WO2020261315A1 - Curved liquid crystal display device - Google Patents

Curved liquid crystal display device Download PDF

Info

Publication number
WO2020261315A1
WO2020261315A1 PCT/JP2019/024877 JP2019024877W WO2020261315A1 WO 2020261315 A1 WO2020261315 A1 WO 2020261315A1 JP 2019024877 W JP2019024877 W JP 2019024877W WO 2020261315 A1 WO2020261315 A1 WO 2020261315A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
facing
display area
board
Prior art date
Application number
PCT/JP2019/024877
Other languages
French (fr)
Japanese (ja)
Inventor
晋作 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980096757.6A priority Critical patent/CN113966486A/en
Priority to PCT/JP2019/024877 priority patent/WO2020261315A1/en
Priority to JP2019554579A priority patent/JP6625310B1/en
Publication of WO2020261315A1 publication Critical patent/WO2020261315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a curved liquid crystal display device.
  • a curved display having a curved liquid crystal panel, a free-shaped display having a non-rectangular flat liquid crystal panel, and a curved free-shaped display which is a curved display and a free-shaped display have been introduced from the viewpoint of design and the like. Attention has been paid.
  • a curved display is obtained by bending a flat liquid crystal panel.
  • a free-form display is obtained by cutting a liquid crystal panel having a rectangular flat shape into a non-rectangular flat shape.
  • the liquid crystal panel often includes two substrates, a seal, a liquid crystal layer and a spacer.
  • Each of the two substrates often comprises a glass substrate.
  • the seal, liquid crystal layer and spacer are arranged between the two substrates.
  • the liquid crystal layer and the spacer are arranged in the display area surrounded by the sticker.
  • the spacer maintains a liquid crystal cell gap that indicates the distance between the two substrates.
  • Spacers often include a main spacer with a relatively high height and a sub spacer with a relatively low height.
  • the main spacer always contacts both of the two substrates to maintain the liquid crystal cell gap.
  • the subspacer usually contacts only one of the two substrates and contacts both of the two substrates or both of the two substrates when a force is applied to one of them.
  • the main spacer is pressurized and compressed.
  • the subspacer may come into contact with a substrate which is not normally in contact with the substrate to be pressurized and compressed. Then, when the spacer is pressurized and compressed, the liquid crystal cell gap fluctuates and stress is generated on the glass substrate.
  • display unevenness occurs on the screen displayed on the curved display. This display unevenness is mainly observed as chromaticity unevenness in the screen when the screen displayed on the curved display is a white screen.
  • stress is generated in the glass substrate, birefringence is imparted to the glass substrate, a phase difference occurs in the light transmitted through the glass substrate, and display unevenness occurs.
  • This display unevenness is mainly observed as light leakage in the screen when the screen displayed on the curved display is a black screen.
  • These display irregularities are particularly remarkable in the vicinity of the seal where the amount of deformation of the glass substrate changes significantly locally, that is, in the vicinity of the outer periphery of the display area.
  • the technique described in Patent Document 1 relates to a curved liquid crystal display device.
  • a plurality of columnar spacers are arranged between the array substrate and the facing substrate.
  • the columnar spacer comprises a columnar spacer having a relatively high height and a columnar spacer having a relatively low height.
  • the columnar spacers having a relatively high height are arranged so as to have a higher density toward the central portion in the bending direction of the liquid crystal panel. Thereby, unevenness can be suppressed.
  • Patent Document 2 relates to a curved display.
  • the distance between the TFT substrate and the opposing substrate is defined by a columnar spacer.
  • the density of columnar spacers decreases linearly from the center of the screen to the periphery. As a result, the brightness of the entire screen can be made uniform.
  • the present invention has been made in view of this problem.
  • the problem to be solved by the present invention is a curved liquid crystal display capable of suppressing deterioration of display quality in the vicinity of the outer periphery of the display area due to the subspacer pressurizing the drive substrate and / or the opposing substrate. To provide a device.
  • the present invention relates to a curved liquid crystal display device.
  • the curved liquid crystal display device includes a drive board, a facing board, a sealing material, a liquid crystal layer, a sub spacer, and a main spacer.
  • the drive board and the facing board are curved.
  • the sealing material, the liquid crystal layer, the sub spacer, and the main spacer are arranged between the drive substrate and the facing substrate, and are arranged in the display area surrounded by the sealing material.
  • the sealing material As the sealing material, the opposing substrate is attached to the drive substrate.
  • the subspacer has a first height.
  • the main spacer has a second height that is higher than the first height.
  • the arrangement density of the subspacers decreases as it approaches the outer periphery of the display area.
  • the drive substrate comprises a first translucent substrate and a first layer.
  • the first translucent substrate has a first main surface facing the side on which the opposing substrate is placed.
  • the first layer is placed on top of the first main surface and is placed in the display area.
  • the facing substrate includes a second translucent base material and a second layer.
  • the second translucent substrate has a second main surface facing the side on which the drive substrate is placed.
  • the second layer is placed on top of the second main surface and is placed in the display area.
  • the sealing material includes a spacer inside the seal.
  • At least one of the drive substrate and the counter substrate includes a third layer. The third layer is arranged so as to overlap the sealing material when viewed in a plan view from the thickness direction of the drive substrate and the facing substrate.
  • the arrangement density of the sub spacers becomes low in the vicinity of the outer periphery of the display area where the sub spacers tend to pressurize the drive substrate and / or the opposing substrate. Therefore, even if the distance between the drive board and the opposite board is narrowed near the outer periphery of the display area due to the curvature of the drive board and the facing board, the subspacer pressurizes the driving board and / or the facing board. It can be suppressed. As a result, it is possible to suppress deterioration of display quality in the vicinity of the outer periphery of the display region due to the subspacer pressurizing the drive substrate and / or the opposing substrate.
  • the distance between the drive substrate and the facing substrate becomes wide in the vicinity of the outer periphery of the display area. Therefore, even if the distance between the drive board and the opposite board is narrowed near the outer periphery of the display area due to the curvature of the drive board and the facing board, the subspacer pressurizes the driving board and / or the facing board. It can be suppressed. As a result, it is possible to suppress deterioration of display quality in the vicinity of the outer periphery of the display region due to the subspacer pressurizing the drive substrate and / or the opposing substrate.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the first and second embodiments. It is a top view which shows typically the liquid crystal panel provided in the liquid crystal display device of Embodiment 2.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • FIG. 5 is an enlarged cross-sectional view schematically showing
  • FIG. 1 is a perspective view schematically showing the liquid crystal display device of the first embodiment.
  • the liquid crystal display device 1 illustrated in FIG. 1 is a curved liquid crystal display device.
  • the curved liquid crystal display device is also called a curved display or the like.
  • the liquid crystal display device 1 includes a liquid crystal panel 11 and a protective plate 12. Further, the liquid crystal display device 1 includes assembled parts such as a backlight and a bezel (not shown).
  • the liquid crystal panel 11 is curved.
  • the protective plate 12 is attached to the surface of the liquid crystal panel 11.
  • the liquid crystal panel 11 includes a drive substrate 101 and an opposing substrate 102. Further, the liquid crystal panel 11 includes an assembly part such as a polarizing plate (not shown).
  • the drive board 101 and the facing board 102 are curved.
  • the facing board 102 faces the drive board 101.
  • the liquid crystal display device 1 is a TFT liquid crystal display device including a thin film transistor (TFT) as a switching element. Therefore, the drive board 101 is a TFT drive board including a TFT as a switching element. The TFT functions as a driving element.
  • the liquid crystal display device 1 may be a liquid crystal display device other than the TFT liquid crystal display device, and the drive substrate 101 may be a drive substrate other than the TFT drive substrate.
  • the facing substrate 102 is a color filter substrate provided with a color filter.
  • FIG. 2 is a cross-sectional view schematically showing a liquid crystal panel provided in the liquid crystal display device of the first embodiment.
  • FIG. 2 illustrates a liquid crystal panel before it is curved.
  • the left-right direction in FIG. 2 is a bending direction.
  • the liquid crystal panel 11 includes a drive substrate 101, an opposing substrate 102, a sealing material 103, a liquid crystal layer 104, and a spacer 105.
  • the spacer 105 includes a sub spacer 105s.
  • the sealing material 103, the liquid crystal layer 104, and the spacer 105 are arranged between the drive substrate 101 and the facing substrate 102.
  • the sealing material 103 is arranged in the sealing material arrangement area R1 along the outer circumference of the liquid crystal panel 11.
  • the sealing material 103 adheres the opposing substrate 102 to the drive substrate 101 and the opposed substrate 102 to the drive substrate 101.
  • the sealing material 103 is made of resin.
  • the liquid crystal layer 104 is arranged in the display area R2 surrounded by the sealing material 103 when viewed in a plan view from the thickness direction of the drive substrate 101 and the facing substrate 102. As a result, the liquid crystal layer 104 is sealed between the drive substrate 101 and the facing substrate 102 by the sealing material 103.
  • the liquid crystal constituting the liquid crystal layer 104 may be either a positive type liquid crystal or a negative type liquid crystal.
  • the spacer 105 is arranged in the display area R2.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2. Therefore, the arrangement density of the sub spacers 105s is high in the center of the display area R2 and low in the vicinity of the outer periphery of the display area R2 along the sealing material 103.
  • the spacer 105 is made of resin.
  • the liquid crystal cell gap indicating the distance between the drive substrate 101 and the facing substrate 102 is, for example, 2 ⁇ m or more and 5 ⁇ m or less.
  • the liquid crystal layer 104 is formed by filling a liquid crystal between the driving substrate 101 and the facing substrate 102. Therefore, the liquid crystal layer 104 has, for example, a thickness of 2 ⁇ m or more and 5 ⁇ m or less corresponding to the liquid crystal cell gap.
  • the liquid crystal panel 11 has a plurality of pixels arranged in a matrix. However, in FIG. 2, it is omitted to illustrate the repetition of pixels.
  • FIG. 3 is a cross-sectional view schematically showing a portion constituting one pixel of the liquid crystal panel provided in the liquid crystal display device of the first embodiment.
  • the drive substrate 101 includes a first translucent base material 111 and a first layer 112.
  • the structure of the first layer 112 is simplified.
  • the first translucent base material 111 has a first main surface 111a facing the side on which the facing substrate 102 is arranged.
  • the first layer 112 is arranged on the first main surface 111a and is arranged in the display area R2.
  • the first translucent base material 111 is a glass substrate or the like.
  • the first layer 112 includes a TFT layer 121 and the like.
  • the TFT layer 121 includes a TFT, a protective insulating film, a transparent electrode, and the like.
  • the first layer 112 may be provided on the TFT layer 121 and may include an alignment film that orients the liquid crystals constituting the liquid crystal layer 104.
  • the facing substrate 102 includes a second translucent base material 131 and a second layer 132.
  • the structure of the second layer 132 is simplified.
  • the second translucent base material 131 has a second main surface 131a facing the side on which the drive board 101 is arranged.
  • the second layer 132 is arranged on the second main surface 131a and is arranged in the display area R2.
  • the second translucent base material 131 is a glass substrate or the like.
  • the second layer 132 includes a black matrix 141, a coloring material 142, and an overcoat material 143.
  • the coloring material 142 includes a red material 142r, a green material 142g, and a blue material 142b.
  • the overcoat material 143 is arranged on the black matrix 141 and the coloring material 142.
  • the black matrix 141 functions as a light-shielding layer.
  • the overcoat material 143 functions as a protective layer.
  • the second layer 132 may be provided on the overcoat material 143 and may include an alignment film that orients the liquid crystal contained in the liquid crystal layer 104. When the spacer 105 is placed on the facing substrate 102, the alignment film is placed on the overcoat material 143 so as to overlap the spacer 105.
  • the liquid crystal panel 11 includes a spacer 105 as shown in FIG.
  • the spacer 105 is arranged on the drive substrate 101 or the opposing substrate 102.
  • FIG. 3 shows a state in which the spacer 105 is arranged on the facing substrate 102.
  • the spacer 105 includes a sub spacer 105s and a main spacer 105m.
  • the sub spacer 105s and the main spacer 105 m are arranged between the drive substrate 101 and the facing substrate 102.
  • the sub spacer 105s and the main spacer 105m are arranged in the display area R2.
  • the sub spacer 105s has a first height in the thickness direction of the drive substrate 101 and the opposing substrate 102.
  • the main spacer 105m has a second height higher than the first height in the thickness direction. Therefore, the subspacers 105s have a relatively low height. Further, the main spacer 105m has a relatively high height.
  • the spacer 105 has a height determined according to the liquid crystal cell gap that affects the display characteristics of the liquid crystal display device 1, and generally has a height of several ⁇ m. The difference between the height of the sub spacer 105s and the height of the main spacer 105 m is generally 0.1 ⁇ m or more and several ⁇ m or less.
  • the main spacer 105m always contacts both the drive board 101 and the facing board 102, and maintains the distance between the driving board 101 and the facing board 102.
  • the subspacer 105s contacts only one of the drive substrate 101 and the opposing substrate 102, an external force is applied to the driving substrate 101 and / or the opposing substrate 102, the main spacer 105m is elastically deformed, and the driving substrate 101 And when the opposing substrate 102 approaches each other, it may come into contact with both the driving substrate 101 and the opposing substrate 102.
  • the subspacer 105s maintains the distance between the drive substrate 101 and / or the opposing substrate 102 when an external force is applied to the driving substrate 101 and / or the opposing substrate 102.
  • the external force applied to the drive board 101 and / or the facing board 102 is the external force applied to the driving board 101 and the facing board 102 when the driving board 101 and the facing board 102 are curved when the liquid crystal display device 1 is manufactured. Including.
  • the spacer 105 is formed by forming a film made of resin on the driving substrate 101 or the opposing substrate 102 and patterning the formed film into a columnar shape.
  • FIG. 4 shows a portion of the facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one sub spacer arrangement pixel. It is a top view which is schematically illustrated.
  • FIG. 5 is a plan view schematically showing a portion of the facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one main spacer arrangement pixel.
  • Each pixel included in the plurality of pixels of the liquid crystal panel 11 may be a sub-spacer / main spacer-arranged pixel, but may be a sub-spacer-arranged pixel 151 shown in FIG. 4, and is shown in FIG.
  • the main spacer arrangement pixel 152 may be used.
  • Sub-spacer 105s and main spacer 105m are arranged in the sub-spacer / main spacer arrangement pixel. Only the sub spacer 105s is arranged in the sub spacer arrangement pixel 151. Only the main spacer 105m is arranged in the main spacer arrangement pixel 152.
  • FIGS. 6 and 7 are plan views schematically showing a portion of a facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one periodic unit.
  • FIG. 6 illustrates a portion constituting one periodic unit having a relatively high arrangement density of subspacers.
  • FIG. 7 illustrates a portion constituting one periodic unit having a relatively low arrangement density of subspacers.
  • the liquid crystal panel 11 has a periodic unit 161 shown in FIG.
  • the period unit 161 includes a plurality of pixels.
  • a sub spacer 105s and a main spacer 105m are arranged in the cycle unit 161.
  • the periodic unit 161 periodically appears in the display area R2.
  • the periodic unit 161 appears periodically in the horizontal direction and the vertical direction. Therefore, the liquid crystal panel 11 has a periodic structure in which a plurality of periodic units 161 are arranged in a matrix.
  • the arrangement density of the sub spacers 105s in the periodic unit 161 is the area occupied by the sub spacers 105s in the periodic unit 161 when viewed in a plan view from the thickness direction of the drive substrate 101 and the opposing substrate 102. In this case, it can be defined as the arrangement density obtained by dividing by the area occupied by the periodic unit 161.
  • the arrangement density of the sub spacers 105s in the cycle unit 161 includes the size of the liquid crystal panel 11, the shape of the liquid crystal panel 11, the liquid crystal cell gap, the height of the sub spacers 105s, the arrangement density of the main spacers 105m, the height of the main spacers 105m, and the like. It is determined according to the external dimensions of the liquid crystal panel 11 and the values that affect the display quality.
  • the placement density of the subspacers 105s in the period unit 161 is preferably 0.01% or more over the entire display area R2. It is 5.00% or less.
  • the main spacer 105m is arranged in the pixel 171 arranged in the center of the periodic unit 161.
  • the subspacers 105s are arranged in pixels 172 arranged around the pixels 171 arranged in the center of the periodic unit 161.
  • subspacers 105s and / or main spacers 105m are arranged in all of the plurality of pixels of the liquid crystal panel 11.
  • the main spacer 105 m is arranged only on the green material 142 g constituting the pixel 171. Further, only the sub spacer 105s is arranged only on the red material 142r and the blue material 142b constituting the pixel 172.
  • the main spacer 105 m is arranged only on the green material 142 g constituting the pixel 171 as in the periodic unit 161. Will be done. Further, only the sub spacer 105s is arranged only on the red material 142r and the blue material 142b constituting the 20 pixels 172a included in the pixel 172. However, unlike the periodic unit 161, the sub spacer 105s is not arranged on the red material 142r and the blue material 142b constituting the four pixels 172b included in the pixel 172.
  • the arrangement density of the sub spacers 105s is lowered by reducing the number of the sub spacers 105s to be arranged. Thereby, the arrangement density of the sub spacers 105s can be reduced without significantly complicating the procedure for forming the spacers 105. However, the arrangement density of the sub spacers 105s may be lowered by reducing the size of the sub spacers 105s.
  • FIGS. 8 and 9 illustrate an example of the distribution of subspacer arrangement density when the display area of the liquid crystal display device of the first embodiment has a rectangular planar shape. It is a plan view. 10 to 15 are plan views illustrating an example of the distribution of the arrangement density of the subspacers when the display area of the liquid crystal display device of the first embodiment has a non-rectangular planar shape.
  • a low density of subspacers is represented by a high concentration
  • a high density of subspacers is represented by a low concentration.
  • the display area R2 illustrated in FIG. 8 has a rectangular planar shape.
  • the outer circumference of the display area R2 shown in FIG. 8 has four straight lines 181a.
  • Each of the four straight lines 181a constitutes four sides.
  • the distribution of the arrangement density of the subspacers 105s shown in FIG. 8 is a distribution parallel to each straight line 181a.
  • the arrangement density of the sub spacers 105s decreases as it approaches each straight line 181a.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the subspacers 105s are located near the outer periphery of the display region R2 where the subspacers 105s are likely to pressurize the drive substrate 101 and / or the opposing substrate 102. Placement density is low. Therefore, even if the distance between the drive board 101 and the opposite board 102 is narrowed in the vicinity of the outer periphery of the display area R2 due to the curvature of the drive board 101 and the facing board 102, the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
  • the display area R2 illustrated in FIG. 9 has a rectangular planar shape.
  • the outer circumference of the display area R2 illustrated in FIG. 9 has four straight lines 181a and four change points 181b at which two adjacent straight lines intersect and the extending direction changes.
  • Each of the four straight lines 181a constitutes four sides.
  • Each of the four change points 181b constitutes four vertices.
  • the distribution of the arrangement density of the subspacers 105s shown in FIG. 9 is a concentric distribution centered on each change point 181b.
  • the arrangement density of the sub spacers 105s decreases as it approaches each change point 181b, and becomes the minimum at each change point 181b.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the display area R2 illustrated in FIG. 10 has a non-rectangular planar shape.
  • the non-rectangular planar shape shown in FIG. 10 is a hexagonal planar shape.
  • the non-rectangular plane shape may be a polygonal plane shape other than the hexagonal plane shape.
  • the non-rectangular planar shape may be an octagonal planar shape.
  • the outer circumference of the non-rectangular planar shape shown in FIG. 10 has only a side formed by a straight line.
  • the outer circumference of the non-rectangular planar shape may have a side composed of a straight line and a side composed of a curved line.
  • the outer circumference of the display area R2 illustrated in FIG. 10 has six straight lines 182a and six change points 182b where two adjacent straight lines 182a intersect and the extending direction changes. Each of the six straight lines 182a constitutes six sides.
  • Each of the six change points 182b constitutes six vertices.
  • the distribution of the arrangement density of the subspacers 105s shown in FIG. 10 is a concentric distribution centered on each change point 182b.
  • the arrangement density of the sub spacers 105s shown in FIG. 10 decreases as it approaches each change point 182b, and becomes the minimum at each change point 182b.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the display area R2 shown in FIG. 11 has a non-rectangular planar shape.
  • the non-rectangular planar shape shown in FIG. 11 is a planar shape obtained by removing 183 g of dents from the planar shape before removal, which is a rectangular planar shape.
  • the plane shape before removal may be a polygonal plane shape other than the rectangular plane shape.
  • the planar shape before removal may be a hexagonal planar shape, an octagonal planar shape, or the like.
  • the outer circumference of the plane shape before removal shown in FIG. 11 has only a side formed by a straight line.
  • the outer circumference of the planar shape before removal may have a side formed of a straight line and a side formed of a curved line.
  • the display area R2 illustrated in FIG. 11 has a recess 183 g called a notch that removes the planar shape before removal into a rectangular shape. Therefore, the notch has a rectangular planar shape. However, the notch may have a planar shape different from the rectangular planar shape shown in FIG. The notch may have a non-rectangular planar shape.
  • the outer circumference of the display area R2 illustrated in FIG. 11 includes six straight lines 183a, two curves 183b, four change points 183c where two adjacent straight lines intersect and the extending direction changes, adjacent straight lines and It has four change points 183d where the curves intersect and the curvature changes, and two change points 183e where two adjacent straight lines intersect and the extension direction changes.
  • the arrangement density of the subspacers 105s decreases as it approaches each change point 183c, 183d or 183e, and becomes the minimum at each change point 183c, 183d or 183e. Become. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the display area R2 illustrated in FIG. 12 has a non-rectangular planar shape.
  • the outer circumference of the display area R2 illustrated in FIG. 12 has one straight line 184a and one curve 184b, and has two change points 184c where adjacent straight lines and curves intersect and the extending direction and curvature change.
  • One curve 184b is an arc having a constant curvature.
  • the arrangement density of the sub spacers 105s decreases as it approaches each change point 184c, and becomes the minimum at each change point 184c.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the display area R2 illustrated in FIG. 13 has a non-rectangular planar shape.
  • the outer circumference of the display area R2 illustrated in FIG. 13 has one straight line 185a and three curves 185b, and two change points 185c where adjacent straight lines and curves intersect and the extending direction and curvature change.
  • it has two change points 185d where two adjacent curves intersect and the extending direction and curvature change.
  • Two adjacent curves have different curvatures from each other.
  • the arrangement density of the subspacers 105s decreases as it approaches each change point 185c or 185d, and becomes the minimum at each change point 185c or 185d.
  • the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
  • the outer periphery of the display area R2 in which the subspacers 105s are particularly likely to pressurize the drive substrate 101 and / or the opposing substrate 102 is configured.
  • the arrangement density of the subspacers 105s becomes low.
  • the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
  • the arrangement density of the subspacers 105s is the first. It may have a concentric distribution centered on the 1st change point and / or the 2nd change point, or between the 1st change point and the 2nd change point on the outer circumference of the display area R2. It may have a concentric distribution centered on any point on the section. This is because, when the first change point and the second change point are close to each other, the arrangement density of the subspacers 105s is a concentric distribution centered on the first change point and / or the second change point.
  • the distribution of the placement densities of the subspacers 105s is substantially the same. This is because.
  • the section between the first change point and the second change point may be composed of a straight line or a curved line.
  • the arrangement density of the subspacers 105s is centered on the point 182c on the section between the two change points 182b existing at both ends of the straight line 182a forming the hypotenuse, as shown in FIG. It may have a concentric distribution.
  • the arrangement density of the subspacers 105s is a concentric distribution centered on the point 183f on the interval between the two change points 183b existing at both ends of the curve 183b, as shown in FIG. May have.
  • the same distribution of the arrangement density of the subspacers 105s may be adopted when the display area R2 has another planar shape.
  • FIG. 16 is an enlarged cross-sectional view schematically showing the vicinity of the sealing material of the liquid crystal panel provided in the liquid crystal display device of the first and second embodiments.
  • the deformations of the drive board 101 and the facing board 102 are exaggerated.
  • the sealing material 103 is formed by curing the resin fluid. Then, when the liquid crystal panel 11 is curved, the sealing material 103 is already cured. Therefore, when the liquid crystal panel 11 is curved, the position of the seal material arrangement region R1 and the shape of the seal material 103 do not change. Therefore, after the liquid crystal panel 11 is curved, the distance between the drive substrate 101 and the facing substrate 102 becomes narrow in the vicinity of the center of the liquid crystal panel 11. As a result, the stress generated in the drive substrate 101 and the opposing substrate 102 is released in the vicinity of the sealing material 103, and the driving substrate 101 and the opposing substrate 102 are deformed in the vicinity of the sealing material 103 as shown in FIG. When the drive board 101 and the facing board 102 are deformed as shown in FIG.
  • the subspacer 105s that contacts only one of the driving board 101 and the facing board 102 when the liquid crystal panel 11 is not curved is formed.
  • both the drive substrate 101 and the opposing substrate 102 come into contact with each other, causing display unevenness on the screen displayed on the liquid crystal panel 11.
  • the sub spacer 105s pressurizes the first translucent base material 111 and / or the second translucent base material 131. The pressure increases and display unevenness is emphasized. Reducing the arrangement density of the subspacers 105s near the outer periphery of the display region R2 contributes to suppressing such display unevenness.
  • Embodiment 2 differs from the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the first embodiment is adopted in the second embodiment.
  • FIG. 17 is a plan view schematically showing a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • the liquid crystal panel 11 illustrated in FIG. 17 has a non-rectangular planar shape.
  • the non-rectangular planar shape shown in FIG. 17 is a hexagonal planar shape.
  • the non-rectangular plane shape may be a polygonal plane shape other than the hexagonal plane shape.
  • the non-rectangular planar shape may be an octagonal planar shape.
  • the outer circumference of the non-rectangular planar shape shown in FIG. 17 has only a side formed by a straight line.
  • the outer circumference of the non-rectangular planar shape may have a side composed of a straight line and a side composed of a curved line.
  • the technique described below may be adopted when the liquid crystal panel 11 has a rectangular planar shape.
  • the sealing material 103 includes a cured adhesive 201 and a spacer 202 in the seal.
  • the spacer 202 in the seal is embedded in the cured adhesive 201.
  • the adhesive cured product 201 is a cured product of a resin adhesive.
  • the size of the spacer 202 in the seal is selected so that the liquid crystal cell gap is not smaller than the set gap near the outer periphery of the display area R2.
  • At least one of the drive board 101 and the facing board 102 includes a holding layer 205.
  • the holding layer 205 is arranged in the sealing material arrangement region R1 and overlaps with the sealing material 103 when viewed in a plan view from the thickness direction of the drive substrate 101 and the opposing substrate 102.
  • the holding layer 205 holds the spacer 202 in the seal.
  • the holding layer 205 shown in FIG. 18 is provided on the drive substrate 101 and is provided on the drive substrate side layer 211 and the facing substrate 102 arranged on the first main surface 111a of the first translucent substrate 111.
  • a facing substrate side layer 212 provided and arranged on the second main surface 131a of the second translucent base material 131 is provided.
  • the holding layer 205 illustrated in FIG. 19 is a drive substrate side layer provided on the drive substrate 101 and arranged on the first main surface 111a of the first translucent base material 111.
  • the holding layer 205 shown in FIG. 20 is a facing substrate side layer provided on the facing substrate 102 and arranged on the second main surface 131a of the second translucent substrate 131.
  • the drive substrate side layer 211 shown in FIG. 18 and the holding layer 205 shown in FIG. 19 are made of a metal wiring, an interlayer insulating film, a resin flattening film, and the like.
  • the interlayer insulating film is made of SiN or the like.
  • the facing substrate side layer 212 shown in FIG. 18 and the holding layer 205 shown in FIG. 20 are made of a black matrix, an overcoat material, a coloring material, or the like.
  • the holding layer 205 is a third layer.
  • the spacer 202 in the seal is sandwiched between the drive board 101 and the facing board 102. Therefore, the distance between the drive substrate 101 and the facing substrate 102 in the seal material arrangement region R1 depends on the total diameter of the spacer 202 in the seal and the height of the holding layer 205.
  • the holding layer 205 by providing the holding layer 205, the distance between the drive substrate 101 and the facing substrate 102 becomes wide in the vicinity of the outer periphery of the display area R2. Therefore, even if the distance between the drive board 101 and the opposite board 102 is narrowed in the vicinity of the outer periphery of the display area R2 due to the curvature of the drive board 101 and the facing board 102, the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
  • the drive board 101 and the facing substrate 102 are bonded to each other in the vacuum chamber, the drive board 101 and the facing board 101 and the facing board 102 are opposed to each other when the inside of the vacuum chamber is opened to the atmosphere after the drive board 101 and the facing board 102 are bonded to each other.
  • the substrate 102 may be crimped at atmospheric pressure to strongly compress the spacer 202 in the seal, and as a result, the distance between the drive substrate 101 and the opposing substrate 102 may be narrower than the set distance. Providing the holding layer 205 is also effective for this problem.
  • the holding layer 205 may or may not be provided with the arrangement density of the subspacers 105s being reduced as it approaches the outer periphery of the display area R2.
  • the holding layer 205 may be arranged in the entire sealing material arrangement area R1, or may be arranged only in the vicinity of the change points 181b, 182b, 183c, 183d, 183e, 184c, 185c and 185d.
  • FIG. 21 is an enlarged cross-sectional view schematically showing the vicinity of the sealing material of the liquid crystal panel provided in the liquid crystal display device of the second embodiment.
  • the liquid crystal cell gap d indicating the distance between the drive substrate 101 and the facing substrate 102 satisfies the relational expression h1 ⁇ d ⁇ h.
  • the liquid crystal cell gap d corresponds to the distance between the first layer 112 and the second layer 132.
  • the distance h1 + h between the drive board 101 facing each other and the facing board 102 becomes the same as or wider than the liquid crystal cell gap d, and the drive board 101 and the facing board 102 are curved so that the display area R2 It is possible to prevent the subspacer 105s from pressurizing the drive substrate 101 and / or the opposing substrate 102 when the distance between the driving substrate 101 and the opposing substrate 102 becomes narrow in the vicinity of the outer periphery of the drive substrate 101. As a result, display unevenness can be suppressed, and the adjustment range of the liquid crystal cell gap d can be expanded.
  • the holding layer 205 includes the drive board side layer 211 and the facing board side layer 212 described above, the height h1 of the drive board side layer 211 and the facing board side layer 212 in the thickness direction of the drive board 101 and the facing board 102.
  • the above-mentioned relational expression can be rewritten as the relational expression h1 ⁇ d ⁇ h2-h3 by using the height h2 of.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
  • liquid crystal display device 11 liquid crystal panel, 101 drive board, 102 facing board, 103 sealing material, 104 liquid crystal layer, 105 spacer, 105s sub spacer, 105 m main spacer, 111 first translucent base material, 112 first Layer, 131 second translucent substrate, 132 second layer, 161, 162 periodic units, 181b, 182b, 183c, 183d, 183e, 184c, 185c, 185d change point, 202 inner spacer, 205 protective layer (Third layer), R1 sealing material placement area, R2 display area.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention suppresses degradation of the display quality near the perimeter of a display region in a curved liquid crystal display device. A sealing material, a liquid crystal layer, a sub-spacer, and a main spacer are arranged between a drive substrate and a counter substrate and are arranged in a display region surrounded by the sealing material. The sealing material bonds the counter substrate to the drive substrate. The sub-spacer has a first height. The main spacer has a second height greater than the first height. In a first mode, the arrangement density of sub-spacers decreases along the direction toward the perimeter of the display region. In a second mode, the drive substrate is provided with a first layer. The counter substrate is provided with a second layer. The first layer and the second layer are arranged in the display region. The sealing material is provided with an in-seal spacer. At least either the drive substrate or the counter substrate is provided with a third layer. The third layer is arranged so as to overlap the sealing material.

Description

湾曲型の液晶表示装置Curved liquid crystal display device
 本発明は、湾曲型の液晶表示装置に関する。 The present invention relates to a curved liquid crystal display device.
 近年、湾曲する液晶パネルを備える曲面ディスプレイ、非矩形状の平面形状を有する液晶パネルを備える自由形状ディスプレイ、及び曲面ディスプレイであるとともに自由形状ディスプレイである曲面自由形状ディスプレイが、デザイン性等の観点から注目されている。曲面ディスプレイは、平坦な液晶パネルを湾曲させることにより得られる。自由形状ディスプレイは、矩形状の平面形状を有する液晶パネルを非矩形状の平面形状に切断することにより得られる。 In recent years, a curved display having a curved liquid crystal panel, a free-shaped display having a non-rectangular flat liquid crystal panel, and a curved free-shaped display which is a curved display and a free-shaped display have been introduced from the viewpoint of design and the like. Attention has been paid. A curved display is obtained by bending a flat liquid crystal panel. A free-form display is obtained by cutting a liquid crystal panel having a rectangular flat shape into a non-rectangular flat shape.
 一方、液晶パネルは、多くの場合は、ふたつの基板、シール、液晶層及びスペーサを備える。ふたつの基板の各々は、多くの場合は、ガラス基板を備える。シール、液晶層及びスペーサは、ふたつの基板の間に配置される。液晶層及びスペーサは、シールに囲まれる表示領域に配置される。スペーサは、ふたつの基板の間隔を示す液晶セルギャップを維持する。スペーサは、多くの場合は、相対的に高い高さを有するメインスペーサ、及び相対的に低い高さを有するサブスペーサを含む。メインスペーサは、常にふたつの基板の両方に接触し、液晶セルギャップを維持する。サブスペーサは、通常はふたつの基板の片方のみに接触し、ふたつの基板の両方又は片方に力が加わった場合にふたつの基板の両方に接触する。 On the other hand, the liquid crystal panel often includes two substrates, a seal, a liquid crystal layer and a spacer. Each of the two substrates often comprises a glass substrate. The seal, liquid crystal layer and spacer are arranged between the two substrates. The liquid crystal layer and the spacer are arranged in the display area surrounded by the sticker. The spacer maintains a liquid crystal cell gap that indicates the distance between the two substrates. Spacers often include a main spacer with a relatively high height and a sub spacer with a relatively low height. The main spacer always contacts both of the two substrates to maintain the liquid crystal cell gap. The subspacer usually contacts only one of the two substrates and contacts both of the two substrates or both of the two substrates when a force is applied to one of them.
 しかし、液晶パネルが湾曲させられた際には、メインスペーサが、加圧及び圧縮される。また、サブスペーサが、通常は接触しない基板に接触して加圧及び圧縮されることもある。そして、スペーサが加圧及び圧縮された場合は、液晶セルギャップが変動し、ガラス基板に応力が生じる。液晶セルギャップが変動した場合は、曲面ディスプレイに表示される画面に表示ムラが生じる。この表示ムラは、主に、曲面ディスプレイに表示される画面が白画面である場合に、画面内における色度ムラとして観察される。また、ガラス基板に応力が生じた場合は、ガラス基板に複屈折性が付与され、ガラス基板を透過する光に位相差が生じ、表示ムラが生じる。この表示ムラは、主に、曲面ディスプレイに表示される画面が黒画面である場合に、画面内における光漏れとして観察される。これらの表示ムラは、ガラス基板の変形量が局所的に大きく変化するシールの付近、すなわち表示領域の外周の付近において特に顕著に観察される。 However, when the liquid crystal panel is curved, the main spacer is pressurized and compressed. In addition, the subspacer may come into contact with a substrate which is not normally in contact with the substrate to be pressurized and compressed. Then, when the spacer is pressurized and compressed, the liquid crystal cell gap fluctuates and stress is generated on the glass substrate. When the liquid crystal cell gap fluctuates, display unevenness occurs on the screen displayed on the curved display. This display unevenness is mainly observed as chromaticity unevenness in the screen when the screen displayed on the curved display is a white screen. Further, when stress is generated in the glass substrate, birefringence is imparted to the glass substrate, a phase difference occurs in the light transmitted through the glass substrate, and display unevenness occurs. This display unevenness is mainly observed as light leakage in the screen when the screen displayed on the curved display is a black screen. These display irregularities are particularly remarkable in the vicinity of the seal where the amount of deformation of the glass substrate changes significantly locally, that is, in the vicinity of the outer periphery of the display area.
 これらの表示ムラに対する対策としては、スペーサの配置密度、形状等を制御すること、液晶パネルに位相差層を追加すること等が提案されている。 As countermeasures against these display irregularities, it has been proposed to control the arrangement density, shape, etc. of spacers, and to add a retardation layer to the liquid crystal panel.
 特許文献1に記載された技術は、湾曲型の液晶表示装置に関する。特許文献1に記載された技術においては、アレイ基板と対向基板との間に、複数の柱状スペーサが配設される。柱状スペーサは、相対的に高さが高い柱状スペーサ、及び相対的に高さが低い柱状スペーサからなる。相対的に高さが高い柱状スペーサは、液晶パネルの湾曲方向での中央部に向けて密度が高くなるように配置される。これにより、ムラを抑制することができる。 The technique described in Patent Document 1 relates to a curved liquid crystal display device. In the technique described in Patent Document 1, a plurality of columnar spacers are arranged between the array substrate and the facing substrate. The columnar spacer comprises a columnar spacer having a relatively high height and a columnar spacer having a relatively low height. The columnar spacers having a relatively high height are arranged so as to have a higher density toward the central portion in the bending direction of the liquid crystal panel. Thereby, unevenness can be suppressed.
 特許文献2に記載された技術は、曲面ディスプレイに関する。特許文献2に記載された技術においては、TFT基板と対向基板との間隔が、柱状スペーサによって規定される。柱状スペーサの密度は、画面中央から周辺に行くにしたがって線形に小さくなる。これにより、画面全体における輝度を均一にすることができる。 The technique described in Patent Document 2 relates to a curved display. In the technique described in Patent Document 2, the distance between the TFT substrate and the opposing substrate is defined by a columnar spacer. The density of columnar spacers decreases linearly from the center of the screen to the periphery. As a result, the brightness of the entire screen can be made uniform.
特開2018-097245号公報Japanese Unexamined Patent Publication No. 2018-097245 特開2017-187530号公報JP-A-2017-187530
 しかし、特許文献1及び2に記載された技術に代表される従来の技術においては、サブスペーサがふたつの基板を加圧することに起因する、表示領域の外周の付近における表示品位の低下を十分に抑制することができない。 However, in the conventional technique represented by the techniques described in Patent Documents 1 and 2, the deterioration of the display quality in the vicinity of the outer periphery of the display area due to the subspacer pressurizing the two substrates is sufficient. It cannot be suppressed.
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、サブスペーサが駆動基板及び/又は対向基板を加圧することに起因する、表示領域の外周の付近における表示品位の低下を抑制することができる湾曲型の液晶表示装置を提供することである。 The present invention has been made in view of this problem. The problem to be solved by the present invention is a curved liquid crystal display capable of suppressing deterioration of display quality in the vicinity of the outer periphery of the display area due to the subspacer pressurizing the drive substrate and / or the opposing substrate. To provide a device.
 本発明は、湾曲型の液晶表示装置に関する。 The present invention relates to a curved liquid crystal display device.
 湾曲型の液晶表示装置は、駆動基板、対向基板、シール材、液晶層、サブスペーサ及びメインスペーサを備える。 The curved liquid crystal display device includes a drive board, a facing board, a sealing material, a liquid crystal layer, a sub spacer, and a main spacer.
 駆動基板及び対向基板は、湾曲している。シール材、液晶層、サブスペーサ及びメインスペーサは、駆動基板と対向基板との間に配置され、シール材に囲まれる表示領域に配置される。シール材は、対向基板を駆動基板に貼り合わせる。サブスペーサは、第1の高さを有する。メインスペーサは、第1の高さより高い第2の高さを有する。 The drive board and the facing board are curved. The sealing material, the liquid crystal layer, the sub spacer, and the main spacer are arranged between the drive substrate and the facing substrate, and are arranged in the display area surrounded by the sealing material. As the sealing material, the opposing substrate is attached to the drive substrate. The subspacer has a first height. The main spacer has a second height that is higher than the first height.
 本発明の第1の態様においては、サブスペーサの配置密度が表示領域の外周に近づくにつれて低くなる。 In the first aspect of the present invention, the arrangement density of the subspacers decreases as it approaches the outer periphery of the display area.
 本発明の第2の態様においては、駆動基板が、第1の透光性基材及び第1の層を備える。第1の透光性基材は、対向基板が配置される側を向く第1の主面を有する。第1の層は、第1の主面の上に配置され、表示領域に配置される。また、対向基板が、第2の透光性基材及び第2の層を備える。第2の透光性基材は、駆動基板が配置される側を向く第2の主面を有する。第2の層は、第2の主面の上に配置され、表示領域に配置される。シール材は、シール内スペーサを備える。駆動基板及び対向基板の少なくとも一方の基板は、第3の層を備える。第3の層は、駆動基板及び対向基板の厚さ方向から平面視された場合にシール材と重なるように配置される。 In the second aspect of the present invention, the drive substrate comprises a first translucent substrate and a first layer. The first translucent substrate has a first main surface facing the side on which the opposing substrate is placed. The first layer is placed on top of the first main surface and is placed in the display area. Further, the facing substrate includes a second translucent base material and a second layer. The second translucent substrate has a second main surface facing the side on which the drive substrate is placed. The second layer is placed on top of the second main surface and is placed in the display area. The sealing material includes a spacer inside the seal. At least one of the drive substrate and the counter substrate includes a third layer. The third layer is arranged so as to overlap the sealing material when viewed in a plan view from the thickness direction of the drive substrate and the facing substrate.
 本発明の第1の態様によれば、サブスペーサが駆動基板及び/又は対向基板を加圧することが起こりやすい表示領域の外周の付近において、サブスペーサの配置密度が低くなる。このため、駆動基板及び対向基板が湾曲することによって表示領域の外周の付近において駆動基板と対向基板との間隔が狭くなった場合でも、サブスペーサが駆動基板及び/又は対向基板を加圧することを抑制することができる。これにより、サブスペーサが駆動基板及び/又は対向基板を加圧することに起因する、表示領域の外周の付近における表示品位の低下を抑制することができる。 According to the first aspect of the present invention, the arrangement density of the sub spacers becomes low in the vicinity of the outer periphery of the display area where the sub spacers tend to pressurize the drive substrate and / or the opposing substrate. Therefore, even if the distance between the drive board and the opposite board is narrowed near the outer periphery of the display area due to the curvature of the drive board and the facing board, the subspacer pressurizes the driving board and / or the facing board. It can be suppressed. As a result, it is possible to suppress deterioration of display quality in the vicinity of the outer periphery of the display region due to the subspacer pressurizing the drive substrate and / or the opposing substrate.
 本発明の第2の態様によれば、表示領域の外周の付近において駆動基板と対向基板との間隔が広くなる。このため、駆動基板及び対向基板が湾曲することによって表示領域の外周の付近において駆動基板と対向基板との間隔が狭くなった場合でも、サブスペーサが駆動基板及び/又は対向基板を加圧することを抑制することができる。これにより、サブスペーサが駆動基板及び/又は対向基板を加圧することに起因する、表示領域の外周の付近における表示品位の低下を抑制することができる。 According to the second aspect of the present invention, the distance between the drive substrate and the facing substrate becomes wide in the vicinity of the outer periphery of the display area. Therefore, even if the distance between the drive board and the opposite board is narrowed near the outer periphery of the display area due to the curvature of the drive board and the facing board, the subspacer pressurizes the driving board and / or the facing board. It can be suppressed. As a result, it is possible to suppress deterioration of display quality in the vicinity of the outer periphery of the display region due to the subspacer pressurizing the drive substrate and / or the opposing substrate.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objectives, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1-2の液晶表示装置を模式的に図示する斜視図である。It is a perspective view which shows typically the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる液晶パネルを模式的に図示する断面図である。It is sectional drawing which shows typically the liquid crystal panel provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる液晶パネルの、ひとつの画素を構成する部分を模式的に図示する断面図である。It is sectional drawing which shows typically the part which constitutes one pixel of the liquid crystal panel provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる対向基板の、ひとつのサブスペーサ配置画素を構成する部分を模式的に図示する平面図である。It is a top view which shows typically the part which constitutes one subspacer arrangement pixel of the facing substrate provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる対向基板の、ひとつのメインスペーサ配置画素を構成する部分を模式的に図示する平面図である。It is a top view which shows typically the part which constitutes one main spacer arrangement pixel of the facing substrate provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる対向基板の、ひとつの周期単位を構成する部分を模式的に図示する平面図である。It is a top view which shows typically the part which constitutes one periodic unit of the facing substrate provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置に備えられる対向基板の、ひとつの周期単位を構成する部分を模式的に図示する平面図である。It is a top view which shows typically the part which constitutes one periodic unit of the facing substrate provided in the liquid crystal display device of Embodiment 1-2. 実施の形態1-2の液晶表示装置の表示領域が矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。FIG. 5 is a plan view illustrating an example of distribution of the arrangement density of subspacers when the display area of the liquid crystal display device of the first and second embodiments has a non-rectangular planar shape. 実施の形態1-2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the first and second embodiments. 実施の形態2の液晶表示装置に備えられる液晶パネルを模式的に図示する平面図である。It is a top view which shows typically the liquid crystal panel provided in the liquid crystal display device of Embodiment 2. 実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment. 実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment. 実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment. 実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of a sealing material of a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
 1 実施の形態1
 1.1 液晶表示装置
 図1は、実施の形態1の液晶表示装置を模式的に図示する斜視図である。
1 Embodiment 1
1.1 Liquid crystal display device FIG. 1 is a perspective view schematically showing the liquid crystal display device of the first embodiment.
 図1に図示される液晶表示装置1は、湾曲型の液晶表示装置である。湾曲型の液晶表示装置は、曲面ディスプレイ等とも呼ばれる。 The liquid crystal display device 1 illustrated in FIG. 1 is a curved liquid crystal display device. The curved liquid crystal display device is also called a curved display or the like.
 液晶表示装置1は、図1に図示されるように、液晶パネル11及び保護板12を備える。また、液晶表示装置1は、図示されないバックライト、ベゼル等の組み立て部品を備える。 As shown in FIG. 1, the liquid crystal display device 1 includes a liquid crystal panel 11 and a protective plate 12. Further, the liquid crystal display device 1 includes assembled parts such as a backlight and a bezel (not shown).
 液晶パネル11は、湾曲させられている。保護板12は、液晶パネル11の表面に取り付けられている。 The liquid crystal panel 11 is curved. The protective plate 12 is attached to the surface of the liquid crystal panel 11.
 液晶パネル11は、図1に図示されるように、駆動基板101及び対向基板102を備える。また、液晶パネル11は、図示されない偏光板等の組み立て部品を備える。 As shown in FIG. 1, the liquid crystal panel 11 includes a drive substrate 101 and an opposing substrate 102. Further, the liquid crystal panel 11 includes an assembly part such as a polarizing plate (not shown).
 駆動基板101及び対向基板102は、湾曲している。対向基板102は、駆動基板101に対向する。 The drive board 101 and the facing board 102 are curved. The facing board 102 faces the drive board 101.
 液晶表示装置1は、薄膜トランジスタ(TFT:Thin Film Transistor)をスイッチング素子として備えるTFT液晶表示装置である。このため、駆動基板101は、TFTをスイッチング素子として備えるTFT駆動基板である。TFTは、駆動素子として機能する。液晶表示装置1が、TFT液晶表示装置以外の液晶表示装置であってもよく、駆動基板101が、TFT駆動基板以外の駆動基板であってもよい。 The liquid crystal display device 1 is a TFT liquid crystal display device including a thin film transistor (TFT) as a switching element. Therefore, the drive board 101 is a TFT drive board including a TFT as a switching element. The TFT functions as a driving element. The liquid crystal display device 1 may be a liquid crystal display device other than the TFT liquid crystal display device, and the drive substrate 101 may be a drive substrate other than the TFT drive substrate.
 対向基板102は、カラーフィルターを備えるカラーフィルター基板である。 The facing substrate 102 is a color filter substrate provided with a color filter.
 1.2 液晶パネル
 図2は、実施の形態1の液晶表示装置に備えられる液晶パネルを模式的に図示する断面図である。図2は、湾曲させられる前の液晶パネルを図示する。図2の左右方向は、湾曲方向である。
1.2 Liquid Crystal Panel FIG. 2 is a cross-sectional view schematically showing a liquid crystal panel provided in the liquid crystal display device of the first embodiment. FIG. 2 illustrates a liquid crystal panel before it is curved. The left-right direction in FIG. 2 is a bending direction.
 液晶パネル11は、図2に図示されるように、駆動基板101、対向基板102、シール材103、液晶層104及びスペーサ105を備える。スペーサ105は、サブスペーサ105sを備える。 As shown in FIG. 2, the liquid crystal panel 11 includes a drive substrate 101, an opposing substrate 102, a sealing material 103, a liquid crystal layer 104, and a spacer 105. The spacer 105 includes a sub spacer 105s.
 シール材103、液晶層104及びスペーサ105は、駆動基板101と対向基板102との間に配置される。 The sealing material 103, the liquid crystal layer 104, and the spacer 105 are arranged between the drive substrate 101 and the facing substrate 102.
 シール材103は、液晶パネル11の外周に沿うシール材配置領域R1に配置される。シール材103は、対向基板102を駆動基板101に接着し、対向基板102を駆動基板101に貼り合わせる。シール材103は、樹脂からなる。 The sealing material 103 is arranged in the sealing material arrangement area R1 along the outer circumference of the liquid crystal panel 11. The sealing material 103 adheres the opposing substrate 102 to the drive substrate 101 and the opposed substrate 102 to the drive substrate 101. The sealing material 103 is made of resin.
 液晶層104は、駆動基板101及び対向基板102の厚さ方向から平面視された場合にシール材103に囲まれる表示領域R2に配置される。これにより、液晶層104は、駆動基板101と対向基板102との間にシール材103により封止される。液晶層104を構成する液晶は、ポジ型の液晶及びネガ型の液晶のいずれであってもよい。 The liquid crystal layer 104 is arranged in the display area R2 surrounded by the sealing material 103 when viewed in a plan view from the thickness direction of the drive substrate 101 and the facing substrate 102. As a result, the liquid crystal layer 104 is sealed between the drive substrate 101 and the facing substrate 102 by the sealing material 103. The liquid crystal constituting the liquid crystal layer 104 may be either a positive type liquid crystal or a negative type liquid crystal.
 スペーサ105は、表示領域R2に配置される。サブスペーサ105sの配置密度は、表示領域R2の外周に近づくにつれて低くなる。このため、サブスペーサ105sの配置密度は、表示領域R2の中央において高く、シール材103に沿う表示領域R2の外周の付近において低い。スペーサ105は、樹脂からなる。 The spacer 105 is arranged in the display area R2. The arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2. Therefore, the arrangement density of the sub spacers 105s is high in the center of the display area R2 and low in the vicinity of the outer periphery of the display area R2 along the sealing material 103. The spacer 105 is made of resin.
 駆動基板101と対向基板102との間隔を示す液晶セルギャップは、例えば、2μm以上5μm以下である。液晶層104は、駆動基板101と対向基板102との間に液晶を充填することにより形成される。したがって、液晶層104は、例えば、液晶セルギャップに一致する2μm以上5μm以下の厚さを有する。 The liquid crystal cell gap indicating the distance between the drive substrate 101 and the facing substrate 102 is, for example, 2 μm or more and 5 μm or less. The liquid crystal layer 104 is formed by filling a liquid crystal between the driving substrate 101 and the facing substrate 102. Therefore, the liquid crystal layer 104 has, for example, a thickness of 2 μm or more and 5 μm or less corresponding to the liquid crystal cell gap.
 液晶パネル11は、マトリクス状に配列される複数の画素を有する。ただし、図2においては、画素の繰り返しを図示することが省略されている。 The liquid crystal panel 11 has a plurality of pixels arranged in a matrix. However, in FIG. 2, it is omitted to illustrate the repetition of pixels.
 1.3 駆動基板及び対向基板
 図3は、実施の形態1の液晶表示装置に備えられる液晶パネルの、ひとつの画素を構成する部分を模式的に図示する断面図である。
1.3 Drive Substrate and Opposing Substrate FIG. 3 is a cross-sectional view schematically showing a portion constituting one pixel of the liquid crystal panel provided in the liquid crystal display device of the first embodiment.
 駆動基板101は、図3に図示されるように、第1の透光性基材111及び第1の層112を備える。図3においては、第1の層112の構造が簡略化されている。 As shown in FIG. 3, the drive substrate 101 includes a first translucent base material 111 and a first layer 112. In FIG. 3, the structure of the first layer 112 is simplified.
 第1の透光性基材111は、対向基板102が配置される側を向く第1の主面111aを有する。第1の層112は、第1の主面111aの上に配置され、表示領域R2に配置される。 The first translucent base material 111 has a first main surface 111a facing the side on which the facing substrate 102 is arranged. The first layer 112 is arranged on the first main surface 111a and is arranged in the display area R2.
 第1の透光性基材111は、ガラス基板等である。 The first translucent base material 111 is a glass substrate or the like.
 第1の層112は、TFT層121等を備える。TFT層121は、TFT、保護絶縁膜、透明電極等を備える。第1の層112が、TFT層121の上に配置され液晶層104を構成する液晶を配向させる配向膜を備えてもよい。 The first layer 112 includes a TFT layer 121 and the like. The TFT layer 121 includes a TFT, a protective insulating film, a transparent electrode, and the like. The first layer 112 may be provided on the TFT layer 121 and may include an alignment film that orients the liquid crystals constituting the liquid crystal layer 104.
 対向基板102は、図3に図示されるように、第2の透光性基材131及び第2の層132を備える。図3においては、第2の層132の構造が簡略化されている。 As shown in FIG. 3, the facing substrate 102 includes a second translucent base material 131 and a second layer 132. In FIG. 3, the structure of the second layer 132 is simplified.
 第2の透光性基材131は、駆動基板101が配置される側を向く第2の主面131aを有する。第2の層132は、第2の主面131aの上に配置され、表示領域R2に配置される。 The second translucent base material 131 has a second main surface 131a facing the side on which the drive board 101 is arranged. The second layer 132 is arranged on the second main surface 131a and is arranged in the display area R2.
 第2の透光性基材131は、ガラス基板等である。 The second translucent base material 131 is a glass substrate or the like.
 第2の層132は、ブラックマトリックス141、色材142及びオーバーコート材143を備える。色材142は、赤色材142r、緑色材142g及び青色材142bを含む。オーバーコート材143は、ブラックマトリックス141及び色材142の上に配置される。ブラックマトリックス141は、遮光層として機能する。オーバーコート材143は、保護層として機能する。第2の層132が、オーバーコート材143の上に配置され液晶層104に含まれる液晶を配向させる配向膜を備えてもよい。スペーサ105が対向基板102の上に配置される場合は、配向膜はスペーサ105に重ねてオーバーコート材143の上に配置される。 The second layer 132 includes a black matrix 141, a coloring material 142, and an overcoat material 143. The coloring material 142 includes a red material 142r, a green material 142g, and a blue material 142b. The overcoat material 143 is arranged on the black matrix 141 and the coloring material 142. The black matrix 141 functions as a light-shielding layer. The overcoat material 143 functions as a protective layer. The second layer 132 may be provided on the overcoat material 143 and may include an alignment film that orients the liquid crystal contained in the liquid crystal layer 104. When the spacer 105 is placed on the facing substrate 102, the alignment film is placed on the overcoat material 143 so as to overlap the spacer 105.
 1.4 スペーサ
 液晶パネル11は、図3に図示されるように、スペーサ105を備える。スペーサ105は、駆動基板101又は対向基板102の上に配置される。図3には、スペーサ105が対向基板102の上に配置された状態が図示されている。
1.4 Spacer The liquid crystal panel 11 includes a spacer 105 as shown in FIG. The spacer 105 is arranged on the drive substrate 101 or the opposing substrate 102. FIG. 3 shows a state in which the spacer 105 is arranged on the facing substrate 102.
 スペーサ105は、サブスペーサ105s及びメインスペーサ105mを含む。サブスペーサ105s及びメインスペーサ105mは、駆動基板101と対向基板102との間に配置される。サブスペーサ105s及びメインスペーサ105mは、表示領域R2に配置される。 The spacer 105 includes a sub spacer 105s and a main spacer 105m. The sub spacer 105s and the main spacer 105 m are arranged between the drive substrate 101 and the facing substrate 102. The sub spacer 105s and the main spacer 105m are arranged in the display area R2.
 サブスペーサ105sは、駆動基板101及び対向基板102の厚さ方向について第1の高さを有する。メインスペーサ105mは、当該厚さ方向について第1の高さより高い第2の高さを有する。したがって、サブスペーサ105sは、相対的に低い高さを有する。また、メインスペーサ105mは、相対的に高い高さを有する。スペーサ105は、液晶表示装置1の表示特性に影響する液晶セルギャップに応じて決められる高さを有し、一般的には数μmの高さを有する。サブスペーサ105sの高さとメインスペーサ105mの高さとの差は、一般的には、0.1μm以上数μm以下である。 The sub spacer 105s has a first height in the thickness direction of the drive substrate 101 and the opposing substrate 102. The main spacer 105m has a second height higher than the first height in the thickness direction. Therefore, the subspacers 105s have a relatively low height. Further, the main spacer 105m has a relatively high height. The spacer 105 has a height determined according to the liquid crystal cell gap that affects the display characteristics of the liquid crystal display device 1, and generally has a height of several μm. The difference between the height of the sub spacer 105s and the height of the main spacer 105 m is generally 0.1 μm or more and several μm or less.
 メインスペーサ105mは、常に駆動基板101及び対向基板102の両方に接触し、駆動基板101と対向基板102との間隔を維持する。サブスペーサ105sは、通常の場合は、駆動基板101及び対向基板102の片方のみに接触し、駆動基板101及び/又は対向基板102に外力が加えられ、メインスペーサ105mが弾性変形し、駆動基板101及び対向基板102が互いに接近した場合は、駆動基板101及び対向基板102の両方に接触することがある。これにより、サブスペーサ105sは、駆動基板101及び/又は対向基板102に外力が加えられた場合に、駆動基板101と対向基板102との間隔を維持する。駆動基板101及び/又は対向基板102に加えられる外力は、液晶表示装置1が製造される場合に駆動基板101及び対向基板102が湾曲させられるときに駆動基板101及び対向基板102に加えられる外力を含む。 The main spacer 105m always contacts both the drive board 101 and the facing board 102, and maintains the distance between the driving board 101 and the facing board 102. Normally, the subspacer 105s contacts only one of the drive substrate 101 and the opposing substrate 102, an external force is applied to the driving substrate 101 and / or the opposing substrate 102, the main spacer 105m is elastically deformed, and the driving substrate 101 And when the opposing substrate 102 approaches each other, it may come into contact with both the driving substrate 101 and the opposing substrate 102. As a result, the subspacer 105s maintains the distance between the drive substrate 101 and / or the opposing substrate 102 when an external force is applied to the driving substrate 101 and / or the opposing substrate 102. The external force applied to the drive board 101 and / or the facing board 102 is the external force applied to the driving board 101 and the facing board 102 when the driving board 101 and the facing board 102 are curved when the liquid crystal display device 1 is manufactured. Including.
 スペーサ105は、駆動基板101又は対向基板102の上に樹脂からなる膜を形成し、形成した膜を柱状の形状にパターニングすることにより、形成される。 The spacer 105 is formed by forming a film made of resin on the driving substrate 101 or the opposing substrate 102 and patterning the formed film into a columnar shape.
 1.5 メインスペーサ/サブスペーサ配置画素、サブスペーサ配置画素及びメインスペーサ配置画素
 図4は、実施の形態1の液晶表示装置に備えられる対向基板の、ひとつのサブスペーサ配置画素を構成する部分を模式的に図示する平面図である。図5は、実施の形態1の液晶表示装置に備えられる対向基板の、ひとつのメインスペーサ配置画素を構成する部分を模式的に図示する平面図である。
1.5 Main spacer / sub spacer arrangement pixel, sub spacer arrangement pixel and main spacer arrangement pixel FIG. 4 shows a portion of the facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one sub spacer arrangement pixel. It is a top view which is schematically illustrated. FIG. 5 is a plan view schematically showing a portion of the facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one main spacer arrangement pixel.
 液晶パネル11の複数の画素に含まれる各画素は、サブスペーサ/メインスペーサ配置画素であってもよいが、図4に図示されるサブスペーサ配置画素151であってもよく、図5に図示されるメインスペーサ配置画素152であってもよい。サブスペーサ/メインスペーサ配置画素には、サブスペーサ105s及びメインスペーサ105mが配置される。サブスペーサ配置画素151には、サブスペーサ105sのみが配置される。メインスペーサ配置画素152には、メインスペーサ105mのみが配置される。 Each pixel included in the plurality of pixels of the liquid crystal panel 11 may be a sub-spacer / main spacer-arranged pixel, but may be a sub-spacer-arranged pixel 151 shown in FIG. 4, and is shown in FIG. The main spacer arrangement pixel 152 may be used. Sub-spacer 105s and main spacer 105m are arranged in the sub-spacer / main spacer arrangement pixel. Only the sub spacer 105s is arranged in the sub spacer arrangement pixel 151. Only the main spacer 105m is arranged in the main spacer arrangement pixel 152.
 1.6 サブスペーサの配置密度
 図6及び図7は、実施の形態1の液晶表示装置に備えられる対向基板の、ひとつの周期単位を構成する部分を模式的に図示する平面図である。図6は、相対的に高いサブスペーサの配置密度を有するひとつの周期単位を構成する部分を図示する。図7は、相対的に低いサブスペーサの配置密度を有するひとつの周期単位を構成する部分を図示する。
1.6 Arrangement Density of Subspacers FIGS. 6 and 7 are plan views schematically showing a portion of a facing substrate provided in the liquid crystal display device of the first embodiment, which constitutes one periodic unit. FIG. 6 illustrates a portion constituting one periodic unit having a relatively high arrangement density of subspacers. FIG. 7 illustrates a portion constituting one periodic unit having a relatively low arrangement density of subspacers.
 液晶パネル11は、図6に図示される周期単位161を有する。周期単位161は、複数の画素を含む。図6には、周期単位161が横方向5個×縦方向5個=25個の画素を含む状態が図示されている。周期単位161には、サブスペーサ105s及びメインスペーサ105mが配置される。周期単位161は、表示領域R2に周期的に現れる。周期単位161は、横方向及び縦方向に周期的に現れる。したがって、液晶パネル11は、複数の周期単位161がマトリクス状に配列された周期構造を有する。 The liquid crystal panel 11 has a periodic unit 161 shown in FIG. The period unit 161 includes a plurality of pixels. FIG. 6 shows a state in which the period unit 161 includes 5 pixels in the horizontal direction × 5 pixels in the vertical direction = 25 pixels. A sub spacer 105s and a main spacer 105m are arranged in the cycle unit 161. The periodic unit 161 periodically appears in the display area R2. The periodic unit 161 appears periodically in the horizontal direction and the vertical direction. Therefore, the liquid crystal panel 11 has a periodic structure in which a plurality of periodic units 161 are arranged in a matrix.
 周期単位161におけるサブスペーサ105sの配置密度は、駆動基板101及び対向基板102の厚さ方向から平面視された場合に周期単位161においてサブスペーサ105sが占める面積を、当該厚さ方向から平面視された場合に周期単位161が占める面積で除することにより得られる配置密度であると定義することができる。 The arrangement density of the sub spacers 105s in the periodic unit 161 is the area occupied by the sub spacers 105s in the periodic unit 161 when viewed in a plan view from the thickness direction of the drive substrate 101 and the opposing substrate 102. In this case, it can be defined as the arrangement density obtained by dividing by the area occupied by the periodic unit 161.
 周期単位161におけるサブスペーサ105sの配置密度は、液晶パネル11のサイズ、液晶パネル11の形状、液晶セルギャップ、サブスペーサ105sの高さ、メインスペーサ105mの配置密度、メインスペーサ105mの高さ等の液晶パネル11の外形寸法及び表示品位に影響する値に応じて決められる。周期単位161におけるサブスペーサ105sの配置密度が上述したように定義された場合は、周期単位161におけるサブスペーサ105sの配置密度は、望ましくは、表示領域R2の全体に渡って、0.01%以上5.00%以下である。 The arrangement density of the sub spacers 105s in the cycle unit 161 includes the size of the liquid crystal panel 11, the shape of the liquid crystal panel 11, the liquid crystal cell gap, the height of the sub spacers 105s, the arrangement density of the main spacers 105m, the height of the main spacers 105m, and the like. It is determined according to the external dimensions of the liquid crystal panel 11 and the values that affect the display quality. When the placement density of the subspacers 105s in the period unit 161 is defined as described above, the placement density of the subspacers 105s in the period unit 161 is preferably 0.01% or more over the entire display area R2. It is 5.00% or less.
 メインスペーサ105mは、周期単位161の中央に配置される画素171に配置される。サブスペーサ105sは、周期単位161の中央に配置される画素171の周囲に配置される画素172に配置される。一般的には、液晶セルギャップを維持するために、液晶パネル11の複数の画素の全部にサブスペーサ105s及び/又はメインスペーサ105mが配置される。 The main spacer 105m is arranged in the pixel 171 arranged in the center of the periodic unit 161. The subspacers 105s are arranged in pixels 172 arranged around the pixels 171 arranged in the center of the periodic unit 161. Generally, in order to maintain the liquid crystal cell gap, subspacers 105s and / or main spacers 105m are arranged in all of the plurality of pixels of the liquid crystal panel 11.
 図6に図示される相対的に高いサブスペーサ105sの配置密度を有する周期単位161においては、画素171を構成する緑色材142gの上のみに、メインスペーサ105mのみが配置される。また、画素172を構成する赤色材142r及び青色材142bの上のみに、サブスペーサ105sのみが配置される。 In the periodic unit 161 having a relatively high arrangement density of the sub spacers 105s shown in FIG. 6, only the main spacer 105 m is arranged only on the green material 142 g constituting the pixel 171. Further, only the sub spacer 105s is arranged only on the red material 142r and the blue material 142b constituting the pixel 172.
 図7に図示される相対的に低いサブスペーサ105sの配置密度を有する周期単位162においては、周期単位161と同様に、画素171を構成する緑色材142gの上のみに、メインスペーサ105mのみが配置される。また、画素172に含まれる20個の画素172aを構成する赤色材142r及び青色材142bの上のみに、サブスペーサ105sのみが配置される。しかし、周期単位161と異なり、画素172に含まれる4個の画素172bを構成する赤色材142r及び青色材142bの上には、サブスペーサ105sが配置されない。 In the periodic unit 162 having a relatively low arrangement density of the sub spacers 105s shown in FIG. 7, only the main spacer 105 m is arranged only on the green material 142 g constituting the pixel 171 as in the periodic unit 161. Will be done. Further, only the sub spacer 105s is arranged only on the red material 142r and the blue material 142b constituting the 20 pixels 172a included in the pixel 172. However, unlike the periodic unit 161, the sub spacer 105s is not arranged on the red material 142r and the blue material 142b constituting the four pixels 172b included in the pixel 172.
 図7に図示される周期単位162においては、配置されるサブスペーサ105sの数を減らすことにより、サブスペーサ105sの配置密度が低くされている。これにより、スペーサ105の形成の手順を著しく複雑にすることなく、サブスペーサ105sの配置密度を低くすることができる。ただし、サブスペーサ105sのサイズを小さくすることにより、サブスペーサ105sの配置密度が低くされてもよい。 In the periodic unit 162 shown in FIG. 7, the arrangement density of the sub spacers 105s is lowered by reducing the number of the sub spacers 105s to be arranged. Thereby, the arrangement density of the sub spacers 105s can be reduced without significantly complicating the procedure for forming the spacers 105. However, the arrangement density of the sub spacers 105s may be lowered by reducing the size of the sub spacers 105s.
 1.7 サブスペーサの配置密度の分布
 図8及び図9は、実施の形態1の液晶表示装置の表示領域が矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。図10から図15までは、実施の形態1の液晶表示装置の表示領域が非矩形状の平面形状を有する場合のサブスペーサの配置密度の分布の例を図示する平面図である。図8から図15までにおいては、サブスペーサの配置密度が低いことが高い濃度で表現され、サブスペーサの配置密度が高いことが低い濃度で表現されている。
1.7 Distribution of Subspacer Arrangement Density FIGS. 8 and 9 illustrate an example of the distribution of subspacer arrangement density when the display area of the liquid crystal display device of the first embodiment has a rectangular planar shape. It is a plan view. 10 to 15 are plan views illustrating an example of the distribution of the arrangement density of the subspacers when the display area of the liquid crystal display device of the first embodiment has a non-rectangular planar shape. In FIGS. 8 to 15, a low density of subspacers is represented by a high concentration, and a high density of subspacers is represented by a low concentration.
 図8に図示される表示領域R2は、矩形状の平面形状を有する。図8に図示される表示領域R2の外周は、4個の直線181aを有する。4個の直線181aは、それぞれ4個の辺を構成する。 The display area R2 illustrated in FIG. 8 has a rectangular planar shape. The outer circumference of the display area R2 shown in FIG. 8 has four straight lines 181a. Each of the four straight lines 181a constitutes four sides.
 図8に図示されるサブスペーサ105sの配置密度の分布は、各直線181aと平行をなす分布である。図8に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各直線181aに近づくにつれて低くなる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The distribution of the arrangement density of the subspacers 105s shown in FIG. 8 is a distribution parallel to each straight line 181a. In the distribution of the arrangement density of the sub spacers 105s shown in FIG. 8, the arrangement density of the sub spacers 105s decreases as it approaches each straight line 181a. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図8に図示されるサブスペーサ105sの配置密度の分布によれば、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することが起こりやすい表示領域R2の外周の付近において、サブスペーサ105sの配置密度が低くなる。このため、駆動基板101及び対向基板102が湾曲することによって表示領域R2の外周の付近において駆動基板101と対向基板102との間隔が狭くなった場合でも、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することを抑制することができる。これにより、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することに起因する、表示領域R2の外周の付近における表示品位の低下を抑制することができる。 According to the distribution of the arrangement density of the subspacers 105s shown in FIG. 8, the subspacers 105s are located near the outer periphery of the display region R2 where the subspacers 105s are likely to pressurize the drive substrate 101 and / or the opposing substrate 102. Placement density is low. Therefore, even if the distance between the drive board 101 and the opposite board 102 is narrowed in the vicinity of the outer periphery of the display area R2 due to the curvature of the drive board 101 and the facing board 102, the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
 図9に図示される表示領域R2は、矩形状の平面形状を有する。図9に図示される表示領域R2の外周は、4個の直線181a、及び隣接する2個の直線が交わり延在方向が変化する4個の変化点181bを有する。4個の直線181aは、それぞれ4個の辺を構成する。4個の変化点181bは、それぞれ4個の頂点を構成する。 The display area R2 illustrated in FIG. 9 has a rectangular planar shape. The outer circumference of the display area R2 illustrated in FIG. 9 has four straight lines 181a and four change points 181b at which two adjacent straight lines intersect and the extending direction changes. Each of the four straight lines 181a constitutes four sides. Each of the four change points 181b constitutes four vertices.
 図9に図示されるサブスペーサ105sの配置密度の分布は、各変化点181bを中心とする同心円状の分布である。図9に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各変化点181bに近づくにつれて低くなり、各変化点181bにおいて最小となる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The distribution of the arrangement density of the subspacers 105s shown in FIG. 9 is a concentric distribution centered on each change point 181b. In the distribution of the arrangement density of the sub spacers 105s shown in FIG. 9, the arrangement density of the sub spacers 105s decreases as it approaches each change point 181b, and becomes the minimum at each change point 181b. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図10に図示される表示領域R2は、非矩形状の平面形状を有する。図10に図示される非矩形状の平面形状は、六角形状の平面形状である。しかし、非矩形状の平面形状が、六角形状の平面形状以外の多角形状の平面形状であってもよい。例えば、非矩形状の平面形状が、八角形状の平面形状であってもよい。また、図10に図示される非矩形状の平面形状の外周は、直線により構成される辺のみを有する。しかし、非矩形状の平面形状の外周が、直線により構成される辺及び曲線により構成される辺を有してもよい。図10に図示される表示領域R2の外周は、6個の直線182a、及び隣接する2個の直線182aが交わり延在方向が変化する6個の変化点182bを有する。6個の直線182aは、それぞれ6個の辺を構成する。6個の変化点182bは、それぞれ6個の頂点を構成する。 The display area R2 illustrated in FIG. 10 has a non-rectangular planar shape. The non-rectangular planar shape shown in FIG. 10 is a hexagonal planar shape. However, the non-rectangular plane shape may be a polygonal plane shape other than the hexagonal plane shape. For example, the non-rectangular planar shape may be an octagonal planar shape. Further, the outer circumference of the non-rectangular planar shape shown in FIG. 10 has only a side formed by a straight line. However, the outer circumference of the non-rectangular planar shape may have a side composed of a straight line and a side composed of a curved line. The outer circumference of the display area R2 illustrated in FIG. 10 has six straight lines 182a and six change points 182b where two adjacent straight lines 182a intersect and the extending direction changes. Each of the six straight lines 182a constitutes six sides. Each of the six change points 182b constitutes six vertices.
 図10に図示されるサブスペーサ105sの配置密度の分布は、各変化点182bを中心とする同心円状の分布である。図10に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各変化点182bに近づくにつれて低くなり、各変化点182bにおいて最小となる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The distribution of the arrangement density of the subspacers 105s shown in FIG. 10 is a concentric distribution centered on each change point 182b. In the distribution of the arrangement density of the sub spacers 105s shown in FIG. 10, the arrangement density of the sub spacers 105s decreases as it approaches each change point 182b, and becomes the minimum at each change point 182b. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図11に図示される表示領域R2は、非矩形状の平面形状を有する。図11に図示される非矩形状の平面形状は、矩形状の平面形状である除去前の平面形状から窪み183gを除去した平面形状である。しかし、除去前の平面形状が、矩形状の平面形状以外の多角形状の平面形状であってもよい。例えば、除去前の平面形状が、六角形状の平面形状、八角形状の平面形状等であってもよい。図11に図示される除去前の平面形状の外周は、直線により構成される辺のみを有する。しかし、除去前の平面形状の外周が、直線により構成される辺及び曲線により構成される辺を有してもよい。図11に図示される表示領域R2は、除去前の平面形状を矩形状に除去する、ノッチと呼ばれる窪み183gを有する。したがって、ノッチは、矩形状の平面形状を有する。ただし、ノッチが、図11に図示される矩形状の平面形状と異なる平面形状を有してもよい。ノッチが、非矩形状の平面形状を有してもよい。図11に図示される表示領域R2の外周は、6個の直線183a、2個の曲線183b、隣接する2個の直線が交わり延在方向が変化する4個の変化点183c、隣接する直線及び曲線が交わり曲率が変化する4個の変化点183d、及び隣接する2個の直線が交わり延在方向が変化する2個の変化点183eを有する。図11に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各変化点183c,183d又は183eに近づくにつれて低くなり、各変化点183c,183d又は183eにおいて最小となる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The display area R2 shown in FIG. 11 has a non-rectangular planar shape. The non-rectangular planar shape shown in FIG. 11 is a planar shape obtained by removing 183 g of dents from the planar shape before removal, which is a rectangular planar shape. However, the plane shape before removal may be a polygonal plane shape other than the rectangular plane shape. For example, the planar shape before removal may be a hexagonal planar shape, an octagonal planar shape, or the like. The outer circumference of the plane shape before removal shown in FIG. 11 has only a side formed by a straight line. However, the outer circumference of the planar shape before removal may have a side formed of a straight line and a side formed of a curved line. The display area R2 illustrated in FIG. 11 has a recess 183 g called a notch that removes the planar shape before removal into a rectangular shape. Therefore, the notch has a rectangular planar shape. However, the notch may have a planar shape different from the rectangular planar shape shown in FIG. The notch may have a non-rectangular planar shape. The outer circumference of the display area R2 illustrated in FIG. 11 includes six straight lines 183a, two curves 183b, four change points 183c where two adjacent straight lines intersect and the extending direction changes, adjacent straight lines and It has four change points 183d where the curves intersect and the curvature changes, and two change points 183e where two adjacent straight lines intersect and the extension direction changes. In the distribution of the arrangement density of the subspacers 105s shown in FIG. 11, the arrangement density of the subspacers 105s decreases as it approaches each change point 183c, 183d or 183e, and becomes the minimum at each change point 183c, 183d or 183e. Become. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図12に図示される表示領域R2は、非矩形状の平面形状を有する。図12に図示される表示領域R2の外周は、1個の直線184a及び1個の曲線184bを有し、隣接する直線及び曲線が交わり延在方向及び曲率が変化する2個の変化点184cを有する。1個の曲線184bは、一定の曲率を有する円弧である。図12に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各変化点184cに近づくにつれて低くなり、各変化点184cにおいて最小となる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The display area R2 illustrated in FIG. 12 has a non-rectangular planar shape. The outer circumference of the display area R2 illustrated in FIG. 12 has one straight line 184a and one curve 184b, and has two change points 184c where adjacent straight lines and curves intersect and the extending direction and curvature change. Have. One curve 184b is an arc having a constant curvature. In the distribution of the arrangement density of the sub spacers 105s shown in FIG. 12, the arrangement density of the sub spacers 105s decreases as it approaches each change point 184c, and becomes the minimum at each change point 184c. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図13に図示される表示領域R2は、非矩形状の平面形状を有する。図13に図示される表示領域R2の外周は、1個の直線185a及び3個の曲線185bを有し、隣接する直線及び曲線が交わり延在方向及び曲率が変化する2個の変化点185c、並びに隣接する2個の曲線が交わり延在方向及び曲率が変化する2個の変化点185dを有する。隣接する2個の曲線は、互いに異なる曲率を有する。図13に図示されるサブスペーサ105sの配置密度の分布においては、サブスペーサ105sの配置密度が、各変化点185c又は185dに近づくにつれて低くなり、各変化点185c又は185dにおいて最小となる。これにより、サブスペーサ105sの配置密度は、表示領域R2の中央から表示領域R2の外周へ向かう途上において、表示領域R2の外周に近づくにつれて低くなる。 The display area R2 illustrated in FIG. 13 has a non-rectangular planar shape. The outer circumference of the display area R2 illustrated in FIG. 13 has one straight line 185a and three curves 185b, and two change points 185c where adjacent straight lines and curves intersect and the extending direction and curvature change. In addition, it has two change points 185d where two adjacent curves intersect and the extending direction and curvature change. Two adjacent curves have different curvatures from each other. In the distribution of the arrangement density of the subspacers 105s shown in FIG. 13, the arrangement density of the subspacers 105s decreases as it approaches each change point 185c or 185d, and becomes the minimum at each change point 185c or 185d. As a result, the arrangement density of the subspacers 105s becomes lower as it approaches the outer circumference of the display area R2 on the way from the center of the display area R2 to the outer circumference of the display area R2.
 図9から図13までに図示されるサブスペーサ105sの配置密度の分布によれば、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することが特に起こりやすい表示領域R2の外周を構成する変化点181b,182b,183c,183d,183e,184c,185c及び185dの付近において、サブスペーサ105sの配置密度が低くなる。このため、駆動基板101及び対向基板102が湾曲することによって表示領域R2の外周の付近において駆動基板101と対向基板102との間隔が狭くなった場合でも、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することを抑制することができる。これにより、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することに起因する、表示領域R2の外周の付近における表示品位の低下を抑制することができる。 According to the distribution of the arrangement density of the subspacers 105s shown in FIGS. 9 to 13, the outer periphery of the display area R2 in which the subspacers 105s are particularly likely to pressurize the drive substrate 101 and / or the opposing substrate 102 is configured. In the vicinity of the changing points 181b, 182b, 183c, 183d, 183e, 184c, 185c and 185d, the arrangement density of the subspacers 105s becomes low. Therefore, even if the distance between the drive board 101 and the opposite board 102 is narrowed in the vicinity of the outer periphery of the display area R2 due to the curvature of the drive board 101 and the facing board 102, the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
 第1の変化点及び第2の変化点が互いに近接する場合、例えば、第1の変化点から第2の変化点までの距離が100mm以下である場合は、サブスペーサ105sの配置密度は、第1の変化点及び/又は第2の変化点を中心とする同心円状の分布を有してもよいし、表示領域R2の外周上の第1の変化点と第2の変化点との間の区間上の任意の点を中心とする同心円状の分布を有してもよい。なぜならば、第1の変化点及び第2の変化点が互いに近接する場合は、サブスペーサ105sの配置密度が第1の変化点及び/又は第2の変化点を中心とする同心円状の分布、及び第1の変化点と第2の変化点との間の区間上の任意の点を中心とする同心円状の分布のいずれを有するときも、サブスペーサ105sの配置密度の分布が実質的に同等となるためである。第1の変化点と第2の変化点との間の区間は、直線により構成される場合もあるし、曲線により構成される場合もある。 When the first change point and the second change point are close to each other, for example, when the distance from the first change point to the second change point is 100 mm or less, the arrangement density of the subspacers 105s is the first. It may have a concentric distribution centered on the 1st change point and / or the 2nd change point, or between the 1st change point and the 2nd change point on the outer circumference of the display area R2. It may have a concentric distribution centered on any point on the section. This is because, when the first change point and the second change point are close to each other, the arrangement density of the subspacers 105s is a concentric distribution centered on the first change point and / or the second change point. And when it has any of the concentric distributions centered on any points on the section between the first and second change points, the distribution of the placement densities of the subspacers 105s is substantially the same. This is because. The section between the first change point and the second change point may be composed of a straight line or a curved line.
 例えば、図10に図示される表示領域R2の変形例である図14に図示される表示領域R2においては、斜辺を構成する直線182aの両端に存在する2個の変化点182bが互いに近接する。この場合は、サブスペーサ105sの配置密度が、図14に図示されるように、斜辺を構成する直線182aの両端に存在する2個の変化点182bの間の区間上の点182cを中心とする同心円状の分布を有してもよい。 For example, in the display area R2 shown in FIG. 14, which is a modification of the display area R2 shown in FIG. 10, two change points 182b existing at both ends of the straight line 182a forming the hypotenuse are close to each other. In this case, the arrangement density of the subspacers 105s is centered on the point 182c on the section between the two change points 182b existing at both ends of the straight line 182a forming the hypotenuse, as shown in FIG. It may have a concentric distribution.
 また、図11に図示される表示領域R2の変形例である図15に図示される表示領域R2においては、曲線183bの両端に位置する2個の変化点183dが互いに近接する。この場合は、サブスペーサ105sの配置密度が、図15に図示されるように、曲線183bの両端に存在する2個の変化点183bの間の区間上の点183fを中心とする同心円状の分布を有してもよい。 Further, in the display area R2 shown in FIG. 15, which is a modification of the display area R2 shown in FIG. 11, two change points 183d located at both ends of the curve 183b are close to each other. In this case, the arrangement density of the subspacers 105s is a concentric distribution centered on the point 183f on the interval between the two change points 183b existing at both ends of the curve 183b, as shown in FIG. May have.
 同様のサブスペーサ105sの配置密度の分布が、表示領域R2が他の平面形状を有する場合に採用されてもよい。 The same distribution of the arrangement density of the subspacers 105s may be adopted when the display area R2 has another planar shape.
 1.8 シール材の付近の状態
 図16は、実施の形態1-2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。図16には、駆動基板101及び対向基板102の変形が誇張して図示されている。
1.8 State in the vicinity of the sealing material FIG. 16 is an enlarged cross-sectional view schematically showing the vicinity of the sealing material of the liquid crystal panel provided in the liquid crystal display device of the first and second embodiments. In FIG. 16, the deformations of the drive board 101 and the facing board 102 are exaggerated.
 シール材103は、樹脂流動体を硬化させることにより形成される。そして、液晶パネル11が湾曲させられる際には、シール材103は、既に硬化している。したがって、液晶パネル11が湾曲させられる際には、シール材配置領域R1の位置及びシール材103の形状は、変化しない。このため、液晶パネル11が湾曲させられた後には、液晶パネル11の中央の付近において、駆動基板101と対向基板102との間隔が狭くなる。これにより、駆動基板101及び対向基板102に生じた応力がシール材103の付近において解放され、駆動基板101及び対向基板102がシール材103の付近において図16に図示されるように変形する。そして、駆動基板101及び対向基板102が図16に図示されるように変形した場合は、液晶パネル11が湾曲していない場合に駆動基板101及び対向基板102の片方にしか接触しないサブスペーサ105sが、シール材103の付近において駆動基板101及び対向基板102の両方に接触し、液晶パネル11に表示される画面に表示ムラが生じる。また、サブスペーサ105sと駆動基板101及び対向基板102との接触面積が広くなるほど、サブスペーサ105sが第1の透光性基材111及び/又は第2の透光性基材131を加圧する加圧力が大きくなり、表示ムラが強調される。サブスペーサ105sの配置密度を表示領域R2の外周の付近において小さくすることは、このような表示ムラを抑制することに寄与する。 The sealing material 103 is formed by curing the resin fluid. Then, when the liquid crystal panel 11 is curved, the sealing material 103 is already cured. Therefore, when the liquid crystal panel 11 is curved, the position of the seal material arrangement region R1 and the shape of the seal material 103 do not change. Therefore, after the liquid crystal panel 11 is curved, the distance between the drive substrate 101 and the facing substrate 102 becomes narrow in the vicinity of the center of the liquid crystal panel 11. As a result, the stress generated in the drive substrate 101 and the opposing substrate 102 is released in the vicinity of the sealing material 103, and the driving substrate 101 and the opposing substrate 102 are deformed in the vicinity of the sealing material 103 as shown in FIG. When the drive board 101 and the facing board 102 are deformed as shown in FIG. 16, the subspacer 105s that contacts only one of the driving board 101 and the facing board 102 when the liquid crystal panel 11 is not curved is formed. In the vicinity of the sealing material 103, both the drive substrate 101 and the opposing substrate 102 come into contact with each other, causing display unevenness on the screen displayed on the liquid crystal panel 11. Further, as the contact area between the sub spacer 105s and the drive substrate 101 and the facing substrate 102 becomes wider, the sub spacer 105s pressurizes the first translucent base material 111 and / or the second translucent base material 131. The pressure increases and display unevenness is emphasized. Reducing the arrangement density of the subspacers 105s near the outer periphery of the display region R2 contributes to suppressing such display unevenness.
 1.9 試作例
 図9に図示される矩形状の平面形状を有する表示領域R2を有し、図9に図示されるサブスペーサ105sの配置密度の分布を有する10台の液晶表示装置1を試作した。サブスペーサ105sの配置密度は、表示領域R2の中央においては、1.5%とし、各変化点181bにおいては、1.0%とし、表示領域R2の中央と各変化点181bとの間においては、設定された勾配を有する配置密度とした。勾配は、表示領域R2の全体における色度の分布等の表示品位、耐熱性、外力耐性等を考慮して設定した。試作した10台の液晶表示装置1においては、各変化点181bの付近における黒色の輝度が10%から20%低下し、表示ムラが抑制されていることを確認することができた。
1.9 Prototype example Ten liquid crystal display devices 1 having a display area R2 having a rectangular planar shape shown in FIG. 9 and having an arrangement density distribution of subspacers 105s shown in FIG. 9 are prototyped. did. The arrangement density of the subspacers 105s is 1.5% at the center of the display area R2 and 1.0% at each change point 181b, and is set between the center of the display area R2 and each change point 181b. , The placement density with the set gradient. The gradient was set in consideration of display quality such as chromaticity distribution in the entire display region R2, heat resistance, external force resistance, and the like. In the 10 prototype liquid crystal display devices 1, it was confirmed that the brightness of black in the vicinity of each change point 181b was reduced by 10% to 20%, and display unevenness was suppressed.
 2 実施の形態2
 実施の形態2は、主に下述する点で実施の形態1と相違する。下述されない点については、実施の形態1において採用される構成と同様の構成が実施の形態2においても採用される。
2 Embodiment 2
The second embodiment differs from the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the first embodiment is adopted in the second embodiment.
 図17は、実施の形態2の液晶表示装置に備えられる液晶パネルを模式的に図示する平面図である。 FIG. 17 is a plan view schematically showing a liquid crystal panel provided in the liquid crystal display device of the second embodiment.
 図17に図示される液晶パネル11は、非矩形状の平面形状を有する。図17に図示される非矩形状の平面形状は、六角形状の平面形状である。しかし、非矩形状の平面形状が、六角形状の平面形状以外の多角形状の平面形状であってもよい。例えば、非矩形状の平面形状が、八角形状の平面形状であってもよい。また、図17に図示される非矩形状の平面形状の外周は、直線により構成される辺のみを有する。しかし、非矩形状の平面形状の外周が、直線により構成される辺及び曲線により構成される辺を有してもよい。下述する技術が、液晶パネル11が矩形状の平面形状を有する場合に採用されてもよい。シール材103が形成される際には、液晶パネル11の外周に沿うシール材配置領域R1にシール材の樹脂流動体が塗布されて塗布膜が形成され、形成された塗布膜が硬化させられてシール材103が形成される。 The liquid crystal panel 11 illustrated in FIG. 17 has a non-rectangular planar shape. The non-rectangular planar shape shown in FIG. 17 is a hexagonal planar shape. However, the non-rectangular plane shape may be a polygonal plane shape other than the hexagonal plane shape. For example, the non-rectangular planar shape may be an octagonal planar shape. Further, the outer circumference of the non-rectangular planar shape shown in FIG. 17 has only a side formed by a straight line. However, the outer circumference of the non-rectangular planar shape may have a side composed of a straight line and a side composed of a curved line. The technique described below may be adopted when the liquid crystal panel 11 has a rectangular planar shape. When the sealing material 103 is formed, the resin fluid of the sealing material is applied to the sealing material arrangement region R1 along the outer periphery of the liquid crystal panel 11 to form a coating film, and the formed coating film is cured. The sealing material 103 is formed.
 図18、図19及び図20は、実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。 18, 19, and 20 are enlarged cross-sectional views schematically showing the vicinity of the sealing material of the liquid crystal panel provided in the liquid crystal display device of the second embodiment.
 シール材103は、図18、図19及び図20に図示されるように、接着剤硬化物201及びシール内スペーサ202を備える。 As shown in FIGS. 18, 19 and 20, the sealing material 103 includes a cured adhesive 201 and a spacer 202 in the seal.
 シール内スペーサ202は、接着剤硬化物201に埋められる。 The spacer 202 in the seal is embedded in the cured adhesive 201.
 接着剤硬化物201は、樹脂接着剤の硬化物である。シール内スペーサ202のサイズは、表示領域R2の外周の付近において液晶セルギャップが設定されたギャップより小さくならないように選定される。 The adhesive cured product 201 is a cured product of a resin adhesive. The size of the spacer 202 in the seal is selected so that the liquid crystal cell gap is not smaller than the set gap near the outer periphery of the display area R2.
 駆動基板101及び対向基板102の少なくとも一方の基板は、保持層205を備える。 At least one of the drive board 101 and the facing board 102 includes a holding layer 205.
 保持層205は、シール材配置領域R1に配置され、駆動基板101及び対向基板102の厚さ方向から平面視された場合にシール材103と重なる。保持層205は、シール内スペーサ202を保持する。 The holding layer 205 is arranged in the sealing material arrangement region R1 and overlaps with the sealing material 103 when viewed in a plan view from the thickness direction of the drive substrate 101 and the opposing substrate 102. The holding layer 205 holds the spacer 202 in the seal.
 図18に図示される保持層205は、駆動基板101に備えられ第1の透光性基材111の第1の主面111aの上に配置される駆動基板側層211、及び対向基板102に備えられ第2の透光性基材131の第2の主面131aの上に配置される対向基板側層212を備える。 The holding layer 205 shown in FIG. 18 is provided on the drive substrate 101 and is provided on the drive substrate side layer 211 and the facing substrate 102 arranged on the first main surface 111a of the first translucent substrate 111. A facing substrate side layer 212 provided and arranged on the second main surface 131a of the second translucent base material 131 is provided.
 図19に図示される保持層205は、駆動基板101に備えられ第1の透光性基材111の第1の主面111aの上に配置される駆動基板側層である。 The holding layer 205 illustrated in FIG. 19 is a drive substrate side layer provided on the drive substrate 101 and arranged on the first main surface 111a of the first translucent base material 111.
 図20に図示される保持層205は、対向基板102に備えられ第2の透光性基材131の第2の主面131aの上に配置される対向基板側層である。 The holding layer 205 shown in FIG. 20 is a facing substrate side layer provided on the facing substrate 102 and arranged on the second main surface 131a of the second translucent substrate 131.
 図18に図示される駆動基板側層211、及び図19に図示される保持層205は、金属配線、層間絶縁膜、樹脂平坦化膜等からなる。層間絶縁膜は、SiN等からなる。 The drive substrate side layer 211 shown in FIG. 18 and the holding layer 205 shown in FIG. 19 are made of a metal wiring, an interlayer insulating film, a resin flattening film, and the like. The interlayer insulating film is made of SiN or the like.
 図18に図示される対向基板側層212、及び図20に図示される保持層205は、ブラックマトリックス、オーバーコート材、色材等からなる。 The facing substrate side layer 212 shown in FIG. 18 and the holding layer 205 shown in FIG. 20 are made of a black matrix, an overcoat material, a coloring material, or the like.
 保持層205は、第3の層である。 The holding layer 205 is a third layer.
 シール内スペーサ202は、駆動基板101と対向基板102とに挟まれる。このため、シール材配置領域R1における駆動基板101と対向基板102との間隔は、シール内スペーサ202の径及び保持層205の高さの合計に依存する。 The spacer 202 in the seal is sandwiched between the drive board 101 and the facing board 102. Therefore, the distance between the drive substrate 101 and the facing substrate 102 in the seal material arrangement region R1 depends on the total diameter of the spacer 202 in the seal and the height of the holding layer 205.
 このため、保持層205が設けられることにより、表示領域R2の外周の付近において駆動基板101と対向基板102との間隔が広くなる。このため、駆動基板101及び対向基板102が湾曲することによって表示領域R2の外周の付近において駆動基板101と対向基板102との間隔が狭くなった場合でも、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することを抑制することができる。これにより、サブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することに起因する、表示領域R2の外周の付近における表示品位の低下を抑制することができる。 Therefore, by providing the holding layer 205, the distance between the drive substrate 101 and the facing substrate 102 becomes wide in the vicinity of the outer periphery of the display area R2. Therefore, even if the distance between the drive board 101 and the opposite board 102 is narrowed in the vicinity of the outer periphery of the display area R2 due to the curvature of the drive board 101 and the facing board 102, the subspacer 105s is used as the driving board 101 and / or Pressurization of the facing substrate 102 can be suppressed. As a result, it is possible to suppress a decrease in display quality in the vicinity of the outer periphery of the display area R2 due to the subspacer 105s pressurizing the drive substrate 101 and / or the opposing substrate 102.
 真空チャンバ内において駆動基板101と対向基板102とが互いに貼り合わされる場合は、駆動基板101と対向基板102とが互いに貼り合わされた後に真空チャンバ内が大気開放された際に、駆動基板101及び対向基板102が大気圧で圧着されてシール内スペーサ202が強く圧縮され、その結果として駆動基板101と対向基板102との間隔が設定された間隔より狭くなる場合がある。保持層205を設けることは、この問題に対しても有効である。 When the drive board 101 and the facing substrate 102 are bonded to each other in the vacuum chamber, the drive board 101 and the facing board 101 and the facing board 102 are opposed to each other when the inside of the vacuum chamber is opened to the atmosphere after the drive board 101 and the facing board 102 are bonded to each other. The substrate 102 may be crimped at atmospheric pressure to strongly compress the spacer 202 in the seal, and as a result, the distance between the drive substrate 101 and the opposing substrate 102 may be narrower than the set distance. Providing the holding layer 205 is also effective for this problem.
 保持層205を設けることは、サブスペーサ105sの配置密度を表示領域R2の外周に近づくにつれて小さくすることとともに行われてもよいし、そうでなくてもよい。 The holding layer 205 may or may not be provided with the arrangement density of the subspacers 105s being reduced as it approaches the outer periphery of the display area R2.
 保持層205は、シール材配置領域R1の全体に配置されてもよいし、変化点181b,182b,183c,183d,183e,184c,185c及び185dの付近にのみ配置されてもよい。 The holding layer 205 may be arranged in the entire sealing material arrangement area R1, or may be arranged only in the vicinity of the change points 181b, 182b, 183c, 183d, 183e, 184c, 185c and 185d.
 図21は、実施の形態2の液晶表示装置に備えられる液晶パネルの、シール材の付近を模式的に図示する拡大断面図である。 FIG. 21 is an enlarged cross-sectional view schematically showing the vicinity of the sealing material of the liquid crystal panel provided in the liquid crystal display device of the second embodiment.
 図21に図示される、駆動基板101及び対向基板102の厚さ方向についてのシール内スペーサ202の高さh1、当該厚さ方向についての保持層205の高さh=h2+h3、当該厚さ方向についての駆動基板101と対向基板102との間隔を示す液晶セルギャップdは、関係式h1≧d-hを満たす。液晶セルギャップdは、第1の層112と第2の層132との間隔に一致する。これにより、互いに対向する駆動基板101と対向基板102との間の距離h1+hが液晶セルギャップdと同じ又は液晶セルギャップdより広くなり、駆動基板101及び対向基板102が湾曲することによって表示領域R2の外周の付近において駆動基板101と対向基板102との間隔が狭くなった場合にサブスペーサ105sが駆動基板101及び/又は対向基板102を加圧することを抑制することができる。その結果として、表示ムラを抑制することができ、液晶セルギャップdの調整範囲を拡大することができる。 About the height h1 of the spacer 202 in the seal in the thickness direction of the drive substrate 101 and the facing substrate 102, the height h = h2 + h3 of the holding layer 205 in the thickness direction, and the thickness direction shown in FIG. The liquid crystal cell gap d indicating the distance between the drive substrate 101 and the facing substrate 102 satisfies the relational expression h1 ≧ d−h. The liquid crystal cell gap d corresponds to the distance between the first layer 112 and the second layer 132. As a result, the distance h1 + h between the drive board 101 facing each other and the facing board 102 becomes the same as or wider than the liquid crystal cell gap d, and the drive board 101 and the facing board 102 are curved so that the display area R2 It is possible to prevent the subspacer 105s from pressurizing the drive substrate 101 and / or the opposing substrate 102 when the distance between the driving substrate 101 and the opposing substrate 102 becomes narrow in the vicinity of the outer periphery of the drive substrate 101. As a result, display unevenness can be suppressed, and the adjustment range of the liquid crystal cell gap d can be expanded.
 保持層205が上述した駆動基板側層211及び対向基板側層212を備える場合は、駆動基板101及び対向基板102の厚さ方向についての駆動基板側層211の高さh1及び対向基板側層212の高さh2を用いて、上述した関係式を関係式h1≧d-h2-h3に書き換えることができる。 When the holding layer 205 includes the drive board side layer 211 and the facing board side layer 212 described above, the height h1 of the drive board side layer 211 and the facing board side layer 212 in the thickness direction of the drive board 101 and the facing board 102. The above-mentioned relational expression can be rewritten as the relational expression h1 ≧ d−h2-h3 by using the height h2 of.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that, within the scope of the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all aspects and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention.
 1 液晶表示装置、11 液晶パネル、101 駆動基板、102 対向基板、103 シール材、104 液晶層、105 スペーサ、105s サブスペーサ、105m メインスペーサ、111 第1の透光性基材、112 第1の層、131 第2の透光性基材、132 第2の層、161,162 周期単位、181b,182b,183c,183d,183e,184c,185c,185d 変化点、202 シール内スペーサ、205 保護層(第3の層)、R1 シール材配置領域、R2 表示領域。 1 liquid crystal display device, 11 liquid crystal panel, 101 drive board, 102 facing board, 103 sealing material, 104 liquid crystal layer, 105 spacer, 105s sub spacer, 105 m main spacer, 111 first translucent base material, 112 first Layer, 131 second translucent substrate, 132 second layer, 161, 162 periodic units, 181b, 182b, 183c, 183d, 183e, 184c, 185c, 185d change point, 202 inner spacer, 205 protective layer (Third layer), R1 sealing material placement area, R2 display area.

Claims (12)

  1.  湾曲する駆動基板と、
     湾曲する対向基板と、
     前記駆動基板と前記対向基板との間に配置され、前記対向基板を前記駆動基板に貼り合わせ、表示領域を囲むシール材と、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置される液晶層と、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置され、第1の高さを有し、前記表示領域の外周に近づくにつれて低くなる配置密度を有するサブスペーサと、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置され、前記第1の高さより高い第2の高さを有するメインスペーサと、
    を備える湾曲型の液晶表示装置。
    With a curved drive board
    With a curved facing board
    A sealing material that is arranged between the drive board and the facing board, the facing board is attached to the drive board, and surrounds the display area.
    A liquid crystal layer arranged between the drive substrate and the facing substrate and arranged in the display area,
    A subspacer arranged between the drive substrate and the facing substrate, arranged in the display area, having a first height, and having an arrangement density that decreases as it approaches the outer periphery of the display area.
    A main spacer arranged between the drive substrate and the facing substrate, arranged in the display area, and having a second height higher than the first height.
    A curved liquid crystal display device comprising.
  2.  前記外周は、延在方向又は曲率が変化する変化点を有し、
     前記配置密度は、前記変化点を中心とする同心円状の分布を有し、前記変化点に近づくにつれて低くなる
    請求項1の湾曲型の液晶表示装置。
    The outer circumference has a change point where the extending direction or the curvature changes.
    The curved liquid crystal display device according to claim 1, wherein the arrangement density has a concentric distribution centered on the change point and decreases as the change point is approached.
  3.  前記外周は、延在方向又は曲率が変化し互いに近接する第1の変化点及び第2の変化点を有し、
     前記配置密度は、前記外周上の前記第1の変化点と前記第2の変化点との間の区間上の点を中心とする同心円状の分布を有し、前記点に近づくにつれて低くなる
    請求項1又は2の湾曲型の液晶表示装置。
    The outer circumference has a first change point and a second change point in which the extending direction or the curvature changes and is close to each other.
    The arrangement density has a concentric distribution centered on a point on the section between the first change point and the second change point on the outer circumference, and becomes lower as it approaches the point. Item 1 or 2 curved liquid crystal display device.
  4.  複数の画素を含み、前記サブスペーサ及び前記メインスペーサが配置され、前記表示領域に周期的に現れる周期単位を有し、
     前記周期単位における前記サブスペーサの配置密度が、前記周期単位において前記サブスペーサが占める面積を前記周期単位が占める面積で除することにより得られる配置密度であると定義された場合に、前記表示領域の全体に渡って前記周期単位における前記サブスペーサの配置密度が0.01%以上5.00%以下である
    請求項1又は2の湾曲型の液晶表示装置。
    It contains a plurality of pixels, the sub spacer and the main spacer are arranged, and has a periodic unit that periodically appears in the display area.
    The display area when the arrangement density of the sub-spacer in the period unit is defined as the arrangement density obtained by dividing the area occupied by the sub-spacer in the period unit by the area occupied by the period unit. The curved liquid crystal display device according to claim 1 or 2, wherein the arrangement density of the sub spacers in the cycle unit is 0.01% or more and 5.00% or less over the entire period.
  5.  前記表示領域は、非矩形状の平面形状を有する
    請求項1又は2の湾曲型の液晶表示装置。
    The curved liquid crystal display device according to claim 1 or 2, wherein the display area has a non-rectangular planar shape.
  6.  前記駆動基板は、
     前記対向基板が配置される側を向く第1の主面を有する第1の透光性基材と、
     前記第1の主面の上に配置され、前記表示領域に配置される第1の層と、
    を備え、
     前記対向基板は、
     前記駆動基板が配置される側を向く第2の主面を有する第2の透光性基材と、
     前記第2の主面の上に配置され、前記表示領域に配置される第2の層と、
    を備え、
     前記シール材は、
     シール内スペーサ
    を備え、
     前記駆動基板及び前記対向基板の少なくとも一方の基板は、
     前記駆動基板及び前記対向基板の厚さ方向から平面視された場合に前記シール材と重なるように配置される第3の層
    を備える
    請求項1の湾曲型の液晶表示装置。
    The drive board is
    A first translucent substrate having a first main surface facing the side on which the facing substrate is arranged,
    A first layer arranged on the first main surface and arranged in the display area,
    With
    The opposed substrate is
    A second translucent substrate having a second main surface facing the side on which the drive substrate is arranged,
    A second layer arranged on the second main surface and arranged in the display area,
    With
    The sealing material is
    Equipped with a spacer inside the seal
    At least one of the driving board and the facing board is
    The curved liquid crystal display device according to claim 1, further comprising a third layer arranged so as to overlap the sealing material when viewed in a plan view from the thickness direction of the drive substrate and the facing substrate.
  7.  湾曲する駆動基板と、
     湾曲する対向基板と、
     前記駆動基板と前記対向基板との間に配置され、前記対向基板を前記駆動基板に貼り合わせ、表示領域を囲むシール材と、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置される液晶層と、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置され、第1の高さを有するサブスペーサと、
     前記駆動基板と前記対向基板との間に配置され、前記表示領域に配置され、前記第1の高さより高い第2の高さを有するメインスペーサと、
    を備え、
     前記駆動基板は、
     前記対向基板が配置される側を向く第1の主面を有する第1の透光性基材と、
     前記第1の主面の上に配置され、前記表示領域に配置される第1の層と、
    を備え、
     前記対向基板は、
     前記駆動基板が配置される側を向く第2の主面を有する第2の透光性基材と、
     前記第2の主面の上に配置され、前記表示領域に配置される第2の層と、
    を備え、
     前記シール材は、
     シール内スペーサ
    を備え、
     前記駆動基板及び前記対向基板の少なくとも一方の基板は、
     前記駆動基板及び前記対向基板の厚さ方向から平面視された場合に前記シール材と重なるように配置される第3の層
    を備える
    湾曲型の液晶表示装置。
    With a curved drive board
    With a curved facing board
    A sealing material that is arranged between the drive board and the facing board, the facing board is attached to the drive board, and surrounds the display area.
    A liquid crystal layer arranged between the drive substrate and the facing substrate and arranged in the display area,
    A subspacer arranged between the drive substrate and the facing substrate, arranged in the display area, and having a first height,
    A main spacer arranged between the drive substrate and the facing substrate, arranged in the display area, and having a second height higher than the first height.
    With
    The drive board is
    A first translucent substrate having a first main surface facing the side on which the facing substrate is arranged,
    A first layer arranged on the first main surface and arranged in the display area,
    With
    The opposed substrate is
    A second translucent substrate having a second main surface facing the side on which the drive substrate is arranged,
    A second layer arranged on the second main surface and arranged in the display area,
    With
    The sealing material is
    Equipped with a spacer inside the seal
    At least one of the driving board and the facing board is
    A curved liquid crystal display device including a third layer arranged so as to overlap the sealing material when viewed in a plan view from the thickness direction of the driving substrate and the facing substrate.
  8.  前記第3の層は、
     前記駆動基板に備えられ前記第1の主面の上に配置される駆動基板側層と、
     前記対向基板に備えられ前記第2の主面の上に配置される対向基板側層と、
    を備える
    請求項6又は7の湾曲型の液晶表示装置。
    The third layer is
    A drive board side layer provided on the drive board and arranged on the first main surface,
    A facing substrate side layer provided on the facing substrate and arranged on the second main surface,
    The curved liquid crystal display device according to claim 6 or 7.
  9.  前記第3の層は、前記駆動基板に備えられ前記第1の主面の上に配置される駆動基板側層である
    請求項6又は7の湾曲型の液晶表示装置。
    The curved liquid crystal display device according to claim 6 or 7, wherein the third layer is a drive substrate side layer provided on the drive substrate and arranged on the first main surface.
  10.  前記第3の層は、前記対向基板に備えられ前記第2の主面の上に配置される対向基板側層である
    請求項6又は7の湾曲型の液晶表示装置。
    The curved liquid crystal display device according to claim 6 or 7, wherein the third layer is a facing substrate side layer provided on the facing substrate and arranged on the second main surface.
  11.  前記シール内スペーサの高さh1、前記第3の層の高さh、及び前記表示領域における前記駆動基板と前記対向基板との間隔dが関係式h1≧d-hを満たす
    請求項6又は7の湾曲型の液晶表示装置。
    Claim 6 or 7 in which the height h1 of the spacer in the seal, the height h of the third layer, and the distance d between the driving substrate and the opposing substrate in the display region satisfy the relational expression h1 ≧ d−h. Curved liquid crystal display device.
  12.  前記表示領域は、非矩形状の平面形状を有する
    請求項6又は7の湾曲型の液晶表示装置。
    The curved liquid crystal display device according to claim 6 or 7, wherein the display area has a non-rectangular planar shape.
PCT/JP2019/024877 2019-06-24 2019-06-24 Curved liquid crystal display device WO2020261315A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096757.6A CN113966486A (en) 2019-06-24 2019-06-24 Curved liquid crystal display device
PCT/JP2019/024877 WO2020261315A1 (en) 2019-06-24 2019-06-24 Curved liquid crystal display device
JP2019554579A JP6625310B1 (en) 2019-06-24 2019-06-24 Curved liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/024877 WO2020261315A1 (en) 2019-06-24 2019-06-24 Curved liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2020261315A1 true WO2020261315A1 (en) 2020-12-30

Family

ID=69100998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024877 WO2020261315A1 (en) 2019-06-24 2019-06-24 Curved liquid crystal display device

Country Status (3)

Country Link
JP (1) JP6625310B1 (en)
CN (1) CN113966486A (en)
WO (1) WO2020261315A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230258985A1 (en) 2020-06-30 2023-08-17 Trivale Technologies, Llc Liquid crystal display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187236A (en) * 1998-12-24 2000-07-04 Sharp Corp Liquid crystal display element
JP2001228485A (en) * 2000-02-14 2001-08-24 Nec Corp Liquid crystal display panel and its manufacturing method
JP2007264686A (en) * 2006-03-27 2007-10-11 Epson Imaging Devices Corp Touch panel, electrooptical device and electronic equipment
JP2013122471A (en) * 2010-03-31 2013-06-20 Sharp Corp Liquid crystal display element and method for manufacturing the same, and liquid crystal display device including the liquid crystal display element
JP2013238729A (en) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp Liquid crystal display
JP2017187530A (en) * 2016-04-01 2017-10-12 株式会社ジャパンディスプレイ Liquid crystal display device
CN108628042A (en) * 2018-05-09 2018-10-09 厦门天马微电子有限公司 Curved face display panel and curved-surface display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202067053U (en) * 2011-06-01 2011-12-07 京东方科技集团股份有限公司 LCD panel
CN105093759A (en) * 2015-09-11 2015-11-25 京东方科技集团股份有限公司 Array substrate, preparing method of array substrate, display panel and display device
CN105652528A (en) * 2016-01-27 2016-06-08 京东方科技集团股份有限公司 Display panel, display device and driving method of display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187236A (en) * 1998-12-24 2000-07-04 Sharp Corp Liquid crystal display element
JP2001228485A (en) * 2000-02-14 2001-08-24 Nec Corp Liquid crystal display panel and its manufacturing method
JP2007264686A (en) * 2006-03-27 2007-10-11 Epson Imaging Devices Corp Touch panel, electrooptical device and electronic equipment
JP2013122471A (en) * 2010-03-31 2013-06-20 Sharp Corp Liquid crystal display element and method for manufacturing the same, and liquid crystal display device including the liquid crystal display element
JP2013238729A (en) * 2012-05-15 2013-11-28 Mitsubishi Electric Corp Liquid crystal display
JP2017187530A (en) * 2016-04-01 2017-10-12 株式会社ジャパンディスプレイ Liquid crystal display device
CN108628042A (en) * 2018-05-09 2018-10-09 厦门天马微电子有限公司 Curved face display panel and curved-surface display device

Also Published As

Publication number Publication date
JPWO2020261315A1 (en) 2021-09-13
CN113966486A (en) 2022-01-21
JP6625310B1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
US9110336B2 (en) Liquid crystal display device
JP6775404B2 (en) Liquid crystal display device
JP5174450B2 (en) Liquid crystal display
WO2016061850A1 (en) Manufacturing method for curved liquid crystal panel
JP3803510B2 (en) LCD panel
WO2005038518A1 (en) Substrate with spacer, panel, liquid crystal panel, method for producing panel, and method for producing liquid crystal panel
JP2010156784A (en) Liquid crystal display apparatus
JP2015022120A (en) Display element and manufacturing method of the same
KR20040012547A (en) Liquid-crystal display device
WO2020261315A1 (en) Curved liquid crystal display device
JP5618117B2 (en) Liquid crystal display
US8786818B2 (en) Liquid crystal display panel having particular laminated spacer
US20070058126A1 (en) Liquid crystal display panel and manufacturing method thereof
JP2008261936A (en) Liquid crystal device, method for manufacturing the same, and substrate for liquid crystal device
WO2017085846A1 (en) Display device and method for manufacturing display device
WO2011080968A1 (en) Method for manufacturing liquid crystal panel
CN109541859B (en) Liquid crystal display panel and method for manufacturing the same
JPH06308442A (en) Method for correcting dot defect
US10394066B1 (en) Method of producing display panel
US20230205018A1 (en) Liquid crystal display panel, liquid crystal display device, and manufacturing method for liquid crystal display device
CN211123549U (en) Liquid crystal display device having a plurality of pixel electrodes
KR102010850B1 (en) Method for fabricating liquid crystal panel
JP3680849B2 (en) LCD panel
JP2011075806A (en) Color liquid crystal display element
JP2008129379A (en) Liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935113

Country of ref document: EP

Kind code of ref document: A1