anode 14.
 デバイス基材形成工程S10において、陽極形成工程S11、有機EL部形成工程S12及び陰極形成工程S13のうち少なくとも一つの工程をロールツーロール方式で実施してもよい。例えば、有機EL部形成工程S12をロールツーロール方式で実施してもよいし、有機EL部形成工程S12及び陰極形成工程S13を連続的にロールツーロール方式で実施してもよい。 In the device base material forming step S10, at least one of the anode forming step S11, the organic EL portion forming step S12, and the cathode forming step S13 may be carried out by a roll-to-roll method. For example, the organic EL portion forming step S12 may be carried out by a roll-to-roll method, or the organic EL portion forming step S12 and the cathode forming step S13 may be continuously carried out by a roll-to-roll method.
 [乾燥工程]
 乾燥工程S20では、図2に示した保護フィルム付き封止部材24を乾燥させることによって、封止部材22を乾燥させる。一実施形態では、乾燥工程S20では、封止部材22が有する粘接着材層222の含水率が600ppm以下(ppmは質量基準であり、本明細書において同様である。)となるように、封止部材22を乾燥させる。乾燥工程S20については、後ほど詳述する。
[Drying process]
In the drying step S20, the sealing member 22 is dried by drying the sealing member 24 with the protective film shown in FIG. In one embodiment, in the drying step S20, the water content of the adhesive layer 222 of the sealing member 22 is 600 ppm or less (ppm is based on mass and is the same in the present specification). The sealing member 22 is dried. The drying step S20 will be described in detail later.
 [貼合工程]
 貼合工程S30では、乾燥工程S20により乾燥された封止部材24から保護フィルム241を剥離して得られる封止部材22を、有機ELデバイス基材26に粘接着材層222を介して貼合する。貼合工程S30については、後ほど詳述する。
[Lasting process]
In the bonding step S30, the sealing member 22 obtained by peeling the protective film 241 from the sealing member 24 dried in the drying step S20 is bonded to the organic EL device base material 26 via the adhesive layer 222. It fits. The bonding step S30 will be described in detail later.
 [切断工程]
 切断工程S40では、貼合工程S30により封止部材22が貼合された長尺の有機ELデバイス基材26を、その長手方向に搬送しながら、デバイス形成領域毎に基板12を切断する。これにより、封止部材22が貼合された長尺の有機ELデバイス基材26から製品サイズの複数の有機ELデバイス10が得られる。
[Cut process]
In the cutting step S40, the substrate 12 is cut for each device forming region while transporting the long organic EL device base material 26 to which the sealing member 22 is bonded in the bonding step S30 in the longitudinal direction. As a result, a plurality of product-sized organic EL devices 10 can be obtained from the long organic EL device base material 26 to which the sealing member 22 is bonded.
 次に、図5を参照して、乾燥工程S20及び貼合工程S30について詳細に説明する。
図5は、乾燥工程S20及び貼合工程S30を説明するための図面である。図5では、有機ELデバイス基材26及び封止部材24を模式的に太い実線で示している。本実施形態では、図5に示したように、乾燥室28で乾燥工程S20を実施した後、乾燥室28に連結部30を介して連結された貼合室32において貼合工程S30を実施する。図5では、有機ELデバイスは、ロールツーロール方式で製造される。
Next, the drying step S20 and the bonding step S30 will be described in detail with reference to FIG.
FIG. 5 is a drawing for explaining the drying step S20 and the bonding step S30. In FIG. 5, the organic EL device base material 26 and the sealing member 24 are schematically shown by a thick solid line. In the present embodiment, as shown in FIG. 5, after the drying step S20 is performed in the drying chamber 28, the bonding step S30 is performed in the bonding chamber 32 connected to the drying chamber 28 via the connecting portion 30. .. In FIG. 5, the organic EL device is manufactured by a roll-to-roll method.
 説明のために、保護フィルム付き封止部材24が巻かれたロールを第1ロール34Aと称し、封止部材22が貼合される前の長尺の有機ELデバイス基材26が巻かれたロールを第2ロール34Bと称し、貼合工程S30により封止部材22が貼合された有機ELデバイス基材26が巻かれたロールを第3ロール34Cと称す。 For the sake of explanation, the roll on which the sealing member 24 with the protective film is wound is referred to as the first roll 34A, and the roll on which the long organic EL device base material 26 before the sealing member 22 is bonded is wound. Is referred to as a second roll 34B, and a roll on which the organic EL device base material 26 to which the sealing member 22 is bonded in the bonding step S30 is wound is referred to as a third roll 34C.
 乾燥工程S20では、乾燥室28内の繰出し部36にセットされた第1ロール34Aから封止部材24を繰りだし、封止部材24の長手方向にガイドローラR1でガイドしながら搬送する。このように封止部材24を搬送しながら、搬送経路上に配置された少なくとも一つの赤外線照射部38から封止部材24に赤外線を照射して、封止部材24を加熱乾燥させる。図5では、複数の赤外線照射部38を利用して封止部材24を加熱乾燥させる場合を例示している。 In the drying step S20, the sealing member 24 is unwound from the first roll 34A set in the feeding portion 36 in the drying chamber 28, and is conveyed while being guided by the guide roller R1 in the longitudinal direction of the sealing member 24. While transporting the sealing member 24 in this way, the sealing member 24 is irradiated with infrared rays from at least one infrared irradiation unit 38 arranged on the transport path to heat and dry the sealing member 24. FIG. 5 illustrates a case where the sealing member 24 is heated and dried by using a plurality of infrared irradiation units 38.
 乾燥室28内において、封止部材24の搬送経路は、図5に示したように、複数回、折り返されてもよい。この場合、乾燥のための省スペース化を図りながら乾燥時間を確保可能である。赤外線照射部38は、例えば封止部材24の厚さ方向において、封止部材24の両側に配置されてもよいし、一方にのみ配置されてもよい。 In the drying chamber 28, the transport path of the sealing member 24 may be folded back a plurality of times as shown in FIG. In this case, it is possible to secure the drying time while saving space for drying. The infrared irradiation unit 38 may be arranged on both sides of the sealing member 24, or may be arranged only on one side, for example, in the thickness direction of the sealing member 24.
 乾燥室28内は、乾燥を効果的に行うために、例えば露点-40℃以下であり且つ不活性ガス雰囲気(例えば窒素ガス雰囲気)で満たされていてもよい。乾燥室28内は、乾燥を効果的に行うために、10Pa以下の減圧環境に設定されていてもよい。 The inside of the drying chamber 28 may be filled with, for example, a dew point of −40 ° C. or lower and an inert gas atmosphere (for example, a nitrogen gas atmosphere) in order to effectively perform drying. The inside of the drying chamber 28 may be set to a reduced pressure environment of 10 Pa or less in order to effectively perform drying.
 乾燥室28で乾燥された封止部材24は、連結部30を通過して貼合室32に搬入され、貼合室32で貼合工程S30が実施される。 The sealing member 24 dried in the drying chamber 28 passes through the connecting portion 30 and is carried into the bonding chamber 32, and the bonding step S30 is performed in the bonding chamber 32.
 貼合工程S30では、貼合室32内の繰出し部40にセットされた第2ロール34Bから、有機ELデバイス基材26を繰り出す。繰り出された有機ELデバイス基材26を、その長手方向にガイドローラR2でガイドしながら搬送した後、巻取り部42に巻き取って第3ロール34Cを形成するまでの間に、乾燥室28から搬入されてきた封止部材24から保護フィルム241が剥離されて得られる封止部材22を、有機ELデバイス基材26に貼合する。 In the bonding step S30, the organic EL device base material 26 is fed out from the second roll 34B set in the feeding section 40 in the bonding chamber 32. After the unwound organic EL device base material 26 is conveyed in the longitudinal direction while being guided by the guide roller R2, it is wound around the winding portion 42 to form the third roll 34C from the drying chamber 28. The sealing member 22 obtained by peeling the protective film 241 from the sealing member 24 that has been carried in is bonded to the organic EL device base material 26.
 具体的には、貼合室32内には、一対の貼合ローラR3が隙間を空けて配置されており、この隙間に、封止部材22の粘接着材層222と有機ELデバイス基材26において陽極14、有機EL部18及び陰極20が形成されている側とが対向するように、有機ELデバイス基材26と封止部材22とが送り込まれる。そして、一対の貼合ローラR3により有機ELデバイス基材26及び封止部材22が押圧される。このとき、貼合ローラR3にはヒーターが埋め込まれており、貼合ローラR3を加熱することで封止部材22を温めながら、有機ELデバイス基材26に封止部材22が貼合される。 Specifically, a pair of bonding rollers R3 are arranged in the bonding chamber 32 with a gap, and the adhesive layer 222 of the sealing member 22 and the organic EL device base material are arranged in the gap. The organic EL device base material 26 and the sealing member 22 are fed so that the anode 14, the organic EL portion 18, and the cathode 20 are opposed to each other in 26. Then, the organic EL device base material 26 and the sealing member 22 are pressed by the pair of bonding rollers R3. At this time, a heater is embedded in the bonding roller R3, and the sealing member 22 is bonded to the organic EL device base material 26 while warming the sealing member 22 by heating the bonding roller R3.
 一対の貼合ローラR3に封止部材22を送りこむために、乾燥室28から搬送されてきた封止部材24は、ガイドローラR4でガイドされながら搬送される。貼合室32内におけるガイドローラR4による封止部材22の搬送経路には、ガイドローラR5が配置されており、ガイドローラR5により保護フィルム241が封止部材22から剥離される。保護フィルム241が剥離されて得られた封止部材22は、ガイドローラR4により搬送され、一対の貼合ローラR3に上述した状態で送り込まれる。 In order to feed the sealing member 22 into the pair of bonding rollers R3, the sealing member 24 conveyed from the drying chamber 28 is conveyed while being guided by the guide roller R4. A guide roller R5 is arranged in the transport path of the sealing member 22 by the guide roller R4 in the bonding chamber 32, and the protective film 241 is peeled from the sealing member 22 by the guide roller R5. The sealing member 22 obtained by peeling off the protective film 241 is conveyed by the guide roller R4 and sent to the pair of bonding rollers R3 in the above-mentioned state.
 ガイドローラR5により剥離された保護フィルム241は、フィルム回収部44で巻き取ればよい。 The protective film 241 peeled off by the guide roller R5 may be wound up by the film collecting unit 44.
 連結部30及び貼合室32内は、乾燥室28で乾燥された粘接着材層222の含水率を維持し、且つ、封止部材22を貼合していない有機ELデバイス基材26の劣化を防ぐように調整され得る。例えば、連結部30及び貼合室32内は露点-40℃以下であり且つ不活性ガス雰囲気であり得る。したがって、乾燥室28も露点-40℃以下であり且つ不活性ガス雰囲気であれば、連結部30及び貼合室32内は同じ室内環境であってもよい。
図5では、繰出し部36が乾燥室28に配置されているが、繰出し部36は乾燥室28外に配置されていてもよい。同様に、繰出し部40、巻取り部42及びフィルム回収部44も貼合室32外に配置されていてもよい。ただし、繰出し部40には封止部材22が貼合される前の長尺の有機ELデバイス基材26が巻かれた第2ロール34Bが設置される。
そのため、繰出し部40を貼合室32外に配置する場合は、繰出し部40の配置領域及び繰出し部40から繰り出された有機ELデバイス基材26の搬送経路は、有機ELデバイス基材26の劣化を防ぐように構成され得る。例えば、繰出し部40の配置領域及び繰出し部40から繰り出された有機ELデバイス基材26の搬送経路は露点-40℃以下であり且つ不活性ガス雰囲気を保てるように構成され得る。
Inside the connecting portion 30 and the bonding chamber 32, the water content of the adhesive layer 222 dried in the drying chamber 28 is maintained, and the organic EL device base material 26 to which the sealing member 22 is not bonded is maintained. It can be adjusted to prevent deterioration. For example, the inside of the connecting portion 30 and the bonding chamber 32 may have a dew point of −40 ° C. or lower and an inert gas atmosphere. Therefore, if the drying chamber 28 also has a dew point of −40 ° C. or lower and the atmosphere is an inert gas, the connecting portion 30 and the bonding chamber 32 may have the same indoor environment.
In FIG. 5, the feeding portion 36 is arranged in the drying chamber 28, but the feeding portion 36 may be arranged outside the drying chamber 28. Similarly, the feeding section 40, the winding section 42, and the film collecting section 44 may also be arranged outside the bonding chamber 32. However, a second roll 34B around which the long organic EL device base material 26 before the sealing member 22 is attached is installed in the feeding portion 40.
Therefore, when the feeding portion 40 is arranged outside the bonding chamber 32, the arrangement area of the feeding portion 40 and the transport path of the organic EL device base material 26 fed from the feeding portion 40 are deteriorated in the organic EL device base material 26. Can be configured to prevent. For example, the arrangement region of the feeding section 40 and the transport path of the organic EL device base material 26 fed from the feeding section 40 may be configured such that the dew point is −40 ° C. or lower and the inert gas atmosphere can be maintained.
 乾燥室で加熱乾燥された高温の保護フィルム付き封止部材24は、連結部30及び貼合部32に搬送された後、連結部30及び貼合部32の温度が乾燥部よりも低いため、徐々に除熱される。特にガイドローラR4、R5等との接触により、急激に冷却される場合もある。この際に、封止部材の各層の熱膨張率が異なるため、従来の封止部材では、各層の面内に収縮の不整合に伴う応力が発生し、封止部材にしわ等の変形が発生する。このように変形した封止部材を有機ELデバイス基材に貼合すると、しわ等の変形箇所に気泡が混入し、封止部材と有機ELデバイス基材との密着性が損なわれる。それにより、封止部材の封止性能が十分に発揮できず、有機ELデバイスの長期保管性が劣化する。 After being conveyed to the connecting portion 30 and the bonding portion 32, the temperature of the connecting portion 30 and the bonding portion 32 of the sealing member 24 with a high-temperature protective film that has been heat-dried in the drying chamber is lower than that of the drying portion. The heat is gradually removed. In particular, it may be rapidly cooled by contact with the guide rollers R4, R5 and the like. At this time, since the coefficient of thermal expansion of each layer of the sealing member is different, in the conventional sealing member, stress due to the mismatch of shrinkage is generated in the plane of each layer, and the sealing member is deformed such as wrinkles. To do. When the sealing member deformed in this way is attached to the organic EL device base material, air bubbles are mixed in the deformed portion such as wrinkles, and the adhesion between the sealing member and the organic EL device base material is impaired. As a result, the sealing performance of the sealing member cannot be sufficiently exhibited, and the long-term storage property of the organic EL device deteriorates.
 しかしながら、本実施形態の有機ELデバイスの製造方法では、封止部材における金属層223の耐力が100N/mm~200N/mmである、又は金属層223の材質が加工硬化されたアルミニウムであるため、上記応力に抗して封止材の変形を抑制できる。一方で、例えば、金属層223として、JIS H4160で定義される1N30-O(一般的に、1N30-Oの耐力は、30~40N/mmである)等の軟質のアルミニウムを用いた場合、封止材の変形を十分に抑制できない。封止部材における金属層223の耐力が200N/mm以下であると、封止部材が固すぎず、封止部材が十分な可撓性を有するため、ローラでの搬送が容易である。 However, in the method for manufacturing an organic EL device of the present embodiment, the proof stress of the metal layer 223 in the sealing member is 100 N / mm 2 to 200 N / mm 2 , or the material of the metal layer 223 is work-hardened aluminum. Therefore, the deformation of the sealing material can be suppressed against the above stress. On the other hand, for example, when soft aluminum such as 1N30-O defined in JIS H4160 (generally, the yield strength of 1N30-O is 30 to 40 N / mm 2 ) is used as the metal layer 223. Deformation of the sealing material cannot be sufficiently suppressed. When the proof stress of the metal layer 223 in the sealing member is 200 N / mm 2 or less, the sealing member is not too hard and the sealing member has sufficient flexibility, so that the metal layer 223 can be easily transported by a roller.
 上記有機ELデバイス10の製造方法では、封止部材22に保護フィルム241が貼合されてなる封止部材24を乾燥させている。そのため、乾燥時の加熱により、粘接着材層222のタック性が増大しても、粘接着材層222がガイドローラR1等に直接接触しないため、ガイドローラR1等に粘接着材が付着するのを防ぐことができる。 In the method for manufacturing the organic EL device 10, the sealing member 24 formed by bonding the protective film 241 to the sealing member 22 is dried. Therefore, even if the tackiness of the adhesive layer 222 is increased by heating during drying, the adhesive layer 222 does not come into direct contact with the guide roller R1 or the like, so that the adhesive is attached to the guide roller R1 or the like. It can be prevented from adhering.
 乾燥工程S20において、封止部材22は、保護フィルム241が貼合された状態で搬送されるので、搬送過程において、粘接着材層222にゴミが付着しない。そのため、封止部材22を有機ELデバイス基材26に貼合した際に、有機ELデバイス基材26にゴミが入り込むことを防止でき、その結果、上記ゴミに起因したデバイス不良が生じない。 In the drying step S20, since the sealing member 22 is transported with the protective film 241 attached, dust does not adhere to the adhesive layer 222 during the transport process. Therefore, when the sealing member 22 is attached to the organic EL device base material 26, dust can be prevented from entering the organic EL device base material 26, and as a result, device defects caused by the dust do not occur.
 乾燥を効果的に行うためには、保護フィルム241の厚さは薄い方がよいが、薄すぎると、搬送過程において、保護フィルム241が切れたり、保護フィルム241にシワが入ったりするなどにより搬送制御が困難になる。一方、保護フィルム241が厚すぎると、乾燥効率が低下するため、封止部材24の搬送経路が不要に長くなるとともに、乾燥処理に要する時間も長くなる。さらに、封止部材24が巻かれた第1ロール34Aも無用に大きくなるなどの問題がある。これに対して、保護フィルム241が例えば5μm以上50μm以下であれば、封止部材24の搬送も容易であるとともに、乾燥効率の向上も図れる。さらに、第1ロール34Aのサイズも小さくできる。 In order to perform drying effectively, the thickness of the protective film 241 should be thin, but if it is too thin, the protective film 241 may be cut or the protective film 241 may be wrinkled during the transportation process. It becomes difficult to control. On the other hand, if the protective film 241 is too thick, the drying efficiency is lowered, so that the transport path of the sealing member 24 becomes unnecessarily long and the time required for the drying process also becomes long. Further, there is a problem that the first roll 34A around which the sealing member 24 is wound also becomes unnecessarily large. On the other hand, if the protective film 241 is, for example, 5 μm or more and 50 μm or less, the sealing member 24 can be easily transported and the drying efficiency can be improved. Further, the size of the first roll 34A can be reduced.
 粘接着材層222の材料が感圧型の粘着樹脂である場合、乾燥工程S20での熱によりタック性が増大し易い。よって、本実施形態で説明した有機ELデバイス10の製造方法は、感圧型の粘着樹脂を含む粘接着材層222を有する封止部材22を使用する場合により一層有効である。 When the material of the adhesive adhesive layer 222 is a pressure-sensitive adhesive resin, the tackiness is likely to increase due to the heat in the drying step S20. Therefore, the method for manufacturing the organic EL device 10 described in the present embodiment is more effective when the sealing member 22 having the adhesive adhesive layer 222 containing the pressure-sensitive adhesive resin is used.
 乾燥工程S20では、粘接着材層222の含水率が600ppm以下になるように封止部材24(より具体的には封止部材22)を乾燥することが好ましい。このような乾燥状態の封止部材22を有機ELデバイス基材26に貼合することで、長期保管性がより一層向上した有機ELデバイス10を製造可能であるからである。 In the drying step S20, it is preferable to dry the sealing member 24 (more specifically, the sealing member 22) so that the water content of the adhesive layer 222 is 600 ppm or less. This is because the organic EL device 10 having further improved long-term storage stability can be manufactured by bonding the sealing member 22 in such a dry state to the organic EL device base material 26.
 本実施形態で説明した有機ELデバイスの製造方法では、前述したように、保護フィルム付き封止部材24を乾燥させた後、乾燥された封止部材22を有機ELデバイス基材26に貼合している。よって、生産性の向上を図りながら、長期保管性に優れた有機ELデバイス10を効率的に製造可能である。さらに、封止部材22の含水率が例えば600ppm以下となるように乾燥することで、より一層長期保管性に優れた有機ELデバイス10を効率的に製造可能である。 In the method for manufacturing an organic EL device described in the present embodiment, as described above, after the sealing member 24 with a protective film is dried, the dried sealing member 22 is attached to the organic EL device base material 26. ing. Therefore, it is possible to efficiently manufacture the organic EL device 10 having excellent long-term storage stability while improving the productivity. Further, by drying the sealing member 22 so that the water content is 600 ppm or less, the organic EL device 10 having even better long-term storage stability can be efficiently manufactured.
 以上、本発明の種々の実施形態及び実施例について説明した。しかしながら、本発明は上述した種々の実施形態及び実施例に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。 The various embodiments and examples of the present invention have been described above. However, the present invention is not limited to the various embodiments and examples described above, and various modifications can be made without departing from the spirit of the present invention.
 図5では、乾燥室と貼合室とが連結部で連結した形態を例示した。しかしながら、乾燥室と貼合室とは繋がっていなくてもよい。この場合、乾燥室で乾燥された保護フィルム付き封止部材を、一旦、ロール状に巻き取った後、気密容器に収容して、貼合室に搬入すればよい。 FIG. 5 illustrates a form in which the drying chamber and the bonding chamber are connected by a connecting portion. However, the drying room and the bonding room do not have to be connected. In this case, the sealing member with a protective film dried in the drying chamber may be once wound into a roll, housed in an airtight container, and carried into the bonding chamber.
 乾燥工程での乾燥方法として赤外線加熱を例示したが、保護フィルム付き封止部材の乾燥方法は、赤外線加熱に限定されない。例えば、保護フィルム付き封止部材をガイドするガイドローラを加熱ローラとし、加熱ローラにより保護フィルム付き封止部材を乾燥してもよいし、ハロゲンランプヒーター、レーザー、マイクロ波加熱等の加熱方法で乾燥してもよい。 Although infrared heating was exemplified as a drying method in the drying step, the drying method of the sealing member with a protective film is not limited to infrared heating. For example, the guide roller that guides the sealing member with the protective film may be a heating roller, and the sealing member with the protective film may be dried by the heating roller, or dried by a heating method such as a halogen lamp heater, a laser, or microwave heating. You may.
 上記実施形態では、基板に陽極、有機EL部及び陰極を順に形成する形態を説明したが、例えば、陽極が予め形成された基板から有機ELデバイスを製造してもよい。この場合、有機ELデバイスの製造方法は、有機EL部形成工程及び陰極形成工程を備えていればよい。
 上記実施形態では、長尺の基材及び長尺の封止部材を用いたロールツーロール方式による製造方法について説明したが、基材及び封止部材としては、断裁等により予め所定のサイズに調整された枚葉のものを用いて有機電子デバイスを製造してもよい。
In the above embodiment, the embodiment in which the anode, the organic EL portion, and the cathode are formed in order on the substrate has been described, but for example, the organic EL device may be manufactured from the substrate on which the anode is formed in advance. In this case, the method for manufacturing the organic EL device may include an organic EL portion forming step and a cathode forming step.
In the above embodiment, the manufacturing method by the roll-to-roll method using a long base material and a long sealing member has been described, but the base material and the sealing member are adjusted to a predetermined size in advance by cutting or the like. Organic electronic devices may be manufactured using the single-wafered ones.
 例えば、剥離工程は、貼合工程の後に実施する場合に限定されない。例えば、剥離工程は、デバイス本体部形成工程中に実施してもよいし、デバイス本体部形成工程と、貼合工程との間に実施してもよい。デバイス本体部形成工程中に実施する場合は、例えば、陽極(第1電極)を形成した後に実施すればよい。例えば、有機機能層形成工程中でもよいし、有機機能層形成工程と陰極形成工程との間に実施してもよい。可撓性基板上にデバイス本体部などを形成する際のハンドリングの容易性向上のために可撓性基板を支持基板に固定するため、剥離工程は、少なくとも陽極(第1電極)形成工程の後に実施することが好ましい。 For example, the peeling step is not limited to the case where it is carried out after the bonding step. For example, the peeling step may be carried out during the device main body forming step, or may be carried out between the device main body forming step and the bonding step. When it is carried out during the device main body forming step, for example, it may be carried out after forming an anode (first electrode). For example, it may be carried out during the organic functional layer forming step, or may be carried out between the organic functional layer forming step and the cathode forming step. In order to fix the flexible substrate to the support substrate in order to improve handling when forming the device main body or the like on the flexible substrate, the peeling step is performed at least after the anode (first electrode) forming step. It is preferable to carry out.
 上記実施形態において、封止部材として粘接着材層の表面に設けられた保護フィルムを有する保護フィルム付き封止部材を使用する場合、乾燥工程の前に保護フィルムを剥離してもよい。封止部材として元々保護フィルムを有しないものも使用できる。保護フィルムを有しない封止部材としては、例えば、粘接着剤層と樹脂層とが接するようにロール状に巻かれた封止部材等を使用することができ、この場合、樹脂層の金属層とは反対側の表面に必要に応じて離型処理が施されていてもよい。 In the above embodiment, when a sealing member with a protective film having a protective film provided on the surface of the adhesive layer is used as the sealing member, the protective film may be peeled off before the drying step. As a sealing member, a member that does not originally have a protective film can also be used. As the sealing member having no protective film, for example, a sealing member wound in a roll shape so that the adhesive layer and the resin layer are in contact with each other can be used. In this case, the metal of the resin layer is used. The surface opposite to the layer may be subjected to a mold release treatment, if necessary.
 これまでの説明では、第1の電極を陽極とし、第2の電極を陰極として説明したが、第1の電極が陰極であって、第2の電極が陽極であってもよい。 In the explanation so far, the first electrode is used as an anode and the second electrode is used as a cathode, but the first electrode may be a cathode and the second electrode may be an anode.
 有機電子デバイスの一例である有機ELデバイスについて、その製造方法を説明したが本実施形態に係る有機電子デバイスの製造方法は、例えば有機太陽電池、有機フォトディテクタ、有機トランジスタ等の有機機能層を備える有機電子デバイスにも適用可能である。有機トランジスタを製造する場合、第1の電極は、例えばソース電極、ドレイン電極及びゲート電極のいずれかであり、第2の電極は、ソース電極、ドレイン電極及びゲート電極のうちの第1の電極以外の電極である。有機トランジスタを製造する場合の機能層は、ゲート絶縁層又は有機半導体層で有り得る。 The manufacturing method of the organic EL device, which is an example of the organic electronic device, has been described. However, the manufacturing method of the organic electronic device according to the present embodiment is an organic having an organic functional layer such as an organic solar cell, an organic photodetector, or an organic transistor. It can also be applied to electronic devices. When manufacturing an organic transistor, the first electrode is, for example, one of a source electrode, a drain electrode and a gate electrode, and the second electrode is other than the first electrode among the source electrode, the drain electrode and the gate electrode. It is an electrode of. The functional layer for manufacturing an organic transistor may be a gate insulating layer or an organic semiconductor layer.
[実施例1]
 封止部材Aとして、以下の層構成のものを使用した。
保護フィルム(厚さ12μm)/粘接着材層(厚さ30μm)/アルミニウム層(厚さ30μm、1N30-H材、東洋アルミニウム株式会社製)/PET(厚さ38μm)
 封止部材Aを搬送速度1m/minで搬送し、保護フィルム側からカーボンヒーターを用いて封止部材Aの温度が160℃になるように赤外照射し、5分間加熱した後、巻き取った。封止部材Aにしわ等の変形は見られなかった。
 巻き取った封止部材Aの保護フィルムを剥離し、有機電子デバイス基材に貼合したところしわは見られず、良好な貼合面が得られた。
[Example 1]
As the sealing member A, one having the following layer structure was used.
Protective film (thickness 12 μm) / adhesive layer (thickness 30 μm) / aluminum layer (thickness 30 μm, 1N30-H material, manufactured by Toyo Aluminum Co., Ltd.) / PET (thickness 38 μm)
The sealing member A was transported at a transport speed of 1 m / min, infrared-irradiated from the protective film side using a carbon heater so that the temperature of the sealing member A became 160 ° C., heated for 5 minutes, and then wound up. .. No deformation such as wrinkles was observed in the sealing member A.
When the protective film of the wound sealing member A was peeled off and bonded to the organic electronic device base material, no wrinkles were observed and a good bonded surface was obtained.
[比較例1]
 封止部材Aのアルミニウム層を1N30-O材の層(厚さ30μm、東洋アルミニウム株式会社製)に変更した封止部材Bを使用したこと以外は、実施例1と同様に実験を行った。
 巻き取った後の封止部材Bでは、幅5mmのシワが搬送方向に連続的に発生し、変形が見られた。
 巻き取った封止部材Bの保護フィルムを剥離し、有機電子デバイス基材に貼合したところシワの部分に気泡が混入し、良好な貼合面が得られなかった。
[Comparative Example 1]
An experiment was carried out in the same manner as in Example 1 except that the sealing member B in which the aluminum layer of the sealing member A was changed to a layer of 1N30-O material (thickness 30 μm, manufactured by Toyo Aluminum K.K., Ltd.) was used.
In the sealing member B after winding, wrinkles having a width of 5 mm were continuously generated in the transport direction, and deformation was observed.
When the protective film of the wound sealing member B was peeled off and bonded to the organic electronic device base material, air bubbles were mixed in the wrinkled portion, and a good bonded surface could not be obtained.
 10…有機ELデバイス(有機電子デバイス)、12…基板、14…陽極(第1の電極)、20…陰極(第2の電極)、22…封止部材、24…保護フィルム付き封止部材、181…発光層(機能層)、222…粘接着材層、223・・・金属層、224・・・樹脂層、241…保護フィルム。
 
10 ... Organic EL device (organic electronic device), 12 ... Substrate, 14 ... Anode (first electrode), 20 ... Cathode (second electrode), 22 ... Sealing member, 24 ... Sealing member with protective film, 181 ... light emitting layer (functional layer), 222 ... adhesive adhesive layer, 223 ... metal layer, 224 ... resin layer, 241 ... protective film.

Claims (6)

  1.  支持基材の主面上に、第1の電極、有機機能層及び第2の電極をこの順に有する有機電子デバイス基材を形成する工程と、
     樹脂層、金属層及び粘接着材層がこの順に積層された封止部材を乾燥する工程と、
     乾燥された前記封止部材を、前記粘接着材層を介して有機電子デバイス基材に貼合する工程と、を備え、
     前記金属層の耐力が100~200N/mmである、有機電子デバイスの製造方法。
    A step of forming an organic electronic device base material having a first electrode, an organic functional layer, and a second electrode in this order on the main surface of the support base material, and
    A step of drying a sealing member in which a resin layer, a metal layer, and an adhesive adhesive layer are laminated in this order, and
    It comprises a step of adhering the dried sealing member to an organic electronic device base material via the adhesive layer.
    A method for manufacturing an organic electronic device, wherein the metal layer has a proof stress of 100 to 200 N / mm 2 .
  2.  前記金属層の材質が加工硬化されたアルミニウムである、請求項1に記載の有機電子デバイスの製造方法。 The method for manufacturing an organic electronic device according to claim 1, wherein the material of the metal layer is work-hardened aluminum.
  3.  支持基材の主面上に、第1の電極、有機機能層及び第2の電極をこの順に有する有機電子デバイス基材を形成する工程と、
     樹脂層、金属層及び粘接着材層がこの順に積層された封止部材を乾燥する工程と、
     乾燥された前記封止部材を、前記粘接着材層を介して有機電子デバイス基材に貼合する工程と、を備え、
     前記金属層の材質が加工硬化されたアルミニウムである、有機電子デバイスの製造方法。
    A step of forming an organic electronic device base material having a first electrode, an organic functional layer, and a second electrode in this order on the main surface of the support base material, and
    A step of drying a sealing member in which a resin layer, a metal layer, and an adhesive adhesive layer are laminated in this order, and
    It comprises a step of adhering the dried sealing member to an organic electronic device base material via the adhesive layer.
    A method for manufacturing an organic electronic device, wherein the material of the metal layer is work-hardened aluminum.
  4.  前記金属層の耐力が100~200N/mmである、請求項3に記載の有機電子デバイスの製造方法。 The method for manufacturing an organic electronic device according to claim 3, wherein the metal layer has a proof stress of 100 to 200 N / mm 2 .
  5.  前記金属層の材質が1N30-H材である、請求項1~4のいずれか一項に記載の有機電子デバイスの製造方法。 The method for manufacturing an organic electronic device according to any one of claims 1 to 4, wherein the material of the metal layer is 1N30-H material.
  6.  前記封止部材の前記粘接着材層の表面に保護フィルムが設けられており、前記貼合する工程において、前記封止部材から前記保護フィルムを剥離して、前記封止部材を有機電子デバイス基材に貼合する、請求項1~5のいずれか一項に記載の有機電子デバイスの製造方法。
     
    A protective film is provided on the surface of the adhesive layer of the sealing member, and in the step of bonding, the protective film is peeled off from the sealing member to attach the sealing member to an organic electronic device. The method for manufacturing an organic electronic device according to any one of claims 1 to 5, which is attached to a base material.
PCT/JP2020/023581 2019-06-25 2020-06-16 Method for manufacturing organic electronic device WO2020262110A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-117784 2019-06-25
JP2019117784A JP2021005469A (en) 2019-06-25 2019-06-25 Manufacturing method of organic electronic device

Publications (1)

Publication Number Publication Date
WO2020262110A1 true WO2020262110A1 (en) 2020-12-30

Family

ID=74060106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023581 WO2020262110A1 (en) 2019-06-25 2020-06-16 Method for manufacturing organic electronic device

Country Status (2)

Country Link
JP (1) JP2021005469A (en)
WO (1) WO2020262110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131445A1 (en) * 2021-07-28 2023-02-08 Ricoh Company, Ltd. Photoelectric conversion device, electronic device, and power supply module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269964A (en) * 2007-04-20 2008-11-06 Konica Minolta Holdings Inc Method for manufacturing electroluminescent element
JP2010181749A (en) * 2009-02-06 2010-08-19 Tohcello Co Ltd Sealed functional element
JP2011003522A (en) * 2008-10-16 2011-01-06 Semiconductor Energy Lab Co Ltd Flexible light-emitting device, electronic equipment, and method of manufacturing flexible light-emitting device
WO2011052630A1 (en) * 2009-10-28 2011-05-05 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescent panel, and organic electroluminescent panel
JP2017222071A (en) * 2016-06-15 2017-12-21 コニカミノルタ株式会社 Gas barrier film, method for producing the same and organic electroluminescent device
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269964A (en) * 2007-04-20 2008-11-06 Konica Minolta Holdings Inc Method for manufacturing electroluminescent element
JP2011003522A (en) * 2008-10-16 2011-01-06 Semiconductor Energy Lab Co Ltd Flexible light-emitting device, electronic equipment, and method of manufacturing flexible light-emitting device
JP2010181749A (en) * 2009-02-06 2010-08-19 Tohcello Co Ltd Sealed functional element
WO2011052630A1 (en) * 2009-10-28 2011-05-05 コニカミノルタホールディングス株式会社 Method for producing organic electroluminescent panel, and organic electroluminescent panel
JP2017222071A (en) * 2016-06-15 2017-12-21 コニカミノルタ株式会社 Gas barrier film, method for producing the same and organic electroluminescent device
WO2018181426A1 (en) * 2017-03-29 2018-10-04 味の素株式会社 Sealing sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131445A1 (en) * 2021-07-28 2023-02-08 Ricoh Company, Ltd. Photoelectric conversion device, electronic device, and power supply module

Also Published As

Publication number Publication date
JP2021005469A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US20120074398A1 (en) Organic el illuminant, organic el illuminating device, and method for fabricating organic el illuminant
WO2020262110A1 (en) Method for manufacturing organic electronic device
US20200388793A1 (en) Organic electronic device manufacturing method
US20200321562A1 (en) Method for manufacturing organic electronic device
US20200099016A1 (en) Method for manufacturing organic device
US10964920B2 (en) Method for producing organic electronic device
JP2017212143A (en) Method for manufacturing organic electronic device
JP6781568B2 (en) Manufacturing method of organic electronic devices
JP6375016B1 (en) SUBSTRATE WITH ELECTRODE, LAMINATED SUBSTRATE, AND METHOD FOR MANUFACTURING ORGANIC DEVICE
US20200388786A1 (en) Electronic device manufacturing method
JP6836908B2 (en) Manufacturing method of organic device
JP6129938B1 (en) Organic device manufacturing method and organic device substrate
WO2018230602A1 (en) Method for manufacturing organic electronic device
WO2018043710A1 (en) Method for producing organic device
JP2019003943A (en) Method for manufacturing organic electronic device
US10510994B2 (en) Method for manufacturing organic device, and roll
JP6755202B2 (en) Manufacturing method of organic electronic devices
WO2020090831A1 (en) Method for manufacturing electronic device
JP6097369B1 (en) Pattern manufacturing method
WO2017056711A1 (en) Method for manufacturing organic electronic device and method for manufacturing sealing member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831173

Country of ref document: EP

Kind code of ref document: A1