WO2020259225A1 - 电池充电方法、电子设备、计算机可读存储介质 - Google Patents

电池充电方法、电子设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2020259225A1
WO2020259225A1 PCT/CN2020/093891 CN2020093891W WO2020259225A1 WO 2020259225 A1 WO2020259225 A1 WO 2020259225A1 CN 2020093891 W CN2020093891 W CN 2020093891W WO 2020259225 A1 WO2020259225 A1 WO 2020259225A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
value
change value
charging current
Prior art date
Application number
PCT/CN2020/093891
Other languages
English (en)
French (fr)
Inventor
谢红斌
张俊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20831925.1A priority Critical patent/EP3952051A4/en
Publication of WO2020259225A1 publication Critical patent/WO2020259225A1/zh
Priority to US17/511,502 priority patent/US20220052545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery charging method, electronic equipment, and computer-readable storage medium.
  • Lithium-ion batteries are widely used in mobile terminals, electric vehicles and ground energy storage due to their advantages of high energy density, high power density, high conversion efficiency and long life.
  • lithium-ion batteries generally use constant current, constant voltage, or constant current-constant voltage charging methods. These charging methods use preset current or voltage values.
  • the capacity of lithium ion batteries Attenuation will occur. At this time, the battery is still charged with the preset current value or voltage value, which not only accelerates the aging of the battery, but also increases the charging time.
  • a battery charging method an electronic device, and a computer-readable storage medium are provided.
  • a method for charging a battery includes: in the process of charging the battery, obtaining the voltage of the battery from an initial voltage to a target voltage when the battery's power change value; according to the target voltage and the The voltage difference of the initial voltage and the change value of the electric quantity determine the change value of the electric quantity under the unit voltage; when the change value of the electric quantity under the unit voltage is less than or equal to the preset value, reduce the effect on the battery Charging current until the unit voltage change value is greater than the preset value.
  • a method for charging a battery includes: obtaining environmental information of the environment where the battery is located and parameter information of the battery; and determining the charging effect on the battery according to the environmental information and the mapping relationship between the parameter information and the charging current Current; according to the charging current to charge the battery, wherein the acquisition of the mapping relationship includes: acquiring environmental information of the environment where the battery is located during the test, the parameter information of the battery, and the effect on the battery
  • the charging current wherein, under the charging current, the change value of the electric quantity under the unit voltage of the battery is greater than a preset value, and the environmental information, the parameter information and the charging current are associated and stored in the In the battery.
  • An electronic device including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the processor executes the battery charging method described in each embodiment of the present application Operation.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the operation of the battery charging method described in each embodiment of the present application is realized.
  • the voltage difference between the target voltage and the initial voltage and the change in power are obtained, and the change in power under unit voltage is determined.
  • the change in power under unit voltage is less than or equal to a preset
  • the charging current acting on the battery is reduced until the unit voltage change value is greater than the preset value.
  • Fig. 1 is a block diagram of the internal structure of an electronic device in an embodiment.
  • Fig. 2 is a flowchart of a battery charging method in an embodiment.
  • Fig. 3 is a schematic diagram of the first curve in an embodiment.
  • Fig. 4 is a schematic diagram of the second curve in an embodiment.
  • Fig. 5 is a flowchart of a battery charging method in another embodiment.
  • Fig. 6 is a structural block diagram of a battery charging device in an embodiment.
  • Fig. 7 is a structural block diagram of a battery charging device in another embodiment.
  • Fig. 8 is a block diagram of the internal structure of an electronic device in another embodiment.
  • the battery charging method in the embodiments of the present application can be applied to electronic devices.
  • the electronic device can be a computer device, a personal digital assistant, a tablet, a smart phone, a wearable device, etc.
  • the current health status of the battery can withstand the current state of health according to the change in the amount of electricity under the unit voltage Maximum charging current, and controlling the charging current to be less than or equal to the maximum charging current for charging.
  • the electronic device includes: a radio frequency (RF) circuit 110, a memory 120, an input unit 130, a display unit 140, a sensor 150, an audio circuit 160, and wireless fidelity (wireless fidelity).
  • RF radio frequency
  • WiFi wireless fidelity
  • the structure of the mobile phone shown in FIG. 1 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • the power supply 190 is logically connected to the processor 180 through the power management device 200, so that the power management device 200 realizes functions such as charging, discharging, and power consumption management.
  • the power management device 200 can determine the current health status of the power supply.
  • the maximum charging current is controlled to be less than or equal to the maximum charging current for charging.
  • the power management device 200 obtains the voltage difference value and the change value of the electric quantity under the voltage difference, and determines the electric quantity under a unit voltage and the change value of the electric quantity under the unit voltage according to the voltage difference and the electric quantity change value.
  • the power under the power can reflect the current health status of the power supply, and the maximum charging current that the current health status of the power supply can withstand can be determined according to the change value of the power under the unit voltage.
  • the RF circuit 110 can be used for receiving and sending signals during the process of sending and receiving information or talking. It can receive the downlink information of the base station and send it to the processor 180 for processing; it can also send uplink data to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • the RF circuit 110 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • the memory 120 can be used to store software programs and modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 120.
  • the memory 120 may mainly include a program storage area and a data storage area, where the program storage area may store an operating system, an application program required by at least one function (such as an application program for a sound playback function, an application program for an image playback function, etc.), etc.;
  • the data storage area can store data (such as audio data, address book, etc.) created according to the use of the mobile phone.
  • the memory 120 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 130 may be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the mobile phone 100.
  • the input unit 130 may include a touch panel 131 and other input devices 132.
  • the touch panel 131 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 131 or near the touch panel 131 Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 180, and can receive and execute the commands sent by the processor 180.
  • the touch panel 131 may be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 130 may also include other input devices 132.
  • other input devices 132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control keys, switch keys, etc.).
  • the display unit 140 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 140 may include a display panel 141.
  • the display panel 141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 131 may cover the display panel 141. When the touch panel 131 detects a touch operation on or near it, it transmits it to the processor 180 to determine the type of touch event, and then the processor 180 The type of touch event provides corresponding visual output on the display panel 141.
  • the touch panel 131 and the display panel 141 are used as two independent components to realize the input and input functions of the mobile phone, but in some embodiments, the touch panel 131 and the display panel 141 can be integrated. Realize the input and output functions of mobile phones.
  • the mobile phone 100 may also include at least one sensor 150, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 141 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 141 and/or when the mobile phone is moved to the ear. Or backlight.
  • Motion sensors can include acceleration sensors. The acceleration sensors can detect the magnitude of acceleration in various directions. When stationary, the magnitude and direction of gravity can be detected.
  • the mobile phone can be used to identify mobile phone gestures (such as horizontal and vertical screen switching), vibration recognition related functions (such as Pedometer, percussion), etc.; in addition, the mobile phone can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc.
  • the audio circuit 160, the speaker 161 and the microphone 162 may provide an audio interface between the user and the mobile phone.
  • the audio circuit 160 can transmit the electrical signal converted from the received audio data to the speaker 161, which is converted into a sound signal for output by the speaker 161; on the other hand, the microphone 162 converts the collected sound signal into an electrical signal, and the audio circuit 160 After being received, it is converted into audio data, and then processed by the audio data output processor 180, and then sent to another mobile phone via the RF circuit 110, or the audio data is output to the memory 120 for subsequent processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 170. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 170, it is understandable that it is not a necessary component of the mobile phone 100 and can be omitted as required.
  • the processor 180 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the entire mobile phone. It executes by running or executing software programs and/or modules stored in the memory 120, and calling data stored in the memory 120. Various functions and processing data of the mobile phone can be used to monitor the mobile phone as a whole.
  • the processor 180 may include one or more processing units.
  • the processor 180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and an application program; the modem processor mainly processes wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 180.
  • the mobile phone 100 may also include a camera, a Bluetooth module, and so on.
  • Fig. 2 is a flowchart of a battery charging method in an embodiment. As shown in Fig. 2, a battery charging method can be applied to the electronic device in Fig. 1, including:
  • Operation 202 in the process of charging the battery, obtain the change value of the battery power when the voltage of the battery is charged from an initial voltage to a target voltage;
  • Operation 204 according to the voltage difference between the target voltage and the initial voltage, and the power change value, determine the change value of the power amount per unit voltage;
  • Lithium-ion battery is a secondary battery consisting of a positive electrode, a negative electrode, a separator and an electrolyte.
  • the positive and negative electrodes are immersed in the electrolyte.
  • the positive and negative electrodes are separated by a separator.
  • Lithium ions use electrolyte as a medium to move between the positive and negative electrodes to realize battery charging and discharging.
  • lithium ions are intercalated and deintercalated back and forth between the two electrodes: during charging, lithium ions are deintercalated from the positive electrode and inserted into the negative electrode through the electrolyte, the negative electrode is in a lithium-rich state; the opposite is true during discharge.
  • lithium-ion batteries generally use constant current, constant voltage or constant current-constant voltage charging methods, these charging methods use preset current or voltage values.
  • the battery After the battery is aging, it is still charged with the preset current value or voltage value, which not only exceeds the maximum charging current that the current health condition of the battery can accept, and accelerates the battery aging, but also the resistance increases after the battery aging, at the same charging current
  • the float voltage increases below the value and reaches the cut-off voltage of the constant current stage earlier, which makes the charging time of the constant voltage stage longer, thereby increasing the overall charging time.
  • the power management device 200 obtains the voltage difference and the power change value under the voltage difference, and the charged power can be obtained by integrating the charging current. Determine the amount of electricity under unit voltage and the change value of electricity under unit voltage according to the voltage difference and the change value of electricity. Among them, the electricity under unit voltage can reflect the current health of the power supply. According to the change of electricity under unit voltage, Determine the maximum charging current that the current health of the power supply can withstand.
  • the battery voltage is changing.
  • unit voltage statistics are used.
  • the unit voltage can be a preset voltage interval value, for example, the change value of the collected power of every 2V voltage, then 2V is used as the unit voltage; the unit voltage can also be the voltage difference value at a preset time interval, for example, every interval 2
  • the change value of the electric quantity is collected in seconds, and the unit voltage is the voltage difference accumulated in 2 seconds.
  • the initial voltage refers to the initial value each time the voltage is collected
  • the target voltage refers to the end value each time the voltage is collected
  • the difference between the target voltage and the initial voltage can be the unit voltage.
  • the voltage of the battery changes from 4.0V to 4.1V, and the change value of the power in the 0.1V is collected, then 4.0V is the initial voltage, and 4.1V is the target voltage.
  • the power per unit voltage can reflect the current health status of the battery. Before leaving the factory, test the battery's standard value of power per unit voltage corresponding to each aging stage, and compare the obtained power per unit voltage with the standard value to determine the current health of the battery. Generally speaking, the battery's power per unit voltage after aging will be less than the battery's unaging power per unit voltage. When it detects that the aging of the battery is serious, a prompt message can be output to remind the user to replace the battery.
  • the maximum charge current that the battery’s current health status can withstand can be determined according to the relationship between the change value of the electric quantity per unit voltage and the preset value.
  • the preset value can be set according to actual applications. , The default value is zero.
  • the change value of the power per unit voltage is less than or equal to the preset value, it means that the charging current has exceeded the maximum charging current that the battery’s current health status can withstand, and the negative electrode solid-phase potential of the battery is too low to cause lithium segregation.
  • the precipitation of lithium leads to the loss of lithium ions, which leads to the degradation of battery capacity, and the precipitated lithium will react with the electrolyte, consume the electrolyte, release heat, and in severe cases, it will pierce the diaphragm and cause a short circuit between the positive and negative electrodes. Therefore, reduce the charging current and perform the charging operation. Until the change value of the electric quantity under the unit voltage is greater than the preset value.
  • the change value of the electric quantity per unit voltage is greater than the preset value, it means that the charging current is within the maximum charging current that the current health of the battery can withstand, so increase the charging current or keep the charging current unchanged.
  • control the battery to charge according to the maximum charging current that the current health of the battery can withstand, and the maximum charging current that the current health of the battery can withstand can be determined according to the following method: If the change value of the power under unit voltage If the value is greater than the preset value, increase the charging current until the change value of the power per unit voltage is less than or equal to the preset value, then the charging current corresponding to the change value greater than the preset value and closest to the preset value is taken as the maximum charging current; Or, if the change value of the electric quantity per unit voltage is greater than the preset value, calculate the difference between the change value and the preset value. When the difference is greater than the preset value, increase the charging current acting on the battery until the difference is less than Or equal to a predetermined value, and the charging current corresponding to the difference less than or equal to the predetermined value is taken as the maximum charging current.
  • the battery charging method in this embodiment in the process of charging the battery, the voltage difference between the target voltage and the initial voltage and the power change value are obtained, and the power change value under unit voltage is determined, and the power change under unit voltage is determined.
  • the charging current acting on the battery is reduced until the unit voltage change value is greater than the preset value.
  • the method further includes: when the change value of the electric quantity under the unit voltage is greater than the preset value, calculating the difference between the change value and the preset value; when the difference is greater than the predetermined value, increasing the The charging current of the battery; when the difference is less than or equal to a predetermined value, the charging current acting on the battery is kept unchanged.
  • the difference between the change value of the electric quantity per unit voltage and the preset value is obtained. If the difference is greater than the predetermined value, it means that the charging current has not reached the maximum charging current that the current health of the battery can withstand. Therefore, the charging current acting on the battery can be increased until the difference between the change value of the power per unit voltage and the preset value is less than or equal to the predetermined value (the predetermined value is positive and infinitely small, which can be carried out according to the actual application. Set), then the charging current at this time is taken as the maximum charging current that the battery's current health status can withstand, and the maximum charging current is kept unchanged to perform the charging operation.
  • controlling the charging current to be less than or equal to the maximum charging current that the current health condition of the battery can withstand not only does not affect the life of the battery, but also shortens the charging time.
  • the operation of determining the change value of the electric quantity under unit voltage includes: using the electric quantity change value to derive the voltage difference to obtain the first derivative Numerical value; Use the first derivative value to derive the voltage difference to obtain the second derivative value; use the second derivative value as the change value of the amount of electricity under the unit voltage.
  • the first derivative value dQ/dV is obtained by deriving the voltage difference value dV by using the power change value dQ.
  • the first derivative value reflects the power under unit voltage, and the power under unit voltage can reflect the current health status of the battery.
  • the second derivative value reflects the change in the amount of electricity under unit voltage.
  • the change value can determine the maximum charging current that the battery's current health status can withstand.
  • the power management device 200 has a built-in calculation program, which determines the change value of the amount of electricity per unit voltage by derivation, so that the calculation result is accurate.
  • the operation of determining the change value of the electric quantity under the unit voltage includes: generating a first curve according to the voltage difference and the electric quantity change value, wherein, The first curve represents the relationship between the change in the amount of electricity under unit voltage and the voltage of the battery; the second curve is generated according to the first curve and the voltage difference, where the second curve represents the change in the amount of electricity under unit voltage and the voltage of the battery The relationship between the changes; the vertical axis value of the second curve is obtained, and the change value of the electric quantity under the unit voltage is obtained.
  • Figure 3 is a schematic diagram of the first curve.
  • the abscissa of the first curve is the voltage
  • the ordinate of the first curve is the electric quantity under unit voltage
  • the first curve represents the difference between the electric quantity under unit voltage and the battery voltage.
  • the relationship between changes. Specifically, the first derivative value dQ/dV is obtained by deriving the voltage difference value dV by using the electric quantity change value dQ to obtain the (dQ/dV)-U curve.
  • Fig. 4 is a schematic diagram of the second curve, the abscissa of the second curve is voltage, the ordinate of the second curve is the change value of electricity under unit voltage, and the second curve represents the change of electricity under unit voltage.
  • the relationship between the value and the voltage of the battery. Use the first derivative value dQ/dV to further derive the voltage difference dV to obtain the second derivative value (dQ/dV)/dV, and obtain the (dQ/dV)/dV-U curve.
  • the power management device 200 has a built-in curve generation program, and monitors the change of the change value of the electric quantity per unit voltage through the graph, so as to realize timely adjustment of the charging current according to the change of the change value of the electric quantity under the unit voltage.
  • Fig. 5 is a flowchart of a battery charging method in another embodiment. As shown in FIG. 5, a battery charging method can be applied to the electronic device in FIG. 1, including:
  • Operation 502 obtain environmental information of the environment where the battery is located and parameter information of the battery;
  • Operation 504 Determine the charging current acting on the battery according to the mapping relationship between the environmental information and the parameter information and the charging current;
  • the battery is charged according to the charging current.
  • the method of obtaining the mapping relationship includes: obtaining environmental information of the environment where the battery is located during the test, battery parameter information, and charging current acting on the battery.
  • the change in the amount of power per unit voltage of the battery is greater than Preset values, store environmental information, parameter information, and charging current in the battery in association with each other.
  • the maximum charging current that the battery’s current health status can withstand is related to the environmental information of the environment where the battery is located and the parameter information of the battery.
  • the environmental information of the environment where the battery is located may include temperature, etc.
  • the parameter information of the battery may include the age of the battery, The state of charge of the battery, etc.
  • the battery's own charging and discharging In addition to the temperature change caused by the battery's own charging and discharging, it will affect the charging characteristics of the battery.
  • the ambient temperature will also affect the charging characteristics of the battery. This is due to the electrochemical reaction inside the battery. When the temperature is higher, it can increase the activity of internal chemical substances and improve the internal The electrochemical reaction speed of the battery improves the utilization of internal chemical substances. On the contrary, when the temperature is low, the electrochemical reaction speed inside the battery decreases, and the energy released by the battery will decrease.
  • the operation of determining the charging current acting on the battery according to the environmental information and parameter information includes: determining the charging current acting on the battery according to the mapping relationship between the environmental information and the parameter information and the charging current.
  • the method further includes: obtaining environmental information of the environment where the battery is located during the test, parameter information of the battery, and charging current acting on the battery, wherein, under the charging current, the change value of the battery's power per unit voltage Greater than the preset value; store environment information, parameter information and charging current in the battery in association.
  • the battery with different parameter information is controlled under different environmental information to perform charging operations.
  • the change in battery capacity is based on the voltage difference between the target voltage and the initial voltage.
  • the value, and the change value of the power determine the change value of the power under the unit voltage, when the change value of the power under the unit voltage is less than or equal to the preset value, reduce the charging current acting on the battery until the unit voltage change is greater than the preset value Numerical value.
  • the maximum charging current that the battery’s current health status can withstand can be determined according to the relationship between the change value of the electric power per unit voltage and the preset value.
  • the preset value can be set according to the actual application. Optional, preset The value is zero.
  • the change value of the power per unit voltage is less than or equal to the preset value, it means that the charging current at this time exceeds the maximum charging current that the battery's current health condition can withstand; if the change value of the power per unit voltage is greater than the preset value , Indicating that the charging current is within the maximum charging current that the battery’s current health status can withstand.
  • the change value of the power per unit voltage is greater than the preset value, increase the charging current until the change value of the power per unit voltage is less than or equal to the preset value, then it will be greater than the preset value and closest to the preset value
  • the charging current corresponding to the change value of is taken as the maximum charging current.
  • the change value of the electric quantity per unit voltage is greater than the preset value, calculate the difference between the change value and the preset value.
  • the difference is greater than the preset value, increase the charging current acting on the battery until the difference is less than The predetermined value, and the charging current corresponding to the difference less than the predetermined value is taken as the maximum charging current. If the difference is greater than the predetermined value, it means that the charging current has not reached the maximum charging current that the battery's current health status can withstand.
  • the charging current acting on the battery can be increased until the change in the amount of electricity under unit voltage and the expected value Set the difference between the values to be less than the predetermined value (the predetermined value is positive and infinitely small, which can be set according to the actual application), then the charging current at this time is used as the maximum charging current that the battery can withstand in the current state of health .
  • the battery test system can be set according to actual applications.
  • the battery test system can be composed of a battery charging and discharging system, an environmental chamber and an industrial computer.
  • the battery charging and discharging system has independent charging and discharging control channels, and each channel can provide high-precision DC power.
  • the charging and discharging system is also equipped with a temperature acquisition sensor; the environmental chamber can provide a temperature control environment space to simulate different environmental temperatures; industrial control computers and
  • the battery charging and discharging system and the communication connection of the environmental chamber realize the joint control of the two.
  • obtaining the environmental information of the environment where the battery is located and the parameter information of the battery can determine the maximum charging current that the current health of the battery can withstand , And control the charging current to be less than or equal to the maximum charging current, not only does not affect the battery life, but also shortens the charging time.
  • FIGS. 2 and 5 may include multiple sub-operations or multiple stages. These sub-operations or stages are not necessarily executed at the same time, but can be executed at different times. These sub-operations or The execution order of the stages is not necessarily performed sequentially, but may be executed alternately or alternately with at least part of other operations or sub-operations or stages of other operations.
  • Fig. 6 is a structural block diagram of a battery charging device in an embodiment.
  • a battery charging device includes an acquisition module 610, a determination module 620, and an adjustment module 630. among them:
  • the obtaining module 610 is used to obtain the change value of the battery power when the voltage of the battery is charged from an initial voltage to a target voltage in the process of charging the battery;
  • the determining module 620 is configured to determine the change value of the amount of electricity under a unit voltage according to the voltage difference between the target voltage and the initial voltage, and the change value of the electricity amount;
  • the adjustment module 630 is configured to reduce the charging current acting on the battery when the change value of the electric quantity under the unit voltage is less than or equal to the preset value until the change value of the unit voltage is greater than the preset value.
  • the adjustment module 630 is also used to increase the charging current applied to the battery or keep the charging current applied to the battery when the change value of the electric quantity under the unit voltage is greater than a preset value. The current does not change.
  • the adjustment module 630 is further configured to calculate the difference between the change value and the preset value when the change value of the electric quantity under unit voltage is greater than the preset value; When the value is greater than the predetermined value, increase the charging current acting on the battery; when the difference is less than or equal to the predetermined value, keep the charging current acting on the battery unchanged.
  • the determining module 620 is further configured to derivate the voltage difference value by using the electric quantity change value to obtain the first derivative value; use the first derivative value to derivate the voltage difference value to obtain the second derivative value. Derivative value; take the second derivative value as the change value of the electric quantity under unit voltage.
  • the determining module 620 is further configured to generate a first curve according to the voltage difference value and the power change value, where the first curve represents the change between the power at a unit voltage and the voltage of the battery. Relationship; Generate a second curve based on the first curve and the voltage difference, where the second curve represents the relationship between the change in the amount of electricity per unit voltage and the voltage of the battery; obtain the vertical axis value of the second curve to obtain the unit The change in the amount of electricity under voltage.
  • Fig. 7 is a structural block diagram of a battery charging device in an embodiment.
  • a battery charging device includes an acquiring module 710, a determining module 720, and an executing module 730. among them:
  • the obtaining module 710 is used to obtain environmental information of the environment where the battery is located and parameter information of the battery.
  • the determining module 720 is configured to determine the charging current acting on the battery according to the mapping relationship between the environmental information and parameter information and the charging current.
  • the execution module 730 is used to charge the battery according to the charging current.
  • the method of obtaining the mapping relationship includes: obtaining the environmental information of the environment where the battery is located during the test, the parameter information of the battery, and the charging current acting on the battery. When the change value of the battery capacity per unit voltage is greater than the preset value, the environmental information, parameter information and charging current are stored in the battery in association.
  • the battery charging device may be divided into different modules as needed to complete all or part of the functions of the battery charging device.
  • Fig. 8 is a schematic diagram of the internal structure of an electronic device in an embodiment.
  • the electronic device includes a processor and a memory connected through a system bus.
  • the processor is used to provide computing and control capabilities to support the operation of the entire electronic device.
  • the memory may include a non-volatile storage medium and internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the computer program can be executed by the processor to implement a battery charging method provided in the following embodiments.
  • the internal memory provides a cached operating environment for the operating system computer program in the non-volatile storage medium.
  • the electronic device can be a mobile phone, a tablet computer or a personal digital assistant or a wearable device.
  • each module in the battery charging device provided in the embodiment of the present application may be in the form of a computer program.
  • the computer program can be run on a terminal or server.
  • the program module composed of the computer program can be stored in the memory of the terminal or server.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a computer program product containing instructions that, when run on a computer, causes the computer to perform a battery charging method.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Abstract

一种电池充电方法,包括:在对电池充电的过程中,获取所述电池的电压从一初始电压,被充到目标电压时,所述电池的电量变化值;根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值;在所述单位电压下的电量的变化值小于或者等于预设数值时,降低作用于所述电池的充电电流,直至所述单位电压变化值大于所述预设数值。

Description

电池充电方法、电子设备、计算机可读存储介质
相关申请的交叉引用
本申请要求于2019年6月28日提交中国专利局、申请号为2019105785858、发明名称为“电池充电方法、电子设备、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池充电方法、电子设备、计算机可读存储介质。
背景技术
锂离子电池因其能量密度高、功率密度高、转换效率高以及寿命长等优势被广泛应用在移动终端、电动车以及地面储能上。目前,锂离子电池一般采用恒流、恒压或者恒流-恒压的充电方式,这些充电方式使用预先设定的电流值或者电压值,然而随着锂离子电池的使用,锂离子电池的容量会发生衰减,此时仍以预先设定的电流值或者电压值进行充电,不仅加速电池老化,而且增加充电时间。
发明内容
根据本申请的各种实施例提供一种电池充电方法、电子设备、计算机可读存储介质。
一种电池充电方法,包括:在对电池充电的过程中,获取所述电池的电压从一初始电压,被充到目标电压时,所述电池的电量变化值;根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值;在所述单位电压下的电量的变化值小于或者等于预设数值时,降低作用于所述电池的充电电流,直至所述单位电压变化值大于所述预设数值。
一种电池充电方法,包括:获取电池所在环境的环境信息和所述电池的参数信息;根据所述环境信息和所述参数信息与充电电流之间的映射关系,确定作用于所述电池的充电电流;按照所述充电电流对所述电池进行充电,其中,所述映射关系的获取方式包括:获取测试过程中所述电池所在环境的环境信息、所述电池的参数信息和作用于所述电池的充电电流,其中,在所述充电电流下,所述电池的单位电压下的电量的变化值大于预设数值,将所述环境信息、所述参数信息和所述充电电流关联存储至所述电池中。
一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行本申请各实施例中所述的电池充电方法的操作。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本申请各实施例中所述的电池充电方法的操作。
本实施例在对电池充电的过程中,获取目标电压与初始电压的电压差值以及电量变化值,确定单位电压下的电量的变化值,在单位电压下的电量的变化值小于或者等于预设数值时,降低作用于电池的充电电流,直至单位电压变化值大于预设数值。根据单位电压下的电量的变化值来确定电池当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流进行充电,不仅不影响电池的寿命,而且缩短充电时间。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些 附图获得其他的附图。
图1为一个实施例中电子设备的内部结构框图。
图2为一个实施例中电池充电方法的流程图。
图3为一个实施例中第一曲线示意图。
图4为一个实施例中第二曲线示意图。
图5为另一个实施例中电池充电方法的流程图。
图6为一个实施例中电池充电装置的结构框图。
图7为另一个实施例中电池充电装置的结构框图。
图8为另一个实施例中电子设备的内部结构框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例中的电池充电方法可应用于电子设备。该电子设备可为计算机设备、个人数字助理、平板电脑、智能手机、穿戴式设备等,该电子设备在充电时,根据单位电压下的电量的变化值来确定电池当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流进行充电。
在一个实施例中,如图1所示,该电子设备包括:射频(Radio Frequency,RF)电路110、存储器120、输入单元130、显示单元140、传感器150、音频电路160、无线保真(wireless fidelity,WiFi)模块170、处理器180以及电源190等部件。本领域技术人员可以理解,图1所示的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,电源190通过电源管理装置200与处理器180逻辑相连,从而通过电源管理装置200实现管理充电、放电以及功耗管理等功能,比如,电源管理装置200可确定电源当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流进行充电。具体的,电源管理装置200获取电压差值以及该电压差值下的电量变化值,根据电压差值以及电量变化值确定单位电压下的电量以及单位电压下的电量的变化值,其中,单位电压下的电量可反映出电源当前的健康状况,根据单位电压下的电量的变化值可确定电源当前的健康状况所能承受的最大充电电流。
RF电路110可用于收发信息或通话过程中,信号的接收和发送,可将基站的下行信息接收后,给处理器180处理;也可以将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器120可用于存储软件程序以及模块,处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器120可主要包括程序存储区和数据存储区,其中,程序存储区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能的应用程序、图像播放功能的应用程序等)等;数据存储区可存储根据手机的使用所创建的数据(比如音频数据、通讯录等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他 易失性固态存储器件。
输入单元130可用于接收输入的数字或字符信息,以及产生与手机100的用户设置以及功能控制有关的键信号输入。具体地,输入单元130可包括触控面板131以及其他输入设备132。触控面板131,也可称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板131上或在触控面板131附近的操作),并根据预先设定的程式驱动相应的连接装置。在一个实施例中,触控面板131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器180,并能接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板131。除了触控面板131,输入单元130还可以包括其他输入设备132。具体地,其他输入设备132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)等中的一种或多种。
显示单元140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元140可包括显示面板141。在一个实施例中,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板141。在一个实施例中,触控面板131可覆盖显示面板141,当触控面板131检测到在其上或附近的触摸操作后,传送给处理器180以确定触摸事件的类型,随后处理器180根据触摸事件的类型在显示面板141上提供相应的视觉输出。虽然在图1中,触控面板131与显示面板141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板131与显示面板141集成而实现手机的输入和输出功能。
手机100还可包括至少一种传感器150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板141的亮度,接近传感器可在手机移动到耳边时,关闭显示面板141和/或背光。运动传感器可包括加速度传感器,通过加速度传感器可检测各个方向上加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换)、振动识别相关功能(比如计步器、敲击)等;此外,手机还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器等。
音频电路160、扬声器161和传声器162可提供用户与手机之间的音频接口。音频电路160可将接收到的音频数据转换后的电信号,传输到扬声器161,由扬声器161转换为声音信号输出;另一方面,传声器162将收集的声音信号转换为电信号,由音频电路160接收后转换为音频数据,再将音频数据输出处理器180处理后,经RF电路110可以发送给另一手机,或者将音频数据输出至存储器120以便后续处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块170,但是可以理解的是,其并不属于手机100的必须构成,可以根据需要而省略。
处理器180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。在一个实施例中,处理器180可包括一个或多个处理单元。在一个实施例中,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等;调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
在一个实施例中,手机100还可以包括摄像头、蓝牙模块等。
图2为一个实施例中电池充电方法的流程图。如图2所示,一种电池充电方法,可应用于图1中的电子设备中,包括:
操作202,在对电池充电的过程中,获取电池的电压从一初始电压,被充到目标电压时, 电池的电量变化值;
操作204,根据目标电压与初始电压的电压差值,以及电量变化值,确定单位电压下的电量的变化值;
操作206,在单位电压下的电量的变化值小于或者等于预设数值时,降低作用于电池的充电电流,直至单位电压变化值大于预设数值。
锂离子电池是一种二次电池,由正极、负极、隔膜和电解液组成,正极和负极浸润在电解液中,为避免正负极通过电解液发生短路,利用隔膜将正负极分隔。锂离子以电解液为介质在正负极之间运动,实现电池的充放电。在充放电过程中,锂离子在两个电极之间往返嵌入和脱嵌:充电时,锂离子从正极脱嵌,经过电解液嵌入负极,负极处于富锂状态;放电时则相反。
当电池循环使用一定的周期后,电池内部的正负极极板材料变少、电解液浓度降低等因素导致电池老化,并且长期对电池进行不规范充放电、电池长期置于温度过高或过低的环境中等因素也会加快电池的老化。在电池老化后,最明显的特征就是电池的容量衰减,由于锂离子电池一般采用恒流、恒压或者恒流-恒压的充电方式,这些充电方式使用预先设定的电流值或者电压值,而电池老化后仍以预先设定的电流值或者电压值进行充电,不仅超过电池当前的健康状况所能接受的最大充电电流,加速电池老化,而且电池老化后电阻增大,在同样的充电电流值下浮压增大,提前到达恒流阶段的截止电压,使得恒压阶段的充电时间变长,从而增加整体的充电时间。
电源管理装置200获取电压差值以及该电压差值下的电量变化值,充入电量可通过对充电电流进行积分得到。根据电压差值以及电量变化值确定单位电压下的电量以及单位电压下的电量的变化值,其中,单位电压下的电量可反映出电源当前的健康状况,根据单位电压下的电量的变化值可确定电源当前的健康状况所能承受的最大充电电流。
在电池充电过程中,电池的电压是在变化的。为了统计电压变化采用单位电压统计。其中,单位电压可以是预设的电压间隔值,比如每间隔2V电压采集电量的变化值,则2V作为单位电压;单位电压也可以是预设的时间间隔下的电压差值,比如每间隔2秒采集电量的变化值,则单位电压为2秒累积的电压差值。
其中,初始电压是指每次采集电压时的初始值,目标电压是指每次采集电压时的结束值,目标电压与初始电压的差值即可为单位电压。比如电池的电压由4.0V变化为4.1V,采集该0.1V中电量的变化值,那么4.0V为初始电压,4.1V为目标电压。
具体的,单位电压下的电量可反映出电池当前的健康状况。在出厂前测试电池在各个老化阶段对应的单位电压下的电量的标准值,通过将获取到的单位电压下的电量与标准值进行比对,从而确定电池当前的健康状况。一般来说,电池老化后的单位电压下的电量会小于电池未老化的单位电压下的电量。在检测到电池的老化程度较为严重时,可输出提示信息,提醒用户更换电池。
具体的,可根据单位电压下的电量的变化值与预设数值之间的大小关系确定电池当前的健康状况所能承受的最大充电电流,预设数值可根据实际应用进行设定,可选的,预设数值为零。
若单位电压下的电量的变化值小于或等于预设数值,则说明此时充电电流超出了电池当前的健康状况所能承受的最大充电电流,电池负极固相电势过低而产生锂析出现象,锂析出导致锂离子损失,从而导致电池容量衰减,并且析出的锂会与电解液反应,消耗电解液、释放热量,严重时会刺破隔膜导致正负极短路,因此降低充电电流执行充电操作,直至单位电压下的电量的变化值大于预设数值。
若单位电压下的电量的变化值大于预设数值,说明此时充电电流在电池当前的健康状况所能承受的最大充电电流之内,因此增大充电电流或者保持充电电流不变。
可选的,控制电池按照电池当前的健康状况所能承受的最大充电电流进行充电,电池当前的健康状况所能承受的最大充电电流可根据以下方法进行确定:若单位电压下的电量的变 化值大于预设数值,增大充电电流,直至单位电压下的电量的变化值小于或者等于预设数值,那么将大于预设数值且最接近预设数值的变化值对应的充电电流作为最大充电电流;或者,若单位电压下的电量的变化值大于预设数值,计算变化值和预设数值之间的差值,在差值大于预定数值时,增大作用于电池的充电电流,直至差值小于或等于预定数值,将差值小于或等于预定数值对应的充电电流作为最大充电电流。
本实施例中的电池充电方法,在对电池充电的过程中,获取目标电压与初始电压的电压差值以及电量变化值,确定单位电压下的电量的变化值,在单位电压下的电量的变化值小于或者等于预设数值时,降低作用于电池的充电电流,直至单位电压变化值大于预设数值。根据单位电压下的电量的变化值来确定电池当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流,不仅不影响电池的寿命,而且缩短充电时间。
在一个实施例中,方法还包括:在单位电压下的电量的变化值大于预设数值时,计算变化值和预设数值之间的差值;在差值大于预定数值时,增大作用于电池的充电电流;在差值小于或等于预定数值时,保持作用于电池的充电电流不变。
具体的,获取单位电压下的电量的变化值与预设数值之间的差值,若差值大于预定数值,说明此时充电电流并未达到电池当前的健康状况所能承受的最大充电电流,因此可增大作用于电池的充电电流,直至单位电压下的电量的变化值与预设数值之间的差值小于或等于预定数值(预定数值为正值且无限小,具体可根据实际应用进行设定),那么将此时的充电电流作为电池当前的健康状况所能承受的最大充电电流,保持最大充电电流不变执行充电操作。
在充电时间达到预设充电时间或者电池的电压达到预设电压时,结束充电操作。
本实施例中控制充电电流小于或者等于电池当前的健康状况所能承受的最大充电电流,不仅不影响电池的寿命,而且缩短充电时间。
在一个实施例中,根据目标电压与初始电压的电压差值,以及电量变化值,确定单位电压下的电量的变化值的操作包括:利用电量变化值对电压差值求导,得到第一导数值;利用第一导数值对电压差值求导,得到第二导数值;将第二导数值作为单位电压下的电量的变化值。
具体的,利用电量变化值dQ对电压差值dV求导得到第一导数值dQ/dV,第一导数值反映单位电压下的电量,单位电压下的电量可反映出电池当前的健康状况。
利用第一导数值dQ/dV进一步对电压差值dV求导得到第二导数值(dQ/dV)/dV,第二导数值反映单位电压下的电量的变化值,根据单位电压下的电量的变化值可确定电池当前的健康状况所能承受的最大充电电流。
本实施例中,电源管理装置200中内置计算程序,通过求导确定单位电压下的电量的变化值,使得计算结果准确。
在一个实施例中,根据目标电压与初始电压的电压差值,以及电量变化值,确定单位电压下的电量的变化值的操作包括:根据电压差值和电量变化值生成第一曲线,其中,第一曲线表征单位电压下的电量与电池的电压之间的变化关系;根据第一曲线和电压差值生成第二曲线,其中,第二曲线表征单位电压下的电量的变化值与电池的电压之间的变化关系;获取第二曲线的纵轴值,得到单位电压下的电量的变化值。
如图3所示,图3为第一曲线示意图,第一曲线的横坐标为电压,第一曲线的纵坐标为单位电压下的电量,第一曲线表征单位电压下的电量与电池的电压之间的变化关系。具体的,利用电量变化值dQ对电压差值dV求导得到第一导数值dQ/dV,得到(dQ/dV)—U曲线。
如图4所示,图4为第二曲线示意图,第二曲线的横坐标为电压,第二曲线的纵坐标为单位电压下的电量的变化值,第二曲线表征单位电压下的电量的变化值与电池的电压之间的变化关系。利用第一导数值dQ/dV进一步对电压差值dV求导得到第二导数值(dQ/dV)/dV,得到(dQ/dV)/dV—U曲线。
本实施例中,电源管理装置200中内置曲线生成程序,通过曲线图监测单位电压下的电量的变化值的变化情况,实现及时根据单位电压下的电量的变化值的变化情况调整充电电流。
图5为另一个实施例中电池充电方法的流程图。如图5所示,一种电池充电方法,可应用于图1中的电子设备中,包括:
操作502,获取电池所在环境的环境信息和电池的参数信息;
操作504,根据环境信息和参数信息与充电电流之间的映射关系,确定作用于电池的充电电流;
操作506,按照充电电流对电池进行充电。
其中,映射关系的获取方式包括:获取测试过程中电池所在环境的环境信息、电池的参数信息和作用于电池的充电电流,其中,在充电电流下,电池的单位电压下的电量的变化值大于预设数值,将环境信息、参数信息和充电电流关联存储至电池中。
电池当前的健康状况所能承受的最大充电电流与电池所在环境的环境信息、电池的参数信息相关,其中,电池所在环境的环境信息可包括温度等,电池的参数信息可包括电池的老化程度、电池的荷电状态等。
除了电池自身充放电引起的温度变化会影响电池的充电特性,环境温度也会对电池充电特性产生影响,这是由于电池内部为电化学反应,当温度较高能提高内部化学物质的活性,提升内部的电化学反应速度,提高内部化学物质的利用率,相反在温度较低的情况下,电池内部的电化学反应速度降低,电池释放的能量就会减少。
随着电池循环次数的增加,电池健康状态不断恶化,电池内阻逐渐变大、容量逐渐减小,也会导致电池充电特性的变化。
在一个实施例中,根据环境信息和参数信息确定作用于电池的充电电流的操作包括:根据环境信息和参数信息与充电电流之间的映射关系,确定作用于电池的充电电流。在出厂前或者返厂维修的测试过程中,在不同环境信息下对不同参数信息的电池进行测试,由此获取不同的环境信息和参数信息下对应的最大充电电流,并将测试得到的环境信息、参数信息和最大充电电流关联存储至电池中,这样,在电池充电时,获取电池所在环境的环境信息和电池的参数信息,根据环境信息和参数信息与充电电流之间的映射关系即可确定电池当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流进行充电。
在一个实施例中,方法还包括:获取测试过程中电池所在环境的环境信息、电池的参数信息和作用于电池的充电电流,其中,在充电电流下,电池的单位电压下的电量的变化值大于预设数值;将环境信息、参数信息和充电电流关联存储至电池中。
在测试过程中,在不同环境信息下控制不同参数信息的电池进行充电操作,电池的电压从一初始电压,被充到目标电压时,电池的电量变化值,根据目标电压与初始电压的电压差值,以及电量变化值,确定单位电压下的电量的变化值,在单位电压下的电量的变化值小于或者等于预设数值时,降低作用于电池的充电电流,直至单位电压变化值大于预设数值。可根据单位电压下的电量的变化值与预设数值之间的大小关系确定电池当前的健康状况所能承受的最大充电电流,预设数值可根据实际应用进行设定,可选的,预设数值为零。若单位电压下的电量的变化值小于或等于预设数值,则说明此时充电电流超出了电池当前的健康状况所能承受的最大充电电流;若单位电压下的电量的变化值大于预设数值,说明此时充电电流在电池当前的健康状况所能承受的最大充电电流之内。
具体的,若单位电压下的电量的变化值大于预设数值,增大充电电流,直至单位电压下的电量的变化值小于或者等于预设数值,那么将大于预设数值且最接近预设数值的变化值对应的充电电流作为最大充电电流。
或者,若单位电压下的电量的变化值大于预设数值,计算变化值和预设数值之间的差值,在差值大于预定数值时,增大作用于电池的充电电流,直至差值小于预定数值,将差值小于预定数值对应的充电电流作为最大充电电流。若差值大于预定数值,说明此时充电电流并未达到电池当前的健康状况所能承受的最大充电电流,因此可增大作用于电池的充电电流,直至单位电压下的电量的变化值与预设数值之间的差值小于预定数值(预定数值为正值且无限 小,具体可根据实际应用进行设定),那么将此时的充电电流作为电池当前的健康状况所能承受的最大充电电流。
电池测试系统可根据实际应用进行设置,可选的,电池测试系统可由电池充放电系统、环境仓以及工控计算机组成。电池充放电系统拥有独立充放电控制通道,每个通道能够提供高精度直流电源,该充放电系统还配备有温度采集传感器;环境仓能够提供控温环境空间,模拟不同的环境温度;工控计算机与电池充放电系统以及环境仓通讯连接,实现对二者的联合控制。
本实施例中,通过预先存储的环境信息和参数信息与充电电流之间的映射关系,获取电池所在环境的环境信息和电池的参数信息即可确定电池当前的健康状况所能承受的最大充电电流,并控制充电电流小于或者等于最大充电电流,不仅不影响电池的寿命,而且缩短充电时间。
应该理解的是,虽然图2和图5的流程图中的各个操作按照箭头的指示依次显示,但是这些操作并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些操作的执行并没有严格的顺序限制,这些操作可以以其它的顺序执行。而且,图2和图5中的至少一部分操作可以包括多个子操作或者多个阶段,这些子操作或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子操作或者阶段的执行顺序也不必然是依次进行,而是可以与其它操作或者其它操作的子操作或者阶段的至少一部分轮流或者交替地执行。
图6为一个实施例中电池充电装置的结构框图。如图6所示,一种电池充电装置,包括获取模块610、确定模块620和调节模块630。其中:
获取模块610,用于在对电池充电的过程中,获取电池的电压从一初始电压,被充到目标电压时,电池的电量变化值;
确定模块620,用于根据目标电压与初始电压的电压差值,以及电量变化值,确定单位电压下的电量的变化值;
调节模块630,用于在单位电压下的电量的变化值小于或者等于预设数值时,降低作用于电池的充电电流,直至单位电压变化值大于预设数值。
在一个实施例中,如图6所示,该调节模块630还用于在单位电压下的电量的变化值大于预设数值时,增大作用于电池的充电电流,或者保持作用于电池的充电电流不变。
在一个实施例中,如图6所示,该调节模块630还用于在单位电压下的电量的变化值大于预设数值时,计算变化值和预设数值之间的差值;在差值大于预定数值时,增大作用于电池的充电电流;在差值小于或等于预定数值时,保持作用于电池的充电电流不变。
在一个实施例中,如图6所示,确定模块620还用于利用电量变化值对电压差值求导,得到第一导数值;利用第一导数值对电压差值求导,得到第二导数值;将第二导数值作为单位电压下的电量的变化值。
在一个实施例中,如图6所示,确定模块620还用于根据电压差值和电量变化值生成第一曲线,其中,第一曲线表征单位电压下的电量与电池的电压之间的变化关系;根据第一曲线和电压差值生成第二曲线,其中,第二曲线表征单位电压下的电量的变化值与电池的电压之间的变化关系;获取第二曲线的纵轴值,得到单位电压下的电量的变化值。
图7为一个实施例中电池充电装置的结构框图。如图7所示,一种电池充电装置,包括获取模块710、确定模块720和执行模块730。其中:
获取模块710用于获取电池所在环境的环境信息和电池的参数信息。确定模块720用于根据环境信息和参数信息与充电电流之间的映射关系,确定作用于电池的充电电流。执行模块730用于按照充电电流对电池进行充电,其中,映射关系的获取方式包括:获取测试过程中电池所在环境的环境信息、电池的参数信息和作用于电池的充电电流,其中,在充电电流下,电池的单位电压下的电量的变化值大于预设数值,将环境信息、参数信息和充电电流关 联存储至电池中。
上述电池充电装置中各个模块的划分仅用于举例说明,在其他实施例中,可将电池充电装置按照需要划分为不同的模块,以完成上述电池充电装置的全部或部分功能。
图8为一个实施例中电子设备的内部结构示意图。如图8所示,该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种电池充电方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。该电子设备可以是手机、平板电脑或者个人数字助理或穿戴式设备等。
本申请实施例中提供的电池充电装置中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在终端或服务器的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的操作。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行电池充电方法的操作。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行电池充电方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种电池充电方法,其特征在于,包括:
    在对电池充电的过程中,获取所述电池的电压从一初始电压,被充到目标电压时,所述电池的电量变化值;
    根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值;及
    在所述单位电压下的电量的变化值小于或者等于预设数值时,降低作用于所述电池的充电电流,直至所述单位电压变化值大于所述预设数值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作之后,还包括:
    在所述单位电压下的电量的变化值大于所述预设数值时,增大作用于所述电池的充电电流。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作之后,还包括:
    在所述单位电压下的电量的变化值大于所述预设数值时,保持作用于所述电池的充电电流不变。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作之后,还包括:
    在所述单位电压下的电量的变化值大于所述预设数值时,计算所述变化值和所述预设数值之间的差值;
    在所述差值大于预定数值时,增大作用于所述电池的充电电流。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述差值小于或等于所述预定数值时,保持作用于所述电池的充电电流不变。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作包括:
    利用所述电量变化值对所述电压差值求导,得到第一导数值;
    利用所述第一导数值对所述电压差值求导,得到第二导数值;及
    将所述第二导数值作为所述单位电压下的电量的变化值。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作包括:
    根据所述电压差值和所述电量变化值生成第一曲线,其中,所述第一曲线表征单位电压下的电量与所述电池的电压之间的变化关系;
    根据所述第一曲线和所述电压差值生成第二曲线,其中,所述第二曲线表征单位电压下的电量的变化值与所述电池的电压之间的变化关系;及
    获取所述第二曲线的纵轴值,得到所述单位电压下的电量的变化值。
  8. 一种电池充电方法,其特征在于,包括:
    获取电池所在环境的环境信息和所述电池的参数信息;
    根据所述环境信息和所述参数信息与充电电流之间的映射关系,确定作用于所述电池的充电电流;及
    按照所述充电电流对所述电池进行充电。
  9. 根据权利要求8所述的方法,其特征在于,所述映射关系的获取操作,包括:
    获取测试过程中所述电池所在环境的环境信息、所述电池的参数信息和作用于所述电池的充电电流,其中,在所述充电电流下,所述电池的单位电压下的电量的变化值大于预设数值,将所述环境信息、所述参数信息和所述充电电流关联存储至所述电池中。
  10. 根据权利要求9所述的方法,其特征在于,所述电池所在环境的环境信息包括温度;所述电池的参数信息包括电池的老化程度、电池的荷电状态中的至少一个。
  11. 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下操作:
    在对电池充电的过程中,获取所述电池的电压从一初始电压,被充到目标电压时,所述电池的电量变化值;
    根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值;及
    在所述单位电压下的电量的变化值小于或者等于预设数值时,降低作用于所述电池的充电电流,直至所述单位电压变化值大于所述预设数值。
  12. 根据权利要求11所述的电子设备,其特征在于,所述处理器执行所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作,还执行以下操作:
    在所述单位电压下的电量的变化值大于所述预设数值时,增大作用于所述电池的充电电流。
  13. 根据权利要求11所述的电子设备,其特征在于,所述处理器执行所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作,还执行以下操作:
    在所述单位电压下的电量的变化值大于所述预设数值时,保持作用于所述电池的充电电流不变。
  14. 根据权利要求11所述的电子设备,其特征在于,所述处理器执行所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作,还执行以下操作:
    在所述单位电压下的电量的变化值大于所述预设数值时,计算所述变化值和所述预设数值之间的差值;
    在所述差值大于预定数值时,增大作用于所述电池的充电电流。
  15. 根据权利要求14所述的电子设备,其特征在于,所述处理器还执行以下操作:
    在所述差值小于或等于所述预定数值时,保持作用于所述电池的充电电流不变。
  16. 根据权利要求11所述的电子设备,其特征在于,所述处理器执行所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作,还执行以下操作:
    利用所述电量变化值对所述电压差值求导,得到第一导数值;
    利用所述第一导数值对所述电压差值求导,得到第二导数值;及
    将所述第二导数值作为所述单位电压下的电量的变化值。
  17. 根据权利要求11所述的电子设备,其特征在于,所述处理器所述根据所述目标电压与所述初始电压的电压差值,以及所述电量变化值,确定单位电压下的电量的变化值的操作,还执行以下操作:
    根据所述电压差值和所述电量变化值生成第一曲线,其中,所述第一曲线表征单位电压下的电量与所述电池的电压之间的变化关系;
    根据所述第一曲线和所述电压差值生成第二曲线,其中,所述第二曲线表征单位电压下的电量的变化值与所述电池的电压之间的变化关系;及
    获取所述第二曲线的纵轴值,得到所述单位电压下的电量的变化值。
  18. 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如下操作:
    获取电池所在环境的环境信息和所述电池的参数信息;
    根据所述环境信息和所述参数信息与充电电流之间的映射关系,确定作用于所述电池的充电电流;及
    按照所述充电电流对所述电池进行充电。
  19. 根据权利要求18所述的电子设备,其特征在于,所述处理器还执行以下操作:
    获取测试过程中所述电池所在环境的环境信息、所述电池的参数信息和作用于所述电池的充电电流,其中,在所述充电电流下,所述电池的单位电压下的电量的变化值大于预设数值,将所述环境信息、所述参数信息和所述充电电流关联存储至所述电池中。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的方法的操作。
PCT/CN2020/093891 2019-06-28 2020-06-02 电池充电方法、电子设备、计算机可读存储介质 WO2020259225A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20831925.1A EP3952051A4 (en) 2019-06-28 2020-06-02 BATTERY CHARGING METHOD, ELECTRONIC DEVICE AND COMPUTER READABLE INFORMATION HOLDER
US17/511,502 US20220052545A1 (en) 2019-06-28 2021-10-26 Battery charging method and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910578585.8 2019-06-28
CN201910578585.8A CN112152275B (zh) 2019-06-28 2019-06-28 电池充电方法和装置、电子设备、计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/511,502 Continuation US20220052545A1 (en) 2019-06-28 2021-10-26 Battery charging method and electronic device

Publications (1)

Publication Number Publication Date
WO2020259225A1 true WO2020259225A1 (zh) 2020-12-30

Family

ID=73891398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093891 WO2020259225A1 (zh) 2019-06-28 2020-06-02 电池充电方法、电子设备、计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220052545A1 (zh)
EP (1) EP3952051A4 (zh)
CN (1) CN112152275B (zh)
WO (1) WO2020259225A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740732A (zh) * 2021-08-20 2021-12-03 蜂巢能源科技有限公司 电芯离群的检测方法、装置及电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113507154B (zh) * 2021-07-12 2023-02-28 海南小鲨鱼智能科技有限公司 充电方法、装置、充电机和电子设备
CN113872268B (zh) * 2021-09-01 2023-06-30 蜂巢能源科技有限公司 一种电动汽车电池快充末期充电方法、装置及存储介质
CN114221403B (zh) * 2021-09-26 2022-12-02 荣耀终端有限公司 充电方法和充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169284A1 (en) * 2011-01-03 2012-07-05 Samsung Sdi Co., Ltd. Battery Charging Method and Battery Pack Using the Same
CN107359380A (zh) * 2017-07-19 2017-11-17 华霆(合肥)动力技术有限公司 充电方法及装置
CN107612075A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质
CN109659641A (zh) * 2019-01-22 2019-04-19 北京交通大学 一种改善的动力锂电池安全充电方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314043B2 (ja) * 2014-06-26 2018-04-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
CN105703024B (zh) * 2014-11-27 2018-03-20 中信国安盟固利动力科技有限公司 一种锂离子动力电池充电方法
EP3563465B1 (en) * 2016-12-29 2023-08-02 Vito NV Hybrid battery charger/tester
CN107171380B (zh) * 2017-05-12 2020-02-14 华霆(合肥)动力技术有限公司 充电方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169284A1 (en) * 2011-01-03 2012-07-05 Samsung Sdi Co., Ltd. Battery Charging Method and Battery Pack Using the Same
CN107359380A (zh) * 2017-07-19 2017-11-17 华霆(合肥)动力技术有限公司 充电方法及装置
CN107612075A (zh) * 2017-09-27 2018-01-19 宁德时代新能源科技股份有限公司 电池充电方法、装置、设备和存储介质
CN109659641A (zh) * 2019-01-22 2019-04-19 北京交通大学 一种改善的动力锂电池安全充电方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3952051A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740732A (zh) * 2021-08-20 2021-12-03 蜂巢能源科技有限公司 电芯离群的检测方法、装置及电子设备
CN113740732B (zh) * 2021-08-20 2023-06-30 蜂巢能源科技有限公司 电芯离群的检测方法、装置及电子设备

Also Published As

Publication number Publication date
EP3952051A1 (en) 2022-02-09
EP3952051A4 (en) 2022-10-12
CN112152275A (zh) 2020-12-29
CN112152275B (zh) 2021-08-31
US20220052545A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020259225A1 (zh) 电池充电方法、电子设备、计算机可读存储介质
US11201359B2 (en) Charging control method and apparatus, and computer readable storage medium
US11929635B2 (en) Charging method and charging device
CN108475935B (zh) 一种电池充电管理方法和终端
CN108663627B (zh) 一种电池自放电检测方法及电池自放电检测装置
CN108649658B (zh) 多电池的切换方法、供电装置、电子设备
WO2018032581A1 (zh) 一种应用程序控制方法及装置
CA3111855C (en) Electronic device low-temperature protection method and electronic device
CN109217409B (zh) 充电方法、装置和电子设备
WO2020087373A1 (zh) 电池电压的补偿方法、装置和终端设备
CN111313500A (zh) 充电管理方法和装置、电子设备、计算机可读存储介质
CN109149690B (zh) 充电控制装置和方法、电子设备
CN111613854A (zh) 电池及其控制方法和电子设备
US20150127278A1 (en) Method and device for ascertaining required charging time
CN111478378B (zh) 保护电路、充电控制装置和方法、电子设备
CN109217411B (zh) 充电方法和装置、电子设备
CN107817397B (zh) 充电发热异常的检测方法及终端设备
CN115776163A (zh) 充电控制方法、智能终端及存储介质
US20210313812A1 (en) Device and method for charging control, electronic device
CN112542867B (zh) 移动终端供电控制方法、装置、终端设备及存储介质
WO2020168980A1 (zh) 电池组、电子设备和充放电控制方法
CN110427305B (zh) 电池漏气处理方法和装置、电子设备、可读存储介质
CN110994052B (zh) 延长电池续航能力的方法及装置、存储介质、终端设备
WO2020168940A1 (zh) 电子设备和放电控制方法
CN109672242B (zh) 终端充电控制方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020831925

Country of ref document: EP

Effective date: 20211026

NENP Non-entry into the national phase

Ref country code: DE